WO2021232823A1 - 合金刀头麻花钻 - Google Patents

合金刀头麻花钻 Download PDF

Info

Publication number
WO2021232823A1
WO2021232823A1 PCT/CN2021/000099 CN2021000099W WO2021232823A1 WO 2021232823 A1 WO2021232823 A1 WO 2021232823A1 CN 2021000099 W CN2021000099 W CN 2021000099W WO 2021232823 A1 WO2021232823 A1 WO 2021232823A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting surface
cutting
edge
alloy
spiral
Prior art date
Application number
PCT/CN2021/000099
Other languages
English (en)
French (fr)
Inventor
李仕清
Original Assignee
李仕清
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010428122.6A external-priority patent/CN112139570A/zh
Priority claimed from CN202010428157.XA external-priority patent/CN112191894A/zh
Priority claimed from CN202010428158.4A external-priority patent/CN111730111A/zh
Priority claimed from CN202010428191.7A external-priority patent/CN112453504A/zh
Priority claimed from CN202010428077.4A external-priority patent/CN112139569A/zh
Priority claimed from CN202010428078.9A external-priority patent/CN112191893A/zh
Priority claimed from CN202010428080.6A external-priority patent/CN111730110A/zh
Priority claimed from CN202010428124.5A external-priority patent/CN112139571A/zh
Priority to EP21809185.8A priority Critical patent/EP4155016A4/en
Priority to US17/925,466 priority patent/US20230191507A1/en
Application filed by 李仕清 filed Critical 李仕清
Publication of WO2021232823A1 publication Critical patent/WO2021232823A1/zh
Priority to ZA2022/12762A priority patent/ZA202212762B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/0002Drills with connected cutting heads, e.g. with non-exchangeable cutting heads; Drills with a single insert extending across the rotational axis and having at least two radially extending cutting edges in the working position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/009Stepped drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/08Side or plan views of cutting edges
    • B23B2251/085Discontinuous or interrupted cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/14Configuration of the cutting part, i.e. the main cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/40Flutes, i.e. chip conveying grooves
    • B23B2251/406Flutes, i.e. chip conveying grooves of special form not otherwise provided for

Definitions

  • the present invention relates to a twist drill with an alloy cutter head.
  • the twist drill with an alloy cutter head is used in the drilling and milling process and fitter maintenance of machining. After gradually extending the shape of the cutting edge, it will be found that its effect decreases significantly until it disappears, so this theory is still not really correct.
  • the drilling tools used in machining are composed of chisel edge, cutting edge, spiral cutting edge, and side edge.
  • the cutting edge is on a spiral cutting surface and is a single co-position cutting structure.
  • the cutting edge is in the centrifugal force transmission range of rotating cutting. Inside, the cutting edge is simultaneously subjected to the rotating cutting force and the transmission force from the center. Under the action of the double force, the cutting edge at the intersection of the cutting edge and the spiral cutting edge is always extremely easy to damage. It is not absolutely balanced and the phenomenon of oscillation occurs.
  • the spiral cutting surface and the spiral cutting edge are damaged by the stable tool of the spiral cutting surface. It is generally recognized that the smoother the surface, the higher the strength, and the new theory is that the strength of the surface with a small gap is higher. It does not reveal the essential structural characteristics of the material. Therefore, the existing hole processing tools are low in efficiency, easy to damage, poor in stability, and poor in drilling accuracy.
  • the present invention is proposed in view of the above problems, and aims to provide a twist drill with an alloy cutter head.
  • the cutter has the function of blocking conduction force, has high heat dissipation efficiency, high strength, and long service life. It is easy to locate, and the drilling accuracy is high. It is generally recognized that the smoother the surface, the higher the strength. In recent years, the new theory is that the surface with small gaps has higher strength, without revealing the essential structural characteristics of the substance.
  • the volume of the solid is the same, the surface area of the dispersed small-volume solid is larger than the surface area of the whole solid.
  • the overall structure of the solid reaches a certain volume limit, even the diamond will fragment, and the volume is small under the condition of volumetric force.
  • the sum of the force strength of the solid is much greater than the force strength of the whole solid. It has been verified by experiments that the millimeter level has the most obvious high-strength characteristic, that is, the millimeter strength, on the cutting tool under the conventional physical state.
  • the present invention is based on the alloy knife Head twist drills for applications with millimeter strength.
  • the alloy cutter head twist drill includes a tool holder, a screw cutter body and an alloy cutter head.
  • the alloy cutter head twist drill is integrally provided with at least two screw cutter bodies, and the surface of each screw cutter body facing the cutting direction is formed as a spiral cutting
  • the surface on the outer side of the spiral cutting surface that is backward in the direction of rotation is the spiral cutting surface.
  • the spiral cutting surface intersects with the spiral cutting surface to form a spiral cutting edge.
  • at least two rear cutting surfaces intersect to form a chisel edge
  • the spiral cutting surface intersects with the rear cutting surface to form a cutting edge
  • the spiral secondary cutting surface intersects with the rear cutting surface to form a side edge
  • the alloy cutter head twist drill is integrally composed of a cutter handle and a spiral cutter body, a groove is milled on the spiral cutting surface of the front end of the screw cutter body, and an alloy cutter head is integrally provided with the screw on both sides.
  • the cutting surface and the cutting surface of the alloy bit are arranged in the same groove respectively, the spiral cutting edge extends to the alloy bit to form a secondary cutting edge, and the spiral secondary cutting surface extends to the alloy bit to form a secondary cutting surface;
  • the intersection of the central stepped platform and the rear cutting surface forms a side micro edge;
  • the intersection of the central stepped platform and the central stepped surface forms a central edge;
  • the width of the central stepped surface on the alloy cutter head is from the axial center to the cutting surface less than or equal to one third of the radius of the twist drill of the alloy cutter head.
  • the alloy cutter head twist drill includes a tool holder, a screw cutter body and an alloy cutter head.
  • the alloy cutter head twist drill is integrally provided with at least two screw cutter bodies, and the surface of each screw cutter body facing the cutting direction is formed as a spiral cutting
  • the surface on the outer side of the spiral cutting surface that is backward in the direction of rotation is the spiral cutting surface.
  • the spiral cutting surface intersects with the spiral cutting surface to form a spiral cutting edge.
  • at least two rear cutting surfaces intersect to form a chisel edge
  • the spiral cutting surface intersects with the rear cutting surface to form a cutting edge
  • the spiral secondary cutting surface intersects with the rear cutting surface to form a side edge
  • the alloy cutter head twist drill is integrally composed of a cutter handle and a spiral cutter body, a groove is milled on the spiral cutting surface of the front end of the screw cutter body, and an alloy cutter head is integrally provided with the screw on both sides.
  • the cutting surface and the cutting surface of the alloy bit are arranged in the same groove respectively, the spiral cutting edge extends to the alloy bit to form a secondary cutting edge, and the spiral secondary cutting surface extends to the alloy bit to form a secondary cutting surface;
  • the cutting surface of the secondary cutting edge of the alloy bit of the alloy bit of the twist drill from the axial center to the outer periphery is provided with a stepped recessed hole table; the inner side of the hole table is convex to form a cutting surface ,
  • the slitting surface intersects the rear cutting surface to form a cutting edge;
  • the slitting table intersects the rear cutting surface to form a side micro edge;
  • the slitting table intersects the inner convex cutting surface to form a slitting edge;
  • the slitting surface is from the axial center which is greater than or equal to one-third of the radius of the twist drill of the alloy bit to the cutting surface less than or equal to two-thirds of the radius of the twist drill of the alloy bit.
  • the alloy cutter head twist drill includes a tool holder, a screw cutter body and an alloy cutter head.
  • the alloy cutter head twist drill is integrally provided with at least two screw cutter bodies, and the surface of each screw cutter body facing the cutting direction is formed as a spiral cutting
  • the surface on the outer side of the spiral cutting surface that is backward in the direction of rotation is the spiral cutting surface.
  • the spiral cutting surface intersects with the spiral cutting surface to form a spiral cutting edge.
  • at least two rear cutting surfaces intersect to form a chisel edge
  • the spiral cutting surface intersects with the rear cutting surface to form a cutting edge
  • the spiral secondary cutting surface intersects with the rear cutting surface to form a side edge
  • the alloy cutter head twist drill is integrally composed of a cutter handle and a spiral cutter body, a groove is milled on the spiral cutting surface of the front end of the screw cutter body, and an alloy cutter head is integrally provided with the screw on both sides.
  • the cutting surface and the cutting surface of the alloy bit are arranged in the same groove respectively, the spiral cutting edge extends to the alloy bit to form a secondary cutting edge, and the spiral secondary cutting surface extends to the alloy bit to form a secondary cutting surface;
  • the cutting surface of the alloy bit along the secondary cutting edge toward the axial center direction is concavely provided with a micro-cut surface; the inner side of the micro-cut surface stands up to form a micro Reinforced stress extension table; the micro-cut surface intersects with the secondary cutting surface of the outer periphery to form a micro-cutting edge; the micro-cut surface intersects with the rear cutting surface to form a cutting micro-edge; the micro-reinforced stress extension table and the rear cutting The sides intersect to form a side microblade.
  • the alloy cutter head twist drill includes a tool holder, a screw cutter body and an alloy cutter head.
  • the alloy cutter head twist drill is integrally provided with at least two screw cutter bodies, and the surface of each screw cutter body facing the cutting direction is formed as a spiral cutting
  • the surface on the outer side of the spiral cutting surface that is backward in the direction of rotation is the spiral cutting surface.
  • the spiral cutting surface intersects with the spiral cutting surface to form a spiral cutting edge.
  • at least the rear cutting surfaces on both sides intersect to form a chisel edge, the spiral cutting surface and the rear cutting surface intersect to form a cutting edge, and the spiral secondary cutting surface intersects with the rear cutting surface to form a side edge,
  • the alloy cutter head twist drill is integrally composed of a cutter handle and a spiral cutter body, a groove is milled on the spiral cutting surface of the front end of the screw cutter body, and an alloy cutter head is integrally provided with the screw on both sides.
  • the cutting surface and the cutting surface of the alloy bit are arranged in the same groove respectively, the spiral cutting edge extends to the alloy bit to form a secondary cutting edge, and the spiral secondary cutting surface extends to the alloy bit to form a secondary cutting surface;
  • the intersection of the central stepped platform and the rear cutting surface forms a side micro edge;
  • the intersection of the central stepped platform and the central stepped surface forms a central edge;
  • a stepped recess is provided with a sub-hole table; the inner side of the sub-hole table is convex Forming a splitting surface, the splitting surface intersects the rear cutting surface to form a cutting edge; the splitting table intersects the rear cutting surface to form a side micro edge; the splitting table intersects the inner convex cutting surface to form a cutting edge blade.
  • the alloy cutter head twist drill includes a tool holder, a screw cutter body and an alloy cutter head.
  • the alloy cutter head twist drill is integrally provided with at least two screw cutter bodies, and the surface of each screw cutter body facing the cutting direction is formed as a spiral cutting
  • the surface on the outer side of the spiral cutting surface that is backward in the direction of rotation is the spiral cutting surface.
  • the spiral cutting surface intersects with the spiral cutting surface to form a spiral cutting edge.
  • at least the rear cutting surfaces on both sides intersect to form a chisel edge, the spiral cutting surface and the rear cutting surface intersect to form a cutting edge, and the spiral secondary cutting surface intersects with the rear cutting surface to form a side edge,
  • the alloy cutter head twist drill is integrally composed of a cutter handle and a spiral cutter body, a groove is milled on the spiral cutting surface of the front end of the screw cutter body, and an alloy cutter head is integrally provided with the screw on both sides.
  • the cutting surface and the cutting surface of the alloy bit are arranged in the same groove respectively, the spiral cutting edge extends to the alloy bit to form a secondary cutting edge, and the spiral secondary cutting surface extends to the alloy bit to form a secondary cutting surface;
  • the intersection of the central stepped platform and the rear cutting surface forms a side micro edge;
  • the intersection of the central stepped platform and the central stepped surface forms a central edge;
  • a micro-cut surface is recessed; the inner side of the micro-cut surface is erected The micro-cut surface intersects with the secondary cutting surface of the outer peripheral edge to form a micro-cutting edge; the micro-cut surface intersects the rear cutting surface to form a cutting micro-edge; the micro-reinforced stress extension A side micro edge is formed when the table intersects with the rear cutting surface.
  • the alloy cutter head twist drill includes a tool holder, a screw cutter body and an alloy cutter head.
  • the alloy cutter head twist drill is integrally provided with at least two screw cutter bodies, and the surface of each screw cutter body facing the cutting direction is formed as a spiral cutting
  • the surface on the outer side of the spiral cutting surface that is backward in the direction of rotation is the spiral cutting surface.
  • the spiral cutting surface intersects with the spiral cutting surface to form a spiral cutting edge.
  • at least the rear cutting surfaces on both sides intersect to form a chisel edge, the spiral cutting surface and the rear cutting surface intersect to form a cutting edge, and the spiral secondary cutting surface intersects with the rear cutting surface to form a side edge,
  • the alloy cutter head twist drill is integrally composed of a cutter handle and a spiral cutter body, a groove is milled on the spiral cutting surface of the front end of the screw cutter body, and an alloy cutter head is integrally provided with the screw on both sides.
  • the cutting surface and the cutting surface of the alloy bit are arranged in the same groove respectively, the spiral cutting edge extends to the alloy bit to form a secondary cutting edge, and the spiral secondary cutting surface extends to the alloy bit to form a secondary cutting surface;
  • the cutting surface of the secondary cutting edge of the alloy bit of the alloy bit of the twist drill from the axial center to the outer periphery is provided with a stepped recessed hole table; the inner side of the hole table is convex to form a cutting surface ,
  • the slitting surface intersects the rear cutting surface to form a cutting edge;
  • the slitting table intersects the rear cutting surface to form a side micro edge;
  • the slitting table intersects the inner convex cutting surface to form a slitting edge;
  • a micro-cut surface is recessed; the inner side of the micro-cut surface is erected The micro-cut surface intersects with the secondary cutting surface of the outer peripheral edge to form a micro-cutting edge; the micro-cut surface intersects the rear cutting surface to form a cutting micro-edge; the micro-reinforced stress extension A side micro edge is formed when the table intersects with the rear cutting surface.
  • the alloy cutter head twist drill includes a tool holder, a screw cutter body and an alloy cutter head.
  • the alloy cutter head twist drill is integrally provided with at least two screw cutter bodies, and the surface of each screw cutter body facing the cutting direction is formed as a spiral cutting
  • the surface on the outer side of the spiral cutting surface that is backward in the direction of rotation is the spiral cutting surface.
  • the spiral cutting surface intersects with the spiral cutting surface to form a spiral cutting edge.
  • at least two rear cutting surfaces intersect to form a chisel edge
  • the spiral cutting surface intersects with the rear cutting surface to form a cutting edge
  • the spiral secondary cutting surface intersects with the rear cutting surface to form a side edge
  • the alloy cutter head twist drill is integrally composed of a cutter handle and a spiral cutter body, a groove is milled on the spiral cutting surface of the front end of the screw cutter body, and an alloy cutter head is integrally provided with the screw on both sides.
  • the cutting surface and the cutting surface of the alloy bit are arranged in the same groove respectively, the spiral cutting edge extends to the alloy bit to form a secondary cutting edge, and the spiral secondary cutting surface extends to the alloy bit to form a secondary cutting surface;
  • the intersection of the central stepped platform and the rear cutting surface forms a side micro edge;
  • the intersection of the central stepped platform and the central stepped surface forms a central edge;
  • a stepped recess is provided with a sub-hole table;
  • the inner side of the sub-hole table is convex Forming a splitting surface, the splitting surface intersects the rear cutting surface to form a cutting edge;
  • the splitting table intersects the rear cutting surface to form a side micro edge;
  • the splitting table intersects the inner convex cutting surface to form a cutting edge blade;
  • a micro-cut surface is recessed; the inner side of the micro-cut surface is erected The micro-cut surface intersects with the secondary cutting surface of the outer peripheral edge to form a micro-cutting edge; the micro-cut surface intersects the rear cutting surface to form a cutting micro-edge; the micro-reinforced stress extension A side micro edge is formed when the table intersects with the rear cutting surface.
  • At least one or more notch edges are provided on the alloy bit cutting edge of the alloy bit twist drill; each notch edge extends to the rear cutting surface to form a groove.
  • the rear cutting surface where the alloy bit of the alloy bit twist drill is located is provided with at least one or more levels starting from the axial center in a manner that the height of the rear cutting surface in the direction of the outer side edge decreases.
  • the raised step and the raised at least one or more levels of rear cutting surface, the raised step and the cutting surface at the front end of the rotation direction intersect to form at least one or more raised step edges, and the raised at least The one-stage or multi-stage rear cutting surface intersects with the cutting surface at the front end in the rotation direction to form at least one-stage or multi-stage raised cutting edges.
  • the rear cutting surface where the alloy bit of the alloy cutter bit twist drill is located is provided with at least one or more stages in a manner that the height of the rear cutting surface in the direction of the outer side edge decreases from the axial center.
  • the rear cutting surfaces on both sides of the front end of the alloy bit of the alloy bit twist drill intersect in the axial center to form a chamfered surface, a chamfered edge and a chisel edge.
  • the rear cutting surfaces on both sides of the front end of the alloy bit of the alloy bit twist drill intersect in the axial center to form a chamfered surface, a chamfered edge and a sharp edge without chisel edge.
  • a cooling hole is integrally provided in the tool shank and the spiral tool body of the alloy cutter head twist drill.
  • the angle at which the outermost cutting edge of the alloy bit of the alloy bit twist drill intersects with the helical secondary cutting edge is an acute angle; or the cutting of the outermost side of the alloy bit of the alloy bit twist drill
  • the intersection angle between the blade and the secondary cutting edge of the spiral is a right angle; or the intersection angle between the outermost cutting edge of the alloy bit of the alloy bit twist drill and the secondary cutting edge of the spiral is an obtuse angle.
  • the tool shank of the twist drill with the alloy cutter head is a straight shank; or the tool shank of the twist drill with the alloy cutter head is a taper shank.
  • a twist drill with a diameter of 20.0 was used as the experiment, and it was heat-treated at the same time and produced in the same batch.
  • the drilling object was forged and quenched and tempered gears.
  • the drilling depth was 35mm, blind hole, ordinary
  • the alloy bit twist drill of the present invention can also increase the speed by 40%, increase the feed rate by 40%, and more than double the overall drilling efficiency.
  • the number of twist drills with alloy cutter heads is more than ten times more than that of common structure twist drills.
  • Fig. 1 is a schematic diagram of an alloy bit twist drill according to a first embodiment of the present invention.
  • Fig. 2 is a schematic diagram of an alloy bit twist drill according to a second embodiment of the present invention.
  • Fig. 3 is a schematic diagram of an alloy bit twist drill according to a third embodiment of the present invention.
  • Fig. 4 is a schematic diagram of an alloy bit twist drill according to a fourth embodiment of the present invention.
  • Fig. 5 is a schematic diagram of an alloy bit twist drill according to a fifth embodiment of the present invention.
  • the tool with the alloy bit twist drill integrally having two spiral cutter bodies is mainly used as an example for description.
  • the alloy cutter head twist drill 1 of the second embodiment of the present invention is comprehensively applied on the basis of the first embodiment, and relates to a drilling tool for machining.
  • the alloy cutter head twist drill is composed of a cutter handle (not shown) including a tapered shank or a straight shank, and a spiral cutter body 4.
  • At least two spiral cutter bodies 4 have grooves milled on the front end of the spiral cutting surface and are integrated or connected And formed as an integrally provided with an alloy bit 31, the alloy bit 31 is integrally formed along the axial center of the alloy bit twist drill 1 with a cutting surface 13 facing the tip of the rotation direction, two integrally provided The spiral cutting surfaces 13 on both sides of the spiral cutter body 4 are respectively arranged in the same groove with the two cutting surfaces 13 integrally provided with the alloy cutter head 31;
  • the alloy cutter head twist drill 1 is integrally provided with two spiral cutter bodies 4, and the alloy cutter head 31 of each screw cutter body 4 is formed as a cutting surface 13 on the alloy cutter head 31 facing the cutting direction, and the cutting surface 13 is rearward in the rotation direction.
  • the surface on the outer side is the secondary cutting surface 8.
  • the cutting surface 13 and the secondary cutting surface 8 intersect to form a spiral cutting edge.
  • the surface on the back side of the axial front end of the cutting surface 13 is formed as the rear cutting surface 5.
  • At least the rear cutting surfaces on both sides A chisel edge is formed at the intersection. Both ends of the chisel edge are chamfered to form a chamfered surface 22 and a chamfered edge 2.
  • the cutting surface 13 intersects the rear cutting surface 5 to form a cutting edge 6, and the secondary cutting surface 8 intersects the rear cutting surface 5.
  • a side edge 7 is formed, the spiral cutting edge 14 extends to the alloy tip 31 to form a secondary cutting edge, and the spiral secondary cutting surface 8 extends to the alloy tip 31 to form the secondary cutting surface 8 of the alloy tip 31;
  • a central stepped platform 10 with millimeter strength and a raised central stepped surface 12 are erected, and the alloy bit On the cutting surface 13 of 31, a central stepped platform 10 with millimeter strength is connected.
  • the center stepped platform 10 with millimeter strength on the alloy cutter head 31 intersects with the central stepped surface 12 to form a central blade 11 with millimeter strength.
  • the central stepped platform 10 and the central stepped surface 12 with millimeter strength on the head 31 extend in the axial direction.
  • the front end intersects the rear cutting surface 5 to form a side micro edge 19 and a cutting middle edge 3; the alloy cutter head 31 has a central step
  • the width of the face 12 is from the axial center to the cutting face 13 which is less than or equal to one-third of the radius of the alloy bit twist drill 1.
  • the alloy cutter bit twist drill 1 of the present invention can also increase the rotation speed by 40%, and increase the cutter feed rate by 40%.
  • the overall drilling efficiency has been increased by 0.96 times.
  • the alloy cutter head twist drill with ordinary structure has 1 drill hole, and the alloy cutter bit twist drill has 1 drill hole with 7698.
  • the number of holes is more than the diameter shift twist drill than the ordinary structure twist drill. Ten times more.
  • the alloy cutter bit twist drill 1 of the third embodiment of the present invention is implemented comprehensively on the basis of the first and second embodiments, and mainly involves drilling holes for machining
  • the alloy cutter head twist drill is integrated with a cutter handle (not shown) including a tapered shank or a straight shank, and a spiral cutter body 4.
  • At least two spiral cutter bodies 4 have grooves milled on the front end of the spiral cutting surface.
  • An alloy cutter head 31 is integrally provided or coupled and formed as a whole.
  • the alloy cutter head 31 is integrally formed with a cutting surface 13 facing the front end of the rotation direction along the axial center of the alloy cutter head twist drill 1.
  • the two spiral cutting surfaces 13 on both sides of the two spiral cutter bodies 4 are arranged in the same groove with the two cutting surfaces 13 integrally arranged with the alloy cutter head 31 respectively;
  • the alloy cutter head twist drill 1 is integrally provided with two spiral cutter bodies 4, and the alloy cutter head 31 of each screw cutter body 4 is formed as a cutting surface 13 on the alloy cutter head 31 facing the cutting direction, and the cutting surface 13 is rearward in the rotation direction.
  • the surface on the outer side is the secondary cutting surface 8.
  • the cutting surface 13 and the secondary cutting surface 8 intersect to form a spiral cutting edge.
  • the surface on the back side of the axial front end of the cutting surface 13 is formed as the rear cutting surface 5.
  • At least the rear cutting surfaces on both sides A chisel edge is formed at the intersection. Both ends of the chisel edge are chamfered to form a chamfered surface 22 and a chamfered edge 2.
  • the cutting surface 13 intersects the rear cutting surface 5 to form a cutting edge 6, and the secondary cutting surface 8 intersects the rear cutting surface 5.
  • a side edge 7 is formed, the spiral cutting edge extends to the alloy tip 31 to form a secondary cutting edge, and the spiral secondary cutting surface 8 extends to the alloy tip 31 to form the secondary cutting surface 8 of the alloy tip 31;
  • a millimeter-strength splitting table 23 and a splitting surface 24 are formed as stepped protrusions.
  • the cutting surface 13 of the alloy cutter head 31 is connected with a millimeter-strength splitting table 23, and the splitting surface 24 is connected to a millimeter-strength
  • the slitting table 23 intersects to form a slitting edge 26, and the slitting surface 24 and the millimeter-strength slitting table 23 intersect the rear cutting surface 5 to form a cutting edge 6 and a side micro edge 19; the alloy cutter head 31 slitting surface 24 From the axial center greater than or equal to one-third of the radius of the alloy cutter head twist 1 drill, to the cutting surface 13 less than or equal to two-thirds of the radius.
  • the alloy cutter head twist drill 1 of the present invention can also increase the speed by 40%, increase the feed rate by 40%, and improve the overall drilling efficiency 0.96 times. Twist drills with common structure drilled 412 holes, alloy cutter head twist drills 1 drilled 5,676 holes. The number of drilled holes is 13 times more than that of alloy cutter head twist drills 1 than with common structure twist drills.
  • the alloy bit twist drill 1 and the alloy bit twist drill 1 of the first embodiment of the present invention mainly relate to drilling tools for machining.
  • the alloy bit twist drill is integrated by
  • the tool shank (not shown) includes a tapered shank or a straight shank, and is composed of a spiral cutter body 4.
  • At least two spiral cutter bodies 4 have grooves milled on the front end of the spiral cutting surface and are integrally or coupled and formed as an integral body provided with an alloy A cutter head 31, the alloy cutter head 31 is integrally formed with a cutting surface 13 facing the front end of the rotation direction along the axial center of the alloy cutter head twist drill 1, and the two sides of the two spiral cutter bodies 4 integrally arranged spirally cut
  • the two cutting surfaces 13 integrally provided with the surface 13 and the alloy cutter head 31 are respectively provided in the same groove;
  • the alloy cutter head twist drill 1 is integrally provided with two spiral cutter bodies 4, and the alloy cutter head 31 of each screw cutter body 4 is formed as a cutting surface 13 on the alloy cutter head 31 facing the cutting direction, and the cutting surface 13 is rearward in the rotation direction.
  • the surface on the outer side is the secondary cutting surface 8.
  • the cutting surface 13 and the secondary cutting surface 8 intersect to form a spiral cutting edge.
  • the surface on the back side of the axial front end of the cutting surface 13 is formed as the rear cutting surface 5.
  • At least the rear cutting surfaces on both sides A chisel edge is formed at the intersection. Both ends of the chisel edge are chamfered to form a chamfered surface 22 and a chamfered edge 2.
  • the cutting surface 13 intersects the rear cutting surface 5 to form a cutting edge 6, and the secondary cutting surface 8 intersects the rear cutting surface 5.
  • a side edge 7 is formed, the spiral cutting edge extends to the alloy tip 31 to form a secondary cutting edge, and the spiral secondary cutting surface 8 extends to the alloy tip 31 to form the secondary cutting surface 8 of the alloy tip 31, or to the alloy tip 31
  • the secondary cutting surface 8 protrudes from the spiral secondary cutting surface 8;
  • the alloy cutter head twist drill 1 has a millimeter-strength micro-cut surface 18 that is recessed on the cutting surface 13 of the alloy cutter head 31 along the outer peripheral edge 17 of the alloy cutter head 31 toward the axial center; the alloy The alloy cutter head 31 of the cutter head twist drill 1 rises on the inner side of the micro-cut surface 18 to form a micro-strengthened stress extension table 20 with millimeter strength; the micro-cut surface 18 with millimeter strength intersects with the secondary cutting surface 8 of the outer periphery.
  • the cutting edge 6 forms a centrifugal force transmission carrier.
  • the cutting surface 13 and the adjacent spiral micro-strengthened stress extension table 16 have millimeter strength.
  • the micro-cutting edge 17 and the side micro-edge 19 formed by the intersection of the micro-cut surface 18 and the rear cutting surface separate the cutting edge 6.
  • the side micro-edge 19 and the micro-strengthened stress extension table 20 form a composite positioning function, which divides the cutting force and reduces The overall cutting force is reduced, and the force of the micro-cutting edge 17 and the inner cutting edge 6 where the outer cutting surface intersects the micro-cut surface 18 and the rear cutting surface is minimized, and the temperature of the alloy cutter head 3131 is reduced, and the tool is most decomposed.
  • the force of the cutting edge at the fragile outer end prolongs the service life of the tool and maintains high strength during the machining process.
  • the alloy cutter head twist drill 1 of the present invention can also increase the speed by 40%, increase the feed rate by 40%, and improve the overall drilling efficiency 0.96 times, alloy twist drills with common structure drilled 526 holes, alloy cutter twist drills 1 drilled 6,316, and the number of holes drilled by alloy cutter twist drills 1 is twelve times more than that of common structure twist drills.
  • the alloy cutter head twist drill 1 of the fourth embodiment of the present invention is implemented comprehensively on the basis of the first to third embodiments.
  • the positioning alloy cutter head The inner side of the spiral cutting surface 13 of the twist drill 1 is close to the axial center O, the central stepped platform 10 with micro-strengthening technology and the raised central stepped surface 12 are erected, and the connecting micro-strengthening technology is erected on the cutting surface 13
  • the central stepped platform 10 of the micro-strengthened technology, the central stepped platform 10 of the micro-strengthened technology and the central stepped surface 12 intersect to form a central edge 11 of the micro-strengthened technology.
  • the front end of the extension and the rear cutting surface 5 intersect to form a side micro edge 19 and a cutting middle edge 3; the inner side of the central stepped platform 10 of the micro-strengthening technology faces the central stepped surface 12 that is convex in the rotation direction;
  • the width of the central stepped surface 12 is less than or equal to one third of the radius of the positioning alloy bit twist drill 1;
  • the micro-strengthened sub-hole table 23 and the sub-section surface 24 are formed as stepped protrusions, the cutting surface 13 is erected on the micro-strengthened sub-hole table 23, and the sub-section surface 24 intersects the micro-reinforced sub-hole 23.
  • the slitting edge 26, the slitting surface 24 and the slitting table 23 of the micro-strengthened technology intersect with the rear cutting surface 5 to form a cutting edge 6 and the side micro-edge 19; the upper inner side of the slitting table 23 of the micro-strengthened technology is convex
  • the starting cutting surface 13 is the slitting surface 24; the width of the slitting surface 24 is greater than or equal to one-third of the radius of the positioning alloy bit twist drill 1 and less than or equal to two-thirds of the radius of the positioning alloy bit twist drill 1.
  • a wear-resistant central stepped platform 10 and a central stepped surface 12 are provided on the cutting surface 13 by positioning the alloy tool head 31 of the alloy bit twist drill 1; 12; And to enhance the stability of the hole table 23, the cutting edge 26 and the cutting surface 24 and the cutting edge 6 are provided with chip breaking and the notch edge 29 that breaks down the cutting force and extends to the rear cutting surface to form a combination of grooves 30. Maximize the cutting efficiency and service life of the positioning alloy cutter head twist drill 1.
  • the alloy cutter head twist drill 1 of the fifth embodiment of the present invention is implemented comprehensively on the basis of the first to fourth embodiments.
  • the centering alloy cutter head The inner side of the spiral cutting surface 13 of the alloy bit 31 of the twist drill 1 is close to the axial center O, the central stepped platform 10 with micro-strengthening technology and the raised central step surface 12 are set upright, and the alloy bit 31 cutting surface 13
  • the central stepped platform 10 of the micro-strengthened technology, the center stepped platform 10 of the micro-strengthened technology and the central stepped surface 12 intersect to form the center edge 11 of the micro-strengthened technology, the cutting surface 13, and the central stepped platform 10 of the micro-strengthened technology.
  • the central stepped surface 12 extending in the axial direction, the front end intersects the rear cutting surface 5 to form a side micro edge 19 and a cutting middle edge 3; the width of the central stepped surface 12 is less than or equal to the radius of the centering alloy bit twist drill 1 one third;
  • the spiral cutting edge 17 starts to the axial center direction of the alloy bit 31 cutting surface 13, recessed micro-strengthening technology micro Section 18; the alloy bit 31 of the centering alloy bit twist drill 1 is raised on the inner side of the micro-section surface 18 to form a micro-strengthening stress extension table 20 of micro-strengthening technology; the alloy bit 31 is of the micro-strengthening technology
  • the micro-cut surface 18 intersects with the secondary cutting surface 8 of the outer periphery to form the micro-cutting edge 17 of the micro-strengthened technology;
  • the micro-cut surface 18 of the micro-strengthened technology on the alloy tip 31 intersects the rear cutting surface 5 to form the micro-strengthened cutting surface Edge 16;
  • the micro-strengthened micro-strengthened stress extension table 20 on the alloy tip 31 intersects the rear cutting surface 5 to form the side micro-strengthened edge 19 of
  • the alloy cutter bit twist drill 1 of the sixth embodiment of the present invention is comprehensively applied on the basis of the first-fifth embodiment.
  • the cutting surface 13 of the cutter head twist drill 1 from the vicinity of the axial center to the vicinity of the radius center of the secondary cutting surface 8 and the spiral line extending parallel to the spiral cutting edge at or near the center of the radius, form stepped protrusions.
  • the micro-strengthening technology of the hole table 23 and the splitting surface 24, the cutting surface 13 is erected on the cutting surface 13 to connect the micro-strengthening technology of the hole table 23, the splitting surface 24 and the micro-strengthening technology of the hole table 23 intersect to form a cutting edge 26 ,
  • the slitting surface 24 and the micro-strengthened hole table 23 intersect the rear cutting surface 5 to form a cutting edge 6 and a side micro-edge 19;
  • the spiral cutting edge 17 starts to be recessed on the cutting surface 13 of the alloy cutter head 31 in the axial center direction and is provided with a micro-strengthened micro-section surface.
  • micro-strengthened stress extension table 20 of the micro-strengthened technology
  • the micro-cut surface 18 and the outer periphery of the micro-strengthened technology The secondary cutting surface 8 of the edge intersects to form the micro-cutting edge 17 of the micro-strengthening technology
  • the micro-cutting surface 18 of the micro-strengthening technology intersects the rear cutting surface 5 to form the cutting micro-edge 16 of the micro-strengthening technology
  • the micro-strengthened stress extension table 20 intersects with the rear cutting surface 5 to form the side micro-edge 19 of the micro-strengthened technology.
  • the seventh embodiment of the present invention is a combined-blade alloy bit twist drill and a combined-blade alloy bit twist drill.
  • the embodiment of the present invention is actually integrated on the basis of the first-sixth embodiment.
  • a central stepped platform 10 with millimeter strength and a raised central stepped surface 12 are erected on the inner side of the spiral cutting surface 13 of the combined-blade alloy cutter head twist drill 1 near the axial center O.
  • the cutting surface A central stepped platform 10 with millimeter strength is connected on the upper part of the connection.
  • the central stepped platform 10 with millimeter strength intersects with the central step surface 12 to form a central edge 11 with millimeter strength, a cutting surface 13, and a central step platform with millimeter strength. 10 and the central stepped surface 12 extend in the axial direction.
  • the front end intersects the rear cutting surface 5 to form a side micro edge 19 and a cutting middle edge 3; Set the central stepped surface 12;
  • the cutting surface 13 of the combined-blade alloy cutter head twist drill 1 from the vicinity of the axial center to the vicinity of the radius center of the secondary cutting surface 8 and the spiral line extending parallel to the spiral cutting edge at or near the center of the radius , Forming a stepped protrusion set with millimeter strength of the hole table 23 and the cutting surface 24, the cutting surface 13 is connected with the millimeter strength of the hole table 23, the cutting surface 24 and the millimeter strength of the hole table 23
  • the cutting edge 26 is formed at the intersection.
  • the cutting surface 24 and the splitting table 23 with millimeter strength intersect with the rear cutting surface 5 to form a cutting edge 6 and a side micro edge 19; the upper inner side of the splitting table 23 with millimeter strength
  • the convex cutting surface 13 is the splitting surface 24;
  • the spiral cutting edge 17 starts to be recessed on the cutting surface 13 of the alloy cutter head 31 in the axial center direction, and a micro-cut surface with millimeter strength is provided.
  • the combined-blade alloy cutter head twist drill 1 has a micro-cut surface 18 of the alloy cutter head 31 that is convex on the inside to form a micro-strengthened stress extension table 20 with millimeter strength; the micro-cut surface 18 with millimeter strength and the outer periphery
  • the secondary cutting surface 8 of the edge intersects to form a micro-cutting edge 17 with millimeter strength; the micro-cut surface 18 with millimeter strength intersects with the rear cutting surface 5 to form a cutting micro-edge 16 with millimeter strength;
  • the micro-strengthening stress extension table 20 intersects the rear cutting surface 5 to form a side micro-edge 19 with millimeter strength.
  • the embodiment of the present invention is comprehensively and selectively applied on the basis of the first-fifth embodiment.
  • the alloy bit of the twist drill is located on the rear cutting surface 5 from the shaft
  • at least one raised step 27 and at least one raised rear cutting surface 5 are provided in a manner that the height of the rear cutting surface 5 in the direction of the outer side edge 7 decreases, and the at least one raised rear cutting surface 5
  • the step 27 intersects the cutting surface 13 at the front end of the rotation direction to form at least one stepped edge 28, and the convex at least one level rear cutting surface 5 intersects the cutting surface 13 at the front end of the rotation direction to form at least one level of raised cutting Blade 6.
  • the rear cutting surface 5 in the direction of the outer side edge 7 is provided with a multi-level standing
  • the step 27 and the raised multi-level rear cutting surface 5, the multi-level rising step 27 intersects the cutting surface 13 at the front end of the rotation direction to form a multi-level rising step edge 28, and a raised multi-level rear cutting surface 5 Intersecting the cutting surface 13 at the front end of the rotation direction to form a multi-level raised cutting edge 6;
  • At least one notch edge 29 is provided on the cutting edge 6 of the alloy bit 31 of the alloy bit twist drill 1, and the notch edge 29 extends toward the rear cutting surface to form a groove 30;
  • a plurality of notch edges 29 may be provided on the alloy bit cutting edge 6 of the alloy bit twist drill, and each notch edge 29 is formed with a groove 30 extending toward the rear cutting surface.
  • At least one level or more is set in a manner that the height of the rear cutting surface 5 in the direction of the outer side edge 7 decreases.
  • the raised step 27 and the raised rear cutting surface 5 of at least one or more levels, the at least one or more raised steps 27 intersect with the cutting surface 13 at the front end of the rotation direction to form at least one or more levels
  • the raised stepped edge 28 and the raised at least one or more levels of rear cutting surface 5 intersect the cutting surface 13 to form at least one or more raised cutting edges 6; and the stepped at least one or more levels
  • At least one or more notch edges 29 are provided on the cutting edge 6, and each notch edge is formed with a groove 30 extending toward the rear cutting surface.
  • the alloy cutter head twist drill of the present invention can also increase the speed by 40%, increase the feed rate by 40%, and increase the overall drilling efficiency by 0.96 times , 526 alloy twist drills with common structure, 5316 combined-blade alloy-bit twist drills.
  • the number of holes for combined-blade alloy twist drills is ten times more than that of ordinary structure twist drills.
  • a comprehensive and selective application is carried out on the alloy cutter head twist drill 1 at the outermost side of the alloy cutter head 31 cutting edge 6 and the spiral auxiliary cutting edge 14 intersection angle is an acute angle; or The angle at which the cutting edge 6 of the outermost alloy cutter head 31 of the alloy cutter bit twist drill intersects with the helical secondary cutting edge 14 is a right angle; or the cutting edge 6 of the outermost alloy cutter head 31 of the alloy cutter twist drill twist drill is at right angles.
  • the angle at which the spiral minor cutting edges 14 intersect is an obtuse angle.
  • the rear cutting surfaces 5 on both sides of the alloy cutter head 31 of the alloy cutter bit twist drill 1 intersect at the axial center to form a chisel edge 3, which is chamfered to form a chamfered surface 22, a chamfered edge 24 and a reduced chisel edge;
  • the rear cutting surfaces 5 on both sides of the alloy bit 31 of the alloy bit twist drill 1 intersect in the axial center to form a chisel edge 3, which is chamfered to form a chamfered surface 22, a chamfered edge 24 and a chisel edgeless Sharp edge O.
  • a cooling hole 32 is integrally provided in the tool shank and the spiral tool body of the alloy cutter head twist drill 1.
  • the tool shank (not shown) of the alloy bit twist drill 1 is a straight shank; or the tool shank (not shown) of the alloy bit twist drill 1 is a taper shank.
  • the tool of the present invention may also have a plurality of spiral blade bodies 4, and each spiral blade body 4 may adopt the structure and structure as described in the above-mentioned embodiment. Its other various forms of combination.

Abstract

一种合金刀头麻花钻,包括刀具柄,螺旋刀体(4)和合金刀头(31),在螺旋刀体的螺旋切削面(13)上铣槽并一体设置有合金刀头(31),螺旋切削面(13)与合金刀头(31)的切削面同槽设置,合金刀头(31)轴中心附近的切削面上设置中心阶梯台(10);中心阶梯台(10)内侧朝旋转方向上凸起的设置中心阶梯面(12);或者在合金刀头(31)的切削面上,从轴中心向外周缘的方向,阶梯状凹陷地设置有分孔台(23)和分切面(24);或在合金刀头(31)的切削面上,从螺旋切削刃(17)开始向轴中心方向凹陷地形成微切面(18),微切面(18)内侧立起形成微强化应力延展台(20)。该合金刀头麻花钻稳定性强,散热效率高,寿命长,且在钻削加工时容易定位。

Description

合金刀头麻花钻 技术领域:
本发明涉及一种合金刀头麻花钻,该合金刀头麻花钻用于机械加工的钻铣工艺及钳工维修中,新的机械加工理论认为分段即阶梯状切削刃切削效率高,然而当阶梯状切削刃逐渐延长后就会发现其效果明显下降直至消失,因此该理论仍然不是真正正确的理论。
背景技术:
目前,机械加工中使用的钻孔刀具由横刃,切削刃,螺旋切削刃,侧刃构成,切削刃在一个螺旋切削面上,呈单一的同位切削结构,切削刃在旋转切削的离心力传导范围内,切削刃同时受到旋转切削力和中心向外的传导力,在双力作用下切削刃和螺旋切削刃相交处的刃口总是极易损坏,现有孔加工刀具在钻孔时由于结构并不绝对平衡而出现摆动现象,单纯靠螺旋切削面稳定刀具造成螺旋切削面和螺旋切削刃损坏,人们普遍的认识是表面越光滑强度越高,新的理论则是有微小间隙的面强度更高,都没有揭露物质的本质结构特性,因此,现有孔加工刀具效率低,易损坏,稳定性差,钻孔精度差。
发明内容:
本发明就是鉴于上述的问题而提出的,以提供一种合金刀头麻花钻为目的,该种刀具具有阻断传导力的功能,散热效率高,强度大,寿命长,且在钻削加工时容易定位,钻孔精度高,人们普遍的认识是表面越光滑强度越高,最近几年的新的理论则是有微小间隙的面强度更高,都没有揭露物质的本质结构特性,在两个固体体积相同的情况下,其中分散成的小体积的固体的表面积大于整体的固体的表面积,固体的整体结构达到一定体积极限时即使是金刚石也会碎裂,按体积受力的情况下小体积的固体受力强度之和远大于整体的固体的受力强度,经过实验验证在常规物理状态下的切削工具上,毫米量级有最明显的高强度特性即毫米强度,本发明是在合金刀头麻花钻进行具有毫米强度的应用。
为达到上述目的,本发明采用下述技术方案:
合金刀头麻花钻,包括刀具柄,螺旋刀体和合金刀头,合金刀头麻花钻一体地设置有至少两个螺旋刀体,在每个螺旋刀体的朝向切削方向的面形成为螺旋切削面,旋转方向上向后的螺旋切削面外面侧的面为螺旋副切削面,螺旋切削面与螺旋副切削面相交形成有螺旋切削刃,螺旋切削面的轴向前端背面侧的面形成为后切削面,至少两侧的后切削面相交形成有横刃,螺旋切削面与后切削面相交形成有切削刃,螺旋副切削面与后切削面相交形成有侧刃,
其特征在于:所述的合金刀头麻花钻一体地由刀具柄和螺旋刀体组成,在螺旋刀体的前端螺旋切削面上铣槽,并一体地设置有一个合金刀头,两侧的螺旋切削面与合金刀头的切削面分别同槽设置,螺旋切削刃延伸至合金刀头上形成副切削刃,螺旋副切削面延伸至合金刀头上形成副切削面;
所述合金刀头麻花钻的合金刀头轴向中心附近的切削面上立起的设置的中心 阶梯台;所述的中心阶梯台的内侧朝向旋转方向上凸起的设置中心阶梯面;所述中心阶梯台与后切削面相交形成有侧微刃;所述的中心阶梯台与中心阶梯面相交形成有中心刃;
所述的合金刀头上中心阶梯面的宽度从轴向中心到小于等于合金刀头麻花钻半径的三分之一的切削面上。
合金刀头麻花钻,包括刀具柄,螺旋刀体和合金刀头,合金刀头麻花钻一体地设置有至少两个螺旋刀体,在每个螺旋刀体的朝向切削方向的面形成为螺旋切削面,旋转方向上向后的螺旋切削面外面侧的面为螺旋副切削面,螺旋切削面与螺旋副切削面相交形成有螺旋切削刃,螺旋切削面的轴向前端背面侧的面形成为后切削面,至少两侧的后切削面相交形成有横刃,螺旋切削面与后切削面相交形成有切削刃,螺旋副切削面与后切削面相交形成有侧刃,
其特征在于:所述的合金刀头麻花钻一体地由刀具柄和螺旋刀体组成,在螺旋刀体的前端螺旋切削面上铣槽,并一体地设置有一个合金刀头,两侧的螺旋切削面与合金刀头的切削面分别同槽设置,螺旋切削刃延伸至合金刀头上形成副切削刃,螺旋副切削面延伸至合金刀头上形成副切削面;
所述合金刀头麻花钻的合金刀头上从轴向中心向外周缘的副切削刃的切削面上,阶梯状凹陷的设置分孔台;所述分孔台的内侧凸起的形成分切面,分切面与后切削面相交形成切削刃;所述的分孔台与后切削面相交形成有侧微刃;所述分孔台与内侧凸起的切削面相交形成有分切刃;
所述分切面从轴向中心大于等于合金刀头麻花钻半径的三分之一,到小于等于合金刀头麻花钻半径的三分之二的切削面上。
合金刀头麻花钻,包括刀具柄,螺旋刀体和合金刀头,合金刀头麻花钻一体地设置有至少两个螺旋刀体,在每个螺旋刀体的朝向切削方向的面形成为螺旋切削面,旋转方向上向后的螺旋切削面外面侧的面为螺旋副切削面,螺旋切削面与螺旋副切削面相交形成有螺旋切削刃,螺旋切削面的轴向前端背面侧的面形成为后切削面,至少两侧的后切削面相交形成有横刃,螺旋切削面与后切削面相交形成有切削刃,螺旋副切削面与后切削面相交形成有侧刃,
其特征在于:所述的合金刀头麻花钻一体地由刀具柄和螺旋刀体组成,在螺旋刀体的前端螺旋切削面上铣槽,并一体地设置有一个合金刀头,两侧的螺旋切削面与合金刀头的切削面分别同槽设置,螺旋切削刃延伸至合金刀头上形成副切削刃,螺旋副切削面延伸至合金刀头上形成副切削面;
所述合金刀头麻花钻的合金刀头切削面上,沿副切削刃开始向轴向中心方向的合金刀头切削面上,凹陷的设置微切面;所述微切面的内侧立起的形成微强化应力延展台;所述的微切面与外周缘的副切削面相交形成微切刃;所述的微切面与后切削面相交形成有切削微刃;所述的微强化应力延展台与后切削面相交形成有侧微刃。
合金刀头麻花钻,包括刀具柄,螺旋刀体和合金刀头,合金刀头麻花钻一体 地设置有至少两个螺旋刀体,在每个螺旋刀体的朝向切削方向的面形成为螺旋切削面,旋转方向上向后的螺旋切削面外面侧的面为螺旋副切削面,螺旋切削面与螺旋副切削面相交形成有螺旋切削刃,螺旋切削面的轴向前端背面侧的面形成为后切削面,至少两侧的后切削面相交形成有横刃,螺旋切削面与后切削面相交形成有切削刃,螺旋副切削面与后切削面相交形成有侧刃,
其特征在于:所述的合金刀头麻花钻一体地由刀具柄和螺旋刀体组成,在螺旋刀体的前端螺旋切削面上铣槽,并一体地设置有一个合金刀头,两侧的螺旋切削面与合金刀头的切削面分别同槽设置,螺旋切削刃延伸至合金刀头上形成副切削刃,螺旋副切削面延伸至合金刀头上形成副切削面;
所述合金刀头麻花钻的合金刀头轴向中心附近的切削面上立起的设置的中心阶梯台;所述的中心阶梯台的内侧朝向旋转方向上凸起的设置中心阶梯面;所述中心阶梯台与后切削面相交形成有侧微刃;所述的中心阶梯台与中心阶梯面相交形成有中心刃;
和一体地在所述合金刀头麻花钻的合金刀头上从轴向中心向外周缘的副切削刃的切削面上,阶梯状凹陷的设置分孔台;所述分孔台的内侧凸起的形成分切面,分切面与后切削面相交形成切削刃;所述的分孔台与后切削面相交形成有侧微刃;所述分孔台与内侧凸起的切削面相交形成有分切刃。
合金刀头麻花钻,包括刀具柄,螺旋刀体和合金刀头,合金刀头麻花钻一体地设置有至少两个螺旋刀体,在每个螺旋刀体的朝向切削方向的面形成为螺旋切削面,旋转方向上向后的螺旋切削面外面侧的面为螺旋副切削面,螺旋切削面与螺旋副切削面相交形成有螺旋切削刃,螺旋切削面的轴向前端背面侧的面形成为后切削面,至少两侧的后切削面相交形成有横刃,螺旋切削面与后切削面相交形成有切削刃,螺旋副切削面与后切削面相交形成有侧刃,
其特征在于:所述的合金刀头麻花钻一体地由刀具柄和螺旋刀体组成,在螺旋刀体的前端螺旋切削面上铣槽,并一体地设置有一个合金刀头,两侧的螺旋切削面与合金刀头的切削面分别同槽设置,螺旋切削刃延伸至合金刀头上形成副切削刃,螺旋副切削面延伸至合金刀头上形成副切削面;
所述合金刀头麻花钻的合金刀头轴向中心附近的切削面上立起的设置的中心阶梯台;所述的中心阶梯台的内侧朝向旋转方向上凸起的设置中心阶梯面;所述中心阶梯台与后切削面相交形成有侧微刃;所述的中心阶梯台与中心阶梯面相交形成有中心刃;
和一体地在所述合金刀头麻花钻的合金刀头切削面上,沿副切削刃开始向轴向中心方向的合金刀头切削面上,凹陷的设置微切面;所述微切面的内侧立起的形成微强化应力延展台;所述的微切面与外周缘的副切削面相交形成微切刃;所述的微切面与后切削面相交形成有切削微刃;所述的微强化应力延展台与后切削面相交形成有侧微刃。
合金刀头麻花钻,包括刀具柄,螺旋刀体和合金刀头,合金刀头麻花钻一体 地设置有至少两个螺旋刀体,在每个螺旋刀体的朝向切削方向的面形成为螺旋切削面,旋转方向上向后的螺旋切削面外面侧的面为螺旋副切削面,螺旋切削面与螺旋副切削面相交形成有螺旋切削刃,螺旋切削面的轴向前端背面侧的面形成为后切削面,至少两侧的后切削面相交形成有横刃,螺旋切削面与后切削面相交形成有切削刃,螺旋副切削面与后切削面相交形成有侧刃,
其特征在于:所述的合金刀头麻花钻一体地由刀具柄和螺旋刀体组成,在螺旋刀体的前端螺旋切削面上铣槽,并一体地设置有一个合金刀头,两侧的螺旋切削面与合金刀头的切削面分别同槽设置,螺旋切削刃延伸至合金刀头上形成副切削刃,螺旋副切削面延伸至合金刀头上形成副切削面;
所述合金刀头麻花钻的合金刀头上从轴向中心向外周缘的副切削刃的切削面上,阶梯状凹陷的设置分孔台;所述分孔台的内侧凸起的形成分切面,分切面与后切削面相交形成切削刃;所述的分孔台与后切削面相交形成有侧微刃;所述分孔台与内侧凸起的切削面相交形成有分切刃;
和一体地在所述合金刀头麻花钻的合金刀头切削面上,沿副切削刃开始向轴向中心方向的合金刀头切削面上,凹陷的设置微切面;所述微切面的内侧立起的形成微强化应力延展台;所述的微切面与外周缘的副切削面相交形成微切刃;所述的微切面与后切削面相交形成有切削微刃;所述的微强化应力延展台与后切削面相交形成有侧微刃。
合金刀头麻花钻,包括刀具柄,螺旋刀体和合金刀头,合金刀头麻花钻一体地设置有至少两个螺旋刀体,在每个螺旋刀体的朝向切削方向的面形成为螺旋切削面,旋转方向上向后的螺旋切削面外面侧的面为螺旋副切削面,螺旋切削面与螺旋副切削面相交形成有螺旋切削刃,螺旋切削面的轴向前端背面侧的面形成为后切削面,至少两侧的后切削面相交形成有横刃,螺旋切削面与后切削面相交形成有切削刃,螺旋副切削面与后切削面相交形成有侧刃,
其特征在于:所述的合金刀头麻花钻一体地由刀具柄和螺旋刀体组成,在螺旋刀体的前端螺旋切削面上铣槽,并一体地设置有一个合金刀头,两侧的螺旋切削面与合金刀头的切削面分别同槽设置,螺旋切削刃延伸至合金刀头上形成副切削刃,螺旋副切削面延伸至合金刀头上形成副切削面;
所述合金刀头麻花钻的合金刀头轴向中心附近的切削面上立起的设置的中心阶梯台;所述的中心阶梯台的内侧朝向旋转方向上凸起的设置中心阶梯面;所述中心阶梯台与后切削面相交形成有侧微刃;所述的中心阶梯台与中心阶梯面相交形成有中心刃;
和一体地在所述合金刀头麻花钻的合金刀头上从轴向中心向外周缘的副切削刃的切削面上,阶梯状凹陷的设置分孔台;所述分孔台的内侧凸起的形成分切面,分切面与后切削面相交形成切削刃;所述的分孔台与后切削面相交形成有侧微刃;所述分孔台与内侧凸起的切削面相交形成有分切刃;
和一体地在所述合金刀头麻花钻的合金刀头切削面上,沿副切削刃开始向轴 向中心方向的合金刀头切削面上,凹陷的设置微切面;所述微切面的内侧立起的形成微强化应力延展台;所述的微切面与外周缘的副切削面相交形成微切刃;所述的微切面与后切削面相交形成有切削微刃;所述的微强化应力延展台与后切削面相交形成有侧微刃。
优选地,在所述合金刀头麻花钻的合金刀头切削刃上设置有至少一个或多个凹口刃;所述的每个凹口刃向后切削面延伸形成有一个凹槽。
优选地,和所述的合金刀头麻花钻的合金刀头所在的后切削面上从轴向中心开始以向外侧的侧刃方向的后切削面上高度降低的方式设置至少一级或多级立起的台阶和凸起的至少一级或多级后切削面,所述立起的台阶与旋转方向前端的切削面相交形成至少一级或多级立起的台阶刃,和凸起的至少一级或多级后切削面与旋转方向前端的切削面相交形成至少一级或多级凸起的切削刃。
优选地,所述的合金刀头麻花钻的合金刀头所在的后切削面上从轴向中心开始以向外侧的侧刃方向的后切削面上高度降低的方式设置至少一级或多级立起的台阶和凸起的至少一级或多级后切削面,所述至少一级或多级立起的台阶与旋转方向前端的切削面相交形成至少一级或多级立起的台阶刃,和凸起的至少一级或多级后切削面与切削面相交形成至少一级或多级凸起的切削刃;和阶梯状的至少一级或多级合金刀头切削刃上设置有至少一个或多个凹口刃,每个凹口刃向后切削面延伸形成有一个凹槽。
优选地,所述合金刀头麻花钻的合金刀头前端两侧的后切削面上,在轴向中心相交形成有倒角面,倒角刃和横刃。
优选地,所述合金刀头麻花钻的合金刀头前端两侧的后切削面上,在轴向中心相交形成有倒角面,倒角刃和无横刃的尖刃。
优选地,在所述合金刀头麻花钻的刀具柄和螺旋刀体中一体地设置有冷却孔。
优选地,在所述的合金刀头麻花钻的合金刀头最外侧的切削刃与螺旋副切削刃相交的夹角为锐角;或所述的合金刀头麻花钻的合金刀头最外侧的切削刃与螺旋副切削刃相交的夹角为直角;或所述的合金刀头麻花钻的合金刀头最外侧的切削刃与螺旋副切削刃相交的夹角为钝角。
优选地,所述的合金刀头麻花钻的刀具柄为直柄;或所述的合金刀头麻花钻的刀具柄为锥柄。
有益效果:
在钻床上进行的对比实验中,以直径20.0的麻花钻为实验,同时热处理,同批次生产,钻孔对象为锻打调质的齿轮精车加工价,钻孔深度35mm,盲孔,普通结构的合金头麻花钻转速和进刀量达到极限的情况下,本发明的合金刀头麻花钻还可以提高转速40%,提高进刀量40%,综合钻孔效率提高一倍以上,钻孔数量合金刀头麻花钻比普通结构的麻花钻多增加十倍以上。
附图说明:
本发明的技术方案和优点将通过结合附图进行详细的说明,在该附图中:
图1是本发明的第一实施方式的合金刀头麻花钻的示意图。
图2是本发明的第二实施方式的合金刀头麻花钻的示意图。
图3是本发明的第三实施方式的合金刀头麻花钻的示意图。
图4是本发明的第四实施方式的合金刀头麻花钻的示意图。
图5是本发明的第五实施方式的合金刀头麻花钻的示意图。
具体实施方式:
下面将结合附图详细地说明本发明的合金刀头麻花钻的优选实施方式,在实施方式1-7中主要以合金刀头麻花钻一体地具有两个螺旋刀体的刀具为例进行说明。
实施方式1:
如图1所示,本发明的第二实施方式的合金刀头麻花钻1,本发明的实施方式实在第一实施方式的基础上进行综合运用,涉及用于机械加工的钻孔刀具,所述的合金刀头麻花钻一体的由刀具柄(未示出)包括锥柄或直柄,和螺旋刀体4组成,至少两个螺旋刀体4的前端螺旋切削面上铣槽并一体地或联接并形成为一体地设置有一个合金刀头31,所述合金刀头31沿合金刀头麻花钻1的轴向中心一体地形成有朝向旋转方向的前端的切削面13,一体地设置的两个螺旋刀体4的两侧螺旋切削面13分别与合金刀头31一体地设置的两个切削面13分别同槽设置;
合金刀头麻花钻1一体地设置有两个螺旋刀体4,在每个螺旋刀体4的合金刀头31上朝向切削方向的面形成为切削面13,旋转方向上向后的切削面13外面侧的面为副切削面8,切削面13与副切削面8相交形成有螺旋切削刃,切削面13的轴向前端背面侧的面形成为后切削面5,至少两侧的后切削面相交形成有横刃,横刃的两端倒角形成有倒角面22和倒角刃2,切削面13与后切削面5相交形成有切削刃6,副切削面8与后切削面5相交形成有侧刃7,螺旋切削刃14延伸至合金刀头31上形成副切削刃,螺旋副切削面8延伸至合金刀头31上形成合金刀头31的副切削面8;
在该合金刀头麻花钻1的合金刀头31切削面13的内侧靠近轴向中心O附近,立起的设置具有毫米强度的中心阶梯台10和凸起的设置中心阶梯面12,合金刀头31的切削面13上立起的联接具有毫米强度的中心阶梯台10,合金刀头31上具有毫米强度的中心阶梯台10与中心阶梯面12相交形成有具有毫米强度的中心刃11,合金刀头31上具有毫米强度的中心阶梯台10和中心阶梯面12沿轴向延伸之前端与后切削面5相交形成有侧微刃19和切削中刃3;所述的合金刀头31上中心阶梯面12的宽度从轴向中心到小于等于合金刀头麻花钻1半径的三分之一的切削面13上。
通过上述设置相当于在钻孔过程中先打了工艺孔再进行钻削,由于是在同一刀具上的设置因此有很高的稳定性,相比普通扩孔钻具有更加稳定高效的优势。
在钻床上进行的对比实验中,以直径20.5的麻花钻为实验,相同材质硬质合 金,同时热处理,同批次生产,钻孔对象为锻打调质的齿轮精车加工价,钻孔深度35mm,盲孔,在普通结构的硬质合金刀头麻花钻转速和进刀量达到极限的情况下,本发明的合金刀头麻花钻1还可以提高转速40%,提高进刀量40%,综合钻孔效率提高0.96倍,普通结构的合金刀头麻花钻1钻孔731个,合金刀头麻花钻1钻孔7698个,钻孔数量比分径移位麻花钻比普通结构的麻花钻多增加十倍多。
实施方式2:
如图2所示,本发明的第三实施方式的合金刀头麻花钻1,本发明的实施方式实在第一——二实施方式的基础上进行综合运用,主要涉及用于机械加工的钻孔刀具,所述的合金刀头麻花钻一体的由刀具柄(未示出)包括锥柄或直柄,和螺旋刀体4组成,至少两个螺旋刀体4的前端螺旋切削面上铣槽并一体地或联接并形成为一体地设置有一个合金刀头31,所述合金刀头31沿合金刀头麻花钻1的轴向中心一体地形成有朝向旋转方向的前端的切削面13,一体地设置的两个螺旋刀体4的两侧螺旋切削面13分别与合金刀头31一体地设置的两个切削面13分别同槽设置;
合金刀头麻花钻1一体地设置有两个螺旋刀体4,在每个螺旋刀体4的合金刀头31上朝向切削方向的面形成为切削面13,旋转方向上向后的切削面13外面侧的面为副切削面8,切削面13与副切削面8相交形成有螺旋切削刃,切削面13的轴向前端背面侧的面形成为后切削面5,至少两侧的后切削面相交形成有横刃,横刃的两端倒角形成有倒角面22和倒角刃2,切削面13与后切削面5相交形成有切削刃6,副切削面8与后切削面5相交形成有侧刃7,螺旋切削刃延伸至合金刀头31上形成副切削刃,螺旋副切削面8延伸至合金刀头31上形成合金刀头31的副切削面8;
在该合金刀头麻花钻1的合金刀头31切削面13上从轴向中心附近到副切削面8的半径中心附近及以该半径的中心或附近沿螺旋切削刃平行延伸的螺旋线上,形成阶梯状凸起设置的具有毫米强度的分孔台23和分切面24,合金刀头31的切削面13上立起的联接具有毫米强度的分孔台23,分切面24与具有毫米强度的分孔台23相交形成有分切刃26,分切面24和具有毫米强度的分孔台23与后切削面5相交形成有切削刃6和侧微刃19;所述合金刀头31分切面24从轴向中心大于等于合金刀头麻花1钻半径的三分之一,到小于等于半径的三分之二的切削面13上。
在钻床上进行的对比实验中,以直径20.5的麻花钻为实验,相同材质硬质合金,同时热处理,同批次生产,钻孔对象为锻打调质的齿轮精车加工价,钻孔深度35mm,盲孔,在普通结构的麻花钻转速和进刀量达到极限的情况下,本发明的合金刀头麻花钻1还可以提高转速40%,提高进刀量40%,综合钻孔效率提高0.96倍,普通结构的麻花钻钻孔412个,合金刀头麻花钻1钻孔5676个,钻孔数量比合金刀头麻花钻1比普通结构的麻花钻多增加十三倍多。
实施方式3:
如图3所示,本发明的第一实施方式的合金刀头麻花钻1,合金刀头麻花钻1,主要涉及用于机械加工的钻孔刀具,所述的合金刀头麻花钻一体的由刀具柄(未示出)包括锥柄或直柄,和螺旋刀体4组成,至少两个螺旋刀体4的前端螺旋切削面上铣槽并一体地或联接并形成为一体地设置有一个合金刀头31,所述合金刀头31沿合金刀头麻花钻1的轴向中心一体地形成有朝向旋转方向的前端的切削面13,一体地设置的两个螺旋刀体4的两侧螺旋切削面13分别与合金刀头31一体地设置的两个切削面13分别同槽设置;
合金刀头麻花钻1一体地设置有两个螺旋刀体4,在每个螺旋刀体4的合金刀头31上朝向切削方向的面形成为切削面13,旋转方向上向后的切削面13外面侧的面为副切削面8,切削面13与副切削面8相交形成有螺旋切削刃,切削面13的轴向前端背面侧的面形成为后切削面5,至少两侧的后切削面相交形成有横刃,横刃的两端倒角形成有倒角面22和倒角刃2,切削面13与后切削面5相交形成有切削刃6,副切削面8与后切削面5相交形成有侧刃7,螺旋切削刃延伸至合金刀头31上形成副切削刃,螺旋副切削面8延伸至合金刀头31上形成合金刀头31的副切削面8,或与合金刀头31副切削面8凸出与螺旋副切削面8;
所述合金刀头麻花钻1的上沿合金刀头31外周缘螺旋切削刃17开始向轴向中心方向的合金刀头31切削面13上凹陷的设置具有毫米强度的微切面18;所述合金刀头麻花钻1的合金刀头31微切面18的内侧立起的形成具有毫米强度的微强化应力延展台20;所述的具有毫米强度的微切面18与外周缘的副切削面8相交形成具有毫米强度的微切刃17;所述的合金刀头31上具有毫米强度的微切面18与后切削面5相交形成具有毫米强度的切削微刃16;所述的合金刀头31上具有毫米强度的微强化应力延展台20与后切削面5相交形成具有毫米强度的侧微刃19。
根据上述结构,由于钻孔切削是圆周运动,在圆周运动的过程中产生了离心力,切削刃6形成了离心力的传导载体,切削面13与相邻的螺旋微强化应力延展台16和具有毫米强度的微切面18与后切削面相交形成的微切刃17、侧微刃19将切削刃6分开,侧微刃19和微强化应力延展台20形成复合定位功能,将切削力进行了分化,减小了整体切削力,最大限度的减小了外侧切削面即微切面18与后切削面相交的微切刃17和内侧切削刃6的受力作用,降低合金刀头3131的温度,分解刀具最易损坏的外端的切削刃的受力,使刀具使用寿命延长,并在加工过程中一直保持高强度。
在钻床上进行的对比实验中,以直径18.5的麻花钻为实验,相同材质硬质合金,同时热处理,同批次生产,钻孔对象为锻打调质的齿轮精车加工价,钻孔深度35mm,盲孔,在普通结构的麻花钻转速和进刀量达到极限的情况下,本发明的合金刀头麻花钻1还可以提高转速40%,提高进刀量40%,综合钻孔效率提高0.96倍,普通结构的合金麻花钻钻孔526个,合金刀头麻花钻1钻孔6316个, 钻孔数量合金刀头麻花钻1比普通结构的麻花钻多增加十二倍多。
实施方式4:
如图1-2,4所示,本发明的第四实施方式的合金刀头麻花钻1,本发明的实施方式实在第一-三实施方式的基础上进行综合运用,在该定位合金刀头麻花钻1的螺旋切削面13的内侧靠近轴向中心O附近,立起的设置微强化技术的中心阶梯台10和凸起的设置中心阶梯面12,切削面13上立起的联接微强化技术的中心阶梯台10,微强化技术的中心阶梯台10与中心阶梯面12相交形成有微强化技术的中心刃11,切削面13、微强化技术的中心阶梯台10和中心阶梯面12沿轴向延伸之前端与后切削面5相交形成有侧微刃19和切削中刃3;所述的微强化技术的中心阶梯台10的内侧朝向旋转方向上凸起的设置中心阶梯面12;所述的中心阶梯面12的宽度小于等于定位合金刀头麻花钻1半径的三分之一;
和一体地在该定位合金刀头麻花钻1的切削面13上从轴向中心附近到副切削面8的半径中心附近及以该半径的中心或附近沿螺旋切削刃平行延伸的螺旋线上,形成阶梯状凸起设置的微强化技术的分孔台23和分切面24,切削面13上立起的联接微强化技术的分孔台23,分切面24与微强化技术的分孔台23相交形成有分切刃26,分切面24和微强化技术的分孔台23与后切削面5相交形成有切削刃6和侧微刃19;所述微强化技术的分孔台23的上部内侧凸起的切削面13为分切面24;所述分切面24的宽度大于等于定位合金刀头麻花钻1半径的三分之一,小于等于定位合金刀头麻花钻1半径的三分之二。
通过在定位合金刀头麻花钻1的合金刀头31设置切削面13上设置的耐磨损的中心阶梯台10和中心阶梯面12;降解切削力的中心阶梯台10中心刃11和中心阶梯面12;和增强稳定性的分孔台23,分切刃26和分切面24和切削刃6上设置断屑并分解切削力的凹口刃29向后切削面延伸形成凹槽30的组合设置可以最大限度的发挥定位合金刀头麻花钻1的切削效率和使用寿命。
实施方式5:
如图1,3,4所示,本发明的第五实施方式的合金刀头麻花钻1,本发明的实施方式实在第一-四实施方式的基础上进行综合运用,在定心合金刀头麻花钻1的合金刀头31螺旋切削面13的内侧靠近轴向中心O附近,立起的设置微强化技术的中心阶梯台10和凸起的设置中心阶梯面12,合金刀头31切削面13上立起的联接微强化技术的中心阶梯台10,微强化技术的中心阶梯台10与中心阶梯面12相交形成有微强化技术的中心刃11,切削面13、微强化技术的中心阶梯台10和中心阶梯面12沿轴向延伸之前端与后切削面5相交形成有侧微刃19和切削中刃3;所述的中心阶梯面12的宽度小于等于定心合金刀头麻花钻1半径的三分之一;
和一体地在所述定心合金刀头麻花钻1上沿合金刀头31外周缘螺旋切削刃17开始向轴向中心方向的合金刀头31切削面13上,凹陷的设置微强化技术的微切面18;所述定心合金刀头麻花钻1的合金刀头31微切面18的内侧凸起的形成 微强化技术的微强化应力延展台20;所述的合金刀头31上微强化技术的微切面18与外周缘的副切削面8相交形成微强化技术的微切刃17;所述的合金刀头31上微强化技术的微切面18与后切削面5相交形成微强化技术的切削微刃16;所述的合金刀头31上微强化技术的微强化应力延展台20与后切削面5相交形成微强化技术的侧微刃19。
实施方式6:
如图2-3,4所示,本发明的第六实施方式的合金刀头麻花钻1,本发明的实施方式实在第一——五实施方式的基础上进行综合运用,在该分孔合金刀头麻花钻1,的切削面13上从轴向中心附近到副切削面8的半径中心附近及以该半径的中心或附近沿螺旋切削刃平行延伸的螺旋线上,形成阶梯状凸起设置的微强化技术的分孔台23和分切面24,切削面13上立起的联接微强化技术的分孔台23,分切面24与微强化技术的分孔台23相交形成有分切刃26,分切面24和微强化技术的分孔台23与后切削面5相交形成有切削刃6和侧微刃19;所述分切面24的宽度大于等于分孔合金刀头麻花钻1半径的三分之一,小于等于分孔合金刀头麻花钻1半径的三分之二;
和一体地在所述分孔合金刀头麻花钻1上沿合金刀头31外周缘螺旋切削刃17开始向轴向中心方向的合金刀头31切削面13上凹陷的设置微强化技术的微切面18;所述分孔合金刀头麻花钻1的合金刀头31的微切面18的内侧凸起的形成微强化技术的微强化应力延展台20;所述的微强化技术的微切面18与外周缘的副切削面8相交形成微强化技术的微切刃17;所述的微强化技术的微切面18与后切削面5相交形成微强化技术的切削微刃16;所述的微强化技术的微强化应力延展台20与后切削面5相交形成微强化技术的侧微刃19。
实施方式7:
如图1-5所示,本发明的第七实施方式的组合刃合金刀头麻花钻,组合刃合金刀头麻花钻,本发明的实施方式实在第一——六实施方式的基础上进行综合运用,在该组合刃合金刀头麻花钻1的螺旋切削面13的内侧靠近轴向中心O附近,立起的设置具有毫米强度的中心阶梯台10和凸起的设置中心阶梯面12,切削面13上立起的联接具有毫米强度的中心阶梯台10,具有毫米强度的中心阶梯台10与中心阶梯面12相交形成有具有毫米强度的中心刃11,切削面13、具有毫米强度的中心阶梯台10和中心阶梯面12沿轴向延伸之前端与后切削面5相交形成有侧微刃19和切削中刃3;所述的具有毫米强度的中心阶梯台10的内侧朝向旋转方向上凸起的设置中心阶梯面12;
和一体地在该组合刃合金刀头麻花钻1的切削面13上从轴向中心附近到副切削面8的半径中心附近及以该半径的中心或附近沿螺旋切削刃平行延伸的螺旋线上,形成阶梯状凸起设置的具有毫米强度的分孔台23和分切面24,切削面13上立起的联接具有毫米强度的分孔台23,分切面24与具有毫米强度的分孔台23相交形成有分切刃26,分切面24和具有毫米强度的分孔台23与后切削面5相交形 成有切削刃6和侧微刃19;所述具有毫米强度的分孔台23的上部内侧凸起的切削面13为分切面24;
和一体地在所述组合刃合金刀头麻花钻1上沿合金刀头31外周缘螺旋切削刃17开始向轴向中心方向的合金刀头31切削面13上凹陷的设置具有毫米强度的微切面18;所述组合刃合金刀头麻花钻1的合金刀头31的微切面18的内侧凸起的形成具有毫米强度的微强化应力延展台20;所述的具有毫米强度的微切面18与外周缘的副切削面8相交形成具有毫米强度的微切刃17;所述的具有毫米强度的微切面18与后切削面5相交形成具有毫米强度的切削微刃16;所述的具有毫米强度的微强化应力延展台20与后切削面5相交形成具有毫米强度的侧微刃19。
如图1-5所示,本发明的实施方式实在第一——五实施方式的基础上进行综合选择性运用,所述合金刀头麻花钻的合金刀头所在的后切削面5上从轴向中心开始以向外侧的侧刃7方向的后切削面5上高度降低的方式设置至少一级立起的台阶27和凸起的至少一级后切削面5,所述至少一级立起的台阶27与旋转方向前端的切削面13相交形成至少一级立起的台阶刃28,和凸起的至少一级后切削面5与旋转方向前端的切削面13相交形成至少一级凸起的切削刃6。
或在所述的合金刀头麻花钻的合金刀头所在的后切削面5上从轴向中心开始以向外侧的侧刃7方向的后切削面5上高度降低的方式设置多级立起的台阶27和凸起的多级后切削面5,所述多级立起的台阶27与旋转方向前端的切削面13相交形成多级立起的台阶刃28,和凸起的多级后切削面5与旋转方向前端的切削面13相交形成多级凸起的切削刃6;
或在合金刀头麻花钻1的合金刀头31切削刃6上设置至少一个凹口刃29,凹口刃29向后切削面延伸形成有一个凹槽30;
或在所述的合金刀头麻花钻的合金刀头切削刃6上可以设置多个凹口刃29,每个凹口刃29向后切削面延伸形成有一个凹槽30。
或在所述的合金刀头麻花钻的合金刀头所在的后切削面5上从轴向中心开始以向外侧的侧刃7方向的后切削面5上高度降低的方式设置至少一级或多级立起的台阶27和凸起的至少一级或多级后切削面5,所述至少一级或多级立起的台阶27与旋转方向前端的切削面13相交形成至少一级或多级立起的台阶刃28,和凸起的至少一级或多级后切削面5与切削面13相交形成至少一级或多级凸起的切削刃6;和阶梯状的至少一级或多级切削刃6上设置有至少一个或多个凹口刃29,每个凹口刃向后切削面延伸形成有一个凹槽30。
在钻床上进行的对比实验中,以直径10.5的麻花钻为实验,相同材质硬质合金,同时热处理,同批次生产,钻孔对象为锻打调质的齿轮精车加工价,钻孔深度35mm,盲孔,在普通结构的麻花钻转速和进刀量达到极限的情况下,本发明合金刀头麻花钻还可以提高转速40%,提高进刀量40%,综合钻孔效率提高0.96倍,普通结构的合金麻花钻钻孔526个,组合刃合金刀头麻花钻钻孔5316个, 钻孔数量组合刃合金刀头麻花钻比普通结构的麻花钻多增加十倍多。
根据上述实验结果麻花钻的使用效率和使用寿命明显大幅度提高,证明本发明的多种结构是延长使用寿命和提高效率的有效方式。
在第一-七实施方式的基础上进行综合选择性运用在所述的合金刀头麻花钻1最外侧的合金刀头31切削刃6与螺旋副切削刃14相交的夹角为锐角;或所述的合金刀头麻花钻最外侧的合金刀头31切削刃6与螺旋副切削刃14相交的夹角为直角;或所述的合金刀头麻花钻最外侧的合金刀头31切削刃6与螺旋副切削刃14相交的夹角为钝角。
所述合金刀头麻花钻1的合金刀头31两侧的后切削面5在轴向中心相交形成有横刃3,经倒角形成倒角面22,倒角刃24和缩小的横刃;
或所述合金刀头麻花钻1的合金刀头31两侧的后切削面5在轴向中心相交形成有横刃3,经倒角形成倒角面22,倒角刃24和无横刃的尖刃O。
所述的合金刀头麻花钻1的刀具柄和螺旋刀体中一体地设置有冷却孔32。
所述的合金刀头麻花钻1的刀具柄(未示出)为直柄;或所述的合金刀头麻花钻1的刀具柄(未示出)为锥柄。
以上虽然以具有两个螺旋刀体4的刀具为例进行了说明,但是本发明的刀具也可具有多个螺旋刀体4,在各螺旋刀体4上可以采用如所述实施方式的结构及其其它多种形式的组合。
以上所述的优选实施方式是说明性的而不是限制性的,在不脱离本发明的主旨和基本特征的情况下,本发明还可以以其他方式进行实施和具体化,本发明的范围由权利要求进行限定,在权利要求限定范围内的所有变形都落入本发明的范围内。

Claims (17)

  1. 合金刀头麻花钻,包括刀具柄,螺旋刀体和合金刀头,合金刀头麻花钻一体地设置有至少两个螺旋刀体,在每个螺旋刀体的朝向切削方向的面形成为螺旋切削面,旋转方向上向后的螺旋切削面外面侧的面为螺旋副切削面,螺旋切削面与螺旋副切削面相交形成有螺旋切削刃,螺旋切削面的轴向前端背面侧的面形成为后切削面,至少两侧的后切削面相交形成有横刃,螺旋切削面与后切削面相交形成有切削刃,螺旋副切削面与后切削面相交形成有侧刃,
    其特征在于:所述的合金刀头麻花钻一体地由刀具柄和螺旋刀体组成,在螺旋刀体的前端螺旋切削面上铣槽,并一体地设置有一个合金刀头,两侧的螺旋切削面与合金刀头的切削面分别同槽设置,螺旋切削刃延伸至合金刀头上形成副切削刃,螺旋副切削面延伸至合金刀头上形成副切削面;
    所述合金刀头麻花钻的合金刀头轴向中心附近的切削面上立起的设置的中心阶梯台;所述的中心阶梯台的内侧朝向旋转方向上凸起的设置中心阶梯面;所述中心阶梯台与后切削面相交形成有侧微刃;所述的中心阶梯台与中心阶梯面相交形成有中心刃;
    所述的合金刀头上中心阶梯面的宽度从轴向中心到小于等于合金刀头麻花钻半径的三分之一的切削面上。
  2. 合金刀头麻花钻,包括刀具柄,螺旋刀体和合金刀头,合金刀头麻花钻一体地设置有至少两个螺旋刀体,在每个螺旋刀体的朝向切削方向的面形成为螺旋切削面,旋转方向上向后的螺旋切削面外面侧的面为螺旋副切削面,螺旋切削面与螺旋副切削面相交形成有螺旋切削刃,螺旋切削面的轴向前端背面侧的面形成为后切削面,至少两侧的后切削面相交形成有横刃,螺旋切削面与后切削面相交形成有切削刃,螺旋副切削面与后切削面相交形成有侧刃,
    其特征在于:所述的合金刀头麻花钻一体地由刀具柄和螺旋刀体组成,在螺旋刀体的前端螺旋切削面上铣槽,并一体地设置有一个合金刀头,两侧的螺旋切削面与合金刀头的切削面分别同槽设置,螺旋切削刃延伸至合金刀头上形成副切削刃,螺旋副切削面延伸至合金刀头上形成副切削面;
    所述合金刀头麻花钻的合金刀头上从轴向中心向外周缘的副切削刃的切削面上,阶梯状凹陷的设置分孔台;所述分孔台的内侧凸起的形成分切面,分切面与后切削面相交形成切削刃;所述的分孔台与后切削面相交形成有侧微刃;所述分孔台与内侧凸起的切削面相交形成有分切刃;
    所述分切面从轴向中心大于等于合金刀头麻花钻半径的三分之一,到小于等于合金刀头麻花钻半径的三分之二的切削面上。
  3. 合金刀头麻花钻,包括刀具柄,螺旋刀体和合金刀头,合金刀头麻花钻一体地设置有至少两个螺旋刀体,在每个螺旋刀体的朝向切削方向的面形成为螺旋切削面,旋转方向上向后的螺旋切削面外面侧的面为螺旋副切削面,螺旋切削面与螺旋副切削面相交形成有螺旋切削刃,螺旋切削面的轴向前端背面侧的面形成为后切削面,至少两侧的后切削面相交形成有横刃,螺旋切削面与后切削面相交 形成有切削刃,螺旋副切削面与后切削面相交形成有侧刃,
    其特征在于:所述的合金刀头麻花钻一体地由刀具柄和螺旋刀体组成,在螺旋刀体的前端螺旋切削面上铣槽,并一体地设置有一个合金刀头,两侧的螺旋切削面与合金刀头的切削面分别同槽设置,螺旋切削刃延伸至合金刀头上形成副切削刃,螺旋副切削面延伸至合金刀头上形成副切削面;
    所述合金刀头麻花钻的合金刀头切削面上,沿副切削刃开始向轴向中心方向的合金刀头切削面上,凹陷的设置微切面;所述微切面的内侧立起的形成微强化应力延展台;所述的微切面与外周缘的副切削面相交形成微切刃;所述的微切面与后切削面相交形成有切削微刃;所述的微强化应力延展台与后切削面相交形成有侧微刃。
  4. 合金刀头麻花钻,包括刀具柄,螺旋刀体和合金刀头,合金刀头麻花钻一体地设置有至少两个螺旋刀体,在每个螺旋刀体的朝向切削方向的面形成为螺旋切削面,旋转方向上向后的螺旋切削面外面侧的面为螺旋副切削面,螺旋切削面与螺旋副切削面相交形成有螺旋切削刃,螺旋切削面的轴向前端背面侧的面形成为后切削面,至少两侧的后切削面相交形成有横刃,螺旋切削面与后切削面相交形成有切削刃,螺旋副切削面与后切削面相交形成有侧刃,
    其特征在于:所述的合金刀头麻花钻一体地由刀具柄和螺旋刀体组成,在螺旋刀体的前端螺旋切削面上铣槽,并一体地设置有一个合金刀头,两侧的螺旋切削面与合金刀头的切削面分别同槽设置,螺旋切削刃延伸至合金刀头上形成副切削刃,螺旋副切削面延伸至合金刀头上形成副切削面;
    所述合金刀头麻花钻的合金刀头轴向中心附近的切削面上立起的设置的中心阶梯台;所述的中心阶梯台的内侧朝向旋转方向上凸起的设置中心阶梯面;所述中心阶梯台与后切削面相交形成有侧微刃;所述的中心阶梯台与中心阶梯面相交形成有中心刃;
    和一体地在所述合金刀头麻花钻的合金刀头上从轴向中心向外周缘的副切削刃的切削面上,阶梯状凹陷的设置分孔台;所述分孔台的内侧凸起的形成分切面,分切面与后切削面相交形成切削刃;所述的分孔台与后切削面相交形成有侧微刃;所述分孔台与内侧凸起的切削面相交形成有分切刃。
  5. 合金刀头麻花钻,包括刀具柄,螺旋刀体和合金刀头,合金刀头麻花钻一体地设置有至少两个螺旋刀体,在每个螺旋刀体的朝向切削方向的面形成为螺旋切削面,旋转方向上向后的螺旋切削面外面侧的面为螺旋副切削面,螺旋切削面与螺旋副切削面相交形成有螺旋切削刃,螺旋切削面的轴向前端背面侧的面形成为后切削面,至少两侧的后切削面相交形成有横刃,螺旋切削面与后切削面相交形成有切削刃,螺旋副切削面与后切削面相交形成有侧刃,
    其特征在于:所述的合金刀头麻花钻一体地由刀具柄和螺旋刀体组成,在螺旋刀体的前端螺旋切削面上铣槽,并一体地设置有一个合金刀头,两侧的螺旋切削面与合金刀头的切削面分别同槽设置,螺旋切削刃延伸至合金刀头上形成副切 削刃,螺旋副切削面延伸至合金刀头上形成副切削面;
    所述合金刀头麻花钻的合金刀头轴向中心附近的切削面上立起的设置的中心阶梯台;所述的中心阶梯台的内侧朝向旋转方向上凸起的设置中心阶梯面;所述中心阶梯台与后切削面相交形成有侧微刃;所述的中心阶梯台与中心阶梯面相交形成有中心刃;
    和一体地在所述合金刀头麻花钻的合金刀头切削面上,沿副切削刃开始向轴向中心方向的合金刀头切削面上,凹陷的设置微切面;所述微切面的内侧立起的形成微强化应力延展台;所述的微切面与外周缘的副切削面相交形成微切刃;所述的微切面与后切削面相交形成有切削微刃;所述的微强化应力延展台与后切削面相交形成有侧微刃。
  6. 合金刀头麻花钻,包括刀具柄,螺旋刀体和合金刀头,合金刀头麻花钻一体地设置有至少两个螺旋刀体,在每个螺旋刀体的朝向切削方向的面形成为螺旋切削面,旋转方向上向后的螺旋切削面外面侧的面为螺旋副切削面,螺旋切削面与螺旋副切削面相交形成有螺旋切削刃,螺旋切削面的轴向前端背面侧的面形成为后切削面,至少两侧的后切削面相交形成有横刃,螺旋切削面与后切削面相交形成有切削刃,螺旋副切削面与后切削面相交形成有侧刃,
    其特征在于:所述的合金刀头麻花钻一体地由刀具柄和螺旋刀体组成,在螺旋刀体的前端螺旋切削面上铣槽,并一体地设置有一个合金刀头,两侧的螺旋切削面与合金刀头的切削面分别同槽设置,螺旋切削刃延伸至合金刀头上形成副切削刃,螺旋副切削面延伸至合金刀头上形成副切削面;
    所述合金刀头麻花钻的合金刀头上从轴向中心向外周缘的副切削刃的切削面上,阶梯状凹陷的设置分孔台;所述分孔台的内侧凸起的形成分切面,分切面与后切削面相交形成切削刃;所述的分孔台与后切削面相交形成有侧微刃;所述分孔台与内侧凸起的切削面相交形成有分切刃;
    和一体地在所述合金刀头麻花钻的合金刀头切削面上,沿副切削刃开始向轴向中心方向的合金刀头切削面上,凹陷的设置微切面;所述微切面的内侧立起的形成微强化应力延展台;所述的微切面与外周缘的副切削面相交形成微切刃;所述的微切面与后切削面相交形成有切削微刃;所述的微强化应力延展台与后切削面相交形成有侧微刃。
  7. 合金刀头麻花钻,包括刀具柄,螺旋刀体和合金刀头,合金刀头麻花钻一体地设置有至少两个螺旋刀体,在每个螺旋刀体的朝向切削方向的面形成为螺旋切削面,旋转方向上向后的螺旋切削面外面侧的面为螺旋副切削面,螺旋切削面与螺旋副切削面相交形成有螺旋切削刃,螺旋切削面的轴向前端背面侧的面形成为后切削面,至少两侧的后切削面相交形成有横刃,螺旋切削面与后切削面相交形成有切削刃,螺旋副切削面与后切削面相交形成有侧刃,
    其特征在于:所述的合金刀头麻花钻一体地由刀具柄和螺旋刀体组成,在螺旋刀体的前端螺旋切削面上铣槽,并一体地设置有一个合金刀头,两侧的螺旋切 削面与合金刀头的切削面分别同槽设置,螺旋切削刃延伸至合金刀头上形成副切削刃,螺旋副切削面延伸至合金刀头上形成副切削面;
    所述合金刀头麻花钻的合金刀头轴向中心附近的切削面上立起的设置的中心阶梯台;所述的中心阶梯台的内侧朝向旋转方向上凸起的设置中心阶梯面;所述中心阶梯台与后切削面相交形成有侧微刃;所述的中心阶梯台与中心阶梯面相交形成有中心刃;
    和一体地在所述合金刀头麻花钻的合金刀头上从轴向中心向外周缘的副切削刃的切削面上,阶梯状凹陷的设置分孔台;所述分孔台的内侧凸起的形成分切面,分切面与后切削面相交形成切削刃;所述的分孔台与后切削面相交形成有侧微刃;所述分孔台与内侧凸起的切削面相交形成有分切刃;
    和一体地在所述合金刀头麻花钻的合金刀头切削面上,沿副切削刃开始向轴向中心方向的合金刀头切削面上,凹陷的设置微切面;所述微切面的内侧立起的形成微强化应力延展台;所述的微切面与外周缘的副切削面相交形成微切刃;所述的微切面与后切削面相交形成有切削微刃;所述的微强化应力延展台与后切削面相交形成有侧微刃。
  8. 如权利要求1-7任一所述的合金刀头麻花钻,
    其特征在于:在所述合金刀头麻花钻的合金刀头切削刃上设置有至少一个或多个凹口刃;所述的每个凹口刃向后切削面延伸形成有一个凹槽。
  9. 如权利要求1-7任一所述的合金刀头麻花钻,
    其特征在于:和所述的合金刀头麻花钻的合金刀头所在的后切削面上从轴向中心开始以向外侧的侧刃方向的后切削面上高度降低的方式设置至少一级或多级立起的台阶和凸起的至少一级或多级后切削面,所述立起的台阶与旋转方向前端的切削面相交形成至少一级或多级立起的台阶刃,和凸起的至少一级或多级后切削面与旋转方向前端的切削面相交形成至少一级或多级凸起的切削刃。
  10. 如权利要求1-7任一所述的合金刀头麻花钻,
    其特征在于:所述的合金刀头麻花钻的合金刀头所在的后切削面上从轴向中心开始以向外侧的侧刃方向的后切削面上高度降低的方式设置至少一级或多级立起的台阶和凸起的至少一级或多级后切削面,所述至少一级或多级立起的台阶与旋转方向前端的切削面相交形成至少一级或多级立起的台阶刃,和凸起的至少一级或多级后切削面与切削面相交形成至少一级或多级凸起的切削刃;和阶梯状的至少一级或多级合金刀头切削刃上设置有至少一个或多个凹口刃,每个凹口刃向后切削面延伸形成有一个凹槽。
  11. 如权利要求1-7任一所述的合金刀头麻花钻,
    其特征在于:所述合金刀头麻花钻的合金刀头前端两侧的后切削面上,在轴向中心相交形成有倒角面,倒角刃和横刃。
  12. 如权利要求1-7任一所述的合金刀头麻花钻,
    其特征在于:所述合金刀头麻花钻的合金刀头前端两侧的后切削面上,在轴 向中心相交形成有倒角面,倒角刃和无横刃的尖刃。
  13. 如权利要求1-7任一所述的合金刀头麻花钻,
    其特征在于:在所述合金刀头麻花钻的刀具柄和螺旋刀体中一体地设置有冷却孔。
  14. 如权利要求1-7任一所述的合金刀头麻花钻,
    其特征在于:在所述的合金刀头麻花钻的合金刀头最外侧的切削刃与螺旋副切削刃相交的夹角为锐角;或所述的合金刀头麻花钻的合金刀头最外侧的切削刃与螺旋副切削刃相交的夹角为直角;或所述的合金刀头麻花钻的合金刀头最外侧的切削刃与螺旋副切削刃相交的夹角为钝角。
  15. 如权利要求1-7任一所述的合金刀头麻花钻,
    其特征在于:所述的合金刀头麻花钻的刀具柄为直柄;或所述的合金刀头麻花钻的刀具柄为锥柄。
  16. 如权利要求1-7任一所述的合金刀头麻花钻,
    其特征在于:所述的合金刀头上中心阶梯面的宽度小于等于合金刀头麻花钻半径的三分之一。
  17. 如权利要求1-7任一所述的合金刀头麻花钻,
    其特征在于:合金刀头的分切面的宽度大于等于合金刀头麻花钻半径的三分之一,小于等于合金刀头麻花钻半径的三分之二
PCT/CN2021/000099 2020-05-17 2021-05-12 合金刀头麻花钻 WO2021232823A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21809185.8A EP4155016A4 (en) 2020-05-17 2021-05-12 TWIST DRILL MADE OF ALLOY TOOL TIP
US17/925,466 US20230191507A1 (en) 2020-05-17 2021-05-12 Alloy tool bit twist drill
ZA2022/12762A ZA202212762B (en) 2020-05-17 2022-11-23 Alloy tool bit twist drill

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN202010428157.XA CN112191894A (zh) 2020-05-17 2020-05-17 定心合金刀头麻花钻
CN202010428157.X 2020-05-17
CN202010428158.4A CN111730111A (zh) 2020-05-17 2020-05-17 合金刀头麻花钻
CN202010428078.9 2020-05-17
CN202010428077.4 2020-05-17
CN202010428191.7A CN112453504A (zh) 2020-05-17 2020-05-17 分孔合金刀头麻花钻
CN202010428191.7 2020-05-17
CN202010428077.4A CN112139569A (zh) 2020-05-17 2020-05-17 组合刃合金刀头麻花钻
CN202010428122.6A CN112139570A (zh) 2020-05-17 2020-05-17 定孔合金刀头麻花钻
CN202010428078.9A CN112191893A (zh) 2020-05-17 2020-05-17 定位合金刀头麻花钻
CN202010428124.5 2020-05-17
CN202010428122.6 2020-05-17
CN202010428080.6A CN111730110A (zh) 2020-05-17 2020-05-17 分切式合金刀头麻花钻
CN202010428158.4 2020-05-17
CN202010428124.5A CN112139571A (zh) 2020-05-17 2020-05-17 加强合金刀头麻花钻
CN202010428080.6 2020-05-17

Publications (1)

Publication Number Publication Date
WO2021232823A1 true WO2021232823A1 (zh) 2021-11-25

Family

ID=78707705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/000099 WO2021232823A1 (zh) 2020-05-17 2021-05-12 合金刀头麻花钻

Country Status (4)

Country Link
US (1) US20230191507A1 (zh)
EP (1) EP4155016A4 (zh)
WO (1) WO2021232823A1 (zh)
ZA (1) ZA202212762B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112894488A (zh) * 2021-03-06 2021-06-04 艾承一(深圳)科技有限公司 一种带有刀具破损的自动报警装置的金属切削机床

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706845A (zh) * 2012-10-01 2014-04-09 李仕清 复合定位切削的螺旋刀具
DE102014010922A1 (de) * 2014-07-28 2016-01-28 Sundwiger Drehtechnik Gmbh Gelöteter Konturbohrer für bleifreie und bleiarme Werkstoffe
CN108262506A (zh) * 2016-12-30 2018-07-10 李仕清 分径移位麻花钻
CN111730111A (zh) * 2020-05-17 2020-10-02 李仕清 合金刀头麻花钻
CN112139570A (zh) * 2020-05-17 2020-12-29 李仕清 定孔合金刀头麻花钻
CN112139571A (zh) * 2020-05-17 2020-12-29 李仕清 加强合金刀头麻花钻
CN112139569A (zh) * 2020-05-17 2020-12-29 李仕清 组合刃合金刀头麻花钻
CN112191894A (zh) * 2020-05-17 2021-01-08 李仕清 定心合金刀头麻花钻
CN112191893A (zh) * 2020-05-17 2021-01-08 李仕清 定位合金刀头麻花钻
CN112453504A (zh) * 2020-05-17 2021-03-09 李仕清 分孔合金刀头麻花钻

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0712929A2 (pt) * 2006-10-13 2012-10-02 Kennametal Inc ponta de broca para uma broca
CN103381496A (zh) * 2012-05-03 2013-11-06 李仕清 复合定位切削的螺旋刀具

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706845A (zh) * 2012-10-01 2014-04-09 李仕清 复合定位切削的螺旋刀具
DE102014010922A1 (de) * 2014-07-28 2016-01-28 Sundwiger Drehtechnik Gmbh Gelöteter Konturbohrer für bleifreie und bleiarme Werkstoffe
CN108262506A (zh) * 2016-12-30 2018-07-10 李仕清 分径移位麻花钻
CN111730111A (zh) * 2020-05-17 2020-10-02 李仕清 合金刀头麻花钻
CN112139570A (zh) * 2020-05-17 2020-12-29 李仕清 定孔合金刀头麻花钻
CN112139571A (zh) * 2020-05-17 2020-12-29 李仕清 加强合金刀头麻花钻
CN112139569A (zh) * 2020-05-17 2020-12-29 李仕清 组合刃合金刀头麻花钻
CN112191894A (zh) * 2020-05-17 2021-01-08 李仕清 定心合金刀头麻花钻
CN112191893A (zh) * 2020-05-17 2021-01-08 李仕清 定位合金刀头麻花钻
CN112453504A (zh) * 2020-05-17 2021-03-09 李仕清 分孔合金刀头麻花钻

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112894488A (zh) * 2021-03-06 2021-06-04 艾承一(深圳)科技有限公司 一种带有刀具破损的自动报警装置的金属切削机床
CN112894488B (zh) * 2021-03-06 2023-01-10 山东瑞尔达科技集团股份有限公司 一种带有刀具破损的自动报警装置的金属切削机床

Also Published As

Publication number Publication date
US20230191507A1 (en) 2023-06-22
ZA202212762B (en) 2023-03-29
EP4155016A4 (en) 2023-11-15
EP4155016A1 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
JP2011514263A (ja) らせん状差込バイト
CN103381497A (zh) 一种复合定位复合切削的定心螺旋刀具
WO2021232823A1 (zh) 合金刀头麻花钻
CN210254406U (zh) 一种直线型三尖-细齿状钻铣复合刀具
CN111730111A (zh) 合金刀头麻花钻
CN112191894A (zh) 定心合金刀头麻花钻
CN112139569A (zh) 组合刃合金刀头麻花钻
CN203918040U (zh) 复合刀具
CN112191893A (zh) 定位合金刀头麻花钻
WO2018120274A1 (zh) 分径移位麻花钻
CN112453504A (zh) 分孔合金刀头麻花钻
KR100628885B1 (ko) 예비구멍 가공된 비철재료의 사상구멍 가공용 초경스텝드릴
CN112139570A (zh) 定孔合金刀头麻花钻
CN112139571A (zh) 加强合金刀头麻花钻
CN113510280A (zh) 微强化同心麻花钻
CN203711944U (zh) 耐用型钻头
CN203401119U (zh) 高强度高耐用钻头
WO2022257891A1 (zh) 微强化同心麻花钻
WO2018120272A1 (zh) 一种螺旋刃铣刀
CN218016242U (zh) 一种加工螺纹刀具
WO2018120273A1 (zh) 微切丝锥
CN215169860U (zh) 一种套管开窗磨鞋
CN217192797U (zh) 一种用于金属切削的多功能倒角定心钻铣刀
CN220278365U (zh) 一种具有横刃的不对称多刃钻头
CN210937446U (zh) 一种铰刀及其牙轮齿孔精铰钻床

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021809185

Country of ref document: EP

Effective date: 20221219