WO2021239936A1 - Installation de fabrication de recipients comportant une zone de transfert sterile - Google Patents

Installation de fabrication de recipients comportant une zone de transfert sterile Download PDF

Info

Publication number
WO2021239936A1
WO2021239936A1 PCT/EP2021/064327 EP2021064327W WO2021239936A1 WO 2021239936 A1 WO2021239936 A1 WO 2021239936A1 EP 2021064327 W EP2021064327 W EP 2021064327W WO 2021239936 A1 WO2021239936 A1 WO 2021239936A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
preforms
station
forming
enclosure
Prior art date
Application number
PCT/EP2021/064327
Other languages
English (en)
Inventor
Sandy LETELLIER
Jérome DEMARE
Mickael Trouillet
Original Assignee
Sidel Participations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sidel Participations filed Critical Sidel Participations
Priority to CN202180038496.XA priority Critical patent/CN115666901A/zh
Priority to EP21729504.7A priority patent/EP4157609A1/fr
Priority to JP2022573246A priority patent/JP2023527068A/ja
Publication of WO2021239936A1 publication Critical patent/WO2021239936A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/46Component parts, details or accessories; Auxiliary operations characterised by using particular environment or blow fluids other than air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C7/00Concurrent cleaning, filling, and closing of bottles; Processes or devices for at least two of these operations
    • B67C7/0073Sterilising, aseptic filling and closing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/46Component parts, details or accessories; Auxiliary operations characterised by using particular environment or blow fluids other than air
    • B29C2049/4673Environments
    • B29C2049/4697Clean room
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/10Biaxial stretching during blow-moulding using mechanical means for prestretching
    • B29C49/12Stretching rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/28Blow-moulding apparatus
    • B29C49/30Blow-moulding apparatus having movable moulds or mould parts
    • B29C49/36Blow-moulding apparatus having movable moulds or mould parts rotatable about one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/42403Purging or cleaning the blow-moulding apparatus
    • B29C49/42405Sterilizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/42414Treatment of preforms, e.g. cleaning or spraying water for improved heat transfer
    • B29C49/42416Purging or cleaning the preforms
    • B29C49/42418Purging or cleaning the preforms for sterilizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4273Auxiliary operations after the blow-moulding operation not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4273Auxiliary operations after the blow-moulding operation not otherwise provided for
    • B29C49/42808Filling the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4273Auxiliary operations after the blow-moulding operation not otherwise provided for
    • B29C49/4282Purging or cleaning the article
    • B29C49/42822Sterilizing the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B3/00Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B3/02Machines characterised by the incorporation of means for making the containers or receptacles
    • B65B3/022Making containers by moulding of a thermoplastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C2003/227Additional apparatus related to blow-moulding of the containers, e.g. a complete production line forming filled containers from preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C2003/228Aseptic features

Definitions

  • TITLE "Installation for the manufacture of receptacles comprising a sterile transfer zone"
  • the invention relates to an installation for mass production of containers by forming preforms of thermoplastic material, the preforms and the containers being denoted indifferently by the terms "hollow body", the manufacturing installation comprising:
  • a device for sterilizing the preforms which is arranged upstream of the forming station according to the direction of movement of the hollow bodies; - a device for transporting hot preforms in line along a first transfer path from the output of the heating station to a loading point of the forming station
  • the invention is intended to be implemented in an installation for manufacturing containers of thermoplastic material and in particular of polyethylene terephthalate (PET) by forming, in particular by blow molding or stretch blow molding, of preforms.
  • PET polyethylene terephthalate
  • Such an installation makes it possible to produce containers in very large series at very high rates.
  • the terms “hollow body” will be used interchangeably with the preforms or the containers formed from the preforms.
  • the preforms are generally manufactured by injection at a first location and are blow molded to the final shape of the container at a second location on the manufacturing facility.
  • Such a technology makes it possible to carry out the blow molding operation as close as possible to the place of filling, the injection operation being able to be carried out at any place. Indeed, it is relatively easy and inexpensive to transport preforms of reduced size, while transporting containers after blowing has the drawback. to be economically unprofitable because of their very large volume.
  • the manufacturing installation comprises a heating station which makes it possible to heat the body of the preforms to the temperature required to carry out the forming step.
  • the preforms thus heated are then conveyed to a forming station of the manufacturing facility.
  • the hot preforms are deposited automatically in mold cavities by grippers such as grippers.
  • a pressurized forming fluid is injected into the preforms to press the wall of the preform against the walls of the cavity to conform the preform to the final container.
  • This forming operation is generally accompanied by a stretching operation consisting in introducing an elongation rod into the preform through its body in order to axially stretch the wall of the preform.
  • the containers are generally filled immediately after forming.
  • the filling station and the blowing station are juxtaposed to obtain a production installation which is compact and carries out the entire production process of the containers, until the containers are filled.
  • the aim is to reduce by all means the risks of contamination of the containers, which containers are moreover capable of being filled with products more or less sensitive to such risks.
  • the container filling operation is usually recognized as being the most sensitive with regard to the risks of contamination. Before transporting a container to the filling station, the container must therefore be sterilized.
  • a sterilizing agent such as hydrogen peroxide (H202) in a container or in a preform before entering the filling station.
  • H202 hydrogen peroxide
  • a sterilizing agent such as hydrogen peroxide is particularly effective when heated.
  • the forming of the containers is carried out by blowing a sterile gas, such as air, into the preforms.
  • the containers introduced into the filling station are only one of the main vectors of contamination.
  • pathogens as soon as they are present in the direct environment of the receptacles, from the air to the components of the installation, are in particular liable to contaminate the internal volume of the receptacle.
  • the filling station is also chemically decontaminated, for example by spraying sterilizing solutions such as sodium hydroxide (NaOH) or hydrogen peroxide (H202).
  • NaOH sodium hydroxide
  • H202 hydrogen peroxide
  • a filling enclosure In which the atmosphere is kept sterile by injecting sterile air.
  • the filling enclosure thus contains a sterile atmosphere in excess pressure with respect to the immediate external environment of the filling enclosure. This guarantees that no contaminating element will be sucked in from the outside through interstices in the enclosure or even through the passage windows of the receptacles.
  • the forming station in a sterile enclosure closed by walls, called a blowing enclosure, which is decontaminated and which contains a sterile atmosphere.
  • the interior of the blowing enclosure is therefore supplied with sterile air, and the sterile atmosphere is maintained at an overpressure relative to the outside of the blowing enclosure.
  • the blowing chamber has an internal pressure lower than that of the filling chamber, thus ensuring the sterility of the filling station.
  • the jets of sterile gas are directed towards the interior of the hollow bodies, through their neck, to prevent any entry of stale air and to maintain a sterile atmosphere there.
  • Such a device makes it possible to avoid contamination of the neck and of the interior of the hollow body during its movement. It is thus no longer necessary to maintain a perfectly sterile atmosphere in the blowing chamber.
  • the forming station is generally in the form of a rotating carousel carrying forming stations at its periphery.
  • the very rapid rotation of the carousel causes very significant air circulation.
  • Laminar jets of sterile air are exposed to this mixing. They must be sufficiently powerful so that the flow remains laminar up to the neck of the hollow bodies.
  • the production of sterile gas curtains therefore requires a large flow of sterile gas under pressure, which consumes a lot of energy.
  • the laminar flow of the air jets emitted by the nozzles very quickly becomes turbulent after their passage along the necks of the hollow bodies.
  • the sterile gas stream disperses and mixes with ambient air. As a result, the exterior of the body of the receptacles is even more exposed to the risks of contamination.
  • the invention proposes an installation for mass production of containers by forming preforms of thermoplastic material, the preforms and the containers being denoted indifferently by the terms "hollow body", the manufacturing installation comprising:
  • a device for sterilizing the preforms which is arranged upstream of the forming station according to the direction of movement of the hollow bodies;
  • At least one source of emission of a flow of sterile gas which bathes the hollow bodies along their transfer paths characterized in that at least one transfer path is arranged in a transfer zone which is separated from a forming zone containing the forming station by a partition wall, said partition wall having at least one passage opening for hollow body.
  • the first transfer path of the preforms and the second transfer path of the containers are arranged in the transfer zone which is separated from the forming zone by said partition wall, said partition wall comprising an opening for the passage of the preforms and a opening for passage of receptacles;
  • the filling station is enclosed in a closed sterile enclosure, called a filling enclosure, the heating station and the forming station being arranged outside the filling enclosure, the filling enclosure comprising a window d 'entry of the containers coming directly from the transfer zone, a first flow of sterile gas leaving the filling chamber through the inlet window under the effect of a pressure difference between the filling chamber and the zoned transfer, the container transport device transporting the containers to the inlet window of the filling chamber;
  • the manufacturing installation comprises a second closed sterile enclosure, called a transfer enclosure, a delimiting wall of which is formed by said separation wall, the transfer enclosure enclosing the transfer zone, the forming station being arranged at the 'outside the transfer chamber in the forming zone which has a pressure lower than the internal pressure of the transfer chamber, the internal pressure of the transfer chamber being lower than that of the filling chamber and the inlet window of the filling chamber opening directly into the transfer chamber;
  • the container transfer path and the preform transfer path are arranged generally in alignment with the first sterile gas flow coming from the filling chamber, the preforms and the containers moving countercurrent to said first sterile gas flow ;
  • the container transport device comprises at least one downstream rotary transfer wheel which allows the containers to be conveyed from inside the forming zone to the transfer zone via the container passage opening, the downstream wheel transfer device comprising at its periphery individual container holding members, a central part of the downstream transfer wheel being separated from the transfer zone by a casing comprising a passage groove for the holding members;
  • the retaining members of the downstream transfer wheel grip each container directly in a mold of the forming station;
  • the device for transporting the preforms comprises at least one upstream rotary transfer wheel which allows the preforms to be conveyed from the inside of the transfer zone to the inside of the forming zone via the opening for the passage of the preforms , the upstream transfer wheel comprising at its periphery individual preform holding members, a central part of the upstream transfer wheel being separated from the inside of the transfer zone by a casing comprising a passage groove for the holding members ;
  • the retaining members of the upstream transfer wheel deposit each preform directly in a mold of the forming station;
  • the heating station is arranged inside a third enclosure, called a heating enclosure, the internal pressure of which is lower than that of the transfer enclosure, the heating enclosure opening directly into the transfer enclosure by a passage of preforms, the passage of preforms being arranged substantially opposite the container inlet window in the direction of the first flow of sterile gas;
  • the transfer enclosure is supplied directly with sterile gas by a second laminar flow of sterile gas which is directed vertically towards a neck of the hollow bodies.
  • FIG. 1 is a top view which schematically represents an installation for manufacturing containers produced according to the teachings of the invention
  • FIG. 2 is an axial sectional view which shows a preform capable of being taken up by the manufacturing installation of FIG. 1;
  • Figure 3 is an axial sectional view which shows a container obtained from a preform by forming in a forming station of the installation of Figure 1;
  • Figure 4 is an axial sectional view along the sectional plane 4-4 of Figure 1 which shows a preform received in a blowing station of the forming station;
  • FIG. 5 is a top view on a larger scale of FIG. 1 which shows in more detail the devices for conveying the preforms and the containers;
  • FIG. 6 is a perspective view which shows a partition wall seen from the inside of a transfer enclosure of the installation of FIG. 1;
  • Figure 7 is a sectional view along the sectional plane 7-7 of Figure 1 which shows a container transported in the transfer enclosure and exposed to a flow of sterile laminar gas from a ceiling of the transfer enclosure.
  • the term “enclosure” is defined as being a space physically closed by walls.
  • FIG. 1 schematically shows an installation 10 for mass production of containers 12B made of thermoplastic material from preforms 12A.
  • the terms “hollow body” will be used to denote indifferently a preform 12A, a finished container 12B, or a preform being formed.
  • the containers 12B are here bottles.
  • the thermoplastic material is here formed by polyethylene terephthalate, hereinafter referred to by its acronym “PET”.
  • FIG. 2 shows an example of a preform 12A and in FIG. 3 an example of a container 12B obtained from said preform 12A.
  • a hollow body is made of a thermoplastic material, here of polyethylene terephthalate (PET). It has a main axis "Z1" shown vertically in Figures 2 and 3. It comprises a body 14 having a closed axial end, shown at the bottom in Figures 2 and 3. The body 14 opens through its opposite end, shown at the top in the figures. 2 and 3, in an open neck 16.
  • the neck 16 has a tubular shape, the main axis of which defines the main axis "Z1" of the hollow body.
  • the container 12B formed from the preform 12A comprises a neck 16 identical to that of the preform 12A but a larger body 14 formed by stretch-blow molding, in particular by biaxial stretching, of the body 14 of the preform 12A.
  • the body 14 of the preform 12A here has an axisymmetric shape of an elongated tube along the main axis, substantially of the same diameter as the neck 16.
  • the body 14 has a diameter smaller than that of the neck 16. .
  • the body 14 of the container 12B also has an axisymmetric shape. However, the body 14 is here much larger than the body 14 of the preform 12A from which it originates. The body 14 of the container 12B has in particular a height much greater than that of the body 14 of the preform 12A.
  • the body 14 of the container 12B is for example two to five times higher than the body 14 of the preform 12A.
  • the neck 16 of the preform also includes an annular flange 18 which projects radially.
  • the hollow bodies first in the form of preforms 12A and then in the form of containers 12B, move, here constantly, in a line through the manufacturing installation 10 along a production path "T" indicated by a line. fat arrowed in Figure 1.
  • the hollow bodies are constantly maintained by individual holding members throughout the journey, each hollow body being transmitted from an individual holding member of a transport device to an individual holding member d 'a following transport device.
  • the installation 10 comprises a station 20 for heating the preforms 12A.
  • the heating station 20 is formed by a tunnel in which are arranged heating means 22 emitting heating electromagnetic radiation, for example infrared radiation, such as halogen lamps or laser emitters.
  • a means 24 for conveying the preforms 12A is arranged so as to make them scroll along the heating means from an inlet to an outlet of the tunnel. The direction of travel of the hollow bodies is indicated by the arrows in FIG. 1.
  • the conveying means 24 is for example formed by a closed chain which comprises individual holding members here formed by mandrels for gripping the preforms 12A by their necks. 16.
  • the invention is also applicable to a conveying means which comprises independent shuttles which move along a rail.
  • a conveying means which comprises independent shuttles which move along a rail.
  • Each shuttle forms for example with the rail a linear electric motor.
  • Each shuttle carries an individual holding member.
  • the body 14 of the preforms 12A is made malleable by heating beyond a glass transition temperature sufficient for their forming, while the neck 16 is maintained at a temperature sufficiently low to preserve its original form.
  • the installation 10 also includes a station 26 for forming the containers 12B from the preforms 12A thus heated.
  • the forming station 26 is arranged downstream from the heating station 20 with reference to the direction of movement of the hollow bodies in the installation 10 along their production path "T".
  • the forming station 26 here comprises a carousel 28 carrying a plurality of forming stations 30.
  • the carousel 28 is mounted to rotate around a central "Z2" axis in the direction indicated by the arrow "F" in FIG. 1.
  • Each forming station 30 is thus capable of moving around the axis "Z2" of the machine. carousel 28 between a point 32 for loading the hot preforms 12A and a point 34 for unloading the containers 12B obtained from said preforms 12A before resuming a new cycle.
  • each forming station 30 includes a mold 36 which defines a mold cavity 38.
  • the mold 36 is generally made in two or three parts movable with respect to one another to allow a hot preform 12A to be introduced into the molding cavity 38, and to allow the container 12B obtained afterwards to be removed from the mold 36. forming of said preform 12A in the mold 36.
  • the mold parts 36 When the mold parts 36 are assembled, as shown in FIG. 4, the mold 36 has a generally planar upper face 40 which is crossed by an orifice 42 for the passage of axis "Z3 "of vertical orientation which opens into the cavity 38.
  • the preform 12A is received in the cavity 38, its neck 16 projects above the upper face 40 of the mold 36, the flange 18 resting on the upper face 40 of the mold 36.
  • Each forming station 30 also comprises a device 44 for injecting a forming fluid under pressure into the hollow body 12 received in the mold 36.
  • a forming fluid is a sterile gas such as air.
  • the pressure of the forming fluid is for example of the order of 40 bars.
  • the injection device 44 is intended to give the hollow body its final container shape 12B by pressing the malleable wall of the body 14 of the preform 12A against the walls of the molding cavity 38 by injection of the forming fluid under pressure by the neck 16 of the hollow body 12.
  • the injection device 44 also comprises a movable nozzle 46.
  • the movable nozzle 46 is in the form of a tubular supply line for forming fluid with the main axis "Z3".
  • the axis "Z3" of the nozzle coincides with the main axis "Z1" of the preform 12A received in the mold 36.
  • the movable nozzle 46 has a bell-shaped lower end which covers the neck 16 of the hollow body, resting in a sealed manner on the upper face 40 of the mold 36.
  • the sealing is here achieved by means of an annular seal 48. carried by a lower end edge of the bell.
  • the mobile nozzle 46 is controlled to slide between an active position, as shown in solid lines in FIG. 4, in which it covers the neck 16 of the hollow body in a sealed manner and an inactive position, as shown in broken lines in FIG. 4 , in which it is arranged at a distance above the mold 36 so as to allow the lateral displacement of the neck 16, to allow the withdrawal of a finished container 12B and then to allow the introduction of a new hot preform 12A.
  • the installation 10 also includes a station 50 for filling the containers 12B thus formed by the forming station 26.
  • the filling station 50 comprises a filling wheel 52 mounted to rotate about a vertical "Z4" axis.
  • the filling wheel 52 allows the containers 12B to be transported along an arcuate path along which they are filled with their final contents by filling means, such as valves, which will not be described later. .
  • the filling station 50 is enclosed in a first enclosure, called the filling enclosure 54.
  • the forming station 26 and the heating station 20 are arranged outside the filling chamber 54.
  • the filling enclosure 54 may also also contain a station 55 for capping the receptacles.
  • the filling enclosure 54 is delimited by walls in all directions. It is here delimited longitudinally towards the rear by a wall 56 which has an inlet window 58 for the receptacles 12B coming from the forming station 26.
  • the filling enclosure 54 has here in an opposite wall a window 60 for the outlet of the filled and, optionally corked containers 12B.
  • the filling enclosure 54 closes an atmosphere of sterile gas having an overpressure with respect to the atmosphere surrounding the filling enclosure 54 on all sides. This makes it possible to guarantee that no contaminating element is liable to be sucked in by a gap present in a wall of the filling chamber 54 or else by the inlet window 58 or by the outlet window 60.
  • the pressure in the filling chamber 54 is regulated by injecting sterile gas with a flow rate controlled by means, not shown, which are well known.
  • the sterile gas is here formed by air sterilized by various known means, in particular by filtration and / or by exposure to decontaminating chemical agents and / or by exposure to electromagnetic radiation.
  • a first flow "G1" of sterile gas leaves the chamber 54 permanently. filling through the entry window 58.
  • the manufacturing installation 10 also comprises a device 62 for transporting preforms 12A for transferring the hot preforms 12A along a first transfer path from an outlet of the heating station 20 to the loading point 32 of the station. 26 forming.
  • the manufacturing plant 10 includes a container transport device 64 12B for transferring the containers 12B along a second transfer path from the unloading point 34 of the forming station 26 to the window 58. inlet of the filling chamber 54.
  • the device 62 for transporting the preforms 12A here comprises an upstream transfer wheel 66 rotating about a vertical “Z5” axis.
  • the upstream transfer wheel 66 comprises at its periphery members 68 for individually holding preforms 12A.
  • the retaining members 68 are here formed by clamps which are arranged at the end of the support arm 70.
  • the upstream transfer wheel 66 is arranged and designed so that its holding members 68 deposit each preform directly in an associated mold 36 of the forming station 26.
  • the trajectory of the retaining members 68 is for this purpose tangent with the circular trajectory of the molds 36 at the point 32 for loading the preforms 12A.
  • the different rotating elements of the manufacturing plant 10 are synchronized.
  • the support arms 70 are here mounted to pivot around a vertical axis on the upstream wheel 66 in order to be able to modify the pitch between two preforms 12A, in particular when the pitch between two consecutive mandrels of the heating station 20 is different from the pitch between two. 36 consecutive molds from the forming station 26.
  • the device 62 for transporting the preforms comprises only the upstream transfer wheel 66 which grasps the hot preforms 12A directly in the heating station 20.
  • the device 62 for transporting the preforms 12A comprises, in addition to the upstream transfer wheel 66, one or more other transport wheels, for example notched wheels, which make it possible to transport the hot preforms 12A from the heating station. up to the upstream transfer wheel 66.
  • the device 64 for transporting the containers 12B here comprises a downstream transfer wheel 72 rotating about a vertical "Z6" axis.
  • the downstream transfer wheel 72 comprises at its periphery members 74 for individually holding containers 12B.
  • the retaining members 74 are here formed by clamps which are arranged at the end of the support arm 76.
  • the downstream transfer wheel 72 is arranged and designed so that its retaining members 74 grip each container 12B directly in an associated mold 36 of the forming station 26.
  • the trajectory of the retaining members 74 is for this purpose tangent with the circular trajectory of the molds 36 at the point 34 of unloading of the containers 12B.
  • the support arms 76 are here mounted to pivot around a vertical axis on the downstream wheel 72 in order to be able to modify the pitch between two containers 12B, in particular when the pitch between two consecutive molds 36 of the forming station 26 is different from the pitch between two consecutive container holding members of the filling station 50.
  • the container transport device 64 comprises, in addition to the downstream transfer wheel 72, another transport wheel 78 which allows the containers 12B to be transported from the downstream transfer wheel 72 to to a transport wheel 80 located inside the filling chamber 54.
  • the transport wheel 78 comprises at its periphery members 82 for individual retaining of containers 12B which are here formed by grippers.
  • the clamps forming the members 68 for holding the upstream transfer wheel 66 here grip the preforms 12A by their neck 16 above the flange 18 in order to be able to directly deposit the preforms 12A. bearing by its collar 18 on the upper face 40 of the mold 36 when the latter is closed at the loading point 32.
  • the grippers forming the members 74 for holding the downstream transfer wheel 72 here grip the containers 12B by their neck 16 above the flange 18 in order to be able to grip the containers 12B by their neck 16 before opening the mold 36 at the bottom. point 32 of loading.
  • the manufacturing installation 10 further comprises a device 102 for sterilizing the interior of the preforms 12A which is arranged upstream of the forming station 26 according to the direction of movement of the preforms 12A along the production path "T".
  • a decontamination agent such as hydrogen peroxide (H202)
  • H202 hydrogen peroxide
  • the exterior of the preforms 12A is also exposed to an atmosphere impregnated with the decontamination agent.
  • a decontamination agent is more effective when it is heated.
  • the sterilization device 102 is here arranged upstream of the outlet of the heating station 20.
  • the decontamination agent is heated by the heating means 22 of the heating station to enable it to achieve high efficiency.
  • the sterilization device 102 is more precisely arranged upstream of the heating station 20.
  • the sterilization device 102 is arranged in the heating station 20.
  • the sterilization device 102 is arranged downstream of the oven.
  • the decontamination agent is then heated directly by the heat stored in the preform 12A.
  • This sterilization device 102 can optionally be supplemented by other decontamination devices (not shown), for example by exposing the preforms to ultraviolet radiation.
  • the installation thus comprises a source of emission of a flow of sterile gas which bathes the transfer path.
  • the source here is formed:
  • the first stream “G1” of sterile gas is introduced into the filling chamber 54 which has been sterilized beforehand.
  • the first stream “G1” of sterile gas is more particularly obtained by air filtration by high efficiency air filters which are capable of stopping particles having dimensions of the order of a micron, for example a "ULPA filter. ".
  • the air is introduced into the filling chamber 54 via sterile pipes.
  • the first stream “G1” of sterile gas remains sterile.
  • the second stream "G2" of sterile gas is introduced directly towards the preform transfer path 12A, that is to say without passing through another enclosure.
  • the second stream “G2" of sterile gas is more particularly obtained by air filtration by high efficiency air filters which are capable of stopping particles having dimensions of the order of a micron, for example a "ULPA filter. ". After filtration, the air is directed to the preforms via sterile pipes.
  • the transfer path of the containers 12B and / or the transfer path of the preforms 12A is arranged in a transfer zone 83 which is separated from a zone.
  • the partition 87 of separation extends vertically. It has sufficient dimensions to prevent the flow of sterile gas directed on the containers 12B and / or on the preforms 12A along their transfer path from being disturbed by the air mixing caused by the rotation of the carousel 28 of the forming station 26.
  • the transfer path of the containers 12B is arranged in the transfer area 83.
  • the partition 87 comprises an opening 88 for the passage of the containers 12B from the forming zone 86 to the transfer zone 83.
  • the downstream transfer wheel 72 thus makes it possible to convey the containers 12B from the forming zone 86 to the interior of the transfer zone 83 via the opening 88 for the passage of the containers 12B.
  • the opening 88 for the passage of the containers 12B has dimensions adapted to the containers 12B, that is to say dimensions which are sufficient for the passage of the largest container 12B likely to be produced by the manufacturing installation 10. , but sufficiently restricted to limit the passage of air between the transfer zone 83 and the forming zone 86.
  • a central part of the downstream transfer wheel 72 is separated from the interior of the transfer zone 83 by a casing 90 comprising a horizontal groove 92 for passage of the retaining members 74.
  • the term "central part” should be understood as being a cylindrical space extending from a plane located above the retaining members 74 to a plane located below the retaining members 74 which notably contains a shaft. drive, means for guiding the rotation of the downstream transfer wheel 72, as well as any other component of the downstream transfer wheel 72.
  • the casing 90 here forms part of the partition 87 of separation, so that the central part of the downstream wheel 72 is arranged inside the forming zone 86.
  • the transport wheel 78 is here entirely arranged inside the transfer zone 83 to limit the number of openings towards the forming zone 86.
  • the transfer path of the preforms 12A is also arranged inside the transfer zone 83.
  • the partition 87 comprises an opening 93 for the passage of the preforms 12A from a chamber 84 for transfer to the forming zone 86.
  • the opening 93 for the passage of the preforms 12A has dimensions adapted to the preforms 12B, that is to say dimensions which are sufficient for the passage of the most voluminous preform 12A likely to be supported by the installation. 10 of manufacture, but sufficiently restricted to limit the passage of air between the transfer zone 83 and the forming zone 86.
  • the opening 88 for the passage of the containers 12B and the opening 93 for the passage of the preforms 12A are here distinct and separated by a portion of the partition 87 to limit the openings towards the forming zone 86.
  • the upstream transfer wheel 66 makes it possible to convey the preforms 12A from the inside of the transfer zone 83 to the forming zone 86 via the opening 93 for the passage of the preforms 12A.
  • the central part of the upstream transfer wheel 66 is separated from the interior of the transfer zone 83 by a casing 94 comprising a horizontal groove 96 of passage of the retaining members 68. Only the retaining members 68 and a portion of their support arm 70 protrude inside the transfer zone 83 through the groove 96 on a portion of their circular path which corresponds to the transfer path of the preforms 12A.
  • the retaining members 68 perform the remainder of their circular path outside the transfer zone 83.
  • the casing 94 here forms part of the partition 87 of separation, so that the central part of the upstream wheel 66 is arranged inside the forming zone 86.
  • the manufacturing installation 10 here comprises a second enclosure, called enclosure 84.
  • transfer enclosing the transfer area 83.
  • the transfer enclosure 84 contains a sterile atmosphere.
  • the containers 12B are protected from any contamination by the sterile atmosphere of the transfer enclosure 84 along their transfer path.
  • the transfer zone 83 is here separated from the forming zone 86 by said partition 87 which thus forms a boundary wall of the transfer chamber 84.
  • the forming station 26 is thus arranged outside the transfer enclosure 84.
  • the forming zone 86 has an atmosphere the pressure of which is lower than the internal pressure of the transfer chamber 84.
  • the transfer enclosure 84 is generally delimited in a transverse direction by the partition 87 of separation, on the one hand, and by an opposite partition 89, on the other hand. It is also delimited longitudinally by an end partition 91 which is here adjoining with the wall 56 of the enclosure, and an opposite partition 97, which is here adjacent to the heating station 20, as shown in FIG. , the heating station 20 is outside the transfer enclosure 84.
  • the transfer enclosure 84 is delimited vertically by a floor 95 and by a ceiling 101.
  • the inlet window 58 of the filling enclosure 54 opens directly into the transfer enclosure 84.
  • the transport wheel 78 of the device 64 for transferring the containers 12B makes it possible to convey the containers directly to the entry window 58.
  • the internal pressure of the transfer chamber 84 is lower than that of the filling chamber 54.
  • the first stream “G1” of sterile gas exiting through the inlet window 58 penetrates directly inside the transfer chamber 84.
  • the transfer enclosure 84 is thus supplied with sterile gas at least in part by the filling enclosure 54.
  • the containers 12B are thus exposed to this first flow "G1" of sterile gas along their transfer path.
  • the internal pressure of the transfer chamber 84 is kept higher than that of the forming zone 86. As a result, at least part of the first stream “G1” of sterile gas leaves the transfer enclosure 84 towards the forming zone 86 through the opening 88 for passage of the containers 12B and through the groove 92.
  • the transfer zone 83 also comprises the transfer path of the preforms 12A, as is the case here, the preforms 12A are also received inside the transfer enclosure 84 along their transfer path.
  • the container transfer path 12B and the preform transfer path 12A are arranged generally in alignment with the first stream "G1" of sterile gas coming from the filling chamber 54, the preforms 12A and the containers 12B moving at the same time. counter-current of said first stream "G1" of sterile gas.
  • Such an arrangement has the advantage of reducing the footprint of the manufacturing installation 10, on the one hand, and the advantage of being able to expose the preforms 12A to said first stream "G1" of sterile gas, on the other hand. go.
  • the heating station 20 is arranged inside a third enclosure, called the heating enclosure 98, the internal pressure of which is lower than that of the transfer enclosure 84.
  • Said enclosure 98 more particularly delimits the tunnel in which the preforms 12A circulate.
  • the heating enclosure 98 opens directly into the transfer enclosure 84 via a passage 100 for preforms which is formed in a wall of the transfer enclosure 84.
  • the passage 100 of preforms is arranged substantially opposite the receptacle inlet window 58 in the direction of the first stream “G1” of sterile gas at said inlet window 58. Due to the pressure difference between the transfer enclosure 84 and the heating enclosure 98, part of the first stream "G1" of sterile gas leaves the transfer enclosure 84 through the passage 100 of preforms.
  • the transfer chamber 84 When the flow rate of the first stream “G1" of sterile gas coming from the filling chamber 54 is insufficient to maintain the necessary overpressure in the transfer chamber 84, provision is made for the transfer chamber 84 to be directly supplied with sterile gas. by at least a second source to complete the first stream “G1” of sterile gas coming from the filling chamber 54.
  • the transfer enclosure 84 is here supplied directly with sterile gas by a second laminar flow "G2" of sterile gas emitted by a device 104.
  • the second flow “G2" of sterile gas falls from arranged nozzles. on the ceiling 101 of the transfer enclosure 84.
  • the second stream “G2" of sterile gas is directed vertically downwards towards the neck 16 of the preforms 12A and of the containers 12B.
  • the sterile gas is here formed by sterile air.
  • the presence of the transfer enclosure 84 makes it possible to recover the first stream “G1” of sterile gas coming from the filling enclosure 54. This makes it possible to further reduce the flow rate of the second laminar flow "G2" necessary to maintain the containers 12B and the preforms 12A in a sterile environment during their transfer path.
  • the preforms 12A are first of all decontaminated by the sterilization device 102 before entering the heating station 20 where their body is heated to the temperature necessary for their forming.
  • the preforms 12A thus heated are directly taken over by the upstream transfer wheel 66 of the first transport device 62.
  • the preforms 12A are thus transported along their transfer path inside the transfer enclosure 84. They leave by passing through the outlet opening 93. As soon as they enter the area
  • the hollow bodies first in the form of a preform 12A and then in the form of a container 12B, are protected from external contaminating elements by the bell of the nozzle 46 and by the mold 36. Afterwards When they are formed, the containers 12B are gripped by the members 74 for holding the downstream transfer wheel 72 so as to be rapidly transported inside the transfer chamber 84 through the inlet opening 88. They are transported along their transfer path to the inlet window 58 of the filling enclosure 54 in which they are supported by the transport wheel 80.
  • the preforms 12A and the containers 12B are exposed to the first flow "G1" of sterile gas and, where appropriate, to the second laminar flow “G2" of sterile gas. Due to the overpressure, the sterile gas flows naturally to the outside of the transfer enclosure 84 through the openings 88, 93, through the grooves 92, 96 and through the passage 100 of preforms.
  • the presence of the partition 87 makes it possible to protect the flow of sterile gas, whatever its origin, exposing the containers 12B and / or the preforms 12A.
  • the presence of the partition 87 makes it possible to protect the flow of sterile gas, whatever its origin, exposing the containers 12B and / or the preforms 12A.
  • the first stream "G1" sterile gas leaving the filling chamber 54 is used for maintain the containers 12B and / or the preforms 12A in a sterile atmosphere. This is made possible in particular by the presence of the transfer enclosure 84 which makes it possible to separate it from the forming station 26.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

L'invention concerne une installation (10) de fabrication en série de récipients (12B) par formage de préformes (12A) en matériau thermoplastique comportant : - une station (20) de chauffage; - une station (26) de formage; - une station (50) de remplissage; - au moins un dispositif (64) de transport des corps creux le long d'un trajet de transfert entre deux stations; caractérisé en ce qu'au moins un trajet de transfert est agencé dans une zone (83) de transfert qui est séparée d'une zone (86) de formage contenant la station (26) de formage par une cloison (87) de séparation, ladite cloison (87) de séparation comportant au moins une ouverture (88, 93) de passage des corps creux.

Description

DESCRIPTION
TITRE : "Installation de fabrication de récipients comportant une zone de transfert stérile"
Domaine technique de l'invention
L'invention concerne une installation de fabrication en série de récipients par formage de préformes en matériau thermoplastique, les préformes et les récipients étant désignés indifféremment par les termes "corps creux", l'installation de fabrication comportant :
- une station de chauffage des préformes à une température suffisante pour leur formage ;
- une station de formage des récipients par étirage-soufflage de chaque préforme dans des moules portés par un carrousel tournant ;
- une station de remplissage des récipients ;
- un dispositif de stérilisation des préformes qui est agencé en amont de la station de formage selon le sens de déplacement des corps creux ; - un dispositif de transport des préformes chaudes en file le long d'un premier trajet de transfert depuis la sortie de la station de chauffage jusqu'à un point de chargement de la station de formage
- un dispositif de transport des récipients en file le long d'un deuxième trajet de transfert des récipients depuis la station de formage vers la station de remplissage ;
- au moins une source d'émission d'un flux de gaz stérile qui baigne les corps creux le long de leurs trajets de transfert. Arrière-plan technique
L'invention est destinée à être mise en oeuvre dans une installation de fabrication de récipients en matériau thermoplastique et notamment en polyéthylène téréphtalate (PET) par formage, notamment par soufflage ou étirage-soufflage, de préformes. Une telle installation permet de produire des récipients en très grande série à des cadences très élevées.
Dans la suite de la description, on désignera par les termes "corps creux" indifféremment les préformes ou les récipients formés à partir des préformes. Les préformes sont généralement fabriquées par injection en un premier endroit et sont moulées par soufflage à la forme définitive du récipient en un second endroit sur l'installation de fabrication. Une telle technologie permet de procéder à l'opération de moulage par soufflage le plus près possible du lieu de remplissage, l'opération d'injection pouvant être effectuée en n'importe quel endroit. En effet, il est relativement aisé et peu coûteux de transporter des préformes de taille réduite, tandis que transporter des récipients après soufflage présente l'inconvénient d'être économiquement peu rentable du fait de leur volume très important.
Pour permettre son formage, le corps de la préforme est chauffé au-delà d'une température de transition vitreuse permettant de rendre la paroi du corps malléable en réduisant sensiblement sa limite d'élasticité. Au contraire, le col est maintenu à une température inférieure à la température de transition vitreuse pour éviter sa déformation. A cet effet, l'installation de fabrication comporte une station de chauffage qui permet de chauffer le corps des préformes à la température requise pour réaliser l'étape de formage.
Les préformes ainsi chauffées sont ensuite acheminées jusqu'à une station de formage de l'installation de fabrication. Les préformes chaudes sont déposées automatiquement dans des cavités de moules par des organes de préhension tels que des pinces. Puis, un fluide de formage sous pression est injecté dans les préformes pour plaquer la paroi de la préforme contre les parois de la cavité pour conformer la préforme en récipient final. Cette opération de formage s'accompagne généralement d'une opération d'étirage consistant à introduire une tige d'élongation dans la préforme par son corps afin d'étirer axialement la paroi de la préforme.
Les récipients sont généralement remplis juste après leur formage. La station de remplissage et la station de soufflage sont juxtaposées pour obtenir une installation de production qui soit compacte et réalise intégralement le processus de production des récipients, jusqu'à l'obtention de récipients remplis.
Dans une telle installation de production, on cherche à réduire par tous moyens les risques de contamination des récipients, lesquels récipients sont de surcroît susceptibles d'être remplis avec des produits plus ou moins sensibles à de tels risques.
Par conséquent, il est connu de mettre en oeuvre différentes actions aux seules fins de contrôler et de maîtriser la qualité microbiologique de l'environnement de production, en particulier l’élimination des agents pathogènes, tels que les germes, spores, bactéries, etc. qui sont susceptibles d'affecter le produit contenu dans les récipients en le rendant notamment impropre à la consommation.
Pour ce faire, les actions ne visent pas exclusivement la décontamination des récipients mais également celles des préformes à partir desquelles ils sont fabriqués ainsi que celle de l'installation elle-même en général.
Dans le processus de production, l'opération de remplissage du récipient est usuellement reconnue comme étant la plus sensible au regard des risques de contamination. Avant de transporter un récipient jusqu'à la station de remplissage, le récipient doit donc être stérilisé.
Différentes méthodes de stérilisation des récipients sont connues, par exemple, en pulvérisant un agent stérilisant tel que du peroxyde d'hydrogène (H202) dans un récipient ou dans une préforme avant son entrée dans la station de remplissage.
Il est ainsi connu de pulvériser l'agent stérilisant tel que le peroxyde d'hydrogène sur les préformes en amont de la station de formage. Un agent stérilisant tel que le peroxyde d'hydrogène est particulièrement efficace lorsqu'il est chauffé. A cet égard, il a déjà été proposé de pulvériser un tel agent stérilisant dans les préformes en amont de la station de chauffage ou encore dans la station de chauffage pendant le chauffage des préformes. Afin de de ne pas compromettre la stérilisation des récipients, dans la station de formage, le formage des récipients est réalisé par soufflage d'un gaz stérile, tel que de l'air, dans les préformes.
Les récipients introduits dans la station de remplissage ne sont toutefois que l'un des principaux vecteurs de contamination.
En effet, des agents pathogènes dès lors qu'ils sont présents dans l'environnement direct des récipients, depuis l'air jusqu'aux composants de l'installation, sont notamment susceptibles de contaminer le volume intérieur du récipient.
C'est la raison pour laquelle, outre les traitements de stérilisation ou d'aseptisation visant directement le produit destiné à être introduit dans le récipient et le récipient lui-même, on procède également à une décontamination de la station de remplissage par voie chimique, par exemple par pulvérisation de solutions stérilisantes comme de l'hydroxyde de sodium (NaOH) ou du peroxyde d'hydrogène (H202).
Pour maintenir la station de remplissage dans une atmosphère stérile et éviter qu'elle ne soit rapidement contaminée à nouveau, il est connu d'agencer la station de remplissage à l'intérieur d'une enceinte stérile fermée par des parois, dite enceinte de remplissage, dans laquelle l'atmosphère est maintenue stérile par injection d'air stérile. L'enceinte de remplissage contient ainsi une atmosphère stérile en surpression par rapport à l'environnement extérieur immédiat de l'enceinte de remplissage. Ceci garantie qu'aucun élément contaminant ne sera aspiré depuis l'extérieur par des interstices de l'enceinte ou encore par les fenêtres de passage des récipients.
Il faut cependant pouvoir garantir que le corps creux demeure stérile jusqu'à son entrée dans l'enceinte de remplissage.
Ainsi, il est connu d'agencer la station de formage dans une enceinte stérile fermée par des parois, dite enceinte de soufflage, qui est décontaminée et qui renferme une atmosphère stérile. L'intérieur de l'enceinte de soufflage est donc alimenté en air stérile, et l'atmosphère stérile est maintenue en surpression par rapport à l'extérieur de l'enceinte de soufflage. L'enceinte de soufflage présente une pression interne inférieure à celle de l'enceinte de remplissage, ainsi on garantit la stérilité de la station de remplissage.
Il est cependant très coûteux de maintenir une atmosphère stérile à l'intérieur d'une enceinte de soufflage d'un tel volume. De plus, une enceinte de soufflage aussi volumineuse comporte un grand nombre de foyers potentiels de contamination, de tel manière qu'il est extrêmement compliqué de garantir la stérilité de l'atmosphère interne de l'enceinte de soufflage au-delà de quelques jours, voire quelques heures.
Pour résoudre ce problème on a déjà proposé de protéger l'intérieur des corps creux de tout risque de contamination uniquement pendant le transfert des corps creux d'une station à l'autre. En effet, pendant leur transfert, le col des corps creux est ouvert et l'intérieur des corps creux est en conséquence exposé à d'éventuels risques de contamination. Au contraire, lorsque les corps creux sont chargés dans la station de formage, ils sont peu exposés à des risques de contamination car leur col est recouvert de manière étanche par une tuyère de soufflage de gaz stérile.
Par ailleurs, il est aisé de maintenir une atmosphère stérile contrôlée à l'intérieur de la station de chauffage du fait de son volume restreint.
Pour protéger l'intérieur des corps creux pendant leur transfert, il est connu de souffler un flux laminaire de gaz stérile formant un rideau le long du trajet des corps creux entre les stations. Il a ainsi été proposé d'agencer une première rampe de buses d'émission de jets de gaz stérile au-dessus du trajet des préformes entre la sortie de la station de chauffage et l'entrée dans la station de formage ainsi qu'une deuxième rampe de buses d'émission de jets de gaz stérile au-dessus du trajet des récipients entre la sortie de la station de formage et l'entrée de la station de remplissage.
Les jets de gaz stérile sont dirigés vers l'intérieur des corps creux, à travers leur col, pour empêcher toute entrée d'air vicié et y maintenir une atmosphère stérile.
Un tel dispositif permet d'éviter la contamination du col et de l'intérieur du corps creux pendant son déplacement. Il n'est ainsi plus nécessaire de maintenir une atmosphère parfaitement stérile dans l'enceinte de soufflage.
Cependant, une telle solution présente l'inconvénient de ne pas protéger efficacement l'extérieur du corps des corps creux contre une contamination. Or, l'apport d'élément contaminant à l'intérieur de l'enceinte de remplissage peut, à terme, aboutir au développement de foyers de contamination dans la station de remplissage.
La station de formage se présente généralement sous la forme d'un carrousel tournant portant des postes de formage à sa périphérie. La rotation très rapide du carrousel provoque un brassage de l'air très important.
Les jets laminaires d'air stérile sont exposés à ce brassage. Ils doivent être suffisamment puissants pour que l'écoulement demeure laminaire jusqu'au col des corps creux. La réalisation des rideaux de gaz stérile requiert donc un débit important de gaz stérile sous pression, ce qui consomme beaucoup d'énergie. En outre, l'écoulement laminaire des jets d'air émis par les buses devient très rapidement turbulent après leur passage le long des cols des corps creux. Le flux de gaz stérile se disperse et se mélange avec l'air ambiant. De ce fait, l'extérieur du corps des récipients est encore plus exposé aux risques de contamination.
Résumé de l'invention
L'invention propose une installation de fabrication en série de récipients par formage de préformes en matériau thermoplastique, les préformes et les récipients étant désignés indifféremment par les termes "corps creux", l'installation de fabrication comportant :
- une station de chauffage des préformes à une température suffisante pour leur formage ;
- une station de formage des récipients par étirage-soufflage de chaque préforme dans des moules portés par un carrousel tournant ;
- une station de remplissage des récipients ;
- un dispositif de stérilisation des préformes qui est agencé en amont de la station de formage selon le sens de déplacement des corps creux ;
- un dispositif de transport des préformes chaudes en file le long d'un premier trajet de transfert depuis la sortie de la station de chauffage jusqu'à un point de chargement de la station de formage
- un dispositif de transport des récipients en file le long d'un deuxième trajet de transfert des récipients depuis la station de formage vers la station de remplissage ;
- au moins une source d'émission d'un flux de gaz stérile qui baigne les corps creux le long de leurs trajets de transfert ; caractérisé en ce qu'au moins un trajet de transfert est agencé dans une zone de transfert qui est séparée d'une zone de formage contenant la station de formage par une cloison de séparation, ladite cloison de séparation comportant au moins une ouverture de passage des corps creux.
Selon d'autres caractéristiques de l'invention :
- le premier trajet de transfert des préformes et le deuxième trajet de transfert des récipients sont agencés dans la zone de transfert qui est séparée de la zone de formage par ladite cloison de séparation, ladite cloison de séparation comportant une ouverture de passage des préformes et une ouverture de passage des récipients ;
- la station de remplissage est enfermée dans une enceinte stérile fermée, dite enceinte de remplissage, la station de chauffage et de la station de formage étant agencées à l'extérieur de l'enceinte de remplissage, l'enceinte de remplissage comportant une fenêtre d'entrée des récipients venant directement de la zone de transfert, un premier flux de gaz stérile sortant de l'enceinte de remplissage à travers la fenêtre d'entrée sous l'effet d'une différence de pression entre l'enceinte de remplissage et la zone de transfert, le dispositif de transport des récipients transportant les récipients jusqu'à la fenêtre d'entrée de l'enceinte de remplissage ;
- l'installation de fabrication comporte une deuxième enceinte stérile fermée, dite enceinte de transfert, dont une paroi de délimitation est formée par ladite cloison de séparation, l'enceinte de transfert renfermant la zone de transfert, la station de formage étant agencée à l'extérieur de l'enceinte de transfert dans la zone de formage qui présente une pression inférieure à la pression interne de l'enceinte de transfert, la pression interne de l'enceinte de transfert étant inférieure à celle de l'enceinte de remplissage et la fenêtre d'entrée de la l'enceinte de remplissage débouchant directement dans l'enceinte de transfert ;
- le trajet de transfert des récipients et le trajet de transfert des préformes sont agencés globalement dans l'alignement du premier flux de gaz stérile venant de l'enceinte de remplissage, les préformes et les récipients se déplaçant à contrecourant dudit premier flux de gaz stérile ;
- le dispositif de transport des récipients comporte au moins une roue aval de transfert rotative qui permet d'acheminer les récipients depuis l'intérieur de la zone de formage jusque dans la zone de transfert via l'ouverture de passage des récipients, la roue aval de transfert comportant à sa périphérie des organes de maintien individuel de récipient, une partie centrale de la roue aval de transfert étant séparée de la zone de transfert par une enveloppe comportant une rainure de passage des organes de maintien ;
- les organes de maintien de la roue aval de transfert saisissent chaque récipient directement dans un moule de la station de formage ;
- le dispositif de transport des préformes comporte au moins une roue amont de transfert rotative qui permet d'acheminer les préformes depuis l'intérieur de la zone de transfert jusqu'à l'intérieur la zone de formage via l'ouverture de passage des préformes, la roue amont de transfert comportant à sa périphérie des organes de maintien individuel de préforme, une partie centrale de la roue amont de transfert étant séparée de l'intérieur de la zone de transfert par une enveloppe comportant une rainure de passage des organes de maintien ;
- les organes de maintien de la roue amont de transfert déposent chaque préforme directement dans un moule de la station de formage ;
- la station de chauffage est agencée à l'intérieur d'une troisième enceinte, dite enceinte de chauffage, dont la pression interne est inférieure à celle de l'enceinte de transfert, l'enceinte de chauffage débouchant directement dans l'enceinte de transfert par un passage de préformes, le passage de préformes étant agencé sensiblement en vis-à-vis de la fenêtre d'entrée des récipients selon le sens du premier flux de gaz stérile ; - l'enceinte de transfert est alimentée directement en gaz stérile par un deuxième flux laminaire de gaz stérile qui est dirigé verticalement vers un col des corps creux.
Brève description des figures
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la lecture de la description détaillée qui va suivre pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels :
[Fig. 1 ] La figure 1 est une vue de dessus qui représente schématiquement une installation de fabrication de récipients réalisée selon les enseignements de l'invention ;
[Fig. 2] La figure 2 est une vue en coupe axiale qui représente une préforme susceptible d'être prise en charge par l'installation de fabrication de la figure 1 ;
[Fig. 3] La figure 3 est une vue en coupe axiale qui représente un récipient obtenu à partir d'une préforme par formage dans une station de formage de l'installation de la figure 1 ;
[Fig. 4] La figure 4 est une vue en coupe axiale selon le plan de coupe 4-4 de la figure 1 qui représente une préforme reçue dans un poste de soufflage de la station de formage ;
[Fig. 5] La figure 5 est une vue de dessus à plus grande échelle de la figure 1 qui représente plus en détails des dispositifs de transport des préformes et des récipients ;
[Fig. 6] La figure 6 est une vue en perspective qui représente une cloison de séparation vue depuis l'intérieur d'une enceinte de transfert de l'installation de la figure 1 ;
[Fig. 7] La figure 7 est une vue en coupe selon le plan de coupe 7-7 de la figure 1 qui représente un récipient transporté dans l'enceinte de transfert et exposé à un flux de gaz stérile laminaire provenant d'un plafond de l'enceinte de transfert.
Description détaillée de l'invention
Dans la suite de la description, des éléments présentant une structure identique ou des fonctions analogues seront désignés par une même référence.
Dans la suite de la description, on adoptera à titre non limitatif des orientations longitudinale dirigée d'arrière en avant, verticale dirigée de bas en haut, et transversale dirigée de gauche à droite qui sont indiquées par le trièdre "L,V,T" des figures. On adoptera aussi un plan horizontal qui s'étend orthogonalement à la direction verticale.
Dans la suite de la description et dans les revendications, le terme "enceinte" est défini comme étant un espace clos physiquement par des parois.
On a représenté schématiquement à la figure 1 une installation 10 de fabrication en série de récipients 12B en matériau thermoplastique à partir de préformes 12A. Pour la suite de la description, on utilisera les termes "corps creux " pour désigner indifféremment une préforme 12A, un récipient 12B fini, ou une préforme en cours de formage. De manière non limitative, les récipients 12B sont ici des bouteilles. Le matériau thermoplastique est ici formé par du polyéthylène téréphtalate, désigné par la suite sous son acronyme "PET".
On a représenté à la figure 2 un exemple de préforme 12A et à la figure 3 un exemple de récipient 12B obtenu à partir de ladite préforme 12A. Un tel corps creux est réalisé en matériau thermoplastique, ici en polyéthylène téréphtalate (PET). Il présente un axe "Z1" principal représenté verticalement aux figures 2 et 3. Il comporte un corps 14 présentant une extrémité axiale fermée, représenté en bas aux figures 2 et 3. Le corps 14 débouche par son extrémité opposée, représentée en haut aux figures 2 et 3, dans un col 16 ouvert. Le col 16 présente une forme tubulaire dont l'axe principal définit l'axe "Z1" principal du corps creux.
Le récipient 12B formé à partir de la préforme 12A comporte un col 16 identique à celui de la préforme 12A mais un corps 14 plus volumineux formé par étirage-soufflage, notamment par étirage bi-axial, du corps 14 de la préforme 12A.
A la figure 2, le corps 14 de la préforme 12A présente ici une forme axisymétrique de tube allongé selon l'axe principal, sensiblement de même diamètre que le col 16. En variante, le corps 14 présente un diamètre inférieur à celui du col 16.
A la figure 3, le corps 14 du récipient 12B présente également une forme axisymétrique. Cependant, le corps 14 est ici beaucoup plus volumineux que le corps 14 de la préforme 12A dont il est issu. Le corps 14 du récipient 12B présente notamment une hauteur très supérieure à celle du corps 14 de la préforme 12A.
Le corps 14 du récipient 12B est par exemple deux à cinq fois plus haut que le corps 14 de la préforme 12A.
Le col 16 de la préforme comporte aussi une collerette 18 annulaire qui fait saillie radialement.
Les corps creux, d'abord sous forme de préformes 12A puis sous forme de récipients 12B, se déplacent, ici constamment, en file à travers l'installation 10 de fabrication le long d'un trajet "T" de production indiqué par un trait gras fléché à la figure 1. Les corps creux sont constamment maintenus par des organes de maintien individuels tout au long du trajet, chaque corps creux étant transmis d'un organe de maintien individuel d'un dispositif de transport à un organe de maintien individuel d'un dispositif de transport suivant.
En se reportant à la figure 1 , l'installation 10 comporte une station 20 de chauffage des préformes 12A. A titre d'exemple non limitatif, la station 20 de chauffage est formée par un tunnel dans lequel sont agencés des moyens 22 de chauffage émettant un rayonnement électromagnétique chauffant, par exemple un rayonnement infrarouge, tels que des lampes halogènes ou des émetteurs laser. Un moyen 24 de convoyage des préformes 12A est agencé de manière à les faire défiler le long des moyens de chauffage depuis une entrée jusqu'à une sortie du tunnel. Le sens de défilement des corps creux est indiqué par les flèches de la figure 1. Le moyen 24 de convoyage est par exemple formé par une chaîne fermée qui comporte des organes de maintien individuel ici formés par des mandrins de préhension des préformes 12A par leur col 16.
En variante non représentée, l'invention est aussi applicable à un moyen de convoyage qui comporte des navettes indépendantes qui se déplacent le long d'un rail. Chaque navette forme par exemple avec le rail un moteur électrique linéaire. Chaque navette porte un organe de maintien individuel.
A leur sortie de la station 20 de chauffage, le corps 14 des préformes 12A est rendu malléable par chauffage au-delà d'une température de transition vitreuse suffisante pour leur formage, tandis que le col 16 est maintenu à une température suffisamment basse pour conserver sa forme d'origine.
L'installation 10 comporte aussi une station 26 de formage des récipients 12B à partir des préformes 12A ainsi chauffées. La station 26 de formage est agencée en aval de la station 20 de chauffage en référence au sens de déplacement des corps creux dans l'installation 10 le long de leur trajet "T" de production.
La station 26 de formage comporte ici un carrousel 28 portant une pluralité de postes 30 de formage. Le carrousel 28 est monté rotatif autour d'un axe "Z2" central dans le sens indiqué par la flèche "F" de la figure 1. Chaque poste 30 de formage est ainsi susceptible de se déplacer autour de l'axe "Z2" du carrousel 28 entre un point 32 de chargement des préformes 12A chaudes et un point 34 de déchargement des récipients 12B obtenus à partir desdites préformes 12A avant de reprendre un nouveau cycle.
En se reportant à la figure 4, chaque poste 30 de formage comporte un moule 36 qui délimite une cavité 38 de moulage. Le moule 36 est généralement réalisé en deux ou trois parties mobiles l'une par rapport à l'autre pour permettre d'introduire une préforme 12A chaude dans la cavité 38 de moulage, et pour permettre de retirer du moule 36 le récipient 12B obtenu après formage de ladite préforme 12A dans le moule 36. Lorsque les parties de moule 36 sont assemblées, comme représenté à la figure 4, le moule 36 présente une face 40 supérieure globalement plane qui est traversée par un orifice 42 de passage d'axe "Z3" d'orientation verticale qui débouche dans la cavité 38. Lorsque la préforme 12A est reçue dans la cavité 38, son col 16 dépasse au-dessus de la face 40 supérieure du moule 36, la collerette 18 étant en appui sur la face 40 supérieure du moule 36.
Chaque poste 30 de formage comporte aussi un dispositif 44 d'injection d'un fluide de formage sous pression dans le corps 12 creux reçu dans le moule 36. Il s'agit ici de postes 30 de formage par étirage-soufflage. A cet égard, le fluide de formage est un gaz stérile tel que de l'air. La pression du fluide de formage est par exemple de l'ordre de 40 bars.
On comprendra cependant que l'invention est aussi applicable à d'autres types de postes de formage, notamment à des postes de formage par injection d'un liquide sous pression dans la préforme. Le dispositif 44 d'injection est destiné à conférer au corps creux sa forme de récipient 12B définitif en plaquant la paroi malléable du corps 14 de la préforme 12A contre les parois de la cavité 38 de moulage par injection du fluide de formage sous pression par le col 16 du corps 12 creux. A cet effet, le dispositif 44 d'injection comporte aussi une tuyère 46 mobile. La tuyère 46 mobile se présente sous la forme d'une conduite tubulaire d'alimentation en fluide de formage d'axe "Z3" principal. L'axe "Z3" de la tuyère coïncide avec l'axe "Z1" principal de la préforme 12A reçue dans le moule 36.
La tuyère 46 mobile présente une extrémité inférieure en forme de cloche qui vient coiffer le col 16 du corps creux en prenant appui de manière étanche sur la face 40 supérieure du moule 36. L'étanchéité est ici réalisée au moyen d'un joint 48 annulaire porté par un bord d'extrémité inférieur de la cloche.
La tuyère 46 mobile est commandé en coulissement entre une position active, comme représentée en traits pleins à la figure 4, dans laquelle elle coiffe le col 16 du corps creux de manière étanche et une position inactive, comme représentée en traits interrompus à la figure 4, dans laquelle elle est agencée à distance au-dessus du moule 36 de manière à permettre le déplacement latéral du col 16, pour permettre le retrait d'un récipient 12B fini puis pour permettre l'introduction d'une nouvelle préforme 12A chaude.
L'installation 10 comporte aussi une station 50 de remplissage des récipients 12B ainsi formés par la station 26 de formage. La station 50 de remplissage comporte une roue 52 de remplissage montée rotative autour d'un axe "Z4" vertical. La roue 52 de remplissage permet de transporter les récipients 12B le long d'un trajet en arc de cercle le long duquel elles sont remplies de leur contenu final par des moyens de remplissage, tels que des vannes, qui ne seront pas décrits par la suite.
La station 50 de remplissage est enfermée dans une première enceinte, dite enceinte 54 de remplissage. La station 26 de formage et la station 20 de chauffage sont agencées à l'extérieur de l'enceinte 54 de remplissage. Ainsi, le volume de l'enceinte 54 de remplissage est suffisamment faible pour pouvoir y maintenir une atmosphère stérile et limiter les foyers de contamination. L'enceinte 54 de remplissage peut aussi renfermer aussi une station 55 de bouchage des récipients. Ainsi, les récipients 12B sortant de l'enceinte 54 de remplissage n'ont plus besoin d'être maintenus dans des conditions stériles. L'enceinte 54 de remplissage est délimitée par des parois dans toutes les directions. Elle est ici délimitée longitudinalement vers l'arrière par une paroi 56 qui comporte une fenêtre 58 d'entrée des récipients 12B venant de la station 26 de formage. L'enceinte 54 de remplissage présente ici dans une paroi opposée une fenêtre 60 de sortie des récipients 12B remplis et, éventuellement bouchés.
L'enceinte 54 de remplissage referme une atmosphère de gaz stérile présentant une surpression par rapport à l'atmosphère entourant l'enceinte 54 de remplissage de tous côtés. Ceci permet de garantir qu'aucun élément contaminant n'est susceptible d'être aspiré par un interstice présent dans une paroi de l'enceinte 54 de remplissage ou encore par la fenêtre 58 d'entrée ou par la fenêtre 60 de sortie. La pression dans l'enceinte 54 de remplissage est régulée par injection de gaz stérile avec un débit commandé par des moyens non représentés qui sont bien connus. Le gaz stérile est ici formé par de l'air stérilisé par différents moyens connus, notamment par filtration et/ou par exposition à des agents chimiques décontaminant et/ou par exposition à des rayonnements électromagnétiques.
Du fait de la différence de pression entre l'intérieur et l'extérieur de l'enceinte 54 de remplissage, un premier flux "G1" de gaz stérile, représenté par une flèche à la figure 1 , sort en permanence de l'enceinte 54 de remplissage à travers la fenêtre 58 d'entrée.
L'installation 10 de fabrication comporte aussi un dispositif 62 de transport de préformes 12A pour transférer les préformes 12A chaudes le long d'un premier trajet de transfert depuis une sortie de la station 20 de chauffage jusqu'au point 32 de chargement de la station 26 de formage. De même, l'installation 10 de fabrication comporte un dispositif 64 de transport de récipients 12B pour transférer les récipients 12B le long d'un deuxième trajet de transfert depuis le point 34 de déchargement de la station 26 de formage jusqu'à la fenêtre 58 d'entrée de l'enceinte 54 de remplissage.
Le dispositif 62 de transport des préformes 12A comporte ici une roue 66 amont de transfert rotative autour d'un axe "Z5" vertical. La roue 66 amont de transfert comporte à sa périphérie des organes 68 de maintien individuel de préformes 12A. Comme représenté plus en détails à la figure 5, les organes 68 de maintien sont ici formés par des pinces qui sont agencées à l'extrémité de bras 70 de support.
La roue 66 amont de transfert est agencée et conçue de manière que ses organes 68 de maintien déposent chaque préforme directement dans un moule 36 associé de la station 26 de formage. La trajectoire des organes 68 de maintien est à cet effet tangente avec la trajectoire circulaire des moules 36 au point 32 de chargement des préformes 12A. En outre, les différents éléments rotatifs de l'installation 10 de fabrication sont synchronisés.
Les bras 70 de support sont ici montés pivotant autour d'un axe vertical sur la roue 66 amont pour pouvoir modifier le pas entre deux préformes 12A, notamment lorsque le pas entre deux mandrins consécutifs de la station 20 de chauffage est différent du pas entre deux moules 36 consécutifs de la station 26 de formage.
Dans le mode de réalisation représenté à la figure 1 , le dispositif 62 de transport des préformes comporte uniquement la roue 66 amont de transfert qui saisit les préformes 12A chaudes directement dans la station 20 de chauffage.
En variante non représentée, le dispositif 62 de transport des préformes 12A comporte, outre la roue 66 amont de transfert une ou plusieurs autres roues de transport, par exemple des roues à encoches, qui permettent de transporter les préformes 12A chaudes depuis la station de chauffage jusqu'à la roue 66 amont de transfert.
Le dispositif 64 de transport des récipients 12B comporte ici une roue 72 aval de transfert rotative autour d'un axe "Z6" vertical. La roue 72 aval de transfert comporte à sa périphérie des organes 74 de maintien individuel de récipients 12B. Comme représenté plus en détails à la figure 5, les organes 74 de maintien sont ici formés par des pinces qui sont agencées à l'extrémité de bras 76 de support.
La roue 72 aval de transfert est agencée et conçue de manière que ses organes 74 de maintien saisissent chaque récipient 12B directement dans un moule 36 associé de la station 26 de formage. La trajectoire des organes 74 de maintien est à cet effet tangente avec la trajectoire circulaire des moules 36 au point 34 de déchargement des récipients 12B.
Les bras 76 de support sont ici montés pivotant autour d'un axe vertical sur la roue 72 aval pour pouvoir modifier le pas entre deux récipients 12B, notamment lorsque le pas entre deux moules 36 consécutifs de la station 26 de formage est différent du pas entre deux organes de maintien de récipients consécutifs de la station 50 de remplissage.
Dans le mode de réalisation représenté aux figures 1 et 5, le dispositif 64 de transport des récipients comporte, outre la roue 72 aval de transfert une autre roue 78 de transport qui permet de transporter les récipients 12B depuis la roue 72 aval de transfert jusqu'à une roue 80 de transport située à l'intérieur de l'enceinte 54 de remplissage. La roue 78 de transport comporte à sa périphérie des organes 82 de maintien individuels de récipients 12B qui sont ici formés par des pinces.
Comme représenté aux figures 6 et 7, les pinces formant les organes 68 de maintien de la roue 66 amont de transfert saisissent ici les préformes 12A par leur col 16 au-dessus de la collerette 18 pour pouvoir déposer directement la préformes 12A en appui par sa collerette 18 sur la face 40 supérieure de moule 36 lorsque ce dernier est refermé au point 32 de chargement.
De même, les pinces formant les organes 74 de maintien de la roue 72 aval de transfert saisissent ici les récipients 12B par leur col 16 au-dessus de la collerette 18 pour pouvoir saisir les récipients 12B par leur col 16 avant ouverture du moule 36 au point 32 de chargement.
L'installation 10 de fabrication comporte en outre un dispositif 102 de stérilisation de l'intérieur des préformes 12A qui est agencé en amont de la station 26 de formage selon le sens de déplacement des préformes 12A le long du trajet "T" de production.
Il s'agit par exemple d'un dispositif 102 de stérilisation par projection d'un agent de décontamination tel que du peroxyde d'hydrogène (H202) à l'intérieur des préformes 12A. Ce faisant, l'extérieur des préformes 12A est aussi exposé à une atmosphère imprégnée de l'agent de décontamination. De manière connue, un tel agent de décontamination est plus efficace lorsqu'il est chauffé.
Le dispositif 102 de stérilisation est ici agencé en amont de la sortie de la station 20 de chauffage. Ainsi, l'agent de décontamination est chauffé par les moyens 22 de chauffage de la station de chauffage pour lui permettre d'atteindre une grande efficacité.
Dans le mode de réalisation représenté à la figure 1 , le dispositif 102 de stérilisation est plus précisément agencé en amont de la station 20 de chauffage.
En variante non représentée de l'invention, le dispositif 102 de stérilisation est agencé dans la station 20 de chauffage.
Selon une autre variante non représentée de l'invention, le dispositif 102 de stérilisation est agencé en aval du four. L'agent de décontamination est alors chauffé directement par la chaleur emmagasinée dans la préforme 12A.
Ce dispositif 102 de stérilisation peut éventuellement être complété par d'autres dispositifs de décontamination (non représentés) par exemple par exposition des préformes à un rayonnement ultraviolet.
Pour que les récipients demeures stériles jusqu'à leur remplissage, il est connu de les exposer à un flux de gaz stérile durant leur trajet depuis la sortie de la station 26 de formage jusqu'à leur entrée dans l'enceinte 54 de remplissage.
L'installation comporte ainsi une source d'émission d'un flux de gaz stérile qui baigne le trajet de transfert. Dans le cadre de l'invention, la source est ici formée :
- par l'enceinte 54 de remplissage, le flux de gaz stérile étant ainsi formé par le premier flux "G1" de gaz stérile et/ou
- par des buses d'émission d'un deuxième flux "G2" de gaz stérile qui sont agencées le long du trajet de transfert, comme cela sera expliqué par la suite. Le premier flux "G1" de gaz stérile est introduit dans l'enceinte 54 de remplissage qui a été stérilisée au préalable. Le premier flux "G1" de gaz stérile est plus particulièrement obtenu par filtration d'air par des filtres à air à haute efficacité qui sont capables d'arrêter des particules présentant des dimensions de l'ordre du micron, par exemple un filtre "ULPA". Après filtration, l'air est introduit dans l'enceinte 54 de remplissage par l'intermédiaire de conduite stériles. Ainsi, à la sortie de l'enceinte 54 de remplissage, le premier flux "G1" de gaz stérile demeure stérile.
Le deuxième flux "G2" de gaz stérile est introduit directement en direction du trajet de transfert des préformes 12A, c’est-à-dire sans passer par une autre enceinte. Le deuxième flux "G2" de gaz stérile est plus particulièrement obtenu par filtration d'air par des filtres à air à haute efficacité qui sont capables d'arrêter des particules présentant des dimensions de l'ordre du micron, par exemple un filtre "ULPA". Après filtration, l'air est dirigé vers les préformes par l'intermédiaire de conduite stériles.
Selon les enseignements de l'invention, le trajet de transfert des récipients 12B et/ou le trajet de transfert des préformes 12A est agencé dans une zone 83 de transfert qui est séparée d'une zone
86 de formage contenant la station 26 de formage par une cloison
87 de séparation. La cloison 87 de séparation s'étend verticalement. Elle présente des dimensions suffisantes pour éviter que le flux de gaz stérile dirigé sur les récipients 12B et/ou sur les préformes 12A le long de leur trajet de transfert ne soit perturbé par le brassage d'air provoqué par la rotation du carrousel 28 de la station 26 de formage.
Dans le mode de réalisation représenté à la figure 1 , le trajet de transfert des récipients 12B est agencé dans la zone 83 de transfert.
Comme représenté à la figure 6, la cloison 87 de séparation comporte une ouverture 88 de passage des récipients 12B depuis la zone 86 de formage jusqu'à la zone 83 de transfert. La roue 72 aval de transfert permet ainsi d'acheminer les récipients 12B depuis la zone 86 de formage jusqu'à l'intérieur de la zone 83 de transfert via l'ouverture 88 de passage des récipients 12B. L'ouverture 88 de passage des récipients 12B présente des dimensions adaptées aux récipients 12B, c'est-à-dire des dimensions qui sont suffisantes pour le passage du récipient 12B le plus volumineux susceptible d'être produit par l'installation 10 de fabrication, mais suffisamment restreintes pour limiter le passage d'air entre la zone 83 de transfert et la zone 86 de formage.
Il est avantageux d'exclure de la zone 83 de transfert des composants qui sont susceptibles de former des foyers de contamination ou de pollution. Il est aussi avantageux de réduire les sources de turbulences dues au brassage de l'air par la roue 72 aval de transfert. A cet effet, une partie centrale de la roue 72 aval de transfert est séparée de l'intérieur de la zone 83 de transfert par une enveloppe 90 comportant une rainure 92 horizontale de passage des organes 74 de maintien. Les termes "partie centrale" doivent être compris comme étant un espace cylindrique s'étendant depuis un plan situé au-dessus des organes 74 de maintien jusqu'à un plan situé au-dessous des organes 74 de maintien qui contient notamment un arbre d'entraînement, des moyens de guidage en rotation de la roue 72 aval de transfert, ainsi que tout autre composant de la roue 72 aval de transfert. Seule les organes 74 de maintien et une portion de leur bras 76 de support fait saillie à l'intérieur de la zone 83 de transfert à travers la rainure 92 sur une portion de leur trajectoire circulaire qui correspond au trajet de transfert des récipients 12B jusqu'à la roue 78 de transport. Les organes 74 de maintien réalisent le reste de leur trajectoire circulaire à l'extérieur de la zone 83 de transfert.
L'enveloppe 90 fait ici partie de la cloison 87 de séparation, de sorte que la partie centrale de la roue 72 aval est agencée à l'intérieur de la zone 86 de formage.
La roue 78 de transport est ici entièrement agencée à l'intérieur de la zone 83 de transfert pour limiter le nombre d'ouvertures vers la zone 86 de formage.
Dans le mode de réalisation représenté aux figures, le trajet de transfert des préformes 12A est aussi agencé à l'intérieur de la zone 83 de transfert. Ainsi, le flux de gaz stérile baignant les préformes 12A le long de leur trajet de transfert est aussi protégé du brassage de l'air provoqué par la station 26 de formage. A cet effet, comme représenté à la figure 6, la cloison 87 de séparation comporte une ouverture 93 de passage des préformes 12A d'une enceinte 84 de transfert vers la zone 86 de formage. L'ouverture 93 de passage des préformes 12A présente des dimensions adaptées aux préformes 12B, c'est-à-dire des dimensions qui sont suffisantes pour le passage de la préforme 12A la plus volumineuse susceptible d'être prise en charge par l'installation 10 de fabrication, mais suffisamment restreintes pour limiter le passage d'air entre la zone 83 de transfert et la zone 86 de formage.
L'ouverture 88 de passage des récipients 12B et l'ouverture 93 de passage des préformes 12A sont ici distinctes et séparées par une portion de la cloison 87 de séparation pour limiter les ouvertures vers la zone 86 de formage.
La roue 66 amont de transfert permet d'acheminer les préformes 12A depuis l'intérieur de la zone 83 de transfert jusqu'à la zone 86 de formage via l'ouverture 93 de passage des préformes 12A. Pour les raisons évoquées précédemment à propos de la roue 72 aval de transfert, la partie centrale de la roue 66 amont de transfert est séparée de l'intérieur de la zone 83 de transfert par une enveloppe 94 comportant une rainure 96 horizontale de passage des organes 68 de maintien. Seuls les organes 68 de maintien et une portion de leur bras 70 de support fait saillie à l'intérieur de la zone 83 de transfert à travers la rainure 96 sur une portion de leur trajectoire circulaire qui correspond au trajet de transfert des préformes 12A. Les organes 68 de maintien réalisent le reste de leur trajectoire circulaire à l'extérieur de la zone 83 de transfert.
L'enveloppe 94 fait ici partie de la cloison 87 de séparation, de sorte que la partie centrale de la roue 66 amont est agencée à l'intérieur de la zone 86 de formage.
Pour pouvoir récupérer et utiliser le flux "G1" de gaz stérile venant de l'enceinte 54 de remplissage pour protéger efficacement les récipients 12B le long de leur trajet de transfert, l'installation 10 de fabrication comporte ici une deuxième enceinte, dite enceinte 84 de transfert, renfermant la zone 83 de transfert. L'enceinte 84 de transfert renferme une atmosphère stérile. Ainsi, les récipients 12B sont protégés de toute contamination par l'atmosphère stérile de l'enceinte 84 de transfert le long de leur trajet de transfert.
La zone 83 de transfert est ici séparée de la zone 86 de formage par ladite cloison 87 de séparation qui forme ainsi une paroi de délimitation de l'enceinte 84 de transfert. La station 26 de formage est ainsi agencée à l'extérieur de l'enceinte 84 de transfert. La zone 86 de formage présente une atmosphère dont la pression inférieure à la pression interne de l'enceinte 84 de transfert.
Ainsi, l'enceinte 84 de transfert est globalement délimitée dans un sens transversal par la cloison 87 de séparation, d'une part, et par une cloison 89 opposée, d'autre part. Elle est aussi délimitée longitudinalement par une cloison 91 d'extrémité qui est ici mitoyenne avec la paroi 56 de l'enceinte, et une cloison 97 opposée, qui est ici adjacente avec la station 20 de chauffage, comme représenté à la figure 1. Ainsi, la station 20 de chauffage est à l'extérieur de l'enceinte 84 de transfert. En outre, l'enceinte 84 de transfert est délimitée verticalement par un plancher 95 et par un plafond 101 .
La fenêtre 58 d'entrée de l'enceinte 54 de remplissage débouche directement dans l'enceinte 84 de transfert. Ainsi, la roue 78 de transport du dispositif 64 de transfert des récipients 12B permet d'acheminer les récipients directement jusqu'à la fenêtre 58 d'entrée.
La pression interne de l'enceinte 84 de transfert est inférieure à celle de l'enceinte 54 de remplissage. De ce fait, le premier flux "G1" de gaz stérile sortant par la fenêtre 58 d'entrée pénètre directement à l'intérieur de l'enceinte 84 de transfert. L'enceinte 84 de transfert est ainsi alimentée en gaz stérile au moins en partie par l'enceinte 54 de remplissage. Les récipients 12B sont ainsi exposés à ce premier flux "G1" de gaz stérile le long de leur trajet de transfert. La pression interne de l'enceinte 84 de transfert est maintenue supérieure à celle de la zone 86 de formage. De ce fait, au moins une partie du premier flux "G1" de gaz stérile sort de l'enceinte 84 de transfert en direction de la zone 86 de formage par l'ouverture 88 de passage des récipients 12B et par la rainure 92.
Lorsque la zone 83 de transfert comporte aussi le trajet de transfert des préformes 12A, comme c'est ici le cas, les préformes 12A sont aussi reçues à l'intérieur de l'enceinte 84 de transfert le long de leur trajet de transfert.
Le trajet de transfert des récipients 12B et le trajet de transfert des préformes 12A sont agencés globalement dans l'alignement du premier flux "G1" de gaz stérile venant de l'enceinte 54 de remplissage, les préformes 12A et les récipients 12B se déplaçant à contrecourant dudit premier flux "G1" de gaz stérile. Une telle disposition présente l'avantage de réduire l'encombrement au sol de l'installation 10 de fabrication, d'une part, et l'avantage de pouvoir exposer les préformes 12A audit premier flux "G1" de gaz stérile, d'autre part.
En outre, la station 20 de chauffage est agencée à l'intérieure d'une troisième enceinte, dite enceinte 98 de chauffage, dont la pression interne est inférieure à celle de l'enceinte 84 de transfert. Ladite enceinte 98 délimite plus particulièrement le tunnel dans lequel les préformes 12A circulent. L'enceinte 98 de chauffage débouche directement dans l'enceinte 84 de transfert par un passage 100 de préformes qui est réalisé dans une paroi de l'enceinte 84 de transfert. Le passage 100 de préformes est agencé sensiblement en vis-à-vis de la fenêtre 58 d'entrée des récipients selon le sens du premier flux "G1" de gaz stérile au niveau de ladite fenêtre 58 d'entrée. Du fait de la différence de pression entre l'enceinte 84 de transfert et l'enceinte 98 de chauffage, une partie du premier flux "G1" de gaz stérile sort de l'enceinte 84 de transfert par le passage 100 de préformes. Lorsque le débit du premier flux "G1" de gaz stérile venant de l'enceinte 54 de remplissage est insuffisant pour maintenir la surpression nécessaire dans l'enceinte 84 de transfert, on prévoit que l'enceinte 84 de transfert soit directement alimentée en gaz stérile par au moins une deuxième source pour compléter le premier flux "G1" de gaz stérile provenant de l'enceinte 54 de remplissage. Comme représenté à la figure 7, l'enceinte 84 de transfert est ici alimentée directement en gaz stérile par un deuxième flux "G2" laminaire de gaz stérile émis par un dispositif 104. Le deuxième flux "G2" de gaz stérile tombe de buses agencées au plafond 101 de l'enceinte 84 de transfert. Le deuxième flux "G2"de gaz stérile est dirigé verticalement vers le bas en direction du col 16 des préformes 12A et des récipients 12B. Le gaz stérile est ici formé par de l'air stérile.
Du fait de la présence de cloison 87 de séparation qui protège le deuxième flux "G2" laminaire du brassage de la station 26 de formage, le débit et la puissance du deuxième flux "G2" laminaire sont bien moins important que pour les dispositifs de l'état de la technique dans lesquels les différents flux de gaz sont soumis au brassage.
En outre, la présence de l'enceinte 84 de transfert permet de récupérer le premier flux "G1" de gaz stérile provenant de l'enceinte 54 de remplissage. Ceci permet de réduire encore le débit du deuxième flux "G2" laminaire nécessaire pour maintenir les récipients 12B et les préformes 12A dans un environnement stérile durant leur trajet de transfert.
Lors du fonctionnement de l'installation, les préformes 12A sont tout d'abord décontaminées par le dispositif 102 de stérilisation avant de pénétrer dans la station 20 de chauffage où leur corps est chauffé à la température nécessaire à leur formage. A la sortie de la station 20 de chauffage, les préformes 12A ainsi chauffées sont directement prises en charge par la roue 66 amont de transfert du premier dispositif 62 de transport. Les préformes 12A sont ainsi transportées le long de leur trajet de transfert à l'intérieur de l'enceinte 84 de transfert. Elles en sortent en passant par l'ouverture 93 de sortie. Dès leur entrée dans la zone
86 de formage, elles sont déposées dans un moule 36 qui se ferme autour d'elles et la tuyère 46 associée est commandée en position active. Pendant leur opération de formage par étirage-soufflage, les corps creux, d'abord sous forme de préforme 12A puis sous forme de récipient 12B, sont protégés d'éléments contaminant extérieurs par la cloche de la tuyère 46 et par le moule 36. Après leur formage, les récipients 12B sont saisis par les organes 74 de maintien de la roue 72 aval de transfert pour être rapidement transportés à l'intérieur de l'enceinte 84 de transfert à travers l'ouverture 88 d'entrée. Ils sont transportés le long de leur trajet de transfert jusqu'à la fenêtre 58 d'entrée de l'enceinte 54 de remplissage dans laquelle ils sont pris en charge par la roue 80 de transport.
Lors de leurs trajets de transfert à l'intérieur de l'enceinte 84 de transfert, les préformes 12A et les récipients 12B sont exposés au premier flux "G1" de gaz stérile et, le cas échéant, au deuxième flux "G2" laminaire de gaz stérile. Du fait de la surpression, le gaz stérile s'écoule naturellement vers l'extérieur de l'enceinte 84 de transfert à travers les ouvertures 88, 93, à travers les rainures 92, 96 et à travers le passage 100 de préformes.
La présence de la cloison 87 de séparation permet de protéger le flux de gaz stérile, quel qu'en soit son origine, exposant les récipients 12B et/ou les préformes 12A. La présence de la cloison
87 de séparation permet avantageusement d'exposer les préformes 12A et les récipients 12B à un flux de gaz stérile sans qu'il soit nécessaire de maintenir un débit aussi élevé que dans les installations de l'état de la technique dans lesquelles le trajet de transfert est physiquement ouvert sur la zone de formage.
Selon un autre aspect de l'invention, le premier flux "G1" gaz stérile sortant de l'enceinte 54 de remplissage est exploiter pour maintenir les récipients 12B et/ou les préformes 12A dans une atmosphère stérile. Ceci est notamment rendu possible par la présence de l'enceinte 84 de transfert qui permet de la séparer de la station 26 de formage.

Claims

REVENDICATIONS
1. Installation (10) de fabrication en série de récipients (12B) par formage de préformes (12A) en matériau thermoplastique, les préformes (12A) et les récipients (12B) étant désignés indifféremment par les termes "corps creux", l'installation (10) de fabrication comportant :
- une station (20) de chauffage des préformes (12A) à une température suffisante pour leur formage ; - une station (26) de formage des récipients (12B) par étirage-soufflage de chaque préforme (12A) dans des moules (36) portés par un carrousel (28) tournant ;
- une station (50) de remplissage des récipients (12B) ;
- un dispositif (102) de stérilisation des préformes (12A) qui est agencé en amont de la station (26) de formage selon le sens de déplacement des corps creux ;
- un dispositif (62) de transport des préformes (12A) chaudes en file le long d'un premier trajet de transfert depuis la sortie de la station (20) de chauffage jusqu'à un point (32) de chargement de la station (26) de formage
- un dispositif (64) de transport des récipients (12B) en file le long d'un deuxième trajet de transfert des récipients (12B) depuis la station (26) de formage vers la station (50) de remplissage ;
- au moins une source (54, 104) d'émission d'un flux (G1 , G2) de gaz stérile qui baigne les corps creux le long de leurs trajets de transfert ; caractérisé en ce qu'au moins un trajet de transfert est agencé dans une zone (83) de transfert qui est séparée d'une zone (86) de formage contenant la station (26) de formage par une cloison (87) de séparation, ladite cloison (87) de séparation comportant au moins une ouverture (88, 93) de passage des corps creux.
2. Installation (10) de fabrication selon la revendication précédente, caractérisée en ce que le premier trajet de transfert des préformes (12A) et le deuxième trajet de transfert des récipients (12B) sont agencés dans la zone (83) de transfert qui est séparée de la zone (86) de formage par ladite cloison (87) de séparation, ladite cloison (87) de séparation comportant une ouverture (93) de passage des préformes (12A) et une ouverture (88) de passage des récipients (12B).
3. Installation (10) selon l'une quelconque des revendications précédentes, caractérisée en ce que la station (50) de remplissage est enfermée dans une enceinte stérile fermée, dite enceinte (54) de remplissage, la station (20) de chauffage et la station (26) de formage étant agencées à l'extérieur de l'enceinte (54) de remplissage, l'enceinte (54) de remplissage comportant une fenêtre (58) d'entrée des récipients (12B) venant directement de la zone (83) de transfert, un premier flux (G1 ) de gaz stérile sortant de l'enceinte (54) de remplissage à travers la fenêtre (58) d'entrée sous l'effet d'une différence de pression entre l'enceinte (54) de remplissage et la zone (83) de transfert, le dispositif (64) de transport des récipients (12B) transportant les récipients (12B) jusqu'à la fenêtre (58) d'entrée de l'enceinte (54) de remplissage.
4. Installation (10) de fabrication selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comporte une deuxième enceinte stérile fermée, dite enceinte (84) de transfert, dont une paroi de délimitation est formée par ladite cloison (87) de séparation, l'enceinte (84) de transfert renfermant la zone (83) de transfert, la station (26) de formage étant agencée à l'extérieur de l'enceinte (84) de transfert dans la zone (86) de formage qui présente une pression inférieure à la pression interne de l'enceinte (84) de transfert, la pression interne de l'enceinte (84) de transfert étant inférieure à celle de l'enceinte (54) de remplissage et la fenêtre (58) d'entrée de la l'enceinte (54) de remplissage débouchant directement dans l'enceinte (84) de transfert.
5. Installation (10) de fabrication selon la revendication précédente prise en combinaison avec la revendication 2, caractérisé en ce que le trajet de transfert des récipients (12B) et le trajet de transfert des préformes (12A) sont agencés globalement dans l'alignement du premier flux (G1 ) de gaz stérile venant de l'enceinte (54) de remplissage, les préformes (12A) et les récipients (12B) se déplaçant à contrecourant dudit premier flux (G1 ) de gaz stérile.
6. Installation (10) de fabrication selon l'une quelconque des revendications précédentes prise en combinaison avec la revendication 2, caractérisé en ce que le dispositif (64) de transport des récipients comporte au moins une roue (72) aval de transfert rotative qui permet d'acheminer les récipients depuis l'intérieur de la zone (86) de formage jusque dans la zone (83) de transfert via l’ouverture (88) de passage des récipients (12B), la roue (72) aval de transfert comportant à sa périphérie des organes (74) de maintien individuel de récipient, une partie centrale de la roue (72) aval de transfert étant séparée de la zone (83) de transfert par une enveloppe (90) comportant une rainure (92) de passage des organes (74) de maintien.
7. Installation (10) de fabrication selon la revendication précédente, caractérisée en ce que les organes (74) de maintien de la roue (72) aval de transfert saisissent chaque récipient (12B) directement dans un moule (36) de la station (26) de formage.
8. Installation (10) de fabrication selon l'une quelconque des revendications précédentes prise en combinaison avec la revendication 2, caractérisé en ce que le dispositif (62) de transport des préformes (12A) comporte au moins une roue (66) amont de transfert rotative qui permet d'acheminer les préformes (12A) depuis l'intérieur de la zone (83) de transfert jusqu'à l'intérieur la zone (86) de formage via l'ouverture (93) de passage des préformes (12A), la roue (66) amont de transfert comportant à sa périphérie des organes (68) de maintien individuel de préforme, une partie centrale de la roue (66) amont de transfert étant séparée de l'intérieur de la zone (83) de transfert par une enveloppe (94) comportant une rainure (96) de passage des organes (68) de maintien.
9. Installation (10) de fabrication selon la revendication précédente, caractérisée en ce que les organes (68) de maintien de la roue (66) amont de transfert déposent chaque préforme (12A) directement dans un moule (36) de la station (26) de formage.
10. installation (10) de fabrication selon l'une quelconque des revendications précédentes prise en combinaison avec la revendication 4, caractérisé en ce que la station (20) de chauffage est agencée à l'intérieur d'une troisième enceinte, dite enceinte (98) de chauffage, dont la pression interne est inférieure à celle de l'enceinte (84) de transfert, l'enceinte (98) de chauffage débouchant directement dans l'enceinte (84) de transfert par un passage (100) de préformes, le passage (100) de préformes étant agencé sensiblement en vis-à-vis de la fenêtre (58) d'entrée des récipients (12B) selon le sens du premier flux (G1 ) de gaz stérile.
11. Installation (10) de fabrication selon l'une quelconque des revendications précédentes prise en combinaison avec la revendication 4, caractérisée en ce que l'enceinte (84) de transfert est alimentée directement en gaz stérile par un deuxième flux (G2) laminaire de gaz stérile qui est dirigé verticalement vers un col (16) des corps creux.
PCT/EP2021/064327 2020-05-29 2021-05-28 Installation de fabrication de recipients comportant une zone de transfert sterile WO2021239936A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180038496.XA CN115666901A (zh) 2020-05-29 2021-05-28 包括无菌转移区的容器制造设备
EP21729504.7A EP4157609A1 (fr) 2020-05-29 2021-05-28 Installation de fabrication de récipients comportant une zone de transfert stérile
JP2022573246A JP2023527068A (ja) 2020-05-29 2021-05-28 無菌移送ゾーンを備える容器製造用設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2005709 2020-05-29
FR2005709A FR3110903B1 (fr) 2020-05-29 2020-05-29 "Installation de fabrication de récipients comportant une zone de transfert stérile"

Publications (1)

Publication Number Publication Date
WO2021239936A1 true WO2021239936A1 (fr) 2021-12-02

Family

ID=72801579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/064327 WO2021239936A1 (fr) 2020-05-29 2021-05-28 Installation de fabrication de recipients comportant une zone de transfert sterile

Country Status (5)

Country Link
EP (1) EP4157609A1 (fr)
JP (1) JP2023527068A (fr)
CN (1) CN115666901A (fr)
FR (1) FR3110903B1 (fr)
WO (1) WO2021239936A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4335618A1 (fr) 2022-09-09 2024-03-13 Krones AG Dispositif et procédé de déformation d'ébauches en plastique en récipients en plastique dotés d'une salle blanche

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295324B1 (fr) * 2009-09-11 2013-04-24 Krones AG Procédé et dispositif de moulage par étirage-soufflage ou de moulage par soufflage et de remplissage de récipients stériles
US20140325941A1 (en) * 2011-07-15 2014-11-06 Josef Knott Method and apparatus for producing beverage containers filled with liquids
DE102011122853B4 (de) * 2011-08-11 2015-01-22 Krones Aktiengesellschaft Blasmaschine, Verfahren zum Austauschen von Blasstationskomponenten sowie Getränkeabfüllanlage und/oder Getränkebehälterherstellanlage
US20150076747A1 (en) * 2013-09-13 2015-03-19 Krones Ag System and method for transforming plastic parisons with recovery of blowing air
WO2019007704A1 (fr) * 2017-07-03 2019-01-10 Krones Ag Installation pour la fabrication de récipients de boissons avec la stérilisation de la machine à souffler
US20200024118A1 (en) * 2017-03-28 2020-01-23 Dai Nippon Printing Co., Ltd. Content filling system and verification method of content filling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295324B1 (fr) * 2009-09-11 2013-04-24 Krones AG Procédé et dispositif de moulage par étirage-soufflage ou de moulage par soufflage et de remplissage de récipients stériles
US20140325941A1 (en) * 2011-07-15 2014-11-06 Josef Knott Method and apparatus for producing beverage containers filled with liquids
DE102011122853B4 (de) * 2011-08-11 2015-01-22 Krones Aktiengesellschaft Blasmaschine, Verfahren zum Austauschen von Blasstationskomponenten sowie Getränkeabfüllanlage und/oder Getränkebehälterherstellanlage
US20150076747A1 (en) * 2013-09-13 2015-03-19 Krones Ag System and method for transforming plastic parisons with recovery of blowing air
US20200024118A1 (en) * 2017-03-28 2020-01-23 Dai Nippon Printing Co., Ltd. Content filling system and verification method of content filling system
WO2019007704A1 (fr) * 2017-07-03 2019-01-10 Krones Ag Installation pour la fabrication de récipients de boissons avec la stérilisation de la machine à souffler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4335618A1 (fr) 2022-09-09 2024-03-13 Krones AG Dispositif et procédé de déformation d'ébauches en plastique en récipients en plastique dotés d'une salle blanche
DE102022123064A1 (de) 2022-09-09 2024-03-14 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Umformen von Kunststoffvorformlingen zu Kunststoffbehältnissen mit Reinraum

Also Published As

Publication number Publication date
JP2023527068A (ja) 2023-06-26
FR3110903A1 (fr) 2021-12-03
FR3110903B1 (fr) 2022-10-14
EP4157609A1 (fr) 2023-04-05
CN115666901A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
EP2209734B1 (fr) Unite de remplissage de recipients comportant un isolateur, notamment pour une installation de production
EP2094312B1 (fr) Four et installation pour la fabrication de recipients steriles a partir de preformes en matiere thermoplastique decontaminees
JP5504269B2 (ja) プラスチック材料容器を成形する装置、及び、プラスチック材料容器を成形する方法
EP1896245B2 (fr) Procede de sterilisation de preformes et installation produisant des bouteilles steriles a partir de ces preformes
EP1896329B2 (fr) Installation produisant des bouteilles steriles par soufflage a partir de preformes sterilisees
EP0998424B1 (fr) Procede pour le remplissage de recipients, et installation pour la mise en oeuvre
EP1982820B1 (fr) Installation pour la fabrication de récipients comportant une enceinte de protection équipée d'un système d'insufflation d'air filtré
EP2580045B1 (fr) Procede de recyclage d'air comportant un agent sterilisant et installation de fabrication de recipients comportant un circuit de recyclage d'air
EP2580044B1 (fr) Installation de fabrication de recipients comportant un circuit de recyclage de l'air et procede de recyclage
WO2021239936A1 (fr) Installation de fabrication de recipients comportant une zone de transfert sterile
CH690002A5 (fr) Machine pour la fabrication de récipient en matière plastique.
EP3393529B1 (fr) Procédé de stérilisation des moyens d'étirage d'un dispositif de moulage de récipients, et installation de fabrication de récipients
FR3051675A1 (fr) Procede de traitement de corps creux et installation de fabrication de recipients integrant un tel procede
WO2022130872A1 (fr) Procédé de désinfection de récipient, dispositif de désinfection de récipient et système de remplissage
WO2022130868A1 (fr) Procédé de stérilisation de contenant, dispositif de stérilisation de contenant et système de remplissage de contenu
EP3481617A1 (fr) Procede de fabrication de recipients en plastique par soufflage
FR3059904A1 (fr) Procede de decontamination d'une surface externe d'une preforme en matiere thermoplastique
FR3088202A1 (fr) Procede de traitement pour la sterilisation par irradiation de recipients en matiere thermoplastique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21729504

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021729504

Country of ref document: EP

Effective date: 20230102