WO2021232429A1 - Srs资源配置方法、srs资源确定方法和装置 - Google Patents

Srs资源配置方法、srs资源确定方法和装置 Download PDF

Info

Publication number
WO2021232429A1
WO2021232429A1 PCT/CN2020/091904 CN2020091904W WO2021232429A1 WO 2021232429 A1 WO2021232429 A1 WO 2021232429A1 CN 2020091904 W CN2020091904 W CN 2020091904W WO 2021232429 A1 WO2021232429 A1 WO 2021232429A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
antenna
terminal
srs resource
srs
Prior art date
Application number
PCT/CN2020/091904
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080001001.1A priority Critical patent/CN111758272B/zh
Priority to PCT/CN2020/091904 priority patent/WO2021232429A1/zh
Priority to US17/999,344 priority patent/US20230208589A1/en
Publication of WO2021232429A1 publication Critical patent/WO2021232429A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to an SRS resource configuration method, an SRS resource configuration device, an SRS resource determination method, an SRS resource determination device, electronic equipment, and a computer-readable storage medium.
  • the base station can communicate with the terminal based on beam scanning.
  • the base station In order to determine the downlink channel state information based on the SRS sent by the terminal, it not only needs to indicate the SRS time-frequency code domain resources to the terminal, but also Instruct the terminal to send the beam direction of the SRS sequence.
  • one SRS resource is configured with one transmit beam direction, that is, all antenna ports used to transmit the SRS sequence use the same transmit beam direction, but this does not help the base station to accurately determine the downlink channel state information based on the received SRS .
  • the embodiments of the present disclosure propose an SRS resource configuration method, an SRS resource configuration device, an SRS resource determination method, an SRS resource determination device, an electronic device, and a computer-readable storage medium to solve technical problems in related technologies.
  • an SRS resource configuration method which is suitable for network equipment, and the method includes:
  • each SRS resource set includes at least one SRS resource;
  • the configuration information is also used to indicate the antenna port identifier of at least one antenna port for transmitting each of the SRS resources, and the transmission beam direction corresponding to each antenna port identifier in the at least one antenna port identifier.
  • the port identification corresponds to different transmit beam directions.
  • a method for determining SRS resources is proposed, which is applicable to a terminal, the terminal includes at least one antenna port, and the method includes:
  • configuration information sent by a network device where the configuration information is used to indicate at least one sounding reference signal SRS resource set, and each of the SRS resource sets includes at least one SRS resource;
  • the configuration information is also used to indicate the antenna port identifier of at least one antenna port for transmitting each of the SRS resources, and the transmission beam direction corresponding to each antenna port identifier in the at least one antenna port identifier.
  • the port identification corresponds to different transmit beam directions;
  • an SRS resource configuration device which is suitable for network equipment, and the device includes:
  • the configuration information sending module is configured to send configuration information to the terminal, where the configuration information is used to indicate at least one sounding reference signal SRS resource set, and each SRS resource set includes at least one SRS resource;
  • the configuration information is also used to indicate the antenna port identifier of at least one antenna port for transmitting each of the SRS resources, and the transmission beam direction corresponding to each antenna port identifier in the at least one antenna port identifier.
  • the port identification corresponds to different transmit beam directions.
  • a device for determining SRS resources which is suitable for a terminal, the terminal includes at least one antenna port, and the device includes:
  • a configuration information receiving module configured to receive configuration information sent by a network device, where the configuration information is used to indicate at least one sounding reference signal SRS resource set, and each SRS resource set includes at least one SRS resource;
  • the configuration information is also used to indicate the antenna port identifier of at least one antenna port for transmitting each of the SRS resources, and the transmission beam direction corresponding to each antenna port identifier in the at least one antenna port identifier.
  • the port identification corresponds to different transmit beam directions;
  • the beam direction determining module is configured to determine, according to the configuration information, a transmission beam direction for each of the antenna ports to transmit the SRS resource.
  • an electronic device including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement the SRS resource configuration method described in any of the foregoing embodiments.
  • an electronic device including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement the SRS resource determination method described in any of the foregoing embodiments.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps in the SRS resource configuration method described in any of the foregoing embodiments are implemented.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps in the SRS resource determination method described in any of the above embodiments are realized. .
  • the configuration information sent by the network device to the terminal can not only indicate the SRS resource set to the terminal, but also send the antenna port identifier of at least one antenna port of each SRS resource in the SRS resource set, and each antenna port Identifies the corresponding transmit beam direction, and different antenna port identifiers correspond to different transmit beam directions. It is conducive to flexibly configuring the transmission beam directions of the SRS resources sent by different antenna ports, which in turn is conducive to ensuring that the network device accurately determines the downlink channel state information based on the received SRS.
  • Fig. 1 is a schematic flowchart showing a method for configuring SRS resources according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic flowchart showing another SRS resource configuration method according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic flowchart showing yet another SRS resource configuration method according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic flowchart showing a method for determining SRS resources according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic flowchart of another method for determining SRS resources according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic flowchart showing another method for determining SRS resources according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic block diagram showing a device for configuring SRS resources according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic block diagram showing another SRS resource configuration device according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic block diagram showing still another SRS resource configuration device according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic block diagram showing a device for determining SRS resources according to an embodiment of the present disclosure.
  • Fig. 11 is a schematic block diagram showing another device for determining SRS resources according to an embodiment of the present disclosure.
  • Fig. 12 is a schematic diagram showing an apparatus for SRS resource configuration according to an embodiment of the present disclosure.
  • Fig. 13 is a schematic diagram showing an apparatus for SRS resource determination according to an embodiment of the present disclosure.
  • Fig. 1 is a schematic flowchart showing a method for configuring SRS resources according to an embodiment of the present disclosure.
  • the SRS resource configuration method shown in this embodiment can be applied to network equipment, and the network equipment can be a 5G base station, a 4G base station, a roadside unit in car networking communication, a vehicle-mounted equipment terminal, and the like.
  • the network device can communicate with the terminal based on beam scanning, and also can communicate with the terminal based on other methods.
  • the terminal includes, but is not limited to, mobile phones, tablets, wearable devices, Internet of Things device terminals, and Industrial Internet of Things.
  • Electronic equipment such as equipment terminals and vehicle-mounted equipment terminals in vehicle networking communications.
  • At least one antenna panel (panel) may be provided in the terminal, and at least one antenna port may be provided on the antenna panel.
  • the antenna port may refer to the port of the antenna in the logical concept or the physical concept in the actual concept. antenna.
  • the SRS resource configuration method may include the following steps:
  • step S101 configuration information is sent to the terminal, where the configuration information is used to indicate at least one sounding reference signal SRS (sounding reference signal) resource set, and each SRS resource set includes at least one SRS resource (the same SRS resource). Concentrate different SRS resources, corresponding to different orthogonal frequency division multiplexing OFDM symbols);
  • the configuration information is also used to indicate the antenna port identifier of at least one antenna port for transmitting each of the SRS resources, and the transmission beam direction corresponding to each antenna port identifier in the at least one antenna port identifier.
  • the port identification corresponds to different transmit beam directions.
  • the configuration information may include spatialrelationinfo information, and then this information may be used to indicate the transmission beam direction identified by at least one antenna port of each SRS resource.
  • transmission configuration indication TCI status information may also be set in the configuration information.
  • the uplink UL TCI may be used to indicate the transmission beam information identified by at least one antenna port of each SRS resource.
  • the network device may indicate at least one SRS resource set to the terminal by sending configuration information to the terminal, and each SRS resource set includes at least one SRS resource, so that the terminal can send the SRS resource through at least one antenna port.
  • the sending of SRS resources in this embodiment and subsequent embodiments specifically refers to sending SRS sequences on SRS time-frequency domain resources.
  • the base station can measure the SRS sent by the terminal to determine the downlink channel state information.
  • the SRS resource used by the terminal to send the SRS can be configured by the base station.
  • the base station may send configuration information to the terminal to indicate the SRS resource set to the terminal through the configuration information.
  • Each SRS resource set includes at least one SRS resource, so that the terminal can access the SRS time-frequency domain resources through the antenna port in the terminal. Send the SRS sequence.
  • the base station defaults that the terminal has only one antenna panel, which will indicate the same transmission beam direction for all antenna ports, as the transmission beam direction for each antenna port to transmit SRS resources. Since the terminal can include multiple antenna ports and can transmit SRS sequences through different antenna ports, the transmission beam direction for sending the SRS sequence indicated to the terminal is specifically the transmission beam direction instructing the antenna port of the terminal to send the SRS sequence.
  • different antenna ports are in different environments.
  • the terminal includes multiple antenna panels
  • different antenna ports can be in different antenna panels, and different antenna panels are most suitable for communicating with the base station.
  • the transmit beam direction can be different.
  • the transmit beam direction that is most suitable for communication with the base station is a, but the transmit beam direction of SRS resources indicated by the base station for all antenna ports is b, then antenna port A will follow the transmit beam direction b.
  • the base station sends the SRS resource, then after the base station receives the SRS, the determined downlink channel state information is the downlink channel state information corresponding to the sending beam direction b.
  • the downlink channel state information that the base station needs to determine is generally the downlink channel state information of the channel corresponding to the transmit beam direction that antenna port A is most suitable for (for example, the best signal quality) to communicate with the base station, that is, the channel corresponding to the transmit beam direction a
  • all antenna ports are configured with the same transmit beam direction to send SRS resources, which makes it difficult for the base station to accurately determine the downlink channel state information of each beam direction based on the received SRS.
  • the configuration information sent by the network device to the terminal can not only indicate the SRS resource set to the terminal, but also indicate the antenna port identifier of at least one antenna port of each SRS resource in the SRS resource set, and each antenna port Identifies the corresponding transmit beam direction, and different antenna port identifiers correspond to different transmit beam directions.
  • a certain SRS resource can correspond to one antenna port (that is, it can be sent through one antenna port), or it can correspond to multiple antenna ports (it can also be sent through multiple antenna ports), which can be based on The terminal’s antenna transceiver capability is determined.
  • the antenna receiving and transmitting capability is N transmitting and N receiving, that is, the number of receiving antennas is the same as the number of transmitting antennas, then one SRS resource can correspond to N antenna ports, and N is 1, 2, or 4, etc.; for example, the antenna receiving capability is one Sending and receiving, that is, there are two receiving antennas and one transmitting antenna in the terminal, then one SRS resource can correspond to one antenna port; for example, the antenna receiving capability is two sending and four receiving, that is, there are 4 receivers in the terminal. Antennas and 2 transmit antennas, then one SRS resource can correspond to 2 antenna ports.
  • this embodiment indicates the antenna port identifier of at least one antenna port for transmitting each SRS resource through the configuration information, and the transmission beam direction corresponding to each antenna port identifier in the at least one antenna port identifier, and different antenna port identifiers correspond to different antenna port identifiers.
  • Send beam direction since this embodiment indicates the antenna port identifier of at least one antenna port for transmitting each SRS resource through the configuration information, and the transmission beam direction corresponding to each antenna port identifier in the at least one antenna port identifier, and different antenna port identifiers correspond to different antenna port identifiers.
  • Send beam direction Send beam direction.
  • the transmission beam directions of the SRS resource can be different for different antenna ports. According to this, it is beneficial to flexibly configure the transmission beam directions for transmitting SRS resources on different antenna ports, and thus is beneficial to ensure that the network device accurately determines the downlink channel state information based on the received SRS.
  • Fig. 2 is a schematic flowchart showing another SRS configuration method according to an embodiment of the present disclosure. As shown in Figure 2, before sending the configuration information to the terminal, the method further includes:
  • step S102 the number of SRS resources in each SRS resource set is set, where the number of SRS resources is proportional to the number of receiving antennas in the terminal and inversely proportional to the number of transmitting antennas in the terminal.
  • the network device can also set the number of SRS resources in each SRS resource set, where it can be set according to the number of receiving antennas and the number of transmitting antennas in the terminal. Specifically, the number of SRS resources and the number of the terminal can be set. It is directly proportional to the number of receiving antennas and inversely proportional to the number of transmitting antennas in the terminal.
  • the number of receiving antennas in the terminal is Rx
  • the number of transmitting antennas is Tx
  • the number of SRS resources in the SRS resource set can be set as k*Rx/Tx, where k is a proportional coefficient, which can be set as required.
  • the antenna capability of the specific terminal is two transmitting and four receiving. , Then each antenna panel is provided with 1 transmitting antenna and 2 receiving antennas. Since there are 4 receiving antennas, the network device needs to receive 4 SRS resources to determine the downlink channel state information corresponding to the 4 receiving antennas. For example, channel state information (CSI).
  • CSI channel state information
  • different antenna panels can be used for simultaneous transmission (specifically uplink transmission), that is, two antenna panels each have a transmitting antenna port, and for the same SRS resource, these two can be used
  • the two transmit antenna ports are X and Y
  • the two SRS resources are SRS1 and SRS2.
  • SRS1 can be sent at the first time through X and Y
  • the number of SRS resources is proportional to the number of antenna panels in the terminal, where the terminal includes multiple antenna panels, and the multiple antenna panels cannot be used for simultaneous transmission.
  • the number of SRS resources in the SRS resource set is proportional to the number of receiving antennas in the terminal, and inversely proportional to the number of transmitting antennas in the terminal, if multiple antennas in the terminal cannot be used for simultaneous transmission , Then you can further set the number of SRS resources to be proportional to the number of antenna panels in the terminal.
  • each antenna panel is provided with 1 transmitting antenna and 2 Since there are four receiving antennas, the network device needs to receive four SRS resources to determine the downlink channel state information corresponding to the four receiving antennas.
  • the two transmit antenna ports are X and Y
  • the 4 SRS resources are SRS1, SRS2, SRS3, and SRS4.
  • the configuration information includes beam direction indication information
  • the beam direction indication information is used to indicate the transmission beam direction
  • the beam direction indication information includes a reference signal identifier
  • the reference signal identifier includes at least one of the following:
  • Synchronization signal block (SSB) identification non-zero power channel state information reference signal (NZP CSI-RS) identification, SRS identification, positioning reference signal PRS (Positioning Reference Signal).
  • SSB Synchronization signal block
  • NZP CSI-RS non-zero power channel state information reference signal
  • SRS positioning reference signal PRS (Positioning Reference Signal).
  • the network device may carry the reference signal identifier in the configuration information, and the terminal may pre-store the association relationship between the reference signal identifier and the transmission beam direction, so that the reference signal identifier may be used as the beam direction indication information to indicate to the terminal
  • the terminal can query the transmission beam direction corresponding to the reference signal identifier in the configuration information according to the association relationship.
  • the beam direction indication information is further used to indicate at least one of the following:
  • the reference signal identifier corresponds to the identifier of the cell to which the reference signal belongs (which may be the serving cell where the terminal is located, or the neighboring cell of the serving cell where the terminal is located);
  • the reference signal identifier corresponds to the identifier of the Transmission Reception Point (TRP for short, which may be the transmission and reception point of the cell) to which the reference signal belongs;
  • TRP Transmission Reception Point
  • the reference signal identifier corresponds to the index of the antenna panel to which the reference signal belongs
  • the reference signal identifies the control resource pool index (CORESET pool index, where the full name of CORESET is called Control Resource Set) of the antenna panel or the transmission receiving point to which the corresponding reference signal belongs.
  • CORESET pool index where the full name of CORESET is called Control Resource Set
  • the network device may configure multiple reference signal sets for the terminal.
  • the reference signal set may contain multiple reference signals.
  • the reference signal identifiers corresponding to different reference signals in the same reference signal set are different, but In different reference signal sets, the same reference signal identifier may exist.
  • the network device may also indicate the reference signal set identifier of the reference signal corresponding to the reference signal identifier through the beam direction indication information, so as to further specifically indicate the terminal.
  • the reference signal may be related to the cell, and the network device may further indicate the identity of the cell through the beam direction indication information.
  • the indicated cell s identity is Cell1 and the indicated reference signal identity is SSB2, then the terminal can determine to send The beam direction is the beam direction corresponding to the SSB with the reference signal identifier SSB2 corresponding to Cell1.
  • the reference signal can also be related to the transmission and reception point, so the network device can further indicate the identification of the transmission and reception point to which the reference signal corresponding to the reference signal identification belongs through the beam direction indication information; the reference signal can also be related to the antenna panel, Then the network device can further indicate the index of the antenna panel to which the reference signal corresponding to the reference signal identifier belongs through the beam direction indication information; the transmission reception point index or the antenna panel index can also be indicated by the control resource pool index associated with it, then The network device may further indicate the index of the control resource pool of the antenna panel or the transmission receiving point through the beam direction indication information.
  • Fig. 3 is a schematic flowchart showing yet another SRS configuration method according to an embodiment of the present disclosure. As shown in Figure 3, before sending the configuration information to the terminal, the method further includes:
  • step S103 antenna information sent by the terminal is received, where the antenna information includes at least one of the following:
  • the terminal may first send antenna information to the network device, so that the network device can generate configuration information based on the antenna information.
  • the antenna can determine the number of SRS resources in the configured SRS resource set based on the antenna information, and then generate the configuration based on this.
  • the antenna information includes at least one of the following:
  • the network device sets the number of SRS resources in each SRS resource set, so that the number of SRS resources is proportional to the number of receiving antennas in the terminal, and is proportional to the number of receiving antennas in the terminal.
  • the number of transmitting antennas is inversely proportional, and then the configuration information is generated based on the number of SRS resources in the determined SRS resource set.
  • the network device can set the number of SRS resources in each SRS resource set so that the number of SRS resources is proportional to the number of antenna panels in the terminal, and then The configuration information is generated based on the number of SRS resources in the determined SRS resource set.
  • all antenna ports in the terminal belong to the same antenna panel.
  • all antenna ports can be selectively configured to transmit SRS resources with the same transmit beam direction.
  • the time interval between different SRS resources configured by the network equipment can be greater than the preset time interval, and the preset time interval can be equal to the time required for the terminal to switch antenna ports, so as to ensure that the terminal has enough time to switch antenna ports to smoothly Send SRS resources.
  • Fig. 4 is a schematic flowchart showing a method for determining SRS resources according to an embodiment of the present disclosure.
  • the SRS resource determination method shown in this embodiment can be applied to a terminal, the terminal can communicate with a network device, the network device can be a 5G base station, a 4G base station, a roadside unit in car networking communication, a vehicle-mounted device terminal, and the like.
  • the network device can communicate with the terminal based on beam scanning, and can also communicate with the terminal based on other methods.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a wearable device, an Internet of Things device terminal, an industrial Internet of Things device terminal, Electronic equipment such as in-vehicle equipment terminals in car networking communication.
  • At least one antenna panel may be provided in the terminal, and at least one antenna port may be provided on the antenna panel.
  • the antenna port may refer to an antenna port in a logical concept or a physical antenna in an actual concept.
  • the method for determining SRS resources includes:
  • step S201 receiving configuration information sent by a network device, where the configuration information is used to indicate at least one sounding reference signal SRS resource set, and each SRS resource set includes at least one SRS resource;
  • the configuration information is also used to indicate the antenna port identifier of at least one antenna port for transmitting each of the SRS resources, and the transmission beam direction corresponding to each antenna port identifier in the at least one antenna port identifier.
  • the port identification corresponds to different transmit beam directions;
  • step S202 the transmission beam direction for each of the antenna ports to transmit the SRS resource is determined according to the configuration information.
  • the network device may indicate at least one SRS resource set to the terminal by sending configuration information to the terminal, and each SRS resource set includes at least one SRS resource, so that the terminal can send the SRS resource through the antenna port.
  • the configuration information sent by the network device to the terminal can not only indicate the SRS resource set to the terminal, but also send the antenna port identifier of at least one antenna port of each SRS resource in the SRS resource set, and the transmit beam corresponding to each antenna port identifier Direction, and different antenna port identifiers correspond to different transmit beam directions.
  • this embodiment indicates the antenna port identifier of at least one antenna port for transmitting each SRS resource through the configuration information, and the transmission beam direction corresponding to each antenna port identifier in the at least one antenna port identifier, and different antenna port identifiers correspond to different antenna port identifiers.
  • Send beam direction since this embodiment indicates the antenna port identifier of at least one antenna port for transmitting each SRS resource through the configuration information, and the transmission beam direction corresponding to each antenna port identifier in the at least one antenna port identifier, and different antenna port identifiers correspond to different antenna port identifiers.
  • Send beam direction Send beam direction.
  • the transmission beam directions of the SRS resource can be different for different antenna ports.
  • the number of SRS resources is directly proportional to the number of receiving antennas in the terminal, and inversely proportional to the number of transmitting antennas in the terminal.
  • the terminal includes multiple antenna panels, and the multiple antenna panels cannot be used for simultaneous transmission, and the number of SRS resources is proportional to the number of antenna panels.
  • Fig. 5 is a schematic flowchart showing another method for determining SRS resources according to an embodiment of the present disclosure.
  • the configuration information includes beam direction indication information
  • the beam direction indication information includes a reference signal identifier
  • the transmission beam direction for each of the antenna ports to transmit the SRS resource is determined according to the configuration information.
  • step S2021 the transmission beam direction is determined according to the reference signal identifier.
  • the reference signal identifier includes at least one of the following:
  • Synchronization signal block identification non-zero power channel state information reference signal identification, SRS identification, positioning reference signal PRS identification.
  • the network device may carry the reference signal identifier in the configuration information, and the terminal may pre-store the association relationship between the reference signal identifier and the transmission beam direction, so that the reference signal identifier may be used as the beam direction indication information to indicate to the terminal
  • the terminal can query the transmission beam direction corresponding to the reference signal identifier in the configuration information according to the association relationship.
  • the determining, according to the configuration information, the transmission beam direction for each of the antenna ports to transmit the SRS resource further includes:
  • the index of the antenna panel to which the reference signal corresponding to the reference signal identifier belongs
  • the reference signal identifies the antenna panel or the control resource pool index of the transmission and reception point to which the corresponding reference signal belongs.
  • Fig. 6 is a schematic flowchart showing another method for determining SRS resources according to an embodiment of the present disclosure. As shown in FIG. 6, before receiving the configuration information sent by the network device, the method further includes:
  • step S203 antenna information is sent to the network device, where the antenna information includes at least one of the following:
  • the terminal may first send antenna information to the network device, so that the network device can generate configuration information based on the antenna information.
  • the antenna can determine the number of SRS resources in the configured SRS resource set based on the antenna information, and then generate the configuration based on this.
  • the antenna information includes at least one of the following:
  • the network device sets the number of SRS resources in each SRS resource set, so that the number of SRS resources is proportional to the number of receiving antennas in the terminal, and is proportional to the number of receiving antennas in the terminal.
  • the number of transmitting antennas is inversely proportional, and then the configuration information is generated based on the number of SRS resources in the determined SRS resource set.
  • the network device can set the number of SRS resources in each SRS resource set so that the number of SRS resources is proportional to the number of antenna panels in the terminal, and then The configuration information is generated based on the number of SRS resources in the determined SRS resource set.
  • the present disclosure also provides embodiments of the SRS resource configuration device and the SRS resource determination device.
  • Fig. 7 is a schematic block diagram showing a device for configuring SRS resources according to an embodiment of the present disclosure.
  • the SRS resource configuration apparatus shown in this embodiment may be applicable to network equipment, which may be 5G base stations, 4G base stations, roadside units in vehicle networking communications, vehicle-mounted equipment terminals, and the like.
  • the network device can communicate with the terminal based on beam scanning, or communicate with the terminal based on other methods.
  • the terminal includes, but is not limited to, mobile phones, tablets, wearable devices, Internet of Things device terminals, and industrial Internet of Things.
  • Electronic equipment such as equipment terminals and vehicle-mounted equipment terminals in vehicle networking communications.
  • At least one antenna panel (panel) may be provided in the terminal, and at least one antenna port may be provided on the antenna panel.
  • the antenna port may refer to the port of the antenna in the logical concept or the physical concept in the actual concept. antenna.
  • the SRS resource configuration apparatus may include:
  • the configuration information sending module 101 is configured to send configuration information to a terminal, where the configuration information is used to indicate at least one sounding reference signal SRS resource set, and each SRS resource set includes at least one SRS resource;
  • the configuration information is also used to indicate the antenna port identifier of at least one antenna port for transmitting each of the SRS resources, and the transmission beam direction corresponding to each antenna port identifier in the at least one antenna port identifier.
  • the port identification corresponds to different transmit beam directions.
  • Fig. 8 is a schematic block diagram showing another SRS resource configuration device according to an embodiment of the present disclosure. As shown in Figure 8, the device further includes:
  • the number setting module 102 is configured to set the number of SRS resources in each SRS resource set, where the number of SRS resources is proportional to the number of receiving antennas in the terminal and is proportional to the number of transmitting antennas in the terminal Inversely proportional.
  • the number of SRS resources is proportional to the number of antenna panels in the terminal, where the terminal includes multiple antenna panels, and the multiple antenna panels cannot be used for simultaneous transmission.
  • the configuration information includes beam direction indication information
  • the beam direction indication information is used to indicate the transmission beam direction
  • the beam direction indication information includes a reference signal identifier
  • the reference signal identifier includes at least one of the following:
  • Synchronization signal block identification non-zero power channel state information reference signal identification, SRS identification, positioning reference signal PRS identification.
  • the beam direction indication information is further used to indicate at least one of the following:
  • the index of the antenna panel to which the reference signal corresponding to the reference signal identifier belongs
  • the reference signal identifies the antenna panel or the control resource pool index of the transmission and reception point to which the corresponding reference signal belongs.
  • Fig. 9 is a schematic block diagram showing still another SRS resource configuration device according to an embodiment of the present disclosure. As shown in Figure 9, the device further includes:
  • the antenna information receiving module 103 is configured to receive antenna information sent by the terminal, where the antenna information includes at least one of the following:
  • Fig. 10 is a schematic block diagram showing a device for determining SRS resources according to an embodiment of the present disclosure.
  • the SRS resource determination apparatus shown in this embodiment can be applied to a terminal, and the terminal can communicate with a network device.
  • the network device can be a 5G base station, a 4G base station, a roadside unit in car networking communication, a vehicle equipment terminal, etc.
  • the network device can communicate with the terminal based on beam scanning, and can also communicate with the terminal based on other methods.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a wearable device, an Internet of Things device terminal, an industrial Internet of Things device terminal, Electronic equipment such as in-vehicle equipment terminals in car networking communication.
  • At least one antenna panel may be provided in the terminal, and at least one antenna port may be provided on the antenna panel.
  • the antenna port may refer to an antenna port in a logical concept or a physical antenna in an actual concept.
  • the SRS resource determination device includes:
  • the configuration information receiving module 201 is configured to receive configuration information sent by a network device, where the configuration information is used to indicate at least one sounding reference signal SRS resource set, and each SRS resource set includes at least one SRS resource;
  • the configuration information is also used to indicate the antenna port identifier of at least one antenna port for transmitting each of the SRS resources, and the transmission beam direction corresponding to each antenna port identifier in the at least one antenna port identifier.
  • the port identification corresponds to different transmit beam directions;
  • the beam direction determining module 202 is configured to determine, according to the configuration information, a transmission beam direction for each of the antenna ports to transmit the SRS resource.
  • the number of SRS resources is directly proportional to the number of receiving antennas in the terminal, and inversely proportional to the number of transmitting antennas in the terminal.
  • the terminal includes multiple antenna panels, and the multiple antenna panels cannot be used for simultaneous transmission, and the number of SRS resources is proportional to the number of antenna panels.
  • the configuration information includes beam direction indication information
  • the beam direction indication information includes a reference signal identifier
  • the beam direction determining module is configured to determine the transmitting beam direction according to the reference signal identifier.
  • the reference signal identifier includes at least one of the following:
  • Synchronization signal block identification non-zero power channel state information reference signal identification, SRS identification, positioning reference signal PRS identification.
  • the determining, according to the configuration information, the transmission beam direction for each of the antenna ports to transmit the SRS resource further includes:
  • the index of the antenna panel to which the reference signal corresponding to the reference signal identifier belongs
  • the reference signal identifies the antenna panel or the control resource pool index of the transmission and reception point to which the corresponding reference signal belongs.
  • Fig. 11 is a schematic block diagram showing another device for determining SRS resources according to an embodiment of the present disclosure. As shown in Figure 11, the device further includes:
  • the antenna information sending module 203 is configured to send antenna information to the network device, where the antenna information includes at least one of the following:
  • the relevant part can refer to the part of the description of the method embodiment.
  • the device embodiments described above are merely illustrative, and the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement without creative work.
  • the present disclosure also proposes an electronic device, including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement the SRS resource configuration method described in any of the foregoing embodiments.
  • the present disclosure also proposes an electronic device, including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement the SRS resource determination method described in any of the foregoing embodiments.
  • the present disclosure also proposes a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps in the SRS resource configuration method described in any of the above embodiments are implemented.
  • the present disclosure also proposes a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps in the SRS resource determination method described in any of the above embodiments are implemented.
  • FIG. 12 is a schematic diagram of an apparatus 1200 for SRS resource configuration according to an embodiment of the present disclosure.
  • the apparatus 1200 may be provided as a base station. 12, the device 1200 includes a processing component 1222, a wireless transmitting/receiving component 1224, an antenna component 1226, and a signal processing part specific to a wireless interface.
  • the processing component 1222 may further include one or more processors. One of the processors in the processing component 1222 may be configured to implement the SRS resource configuration method described in any of the foregoing embodiments.
  • Fig. 13 is a schematic diagram showing an apparatus 1300 for determining SRS resources according to an embodiment of the present disclosure.
  • the device 1300 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 1300 may include one or more of the following components: a processing component 1302, a memory 1304, a power supply component 1306, a multimedia component 1308, an audio component 1310, an input/output (I/O) interface 1312, a sensor component 1314, And the communication component 1316.
  • a processing component 1302 a memory 1304, a power supply component 1306, a multimedia component 1308, an audio component 1310, an input/output (I/O) interface 1312, a sensor component 1314, And the communication component 1316.
  • the processing component 1302 generally controls the overall operations of the device 1300, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1302 may include one or more processors 1320 to execute instructions to complete all or part of the steps of the foregoing SRS resource determination method.
  • the processing component 1302 may include one or more modules to facilitate the interaction between the processing component 1302 and other components.
  • the processing component 1302 may include a multimedia module to facilitate the interaction between the multimedia component 1308 and the processing component 1302.
  • the memory 1304 is configured to store various types of data to support operations in the device 1300. Examples of these data include instructions for any application or method operating on the device 1300, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 1304 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 1306 provides power to various components of the device 1300.
  • the power supply component 1306 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the device 1300.
  • the multimedia component 1308 includes a screen that provides an output interface between the device 1300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 1308 includes a front camera and/or a rear camera. When the device 1300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1310 is configured to output and/or input audio signals.
  • the audio component 1310 includes a microphone (MIC), and when the device 1300 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 1304 or transmitted via the communication component 1316.
  • the audio component 1310 further includes a speaker for outputting audio signals.
  • the I/O interface 1312 provides an interface between the processing component 1302 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 1314 includes one or more sensors for providing the device 1300 with various aspects of status assessment.
  • the sensor component 1314 can detect the on/off status of the device 1300 and the relative positioning of the components.
  • the component is the display and the keypad of the device 1300.
  • the sensor component 1314 can also detect the position change of the device 1300 or a component of the device 1300. , The presence or absence of contact between the user and the device 1300, the orientation or acceleration/deceleration of the device 1300, and the temperature change of the device 1300.
  • the sensor assembly 1314 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 1314 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1316 is configured to facilitate wired or wireless communication between the apparatus 1300 and other devices.
  • the device 1300 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, 4G LTE, 5G NR, or a combination thereof.
  • the communication component 1316 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1316 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 1300 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing equipment (DSPD), programmable logic devices (PLD), field programmable Implemented by a gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components, and used to execute the above-mentioned method for determining SRS resources.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing equipment
  • PLD programmable logic devices
  • FPGA field programmable Implemented by a gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components, and used to execute the above-mentioned method for determining SRS resources.
  • non-transitory computer-readable storage medium including instructions, such as a memory 1304 including instructions, which can be executed by the processor 1320 of the device 1300 to complete the foregoing SRS resource determination method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及SRS资源配置方法,包括:向终端发送配置信息,其中,所述配置信息用于指示至少一个探测参考信号SRS资源集,每个所述SRS资源集包含至少一个SRS资源;所述配置信息还用于指示发送每个所述SRS资源的至少一个天线端口的天线端口标识,以及所述至少一个天线端口标识中每个天线端口标识对应的发送波束方向,不同的所述天线端口标识对应不同的发送波束方向。根据本公开的技术方案,有利于灵活配置不同天线端口发送SRS资源的发送波束方向,进而有利于确保网络设备基于接收到的SRS准确地确定下行信道状态信息。

Description

SRS资源配置方法、SRS资源确定方法和装置 技术领域
本公开涉及通信技术领域,具体而言,涉及SRS资源配置方法、SRS资源配置装置、SRS资源确定方法、SRS资源确定装置、电子设备和计算机可读存储介质。
背景技术
在5G NR(New Radio,新空口)中,基站可以基于波束扫描的方式与终端通信,为了基于终端发送的SRS来确定下行信道状态信息,不仅需要向终端指示SRS时频码域资源,还需要指示终端发送SRS序列的发送波束方向。
在相关技术中,一个SRS资源配置一个发送波束方向,即用于发送该SRS序列的所有天线端口使用相同的发送波束方向,但是这并不利于基站基于接收到的SRS准确地确定下行信道状态信息。
发明内容
有鉴于此,本公开的实施例提出了SRS资源配置方法、SRS资源配置装置、SRS资源确定方法、SRS资源确定装置、电子设备和计算机可读存储介质,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种SRS资源配置方法,适用于网络设备,所述方法包括:
向终端发送配置信息,其中,所述配置信息用于指示至少一个探测参考信号SRS资源集,每个所述SRS资源集包含至少一个SRS资源;
所述配置信息还用于指示发送每个所述SRS资源的至少一个天线端口的天线端口标识,以及所述至少一个天线端口标识中每个天线端口标识对应的发送波束方向,不同的所述天线端口标识对应不同的发送波束方向。
根据本公开实施例的第二方面,提出一种SRS资源确定方法,适用于终端,所述终端包括至少一个天线端口,所述方法包括:
接收网络设备发送的配置信息,其中,所述配置信息用于指示至少一个探测参 考信号SRS资源集,每个所述SRS资源集包含至少一个SRS资源;
所述配置信息还用于指示发送每个所述SRS资源的至少一个天线端口的天线端口标识,以及所述至少一个天线端口标识中每个天线端口标识对应的发送波束方向,不同的所述天线端口标识对应不同的发送波束方向;
根据所述配置信息确定每个所述天线端口发送所述SRS资源的发送波束方向。
根据本公开实施例的第三方面,提出一种SRS资源配置装置,适用于网络设备,所述装置包括:
配置信息发送模块,被配置为向终端发送配置信息,其中,所述配置信息用于指示至少一个探测参考信号SRS资源集,每个所述SRS资源集包含至少一个SRS资源;
所述配置信息还用于指示发送每个所述SRS资源的至少一个天线端口的天线端口标识,以及所述至少一个天线端口标识中每个天线端口标识对应的发送波束方向,不同的所述天线端口标识对应不同的发送波束方向。
根据本公开实施例的第四方面,提出一种SRS资源确定装置,适用于终端,所述终端包括至少一个天线端口,所述装置包括:
配置信息接收模块,被配置为接收网络设备发送的配置信息,其中,所述配置信息用于指示至少一个探测参考信号SRS资源集,每个所述SRS资源集包含至少一个SRS资源;
所述配置信息还用于指示发送每个所述SRS资源的至少一个天线端口的天线端口标识,以及所述至少一个天线端口标识中每个天线端口标识对应的发送波束方向,不同的所述天线端口标识对应不同的发送波束方向;
波束方向确定模块,被配置为根据所述配置信息确定每个所述天线端口发送所述SRS资源的发送波束方向。
根据本公开实施例的第五方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的SRS资源配置方法。
根据本公开实施例的第六方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的SRS资源确定方法。
根据本公开实施例的第七方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述的SRS资源配置方法中的步骤。
根据本公开实施例的第八方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现权上述任一实施例所述的SRS资源确定方法中的步骤。
根据本公开的实施例,网络设备向终端发送的配置信息,不仅可以向终端指示SRS资源集,还可以发送SRS资源集中每个SRS资源的至少一个天线端口的天线端口标识,以及每个天线端口标识对应的发送波束方向,并且不同的天线端口标识对应不同的发送波束方向。有利于灵活配置不同天线端口发送SRS资源的发送波束方向,进而有利于确保网络设备基于接收到的SRS准确地确定下行信道状态信息。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种SRS资源配置方法的示意流程图。
图2是根据本公开的实施例示出的另一种SRS资源配置方法的示意流程图。
图3是根据本公开的实施例示出的又一种SRS资源配置方法的示意流程图。
图4是根据本公开的实施例示出的一种SRS资源确定方法的示意流程图。
图5是根据本公开的实施例示出的另一种SRS资源确定方法的示意流程图。
图6是根据本公开的实施例示出的又一种SRS资源确定方法的示意流程图。
图7是根据本公开的实施例示出的一种SRS资源配置装置的示意框图。
图8是根据本公开的实施例示出的另一种SRS资源配置装置的示意框图。
图9是根据本公开的实施例示出的又一种SRS资源配置装置的示意框图。
图10是根据本公开的实施例示出的一种SRS资源确定装置的示意框图。
图11是根据本公开的实施例示出的另一种SRS资源确定装置的示意框图。
图12是根据本公开的实施例示出的一种用于SRS资源配置的装置的示意图。
图13是根据本公开的实施例示出的一种用于SRS资源确定的装置的示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1是根据本公开的实施例示出的一种SRS资源配置方法的示意流程图。本实施例所示的SRS资源配置方法可以适用于网络设备,所述网络设备可以是5G基站、4G基站,车联网通信中的路侧单元、车载设备终端等。所述网络设备可以基于波束(beam)扫描的方式与终端通信,也可以基于其他方式与终端通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、物联网设备终端、工业物联网设备终端、车联网通信中的车载设备终端等电子设备。在所述终端中可以设置有至少一个天线面板(panel),在天线面板上可以设置有至少一个天线端口,所述天线端口可以是指逻辑概念中天线的端口,也可以是实际概念中的物理天线。
如图1所示,所述SRS资源配置方法可以包括以下步骤:
在步骤S101中,向终端发送配置信息,其中,所述配置信息用于指示至少一个探测参考信号SRS(sounding reference signal)资源集,每个所述SRS资源集包含至少一个SRS资源(同一SRS资源集中不同的SRS资源,对应不同的正交频分复用OFDM符号);
所述配置信息还用于指示发送每个所述SRS资源的至少一个天线端口的天线端口标识,以及所述至少一个天线端口标识中每个天线端口标识对应的发送波束方向,不同的所述天线端口标识对应不同的发送波束方向。例如在配置信息中可以包含spatialrelationinfo信息,那么可以通过该信息指示每个所述SRS资源的至少一个天线 端口标识的发送波束方向。除了spatialrelationinfo信息,也可以在配置信息中设置传输配置指示TCI状态信息,具体可以是上行UL TCI来指示每个所述SRS资源的至少一个天线端口标识的发送波束信息。
在一个实施例中,网络设备可以通过向终端发送配置信息,向终端指示至少一个SRS资源集,每个所述SRS资源集包含至少一个SRS资源,从而使得终端可以通过至少一个天线端口发送SRS资源。需要说明的是,本实施例以及后续实施例中的发送SRS资源,具体是指在SRS时频域资源上发送SRS序列。
在5G NR系统中,基于信道的互易性,基站可以测量终端发送的SRS来确定下行信道状态信息。其中,终端发送SRS所用的SRS资源,可以由基站配置。
具体地,基站可以向终端发送配置信息,以通过配置信息向终端指示SRS资源集,每个SRS资源集中包括至少一个SRS资源,从而使得终端可以通过终端中的天线端口在SRS时频域资源上发送SRS序列。
在相关技术中,基站默认终端只有一个天线面板,会为所有天线端口指示相同的发送波束方向,作为每个天线端口发送SRS资源的发送波束方向。由于终端可以包括多个天线端口,可以通过不同的天线端口发送SRS序列,因此向终端指示的发送SRS序列的发送波束方向,具体是指示终端的天线端口发送SRS序列的发送波束方向。
但是在实际情况下,不同天线端口所处的环境不同,例如在终端包括多个天线面板的情况,不同天线端口可以处于不同的天线面板,而对于不同天线面板而言,最适于与基站通信的发送波束方向可以有所不同。
例如对于天线端口A而言,最适于与基站通信的发送波束方向为a,但是基站为所有天线端口指示的发送SRS资源的发送波束方向为b,那么天线端口A会按照发送波束方向b向基站发送SRS资源,那么基站接收到SRS之后,所确定的下行信道状态信息,就是发送波束方向b对应的下行信道状态信息。
但是基站所需确定的下行信道状态信息,一般是天线端口A最适于(例如信号质量最好)与基站通信的发送波束方向对应信道的下行信道状态信息,也即发送波束方向a对应信道的下行信道状态信息,因此为所有天线端口配置相同发送波束方向发送SRS资源,导致基站基于接收到的SRS难以准确地确定各个波束方向的下行信道状态信息。
根据本公开的实施例,网络设备向终端发送的配置信息,不仅可以向终端指示 SRS资源集,还可以指示SRS资源集中每个SRS资源的至少一个天线端口的天线端口标识,以及每个天线端口标识对应的发送波束方向,并且不同的天线端口标识对应不同的发送波束方向。
需要说明的是,对于某个SRS资源而言,可以对应一个天线端口(也即可以通过一个天线端口发送),也可以对应多个天线端口(也可以通过多个天线端口发送),这可以根据终端的天线收发能力来确定。
例如天线收发能力为N发N收,也即接收天线的数目和发送天线的数目相同,那么一个SRS资源可以对应N个天线端口,N为1、2、或者4等;例如天线接收能力为一发两收,也即终端中设置有2个接收天线和1个发送天线,那么一个SRS资源可以对应1个天线端口;例如天线接收能力为两发四收,也即终端中设置有4个接收天线和2个发送天线,那么一个SRS资源可以对应2个天线端口。
由于本实施例通过配置信息指示发送每个SRS资源的至少一个天线端口的天线端口标识,以及至少一个天线端口标识中每个天线端口标识对应的发送波束方向,并且不同的天线端口标识对应不同的发送波束方向。
对于某个SRS资源而言,即使需要通过多个天线端口来发送这个SRS资源,那么不同天线端口发送SRS资源的发送波束方向可以不同。据此,有利于灵活配置不同天线端口发送SRS资源的发送波束方向,进而有利于确保网络设备基于接收到的SRS准确地确定下行信道状态信息。
图2是根据本公开的实施例示出的另一种SRS配置方法的示意流程图。如图2所示,在向终端发送配置信息之前,所述方法还包括:
在步骤S102中,设置每个所述SRS资源集中SRS资源的数目,其中,所述SRS资源的数目与所述终端中接收天线的数目成正比,与所述终端中发送天线的数目成反比。
在一个实施例中,网络设备还可以设置每个SRS资源集中SRS资源的数目,其中,可以根据终端中接收天线的数目和发送天线的数目进行设置,具体地,可以设置SRS资源的数目与终端中接收天线的数目成正比,与终端中发送天线的数目成反比。
例如终端中接收天线的数目为Rx,发送天线的数目为Tx,那么可以设置SRS资源集中SRS资源的数目为k*Rx/Tx,其中k为比例系数,可以根据需要进行设置。
例如终端包括n(n≥1)个天线面板,以n=2为例,每个天线面板上接收天线 和发送天线的关系(例如比值)是相同的,具体终端的天线能力为二发四收,那么每个天线面板上设置有1个发送天线和2个接收天线,由于存在4个接收天线,那么网络设备需要接收4个SRS资源才能确定这4个接收天线分别对应的下行信道状态信息,例如信道状态信息CSI(channel state information)。
若在这种情况下,不同天线面板能用于同时发送(具体是上行发送),也就是说,两个天线面板各自具有一个发送天线端口,针对同一个SRS资源而言,可以使用这两个发送天线端口在该SRS时频域资源发送SRS序列,那么可以设置k=1,也即每个SRS资源集中包含2/1,也即2个SRS资源。
例如两个发射天线端口分别为X和Y,2个SRS资源分别为SRS1和SRS2,可以通过X和Y在第一时间发送SRS1,以及通过X和Y在第二时间发送SRS2,从而共计发送2×2=4次SRS资源,进而确保网络设备能够接收4个SRS资源,以便准确确定4个接收天线分别对应的下行信道状态信息。
可选地,所述SRS资源的数目与所述终端中天线面板的数目成正比,其中,所述终端包括多个天线面板,且所述多个天线面板不能用于同时发送。
在一个实施例中,在SRS资源集中SRS资源的数目与终端中接收天线的数目成正比,与终端中发送天线的数目成反比的基础上,若终端中多个天线慢板不能用于同时发送,那么可以进一步设置SRS资源的数目与终端中天线面板的数目成正比。
仍以n=2为例,每个天线面板上接收天线和发送天线的关系是相同的,具体终端具体的天线能力为二发四收,那么每个天线面板上设置有1个发送天线和2个接收天线,由于存在4个接收天线,那么网络设备需要接收4个SRS资源才能确定这4个接收天线分别对应的下行信道状态信息。
由于不同天线面板不能用于同时发送(具体是上行发送),也就是说,两个天线面板各自具有一个发送天线,针对同一个SRS资源而言,只能分别使用这两个发送天线之一在该SRS时频域资源发送SRS序列,那么可以设置k等于天线面板的数目n,n=2,则k*Rx/Tx=2×4/2=4,也即每个SRS资源集中包含4个SRS资源,从而通过2个发送天线,可以依次发送这4个SRS资源。
例如两个发射天线端口分别为X和Y,4个SRS资源分别为SRS1、SRS2、SRS3和SRS4,可以通过X在第一时间发送SRS1和在第二时间发送SRS2,通过Y在第三时间发送SRS3和在第四时间发送SRS4,从而共计发送1×4=4个SRS资源,进而确 保网络设备能够接收4个SRS资源,以便准确确定4个接收天线分别对应的下行信道状态信息。
可选地,所述配置信息包括波束方向指示信息,所述波束方向指示信息用于指示所述发送波束方向,其中,所述波束方向指示信息包括参考信号标识。
可选地,所述参考信号标识包括以下至少之一:
同步信号块(SSB)标识、非零功率的信道状态信息参考信号(NZP CSI-RS)标识、SRS标识、定位参考信号PRS(Positioning Reference Signal)。
在一个实施例中,网络设备可以在配置信息中携带参考信号标识,而终端中可以预先存储有参考信号标识与发送波束方向的关联关系,从而可以通过参考信号标识作为波束方向指示信息向终端指示发送波束方向,终端接收到配置信息后,可以根据所述关联关系查询配置信息中参考信号标识对应的发送波束方向。
可选地,所述波束方向指示信息还用于指示以下至少之一:
所述参考信号标识对应的参考信号所属的小区(可以是终端所处的服务小区serving cell,也可以是终端所处服务小区的邻小区neighboring cell)的标识;
所述参考信号标识对应的参考信号所属的传输接收点Transmission Reception Point(简称TRP,例如可以是小区的传输接收点)的标识;
所述参考信号标识对应的参考信号所属的天线面板的索引(panel index);
所述参考信号标识对应的参考信号所属的天线面板或传输接收点的控制资源集池索引(CORESETpool index,其中CORESET的全称为Control Resource Set)。
在一个实施例中,网络设备可以为终端配置多个参考信号集合,在参考信号集合中可以包含多个参考信号,同一个参考信号集合中不同的参考信号对应的参考信号标识是不同的,但是在不同的参考信号集合中,可以存在相同的参考信号标识。那么为了准确地区分参考信号标识对应的参考信号,网络设备还可以通过波束方向指示信息指示该参考信号标识对应的参考信号所述的参考信号集合标识,以对终端进行进一步具体地指示。
其中,参考信号可以与小区是相关的,那么网络设备可以通过波束方向指示信息进一步指示小区的标识,例如所指示的小区的标识为Cell1,所指示的参考信号标识为SSB2,那么终端可以确定发送波束方向为Cell1对应的参考信号标识为SSB2的SSB 对应的波束方向。
参考信号还可以与传输接收点是相关的,那么网络设备可以通过波束方向指示信息进一步指示该参考信号标识对应的参考信号所属的传输接收点的标识;参考信号还可以与天线面板是相关的,那么网络设备可以通过波束方向指示信息进一步指示该参考信号标识对应的参考信号所属的天线面板的索引;传输接收点索引或天线面板索引还可以通过与之关联的控制资源集池索引来指示,那么网络设备可以通过波束方向指示信息进一步指示天线面板或传输接收点的控制资源集池的索引。
图3是根据本公开的实施例示出的又一种SRS配置方法的示意流程图。如图3所示,在向终端发送配置信息之前,所述方法还包括:
在步骤S103中,接收所述终端发送的天线信息,其中,所述天线信息包括以下至少之一:
所述终端中天线面板的数目、每个所述天线面板中发送天线的数目和接收天线的数目、所述终端中的多个天线面板是否能够用于同时发送。
在一个实施例中,终端可以先向网络设备发送天线信息,以便网络设备可以根据天线信息生成配置信息,例如可以使得天线基于天线信息确定配置的SRS资源集中SRS资源的数目,进而基于此生成配置信息来向终端指示SRS资源集中SRS资源的数目。
具体地,天线信息包括以下至少之一:
所述终端中天线面板的数目、每个所述天线面板中发送天线的数目和接收天线的数目、所述终端中的多个天线面板是否能够用于同时发送。
例如根据天线面板中发送天线的数目和接收天线的数目,网络设备设置每个所述SRS资源集中SRS资源的数目,使得SRS资源的数目与所述终端中接收天线的数目成正比,与终端中发送天线的数目成反比,然后基于所确定的SRS资源集中SRS资源的数目生成配置信息。
例如根据终端中的多个天线面板是否能够用于同时发送,网络设备可以设置每个所述SRS资源集中SRS资源的数目,使得SRS资源的数目与所述终端中天线面板的数目成正比,然后基于所确定的SRS资源集中SRS资源的数目生成配置信息。
另外,在终端中只有一个天线面板的情况下,那么终端中的所有天线端口都属 于同一个天线面板,在这种情况下,可以选择性地配置所有天线端口发送SRS资源的发送波束方向相同。
并且网络设备所配置的不同SRS资源之间的时间间隔,可以大于预设时间间隔,预设时间间隔可以等于终端切换天线端口所需时长,以确保终端具有足够的时间切换天线端口,从而顺利地发送SRS资源。
图4是根据本公开的实施例示出的一种SRS资源确定方法的示意流程图。本实施例所示的SRS资源确定方法可以适用于终端,所述终端可以与网络设备通信,所述网络设备可以是5G基站4G基站,车联网通信中的路侧单元、车载设备终端等。所述网络设备可以基于波束扫描的方式与终端通信,也可以基于其他方式与终端通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、物联网设备终端、工业物联网设备终端、车联网通信中的车载设备终端等电子设备。在所述终端中可以设置有至少一个天线面板,在天线面板上可以设置有至少一个天线端口,所述天线端口可以是指逻辑概念中天线的端口,也可以是实际概念中的物理天线。
如图4所示,所述SRS资源确定方法包括:
在步骤S201中,接收网络设备发送的配置信息,其中,所述配置信息用于指示至少一个探测参考信号SRS资源集,每个所述SRS资源集包含至少一个SRS资源;
所述配置信息还用于指示发送每个所述SRS资源的至少一个天线端口的天线端口标识,以及所述至少一个天线端口标识中每个天线端口标识对应的发送波束方向,不同的所述天线端口标识对应不同的发送波束方向;
在步骤S202中,根据所述配置信息确定每个所述天线端口发送所述SRS资源的发送波束方向。
在一个实施例中,网络设备可以通过向终端发送配置信息,向终端指示至少一个SRS资源集,每个所述SRS资源集包含至少一个SRS资源,从而使得终端可以通过天线端口发送SRS资源。
并且,网络设备向终端发送的配置信息,不仅可以向终端指示SRS资源集,还可以发送SRS资源集中每个SRS资源的至少一个天线端口的天线端口标识,以及每个天线端口标识对应的发送波束方向,并且不同的天线端口标识对应不同的发送波束方向。
由于本实施例通过配置信息指示发送每个SRS资源的至少一个天线端口的天 线端口标识,以及至少一个天线端口标识中每个天线端口标识对应的发送波束方向,并且不同的天线端口标识对应不同的发送波束方向。
对于某个SRS资源而言,即使需要通过多个天线端口来发送这个SRS资源,那么不同天线端口发送SRS资源的发送波束方向可以不同。
据此,有利于灵活配置不同天线端口发送SRS资源的发送波束方向,进而有利于确保网络设备基于接收到的SRS准确地确定下行信道状态信息。
可选地,所述SRS资源的数目与所述终端中接收天线的数目成正比,与所述终端中发送天线的数目成反比。
可选地,所述终端包括多个天线面板,且所述多个天线面板不能用于同时发送,所述SRS资源的数目与所述天线面板的数目成正比。
图5是根据本公开的实施例示出的另一种SRS资源确定方法的示意流程图。如图5所示,所述配置信息包括波束方向指示信息,所述波束方向指示信息包括参考信号标识,所述根据所述配置信息确定每个所述天线端口发送所述SRS资源的发送波束方向包括:
在步骤S2021中,根据所述参考信号标识确定所述发送波束方向。
可选地,所述参考信号标识包括以下至少之一:
同步信号块标识、非零功率的信道状态信息参考信号标识、SRS标识、定位参考信号PRS标识。
在一个实施例中,网络设备可以在配置信息中携带参考信号标识,而终端中可以预先存储有参考信号标识与发送波束方向的关联关系,从而可以通过参考信号标识作为波束方向指示信息向终端指示发送波束方向,终端接收到配置信息后,可以根据所述关联关系查询配置信息中参考信号标识对应的发送波束方向。
可选地,所述根据所述配置信息确定每个所述天线端口发送所述SRS资源的发送波束方向还包括:
根据所述波束方向指示信息确定以下至少之一:
所述参考信号标识对应的参考信号所属的小区的标识;
所述参考信号标识对应的参考信号所属的传输接收点的标识;
所述参考信号标识对应的参考信号所属的天线面板的索引;
所述参考信号标识对应的参考信号所属的天线面板或传输接收点的控制资源集池索引。
图6是根据本公开的实施例示出的又一种SRS资源确定方法的示意流程图。如图6所示,在接收网络设备发送的配置信息之前,所述方法还包括:
在步骤S203中,向所述网络设备发送天线信息,其中,所述天线信息包括以下至少之一:
所述终端中天线面板的数目、每个所述天线面板中发送天线的数目和接收天线的数目、所述终端中的多个天线面板是否能够用于同时发送。
在一个实施例中,终端可以先向网络设备发送天线信息,以便网络设备可以根据天线信息生成配置信息,例如可以使得天线基于天线信息确定配置的SRS资源集中SRS资源的数目,进而基于此生成配置信息来向终端指示SRS资源集中SRS资源的数目。
具体地,天线信息包括以下至少之一:
所述终端中天线面板的数目、每个所述天线面板中发送天线的数目和接收天线的数目、所述终端中的多个天线面板是否能够用于同时发送。
例如根据天线面板中发送天线的数目和接收天线的数目,网络设备设置每个所述SRS资源集中SRS资源的数目,使得SRS资源的数目与所述终端中接收天线的数目成正比,与终端中发送天线的数目成反比,然后基于所确定的SRS资源集中SRS资源的数目生成配置信息。
例如根据终端中的多个天线面板是否能够用于同时发送,网络设备可以设置每个所述SRS资源集中SRS资源的数目,使得SRS资源的数目与所述终端中天线面板的数目成正比,然后基于所确定的SRS资源集中SRS资源的数目生成配置信息。
与前述的SRS资源配置方法和SRS资源确定方法的实施例相对应,本公开还提供了SRS资源配置装置和SRS资源确定装置的实施例。
图7是根据本公开的实施例示出的一种SRS资源配置装置的示意框图。本实施例所示的SRS资源配置装置可以适用于网络设备,所述网络设备可以是5G基站、4G基站,车联网通信中的路侧单元、车载设备终端等。所述网络设备可以基于波束(beam) 扫描的方式与终端通信,也可以基于其他方式与终端通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、物联网设备终端、工业物联网设备终端、车联网通信中的车载设备终端等电子设备。在所述终端中可以设置有至少一个天线面板(panel),在天线面板上可以设置有至少一个天线端口,所述天线端口可以是指逻辑概念中天线的端口,也可以是实际概念中的物理天线。
如图7所示,所述SRS资源配置装置可以包括:
配置信息发送模块101,被配置为向终端发送配置信息,其中,所述配置信息用于指示至少一个探测参考信号SRS资源集,每个所述SRS资源集包含至少一个SRS资源;
所述配置信息还用于指示发送每个所述SRS资源的至少一个天线端口的天线端口标识,以及所述至少一个天线端口标识中每个天线端口标识对应的发送波束方向,不同的所述天线端口标识对应不同的发送波束方向。
图8是根据本公开的实施例示出的另一种SRS资源配置装置的示意框图。如图8所示,所述装置还包括:
数目设置模块102,被配置为设置每个所述SRS资源集中SRS资源的数目,其中,所述SRS资源的数目与所述终端中接收天线的数目成正比,与所述终端中发送天线的数目成反比。
可选地,所述SRS资源的数目与所述终端中天线面板的数目成正比,其中,所述终端包括多个天线面板,且所述多个天线面板不能用于同时发送。
可选地,所述配置信息包括波束方向指示信息,所述波束方向指示信息用于指示所述发送波束方向,其中,所述波束方向指示信息包括参考信号标识。
可选地,所述参考信号标识包括以下至少之一:
同步信号块标识、非零功率的信道状态信息参考信号标识、SRS标识、定位参考信号PRS标识。
可选地,所述波束方向指示信息还用于指示以下至少之一:
所述参考信号标识对应的参考信号所属的小区的标识;
所述参考信号标识对应的参考信号所属的传输接收点的标识;
所述参考信号标识对应的参考信号所属的天线面板的索引;
所述参考信号标识对应的参考信号所属的天线面板或传输接收点的控制资源集池索引。
图9是根据本公开的实施例示出的又一种SRS资源配置装置的示意框图。如图9所示,所述装置还包括:
天线信息接收模块103,被配置为接收所述终端发送的天线信息,其中,所述天线信息包括以下至少之一:
所述终端中天线面板的数目、每个所述天线面板中发送天线的数目和接收天线的数目、所述终端中的多个天线面板是否能够用于同时发送;。
图10是根据本公开的实施例示出的一种SRS资源确定装置的示意框图。本实施例所示的SRS资源确定装置可以适用于终端,所述终端可以与网络设备通信,所述网络设备可以是5G基站、4G基站,车联网通信中的路侧单元、车载设备终端等。所述网络设备可以基于波束扫描的方式与终端通信,也可以基于其他方式与终端通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、物联网设备终端、工业物联网设备终端、车联网通信中的车载设备终端等电子设备。在所述终端中可以设置有至少一个天线面板,在天线面板上可以设置有至少一个天线端口,所述天线端口可以是指逻辑概念中天线的端口,也可以是实际概念中的物理天线。
如图10所示,所述SRS资源确定装置包括:
配置信息接收模块201,被配置为接收网络设备发送的配置信息,其中,所述配置信息用于指示至少一个探测参考信号SRS资源集,每个所述SRS资源集包含至少一个SRS资源;
所述配置信息还用于指示发送每个所述SRS资源的至少一个天线端口的天线端口标识,以及所述至少一个天线端口标识中每个天线端口标识对应的发送波束方向,不同的所述天线端口标识对应不同的发送波束方向;
波束方向确定模块202,被配置为根据所述配置信息确定每个所述天线端口发送所述SRS资源的发送波束方向。
可选地,所述SRS资源的数目与所述终端中接收天线的数目成正比,与所述终端中发送天线的数目成反比。
可选地,所述终端包括多个天线面板,且所述多个天线面板不能用于同时发送, 所述SRS资源的数目与所述天线面板的数目成正比。
可选地,所述配置信息包括波束方向指示信息,所述波束方向指示信息包括参考信号标识,所述波束方向确定模块,被配置为根据所述参考信号标识确定所述发送波束方向。
可选地,所述参考信号标识包括以下至少之一:
同步信号块标识、非零功率的信道状态信息参考信号标识、SRS标识、定位参考信号PRS标识。
可选地,所述根据所述配置信息确定每个所述天线端口发送所述SRS资源的发送波束方向还包括:
根据所述波束方向指示信息确定以下至少之一:
所述参考信号标识对应的参考信号所属的小区的标识;
所述参考信号标识对应的参考信号所属的传输接收点的标识;
所述参考信号标识对应的参考信号所属的天线面板的索引;
所述参考信号标识对应的参考信号所属的天线面板或传输接收点的控制资源集池索引。
图11是根据本公开的实施例示出的另一种SRS资源确定装置的示意框图。如图11所示,所述装置还包括:
天线信息发送模块203,被配置为向所述网络设备发送天线信息,其中,所述天线信息包括以下至少之一:
所述终端中天线面板的数目、每个所述天线面板中发送天线的数目和接收天线的数目、所述终端中的多个天线面板是否能够用于同时发送。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。 可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开还提出了一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的SRS资源配置方法。
本公开还提出了一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的SRS资源确定方法。
本公开还提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述的SRS资源配置方法中的步骤。
本公开还提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述的SRS资源确定方法中的步骤。
如图12所示,图12是根据本公开的实施例示出的一种用于SRS资源配置的装置1200的示意图。装置1200可以被提供为一基站。参照图12,装置1200包括处理组件1222、无线发射/接收组件1224、天线组件1226、以及无线接口特有的信号处理部分,处理组件1222可进一步包括一个或多个处理器。处理组件1222中的其中一个处理器可以被配置为实现上述任一实施例所述的SRS资源配置方法。
图13是根据本公开的实施例示出的一种用于SRS资源确定的装置1300的示意图。例如,装置1300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图13,装置1300可以包括以下一个或多个组件:处理组件1302,存储器1304,电源组件1306,多媒体组件1308,音频组件1310,输入/输出(I/O)的接口1312,传感器组件1314,以及通信组件1316。
处理组件1302通常控制装置1300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1302可以包括一个或多个处理器 1320来执行指令,以完成上述SRS资源确定方法的全部或部分步骤。此外,处理组件1302可以包括一个或多个模块,便于处理组件1302和其他组件之间的交互。例如,处理组件1302可以包括多媒体模块,以方便多媒体组件1308和处理组件1302之间的交互。
存储器1304被配置为存储各种类型的数据以支持在装置1300的操作。这些数据的示例包括用于在装置1300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1306为装置1300的各种组件提供电力。电源组件1306可以包括电源管理系统,一个或多个电源,及其他与为装置1300生成、管理和分配电力相关联的组件。
多媒体组件1308包括在所述装置1300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1308包括一个前置摄像头和/或后置摄像头。当装置1300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1310被配置为输出和/或输入音频信号。例如,音频组件1310包括一个麦克风(MIC),当装置1300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1304或经由通信组件1316发送。在一些实施例中,音频组件1310还包括一个扬声器,用于输出音频信号。
I/O接口1312为处理组件1302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1314包括一个或多个传感器,用于为装置1300提供各个方面的状态评估。例如,传感器组件1314可以检测到装置1300的打开/关闭状态,组件的相对定位,例如所述组件为装置1300的显示器和小键盘,传感器组件1314还可以检测装置1300或装置1300一个组件的位置改变,用户与装置1300接触的存在或不存在,装置1300方位或加速/减速和装置1300的温度变化。传感器组件1314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1316被配置为便于装置1300和其他设备之间有线或无线方式的通信。装置1300可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件1316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述SRS资源确定方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1304,上述指令可由装置1300的处理器1320执行以完成上述SRS资源确定方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构, 并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (20)

  1. 一种SRS资源配置方法,其特征在于,适用于网络设备,所述方法包括:
    向终端发送配置信息,其中,所述配置信息用于指示至少一个探测参考信号SRS资源集,每个所述SRS资源集包含至少一个SRS资源;
    所述配置信息还用于指示发送每个所述SRS资源的至少一个天线端口的天线端口标识,以及所述至少一个天线端口标识中每个天线端口标识对应的发送波束方向,不同的所述天线端口标识对应不同的发送波束方向。
  2. 根据权利要求1所述的方法,其特征在于,在向终端发送配置信息之前,所述方法还包括:
    设置每个所述SRS资源集中SRS资源的数目,其中,所述SRS资源的数目与所述终端中接收天线的数目成正比,与所述终端中发送天线的数目成反比。
  3. 根据权利要求2所述的方法,其特征在于,所述SRS资源的数目与所述终端中天线面板的数目成正比,其中,所述终端包括多个天线面板,且所述多个天线面板不能用于同时发送。
  4. 根据权利要求1所述的方法,其特征在于,所述配置信息包括波束方向指示信息,所述波束方向指示信息用于指示所述发送波束方向,其中,所述波束方向指示信息包括参考信号标识。
  5. 根据权利要求4所述的方法,其特征在于,所述参考信号标识包括以下至少之一:
    同步信号块标识、非零功率的信道状态信息参考信号标识、SRS标识、定位参考信号PRS标识。
  6. 根据权利要求5所述的方法,其特征在于,所述波束方向指示信息还用于指示以下至少之一:
    所述参考信号标识对应的参考信号所属的小区的标识;
    所述参考信号标识对应的参考信号所属的传输接收点的标识;
    所述参考信号标识对应的参考信号所属的天线面板的索引;
    所述参考信号标识对应的参考信号所属的天线面板或传输接收点的控制资源集池索引。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,在向终端发送配置信息之前,所述方法还包括:
    接收所述终端发送的天线信息,其中,所述天线信息包括以下至少之一:
    所述终端中天线面板的数目、每个所述天线面板中发送天线的数目和接收天线的数目、所述终端中的多个天线面板是否能够用于同时发送。
  8. 一种SRS资源确定方法,其特征在于,适用于终端,所述终端包括至少一个天线端口,所述方法包括:
    接收网络设备发送的配置信息,其中,所述配置信息用于指示至少一个探测参考信号SRS资源集,每个所述SRS资源集包含至少一个SRS资源;
    所述配置信息还用于指示发送每个所述SRS资源的至少一个天线端口的天线端口标识,以及所述至少一个天线端口标识中每个天线端口标识对应的发送波束方向,不同的所述天线端口标识对应不同的发送波束方向;
    根据所述配置信息确定每个所述天线端口发送所述SRS资源的发送波束方向。
  9. 根据权利要求8所述的方法,其特征在于,所述SRS资源的数目与所述终端中接收天线的数目成正比,与所述终端中发送天线的数目成反比。
  10. 根据权利要求9所述的方法,其特征在于,所述终端包括多个天线面板,且所述多个天线面板不能用于同时发送,所述SRS资源的数目与所述天线面板的数目成正比。
  11. 根据权利要求8所述的方法,其特征在于,所述配置信息包括波束方向指示信息,所述波束方向指示信息包括参考信号标识,所述根据所述配置信息确定每个所述天线端口发送所述SRS资源的发送波束方向包括:
    根据所述参考信号标识确定所述发送波束方向。
  12. 根据权利要求11所述的方法,其特征在于,所述参考信号标识包括以下至少之一:
    同步信号块标识、非零功率的信道状态信息参考信号标识、SRS标识、定位参考信号PRS标识。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述配置信息确定每个所述天线端口发送所述SRS资源的发送波束方向还包括:
    根据所述波束方向指示信息确定以下至少之一:
    所述参考信号标识对应的参考信号所属的小区的标识;
    所述参考信号标识对应的参考信号所属的传输接收点的标识;
    所述参考信号标识对应的参考信号所属的天线面板的索引;
    所述参考信号标识对应的参考信号所属的天线面板或传输接收点的控制资源集池索引。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,在接收网络设备发送的配置信息之前,所述方法还包括:
    向所述网络设备发送天线信息,其中,所述天线信息包括以下至少之一:
    所述终端中天线面板的数目、每个所述天线面板中发送天线的数目和接收天线的数目、所述终端中的多个天线面板是否能够用于同时发送。
  15. 一种SRS资源配置装置,其特征在于,适用于网络设备,所述装置包括:
    配置信息发送模块,被配置为向终端发送配置信息,其中,所述配置信息用于指示至少一个探测参考信号SRS资源集,每个所述SRS资源集包含至少一个SRS资源;
    所述配置信息还用于指示发送每个所述SRS资源的至少一个天线端口的天线端口标识,以及所述至少一个天线端口标识中每个天线端口标识对应的发送波束方向,不同的所述天线端口标识对应不同的发送波束方向。
  16. 一种SRS资源确定装置,其特征在于,适用于终端,所述终端包括至少一个天线端口,所述装置包括:
    配置信息接收模块,被配置为接收网络设备发送的配置信息,其中,所述配置信息用于指示至少一个探测参考信号SRS资源集,每个所述SRS资源集包含至少一个SRS资源;
    所述配置信息还用于指示发送每个所述SRS资源的至少一个天线端口的天线端口标识,以及所述至少一个天线端口标识中每个天线端口标识对应的发送波束方向,不同的所述天线端口标识对应不同的发送波束方向;
    波束方向确定模块,被配置为根据所述配置信息确定每个所述天线端口发送所述SRS资源的发送波束方向。
  17. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为实现权利要求1至7中任一项所述的SRS资源配置方法。
  18. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为实现权利要求8至14中任一项所述的SRS资源确定方法。
  19. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至7中任一项所述的SRS资源配置方法中的步骤。
  20. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求8至14中任一项所述的SRS资源确定方法中的步骤。
PCT/CN2020/091904 2020-05-22 2020-05-22 Srs资源配置方法、srs资源确定方法和装置 WO2021232429A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080001001.1A CN111758272B (zh) 2020-05-22 2020-05-22 Srs资源配置方法、srs资源确定方法和装置
PCT/CN2020/091904 WO2021232429A1 (zh) 2020-05-22 2020-05-22 Srs资源配置方法、srs资源确定方法和装置
US17/999,344 US20230208589A1 (en) 2020-05-22 2020-05-22 Srs resource configuration method, srs resource determination method, and apparatuses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/091904 WO2021232429A1 (zh) 2020-05-22 2020-05-22 Srs资源配置方法、srs资源确定方法和装置

Publications (1)

Publication Number Publication Date
WO2021232429A1 true WO2021232429A1 (zh) 2021-11-25

Family

ID=72713445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091904 WO2021232429A1 (zh) 2020-05-22 2020-05-22 Srs资源配置方法、srs资源确定方法和装置

Country Status (3)

Country Link
US (1) US20230208589A1 (zh)
CN (1) CN111758272B (zh)
WO (1) WO2021232429A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023546219A (ja) * 2020-10-19 2023-11-01 北京小米移動軟件有限公司 Pusch指示方法と装置、pusch送信方法と装置
WO2022082700A1 (en) * 2020-10-23 2022-04-28 Zte Corporation Communication in multiple transmission/reception point environments
CN116472773A (zh) * 2021-01-08 2023-07-21 华为技术有限公司 资源配置的方法及通信装置
CN117616702A (zh) * 2021-07-09 2024-02-27 瑞典爱立信有限公司 稳健的端口选择
CN115765942A (zh) * 2021-09-06 2023-03-07 华为技术有限公司 用于传输参考信号的方法和装置
CN118251948A (zh) * 2021-12-02 2024-06-25 Oppo广东移动通信有限公司 一种通信方法、终端设备以及网络设备
CN114557013B (zh) * 2022-01-11 2024-02-13 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质
CN117015949A (zh) * 2022-03-03 2023-11-07 北京小米移动软件有限公司 发送srs的方法、接收srs的方法、装置、设备、介质及产品
CN117730503A (zh) * 2022-07-14 2024-03-19 北京小米移动软件有限公司 端口切换、端口切换指示方法和装置
WO2024026644A1 (zh) * 2022-08-01 2024-02-08 北京小米移动软件有限公司 Srs资源的配置方法、装置、介质及产品
CN117693019B (zh) * 2024-02-01 2024-06-25 荣耀终端有限公司 一种上行数据传输方法及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3454474A1 (en) * 2017-09-08 2019-03-13 ASUSTek Computer Inc. Method and apparatus for channel usage in unlicensed spectrum considering beamformed transmission in a wireless communication system
CN109792282A (zh) * 2016-09-29 2019-05-21 高通股份有限公司 在参考符号会话中对上行链路波束跟踪结果的使用
CN110235496A (zh) * 2017-02-03 2019-09-13 华为技术有限公司 Ue辅助srs资源分配
CN110858775A (zh) * 2018-08-23 2020-03-03 维沃移动通信有限公司 用于多波束传输上行信号的方法、终端设备和网络侧设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11418368B2 (en) * 2017-09-28 2022-08-16 Lg Electronics Inc. Method for performing uplink transmission in wireless communication system and apparatus therefor
WO2019197044A1 (en) * 2018-04-13 2019-10-17 Nokia Technologies Oy Channel state information reciprocity support for beam based operation
WO2020010632A1 (en) * 2018-07-13 2020-01-16 Lenovo (Beijing) Limited Srs configurations and srs transmission
WO2020037207A1 (en) * 2018-08-17 2020-02-20 Idac Holdings, Inc. Beam management for multi-trp
WO2020061953A1 (zh) * 2018-09-27 2020-04-02 北京小米移动软件有限公司 测量配置方法、装置、设备、系统及存储介质
CA3118375C (en) * 2018-11-02 2023-07-04 Zte Corporation Group-specific resource indications for uplink transmissions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792282A (zh) * 2016-09-29 2019-05-21 高通股份有限公司 在参考符号会话中对上行链路波束跟踪结果的使用
CN110235496A (zh) * 2017-02-03 2019-09-13 华为技术有限公司 Ue辅助srs资源分配
EP3454474A1 (en) * 2017-09-08 2019-03-13 ASUSTek Computer Inc. Method and apparatus for channel usage in unlicensed spectrum considering beamformed transmission in a wireless communication system
CN110858775A (zh) * 2018-08-23 2020-03-03 维沃移动通信有限公司 用于多波束传输上行信号的方法、终端设备和网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on non-codebook based transmission for UL", 3GPP DRAFT; R1-1704874_UL_NON-CB_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 2 April 2017 (2017-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051243009 *

Also Published As

Publication number Publication date
US20230208589A1 (en) 2023-06-29
CN111758272B (zh) 2023-09-26
CN111758272A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
WO2021232429A1 (zh) Srs资源配置方法、srs资源确定方法和装置
US11765023B2 (en) Configuration method and apparatus for transmission configuration indication
CN109417717B (zh) 测量配置方法、装置、设备、系统及存储介质
US11483819B2 (en) Data transmission method and apparatus and user equipment
US11792659B2 (en) Method and device for using network slice
EP3713327B1 (en) Method for indicating frequency-domain information of common control resource set of remaining minimum system information
JP2024523021A (ja) 情報指示方法、装置、ユーザイクイップメント、基地局及び記憶媒体
US11284398B2 (en) Communication link configuration method and device
CN112771970A (zh) 默认波束的确定方法、装置、用户设备及网络设备
CN110622616A (zh) 非活动定时器的控制方法和装置
US11503642B2 (en) Method and device for determining an uplink-downlink switching point
US20240063980A1 (en) System information reception method and apparatus, and system information transmission method and apparatus
WO2021012114A1 (zh) 设备内共存干扰指示方法、接收方法和装置
US11917562B2 (en) Vehicle-to-everything synchronization method and device
EP3996399A1 (en) Buffer status report sending method and apparatus
US11304067B2 (en) Methods and devices for reporting and determining optimal beam, user equipment, and base station
WO2021223217A1 (zh) 无线通知区域更新方法、无线通知区域更新装置
WO2021232381A1 (zh) 信息发送方法、基站切换方法、信息接收方法以及装置
WO2021042333A1 (zh) 支持信息确定方法和装置
CN109618564B (zh) 传输方向的指示方法及装置
EP3826208A1 (en) Data transmission method and apparatus, and storage medium
CN116667901A (zh) 角度确定、信号发送方法及装置、电子设备和存储介质
US20240306116A1 (en) Information sending method and apparatus, and relationship determination method and apparatus
US20240057054A1 (en) Signal transmitting/receiving method and apparatus, and signal receiving method and apparatus
CN113424485B (zh) 指示信息配置及接收方法、装置、用户设备、基站及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936859

Country of ref document: EP

Kind code of ref document: A1