WO2021249120A1 - 发光基板及显示装置 - Google Patents

发光基板及显示装置 Download PDF

Info

Publication number
WO2021249120A1
WO2021249120A1 PCT/CN2021/094028 CN2021094028W WO2021249120A1 WO 2021249120 A1 WO2021249120 A1 WO 2021249120A1 CN 2021094028 W CN2021094028 W CN 2021094028W WO 2021249120 A1 WO2021249120 A1 WO 2021249120A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
voltage
emitting
line
lines
Prior art date
Application number
PCT/CN2021/094028
Other languages
English (en)
French (fr)
Inventor
杨明
张振宇
玄明花
王飞飞
卢鑫泓
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/781,850 priority Critical patent/US11791347B2/en
Priority to JP2022533547A priority patent/JP2023528706A/ja
Priority to KR1020227017959A priority patent/KR20230022828A/ko
Priority to EP21823073.8A priority patent/EP4067983A4/en
Publication of WO2021249120A1 publication Critical patent/WO2021249120A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the embodiment of the present disclosure relates to a light-emitting substrate and a display device.
  • At least one embodiment of the present disclosure provides a light-emitting substrate, including a plurality of light-emitting units, a plurality of first voltage lines, and a plurality of first transmission lines, wherein the plurality of light-emitting units are arranged in a first direction and a second direction.
  • the first voltage line includes a first part, a first connection part, and a second part that are sequentially connected.
  • the first part extends along the second direction and is connected to The first voltage terminal of the light-emitting unit in the first row to the Y-th row of the light-emitting unit in the corresponding column is electrically connected, and the extension direction of the second part of at least one of the plurality of first voltage lines is the same as the first direction And the second direction both have an included angle, the first connecting portion is located at the junction of the Y-th row of light-emitting units and the Y+1-th row of light-emitting units, and is configured to make the first part and the second part electrically Connected, the plurality of first transmission lines have a one-to-one correspondence with the plurality of columns of light-emitting units, and the first transmission lines are electrically connected to the first voltage terminals of the light-emitting units from the Y+1th row to the Nth row of the corresponding columns, And the first connection part of the first voltage line corresponding to the light-emitting unit of the corresponding column is electrically connected, N is an integer greater
  • the light-emitting substrate provided by an embodiment of the present disclosure further includes a plurality of second voltage lines and a plurality of second transmission lines, wherein each of the plurality of light-emitting units further includes a second voltage terminal, and the plurality of second voltages
  • the lines correspond to the multiple columns of light-emitting units one-to-one and are configured to transmit a second voltage signal.
  • the second voltage line includes a third part, a second connection part, and a fourth part that are connected in sequence.
  • the third part It extends along the second direction and is electrically connected to the second voltage terminal of the light-emitting unit from the first row to the Y-th row of the light-emitting unit in the corresponding column.
  • the extending direction of the part has an angle with the first direction and the second direction.
  • the second connecting portion is located at the junction of the Y-th row of light-emitting units and the Y+1-th row of light-emitting units, and is configured to make the
  • the third part is electrically connected to the fourth part, the plurality of second transmission lines are in one-to-one correspondence with the plurality of columns of light-emitting units, and the second transmission lines correspond to the corresponding columns of light-emitting units in the Y+1th row to the Nth row.
  • the second voltage terminal of the row light-emitting unit is electrically connected, and the second connection portion of the second voltage line corresponding to the light-emitting unit of the corresponding column is electrically connected.
  • the first voltage line and the first transmission line are located on different film layers, and the different film layers are insulated from each other at positions where no vias are provided.
  • the second voltage line and the second transmission line are located on different film layers, and the different film layers are insulated from each other at positions where no vias are provided.
  • the first voltage line and the second voltage line are located on the same layer, and the first transmission line and the second transmission line are located on the same layer.
  • the first voltage signal is a driving voltage signal
  • the second voltage signal is a common voltage signal
  • the level of the first voltage signal is greater than that of the second voltage signal.
  • the light-emitting substrate provided by an embodiment of the present disclosure further includes a binding area, wherein the binding area is located at the edge of the light-emitting substrate close to the N-th row of light-emitting units, and the binding area includes a plurality of binding pins ,
  • the second part of the first voltage line is electrically connected to at least one of the plurality of binding pins
  • the fourth part of the second voltage line is electrically connected to at least one of the plurality of binding pins .
  • the width of the first portion of the first voltage line in the first direction is greater than the width of the first transmission line in the first direction
  • the width of the fourth portion of the second voltage line in the first direction is greater than the width of the second transmission line in the first direction.
  • At least one first transmission line of the plurality of first transmission lines extends along the second direction
  • at least one second transmission line of the plurality of second transmission lines extends along the The second direction
  • the light-emitting substrate provided by an embodiment of the present disclosure further includes a plurality of third voltage lines and a plurality of fourth voltage lines extending along the first direction, wherein the plurality of third voltage lines are parallel to the The orthographic projection in the plane of the light-emitting substrate overlaps the orthographic projection of the plurality of first voltage lines in a plane parallel to the light-emitting substrate, and the plurality of third voltage lines are connected to the plurality of The first voltage line is electrically connected, the orthographic projection of the plurality of fourth voltage lines in a plane parallel to the light-emitting substrate and the orthographic projection of the plurality of second voltage lines in a plane parallel to the light-emitting substrate Overlap, and the plurality of fourth voltage lines are electrically connected to the plurality of second voltage lines through via holes, and the plurality of third voltage lines and the plurality of fourth voltage lines are located on the same layer.
  • each of the plurality of light-emitting units further includes a driving circuit and a plurality of light-emitting elements;
  • the driving circuit includes a first input terminal, a second input terminal, an output terminal, and A common voltage terminal, the common voltage terminal is electrically connected to the second voltage terminal;
  • the multiple light-emitting elements are serially connected in series and connected between the first voltage terminal and the output terminal;
  • the drive circuit configuration In order to output a relay signal through the output terminal in the first period according to the first input signal received by the first input terminal and the second input signal received by the second input terminal, and to pass all signals in the second period
  • the output terminal provides a driving signal to the plurality of light-emitting elements connected in series.
  • the plurality of light-emitting elements include a plurality of micro light-emitting diodes.
  • At least one embodiment of the present disclosure further provides a display device, including: a display panel and the light-emitting substrate according to any embodiment of the present disclosure, wherein the display panel has a display side and a non-display side opposite to the display side.
  • the light-emitting substrate is arranged on the non-display side of the display panel as a backlight unit.
  • Fig. 1A is a schematic plan view of a light-emitting substrate
  • Fig. 1B is a schematic partial plan view of a light-emitting substrate
  • FIG. 2 is a schematic plan view of a light-emitting substrate provided by some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of the arrangement of light-emitting units of the light-emitting substrate shown in FIG. 2;
  • FIG. 4 is a schematic diagram of a light-emitting unit in the light-emitting substrate shown in FIG. 2;
  • FIG. 5A is an enlarged schematic diagram of the first voltage line and the second voltage line of the light-emitting substrate shown in FIG. 2;
  • 5B is a schematic diagram of the connection relationship between a light-emitting unit located in the last row of the light-emitting substrate shown in FIG. 2 and the first voltage line and the second voltage line;
  • 6A and 6B are schematic diagrams of the numbering of the light-emitting units of the light-emitting substrate provided by some embodiments of the present disclosure.
  • FIG. 7 is a partial schematic diagram of a wiring design of a light-emitting substrate provided by some embodiments of the present disclosure.
  • FIG. 8 is a schematic plan view of another light-emitting substrate provided by some embodiments of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view of a display device provided by some embodiments of the present disclosure.
  • Mini Light Emitting Diode (Mini-LED) or Micro Light Emitting Diode (Micro-LED) is small in size and high in brightness, and can be widely used in display devices.
  • the backlight module the backlight is finely adjusted to realize the display of high-dynamic range images (High-Dynamic Range, HDR).
  • Mini-LED and Micro-LED can also be directly used as pixels and applied to the display panel of the display device for display.
  • the typical size (e.g., length) of Micro-LED is less than 50 microns, such as 10 microns to 50 microns; the typical size (e.g., length) of Mini-LED is 50 microns to 150 microns, such as 80 microns to 120 microns.
  • Fig. 1A is a schematic plan view of a light-emitting substrate.
  • a plurality of light-emitting units 002 are disposed on a base substrate 001.
  • each light emitting unit 002 includes a driving circuit and a plurality of light emitting elements.
  • the first voltage signal and the second voltage signal are a driving voltage signal and a common voltage signal, respectively, or the first voltage signal and the second voltage signal are a common voltage signal and a driving voltage signal, respectively.
  • the plurality of first voltage lines 005 and the plurality of second voltage lines 006 extend along the column direction, and are used to provide the first voltage signal and the second voltage signal, respectively.
  • the first voltage terminal 003 of each light-emitting unit 002 is electrically connected to the first voltage line 005, and the second voltage terminal 004 of each light-emitting unit 002 is electrically connected to the second voltage line 006.
  • a plurality of binding pins 007 are provided on the edge of the light-emitting substrate 01, and the first voltage line 005 and the second voltage line 006 need to be electrically connected to different binding pins 007 in order to receive and bind the binding pin 007
  • the drive voltage signal and common voltage signal provided by the control circuit or chip.
  • the width of each bonding pin 007 is not in the same size order as the widths of the first voltage line 005 and the second voltage line 006, and two adjacent bonding pins 007 among the plurality of bonding pins 007
  • the distance between the first voltage line 005 and the second voltage line 006 needs to be electrically connected to each light-emitting unit 002 and the binding pin 007 at the same time. Therefore, the first voltage line 005 and the second voltage line 006 cannot Extend completely in a straight line. That is, as shown in FIG. 1A, the first voltage line 005 includes a first portion 005a and a second portion 005b.
  • the first part 005a extends along the column direction and extends from the first row of light emitting cells 002 to the last row of light emitting cells 002.
  • the second part 005b is diagonally routed and extends from the outer side of the last row of light-emitting units 002 to the binding pin 007 at the edge of the base substrate 001.
  • the second voltage line 006 includes a first portion 006a and a second portion 006b.
  • the first part 006a extends along the column direction and extends from the first row of light emitting cells 002 to the last row of light emitting cells 002.
  • the second part 006b is diagonally routed, and extends from the outer side of the last row of light-emitting units 002 to the binding pin 007 at the edge of the base substrate 001.
  • the oblique wiring area 008 needs to be reserved in the light-emitting substrate 01, and the non-display area (such as the lower frame in FIG. 1A) of the light-emitting substrate 01 has a larger width L1, which is not conducive to achieving a narrow frame design.
  • the wiring method in the oblique wiring area 008 in FIG. 1A is only illustrative and not restrictive.
  • the specific wiring method in the oblique wiring area 008 in FIG. 1A can be arbitrarily applicable. This can be determined according to actual needs, which is not limited in the embodiments of the present disclosure.
  • FIG. 1B is a partial plan view of a light-emitting substrate, and FIG. 1B shows another wiring method in the oblique wiring area 008 of the light-emitting substrate, which is similar to the oblique wiring shown in FIG. 1A
  • the wiring method in area 008 is different.
  • Other structures of the light-emitting substrate shown in FIG. 1B are basically the same as those of the light-emitting substrate in FIG. 1A, so the same structure is not shown again.
  • the second part 005b is basically diagonal routing, but the part connected to the binding pin 007 is no longer diagonal routing, and The part connected by the pin 007 extends in the column direction, that is, the second part 005b extends obliquely to the vicinity of the binding pin 007, and then becomes extending in the column direction and is electrically connected to the binding pin 007.
  • the second part 006b extends obliquely to the vicinity of the binding pin 007, and then becomes extended in the column direction and electrically connected to the binding pin 007.
  • the size of the multiple bonding pins 007 may be different, so as to match the width of the correspondingly connected trace.
  • the voltage lines are not limited to include the first voltage line 005 and the second voltage line 006, but may also include more voltage lines, for example, may also include additional voltage lines 0061, which may be determined according to actual needs. The embodiment of the present disclosure does not limit this.
  • the light-emitting substrate shown in FIG. 1B needs to leave an oblique wiring area 008, so the non-display area of the light-emitting substrate (for example, the lower frame of the light-emitting substrate shown in FIG. 1B) has a relatively large width, which is not conducive to narrowing. Border design.
  • At least one embodiment of the present disclosure provides a light-emitting substrate and a display device.
  • the light-emitting substrate can effectively reduce the width of the non-display area, reduce the size of the non-display area, and facilitate the realization of a narrow frame design.
  • At least one embodiment of the present disclosure provides a light-emitting substrate including a plurality of light-emitting units, a plurality of first voltage lines, and a plurality of first transmission lines.
  • the multiple light-emitting units are arranged in an N*M array of N rows and M columns along the first direction and the second direction, the first direction crosses the second direction, and the multiple light-emitting units each include a first voltage terminal.
  • the plurality of first voltage lines correspond to the plurality of columns of light-emitting units one-to-one, and are configured to transmit the first voltage signal.
  • the first voltage line includes a first part, a first connection part, and a second part connected in sequence.
  • the first part extends along the second direction, and is electrically connected to the first voltage terminal of the light-emitting unit from the first row to the Y-th row of the corresponding column.
  • the extension direction of the second part of at least one of the first voltage lines in the plurality of first voltage lines has an angle with the first direction and the second direction.
  • the first connecting portion is located at the junction of the Y-th row of light-emitting units and the Y+1-th row of light-emitting units, and is configured to electrically connect the first part and the second part.
  • the multiple first transmission lines correspond to the multiple columns of light-emitting units one-to-one, and the first transmission lines are electrically connected to the first voltage terminals of the light-emitting units from the Y+1th row to the Nth row of the light-emitting units in the corresponding column, and correspond to the light-emitting units in the corresponding column
  • the first connection part of the first voltage line is electrically connected.
  • N is an integer greater than
  • M is an integer greater than
  • 0 ⁇ Y ⁇ N and Y is an integer.
  • FIG. 2 is a schematic plan view of a light-emitting substrate provided by some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of an arrangement of light-emitting units of the light-emitting substrate shown in FIG. 2.
  • the light-emitting substrate 10 includes a base substrate 101 and a plurality of light-emitting units 100 arranged in an array on the base substrate 101, and also includes a plurality of first voltages arranged on the base substrate 101 Line 21 and a plurality of first transmission lines 22.
  • the plurality of light emitting units 100 are arranged in an N*M array of N rows and M columns along the first direction and the second direction, where N is an integer greater than 0, and M is an integer greater than 0.
  • the first direction crosses the second direction.
  • each row of light-emitting units 100 is arranged along a first direction
  • each column of light-emitting units 100 is arranged along a second direction
  • the first direction is perpendicular to the second direction
  • the first direction is the row direction
  • the second direction is the column direction.
  • the embodiments of the present disclosure are not limited to this, and the first direction and the second direction can be arbitrary directions, and the first direction and the second direction only need to be crossed.
  • the multiple light-emitting units 100 are not limited to being arranged along a straight line, but may also be arranged along a curve, in a circle, or in any manner, which may be determined according to actual needs, and the embodiment of the present disclosure does not limit this.
  • the number of light-emitting units 100 can be determined according to actual requirements, for example, according to the size of the light-emitting substrate 10 and the required brightness.
  • the light-emitting units 100 are shown in 4 rows and 5 columns in FIG. 2, it should be understood that the light-emitting units The number of 100 is not limited to this.
  • the base substrate 101 may be a plastic substrate, a silicon substrate, a ceramic substrate, a glass substrate, a quartz substrate, etc.
  • the base substrate 101 includes a single-layer or multi-layer circuit, which is not limited in the embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a light-emitting unit of the light-emitting substrate shown in FIG. 2.
  • each light-emitting unit 100 includes a driving circuit 110, a plurality of light-emitting elements 120, a first voltage terminal 31 and a second voltage terminal 32.
  • the driving circuit 110 includes a first input terminal Di, a second input terminal Pwr, an output terminal OT, and a common voltage terminal GND.
  • the first input terminal Di receives a first input signal
  • the first input signal is, for example, an address signal for strobing the driving circuit 110 of the corresponding address.
  • the addresses of different driving circuits 110 may be the same or different.
  • the first input signal can be an 8-bit address signal, and the address to be transmitted can be obtained by parsing the address signal.
  • the second input terminal Pwr receives a second input signal.
  • the second input signal is, for example, a power line carrier communication signal.
  • the second input signal not only provides power to the driving circuit 110, but also transmits communication data to the driving circuit 110.
  • the communication data can be used to control the light-emitting duration of the corresponding light-emitting unit 100, and thereby control its visual light-emitting brightness.
  • the output terminal OT can respectively output different signals in different time periods, for example, respectively output a relay signal and a driving signal.
  • the relay signal is an address signal provided to other driving circuits 110, that is, the first input terminal Di of the other driving circuit 110 receives the relay signal as the first input signal, thereby obtaining the address signal.
  • the driving signal may be a driving current for driving the light-emitting element 120 to emit light.
  • the common voltage terminal GND receives a common voltage signal, such as a ground signal.
  • the common voltage terminal GND is electrically connected to the second voltage terminal 32.
  • the driving circuit 110 is configured to output a relay signal through the output terminal OT in the first period according to the first input signal received by the first input terminal Di and the second input signal received by the second input terminal Pwr, and to pass through the
  • the output terminal OT provides a driving signal to a plurality of light-emitting elements 120 connected in series.
  • the output terminal OT outputs a relay signal, and the relay signal is provided to the other driving circuits 110 so that the other driving circuits 110 obtain address signals.
  • the output terminal OT outputs a driving signal, which is provided to a plurality of light-emitting elements 120 connected in series, so that the light-emitting elements 120 emit light in the second period.
  • the first period and the second period are different periods, and the first period may be earlier than the second period, for example.
  • the first time period can be continuously connected with the second time period, and the end time of the first time period is the start time of the second time period; or, there can be other time periods between the first time period and the second time period, and the other time periods can be used to achieve
  • the other period can also be used only to separate the first period and the second period, so as to avoid the signal of the output terminal OT in the first period and the second period from interfering with each other.
  • a plurality of light emitting elements 120 are serially connected in series and connected between the first voltage terminal 31 and the output terminal OT.
  • the plurality of light-emitting elements 120 may include a plurality of micro-LEDs (Micro-LED) or a plurality of mini-LEDs (Mini-LED), that is, any one of the light-emitting elements 120 may be a Micro-LED or a Mini-LED.
  • each light-emitting element 120 includes a positive electrode (+) and a negative electrode (-) (or, also referred to as an anode and a cathode), and the positive and negative electrodes of the multiple light-emitting elements 120 are connected in series end to end in sequence, so that the first voltage terminal 31 A current path is formed between OT and the output terminal OT.
  • the first voltage terminal 31 provides a driving voltage signal, for example, a high voltage during a period (second period) in which the light-emitting element 120 needs to emit light, and a low voltage in other periods.
  • the driving voltage signal for example, the driving current sequentially flows from the first voltage terminal 31 through the plurality of light-emitting elements 120 and then flows into the output terminal OT of the driving circuit 110.
  • the multiple light-emitting elements 120 emit light when the driving current flows.
  • the duration of the driving current By controlling the duration of the driving current, the light-emitting duration of the light-emitting elements 120 can be controlled, thereby controlling the visual light-emitting brightness.
  • one light emitting unit 100 includes 6 light emitting elements 120, and the 6 light emitting elements 120 are arranged in 2 rows and 3 columns.
  • the six light-emitting elements 120 are sequentially numbered as (1,1), (1,2), (1,3), (2,1), (2, ,2) and (2,3), the numbers are shown in Figure 4.
  • the light-emitting element 120 at position (2,1) is used as the starting point of the series, and (1,1), (2,2), (1,2), (2) are connected in sequence.
  • the light-emitting element 120 at positions (1,3) and (1,3) takes the light-emitting element 120 at positions (1,3) as the end point of the series connection.
  • the anode of the light emitting element 120 at the position (2, 1) is connected to the first voltage terminal 31, and the cathode of the light emitting element 120 at the position (1, 3) is connected to the output terminal OT of the driving circuit 110.
  • the use of this distribution method and series connection method can effectively avoid the overlapping of the wiring, which is convenient for design and preparation.
  • the bending shape and length of the wiring between any two adjacent light-emitting elements 120 on the series circuit are approximately the same. The resistance of the circuit itself is more balanced, the load balance can be improved, and the stability of the circuit can be improved.
  • a plurality of (for example, 6) light-emitting elements 120 are arranged in an array, which can make the light emission more uniform.
  • the driving circuit 110 is located in the gap of the array formed by a plurality of light-emitting elements 120.
  • the number of light-emitting elements 120 in each light-emitting unit 100 is not limited, and can be any number such as 4, 5, 7, 8, etc., and is not limited to 6. .
  • the plurality of light-emitting elements 120 can be arranged in any manner, for example, according to a required pattern, and is not limited to a matrix arrangement.
  • the placement position of the driving circuit 110 is not limited, and can be placed in any gap between the light-emitting elements 120, which may be determined according to actual requirements, which is not limited in the embodiment of the present disclosure.
  • the first voltage terminal 31 may receive a driving voltage signal and provide the driving voltage signal to the light-emitting element 120, or may receive a common voltage signal and provide the common voltage signal to the light-emitting element 120, which may be based on the driving circuit
  • the actual working mode of 110 depends on the connection mode of the multiple light-emitting elements 120, which is not limited in the embodiment of the present disclosure.
  • the level of the driving voltage signal is greater than the level of the common voltage signal
  • the common voltage signal is, for example, a ground signal.
  • the configuration of the light-emitting unit 100 shown in FIG. 4 is only an example, and should not be understood as a limitation to the embodiments of the present disclosure.
  • the light-emitting unit 100 may only include the light-emitting element 120, and the driving circuit 110 is no longer required.
  • a passive matrix (PM) driving method may be used to drive each light-emitting element. 120.
  • a circuit including a thin film transistor (TFT) may also be provided in the light-emitting unit 100, and an active matrix (AM) driving method is adopted, and the light-emitting element 120 can be processed by the circuit.
  • TFT thin film transistor
  • AM active matrix
  • the circuit is, for example, a normal pixel circuit and may also include devices such as capacitors.
  • the aforementioned driving circuit 110 may be omitted.
  • the light-emitting unit 100 may also adopt any other applicable structure, which is not limited in the embodiment of the present disclosure.
  • FIG. 5A is an enlarged schematic diagram of the first voltage line and the second voltage line of the light-emitting substrate shown in FIG. 2, and FIG. 5B is a light-emitting unit located in the last row of the light-emitting substrate shown in FIG. Schematic diagram of the connection relationship of the voltage lines.
  • a plurality of first voltage lines 21 correspond to a plurality of columns of light-emitting units 100 one-to-one, and are configured to transmit first voltage signals.
  • the first voltage signal is a driving voltage signal or a common voltage signal.
  • the first voltage line 21 includes a first portion 211, a first connection portion 213, and a second portion 212 connected in sequence.
  • the width of the first portion 211 in the first direction is greater than the width of the second portion 212 in the first direction.
  • the width of the first portion 211 in the first direction at different positions may be equal, and the width of the second portion 212 in the first direction at different positions may be different.
  • the width of the second portion 212 in the first direction gradually decreases, for example, , The second part 212 is gradually narrowed to meet the wiring design requirements.
  • the first portion 211 extends in the second direction and is electrically connected to the first voltage terminal 31 of the light-emitting unit 100 to the Y-th row of the light-emitting unit 100 in the corresponding column, for example, through a via hole.
  • the first portion 211 is electrically connected to the first voltage terminal 31 of the light-emitting unit 100 to the third row of the light-emitting unit 100 in the corresponding column.
  • the film layer where the first voltage line 21 in FIG. 2 is located is on the side of the light-emitting element 120 closer to the base substrate 101. Therefore, the first portion 211 of the first voltage line 21 may extend into the light-emitting unit 100 Below the anode of the light-emitting element 120 close to the first voltage terminal 31 and is electrically connected to the anode of the light-emitting element 120 through the via hole (that is, electrically connected to the first voltage terminal 31), that is, the first voltage line 21 connects the A voltage signal is transmitted to the anode of the light-emitting element 120 (that is, to the first voltage terminal 31).
  • the negative electrode of the light-emitting element 120 overlaps the first voltage line 21 in FIG. 2, since the two are located in different layers, the negative electrode of the light-emitting element 120 is not electrically connected to the first voltage line 21.
  • the extension direction of the second portion 212 of at least one of the plurality of first voltage lines 21 has an angle with the first direction and the second direction.
  • the included angle may be greater than 0 degrees and less than 90 degrees (for example, 20 to 70 degrees, 40 to 60 degrees, or 45 degrees), the angle between the extending direction and the first direction and the angle between the extending direction and the second direction.
  • the angles can be the same or different.
  • the second portion 212 of at least one first voltage line 21 extends obliquely, that is, has an angle with both the row direction and the column direction.
  • the second parts 212 of the first voltage lines 21 may extend obliquely, or all the second parts 212 of the first voltage lines 21 may extend obliquely. This may be determined according to actual wiring requirements. The embodiment does not limit this.
  • the first connecting portion 213 is located at the junction of the Y-th row of light-emitting units 100 and the Y+1-th row of light-emitting units 100, and is configured to electrically connect the first portion 211 and the second portion 212, 0 ⁇ Y ⁇ N and Y is an integer.
  • the first connecting portion 213 is actually a bent portion of the first voltage line 21, so that the extension direction of the first voltage line 21 is changed.
  • the first connecting portion 213 may not only include the bent portion of the first voltage line 21, but also include a line segment of the first voltage line 21 extending in the second direction. A part of may also include a part of the line segment extending diagonally of the first voltage line 21, which is not limited in the embodiment of the present disclosure.
  • the plurality of first transmission lines 22 correspond to the plurality of columns of light-emitting units 100 one-to-one.
  • the first transmission line 22 is electrically connected to the first voltage terminal 31 of the light emitting unit 100 of the Y+1th row to the Nth row of the light emitting unit 100 in the corresponding column, and the first voltage line 21 of the first voltage line 21 corresponding to the light emitting unit 100 of the corresponding column is electrically connected.
  • the connection part 213 is electrically connected.
  • the first transmission line 22 is electrically connected to the first voltage terminal 31 of the light emitting cell 100 in the fourth row of the corresponding column, and the first voltage line 21 of the first voltage line 21 corresponding to the light emitting cell 100 of the corresponding column is electrically connected.
  • the connecting portion 213 is electrically connected, so that the first voltage terminal 31 of the light-emitting unit 100 in the fourth row is electrically connected to the first voltage line 21, so that the first voltage signal provided by the first voltage line 21 can be received.
  • the first voltage line 21 and the first transmission line 22 are located on different layers, which can facilitate wiring.
  • the electrical connection between the first voltage line 21 and the first transmission line 22 can be achieved through vias.
  • the embodiments of the present disclosure are not limited to this, and the first voltage line 21 and the first transmission line 22 can also be located on the same layer, as long as the corresponding electrical connection can be achieved and the short circuit with other structures is not required.
  • the width of the first portion 211 of the first voltage line 21 in the first direction is greater than the width of the first transmission line 22 in the first direction.
  • “different layers” refer to different film layers, and these different film layers are insulated from each other at positions where no vias are provided.
  • the traces located in different film layers can be implemented by setting vias. Electric connection.
  • these different film layers are prepared in different processes.
  • the first process is used to prepare one of these different film layers, and then the second process is used to prepare the other of these different film layers.
  • a third process can also be used to prepare an insulating layer. Insulate each other.
  • the first process, the second process, and the third process may be the same or different.
  • different film layers have different distances from the base substrate 101. That is, among the different film layers, one film layer is closer to the base substrate 101, and the other film layer is farther from the base substrate 101.
  • the meaning of "located in a different layer" can refer to the above description, and will not be repeated.
  • being located on the “same layer” refers to being located on the same film layer.
  • the traces located in the same film layer can be prepared in the same process, for example, the required traces can be formed by one patterning process.
  • the distances between the traces in the same film layer and the base substrate 101 are the same or substantially the same. That is, the distances between the traces in the film layer and the base substrate 101 are the same or substantially the same.
  • the meaning of "located on the same layer” can refer to the above description, and will not be repeated.
  • the first portion 211 of the first voltage line 21 extends in the second direction (that is, the column direction)
  • the light-emitting cells 100 in the first row to the third row of the light-emitting cells 100 in the same column are located
  • a voltage terminal 31 is located in the orthographic projection of the first voltage line 21 on the base substrate 101 (for example, in the orthographic projection of the first part 211 on the base substrate 101). Therefore, for the first row of light-emitting units 100 to third
  • the row light-emitting unit 100 can realize the electrical connection between the first voltage terminal 31 and the first voltage line 21 by providing a via at the position of the first voltage terminal 31.
  • the second portion 212 of the first voltage line 21 extends diagonally, and the first voltage terminal 31 of the light-emitting unit 100 in the fourth row is located outside the orthographic projection of the first voltage line 21 on the base substrate 101 (for example, located in the second portion 212). Outside the orthographic projection on the base substrate 101), therefore, for the fourth row of light-emitting units 100, it is impossible to realize the connection between the first voltage terminal 31 and the first voltage line 21 by providing a via at the position of the first voltage terminal 31 For electrical connection, the first transmission line 22 needs to be provided to electrically connect the first voltage terminal 31 and the first voltage line 21.
  • the first voltage line 21 extend diagonally from a position farther from the edge of the light-emitting substrate 10 (for example, the lower edge of the light-emitting substrate 10 shown in FIG.
  • the electrical connection between the first voltage terminal 31 and the first voltage line 21 can effectively reduce the diagonal wiring area and reduce the frame of the light-emitting substrate 10, so that the width L2 of the non-display area is small, which helps to reduce the light emission.
  • the size of the non-display area of the substrate 10 facilitates the realization of a narrow frame design.
  • the first transmission line 22 extends in the second direction to the first connection portion 213, and is electrically connected to the first connection portion 213 through a via hole, thereby facilitating the wiring of the first transmission line 22, which is beneficial to Simplify layout design.
  • the first transmission line 22 may also extend in any direction and be electrically connected to any part of the first voltage line 21 (for example, the first part 211 or the second part 212), which may be based on It depends on actual requirements, for example, based on actual wiring design, which is not limited in the embodiments of the present disclosure.
  • the light-emitting substrate 10 further includes a plurality of second voltage lines 23 and a plurality of second transmission lines 24.
  • the plurality of second voltage lines 23 correspond to the plurality of columns of light-emitting units 100 one-to-one, and are configured to transmit second voltage signals.
  • the second voltage signal is a common voltage signal or a driving voltage signal.
  • the second voltage signal is a common voltage signal, and the level of the first voltage signal is greater than the level of the second voltage signal; if the aforementioned first voltage signal is If the voltage signal is a common voltage signal, the second voltage signal is a driving voltage signal, and the level of the first voltage signal is smaller than the level of the second voltage signal.
  • the common voltage signal is a ground signal.
  • the second voltage line 23 includes a third portion 231, a second connection portion 233, and a fourth portion 232 connected in sequence.
  • the width of the third portion 231 in the first direction is greater than the width of the fourth portion 232 in the first direction.
  • the width of the third part 231 in the first direction at different positions may be equal, and the width of the fourth part 232 in the first direction at different positions may be different.
  • the width of the fourth portion 232 in the first direction gradually decreases, for example, , The fourth part 232 is gradually narrowed to meet the wiring design requirements.
  • the third portion 231 extends along the second direction, and is electrically connected to the second voltage terminal 32 of the light-emitting unit 100 to the Y-th row of the light-emitting unit 100 in the corresponding column, for example, through a via hole.
  • the third portion 231 is electrically connected to the second voltage terminal 32 of the light-emitting unit 100 in the first row to the third row of the light-emitting unit 100 in the corresponding column.
  • the film layer where the second voltage line 23 in FIG. 2 is located is on the side of the driving circuit 110 that is closer to the base substrate 101. Therefore, the third portion 231 of the second voltage line 23 can extend to the driving circuit 110. Under the common voltage terminal GND of the driving circuit 110 and electrically connected to the common voltage terminal GND of the driving circuit 110 through the via hole (that is, electrically connected to the second voltage terminal 32), that is, the second voltage line 23 transmits the second voltage signal To the common voltage terminal GND of the driving circuit 110 (that is, to the second voltage terminal 32). Although the other ports of the driving circuit 110 and the light-emitting element 120 overlap the second voltage line 23 in FIG.
  • the driving circuit 110 and the light-emitting element 120 are located in a film layer different from the film layer where the driving circuit 110 and the light-emitting element 120 are located, the driving The other ports of the circuit 110 and the light-emitting element 120 are not electrically connected to the second voltage line 23.
  • the extending direction of the fourth portion 232 of at least one of the second voltage lines 23 of the plurality of second voltage lines 23 has an angle with the first direction and the second direction.
  • the included angle may be greater than 0 degrees and less than 90 degrees (for example, 20 to 70 degrees, 40 to 60 degrees, or 45 degrees), the angle between the extending direction and the first direction and the angle between the extending direction and the second direction.
  • the angles can be the same or different.
  • the fourth portion 232 of at least one second voltage line 23 extends obliquely, that is, has an angle with both the row direction and the column direction.
  • fourth portions 232 of the second voltage lines 23 may extend obliquely, or all the fourth portions 232 of the second voltage lines 23 may extend obliquely. This may be determined according to actual wiring requirements. The embodiment does not limit this.
  • the second connecting portion 233 is located at the junction of the Y-th row of light-emitting units 100 and Y+1-th row of light-emitting units 100, and is configured to electrically connect the third part 231 and the fourth part 232, 0 ⁇ Y ⁇ N and Y is an integer .
  • the second connecting portion 233 is actually a bent portion of the second voltage line 23, so that the extension direction of the second voltage line 23 is changed.
  • the area covered by the second connecting portion 233 is not limited, and the second connecting portion 233 may not only include the bent portion of the second voltage line 23, but may also include a line segment of the second voltage line 23 extending in the second direction. A part of the second voltage line 23 may also include a part of the line segment extending diagonally from the second voltage line 23, which is not limited in the embodiment of the present disclosure.
  • the plurality of second transmission lines 24 correspond to the plurality of columns of light-emitting units 100 in a one-to-one correspondence.
  • the second transmission line 24 is electrically connected to the second voltage terminal 32 of the light emitting unit 100 of the Y+1th row to the Nth row of the light emitting unit 100 in the corresponding column, and the second voltage line 23 of the second voltage line 23 corresponding to the light emitting unit 100 of the corresponding column
  • the connection part 233 is electrically connected. For example, in the example of FIG.
  • the second transmission line 24 is electrically connected to the second voltage terminal 32 of the light-emitting unit 100 in the fourth row of the corresponding column, and the second voltage line 23 of the second voltage line 23 corresponding to the light-emitting unit 100 in the corresponding column is electrically connected.
  • the connecting portion 233 is electrically connected, so that the second voltage terminal 32 of the light-emitting unit 100 in the fourth row is electrically connected to the second voltage line 23, so that the second voltage signal provided by the second voltage line 23 can be received.
  • the second voltage line 23 and the second transmission line 24 are located on different layers, which can facilitate wiring.
  • the electrical connection between the second voltage line 23 and the second transmission line 24 can be achieved through vias.
  • the embodiment of the present disclosure is not limited to this, and the second voltage line 23 and the second transmission line 24 may also be located on the same layer, as long as the corresponding electrical connection can be achieved and it will not be short-circuited with other structures.
  • the width of the fourth portion 232 of the second voltage line 23 in the first direction is greater than the width of the second transmission line 24 in the first direction.
  • the first voltage line 21 and the second voltage line 23 may be located on the same layer, the first transmission line 22 and the second transmission line 24 may be located on the same layer, and the first voltage line 21 and the first transmission line 22 may be located on different layers. Therefore, the first voltage line 21, the second voltage line 23, the first transmission line 22, and the second transmission line 24 can be arranged by using two film layers, and the first voltage line 21 and the second voltage line 23 are located in one of the film layers, The first transmission line 22 and the second transmission line 24 are located in the other film layer, thereby simplifying the process and avoiding short circuits.
  • the light-emitting units 100 to 100 in the first row to the third row in the same column are The second voltage terminal 32 is located in the orthographic projection of the second voltage line 23 on the base substrate 101 (for example, in the orthographic projection of the third portion 231 on the base substrate 101). Therefore, for the first row of light-emitting units 100 to The light-emitting unit 100 in the third row may be electrically connected to the second voltage line 23 by providing a via at the position of the second voltage terminal 32.
  • the fourth portion 232 of the second voltage line 23 extends diagonally, and the second voltage terminal 32 of the light-emitting unit 100 in the fourth row is located outside the orthographic projection of the second voltage line 23 on the base substrate 101 (for example, located in the fourth portion 232). Outside the orthographic projection on the base substrate 101), therefore, for the light emitting unit 100 in the fourth row, the second voltage terminal 32 cannot be connected to the second voltage line 23 by providing a via at the position of the second voltage terminal 32.
  • a second transmission line 24 needs to be provided to electrically connect the second voltage terminal 32 and the second voltage line 23.
  • the second voltage line 23 By making the second voltage line 23 extend diagonally and gradually narrow from a position farther from the edge of the light-emitting substrate 10 (for example, the lower edge of the light-emitting substrate 10 shown in FIG.
  • the electrical connection between the second voltage terminal 32 and the second voltage line 23 can effectively reduce the diagonal wiring area and reduce the frame of the light-emitting substrate 10, so that the width L2 of the non-display area is small, which helps to reduce the light emission.
  • the size of the non-display area of the substrate 10 facilitates the realization of a narrow frame design.
  • the second transmission line 24 extends in the second direction to the second connection portion 233, and is electrically connected to the second connection portion 233 through a via hole, thereby facilitating the wiring of the second transmission line 24, which is beneficial to Simplify layout design.
  • the second transmission line 24 may also extend in any direction and be electrically connected to any part of the second voltage line 23 (for example, the third part 231 or the fourth part 232), which can be It is determined according to actual requirements, for example, according to actual wiring design, which is not limited in the embodiments of the present disclosure.
  • Y may be equal to N-1, or N-2, or other values, which are not limited by the embodiments of the present disclosure.
  • N-1 the first voltage line 21 and the second voltage line 23 extend diagonally from the junction of the last row of light-emitting cells 100 and the penultimate row of light-emitting cells 100.
  • the first voltage line 21 and the second voltage line 23 may extend diagonally from a position further away from the edge of the light-emitting substrate 10 (for example, the lower edge of the light-emitting substrate 10 shown in FIG. 2 ). Therefore, the extension mode of the first voltage line 21 and the second voltage line 23 can be adjusted according to the actual wiring requirements of the light-emitting substrate 10 to realize a narrow frame design.
  • only the first voltage line 21 may adopt the above-mentioned wiring method (that is, it extends diagonally from the junction of the light-emitting unit 100 in the Yth row and the light-emitting unit 100 in the Y+1th row), It is also possible that only the second voltage line 23 adopts the above-mentioned wiring method (that is, it extends diagonally from the junction of the light-emitting unit 100 in the Yth row and the light-emitting unit 100 in the Y+1th row), or the first voltage line 21 and the second voltage The wires 23 adopt the above-mentioned wiring method, which is not limited in the embodiment of the present disclosure.
  • the position where the first voltage line 21 starts to extend diagonally and the position where the second voltage line 23 starts to extend diagonally may be the same or different. That is, the Y value corresponding to the first voltage line 21 and the Y value corresponding to the second voltage line 23 may be the same or different, which is not limited in the embodiment of the present disclosure.
  • the width of the first voltage line 21 in the first direction is different from the width of the second voltage line 23 in the first direction, the first voltage line 21 is narrower, and The second voltage line 23 is wider.
  • the first voltage line 21 and the second voltage line 23 may have the same or substantially the same width, and the width of the first voltage line 21 may also be larger or smaller than the width of the second voltage line 23, which may be determined according to actual needs. The embodiment does not limit this.
  • At least one first transmission line 22 of the plurality of first transmission lines 22 extends in the second direction, that is, only one first transmission line 22 may extend in the second direction, or Some of the first transmission lines 22 extend in the second direction, and all of the first transmission lines 22 may extend in the second direction. This may be determined according to actual wiring requirements, which is not limited in the embodiment of the present disclosure.
  • at least one second transmission line 24 of the plurality of second transmission lines 24 extends in the second direction, that is, only one second transmission line 24 may extend in the second direction, or some second transmission lines 24 may extend in the second direction.
  • all the second transmission lines 24 may also extend in the second direction, which may be determined according to actual wiring requirements, which is not limited in the embodiment of the present disclosure.
  • the length of the first transmission line 22 and the second transmission line 24 can be shortened, thereby reducing the transmission resistance.
  • the light-emitting substrate 10 further includes a binding area BR located at the edge of the light-emitting substrate 10 close to the N-th row of light-emitting units 100, for example, the lower edge of the light-emitting substrate 10 shown in FIG. .
  • the bonding area BR includes a plurality of bonding pins 41, the second part 212 of the first voltage line 21 is electrically connected (for example, directly electrically connected) to at least one of the plurality of bonding pins 41, and the second part of the second voltage line 23
  • the four parts 232 are electrically connected to at least one of the plurality of binding pins 41 (for example, directly electrically connected).
  • each first voltage line 21 may be electrically connected to one or more binding pins 41, and similarly, the fourth part 232 of each second voltage line 23 may also be connected to one or more The binding pin 41 is electrically connected.
  • the same first voltage line 21 is electrically connected to multiple binding pins 41 or the same second voltage line 23 is electrically connected to multiple binding pins 41, which can improve connection reliability and reduce transmission resistance.
  • the bonding pins 41 in the bonding area BR can be electrically connected to a separately provided control circuit or chip through a flexible circuit board, so as to facilitate receiving the first voltage signal and the second voltage signal transmitted by the control circuit or chip, and connect the first voltage signal and the second voltage signal to the control circuit or chip.
  • a voltage signal and a second voltage signal are transmitted to the first voltage line 21 and the second voltage line 23.
  • the part where the first voltage line 21 is connected to the bonding pin 41 is not limited to the manner shown in FIG. 2, and the method shown in FIG. 1B may also be used. That is, the first voltage line 21 is changed to extend in the second direction in the area close to the binding pin 41 and is electrically connected to the binding pin 41. In this case, the first voltage line 21 The second portion 212 is electrically connected to the binding pin 41 through a pin connection portion, which is, for example, a portion of the first voltage line 21 that is directly electrically connected to the binding pin 41 and extends in the second direction.
  • the part where the second voltage line 23 is connected to the binding pin 41 is not limited to the method shown in FIG.
  • the area of the fixed pin 41 is changed to extend in the second direction and is electrically connected to the binding pin 41.
  • the fourth portion 232 of the second voltage line 23 is electrically connected to the binding pin 41 through the pin connecting portion.
  • the pin connection portion is, for example, a portion of the second voltage line 23 that is directly electrically connected to the binding pin 41 and extends in the second direction.
  • the light-emitting substrate 10 further includes a plurality of address transfer wires 130, and the plurality of address transfer wires 130 extend along the first direction and are configured to transmit the first input signal.
  • the multiple light-emitting units 100 in the light-emitting substrate 10 are arranged in N rows and M columns and are divided into multiple groups.
  • Each group of light-emitting units 100 includes X rows and M columns, a total of X*M light-emitting units 100, and multiple address transfer lines 130 are connected to each other.
  • the multiple groups of light emitting units 100 correspond one to one.
  • the light emitting unit 100 is divided into N/X groups.
  • each group of light-emitting units 100 includes 2 rows and 5 columns, a total of 10 light-emitting units 100. Therefore, every 2 rows of light-emitting units 100 corresponds to one address transfer line 130, and the address transfer in the light-emitting substrate 10
  • the number of wires 130 is N/2. For example, 0 ⁇ X ⁇ N and X is an integer.
  • X*M light-emitting units 100 are sequentially numbered according to the row and column distribution positions.
  • X*M light-emitting units are numbered row by row in a Z-shape, and each rectangle in FIG. 6A represents a light-emitting unit 100, and the number of each light-emitting unit 100 is marked on each Rectangle.
  • X*M light-emitting units are numbered row by row and column by row in an S shape.
  • each light-emitting unit 100 represents a light-emitting unit 100, and each light-emitting unit 100 The number is marked in each rectangle. It should be noted that the manner in which the light-emitting units 100 are sequentially numbered according to the distribution positions of the rows and columns is not limited to the manner described above, and may also be numbered according to other methods, so that the connection manner of the multiple light-emitting units 100 can be flexibly adjusted. The embodiment of the present disclosure There is no restriction on this.
  • the first input terminal Di of the driving circuit 110 of the light-emitting unit 100 numbered 1 is electrically connected to the address transfer line 130 corresponding to the group of light-emitting units 100
  • the output terminal OT of the driving circuit 110 of the light emitting unit 100 numbered P is electrically connected to the first input terminal Di of the driving circuit 110 of the light emitting unit 100 numbered P+1, and the light emitting unit 100 numbered P+1 is driven
  • the first input terminal Di of the circuit 110 receives the relay signal output by the output terminal OT of the driving circuit 110 of the light emitting unit 100 numbered P as the first input signal.
  • 0 ⁇ P ⁇ X*M and P is an integer.
  • the first group of light-emitting units 100 when the numbering method shown in FIG. 6A is used, for a group of light-emitting units 100 numbered 1 (that is, the group of light-emitting units 100 on the uppermost side of the light-emitting substrate 10, or referred to as the first group of light-emitting units 100), it is located in the first group of light-emitting units 100.
  • the first input terminal Di of the driving circuit 110 of the light-emitting unit 100 in the first column of the row is electrically connected to the address transfer line 130 corresponding to the group of light-emitting units 100, and the output terminal OT of the driving circuit 110 of each light-emitting unit 100 is connected to the next light-emitting unit 100.
  • the first input terminal Di of the driving circuit 110 of the unit 100 is electrically connected (the output terminal OT of the driving circuit 110 of the last light-emitting unit 100 is not connected to other driving circuits 110).
  • the output terminal OT of the driving circuit 110 of the last light-emitting unit 100 is not connected to other driving circuits 110.
  • the group of light-emitting units 100 numbered 2 that is, a group of light-emitting units 100 next to the first group of light-emitting units 100, or called the second group of light-emitting units 100
  • the light-emitting units 100 located in the third row and the first column are driven
  • the first input terminal Di of the circuit 110 is electrically connected to the address transfer line 130 corresponding to the group of light-emitting units 100, and the output terminal OT of the driving circuit 110 of each light-emitting unit 100 is connected to the first input terminal of the driving circuit 110 of the subsequent light-emitting unit 100 Di is electrically connected, and its connection method is similar to that of the first group of
  • each group of light-emitting units 100 only the first input terminal Di of the driving circuit 110 of the first light-emitting unit 100 is electrically connected to the address transfer line 130, while the first input terminal Di of the driving circuit 110 of the other light-emitting unit 100 is electrically connected.
  • the input terminal Di receives the relay signal output by the driving circuit 110 of the previous light-emitting unit 100 as the first input signal. Therefore, for a group of light-emitting units 100, only one first input signal (ie address signal) needs to be provided through one address transfer line 130, so that all light-emitting units 100 in the group of light-emitting units 100 can obtain their respective address signals. . This greatly reduces the number of signal lines, saves wiring space, and simplifies the control method.
  • the light-emitting substrate 10 further includes a plurality of voltage transfer wires 140.
  • the multiple voltage transfer wires 140 extend along the first direction and are configured to transmit the second input signal, and the multiple voltage transfer wires 140 correspond to the N rows of light-emitting units 100 one-to-one.
  • each row of light-emitting units 100 corresponds to one voltage transfer line 140, and the number of voltage transfer lines 140 in the light-emitting substrate 10 is N.
  • the first row of light-emitting units 100, the second row of light-emitting units 100, the third row of light-emitting units 100, and the fourth row of light-emitting units 100 respectively correspond to a voltage transfer line 140.
  • the second input terminal Pwr of the driving circuit 110 in the light-emitting unit 100 is electrically connected to the voltage transfer line 140 corresponding to the row of the light-emitting unit 100 including the driving circuit 110. That is, the second input terminals Pwr of all the driving circuits 110 in a row of light-emitting units 10 are electrically connected to the voltage transfer line 140 corresponding to the row to receive the second input signal.
  • the light-emitting substrate 10 further includes a plurality of source address lines 150 and a plurality of source voltage lines 160 extending in the second direction.
  • the multiple source address lines 150 are electrically connected to the multiple address transfer lines 130 in a one-to-one correspondence, and are configured to transmit the first input signal.
  • the number of source address lines 150 is equal to the number of address transfer lines 130, and both are equal to N/X, that is, when the light-emitting units 100 are divided into N/X groups, each group of light-emitting units 100 corresponds to one source address line 150
  • an address transfer line 130, the source address line 150 and the address transfer line 130 transmit the first input signal to the first light-emitting unit 100 in the group of light-emitting units 100.
  • multiple source voltage lines 160 correspond to multiple groups of light-emitting units 100 one-to-one, and each source voltage line 160 is electrically connected to multiple voltage transfer lines 140 corresponding to a corresponding group of light-emitting units 100, and is configured to transmit the second input. Signal.
  • the number of source voltage lines 160 is N/X, that is, when the light-emitting units 100 are divided into N/X groups, each group of light-emitting units 100 corresponds to one source voltage line 160, and the source voltage line 160 connects the second input
  • the signal is transmitted to a plurality of voltage transfer wires 140 corresponding to the group of light-emitting units 100, so as to provide a second input signal for all the light-emitting units 100 in the group of light-emitting units 100.
  • the source address line 150 and the source voltage line 160 corresponding to the same group of light emitting cells 100 are arranged adjacent to each other, and are located in the gaps of multiple columns of light emitting cells 100.
  • the second input terminals Pwr of the driving circuits 110 of all the light-emitting units 100 are electrically connected to the corresponding voltage transfer lines 140, and these voltage transfer lines 140 are connected to the same source voltage line 160. . Therefore, for a group of light-emitting units 100, only one second input signal needs to be provided through one source voltage line 160, so that all the light-emitting units 100 in the group of light-emitting units 100 can obtain the second input signal. This greatly reduces the number of signal lines, saves wiring space, and simplifies the control method.
  • the number of source address lines 150 and the number of source voltage lines 160 are both N/X.
  • the source address line 150 and the source voltage line 160 are located on the same layer, the voltage transfer line 140 and the address transfer line 130 are located on the same layer, and the source address line 150 and the address transfer line 130 are located on the same layer. Located on different floors. That is, the source address line 150 and the source voltage line 160 are prepared by a patterning process (such as a photolithography process), and the voltage transfer line 140 and the address transfer line 130 are prepared by another patterning process.
  • a patterning process such as a photolithography process
  • the source address line 150 and the source voltage An insulating layer is provided between the film layer where the line 160 is located and the voltage transfer line 140 and the film layer where the address transfer line 130 is located, and the corresponding wiring is electrically connected through the via hole penetrating the insulating layer. In this way, the preparation process can be simplified, and it can be compatible with the usual semiconductor film preparation process, and the production efficiency can be improved.
  • the respective film layers of the first voltage line 21, the first transmission line 22, the second voltage line 23, and the second transmission line 24 are connected to the address transfer line 130, the voltage transfer line 140, and the source address line 150.
  • the respective film layers of the source voltage line 160 and the source voltage line 160 may be determined according to actual requirements, and these film layers may be the same or different, which is not limited in the embodiment of the present disclosure.
  • FIG. 7 is a partial schematic diagram of a wiring design of a light-emitting substrate provided by some embodiments of the present disclosure.
  • FIG. 7 is, for example, a schematic diagram of a wiring design of the area C1 in FIG. 2.
  • the first transmission line 22 is composed of a plurality of line segments (for example, 4 line segments) connected in sequence, some of these line segments extend in the second direction, and the other part of the line segments extend in the first direction.
  • the first voltage terminal 31 of the light-emitting unit 100 is electrically connected to the first connection portion 213 of the first voltage line 21.
  • the second transmission line 24 is composed of a plurality of line segments (for example, two line segments) connected in sequence, some of these line segments extend in the second direction, and the other part of the line segments extend in the first direction, so that the light-emitting unit 100
  • the second voltage terminal 32 is electrically connected to the second connection portion 233 of the second voltage line 23.
  • first transmission line 22 extends in the second direction means that at least part of the line segment of the first transmission line 22 extends in the second direction, but does not mean that the first transmission line 22 strictly follows the second direction.
  • Direction extension means that at least a part of the line segment of the second transmission line 24 extends in the second direction, but does not mean that the second transmission line 24 extends strictly in the second direction.
  • the second portion 212 of the first voltage line 21 extends diagonally from the junction of the N-1th row of light-emitting units 100 and the Nth row of light-emitting units 100, and one end of the first transmission line 22 passes through The hole is electrically connected to the first voltage terminal 31, and the other end of the first transmission line 22 is electrically connected to the first connection portion 213 of the first voltage line 21 through a via hole.
  • the fourth portion 232 of the second voltage line 23 extends diagonally from the junction of the light-emitting unit 100 in the N-1th row and the light-emitting unit 100 in the Nth row.
  • the end 32 is electrically connected, and the other end of the second transmission line 24 is electrically connected to the second connection portion 233 of the second voltage line 23 through a via hole.
  • FIG. 8 is a schematic plan view of another light-emitting substrate provided by some embodiments of the present disclosure.
  • the light-emitting substrate 10 further includes a plurality of third voltage lines 25 and a plurality of fourth voltage lines 26 extending along the first direction.
  • the other structure of the light-emitting substrate 10 is basically the same as that of the light-emitting substrate 10 shown in FIG. 2, and will not be repeated here.
  • the line 25 is electrically connected to the plurality of first voltage lines 21 through via holes.
  • the orthographic projections of the plurality of fourth voltage lines 26 in a plane parallel to the light-emitting substrate 10 overlap with the orthographic projections of the plurality of second voltage lines 23 in a plane parallel to the light-emitting substrate 10, and the plurality of fourth voltage lines
  • the line 26 is electrically connected to a plurality of second voltage lines 23 through via holes.
  • the plurality of third voltage lines 25 and the plurality of fourth voltage lines 26 are located in the same layer.
  • a plurality of third voltage lines 25 are electrically connected to a plurality of first voltage lines 21 through via holes to form a grid-shaped trace
  • a plurality of fourth voltage lines 26 are electrically connected to a plurality of second voltage lines 23 through via holes.
  • grid-like wiring is formed, thereby reducing the transmission resistance and improving the voltage uniformity in the light-emitting substrate 10.
  • the third voltage line 25 and the fourth voltage line 26 are located on the same layer, and are located on the same layer as the address transfer line 130 and the voltage transfer line 140.
  • the four can be arranged on the same layer and will not overlap each other, thereby simplifying the structure and simplifying the preparation Craft.
  • the film layer where the third voltage line 25 and the fourth voltage line 26 are located is different from the film layer where the first voltage line 21 and the second voltage line 23 are located.
  • the length and width of the first voltage line 21, the second voltage line 23, the third voltage line 25, and the fourth voltage line 26 can be set to any values, and the lengths can be the same or Different, the width can also be the same or different, which can be determined according to actual needs, and the embodiment of the present disclosure does not limit this.
  • the light-emitting substrate 10 may also include more structures and components, and the arrangement of each structure and components may be determined according to actual needs, so as to achieve diversified functions.
  • the implementation of the present disclosure The example does not restrict this.
  • At least one embodiment of the present disclosure further provides a display device, which includes a display panel and the light-emitting substrate provided in any embodiment of the present disclosure.
  • the display device can effectively reduce the width of the non-display area and the size of the non-display area, which is beneficial to realize a narrow frame design.
  • FIG. 9 is a schematic cross-sectional view of a display device provided by some embodiments of the present disclosure.
  • the display device 50 includes a display panel 510 and a light-emitting substrate 520.
  • the light-emitting substrate 520 may be a light-emitting substrate provided in any embodiment of the present disclosure, such as the aforementioned light-emitting substrate 10.
  • the display panel 510 has a display side P1 and a non-display side P2 opposite to the display side P1, and the light-emitting substrate 520 is disposed on the non-display side P2 of the display panel 510 as a backlight unit.
  • the light-emitting substrate 520 may serve as a surface light source to provide backlight to the display panel 510.
  • the display panel 510 may be an LCD panel, an electronic paper display panel, etc., which is not limited in the embodiment of the present disclosure.
  • the display device 50 may be an LCD device, an electronic paper display device, etc., or may also be other devices with a display function, etc., which is not limited in the embodiments of the present disclosure.
  • the display device 50 may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, an e-book, etc., which is not limited in the embodiments of the present disclosure.
  • the light-emitting substrate 10 provided by the embodiments of the present disclosure can be applied to the above-mentioned display device 50 as a backlight unit, or can be used alone as a substrate with a display function or a light-emitting function, which is not limited by the embodiments of the present disclosure. .
  • the display device 50 may further include more components and structures, which may be determined according to actual requirements, which are not limited in the embodiments of the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)
  • Liquid Crystal (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种发光基板及显示装置,该发光基板(10)包括多个发光单元(100)、多条第一电压线(21)和多条第一传输线(22)。多个发光单元(100)排布为N*M阵列,多个发光单元(100)每个包括第一电压端(31)。多条第一电压线(21)与多列发光单元(100)一一对应,第一电压线(21)包括第一部分(211)、第一连接部(213)和第二部分(212)。第一部分(211)与对应列的第1行至第Y行发光单元(100)的第一电压端(31)电连接。至少一条第一电压线(21)的第二部分(212)的延伸方向与第一方向和第二方向均具有夹角。第一连接部(213)位于第Y行发光单元(100)与第Y+1行发光单元(100)的交界处。多条第一传输线(22)与多列发光单元(100)一一对应,第一传输线(22)与对应列的第Y+1行至第N行发光单元(100)的第一电压端(31)电连接,以及与对应列的发光单元(100)对应的第一电压线(21)的第一连接部(213)电连接。该发光基板(10)有效减小非显示区宽度。

Description

发光基板及显示装置
本申请要求于2020年6月12日递交的中国专利申请第202010536696.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种发光基板及显示装置。
背景技术
随着发光二极管技术的发展,采用亚毫米量级甚至微米量级的发光二极管的背光源得到了广泛的应用。由此,不仅可以使利用该背光源的例如透射式显示产品的画面对比度达到有机发光二极管(Organic Light-Emitting Diode,OLED)显示产品的水平,还可以使产品保留液晶显示(Liquid Crystal Display,LCD)的技术优势,进而提升画面的显示效果,为用户提供更优质的视觉体验。
发明内容
本公开至少一个实施例提供一种发光基板,包括多个发光单元、多条第一电压线和多条第一传输线,其中,所述多个发光单元沿第一方向和第二方向排布为N行M列的N*M阵列,所述第一方向与所述第二方向交叉,所述多个发光单元每个包括第一电压端,所述多条第一电压线与多列发光单元一一对应,且配置为传输第一电压信号,所述第一电压线包括依序连接的第一部分、第一连接部和第二部分,所述第一部分沿所述第二方向延伸,且与对应列的第1行发光单元至第Y行发光单元的第一电压端电连接,所述多条第一电压线中至少一条第一电压线的第二部分的延伸方向与所述第一方向和所述第二方向均具有夹角,所述第一连接部位于第Y行发光单元与第Y+1行发光单元的交界处,且配置为使所述第一部分与所述第二部分电连接,所述多条第一传输线与所述多列发光单元一一对应,所述第一传输线与对应列的第Y+1行发光单元至第N行发光单元的第一电压端电连接,以及与对应列的发光单元对应的第一电压线的第一连接部电连接,N为大于0的整数,M为大于0的整数,0<Y<N且Y为整数。
例如,本公开一实施例提供的发光基板还包括多条第二电压线和多条第二传输线,其中,所述多个发光单元每个还包括第二电压端,所述多条第二电压线与所述多列发光单元一一对应,且配置为传输第二电压信号,所述第二电压线包括依序连接的第三部分、第二连接部和第四部分,所述第三部分沿所述第二方向延伸,且与对应列的第1行发光单元至第Y行发光单元的第二电压端电连接,所述多条第二电压线中至少一条第二电压线的第四部分的延伸方向与所述第一方向和所述第二方向均具有夹角,所述第二连接部位于第Y行发光单元与第Y+1行发光单元的交界处,且配置为使所述第三部分与所述第四部分电连 接,所述多条第二传输线与所述多列发光单元一一对应,所述第二传输线与对应列的第Y+1行发光单元至第N行发光单元的第二电压端电连接,以及与对应列的发光单元对应的第二电压线的第二连接部电连接。
例如,在本公开一实施例提供的发光基板中,Y=N-1或Y=N-2。
例如,在本公开一实施例提供的发光基板中,所述第一电压线与所述第一传输线位于不同的膜层,所述不同的膜层在未设置过孔的位置处彼此绝缘。
例如,在本公开一实施例提供的发光基板中,所述第二电压线与所述第二传输线位于不同的膜层,所述不同的膜层在未设置过孔的位置处彼此绝缘。
例如,在本公开一实施例提供的发光基板中,所述第一电压线和所述第二电压线位于同一层,所述第一传输线和所述第二传输线位于同一层。
例如,在本公开一实施例提供的发光基板中,所述第一电压信号为驱动电压信号,所述第二电压信号为公共电压信号,所述第一电压信号的电平大于所述第二电压信号的电平;或者,所述第一电压信号为公共电压信号,所述第二电压信号为驱动电压信号,所述第一电压信号的电平小于所述第二电压信号的电平。
例如,本公开一实施例提供的发光基板还包括绑定区,其中,所述绑定区位于所述发光基板靠近第N行发光单元的边缘,所述绑定区包括多个绑定管脚,所述第一电压线的第二部分与所述多个绑定管脚至少之一电连接,所述第二电压线的第四部分与所述多个绑定管脚至少之一电连接。
例如,在本公开一实施例提供的发光基板中,所述第一电压线的第一部分在所述第一方向上的宽度大于所述第一传输线在所述第一方向上的宽度,所述第二电压线的第四部分在所述第一方向上的宽度大于所述第二传输线在所述第一方向上的宽度。
例如,在本公开一实施例提供的发光基板中,所述多条第一传输线中至少一条第一传输线沿所述第二方向延伸,所述多条第二传输线中至少一条第二传输线沿所述第二方向延伸。
例如,本公开一实施例提供的发光基板还包括沿所述第一方向延伸的多条第三电压线和多条第四电压线,其中,所述多条第三电压线在平行于所述发光基板的平面内的正投影与所述多条第一电压线在平行于所述发光基板的平面内的正投影交叠,且所述多条第三电压线通过过孔与所述多条第一电压线电连接,所述多条第四电压线在平行于所述发光基板的平面内的正投影与所述多条第二电压线在平行于所述发光基板的平面内的正投影交叠,且所述多条第四电压线通过过孔与所述多条第二电压线电连接,所述多条第三电压线和所述多条第四电压线位于同一层。
例如,在本公开一实施例提供的发光基板中,所述多个发光单元每个还包括驱动电路和多个发光元件;所述驱动电路包括第一输入端、第二输入端、输出端和公共电压端,所述公共电压端与所述第二电压端电连接;所述多个发光元件依次串联,并且连接在所述第一电压端和所述输出端之间;所述驱动电路配置为根据所述第一输入端接收的第一输入信号和所述第二输入端接收的第二输入信号在第一时段内通过所述输出端输出中继信号,以 及在第二时段内通过所述输出端提供驱动信号至依次串联的所述多个发光元件。
例如,在本公开一实施例提供的发光基板中,所述多个发光元件包括多个微型发光二极管。
本公开至少一个实施例还提供一种显示装置,包括:显示面板和如本公开任一实施例所述的发光基板,其中,所述显示面板具有显示侧和与所述显示侧相对的非显示侧,所述发光基板设置在所述显示面板的非显示侧以作为背光单元。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为一种发光基板的平面示意图;
图1B为一种发光基板的局部平面示意图;
图2为本公开一些实施例提供的一种发光基板的平面示意图;
图3为图2所示的发光基板的发光单元的排列示意图;
图4为图2所示的发光基板中一个发光单元的示意图;
图5A为图2所示的发光基板的第一电压线和第二电压线的放大示意图;
图5B为图2所示的发光基板中位于最后一行的一个发光单元与第一电压线和第二电压线的连接关系示意图;
图6A和图6B为本公开一些实施例提供的发光基板的发光单元的编号方式示意图;
图7为本公开一些实施例提供的一种发光基板的布线设计局部示意图;
图8为本公开一些实施例提供的另一种发光基板的平面示意图;以及
图9为本公开一些实施例提供的一种显示装置的剖面示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置 改变后,则该相对位置关系也可能相应地改变。
在采用发光二极管的显示产品中,迷你发光二极管(Mini Light Emitting Diode,Mini-LED)或微型发光二极管(Micro Light Emitting Diode,Micro-LED)的尺寸小且亮度高,可以大量应用于显示装置的背光模组中,并对背光进行精细调节,从而实现高动态范围图像(High-Dynamic Range,HDR)的显示。当然,Mini-LED和Micro-LED也可以直接作为像素,应用于显示装置的显示面板中,以用于显示。例如,Micro-LED的典型尺寸(例如长度)小于50微米,例如10微米~50微米;Mini-LED的典型尺寸(例如长度)为50微米~150微米,例如80微米~120微米。
图1A为一种发光基板的平面示意图。如图1A所示,在发光基板01中,多个发光单元002设置在衬底基板001上。例如,每个发光单元002包括驱动电路和多个发光元件。为了使发光元件发光,需要向每个发光单元002的第一电压端003提供第一电压信号,并且向每个发光单元002的第二电压端004提供第二电压信号。例如,第一电压信号和第二电压信号分别为驱动电压信号和公共电压信号,或者,第一电压信号和第二电压信号分别为公共电压信号和驱动电压信号。
多条第一电压线005和多条第二电压线006沿列方向延伸,用于分别提供第一电压信号和第二电压信号。每个发光单元002的第一电压端003与第一电压线005电连接,每个发光单元002的第二电压端004与第二电压线006电连接。在发光基板01的边缘设置有多个绑定管脚007,第一电压线005和第二电压线006需要与不同的绑定管脚007电连接,以便于接收与绑定管脚007绑定的控制电路或芯片所提供的驱动电压信号和公共电压信号。
由于每个绑定管脚007的宽度与第一电压线005和第二电压线006的宽度不属于同一个尺寸量级,且多个绑定管脚007中相邻两个绑定管脚007之间的间距更小,而第一电压线005和第二电压线006分别需要同时与各个发光单元002和绑定管脚007电连接,因此,第一电压线005和第二电压线006无法完全呈直线状延伸。也即是,如图1A所示,第一电压线005包括第一部分005a和第二部分005b。第一部分005a沿列方向延伸,且从第一行发光单元002延伸至最后一行发光单元002。第二部分005b为斜向走线,且从最后一行发光单元002的外侧一直延伸至衬底基板001边缘处的绑定管脚007。类似地,第二电压线006包括第一部分006a和第二部分006b。第一部分006a沿列方向延伸,且从第一行发光单元002延伸至最后一行发光单元002。第二部分006b为斜向走线,且从最后一行发光单元002的外侧一直延伸至衬底基板001边缘处的绑定管脚007。
依据上述设计准则,发光基板01中需要留出斜向走线区域008,则发光基板01的非显示区(例如图1A中下方的边框)的宽度L1较大,不利于实现窄边框设计。
需要说明的是,图1A中斜向走线区域008内的走线方式仅为示意性的,而非限制性的,图1A中斜向走线区域008内的具体走线方式可以为任意适用的方式,这可以根据实际需求而定,本公开的实施例对此不作限制。
图1B为一种发光基板的局部平面示意图,图1B示出了发光基板中斜向走线区域008 内的另一种走线方式,该走线方式与图1A中示出的斜向走线区域008内的走线方式不同。图1B所示的发光基板的其他结构与图1A中的发光基板基本上相同,因此相同的结构不再示出。
例如,如图1B所示,在斜向走线区域008内,第二部分005b基本上为斜向走线,但是与绑定管脚007连接的部分不再为斜向走线,与绑定管脚007连接的部分沿列方向延伸,也即是,第二部分005b倾斜延伸至绑定管脚007附近,然后变为沿列方向延伸并与绑定管脚007电连接。类似地,第二部分006b倾斜延伸至绑定管脚007附近,然后变为沿列方向延伸并与绑定管脚007电连接。例如,多个绑定管脚007的尺寸可以不同,以便于与对应连接的走线的宽度匹配。例如,在该发光基板中,电压线不限于包括第一电压线005和第二电压线006,还可以包括更多的电压线,例如还可以包括附加电压线0061,这可以根据实际需求而定,本公开的实施例对此不作限制。
类似地,图1B所示的发光基板中需要留出斜向走线区域008,因此发光基板的非显示区(例如图1B所示的发光基板的下边框)的宽度较大,不利于实现窄边框设计。
本公开至少一个实施例提供一种发光基板及显示装置。该发光基板可以有效减小非显示区宽度,减小非显示区的尺寸,有利于实现窄边框设计。
下面,将参考附图详细地说明本公开的实施例。应当注意的是,不同的附图中相同的附图标记将用于指代已描述的相同的元件。
本公开至少一个实施例提供一种发光基板,该发光基板包括多个发光单元、多条第一电压线和多条第一传输线。多个发光单元沿第一方向和第二方向排布为N行M列的N*M阵列,第一方向与第二方向交叉,多个发光单元每个包括第一电压端。多条第一电压线与多列发光单元一一对应,且配置为传输第一电压信号。第一电压线包括依序连接的第一部分、第一连接部和第二部分。第一部分沿第二方向延伸,且与对应列的第1行发光单元至第Y行发光单元的第一电压端电连接。多条第一电压线中至少一条第一电压线的第二部分的延伸方向与第一方向和第二方向均具有夹角。第一连接部位于第Y行发光单元与第Y+1行发光单元的交界处,且配置为使第一部分与第二部分电连接。多条第一传输线与多列发光单元一一对应,第一传输线与对应列的第Y+1行发光单元至第N行发光单元的第一电压端电连接,以及与对应列的发光单元对应的第一电压线的第一连接部电连接。N为大于0的整数,M为大于0的整数,0<Y<N且Y为整数。
图2为本公开一些实施例提供的一种发光基板的平面示意图,图3为图2所示的发光基板的发光单元的排列示意图。如图2和图3所示,发光基板10包括衬底基板101和在衬底基板101上阵列排布的多个发光单元100,以及还包括设置在衬底基板101上的多条第一电压线21和多条第一传输线22。
例如,多个发光单元100沿第一方向和第二方向排布为N行M列的N*M阵列,N为大于0的整数,M为大于0的整数。例如,第一方向与第二方向交叉。例如,在一些示例中,每一行发光单元100沿第一方向排列,每一列发光单元100沿第二方向排列,第一方向与第二方向垂直,第一方向为行方向,第二方向为列方向。当然,本公开的实施例不 限于此,第一方向和第二方向可以为任意的方向,只需使第一方向和第二方向交叉即可。
例如,多个发光单元100不限于沿直线排列,也可以沿曲线排列、沿环形排列或按照任意的方式排列,这可以根据实际需求而定,本公开的实施例对此不作限制。例如,发光单元100的数量可以根据实际需求而定,例如根据发光基板10的尺寸和所需要的亮度而定,虽然图2中示出了4行5列发光单元100,但是应当理解,发光单元100的数量不限于此。例如,衬底基板101可以为塑料基板、硅基板、陶瓷基板、玻璃基板、石英基板等,衬底基板101中包括有单层或多层线路,本公开的实施例对此不作限制。
图4为图2所示的发光基板的一个发光单元的示意图。例如,如图4所示,对于多个发光单元100,每个发光单元100均包括驱动电路110、多个发光元件120、第一电压端31和第二电压端32。
驱动电路110包括第一输入端Di、第二输入端Pwr、输出端OT和公共电压端GND。第一输入端Di接收第一输入信号,该第一输入信号例如为地址信号,以用于选通相应地址的驱动电路110。例如,不同的驱动电路110的地址可以相同或不同。第一输入信号可以为8bit的地址信号,通过解析该地址信号可以获知待传输的地址。第二输入端Pwr接收第二输入信号,第二输入信号例如为电力线载波通信信号。例如,第二输入信号不仅为驱动电路110提供电能,还向驱动电路110传输通信数据,该通信数据可用于控制相应的发光单元100的发光时长,进而控制其视觉上的发光亮度。输出端OT可在不同的时段内分别输出不同的信号,例如分别输出中继信号和驱动信号。例如,中继信号为提供给其他驱动电路110的地址信号,也即是,其他驱动电路110的第一输入端Di接收该中继信号以作为第一输入信号,从而获取地址信号。例如,驱动信号可以为驱动电流,用于驱动发光元件120发光。公共电压端GND接收公共电压信号,例如接地信号。例如,公共电压端GND与第二电压端32电连接。
驱动电路110配置为根据第一输入端Di接收的第一输入信号和第二输入端Pwr接收的第二输入信号在第一时段内通过输出端OT输出中继信号,以及在第二时段内通过输出端OT提供驱动信号至依次串联的多个发光元件120。在第一时段内,输出端OT输出中继信号,该中继信号被提供给其他驱动电路110以使其他驱动电路110获得地址信号。在第二时段内,输出端OT输出驱动信号,该驱动信号被提供给依次串联的多个发光元件120,使得发光元件120在第二时段内发光。
例如,第一时段与第二时段为不同的时段,第一时段例如可以早于第二时段。第一时段可以与第二时段连续相接,第一时段的结束时刻即为第二时段的开始时刻;或者,第一时段与第二时段中间还可以有其他时段,该其他时段可以用于实现其他需要的功能,该其他时段也可以仅用于使第一时段和第二时段间隔开,以避免输出端OT在第一时段和第二时段的信号彼此干扰。
例如,多个发光元件120依次串联,并且连接在第一电压端31和输出端OT之间。例如,多个发光元件120可以包括多个微型发光二极管(Micro-LED)或多个迷你发光二极管(Mini-LED),也即是,任意一个发光元件120可以为Micro-LED或Mini-LED。例 如,每个发光元件120包括正极(+)和负极(-)(或者,也可称为阳极和阴极),多个发光元件120的正极和负极依序首尾串联,从而在第一电压端31和输出端OT之间形成电流路径。第一电压端31提供驱动电压信号,例如在需要使发光元件120发光的时段(第二时段)内为高电压,而在其他时段内为低电压。由此,在第二时段内,驱动电压信号(例如驱动电流)从第一电压端31依次流经多个发光元件120,然后流入驱动电路110的输出端OT。多个发光元件120在驱动电流流过时发光,通过控制驱动电流的持续时间,可以控制发光元件120的发光时长,从而控制视觉上的发光亮度。
例如,如图4所示,在一些示例中,一个发光单元100包括6个发光元件120,该6个发光元件120排列为2行3列。例如,按照从左至右、从上至下的方式给该6个发光元件120依次编号为(1,1)、(1,2)、(1,3)、(2,1)、(2,2)和(2,3),编号在图4中示出。例如,将6个发光元件120串联时,以位置(2,1)处的发光元件120作为串联的起点,依次连接(1,1)、(2,2)、(1,2)、(2,3)和(1,3)位置处的发光元件120,以位置(1,3)处的发光元件120作为串联的终点。例如,位置(2,1)处的发光元件120的正极连接第一电压端31,位置(1,3)处的发光元件120的负极连接驱动电路110的输出端OT。采用这种分布方式和串联方式,可以有效避免走线交叠,便于设计和制备,并且,串联线路上任意的相邻两个发光元件120之间的走线的弯折形状和长度大致相同,使得线路本身的电阻较为均衡,可以提高负载均衡性,提高电路的稳定性。
例如,在同一个发光单元100中,多个(例如6个)发光元件120阵列排布,可以使发光更为均为。驱动电路110位于多个发光元件120构成的阵列的空隙中。
需要说明的是,本公开的实施例中,每个发光单元100中的发光元件120的数量不受限制,可以为4个、5个、7个、8个等任意数量,而不限于6个。多个发光元件120可以采用任意的排列方式,例如按照所需要的图案排列,而不限于矩阵排列方式。驱动电路110的设置位置不受限制,可以设置在发光元件120彼此之间的任意空隙中,这可以根据实际需求而定,本公开的实施例对此不作限制。
需要说明的是,第一电压端31可以接收驱动电压信号并将该驱动电压信号提供给发光元件120,也可以接受公共电压信号并将该公共电压信号提供给发光元件120,这可以根据驱动电路110的实际工作方式和多个发光元件120的串联方式而定,本公开的实施例对此不作限制。例如,驱动电压信号的电平大于公共电压信号的电平,公共电压信号例如为接地信号。
需要说明的是,图4所示的发光单元100的构成方式仅为一个示例,不应理解为对本公开实施例的限制。例如,在其他一些示例中,发光单元100可以仅包括发光元件120,而不再需要设置驱动电路110,这该情形下,可以采用无源矩阵(Passive Matrix,PM)驱动方式来驱动各个发光元件120。例如,在再一些示例中,也可以在发光单元100中设置包含薄膜晶体管(Thin Film Transistor,TFT)的电路,采用有源矩阵(Active Matrix,AM)驱动方式,利用该电路对发光元件120进行有源驱动,该电路例如为通常的像素电路且还可以包括电容等器件,在该情形下,可以省略前述的驱动电路110。发光单元100还可以 采用其他任意适用的构成方式,本公开的实施例对此不作限制。
图5A为图2所示的发光基板的第一电压线和第二电压线的放大示意图,图5B为图2所示的发光基板中位于最后一行的一个发光单元与第一电压线和第二电压线的连接关系示意图。
例如,如图2、图5A和图5B所示,多条第一电压线21与多列发光单元100一一对应,且配置为传输第一电压信号。例如,该第一电压信号为驱动电压信号或公共电压信号。第一电压线21包括依序连接的第一部分211、第一连接部213和第二部分212。例如,对于同一条第一电压线21,第一部分211沿第一方向的宽度大于第二部分212沿第一方向的宽度。例如,对于同一条第一电压线21,第一部分211在不同位置处沿第一方向的宽度可以相等,第二部分212在不同位置处沿第一方向的宽度可以不同。例如,从与第一连接部213相接的一端到与绑定管脚41(将在后文描述)相接的一端,第二部分212沿第一方向的宽度例如逐渐减小,也即是,第二部分212逐渐收窄,从而满足布线设计需求。
例如,第一部分211沿第二方向延伸,且与对应列的第1行发光单元100至第Y行发光单元100的第一电压端31电连接,例如通过过孔实现电连接。在图2的示例中,第一部分211与对应列的第1行发光单元100至第3行发光单元100的第一电压端31电连接。
需要说明的是,图2中的第一电压线21所在的膜层位于发光元件120更靠近衬底基板101的一侧,因此,第一电压线21的第一部分211可以延伸至发光单元100中靠近第一电压端31的发光元件120的正极下方并通过过孔与该发光元件120的正极电连接(也即与第一电压端31电连接),也即是,第一电压线21将第一电压信号传输至该发光元件120的正极(也即传输至第一电压端31)。虽然图2中发光元件120的负极与第一电压线21交叠,但是由于两者位于不同的膜层,因此发光元件120的负极不与第一电压线21电连接。
多条第一电压线21中至少一条第一电压线21的第二部分212的延伸方向与第一方向和第二方向均具有夹角。例如,该夹角可以大于0度且小于90度(例如20~70度,40~60度,或者45度),该延伸方向与第一方向的夹角和该延伸方向与第二方向的夹角可以相同或不同。例如,在图2的示例中,至少一条第一电压线21的第二部分212斜向延伸,也即,与行方向和列方向均具有夹角。需要说明的是,可以一些第一电压线21的第二部分212斜向延伸,也可以全部第一电压线21的第二部分212均斜向延伸,这可以根据实际布线需求而定,本公开的实施例对此不作限制。
第一连接部213位于第Y行发光单元100与第Y+1行发光单元100的交界处,且配置为使第一部分211与第二部分212电连接,0<Y<N且Y为整数。例如,在图2的示例中,第一连接部213位于第3行发光单元100与第4行发光单元100的交界处,此时Y=3,N=4,Y=N-1。例如,第一连接部213实际上为第一电压线21的弯折部分,以使第一电压线21的延伸方向改变。需要说明的是,第一连接部213涵盖的区域不受限制,第一连接部213可以不仅包括第一电压线21的弯折部分,还可以包括第一电压线21沿第二方向延伸的线段中的一部分,还可以包括第一电压线21斜向延伸的线段中的一部分,本公开的实施例对此不作限制。
多条第一传输线22与多列发光单元100一一对应。第一传输线22与对应列的第Y+1行发光单元100至第N行发光单元100的第一电压端31电连接,以及与对应列的发光单元100对应的第一电压线21的第一连接部213电连接。例如,在图2的示例中,第一传输线22与对应列的第4行发光单元100的第一电压端31电连接,以及与对应列的发光单元100对应的第一电压线21的第一连接部213电连接,由此使得第4行发光单元100的第一电压端31与第一电压线21实现电连接,从而可以接收第一电压线21提供的第一电压信号。此时,Y=3,N=4,Y=N-1。
例如,第一电压线21与第一传输线22位于不同层,由此可以方便布线。例如,可以通过过孔实现第一电压线21与第一传输线22的电连接。当然,本公开的实施例不限于此,第一电压线21与第一传输线22也可以位于同一层,只要能实现相应的电连接且不会与其他结构短路即可。例如,第一电压线21的第一部分211在第一方向上的宽度大于第一传输线22在第一方向上的宽度。
需要说明的是,在本公开的说明中,位于“不同层”是指位于不同的膜层,这些不同的膜层在未设置过孔的位置处彼此绝缘。例如,当需要使位于不同的膜层中的走线(例如第一电压线21和第一传输线22)彼此电连接时,可以通过设置过孔的方式使位于不同的膜层中的走线实现电连接。例如,这些不同的膜层是在不同的工艺中制备的,例如先采用第一工艺制备这些不同的膜层中的一个膜层,然后再采用第二工艺制备这些不同的膜层中的另一个膜层。例如,在实施第一工艺之后且实施第二工艺之前,还可以采用第三工艺制备绝缘层,该绝缘层位于不同的膜层之间,以使不同的膜层在未设置过孔的位置处彼此绝缘。例如,第一工艺、第二工艺和第三工艺可以相同或不同。例如,在垂直于衬底基板101的方向上,不同的膜层距衬底基板101的距离不同。也即是,在不同的膜层中,一个膜层距衬底基板101较近,而另一个膜层距衬底基板101较远。在后文的说明中,位于“不同层”的含义可参考上文描述,不再赘述。
需要说明的是,在本公开的说明中,位于“同一层”是指位于同一个膜层。例如,位于同一个膜层中的走线可以在同一个工艺中制备,例如通过一次图案化工艺形成所需要的走线。例如,在垂直于衬底基板101的方向上,位于同一个膜层中的走线距衬底基板101的距离相同或基本相同。也即是,该膜层中的走线距离衬底基板101的远近程度相同或基本相同。在后文的说明中,位于“同一层”的含义可参考上文描述,不再赘述。
在图2所示的示例中,由于第一电压线21的第一部分211沿第二方向(也即列方向)延伸,位于同一列的第1行发光单元100至第3行发光单元100的第一电压端31位于第一电压线21在衬底基板101上的正投影内(例如位于第一部分211在衬底基板101上的正投影内),因此,对于第1行发光单元100至第3行发光单元100,可以通过在第一电压端31的位置设置过孔以实现第一电压端31与第一电压线21的电连接。第一电压线21的第二部分212斜向延伸,第4行发光单元100的第一电压端31位于第一电压线21在衬底基板101上的正投影之外(例如位于第二部分212在衬底基板101上的正投影之外),因此,对于第4行发光单元100,无法通过在第一电压端31的位置设置过孔来实现第一电压端31 与第一电压线21的电连接,而是需要通过设置第一传输线22来使第一电压端31与第一电压线21电连接。
通过使第一电压线21从距离发光基板10的边缘(例如图2所示的发光基板10的下边缘)较远的位置开始斜向延伸并逐渐收窄,既保证了各行发光单元100中的第一电压端31与第一电压线21之间的电连接,又可以有效缩小斜向走线区域,减小发光基板10的边框,使得非显示区宽度L2较小,有助于减小发光基板10的非显示区的尺寸,有利于实现窄边框设计。
需要说明的是,在该示例中,第一传输线22沿第二方向延伸至第一连接部213,并通过过孔与第一连接部213电连接,从而便于第一传输线22的布线,有利于简化版图设计。但是,本公开的实施例不限于此,第一传输线22也可以沿任意的方向延伸并且与第一电压线21的任意部分(例如第一部分211或第二部分212)实现电连接,这可以根据实际需求而定,例如根据实际布线设计而定,本公开的实施例对此不作限制。
例如,如图2、图5A和图5B所示,该发光基板10还包括多条第二电压线23和多条第二传输线24。多条第二电压线23与多列发光单元100一一对应,且配置为传输第二电压信号。例如,该第二电压信号为公共电压信号或驱动电压信号。需要说明的是,若前述的第一电压信号为驱动电压信号,则该第二电压信号为公共电压信号,且第一电压信号的电平大于第二电压信号的电平;若前述的第一电压信号为公共电压信号,则该第二电压信号为驱动电压信号,且第一电压信号的电平小于第二电压信号的电平。例如,公共电压信号为接地信号。第一电压信号和第二电压信号的具体电平和信号类型可以根据实际需求而定,例如根据发光单元100的结构形式和工作方式而定,本公开的实施例对此不作限制。
例如,第二电压线23包括依序连接的第三部分231、第二连接部233和第四部分232。例如,对于同一条第二电压线23,第三部分231沿第一方向的宽度大于第四部分232沿第一方向的宽度。例如,对于同一条第二电压线23,第三部分231在不同位置处沿第一方向的宽度可以相等,第四部分232在不同位置处沿第一方向的宽度可以不同。例如,从与第二连接部233相接的一端到与绑定管脚41(将在后文描述)相接的一端,第四部分232沿第一方向的宽度例如逐渐减小,也即是,第四部分232逐渐收窄,从而满足布线设计需求。
例如,第三部分231沿第二方向延伸,且与对应列的第1行发光单元100至第Y行发光单元100的第二电压端32电连接,例如通过过孔实现电连接。在图2的示例中,第三部分231与对应列的第1行发光单元100至第3行发光单元100的第二电压端32电连接。
需要说明的是,图2中的第二电压线23所在的膜层位于驱动电路110更靠近衬底基板101的一侧,因此,第二电压线23的第三部分231可以延伸至驱动电路110的公共电压端GND下方并通过过孔与该驱动电路110的公共电压端GND电连接(也即与第二电压端32电连接),也即是,第二电压线23将第二电压信号传输至该驱动电路110的公共电压端GND(也即传输至第二电压端32)。虽然图2中驱动电路110的其他端口以及发光元件120与第二电压线23交叠,但是由于第二电压线23位于与驱动电路110和发光元件120所在的膜层不同的膜层,因此驱动电路110的其他端口和发光元件120不与第二电压线23 电连接。
多条第二电压线23中至少一条第二电压线23的第四部分232的延伸方向与第一方向和第二方向均具有夹角。例如,该夹角可以大于0度且小于90度(例如20~70度,40~60度,或者45度),该延伸方向与第一方向的夹角和该延伸方向与第二方向的夹角可以相同或不同。例如,在图2的示例中,至少一条第二电压线23的第四部分232斜向延伸,也即,与行方向和列方向均具有夹角。需要说明的是,可以一些第二电压线23的第四部分232斜向延伸,也可以全部第二电压线23的第四部分232均斜向延伸,这可以根据实际布线需求而定,本公开的实施例对此不作限制。
第二连接部233位于第Y行发光单元100与第Y+1行发光单元100的交界处,且配置为使第三部分231与第四部分232电连接,0<Y<N且Y为整数。例如,在图2的示例中,第二连接部233位于第3行发光单元100与第4行发光单元100的交界处,此时Y=3,N=4,Y=N-1。例如,第二连接部233实际上为第二电压线23的弯折部分,以使第二电压线23的延伸方向改变。需要说明的是,第二连接部233涵盖的区域不受限制,第二连接部233可以不仅包括第二电压线23的弯折部分,还可以包括第二电压线23沿第二方向延伸的线段中的一部分,还可以包括第二电压线23斜向延伸的线段中的一部分,本公开的实施例对此不作限制。
多条第二传输线24与多列发光单元100一一对应。第二传输线24与对应列的第Y+1行发光单元100至第N行发光单元100的第二电压端32电连接,以及与对应列的发光单元100对应的第二电压线23的第二连接部233电连接。例如,在图2的示例中,第二传输线24与对应列的第4行发光单元100的第二电压端32电连接,以及与对应列的发光单元100对应的第二电压线23的第二连接部233电连接,由此使得第4行发光单元100的第二电压端32与第二电压线23实现电连接,从而可以接收第二电压线23提供的第二电压信号。此时,Y=3,N=4,Y=N-1。
例如,第二电压线23与第二传输线24位于不同层,由此可以方便布线。例如,可以通过过孔实现第二电压线23与第二传输线24的电连接。当然,本公开的实施例不限于此,第二电压线23与第二传输线24也可以位于同一层,只要能实现相应的电连接且不会与其他结构短路即可。例如,第二电压线23的第四部分232在第一方向上的宽度大于第二传输线24在第一方向上的宽度。
例如,第一电压线21和第二电压线23可以位于同一层,第一传输线22和第二传输线24可以位于同一层,第一电压线21与第一传输线22位于不同层。由此,可以利用两个膜层来设置第一电压线21、第二电压线23、第一传输线22和第二传输线24,第一电压线21和第二电压线23位于其中一个膜层,第一传输线22和第二传输线24位于其中另一个膜层,从而可以简化工艺,且避免短路。
在图2所示的示例中,由于第二电压线23的第三部分231沿第二方向(也即列方向)延伸,位于同一列的第1行发光单元100至第3行发光单元100的第二电压端32位于第二电压线23在衬底基板101上的正投影内(例如位于第三部分231在衬底基板101上的正投 影内),因此,对于第1行发光单元100至第3行发光单元100,可以通过在第二电压端32的位置设置过孔以实现第二电压端32与第二电压线23的电连接。第二电压线23的第四部分232斜向延伸,第4行发光单元100的第二电压端32位于第二电压线23在衬底基板101上的正投影之外(例如位于第四部分232在衬底基板101上的正投影之外),因此,对于第4行发光单元100,无法通过在第二电压端32的位置设置过孔来实现第二电压端32与第二电压线23的电连接,而是需要通过设置第二传输线24来使第二电压端32与第二电压线23电连接。
通过使第二电压线23从距离发光基板10的边缘(例如图2所示的发光基板10的下边缘)较远的位置开始斜向延伸并逐渐收窄,既保证了各行发光单元100中的第二电压端32与第二电压线23之间的电连接,又可以有效缩小斜向走线区域,减小发光基板10的边框,使得非显示区宽度L2较小,有助于减小发光基板10的非显示区的尺寸,有利于实现窄边框设计。
需要说明的是,在该示例中,第二传输线24沿第二方向延伸至第二连接部233,并通过过孔与第二连接部233电连接,从而便于第二传输线24的布线,有利于简化版图设计。但是,本公开的实施例不限于此,第二传输线24也可以沿任意的方向延伸并且与第二电压线23的任意部分(例如第三部分231或第四部分232)实现电连接,这可以根据实际需求而定,例如根据实际布线设计而定,本公开的实施例对此不作限制。
需要说明的是,本公开的实施例中,Y可以等于N-1,也可以等于N-2,还可以为其他数值,本公开的实施例对此不作限制。当Y=N-1时,第一电压线21和第二电压线23从最后一行发光单元100与倒数第二行发光单元100的交界处开始斜向延伸。当Y=N-2时,第一电压线21和第二电压线23从倒数第二行发光单元100与倒数第三行发光单元100的交界处开始斜向延伸。当Y等于其他数值时,第一电压线21和第二电压线23可以从更远离发光基板10的边缘(例如图2中所示的发光基板10的下边缘)的位置开始斜向延伸。由此,可以根据发光基板10的实际布线需求调节第一电压线21和第二电压线23的延伸方式,以实现窄边框设计。
需要说明的是,本公开的实施例中,可以仅第一电压线21采用上述布线方式(即从第Y行发光单元100与第Y+1行发光单元100的交界处开始斜向延伸),也可以仅第二电压线23采用上述布线方式(即从第Y行发光单元100与第Y+1行发光单元100的交界处开始斜向延伸),还可以第一电压线21和第二电压线23均采用上述布线方式,本公开的实施例对此不作限制。例如,当第一电压线21和第二电压线23均采用上述布线方式时,第一电压线21开始斜向延伸的位置与第二电压线23开始斜向延伸的位置可以相同或不同,也即,对应于第一电压线21的Y值与对应于第二电压线23的Y值可以相同或不同,本公开的实施例对此不作限制。
需要说明的是,在图2所示的发光基板10中,第一电压线21沿第一方向的宽度与第二电压线23沿第一方向的宽度不同,第一电压线21更窄,而第二电压线23更宽,这仅是为了在图2中更清晰地区分第一电压线21和第二电压线23,而不应理解为对本公开实施 例的限制。第一电压线21与第二电压线23可以具有相同或基本相同的宽度,第一电压线21的宽度也可以大于或小于第二电压线23的宽度,这可以根据实际需求而定,本公开的实施例对此不作限制。
需要说明的是,本公开的实施例中,多条第一传输线22中至少一条第一传输线22沿第二方向延伸,也即是,可以仅一条第一传输线22沿第二方向延伸,也可以一些第一传输线22沿第二方向延伸,还可以全部第一传输线22沿第二方向延伸,这可以根据实际布线需求而定,本公开的实施例对此不作限制。类似地,多条第二传输线24中至少一条第二传输线24沿第二方向延伸,也即是,可以仅一条第二传输线24沿第二方向延伸,也可以一些第二传输线24沿第二方向延伸,还可以全部第二传输线24沿第二方向延伸,这可以根据实际布线需求而定,本公开的实施例对此不作限制。通过使第一传输线22和第二传输线24沿第二方向延伸,可以缩短第一传输线22和第二传输线24的长度,从而减小传输电阻。
例如,如图2所示,发光基板10还包括绑定区BR,该绑定区BR位于发光基板10靠近第N行发光单元100的边缘,例如,图2所示的发光基板10的下边缘。绑定区BR包括多个绑定管脚41,第一电压线21的第二部分212与多个绑定管脚41至少之一电连接(例如直接电连接),第二电压线23的第四部分232与多个绑定管脚41至少之一电连接(例如直接电连接)。例如,每条第一电压线21的第二部分212可以与一个或多个绑定管脚41电连接,类似地,每条第二电压线23的第四部分232也可以与一个或多个绑定管脚41电连接。同一条第一电压线21与多个绑定管脚41电连接或者同一条第二电压线23与多个绑定管脚41电连接,可以提高连接可靠性,降低传输电阻。绑定区BR中的绑定管脚41可以通过柔性电路板与另行设置的控制电路或芯片电连接,从而便于接收该控制电路或芯片传输的第一电压信号和第二电压信号,并将第一电压信号和第二电压信号传输至第一电压线21和第二电压线23。
需要说明的是,本公开的实施例中,在绑定区BR内,第一电压线21与绑定管脚41连接的部分不限于为图2所示的方式,也可以采用图1B中所示的方式,也即是,第一电压线21在靠近绑定管脚41的区域变更为沿第二方向延伸并与绑定管脚41电连接,在该情形下,第一电压线21的第二部分212通过管脚连接部与绑定管脚41电连接,该管脚连接部例如为第一电压线21中与绑定管脚41直接电连接且沿第二方向延伸的部分。类似地,第二电压线23与绑定管脚41连接的部分不限于为图2所示的方式,也可以采用图1B中所示的方式,也即是,第二电压线23在靠近绑定管脚41的区域变更为沿第二方向延伸并与绑定管脚41电连接,在该情形下,第二电压线23的第四部分232通过管脚连接部与绑定管脚41电连接,该管脚连接部例如为第二电压线23中与绑定管脚41直接电连接且沿第二方向延伸的部分。
例如,如图2所示,该发光基板10还包括多条地址转接线130,多条地址转接线130沿第一方向延伸且配置为传输第一输入信号。
例如,发光基板10中的多个发光单元100排列为N行M列且划分为多组,每组发 光单元100包括X行M列共X*M个发光单元100,多条地址转接线130与多组发光单元100一一对应。此时,发光单元100划分为N/X组。例如,在图2所示的示例中,每组发光单元100包括2行5列共10个发光单元100,因此,每2行发光单元100对应一条地址转接线130,发光基板10中的地址转接线130的数量为N/2。例如,0<X≤N且X为整数。
例如,在同一组发光单元100中,X*M个发光单元100根据行列分布位置依次编号。例如,在一些示例中,如图6A所示,X*M个发光单元按照Z形逐行逐列依次编号,图6A中每个矩形表示一个发光单元100,各个发光单元100的编号标注在各个矩形中。例如,在另一些示例中,如图6B所示,X*M个发光单元按照S形逐行逐列依次编号,类似地,图6B中每个矩形表示一个发光单元100,各个发光单元100的编号标注在各个矩形中。需要说明的是,发光单元100根据行列分布位置依次编号的方式不限于上文描述的方式,也可以根据其他方式进行编号,使得多个发光单元100的连接方式可灵活调节,本公开的实施例对此不作限制。
例如,如图2和图4所示,在同一组发光单元100中,编号为1的发光单元100的驱动电路110的第一输入端Di与该组发光单元100对应的地址转接线130电连接,编号为P的发光单元100的驱动电路110的输出端OT与编号为P+1的发光单元100的驱动电路110的第一输入端Di电连接,编号为P+1的发光单元100的驱动电路110的第一输入端Di接收编号为P的发光单元100的驱动电路110的输出端OT输出的中继信号以作为第一输入信号。例如,0<P<X*M且P为整数。
例如,当采用图6A所示的编号方式时,对于编号为1的一组发光单元100(即发光基板10最上侧的一组发光单元100,或者称为第一组发光单元100),位于第一行第一列的发光单元100的驱动电路110的第一输入端Di与该组发光单元100对应的地址转接线130电连接,各个发光单元100的驱动电路110的输出端OT与后一个发光单元100的驱动电路110的第一输入端Di电连接(最后一个发光单元100的驱动电路110的输出端OT不与其他驱动电路110连接)。对于编号为2的一组发光单元100(即紧邻第一组发光单元100的一组发光单元100,或者称为第二组发光单元100),位于第三行第一列的发光单元100的驱动电路110的第一输入端Di与该组发光单元100对应的地址转接线130电连接,各个发光单元100的驱动电路110的输出端OT与后一个发光单元100的驱动电路110的第一输入端Di电连接,其连接方式与第一组发光单元100类似。
通过上述连接方式,在每组发光单元100中,只有第一个发光单元100的驱动电路110的第一输入端Di与地址转接线130电连接,而其他发光单元100的驱动电路110的第一输入端Di接收前一个发光单元100的驱动电路110输出的中继信号作为第一输入信号。由此,对于一组发光单元100,只需要通过一条地址转接线130提供一个第一输入信号(即地址信号),便可以使该组发光单元100中的所有发光单元100均获得各自的地址信号。这样极大地减少了信号线的数量,节省了布线空间,并且简化了控制方式。
例如,如图2和图4所示,该发光基板10还包括多条电压转接线140。多条电压转接线140沿第一方向延伸且配置为传输第二输入信号,多条电压转接线140与N行发光单 元100一一对应。例如,每行发光单元100对应一条电压转接线140,发光基板10中的电压转接线140的数量为N。例如,如图2所示,第一行发光单元100、第二行发光单元100、第三行发光单元100、第四行发光单元100分别对应一条电压转接线140。
例如,对于一行发光单元100,发光单元100中的驱动电路110的第二输入端Pwr与包括该驱动电路110的发光单元100所在行对应的电压转接线140电连接。也即是,一行发光单元10中所有的驱动电路110的第二输入端Pwr均与该行对应的电压转接线140电连接,以接收第二输入信号。
例如,如图2所示,该发光基板10还包括沿第二方向延伸的多条源地址线150和多条源电压线160。
例如,多条源地址线150与多条地址转接线130一一对应电连接,且配置为传输第一输入信号。例如,源地址线150的数量与地址转接线130的数量相等,均等于N/X,也即是,当发光单元100划分为N/X组时,每组发光单元100对应一条源地址线150和一条地址转接线130,该源地址线150和地址转接线130将第一输入信号传输至该组发光单元100中的第一个发光单元100。
例如,多条源电压线160与多组发光单元100一一对应,每条源电压线160与对应的一组发光单元100对应的多条电压转接线140电连接,且配置为传输第二输入信号。例如,源电压线160的数量为N/X,也即是,当发光单元100划分为N/X组时,每组发光单元100对应一条源电压线160,该源电压线160将第二输入信号传输至与该组发光单元100对应的多条电压转接线140,从而为该组发光单元100中的所有发光单元100提供第二输入信号。例如,对应于同一组发光单元100的源地址线150和源电压线160相邻设置,且位于多列发光单元100的空隙中。
需要说明的是,在同一组发光单元100中,所有发光单元100的驱动电路110的第二输入端Pwr与相应的电压转接线140电连接,这些电压转接线140连接到同一条源电压线160。由此,对于一组发光单元100,只需要通过一条源电压线160提供一个第二输入信号,便可以使该组发光单元100中的所有发光单元100均获得第二输入信号。这样极大地减少了信号线的数量,节省了布线空间,并且简化了控制方式。
例如,在该发光基板10中,源地址线150的数量和源电压线160的数量均为N/X。
例如,在一些示例中,在衬底基板101之上,源地址线150与源电压线160位于同一层,电压转接线140与地址转接线130位于同一层,源地址线150与地址转接线130位于不同层。也即是,源地址线150与源电压线160采用一次图案化工艺(例如光刻工艺)制备,电压转接线140与地址转接线130采用另一次图案化工艺制备,源地址线150与源电压线160所在的膜层和电压转接线140与地址转接线130所在的膜层之间设置有绝缘层,通过贯穿绝缘层的过孔使相应的走线电连接。通过这种方式,可以简化制备工艺,并且能够兼容通常的半导体膜层制备工艺,提高生产效率。
例如,在该发光基板10中,第一电压线21、第一传输线22、第二电压线23和第二传输线24各自所在的膜层与地址转接线130、电压转接线140、源地址线150和源电压线 160各自所在的膜层可以根据实际需求确定,这些膜层可以相同或不同,本公开的实施例对此不作限制。
图7为本公开一些实施例提供的一种发光基板的布线设计局部示意图,图7例如为图2中区域C1的一种布线设计示意图。例如,如图7所示,第一传输线22由多条线段(例如4条线段)依序连接而构成,这些线段中的一部分线段沿第二方向延伸,另一部分线段沿第一方向延伸,从而使发光单元100的第一电压端31与第一电压线21的第一连接部213电连接。类似地,第二传输线24由多条线段(例如2条线段)依序连接而构成,这些线段中的一部分线段沿第二方向延伸,另一部分线段沿第一方向延伸,从而使发光单元100的第二电压端32与第二电压线23的第二连接部233电连接。
需要说明的是,在本公开的说明中,第一传输线22沿第二方向延伸是指第一传输线22的至少部分线段沿第二方向延伸,而并非指第一传输线22完全严格地沿第二方向延伸。类似地,第二传输线24沿第二方向延伸是指第二传输线24的至少部分线段沿第二方向延伸,而并非指第二传输线24完全严格地沿第二方向延伸。
例如,如图7所示,第一电压线21的第二部分212从第N-1行发光单元100与第N行发光单元100的交界处开始斜向延伸,第一传输线22的一端通过过孔与第一电压端31电连接,第一传输线22的另一端通过过孔与第一电压线21的第一连接部分213电连接。类似地,第二电压线23的第四部分232从第N-1行发光单元100与第N行发光单元100的交界处开始斜向延伸,第二传输线24的一端通过过孔与第二电压端32电连接,第二传输线24的另一端通过过孔与第二电压线23的第二连接部分233电连接。
图8为本公开一些实施例提供的另一种发光基板的平面示意图。例如,在一些示例中,如图8所示,该发光基板10还包括沿第一方向延伸的多条第三电压线25和多条第四电压线26。该发光基板10的其他结构与图2所示的发光基板10基本相同,此处不再赘述。
例如,多条第三电压线25在平行于发光基板10的平面内的正投影与多条第一电压线21在平行于发光基板10的平面内的正投影交叠,且多条第三电压线25通过过孔与多条第一电压线21电连接。例如,多条第四电压线26在平行于发光基板10的平面内的正投影与多条第二电压线23在平行于发光基板10的平面内的正投影交叠,且多条第四电压线26通过过孔与多条第二电压线23电连接。例如,多条第三电压线25和多条第四电压线26位于同一层。
例如,多条第三电压线25通过过孔与多条第一电压线21电连接且形成网格状走线,多条第四电压线26通过过孔与多条第二电压线23电连接且形成网格状走线,从而可以减小传输电阻,提高发光基板10内的电压一致性。例如,第三电压线25和第四电压线26位于同一层,且与地址转接线130和电压转接线140位于同一层。由于第三电压线25、第四电压线26、地址转接线130和电压转接线140均沿第一方向延伸,因此四者可以设置在同一层且彼此不会交叠,从而简化结构,简化制备工艺。例如,第三电压线25和第四电压线26所在的膜层与第一电压线21和第二电压线23所在的膜层不同。
需要说明的是,本公开的实施例中,第一电压线21、第二电压线23、第三电压线25 和第四电压线26的长度和宽度可以设置为任意数值,其长度可以相同或不同,其宽度也可以相同或不同,这可以根据实际需求而定,本公开的实施例对此不作限制。
需要说明的是,本公开的实施例中,发光基板10还可以包括更多的结构和部件,各个结构和部件的设置方式可以根据实际需求而定,从而实现多样化的功能,本公开的实施例对此不作限制。
本公开至少一个实施例还提供一种显示装置,该显示装置包括显示面板和本公开任一实施例提供的发光基板。该显示装置可以有效减小非显示区宽度,减小非显示区的尺寸,有利于实现窄边框设计。
图9为本公开一些实施例提供的一种显示装置的剖面示意图。例如,如图9所示,在一些实施例中,显示装置50包括显示面板510和发光基板520。例如,发光基板520可以为本公开任一实施例提供的发光基板,例如前述的发光基板10。
例如,显示面板510具有显示侧P1和与显示侧P1相对的非显示侧P2,发光基板520设置在显示面板510的非显示侧P2以作为背光单元。例如,发光基板520可以作为面光源向显示面板510提供背光。例如,显示面板510可以为LCD面板、电子纸显示面板等,本公开的实施例对此不作限制。
例如,显示装置50可以为LCD装置、电子纸显示装置等,或者也可以为其他具有显示功能的装置等,本公开的实施例对此不作限制。例如,显示装置50可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、电子书等任何具有显示功能的产品或部件,本公开的实施例对此不作限制。
需要说明的是,本公开实施例提供的发光基板10既可以作为背光单元应用到上述显示装置50中,也可以单独作为具有显示功能或发光功能的基板使用,本公开的实施例对此不作限制。
关于该显示装置50的详细说明和技术效果可以参考上文中关于发光基板10的描述,此处不再赘述。该显示装置50还可以包括更多的部件和结构,这可以根据实际需求而定,本公开的实施例对此不作限制。
有以下几点需要说明:
(1)本公开实施例附图只涉及到本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种发光基板,包括多个发光单元、多条第一电压线和多条第一传输线,其中,
    所述多个发光单元沿第一方向和第二方向排布为N行M列的N*M阵列,所述第一方向与所述第二方向交叉,所述多个发光单元每个包括第一电压端,
    所述多条第一电压线与多列发光单元一一对应,且配置为传输第一电压信号,所述第一电压线包括依序连接的第一部分、第一连接部和第二部分,
    所述第一部分沿所述第二方向延伸,且与对应列的第1行发光单元至第Y行发光单元的第一电压端电连接,
    所述多条第一电压线中至少一条第一电压线的第二部分的延伸方向与所述第一方向和所述第二方向均具有夹角,
    所述第一连接部位于第Y行发光单元与第Y+1行发光单元的交界处,且配置为使所述第一部分与所述第二部分电连接,
    所述多条第一传输线与所述多列发光单元一一对应,所述第一传输线与对应列的第Y+1行发光单元至第N行发光单元的第一电压端电连接,以及与对应列的发光单元对应的第一电压线的第一连接部电连接,
    N为大于0的整数,M为大于0的整数,0<Y<N且Y为整数。
  2. 根据权利要求1所述的发光基板,还包括多条第二电压线和多条第二传输线,其中,
    所述多个发光单元每个还包括第二电压端,
    所述多条第二电压线与所述多列发光单元一一对应,且配置为传输第二电压信号,所述第二电压线包括依序连接的第三部分、第二连接部和第四部分,
    所述第三部分沿所述第二方向延伸,且与对应列的第1行发光单元至第Y行发光单元的第二电压端电连接,
    所述多条第二电压线中至少一条第二电压线的第四部分的延伸方向与所述第一方向和所述第二方向均具有夹角,
    所述第二连接部位于第Y行发光单元与第Y+1行发光单元的交界处,且配置为使所述第三部分与所述第四部分电连接,
    所述多条第二传输线与所述多列发光单元一一对应,所述第二传输线与对应列的第Y+1行发光单元至第N行发光单元的第二电压端电连接,以及与对应列的发光单元对应的第二电压线的第二连接部电连接。
  3. 根据权利要求1或2所述的发光基板,其中,Y=N-1或Y=N-2。
  4. 根据权利要求1-3任一所述的发光基板,其中,所述第一电压线与所述第一传输线位于不同的膜层,所述不同的膜层在未设置过孔的位置处彼此绝缘。
  5. 根据权利要求2所述的发光基板,其中,所述第二电压线与所述第二传输线位于不同的膜层,所述不同的膜层在未设置过孔的位置处彼此绝缘。
  6. 根据权利要求2或5所述的发光基板,其中,所述第一电压线和所述第二电压线位 于同一层,所述第一传输线和所述第二传输线位于同一层。
  7. 根据权利要求2或5所述的发光基板,其中,所述第一电压信号为驱动电压信号,所述第二电压信号为公共电压信号,所述第一电压信号的电平大于所述第二电压信号的电平;
    或者,所述第一电压信号为公共电压信号,所述第二电压信号为驱动电压信号,所述第一电压信号的电平小于所述第二电压信号的电平。
  8. 根据权利要求2或5所述的发光基板,还包括绑定区,其中,所述绑定区位于所述发光基板靠近第N行发光单元的边缘,
    所述绑定区包括多个绑定管脚,所述第一电压线的第二部分与所述多个绑定管脚至少之一电连接,所述第二电压线的第四部分与所述多个绑定管脚至少之一电连接。
  9. 根据权利要求2或5所述的发光基板,其中,所述第一电压线的第一部分在所述第一方向上的宽度大于所述第一传输线在所述第一方向上的宽度,所述第二电压线的第四部分在所述第一方向上的宽度大于所述第二传输线在所述第一方向上的宽度。
  10. 根据权利要求2或5所述的发光基板,其中,所述多条第一传输线中至少一条第一传输线沿所述第二方向延伸,所述多条第二传输线中至少一条第二传输线沿所述第二方向延伸。
  11. 根据权利要求2所述的发光基板,还包括沿所述第一方向延伸的多条第三电压线和多条第四电压线,
    其中,所述多条第三电压线在平行于所述发光基板的平面内的正投影与所述多条第一电压线在平行于所述发光基板的平面内的正投影交叠,且所述多条第三电压线通过过孔与所述多条第一电压线电连接,
    所述多条第四电压线在平行于所述发光基板的平面内的正投影与所述多条第二电压线在平行于所述发光基板的平面内的正投影交叠,且所述多条第四电压线通过过孔与所述多条第二电压线电连接,
    所述多条第三电压线和所述多条第四电压线位于同一层。
  12. 根据权利要求2或5所述的发光基板,其中,所述多个发光单元每个还包括驱动电路和多个发光元件;
    所述驱动电路包括第一输入端、第二输入端、输出端和公共电压端,所述公共电压端与所述第二电压端电连接;
    所述多个发光元件依次串联,并且连接在所述第一电压端和所述输出端之间;
    所述驱动电路配置为根据所述第一输入端接收的第一输入信号和所述第二输入端接收的第二输入信号在第一时段内通过所述输出端输出中继信号,以及在第二时段内通过所述输出端提供驱动信号至依次串联的所述多个发光元件。
  13. 根据权利要求12所述的发光基板,其中,所述多个发光元件包括多个微型发光二极管。
  14. 一种显示装置,包括:
    显示面板;和
    如权利要求1-13任一所述的发光基板,
    其中,所述显示面板具有显示侧和与所述显示侧相对的非显示侧,所述发光基板设置在所述显示面板的非显示侧以作为背光单元。
PCT/CN2021/094028 2020-06-12 2021-05-17 发光基板及显示装置 WO2021249120A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/781,850 US11791347B2 (en) 2020-06-12 2021-05-17 Light-emitting substrate and display device
JP2022533547A JP2023528706A (ja) 2020-06-12 2021-05-17 発光基板及び表示装置
KR1020227017959A KR20230022828A (ko) 2020-06-12 2021-05-17 발광 기판 및 디스플레이 장치
EP21823073.8A EP4067983A4 (en) 2020-06-12 2021-05-17 Light-emitting substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010536696.5 2020-06-12
CN202010536696.5A CN113805378B (zh) 2020-06-12 2020-06-12 发光基板及显示装置

Publications (1)

Publication Number Publication Date
WO2021249120A1 true WO2021249120A1 (zh) 2021-12-16

Family

ID=78845160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094028 WO2021249120A1 (zh) 2020-06-12 2021-05-17 发光基板及显示装置

Country Status (7)

Country Link
US (1) US11791347B2 (zh)
EP (1) EP4067983A4 (zh)
JP (1) JP2023528706A (zh)
KR (1) KR20230022828A (zh)
CN (1) CN113805378B (zh)
TW (1) TWI751857B (zh)
WO (1) WO2021249120A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206807A1 (en) * 2022-01-01 2023-07-05 LG Display Co., Ltd. Back-light unit having light-emitting chips and display apparatus having the same
WO2024011656A1 (zh) * 2022-07-15 2024-01-18 Tcl华星光电技术有限公司 发光基板及显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812888A (zh) * 2020-07-10 2020-10-23 深圳市华星光电半导体显示技术有限公司 Mini LED背光模组及其制备方法、显示面板
CN117322159A (zh) * 2022-04-28 2023-12-29 京东方科技集团股份有限公司 显示面板及制造方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667392A (zh) * 2008-09-04 2010-03-10 索尼株式会社 图像显示装置
CN102915693A (zh) * 2012-08-09 2013-02-06 友达光电股份有限公司 显示面板
US20180033853A1 (en) * 2016-07-26 2018-02-01 X-Celeprint Limited Devices with a single metal layer
CN110265454A (zh) * 2019-06-25 2019-09-20 上海天马微电子有限公司 一种显示面板、其制作方法及显示装置
CN110323257A (zh) * 2019-04-12 2019-10-11 武汉天马微电子有限公司 阵列基板、显示面板及显示装置
CN110890020A (zh) * 2018-09-09 2020-03-17 群创光电股份有限公司 电子装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI391731B (zh) 2009-04-21 2013-04-01 Wintek Corp 平面顯示器面板
KR102163358B1 (ko) 2014-07-21 2020-10-12 엘지디스플레이 주식회사 디스플레이 장치
CN104934458A (zh) 2015-06-29 2015-09-23 合肥京东方光电科技有限公司 显示基板及其制造方法和显示装置
TWI567450B (zh) * 2015-10-16 2017-01-21 群創光電股份有限公司 顯示裝置
KR102687420B1 (ko) * 2016-08-25 2024-07-22 엘지디스플레이 주식회사 표시패널 및 표시장치
CN106444199A (zh) * 2016-12-23 2017-02-22 厦门天马微电子有限公司 阵列基板、显示面板和显示装置
KR102612998B1 (ko) * 2016-12-30 2023-12-11 엘지디스플레이 주식회사 표시 장치 및 이를 이용한 멀티 스크린 표시 장치
CN106873222B (zh) * 2017-04-20 2020-08-04 武汉华星光电技术有限公司 一种窄边框的显示面板及显示器
US20190157248A1 (en) 2017-11-20 2019-05-23 Century Micro Display Technology (Shenzhen) Co., Ltd. Micro led display panel with narrow border
CN108287436B (zh) 2018-01-31 2021-03-02 武汉华星光电技术有限公司 背光模组及液晶显示装置
CN108321281A (zh) 2018-03-30 2018-07-24 南方科技大学 一种微led显示面板及微led显示装置
TWI669816B (zh) * 2018-04-18 2019-08-21 友達光電股份有限公司 拼接用顯示面板及其製造方法
TWI642979B (zh) * 2018-05-03 2018-12-01 達方電子股份有限公司 背光裝置
CN108732837B (zh) * 2018-05-29 2019-10-18 武汉华星光电技术有限公司 Tft阵列基板及液晶显示面板
US11069668B2 (en) * 2018-09-09 2021-07-20 Innolux Corporation Electronic device for reducing a border edge of the non-display areas
CN109413233B (zh) 2018-10-29 2021-01-15 北京小米移动软件有限公司 终端
CN109450539B (zh) 2018-12-24 2020-07-14 厦门天马微电子有限公司 移动终端和移动终端的lifi信号收发方法
CN109585462A (zh) 2019-01-23 2019-04-05 京东方科技集团股份有限公司 一种阵列基板及其制作方法、柔性显示面板、拼接屏
CN109949711B (zh) 2019-03-29 2021-08-31 上海天马微电子有限公司 显示面板、显示装置和显示面板的制作方法
CN110286534A (zh) * 2019-06-19 2019-09-27 武汉天马微电子有限公司 阵列基板、显示面板及其显示装置
CN110503898A (zh) 2019-08-28 2019-11-26 京东方科技集团股份有限公司 微发光二极管显示面板及制备方法、拼接显示面板、装置
CN111161639B (zh) * 2020-01-03 2022-04-19 厦门天马微电子有限公司 显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667392A (zh) * 2008-09-04 2010-03-10 索尼株式会社 图像显示装置
CN102915693A (zh) * 2012-08-09 2013-02-06 友达光电股份有限公司 显示面板
US20180033853A1 (en) * 2016-07-26 2018-02-01 X-Celeprint Limited Devices with a single metal layer
CN110890020A (zh) * 2018-09-09 2020-03-17 群创光电股份有限公司 电子装置
CN110323257A (zh) * 2019-04-12 2019-10-11 武汉天马微电子有限公司 阵列基板、显示面板及显示装置
CN110265454A (zh) * 2019-06-25 2019-09-20 上海天马微电子有限公司 一种显示面板、其制作方法及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206807A1 (en) * 2022-01-01 2023-07-05 LG Display Co., Ltd. Back-light unit having light-emitting chips and display apparatus having the same
WO2024011656A1 (zh) * 2022-07-15 2024-01-18 Tcl华星光电技术有限公司 发光基板及显示装置

Also Published As

Publication number Publication date
CN113805378B (zh) 2022-07-26
EP4067983A1 (en) 2022-10-05
US20230028746A1 (en) 2023-01-26
US11791347B2 (en) 2023-10-17
TWI751857B (zh) 2022-01-01
EP4067983A4 (en) 2023-06-28
KR20230022828A (ko) 2023-02-16
CN113805378A (zh) 2021-12-17
JP2023528706A (ja) 2023-07-06
TW202147287A (zh) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2021249120A1 (zh) 发光基板及显示装置
WO2021208606A1 (zh) 阵列基板及显示面板
JP2024056691A (ja) アレイ基板、表示パネル、スプライシング表示パネル、及び表示駆動方法
US20230052091A1 (en) Array substrate, display panel and display module
WO2020156057A1 (zh) 显示器及其显示面板
WO2020227861A1 (zh) 发光驱动基板及其制作方法、发光基板和显示装置
US20240078960A1 (en) Display device
CN111128048B (zh) 显示面板以及显示装置
CN112327551B (zh) 一种阵列基板、显示面板及显示装置
WO2022028132A1 (zh) 显示基板、显示装置
WO2022110238A1 (zh) 发光基板及显示装置
TWI767473B (zh) 發光基板及其驅動方法、顯示裝置
CN116736587A (zh) 显示基板以及显示装置
WO2022104752A1 (zh) 发光基板及显示装置
WO2022266795A9 (zh) 驱动背板及其制作方法、显示装置
WO2021147000A1 (zh) 发光基板及显示装置
WO2022041281A1 (zh) 一种显示面板及显示装置
WO2023159393A1 (zh) 发光基板、背光模组及显示装置
WO2022160203A1 (zh) 驱动背板、显示面板及显示装置
WO2023206138A1 (zh) 显示基板和显示装置
US11574936B2 (en) Display panel, preparation method thereof, and display device
WO2023077269A1 (zh) 显示基板、显示装置
US20240234657A1 (en) Array substrate, backlight, display device
WO2023115401A1 (zh) 显示基板及其制备方法、显示装置
WO2024130716A1 (zh) 发光模组和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21823073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533547

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021823073

Country of ref document: EP

Effective date: 20220627

NENP Non-entry into the national phase

Ref country code: DE