WO2021229939A1 - 抵抗器 - Google Patents

抵抗器 Download PDF

Info

Publication number
WO2021229939A1
WO2021229939A1 PCT/JP2021/013365 JP2021013365W WO2021229939A1 WO 2021229939 A1 WO2021229939 A1 WO 2021229939A1 JP 2021013365 W JP2021013365 W JP 2021013365W WO 2021229939 A1 WO2021229939 A1 WO 2021229939A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
terminal
electrode body
press
electrode
Prior art date
Application number
PCT/JP2021/013365
Other languages
English (en)
French (fr)
Inventor
健司 亀子
洋一 酒井
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Priority to DE112021002729.8T priority Critical patent/DE112021002729T5/de
Publication of WO2021229939A1 publication Critical patent/WO2021229939A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere

Definitions

  • the present invention relates to a resistor.
  • JP2012-531760A discloses a structure in which a resistor for current detection is embossed at a position near the resistor of the electrode and a screw hole for attaching a terminal for voltage detection is formed in the embossed portion. There is.
  • an object of the present invention is to make it possible to suppress a decrease in detection accuracy in a resistor for current detection.
  • the terminal portion is the electrode.
  • the attachment portion of the terminal portion picks up the potential distribution of the electrode from the position where it comes into contact with the electrode.
  • the equipotential lines are diffused so as to be separated from each other as the distance from the electrode increases. Therefore, the difference between the maximum value and the minimum value of the potential in the potential distribution at the upper end of the fixed portion becomes small, and the potential distribution becomes flat. Therefore, in the potential distribution of the detection terminal that contacts the upper end of the fixed portion, the difference between the maximum value and the minimum value of the potential is also small.
  • the protruding length of the terminal portion can be made longer than when the terminal portion is integrally formed with the electrode by embossing. Therefore, since the potential distribution on the upper surface of the terminal portion (fixed portion) can be further flattened by that amount, the decrease (variation) in the detection accuracy due to the change in the mounting state of the detection terminal (crimp terminal) is reduced. be able to.
  • FIG. 1 is an exploded perspective view of the resistor of the present embodiment.
  • FIG. 2A is a plan view of the main body of the terminal portion constituting the resistor of the present embodiment.
  • FIG. 2B is a bottom view of the main body of the terminal portion constituting the resistor of the present embodiment.
  • FIG. 3A is a cross-sectional view of the resistor of the present embodiment before assembling the main body of the terminal portion and the crimp terminal.
  • FIG. 3B is a cross-sectional view of the resistor of the present embodiment after assembling the main body of the terminal portion and the crimp terminal.
  • FIG. 4A is a perspective view of the resistor of the comparative example before assembling the crimp terminal.
  • FIG. 4B is a perspective view after assembling the crimp terminal of the resistor of the comparative example.
  • FIG. 4C is a potential distribution diagram (cross-sectional view) of the resistor of the comparative example.
  • FIG. 4D is a potential distribution diagram (plan view) in the vicinity of the screw hole of the resistor of the comparative example.
  • FIG. 5A is a perspective view of the resistor of the present embodiment.
  • FIG. 5B is a potential distribution diagram when the main body of the terminal portion is made of carbon steel in the resistor of the present embodiment.
  • FIG. 5C is a potential distribution diagram when the main body of the terminal portion is made of copper in the resistor of the present embodiment.
  • FIG. 5D is a diagram when the diameter of the main body of the terminal portion shown in FIG. 5B is reduced.
  • FIG. 6A is a graph comparing the variation in the resistance value of the resistor of the present embodiment and the variation in the resistance value of the resistor of the comparative example.
  • FIG. 6B is a diagram comparing the variation in the TCR of the resistor of the present embodiment with the variation of the TCR of the resistor of the comparative example.
  • FIG. 7A is a cross-sectional view showing the state before the rivet deformation, which is the resistor of the first modification.
  • FIG. 7B is a resistor of the first modification, and is a cross-sectional view showing a state after the rivet deformation.
  • FIG. 8A is a resistor of the second modification, and is a plan view before assembling the crimp terminal.
  • FIG. 8B is a resistor of the second modification, and is a plan view after assembling the crimp terminal.
  • FIG. 8C is a resistor of the second modification, and is a cross-sectional view after assembling the crimp terminal.
  • FIG. 1 is an exploded perspective view of the resistor 100 of the present embodiment.
  • FIG. 2A is a plan view of the main body 4 of the terminal portion constituting the resistor 100 of the present embodiment.
  • FIG. 2B is a bottom view of the main body 4 of the terminal portion constituting the resistor 100 of the present embodiment.
  • FIG. 3A is a cross-sectional view of the resistor 100 of the present embodiment before assembling the main body 4 and the crimp terminal 5 of the terminal portion.
  • FIG. 3B is a cross-sectional view of the resistor 100 of the present embodiment after assembling the main body 4 of the terminal portion and the crimp terminal 5.
  • the resistor 100 is mounted in a current path (not shown) or the like.
  • the resistor 100 is fixed to a wiring member (not shown) such as a bus bar connected to a power source.
  • the resistor 100 is used as a current detection resistor (shunt resistor).
  • the resistor 100 includes a resistor 1, a first electrode body 2 (electrode), and a second electrode body 3 (electrode), and the first electrode body 2, the resistor 1, and the second electrode body 3 are They are joined in this order side by side.
  • the resistor 1 and the first electrode body 2 and the resistor 1 and the second electrode body 3 are joined with their end faces facing each other, and the joining methods include electron beam welding, laser beam welding, and clad joining. Various joining methods such as (individual joining) can be applied.
  • the resistor 100 has a substantially rectangular outer shape in which the direction in which the first electrode body 2, the resistor 1, and the second electrode body 3 are arranged is the longitudinal direction.
  • the corners of the first electrode body 2 and the second electrode body 3 are chamfered, but in order to recognize the directionality, the first electrode body 2 (or the second electrode body 3) is chamfered from the above.
  • a large chamfered portion 23 is formed.
  • a terminal portion and a crimp terminal 5 are attached to the first electrode body 2 and the second electrode body 3, respectively.
  • the terminal portion includes the main body 4 and the terminal screw 44.
  • the main body 4 includes a fixing portion 41 and a press-fitting portion 42.
  • a wire extending from a detector (not shown) that detects a current based on a potential difference is connected to the crimp terminal 5 (see FIG. 5).
  • a press-fitting hole 21 is formed at a position adjacent to the resistor 1 in the first electrode body 2, and similarly, a press-fitting hole 31 (recess) is formed at a position adjacent to the resistor 1 in the second electrode body 3. Is formed.
  • an insertion hole 22 is formed in the first electrode body 2 at a position separated from the resistor 1 by the press-fitting hole 21, and similarly, a position separated from the resistor 1 by the press-fitting hole 31 in the second electrode body 3.
  • An insertion hole 32 is formed in the hole 32.
  • the press-fitting portion 42 (mounting portion) of the main body 4 is press-fitted into the press-fitting hole 21 and the press-fitting hole 31, respectively.
  • the press-fitting hole 21 penetrates the first electrode body 2 and the press-fitting hole 31 penetrates the second electrode body 3, but it is not necessary to penetrate both of them and the depth corresponds to the length of the press-fitting portion 42. It may be a recess.
  • Fastening bolts (not shown) for connecting to wiring members (not shown) such as bus bars are inserted into the insertion holes 22 and 32, respectively.
  • the main body 4 of the terminal portion has a cylindrical shape, and constitutes a fixing portion 41 constituting a cylindrical portion having a large diameter and a portion having a small diameter.
  • the press-fitting portion 42 is included.
  • the shape of the main body 4 may be a prism shape such as a hexagonal prism, in addition to the cylindrical shape.
  • the main body 4 is formed with a screw hole 43 so as to communicate the fixing portion 41 and the press-fitting portion 42.
  • a terminal screw 44 constituting the terminal portion is screwed into the screw hole 43. Further, the terminal screw 44 is screwed into the screw hole 43 in a state of being inserted into the opening of the crimp terminal 5.
  • the outer diameter A of the fixing portion 41 and the outer diameter of the head portion of the terminal screw 44 shown in FIG. 3A are substantially the same as the outer diameter of the crimp terminal 5.
  • the thickness B in the radial direction and the length C in the axial direction of the fixed portion 41 are designed so that B: C is 0.8 or more. This makes it possible to reduce variations in the resistance value and TCR of the resistor 100, which will be described later.
  • a convex ring-shaped stepped portion 411 is formed on the end surface of the fixed portion 41 on the press-fitting portion 42 side. As shown in FIG. 2B, in the main body 4 of the terminal portion, the screw hole 43, the press-fit portion 42, the step portion 411, and the fixing portion 41 are arranged so as to form concentric circles.
  • the diameter of the press-fitting portion 42 is slightly larger than the diameter of the press-fitting holes 21 and 31.
  • the press-fitting portion 42 when the press-fitting portion 42 is press-fitted into the press-fitting holes 21 and 31, the press-fitting portion 42 is press-fitted so as to increase the inner diameter of the press-fitting holes 21 and 31.
  • the step portion 411 can also be press-fitted around the press-fitting hole 21 of the first electrode body 2 and around the press-fitting hole 31 of the second electrode body 3.
  • the material of the terminal portion for example, carbon steel
  • a material having a hardness higher than that of the material of the first electrode body 2 and the second electrode body 3 for example, copper
  • the same kind of metal. May be applied.
  • the crimp terminal 5 can be attached to the fixing portion 41 of the main body 4 by using the terminal screw 44. Further, by inserting a fastening bolt (not shown) into the insertion hole 22 of the first electrode body 2 and the insertion hole 32 of the second electrode body 3 and fastening the bolt to a wiring member such as a bus bar, the resistor of the present embodiment is used.
  • the vessel 100 can be fixed.
  • FIG. 4A is a perspective view of the resistor 101 of the comparative example before assembling the crimp terminal 5.
  • FIG. 4B is a perspective view of the resistor 101 of the comparative example after assembling the crimp terminal 5.
  • FIG. 4C is a potential distribution diagram (cross-sectional view) of the resistor 101 of the comparative example.
  • FIG. 4D is a potential distribution diagram (plan view) in the vicinity of the screw hole 311 of the resistor 101 of the comparative example.
  • the components common to the resistor 100 of the present embodiment are designated by the same reference numerals. Further, in FIGS. 4C and 4D, the terminal screw 44 is omitted.
  • the resistor 101 of the comparative example has the same outer shape as the resistor 100 of the present embodiment, but the portion corresponding to the press-fitting holes 21 and 31 of the present embodiment is a screw.
  • the holes are 211 and 311.
  • the crimp terminal 5 is brought into contact with the first electrode body 2 and the second electrode body 3, and the terminal screw 44 is inserted into the opening of the crimp terminal 5 and screwed into the screw holes 211 and 311.
  • the crimp terminal 5 is fixed to the first electrode body 2 and the second electrode body 3 by matching.
  • the potential distributions shown in FIGS. 4C and 4D are formed.
  • the potential distribution is represented by equipotential lines having a predetermined potential difference (step width).
  • the resistance value of the resistor 1 is larger than the resistance values of the first electrode body 2 and the second electrode body 3. Therefore, the isopotential lines in the resistor 1 are distributed more densely than the first electrode body 2 and the second electrode body 3.
  • the equipotential lines in the first electrode body 2 and the second electrode body 3 are sparser than those in the resistor 1, but the screw holes 211 and 311 (the same applies to the press-fit holes 21 and 31) are slightly sparse. It is distributed. Specifically, the electric fields formed inside the screw holes 211 and 311 (air) and the electrodes (first electrode body 2 and second electrode body 3) are different. As a result, as shown in FIG. 4D, the potential around the screw holes 211 and 311 is distorted, and the equipotential lines are distorted so as to be concentrated on the inner wall of the screw holes 211 and 311.
  • the crimp terminal 5 when the crimp terminal 5 is arranged at a position around the screw holes 211 and 311, the crimp terminal 5 around the screw holes 211 and 311 directly copies the potential distribution in the contact area. In other words, it will be picked up directly. Therefore, the crimp terminal 5 is directly affected by the potential distribution in the contacted region. Therefore, when the tightening state of the crimp terminal 5 changes, or when the crimp terminal 5 is displaced, the potential (average value) detected by the crimp terminal 5 fluctuates, and the detected value of the potential difference (current) in the detector. Will vary.
  • FIG. 5A is a perspective view of the resistor 100 of the present embodiment.
  • FIG. 5B is a potential distribution diagram when the main body 4 of the terminal portion is made of carbon steel in the resistor 100 of the present embodiment.
  • FIG. 5C is a potential distribution diagram when the main body 4 of the terminal portion is made of copper in the resistor 100 of the present embodiment.
  • FIG. 5D is a diagram when the diameter of the main body 4 of the terminal portion shown in FIG. 5B is reduced. In FIGS. 5B, 5C, and 5D, the terminal screw 44 is not shown.
  • a crimp terminal 5 is attached to the resistor 100 of the present embodiment via a main body 4 constituting the terminal portion.
  • the terminal portion (press-fitting portion 42) provided with the main body 4 has an electrode (first electrode body 2, second electrode body 2, second electrode body 2) from a position where it comes into contact with the electrode (first electrode body 2, second electrode body 3).
  • the potential distribution of the electrode body 3) is copied.
  • the fixed portion 41 the potential distribution becomes widened radially so that the equipotential lines are separated from each other as the distance from the electrodes (first electrode body 2 and second electrode body 3) increases. That is, by press-fitting and mounting the main body 4, the fixed portion 41 does not directly pick up the influence of the potential distribution in the contacted region, the distance between the equipotential lines becomes wide, and the vertical line becomes an inclined line.
  • the difference between the maximum value and the minimum value of the potential in the potential distribution at the upper end of the fixed portion 41 becomes small, and the potential distribution becomes flat. Therefore, the difference between the maximum value and the minimum value of the potential in the potential distribution of the crimp terminal 5 in contact with the upper end of the fixed portion 41 is also small.
  • the electrodes (first electrode body 2, second electrode body 3) and the terminal portion (main body 4) are separate bodies. Therefore, the terminal portion (main body 4) protrudes upward from the electrode as compared with the case where the terminal portion (main body 4) is integrally formed with the electrodes (first electrode body 2, second electrode body 3) by embossing. The height can be increased. Therefore, since the potential distribution on the upper surface of the fixed portion 41 can be further flattened by that amount, it is possible to reduce the decrease (variation) in the detection accuracy due to the change in the mounting state of the crimp terminal 5.
  • FIG. 5B shows the potential distribution when the terminal portion (main body 4) is formed of carbon steel
  • FIG. 5C shows the potential when the terminal portion (main body 4) having the same shape as the terminal portion of FIG. 5B is formed of copper.
  • the equipotential lines are diffused at the upper end of the fixed portion 41.
  • the diameter of the fixing portion 41 is formed to be larger than the diameter of the press-fitting portion 42.
  • FIG. 5D shows the potential distribution when the main body 4 is made of carbon steel and the main body 4 is designed so that the diameters of the press-fitted portion 42 and the fixed portion 41 are substantially the same.
  • the potential distribution received from the electrodes (first electrode body 2, second electrode body 3) is copied to the press-fitting portion 42 of the terminal portion shown in FIG. 5D.
  • the potential distribution in the fixed portion 41 is such that the equipotential lines are diffused so as to be separated from each other as the distance from the electrodes (first electrode body 2 and second electrode body 3) increases.
  • the upper end of the fixed portion 41 shown in FIG. 5D is smaller than the upper end of the fixed portion 41 shown in FIGS. 5B and 5C.
  • the difference between the maximum value and the minimum value of the potential distribution at the upper end of the fixed portion 41 is further smaller than that in the cases of FIGS. 5B and 5C. Therefore, the difference between the maximum value and the minimum value of the potential in the potential distribution of the crimp terminal 5 in contact with the upper end of the fixed portion 41 is also smaller than in the cases of FIGS. 5B and 5C, so that the potential difference (current) can be detected by the detector. It is possible to reduce the decrease in accuracy (variation).
  • FIG. 6A is a graph comparing the variation in the resistance value of the resistor of the present embodiment and the variation in the resistance value of the resistor of the comparative example.
  • FIG. 6B is a diagram comparing the variation in the TCR of the resistor of the present embodiment with the variation of the TCR of the resistor of the comparative example.
  • the inventor of the present application applies a predetermined current to the resistor 101 of the comparative example shown in FIG. 4A and the resistor 100 of the present embodiment shown in FIG.
  • the voltage applied to the resistor 100) was measured, and the resistance value was calculated based on the voltage / current. Further, the calorific value (temperature) of the resistor 1 was changed by changing the current applied to the resistors 100 and 101, and the TCR (Temperature Cooperative Of Resistance) was calculated from the change in the resistance value due to the change. .. Further, the crimp terminal 5 was repeatedly attached and detached a plurality of times, and the above resistance value and TCR were calculated each time. From the above, the variation [%] of the resistance value shown in FIG. 6A and the variation [ppm / k] of the TCR shown in FIG. 6B were calculated.
  • the crimp terminal 5 is in contact with the crimp terminal 5 at the electrodes (first electrode body 2, second electrode body 3) as described above.
  • the potential distribution of the existing part is copied as it is.
  • the equipotential lines are diffused at the upper end of the terminal portion (fixed portion 41) with which the crimp terminal 5 contacts, as described above. Therefore, in the resistor 100 of the present embodiment, even if the tightening state of the crimp terminal 5 changes or the position shift occurs, the variation in the resistance value is reduced as shown in FIG. 6A.
  • the variation is large in the resistor 101 (without terminal portion) of the comparative example, but the variation is greatly reduced in the resistor 100 (with terminal portion) of the present embodiment. .. Specifically, the crimp terminal 5 is separated from the electrodes (first electrode body 2, second electrode body 3) by the fixing portion 41. Therefore, the current component flowing into the crimp terminal 5 is reduced by that amount. In addition, the potential distribution copied from the fixed portion 41 is also flat (the equipotential lines are also sparse). As a result, in the resistor 100 (with the terminal portion) of the present embodiment, the variation in the TCR is greatly reduced.
  • FIG. 7A is a cross-sectional view showing the state of the resistor 102 of the first modification before the rivet deformation.
  • FIG. 7B is a cross-sectional view showing the state of the resistor 102 of the first modification after the rivet deformation.
  • the rivet 45 is applied instead of the terminal screw 44.
  • the thread cutting of the screw hole 43 of the main body 4 of the terminal portion may be omitted and the rivet 45 may be simply an insertion hole.
  • the method of assembling the resistor 102 of the first modification is the same as the above basic configuration, but as shown in FIG. 7A, the electrodes (first electrode body 2, first electrode body 2, first) with the rivet 45 inserted through the crimp terminal 5.
  • the rivet 45 is inserted into the main body 4 of the terminal portion after being press-fitted into the two-electrode body 3).
  • the crimp terminal 5 can be fixed to the main body 4 (fixing portion 41) by plastically deforming the tip of the rivet 45 by caulking.
  • FIG. 8A is a resistor 103 of the second modification, and is a plan view of the crimp terminal 5 before assembly.
  • FIG. 8B is a resistor 103 of the second modification, and is a plan view of the crimp terminal 5 after assembly.
  • FIG. 8C is a resistor 103 of the second modification, and is a cross-sectional view of the crimp terminal 5 after assembly.
  • the terminal portion (main body 4) is press-fitted into the press-fitting holes 21 and 31 in the same manner as in the above basic configuration and the first modification.
  • the screw hole 43 (insertion hole) of the terminal portion (main body 4) is omitted.
  • a sandwiching portion 46 for sandwiching the crimp terminal 5 is arranged at the upper end of the fixing portion 41.
  • the sandwiching portion 46 forms slits at intervals slightly narrower than the thickness of the crimp terminal 5 between the upper end of the fixing portion 41, and in the present embodiment, for example, three slits are formed. As shown in FIG. 8A, for example, the sandwiching portions 46 are arranged in pairs at positions facing each other in the circumferential direction of the crimp terminal 5 (fixed portion 41), and the remaining one is arranged at a position rotated by 90 degrees in the circumferential direction. do.
  • the crimp terminal 5 is inserted into the sandwiching portion 46 from the direction in which the sandwiching portion 46 is not arranged in the fixed portion 41, and the crimping terminal 5 is sandwiched between the sandwiching portions 46.
  • the resistor 100 includes a terminal portion arranged on the two electrode bodies 3), and the terminal portion is a mounting portion (press-fitting portion 42) attached to the electrodes (first electrode body 2, second electrode body 3).
  • the mounting portion (press-fitting portion 42) projecting from the electrodes (first electrode body 2, second electrode body 3) and being detected when the mounting portion (press-fitting portion 42) is mounted on the electrodes (first electrode body 2, second electrode body 3). Includes a fixing portion 41 to which the terminal (crimp terminal 5) for fixing is fixed.
  • the mounting portion (press-fitting portion 42) of the terminal portion (main body 4) is connected to the electrodes (first electrode body 2, second electrode body 3) from the position where they come into contact with the electrodes (first electrode body 2, second electrode body 3).
  • the potential distribution of the body 3) will be picked up.
  • the equipotential lines are diffused so as to be separated from each other as the distance from the electrodes (first electrode body 2 and second electrode body 3) increases. Therefore, the difference between the maximum value and the minimum value of the potential in the potential distribution at the upper end of the fixed portion 41 becomes small, and the potential distribution becomes flat. Therefore, the difference between the maximum value and the minimum value of the potential in the potential distribution of the detection terminal (crimp terminal 5) that contacts the upper end of the fixed portion 41 is also small.
  • the detection terminal (crimp terminal 5) changes, or even if the detection terminal (crimp terminal 5) is misaligned, the detection terminal (crimp terminal 5) The change in potential detected by is suppressed. As a result, it is possible to reduce a decrease (variation) in the detection accuracy of the potential difference (current) in the detector.
  • the electrodes (first electrode body 2, second electrode body 3) and the terminal portion (main body 4) are separate bodies, the electrodes (first electrode body 2, second electrode body 3) are embossed.
  • the protruding length of the terminal portion (main body 4) can be made longer than in the case where the terminal portion (main body 4) is integrally formed. Therefore, the potential distribution on the upper surface of the terminal portion (fixed portion 41) can be further flattened by that amount, so that the detection accuracy decreases (variations) due to the change in the mounting state of the detection terminal (crimp terminal 5). Can be reduced.
  • the terminal portion (main body 4) is made of a metal different from the electrodes (first electrode body 2, second electrode body 3).
  • the mounting portion is a press-fitting portion 42 that is press-fitted into the electrodes (press-fitting holes 21, 31).
  • the terminal portion main body 4 can be attached to the electrodes (press-fitting holes 21, 31) with a simple configuration.
  • the terminal portion (main body 4) is made of a material (for example, carbon steel) having a hardness higher than that of the material (for example, copper) of the electrodes (first electrode body 2, second electrode body 3). Is formed of.
  • the terminal portion (main body 4) can be easily press-fitted into the electrodes (first electrode body 2, second electrode body 3). Further, since the durability of the terminal portion (main body 4) can be enhanced, the configuration is suitable when the detection terminal (crimp terminal 5) is repeatedly attached to and detached from the fixed portion 41.
  • the electrodes (first electrode body 2, second electrode body 3) are formed with recesses (press-fitting holes 21, 31), and the press-fitting portion 42 is formed with recesses (press-fitting holes 21, It is press-fitted into 31).
  • the press-fitting portion 42 can be easily press-fitted into the recesses (press-fitting holes 21, 31).
  • the fixing portion 41 is formed so that the diameter thereof is larger than the diameter of the press-fitting portion 42.
  • the detection terminal crimp terminal 5
  • the fixing portion 41 is formed so that the diameter thereof is substantially the same as the diameter of the press-fitting portion 42.
  • the contact area between the detection terminal (crimp terminal 5) and the fixed portion 41 becomes small, so that the difference between the maximum value and the minimum value of the potential in the potential distribution to be copied can also be small. Therefore, it is possible to reduce the variation in resistance value.
  • the terminal portion includes at least a terminal screw 44 that sandwiches the detection terminal together with the fixing portion 41 while being screwed into the fixing portion 41.
  • the detection terminal (crimp terminal 5) can be fixed to the fixing portion 41 with a simple configuration.
  • the electrodes (first electrode body 2, second electrode body 3) are arranged in pairs so as to sandwich the resistor 1, and the electrodes (first electrode body 2, second electrode body 2) are arranged.
  • the body 3) and the resistor 1 are joined to each other in a state where the end faces are butted against each other. This makes the resistor 100 capable of detecting the potential difference (current) with high accuracy.
  • the terminal portion (main body 4) is press-fitted into the electrodes (first electrode body 2, second electrode body 3), but the mounting portion (press-fitting portion 42) has a male screw structure and is press-fitted.
  • the holes 21 and 31 may be formed as screw holes and the mounting portion may be screwed into the screw holes.
  • the end face of the resistor 1 and the end faces of the electrodes are abutted against each other and joined to each other.
  • the resistor 1 is superposed on the pair of electrodes and the portion of the electrode where the terminal portion is arranged is exposed from the resistor 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Resistors (AREA)
  • Connections By Means Of Piercing Elements, Nuts, Or Screws (AREA)

Abstract

抵抗体1と、抵抗体1に接続された一対の電極(第一電極体2、第二電極体3)と、電極(第一電極体2、第二電極体3)に配置された端子部と、を備えた抵抗器100であって、端子部は、電極(第一電極体2、第二電極体3)に取り付けられる取付け部(圧入部42)と、取付け部(圧入部42)を電極(第一電極体2、第二電極体3)に取り付けたときに電極(第一電極体2、第二電極体3)から突出するとともに、検出用の端子(圧着端子5)が固定される固定部41と、を含む。

Description

抵抗器
 本発明は、抵抗器に関する。
 JP2012-531760Aは、電流検出用の抵抗器において、電極の抵抗体近傍となる位置にエンボス加工を施し、当該エンボス部分に電圧検出用の端子を取り付けるためのネジ穴を形成した構成を開示している。
 しかし、JP2012-531760Aでは、電圧検出用の端子をネジ止めにより電極に直接取り付けることになるので、締め付けトルク又は緩み(位置ずれ)によって検出精度が低下するおそれがある。
 そこで本発明は、電流検出用の抵抗器において検出精度の低下の抑制を可能とすることを目的とする。
 本発明の1つの態様によれば、抵抗体と、前記抵抗体に接続された一対の電極と、前記電極に配置された端子部と、を備えた抵抗器において、前記端子部は、前記電極に取り付けられる取付け部と、前記取付け部を前記電極に取り付けたときに前記電極から突出するとともに、検出用の端子が固定される固定部と、を含む。
 本発明の1つの態様によれば、端子部の取り付け部は、電極と接触する位置から電極の電位分布を拾うことになる。しかし、固定部において電極から離れるほど等電位線が互いに離れるように拡散する。このため、固定部の上端の電位分布における電位の最大値と最小値の差分が小さくなり、電位分布が平坦となる。よって、固定部の上端に接触する検出用の端子の電位分布において、電位の最大値と最小値の差分も小さくなる。
 したがって、検出用の端子の締め付け状態が変化する場合、又は検出用の端子の位置ずれが発生する場合であっても、検出用の端子が検知する電位の変化は抑制される。これにより、検出器における電位差(電流)の検出精度の低下(バラつき)を低減することができる。
 特に、電極と端子部とが別体となるので、エンボス加工を用いて電極に端子部を一体で形成する場合よりも端子部の突出する長さを長くすることができる。よって、その分、端子部(固定部)上面における電位分布をさらに平坦にすることができるので、検出用の端子(圧着端子)の取り付け状態の変化に伴う検出精度の低下(バラつき)を低減することができる。
図1は、本実施形態の抵抗器の分解斜視図である。 図2Aは、本実施形態の抵抗器を構成する端子部の本体の平面図である。 図2Bは、本実施形態の抵抗器を構成する端子部の本体の底面図である。 図3Aは、本実施形態の抵抗器であって、端子部の本体及び圧着端子の組み付け前の断面図である。 図3Bは、本実施形態の抵抗器であって、端子部の本体及び圧着端子の組み付け後の断面図である。 図4Aは、比較例の抵抗器の圧着端子の組み付け前の斜視図である。 図4Bは、比較例の抵抗器の圧着端子の組み付け後の斜視図である。 図4Cは、比較例の抵抗器の電位分布図(断面図)である。 図4Dは、比較例の抵抗器のネジ孔付近の電位分布図(平面図)である。 図5Aは、本実施形態の抵抗器の斜視図である。 図5Bは、本実施形態の抵抗器において端子部の本体を炭素鋼によって形成した場合の電位分布図である。 図5Cは、本実施形態の抵抗器において端子部の本体を銅によって形成した場合の電位分布図である。 図5Dは、図5Bに示す端子部の本体の径を小さくした場合の図である。 図6Aは、本実施形態の抵抗器の抵抗値のバラつきと比較例の抵抗器の抵抗値のバラつきを比較したグラフである。 図6Bは、本実施形態の抵抗器のTCRのバラつきと比較例の抵抗器のTCRのバラつきとを比較した図である。 図7Aは、第1変形例の抵抗器であって、リベット変形前の状態を示す断面図である。 図7Bは、第1変形例の抵抗器であって、リベット変形後の状態を示す断面図である。 図8Aは、第2変形例の抵抗器であって、圧着端子の組み付け前の平面図である。 図8Bは、第2変形例の抵抗器であって、圧着端子の組み付け後の平面図である。 図8Cは、第2変形例の抵抗器であって、圧着端子の組み付け後の断面図である。
[抵抗器100の基本構成]
 本実施形態に係る抵抗器100について、図1乃至図3を用いて詳細に説明する。
 図1は、本実施形態の抵抗器100の分解斜視図である。図2Aは、本実施形態の抵抗器100を構成する端子部の本体4の平面図である。図2Bは、本実施形態の抵抗器100を構成する端子部の本体4の底面図である。図3Aは、本実施形態の抵抗器100であって、端子部の本体4及び圧着端子5の組み付け前の断面図である。図3Bは、本実施形態の抵抗器100であって、端子部の本体4及び圧着端子5の組み付け後の断面図である。
 抵抗器100は電流経路(不図示)等に実装される。例えば、抵抗器100は、電源に接続されたバスバー等の配線部材(不図示)に固定される。抵抗器100は、電流検出用抵抗器(シャント抵抗器)として用いられる。
 抵抗器100は、抵抗体1と、第一電極体2(電極)と、第二電極体3(電極)とを備え、第一電極体2と抵抗体1と第二電極体3とが、この順に並んで状態で接合されたものである。
 抵抗体1と第一電極体2、及び抵抗体1と第二電極体3は、それぞれ端面を互いに突き合せた状態で接合されており、接合方法としては電子ビーム溶接、レーザービーム溶接、クラッド接合(個体接合)等様々な接合方法が適用できる。
 抵抗器100は、第一電極体2、抵抗体1、第二電極体3の並ぶ方向を長手方向とする略矩形の外形を有している。なお、第一電極体2及び第二電極体3の角は面取りが施されているが、方向性を認識するため、第一電極体2(又は第二電極体3)には上記の面取りよりも大きな面取り部23が形成されている。
 第一電極体2及び第二電極体3には、端子部、圧着端子5がそれぞれ取り付けられる。端子部は、本体4と端子用ネジ44を含む。本体4は、固定部41と圧入部42を含む。なお、圧着端子5には、電位差に基づいて電流を検出する検出器(不図示)から延出した配線が接続されている(図5参照)。
 第一電極体2において抵抗体1に隣接する位置には、圧入孔21(凹部)が形成され、同様に第二電極体3において抵抗体1に隣接する位置にも、圧入孔31(凹部)が形成されている。
 また、第一電極体2において圧入孔21よりも抵抗体1から離間した位置には挿通孔22が形成され、同様に、第二電極体3において圧入孔31よりも抵抗体1から離間した位置には挿通孔32が形成されている。
 圧入孔21及び圧入孔31には、本体4の圧入部42(取り付け部)がそれぞれ圧入される。図において、圧入孔21は第一電極体2を貫通し、圧入孔31は第二電極体3を貫通しているが、共に貫通する必要はなく圧入部42の長さに相当する深さの凹部であってもよい。
 挿通孔22,32には、バスバー等の配線部材(不図示)と接続するための締結ボルト(不図示)がそれぞれ挿通される。
 図2A,B、図3A,Bに示すように、端子部の本体4は、円筒形の形状を有し、円筒形の径の大きい部分を構成する固定部41と、径の小さい部分を構成する圧入部42とを含む。なお本体4の形状は、円筒形以外に、6角柱等の角柱形状でもよい。
 また、本体4には、固定部41と圧入部42を連通するようにネジ孔43が形成されている。ネジ孔43には端子部を構成する端子用ネジ44が螺合する。また端子用ネジ44は、圧着端子5の開口部に挿通した状態でネジ孔43に螺合する。
 ここで、図3Aに示す固定部41の外径A及び端子用ネジ44の頭の部分の外径は、圧着端子5の外径とほぼ同じ大きさであることが好ましい。これにより、圧着端子5の固定部41及び端子用ネジ44との間の位置ずれを低減することができる。また、固定部41の動径方向の厚みBと、軸方向の長さCは、B:Cが0.8以上となるように設計することが好ましい。これにより、後述の抵抗器100の抵抗値及びTCRのバラつきを低減できる。
 固定部41の圧入部42側の端面には、凸型のリング状の段差部411が形成されている。図2Bに示すように、端子部の本体4において、ネジ孔43、圧入部42、段差部411、及び固定部41が同心円を形成するように配置されている。
 図3Aに示すように、圧入部42の径は圧入孔21,31の径よりもやや大きくなっている。
 よって、図3Bに示すように、圧入部42を圧入孔21,31に圧入すると、圧入部42が圧入孔21,31の内径を拡径するように圧入される。また、段差部411も第一電極体2の圧入孔21の周囲、及び第二電極体3の圧入孔31の周囲に圧入させることができる。
 ここで、端子部の材料(例えば炭素鋼)は、第一電極体2及び第二電極体3の材料(例えば銅)よりも硬度の高い材料を適用することが好適であるが、同種の金属を適用してもよい。
 本体4の圧入部42を圧入孔21,31に圧入した後、端子用ネジ44を用いて圧着端子5を本体4の固定部41に取り付けることができる。さらに、締結用ボルト(不図示)を第一電極体2の挿通孔22、及び第二電極体3の挿通孔32に挿通してバスバー等の配線部材に締結することで、本実施形態の抵抗器100を固定することができる。
[電位分布]
 本願発明者は、比較例の抵抗器101と本実施形態の抵抗器100において、電圧(電流)を印加したときの電位分布について調査した。
<比較例の抵抗器101の電位分布>
 図4Aは、比較例の抵抗器101の圧着端子5の組み付け前の斜視図である。図4Bは、比較例の抵抗器101の圧着端子5の組み付け後の斜視図である。図4Cは、比較例の抵抗器101の電位分布図(断面図)である。図4Dは、比較例の抵抗器101のネジ孔311付近の電位分布図(平面図)である。なお、比較例の抵抗器101において本実施形態の抵抗器100と共通する構成要素には同一の符号を付している。また、図4C、図4Dにおいて、端子用ネジ44は省略している。
 図4Aに示すように、比較例の抵抗器101は、その外形は本実施形態の抵抗器100と同様の構造となっているが、本実施形態の圧入孔21,31に相当する部分がネジ孔211,311になっている。そして、図4Bに示すように、圧着端子5を第一電極体2及び第二電極体3に接触させ、端子用ネジ44を圧着端子5の開口部に挿通してネジ孔211,311に螺合させることで圧着端子5を第一電極体2及び第二電極体3に固定している。
 比較例の抵抗器101において、第一電極体2及び第二電極体3に電圧(電流)を印加すると、図4C、図4Dに示す電位分布が形成される。電位分布は、所定の電位差(刻み幅)を有する等電位線によって表される。図4Cに示すように、抵抗器101においては抵抗体1の抵抗値が第一電極体2及び第二電極体3の抵抗値に比べて大きい。このため、抵抗体1における等電位線は第一電極体2及び第二電極体3よりも密に分布する。
 一方、第一電極体2及び第二電極体3での等電位線は、抵抗体1よりも疎となるが、ネジ孔211,311(圧入孔21,31でも同様)の部分にやや蜜に分布する。具体的に説明すると、ネジ孔211,311の内側(空気)と電極(第一電極体2、第二電極体3)とにおいて、形成される電場が異なる。これにより、図4Dに示すように、ネジ孔211,311の周囲の電位が歪められ、等電位線はネジ孔211,311の内壁に集中するように歪められる。
 図4Cに示すように、圧着端子5をネジ孔211,311の周囲となる位置に配置すると、ネジ孔211,311の周囲の圧着端子5は、接触している領域の電位分布が直接引き写された、換言すると直接拾う形となる。このため、圧着端子5は、接触している領域の電位分布の影響を直接受けることになる。したがって、圧着端子5の締め付け状態が変化する場合、又は圧着端子5の位置ずれが発生する場合、圧着端子5は検知する電位(平均値)が変動し、検出器における電位差(電流)の検出値にバラつきが発生することになる。
<本実施形態の抵抗器100の電位分布>
 図5Aは、本実施形態の抵抗器100の斜視図である。図5Bは、本実施形態の抵抗器100において端子部の本体4を炭素鋼によって形成した場合の電位分布図である。図5Cは、本実施形態の抵抗器100において端子部の本体4を銅によって形成した場合の電位分布図である。図5Dは、図5Bに示す端子部の本体4の径を小さくした場合の図である。なお、図5B、図5C、図5Dにおいては、端子用ネジ44の図示を省略している。
 図5Aに示すように、本実施形態の抵抗器100には、端子部を構成する本体4を介して圧着端子5が取り付けられている。
 図5Bに示すように、本体4を備える端子部(圧入部42)には、電極(第一電極体2、第二電極体3)と接触する位置から電極(第一電極体2、第二電極体3)の電位分布が引き写される。しかし、固定部41において電極(第一電極体2、第二電極体3)から離れるほど等電位線が互いに離れるように放射状に広がった電位分布となる。すなわち、本体4を圧入、装着することによって、固定部41は、接触している領域の電位分布の影響を直接拾わず、等電位線間が広くなり、縦線は傾斜線になる。そして、固定部41の上端の電位分布における電位の最大値と最小値の差分が小さくなり、電位分布が平坦となる。したがって、固定部41の上端に接触する圧着端子5の電位分布における電位の最大値と最小値の差分も小さくなる。
 したがって、圧着端子5の締め付け状態が変化する場合、又は圧着端子5の位置ずれが発生する場合であっても、本体4の上部に装着される圧着端子5が検知する電位の変化は抑制される。これにより、検出器における電位差(電流)の検出精度の低下(バラつき)を低減することができる。
 特に、電極(第一電極体2、第二電極体3)と端子部(本体4)とは、別体である。このため、エンボス加工を用いて電極(第一電極体2、第二電極体3)に端子部(本体4)を一体で形成する場合よりも端子部(本体4)によって、電極から上方へ突出する高さを高くすることができる。よって、その分、固定部41上面における電位分布をさらに平坦にすることができるので、圧着端子5の取り付け状態の変化に伴う検出精度の低下(バラつき)を低減することができる。
 図5Bでは、端子部(本体4)を炭素鋼で形成した場合の電位分布であり、図5Cは、図5Bの端子部と同じ形の端子部(本体4)を銅で形成した場合の電位分布であるが、いずれも固定部41上端において等電位線が拡散していることがわかる。なお、固定部41の径は、圧入部42の径よりも大きくなるように形成されている。これにより、固定部41と圧着端子5との接触面積を確保して、圧着端子5を安定的に固定部41に接続することできる。
 図5Dは、本体4を炭素鋼で形成した場合であって、本体4において圧入部42と固定部41の径がほぼ同じとなるように設計した場合の電位分布となっている。図5Dに示す端子部の圧入部42には、電極(第一電極体2、第二電極体3)から受ける電位分布が引き写される。しかし、上記のように、固定部41において電極(第一電極体2、第二電極体3)から離れるほど等電位線が互いに離れるように拡散した電位分布となる。さらに、図5Dに示す固定部41の上端は、図5B、図5Cに示す固定部41の上端よりも小さくなっている。よって、固定部41上端における電位分布の最大値と最小値との差分は、図5B、図5Cの場合よりもさらに小さくなる。したがって、固定部41の上端に接触する圧着端子5の電位分布における電位の最大値と最小値の差分も図5B、図5Cの場合よりもさらに小さくなるので、検出器における電位差(電流)の検出精度の低下(バラつき)を低減することができる。
[抵抗値のバラつきとTCRのバラつきの比較]
 図6Aは、本実施形態の抵抗器の抵抗値のバラつきと比較例の抵抗器の抵抗値のバラつきを比較したグラフである。図6Bは、本実施形態の抵抗器のTCRのバラつきと比較例の抵抗器のTCRのバラつきとを比較した図である。
 本願発明者は、図4Aに示す比較例の抵抗器101と図5A等に示す本実施形態の抵抗器100において所定の電流を印加し、検出器を用いて二つの圧着端子5間の電圧(抵抗器100に印加される電圧)を計測し、電圧/電流に基づいて、抵抗値を算出した。また、抵抗器100,101に印加する電流を変化させることで抵抗体1の発熱量(温度)を変化させ、それによる抵抗値の変化からTCR(抵抗温度係数:Temperature Coefficient Of Resistance)を算出した。さらに、圧着端子5の付け外しを複数回繰り返し、その都度上記の抵抗値及びTCRを算出した。以上より、図6Aに示す抵抗値のバラつき[%]、図6Bに示すTCRのバラつき[ppm/k]を算出した。
 本実施形態の端子部がない比較例の抵抗器101(図4A)では、上記のように圧着端子5は電極(第一電極体2、第二電極体3)において圧着端子5が接触している部分の電位分布がそのまま引き写された形となる。
 よって、比較例の抵抗器101において、圧着端子5の締め付け状態が変化し、又は位置ずれが発生する場合には、図6Aに示すように、抵抗値のバラつきが顕著となる。
 一方、本実施形態の抵抗器100(図5A)では、上記のように、圧着端子5が接触する端子部(固定部41)の上端において等電位線は拡散している。したがって、本実施形態の抵抗器100において、圧着端子5の締め付け状態が変化し、又は位置ずれが発生する場合であっても、図6Aに示すように、抵抗値のバラつきは低減される。
 また、図6Aに示すように、TCRについても、比較例の抵抗器101(端子部無)ではバラつきが大きいが、本実施形態の抵抗器100(端子部有)ではバラつきが大きく低減されている。具体的に説明すると、固定部41によって圧着端子5が電極(第一電極体2、第二電極体3)から離間する。このため、その分、圧着端子5に流れ込む電流成分が小さくなる。また、固定部41から引き写される電位分布も平坦となる(等電位線も疎となる)。これにより、本実施形態の抵抗器100(端子部有)では、TCRについても、バラつきが大きく低減される。
[第1変形例]
 図7Aは、第1変形例の抵抗器102であって、リベット変形前の状態を示す断面図である。図7Bは、第1変形例の抵抗器102であって、リベット変形後の状態を示す断面図である。第1変形例では、端子用ネジ44の代わりにリベット45が適用される。リベット45を適用する場合、端子部の本体4のネジ孔43のネジ切りを省略して単なる挿通孔としてもよい。
 第1変形例の抵抗器102の組み付け方法は、上記の基本構成と同様であるが、図7Aに示すように、圧着端子5にリベット45を挿通した状態で電極(第一電極体2、第二電極体3)に圧入後の端子部の本体4にリベット45を挿通する。そして、図7Bに示すように、リベット45の先端をカシメによって塑性変形させることで圧着端子5を本体4(固定部41)に固定することができる。
[第2変形例]
 図8Aは、第2変形例の抵抗器103であって、圧着端子5の組み付け前の平面図である。図8Bは、第2変形例の抵抗器103であって、圧着端子5の組み付け後の平面図である。図8Cは、第2変形例の抵抗器103であって、圧着端子5の組み付け後の断面図である。
 第2変形例でも、上記の基本構成及び第1変形例と同様に、端子部(本体4)を圧入孔21,31に圧入している。しかし、第2変形例では、図8Cに示すように、端子部(本体4)のネジ孔43(挿通孔)が省略されている。そして、固定部41の上端に圧着端子5を挟み込む挟み込み部46を配置している。
 挟み込み部46は、圧着端子5の厚みよりもやや狭い間隔のスリットを固定部41の上端との間に形成するものであり、本実施形態では、例えば、三個形成されている。図8Aに示すように、挟み込み部46は、例えば、圧着端子5(固定部41)の周方向で互いに対向する位置に一対配置し、残りの一つを周方向で90度回転した位置に配置する。
 そして、図8Bに示すように、固定部41において挟み込み部46が配置されていない方向から圧着端子5を挟み込み部46に挿入して圧着端子5を挟み込み部46に挟み込ませる。
[本実施形態の効果]
 本実施形態の抵抗器100によれば、抵抗体1と、抵抗体1に接続された一対の電極(第一電極体2、第二電極体3)と、電極(第一電極体2、第二電極体3)に配置された端子部と、を備えた抵抗器100であって、端子部は、電極(第一電極体2、第二電極体3)に取り付けられる取付け部(圧入部42)と、取付け部(圧入部42)を電極(第一電極体2、第二電極体3)に取り付けたときに電極(第一電極体2、第二電極体3)から突出するとともに、検出用の端子(圧着端子5)が固定される固定部41と、を含む。
 上記構成により、端子部(本体4)の取り付け部(圧入部42)は、電極(第一電極体2、第二電極体3)と接触する位置から電極(第一電極体2、第二電極体3)の電位分布を拾うことになる。しかし、固定部41において電極(第一電極体2、第二電極体3)から離れるほど等電位線が互いに離れるように拡散する。このため、固定部41の上端の電位分布における電位の最大値と最小値の差分が小さくなり、電位分布が平坦となる。よって、固定部41の上端に接触する検出用の端子(圧着端子5)の電位分布における電位の最大値と最小値の差分も小さくなる。
 したがって、検出用の端子(圧着端子5)の締め付け状態が変化する場合、又は検出用の端子(圧着端子5)の位置ずれが発生する場合であっても、検出用の端子(圧着端子5)が検知する電位の変化は抑制される。これにより、検出器における電位差(電流)の検出精度の低下(バラつき)を低減することができる。
 特に、電極(第一電極体2、第二電極体3)と端子部(本体4)とが別体となるので、エンボス加工を用いて電極(第一電極体2、第二電極体3)に端子部(本体4)を一体で形成する場合よりも端子部(本体4)の突出する長さを長くすることができる。よって、その分、端子部(固定部41)上面における電位分布をさらに平坦にすることができるので、検出用の端子(圧着端子5)の取り付け状態の変化に伴う検出精度の低下(バラつき)を低減することができる。
 本実施形態の抵抗器100であって、端子部(本体4)は、電極(第一電極体2、第二電極体3)とは異種の金属で形成されている。
 本実施形態の抵抗器100であって、取付け部(圧入部42)は、電極(圧入孔21,31)に圧入される圧入部42である。これにより、簡易な構成で端子部(本体4)を電極(圧入孔21,31)に取り付けることができる。
 本実施形態の抵抗器100であって、端子部(本体4)は、電極(第一電極体2、第二電極体3)の材料(例えば銅)よりも硬度の高い材料(例えば炭素鋼)で形成されている。これにより、端子部(本体4)を電極(第一電極体2、第二電極体3)に容易に圧入させることができる。また、端子部(本体4)の耐久性を高めることができるので、検出用の端子(圧着端子5)を固定部41への付け外しを繰り返して行う場合において好適な構成となる。
 本実施形態の抵抗器100であって、電極(第一電極体2、第二電極体3)には凹部(圧入孔21,31)が形成され、圧入部42は、凹部(圧入孔21,31)に圧入されている。これにより、圧入部42を容易に凹部(圧入孔21,31)に圧入することができる。
 本実施形態の抵抗器100であって、固定部41は、その径が圧入部42の径よりも大きくなるように形成されている。これにより、検出用の端子(圧着端子5)を安定的に固定部41に取り付けることができる。
 本実施形態の抵抗器100であって、固定部41は、その径が圧入部42の径と略同一となるように形成されている。これにより、検出用の端子(圧着端子5)と固定部41との接触面積が小さくなるので、引き写される電位分布において電位の最大値と最小値との差分も小さくできる。よって、抵抗値のバラつきを低減することができる。
 本実施形態の抵抗器100であって、端子部は、少なくとも固定部41に螺合しつつ検出用の端子を固定部41とともに挟み込む端子用ネジ44を含む。これにより、簡易な構成で検出用の端子(圧着端子5)を固定部41に固定することができる。
 本実施形態の抵抗器100であって、電極(第一電極体2、第二電極体3)は、抵抗体1を挟むように一対で配置され、電極(第一電極体2、第二電極体3)と抵抗体1は、端面同士を突き合せた状態で互いに接合している。これにより、電位差(電流)を高精度に検出可能な抵抗器100となる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。例えば、本実施形態では、端子部(本体4)を電極(第一電極体2、第二電極体3)に圧入する構成としているが、取り付け部(圧入部42)を雄ネジ構造にし、圧入孔21,31をネジ孔として形成して取り付け部を当該ネジ孔に螺合させる構成としてもよい。
 また、本実施形態では、抵抗体1の端面と電極(第一電極体2、第二電極体3)の端面を互いに突き合せて接合した構成としている。しかし、一対の電極の上に抵抗体1を重ね合わせるとともに、電極において端子部を配置する部分を抵抗体1から露出させた構成においても適用可能である。
 本願は2020年5月11日に日本国特許庁に出願された特願2020-083325に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
1   抵抗体
2   第一電極体
3   第二電極体
41  固定部
42  圧入部
5   圧着端子
100 抵抗器

Claims (9)

  1.  抵抗体と、前記抵抗体に接続された一対の電極と、前記電極に配置された端子部と、を備えた抵抗器であって、
     前記端子部は、
     前記電極に取り付けられる取付け部と、
     前記取付け部を前記電極に取り付けたときに前記電極から突出するとともに、検出用の端子が固定される固定部と、を含む抵抗器。
  2.  請求項1に記載の抵抗器であって、
     前記端子部は、前記電極とは異種の金属で形成されている抵抗器。
  3.  請求項1または請求項2に記載の抵抗器であって、
     前記取付け部は、前記電極に圧入される圧入部である抵抗器。
  4.  請求項3に記載の抵抗器であって、
     前記端子部は、前記電極の材料よりも硬度の高い材料で形成されている抵抗器。
  5.  請求項3または請求項4に記載の抵抗器であって、
     前記電極には凹部が形成され、
     前記圧入部は、前記凹部に圧入されている抵抗器。
  6.  請求項3乃至請求項5のいずれか1項に記載の抵抗器であって、
     前記固定部は、その径が前記圧入部の径よりも大きくなるように形成されている抵抗器。
  7.  請求項3乃至請求項5のいずれか1項に記載の抵抗器であって、
     前記固定部は、その径が前記圧入部の径と略同一となるように形成されている抵抗器。
  8.  請求項1乃至請求項7のいずれか1項に記載の抵抗器であって、
     前記端子部は、少なくとも前記固定部に螺合しつつ前記検出用の端子を前記固定部とともに挟み込む端子用ネジを含む抵抗器。
  9.  請求項1乃至請求項8のいずれか1項に記載の抵抗器であって、
     前記電極は、前記抵抗体を挟むように一対で配置され、
     前記電極と前記抵抗体は、端面同士を突き合せた状態で互いに接合している抵抗器。
PCT/JP2021/013365 2020-05-11 2021-03-29 抵抗器 WO2021229939A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021002729.8T DE112021002729T5 (de) 2020-05-11 2021-03-29 Widerstand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020083325A JP2021180207A (ja) 2020-05-11 2020-05-11 抵抗器
JP2020-083325 2020-05-11

Publications (1)

Publication Number Publication Date
WO2021229939A1 true WO2021229939A1 (ja) 2021-11-18

Family

ID=78510380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013365 WO2021229939A1 (ja) 2020-05-11 2021-03-29 抵抗器

Country Status (3)

Country Link
JP (1) JP2021180207A (ja)
DE (1) DE112021002729T5 (ja)
WO (1) WO2021229939A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145813A (ja) * 2014-02-03 2015-08-13 コーア株式会社 抵抗器および電流検出装置
JP2017211294A (ja) * 2016-05-26 2017-11-30 サンコール株式会社 シャント抵抗器
JP2020038219A (ja) * 2015-06-22 2020-03-12 Koa株式会社 電流検出装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009031408A1 (de) 2009-07-01 2011-01-05 Isabellenhütte Heusler Gmbh & Co. Kg Elektronisches Bauelement und entsprechendes Herstellungsverfahren
JP7299011B2 (ja) 2018-11-15 2023-06-27 株式会社カネカ ワーク輸送容器、およびその利用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145813A (ja) * 2014-02-03 2015-08-13 コーア株式会社 抵抗器および電流検出装置
JP2020038219A (ja) * 2015-06-22 2020-03-12 Koa株式会社 電流検出装置
JP2017211294A (ja) * 2016-05-26 2017-11-30 サンコール株式会社 シャント抵抗器

Also Published As

Publication number Publication date
DE112021002729T5 (de) 2023-03-02
JP2021180207A (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
US7155981B2 (en) Strain sensor with fixing members
JP6028729B2 (ja) シャント抵抗器およびその製造方法
JP5263733B2 (ja) 金属板抵抗器
JP5298336B2 (ja) シャント抵抗器およびその製造方法
CN107533891B (zh) 电流检测装置
WO2015115596A1 (ja) 抵抗器および電流検出装置
JP6305816B2 (ja) 金属板抵抗器
US20130017739A1 (en) Female type contact for an electrical connector
WO2012169223A1 (ja) コンタクトエレメント及びコネクタ
JP2014139556A (ja) 電流センサ及びその製造方法
JP4563485B2 (ja) 端子接合構造及び端子接合方法
WO2016084571A1 (ja) 接続端子
JP6564482B2 (ja) 金属板抵抗器
WO2021229939A1 (ja) 抵抗器
US20080227315A1 (en) Terminal and connecting structure between terminal and board
JP4648781B2 (ja) センサの製造方法
JP2011047842A (ja) ガスセンサ
JP2004069535A (ja) 歪センサ
US11641071B2 (en) Connection assembly and pin with a welding section
US20230036434A1 (en) Bus bar assembly with plated electrical contact surface
JP6808767B2 (ja) 抵抗器および電流検出装置
KR100372330B1 (ko) 단자커넥터 및 그 제조방법
US20220173531A1 (en) Wire-connecting element
JP7271763B1 (ja) 電子制御装置
KR102013082B1 (ko) 범용 접지 접촉 요소를 갖는 전류 흐름 측정용 센서 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804917

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21804917

Country of ref document: EP

Kind code of ref document: A1