WO2021227913A1 - 控温装置及其控制方法、等离子设备 - Google Patents

控温装置及其控制方法、等离子设备 Download PDF

Info

Publication number
WO2021227913A1
WO2021227913A1 PCT/CN2021/091842 CN2021091842W WO2021227913A1 WO 2021227913 A1 WO2021227913 A1 WO 2021227913A1 CN 2021091842 W CN2021091842 W CN 2021091842W WO 2021227913 A1 WO2021227913 A1 WO 2021227913A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
semiconductor refrigeration
upper electrode
temperature control
control component
Prior art date
Application number
PCT/CN2021/091842
Other languages
English (en)
French (fr)
Inventor
李松雨
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/399,117 priority Critical patent/US20210375594A1/en
Publication of WO2021227913A1 publication Critical patent/WO2021227913A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32559Protection means, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32954Electron temperature measurement
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details

Definitions

  • the present invention relates to the technical field of temperature control, in particular to a temperature control device, a control method thereof, and plasma equipment.
  • Plasma equipment such as ion etching equipment, uses an electromagnetic field to excite plasma, and uses high-energy plasma to cause physical and chemical reactions with semiconductors or metals to achieve the purpose of etching.
  • the temperature of the upper electrode needs to be controlled.
  • temperature control is generally achieved by heating the upper electrode with a resistance wire and cooling the upper electrode with a fan.
  • the fan works stably and continuously.
  • the temperature is low, the power of the resistance wire is increased, and the upper electrode heats up; when the temperature is high, the power of the resistance wire is reduced, and the temperature of the upper electrode is lowered.
  • the existing temperature control method is difficult to quickly cool down, which often causes the temperature of the upper electrode to be higher in the first few steps of the first etched device;
  • One aspect of the present invention provides a temperature control device, including: a temperature control component; and a control component, which is electrically connected to the temperature control component, and is used to obtain the actual temperature of the upper electrode in the plasma equipment in real time, and according to the preset temperature and The actual temperature controls the temperature control component to heat or cool the upper electrode.
  • Another aspect of the present invention provides a plasma equipment including the temperature control device described above, and the temperature control device is located above the upper electrode of the plasma equipment.
  • FIG. 1 is a schematic diagram of the electrical structure of a temperature control device provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the working principle of a semiconductor refrigeration device provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the electrical structure of a semiconductor refrigeration chip provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of a semiconductor refrigeration chip provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the arrangement of a plurality of semiconductor refrigeration fins according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another arrangement of multiple semiconductor refrigeration fins according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a method for controlling a temperature control device according to an embodiment of the present invention.
  • spatial relation terms such as “below”, “below”, “below”, “below”, “above”, “above” It can be used here to describe the relationship between one element or feature shown in the figure and other elements or features. It should be understood that in addition to the orientations shown in the figures, the spatial relationship terms also include different orientations of devices in use and operation. For example, if the device in the drawings is turned over, elements or features described as “under” or “under” or “under” other elements will be oriented “on” the other elements or features. Therefore, the exemplary terms “below” and “below” can include both an orientation of above and below. In addition, the device may also include other orientations (for example, rotated by 90 degrees or other orientations), and the spatial descriptors used herein are interpreted accordingly.
  • an embodiment of the present invention provides a temperature control device, including a temperature control component 100 and a control component 200.
  • the control component 200 is electrically connected to the temperature control component 100 for real-time acquisition of the upper The actual temperature of the electrode, and the temperature control component 100 is controlled to heat or cool the upper electrode according to the preset temperature and the actual temperature.
  • the coil in the upper electrode of the ion etching equipment generates an electromagnetic field under the action of a radio frequency power supply to generate plasma in the vacuum chamber.
  • the lower electrode forms a bias electric field to control the movement speed and direction of the ions bombarding the wafer. It is inevitable that some high-energy particles will also bombard the upper electrode under the action of the electromagnetic field, thereby heating the upper electrode. Because the temperature of the upper electrode is uneven and changes over time, particles and other fouling will be formed on the lower surface. The fouling of these particles will easily affect the etching process. Therefore, it is necessary to control the upper electrode at the preset temperature as much as possible to improve the engraving. Eclipse quality.
  • the actual temperature of the upper electrode in the plasma equipment is acquired in real time, and the temperature control component 100 is controlled to heat or cool the upper electrode according to the preset temperature and the actual temperature, so as to achieve rapid The reaction so that the actual temperature approaches the preset temperature is beneficial to improve the temperature control effect.
  • the control component 200 controls the temperature control component 100 to cool the upper electrode
  • control component 200 controls the temperature control component 100 to heat the upper electrode;
  • control component 200 controls the temperature control component 100 to stop working.
  • the actual temperature is compared with the preset temperature through the control component 200, and corresponding operations are performed according to the comparison result, so that a rapid response is achieved when the temperature is abnormal, so that the actual temperature is close to the actual temperature.
  • the preset temperature For example, assuming that the preset temperature T 0 is 80° C., when the actual temperature T is greater than 80° C., the temperature control component 100 is used to cool the upper electrode; when the actual temperature T is less than 80° C. When the temperature control component 100 is used to raise the temperature of the upper electrode; and, when the actual temperature T is equal to 80°C, it indicates that the temperature of the upper electrode is just right at this time, and it can be controlled by power-off or sleep mode. The temperature control component 100 stops working.
  • the The control component 200 controls the temperature control component 100 to cool the upper electrode; and, when the actual temperature is less than the preset temperature, and the actual temperature and the preset temperature are greater than a temperature difference threshold, the The control part 200 controls the temperature control part 100 to heat the upper electrode.
  • . It is assumed that the preset temperature T 0 is 80°C, and the temperature difference threshold ⁇ t 1°C. It can be understood that by limiting the operating state of the temperature control component 100 to be changed only when the actual temperature and the preset temperature are greater than the temperature difference threshold, it is possible to avoid changing the state when the actual temperature is slightly greater/less than the preset temperature. In addition, when the temperature difference threshold ⁇ t is within 1° C., there is basically no adverse effect on the etching process. It should be noted that this embodiment does not limit the specific value of the temperature threshold. In a specific process, the size of the temperature threshold may be set according to the actual requirements of the etching process.
  • the temperature control component 100 includes at least one semiconductor refrigeration device, and the semiconductor refrigeration device is located on the surface of the upper electrode.
  • the semiconductor refrigeration device is a current-transducer type piece, the thermal inertia is very small, and the cooling/heating speed is very fast.
  • control of the input current high-precision and rapid temperature control can be achieved; in addition, temperature detection and control are added Means, it is easy to realize remote control, program control, computer control, and it is convenient to form an automatic control system.
  • the semiconductor refrigeration sheet includes at least one single refrigeration element.
  • the single refrigeration element includes a P-type semiconductor 121, an N-type semiconductor 122, a thermally conductive graphite sheet 123, and a ceramic sheet 124.
  • the power of the individual refrigeration element pairs of the semiconductor refrigeration film is very small, but when combined into a semiconductor refrigeration film, the same type of semiconductor refrigeration film is combined into a refrigeration system by the method of series and parallel connection, and the power can be made large.
  • the ceramic sheet 124 is located on the same side of the P-type semiconductor 121 and the N-type semiconductor 122, and the thermally conductive graphite sheet 123 is located on the P-type semiconductor 121 or the N-type semiconductor 122 away from the ceramic sheet 124.
  • One side; the P-type semiconductor 121, the N-type semiconductor 122, the thermally conductive graphite sheet 123 and the ceramic sheet 124 are closely attached.
  • the materials of the P-type semiconductor 121 and the N-type semiconductor 122 can be doped pseudo-binary bismuth telluride Bi 2 Te 3 and its solid solution, pseudo-ternary bismuth telluride and its solid solution, doped Mixed lead telluride PbTe and its solid solution (such as PbTe-SnTe, PbTe-SnTe-MnTe), germanium telluride GeTe and its solid solution (such as GeTe-PbTe, GeTe-AgSbTe 2 ) single-filled or multiple-filled CoSb 3 square cobalt Mineral thermoelectric materials, Half-Heusler thermoelectric materials, doped Si-Ge alloys, Zintl phase thermoelectric materials and other thermoelectric materials.
  • the temperature control component includes a plurality of the semiconductor refrigeration fins, and the plurality of the semiconductor refrigeration fins form a plurality of concentrically arranged annular heating blocks 110, which are located in the same ring A plurality of the semiconductor refrigeration fins in the heating block 110 are connected in parallel, series or hybrid connection. It can be understood that by forming a plurality of the semiconductor refrigeration fins into the region of the upper electrode corresponding to the annular heating block 110 concentrically, the temperature uniformity of the upper electrode can be improved.
  • the ratio of the total surface area of the side of the upper electrode facing the temperature control component 100 to the total surface area covered by the plurality of semiconductor refrigeration fins is 1-5.
  • the surface of the upper electrode can be covered with the semiconductor refrigeration fins, and the semiconductor refrigeration fins can be evenly spaced without affecting the temperature control effect, and at the same time reduce the production cost.
  • the ratio of the total surface area of the side of the upper electrode facing the temperature control component 100 to the total surface area covered by the plurality of semiconductor refrigeration fins is 2 to 3, which ensures the temperature control effect. On the basis, the production cost is reduced.
  • control component 200 includes a detection structure 210, a main control circuit 220, and a current control circuit 230.
  • the detection structure 210 is used to obtain the actual temperature of the upper electrode in real time.
  • the detection structure 210 includes a plurality of temperature measuring elements, such as thermocouples, thermal resistors, and thermistors.
  • the temperature control component includes a plurality of heating regions, for each of the heating regions, the detection structure 210 will detect the actual temperature of the heating region in real time.
  • the main control circuit 220 is electrically connected to the detection structure 210 for comparing the preset temperature with the actual temperature, and generates a first control signal when the actual temperature is greater than the preset temperature.
  • a second control signal is generated when the actual temperature is equal to the preset temperature, and a third control signal is generated when the actual temperature is less than the preset temperature.
  • the preset temperature is 80°C
  • the value of the temperature difference threshold ⁇ t is 1
  • the working current in the first direction is the current in the counterclockwise direction shown in FIG. 2
  • the working current in the second direction is shown in FIG. The current in the clockwise direction.
  • the temperature difference threshold ⁇ t between the actual temperature T and the preset temperature T 0 is ⁇ 1
  • it is approximately considered that the actual temperature T is the same as the preset temperature T 0.
  • the main control circuit 220 determines that the temperature difference threshold ⁇ t between the actual temperature T and the preset temperature T 0 is ⁇ 1
  • a second control signal is generated and sent to the current control circuit 230, and the current control circuit 230 stops the power supply to the semiconductor cooling device, in order to maintain the current temperature of the electrode;
  • the actual temperature T is greater than the predetermined temperature T 0
  • the actual temperature and the preset temperature T and the temperature difference is greater than the threshold value T 0
  • ⁇ t that is, when the actual temperature exceeds 81°C, it indicates that the upper electrode is overheated and the temperature needs to be lowered.
  • the main control circuit generates the first control signal and sends it to the current control circuit 230, through which the current control circuit 230 is a semiconductor
  • the cooling sheet provides the working current in the second direction (that is, counterclockwise), so that the end of the semiconductor refrigeration device close to the upper electrode is the cold end, which cools the upper electrode; when the actual temperature T is less than the preset When the temperature T 0 and the actual temperature T and the preset temperature T 0 are greater than the temperature difference threshold ⁇ t, that is, when the actual temperature is lower than 79°C, it indicates that the upper electrode is too cold at this time and needs to be heated.
  • the main control circuit generates a third control signal and sends it to the current control circuit 230.
  • the current control circuit 230 provides the semiconductor refrigeration sheet with a working current in the first direction (ie clockwise), so that the semiconductor refrigeration device is close to the upper One end of the electrode is a hot end, and the upper electrode is heated, so that the upper electrode can be heated and cooled by a temperature control device.
  • the current control circuit 230 includes a plurality of commutation relays 231 and a plurality of conductive wire groups 232, and the commutation relay 231, the conductive wire group 232 and the The heating areas 111 correspond one to one.
  • the control end of the commutation relay is electrically connected to the main control circuit 220, the two moving contacts of the commutation relay are electrically connected to the positive and negative output ends of the power supply, and the two static The contacts are respectively electrically connected to the positive and negative input ends of the corresponding conductive wire group 232, and the conductive wire group 232 provides working current for the semiconductor refrigeration chip in the corresponding heating area.
  • the peltier element in the peltier element is divided into a plurality of heating regions 111 as required, and the control component 200 controls each heating region 111 to perform cooling or cooling. heating.
  • the control component 200 controls each heating region 111 to perform cooling or cooling. heating.
  • the commutation relay 231 switches the direction of the working current according to the control of the main control circuit. And the working current is provided to the conductive wire group 232, and then the conductive wire group 232 is supplied to the semiconductor refrigeration sheet in the heating area.
  • a conductive wire group 232 provides working current for the semiconductor refrigeration fins in the same heating area 111.
  • the conductive wire group 232 is located between the adjacent heating regions 111. It can be understood that arranging the conductive wire group 232 in the area between the adjacent heating regions 111 can improve the space utilization rate.
  • an embodiment of the present invention also provides a temperature control device control method, including:
  • Step S810 obtaining the actual temperature of the upper electrode in the plasma equipment in real time
  • Step S820 controlling the temperature control component 100 to heat or cool the upper electrode according to the preset temperature and the actual temperature.
  • the actual temperature of the upper electrode in the plasma equipment is acquired in real time, and the temperature control component 100 is controlled to heat or cool the upper electrode according to the preset temperature and the actual temperature, so as to achieve rapid The reaction is conducive to improving the temperature control effect.
  • the temperature control component 100 includes at least one semiconductor refrigeration device, and the control of the temperature control component 100 to heat or cool the upper electrode according to the preset temperature and the actual temperature includes:
  • the semiconductor refrigeration device is provided with a working current in the second direction, and the upper electrode is heated by the semiconductor refrigeration device, wherein the first direction and the second direction are reversed.
  • the actual temperature is compared with the preset temperature by the control component 200, and corresponding operations are performed according to the comparison result, so that a rapid response is realized when the temperature is abnormal, so that the actual temperature is close to the actual temperature.
  • the preset temperature For example, assuming that the preset temperature T 0 is 80° C., when the actual temperature T is greater than 80° C., the temperature control component 100 is used to cool the upper electrode; when the actual temperature T is less than 80° C. When the temperature control component 100 is used to raise the temperature of the upper electrode; and, when the actual temperature T is equal to 80°C, it indicates that the temperature of the upper electrode is just right at this time, and it can be controlled by power-off or sleep mode. The temperature control component 100 stops working.
  • the hot end and the cold end of the semiconductor refrigeration device are interchangeable, which is determined by the direction of the energized current. Specifically, if the actual temperature is less than the preset temperature, a clockwise current can be provided for it to make the end of the semiconductor refrigeration device close to the upper electrode as the hot end to heat the upper electrode; accordingly; Yes, when the actual temperature is greater than the preset temperature, a counterclockwise current may be provided to the semiconductor refrigeration device to make the end of the semiconductor refrigeration device close to the upper electrode as a cold end to cool the upper electrode.
  • an embodiment of the present invention also provides a plasma equipment, including the temperature control device described in any of the above embodiments, and the temperature control device is located above the upper electrode of the plasma equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明涉及一种控温装置及其控制方法和等离子设备,其中,所述控温装置包括温控部件和控制部件,所述控制部件与所述温控部件电连接,用于实时获取等离子设备中上电极的实际温度,所述温控部件包括至少一个半导体制冷器件,所述半导体制冷器件位于所述上电极的表面,将多个所述半导体制冷片设置为多个环形加热区块,通过控制部件分别控制每一加热区域进行制冷或加热,在温度异常时实现快速反应,有利于提高温控效果。

Description

控温装置及其控制方法、等离子设备
本申请要求于2020年5月9日提交的申请号为202010386829.5、名称为“控温装置及其控制方法、等离子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及温度控制技术领域,特别是涉及一种控温装置及其控制方法、等离子设备。
背景技术
等离子设备,例如离子刻蚀设备,是利用电磁场激发等离子体,利用高能等离子体与半导体或金属等发生物理化学反应,实现刻蚀的目的。
为提高刻蚀指令,需要对上电极进行温控。目前一般通过利用电阻丝对上电极进行加热,以及利用风扇对上电极进行降温的方式实现温控。例如,风扇稳定持续工作,当温度较低时,增大电阻丝功率,上电极升温;当温度较高时,降低电阻丝的功率,上电极降温。
但是,面对温度突然变化的情况,利用上述方式的温控效果并不好,具体表现在:
当刻蚀过程中离子轰击会造成上电极温度升高,现有的控温方式难以快速降温,这往往会造成第一个被刻蚀器件的前几个步骤上电极的温度偏高;
在刻蚀过程中当功率有所改变时,上电极的温度会随之变化,现有的控温方式难以快速稳定。
发明内容
本发明一方面提供了一种控温装置,包括:温控部件;和控制部件,与所述温控部件电连接,用于实时获取等离子设备中上电极的实际温度,并根据预设温度和所述实际温度控制所述温控部件对所述上电极进行加热或降温。
本发明的另一方面提供了一种等离子设备,包括上述所述的控温装置,所述温控装置位于所述等离子设备的上电极的上方。
本发明的再一方面提供了一种控温装置的控制方法,包括:实时获取等离子设备中上电极的实际温度;根据预设温度和所述实际温度控制所述温控部件对所述上电极进行加热或降温。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本发明实施例的技术方案,可参考一幅或多幅附图,但用于描述附图的附加细节或示例不应当被认为是对本申请的发明创造、目前所描述的实施例或优选方式中任何一者的范围的限制。
图1为本发明实施例提供的一种控温装置的电气结构示意图;
图2为本发明实施例提供的半导体制冷器件的工作原理示意图;
图3为本发明实施例提供的半导体制冷片的电气结构示意图;
图4为本发明实施例提供的半导体制冷片的结构示意图;
图5为本发明实施例提供一种多个半导体制冷片的排布示意图;
图6为本发明实施例提供另一种多个半导体制冷片的排布示意图;
图7为本发明实施例提供的一种电流控制电路的结构示意图;
图8为本发明实施例提供的一种控温装置的控制方法的流程示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
应当明白,空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可以用于描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。此外,器件也可以包括另外地取向(譬如,旋转90度或其它取向),并且在此使用的空间描述语相应地被解释。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、 组件、部分或它们的组合的可能性。同时,在本说明书中,术语“和/或”包括相关所列项目的任何及所有组合。
请参见图1,本发明实施例提供了一种控温装置,包括温控部件100和控制部件200,所述控制部件200与所述温控部件100电连接,用于实时获取等离子设备中上电极的实际温度,并根据预设温度和所述实际温度控制所述温控部件100对所述上电极进行加热或降温。
可以理解,一般在离子刻蚀设备的上电极中的线圈在射频电源的作用下产生电磁场,在真空腔内产生等离子体。下电极在射频电源的作用下,形成偏置电场,控制轰击晶圆的离子的运动速度与方向,难免部分高能粒子在电磁场的作用下也会轰击上电极,从而对上电极进行加热。由于上电极的温度不均匀以及随时间在不断变化,会在下表面形成粒子等积垢,这些粒子积垢容易对刻蚀工艺造成影响,因此需要将上电极尽量控制在预设温度,以提高刻蚀质量。本实施例中,通过实时获取等离子设备中上电极的实际温度,并根据预设温度和所述实际温度控制所述温控部件100对所述上电极进行加热或降温,在温度异常时实现快速反应,以使所述实际温度趋近于所述预设温度,有利于提高温控效果。
在其中一个实施例中,当所述实际温度大于所述预设温度时,所述控制部件200控制所述温控部件100对所述上电极进行降温;
当所述实际温度小于所述预设温度,且所述实际温度与所述预设温度大于温差阈值时,所述控制部件200控制所述温控部件100对所述上电极进行加热;
当所述实际温度等于所述预设温度时,所述控制部件200控制所述温控部件100停止工作。
本实施例中,通过控制部件200将所述实际温度与所述预设温度进行比较, 并根据比较结果进行相应的操作,在温度异常时实现快速反应,以使所述实际温度趋近于所述预设温度。例如,假定所述预设温度T 0为80℃,当所述实际温度T大于80℃时,即利用所述温控部件100对所述上电极进行降温;当所述实际温度T小于80℃时,即利用所述温控部件100对所述上电极进行升温;以及,当所述实际温度T等于80℃时,表明此时上电极温度恰好合适,即可通过断电或休眠的方式控制所述温控部件100停止工作。
为了避免频繁改变所述温控部件100的状态,在另一些实施例中,当所述实际温度大于所述预设温度,且所述实际温度与所述预设温度大于温差阈值时,所述控制部件200控制所述温控部件100对所述上电极进行降温;以及,当所述实际温度小于所述预设温度,且所述实际温度与所述预设温度大于温差阈值时,所述控制部件200控制所述温控部件100对所述上电极进行加热。
本实施例中,所述温差阈值Δt为实际温度与预设温度的绝对差值,即Δt=|T-T 0|。假定所述预设温度T 0为80℃,温差阈值Δt=1℃。可以理解,通过限定所述实际温度与所述预设温度大于温差阈值时才改变温控部件100的工作状态,可以避免因所述实际温度略大于/小于所述预设温度时改变状态。此外,温差阈值Δt在1℃内时,基本不会对刻蚀工艺产生不良影响。需要说明的是,本实施例并不对所述温度阈值的具体数值进行限定,具体工艺中可以根据对刻蚀工艺的实际要求设置所述温度阈值的大小。
在其中一个实施例中,所述温控部件100包括至少一个半导体制冷器件,所述半导体制冷器件位于所述上电极的表面。
请参见图2,当直流电通过所述半导体制冷器件时,所述半导体制冷器件的一端吸收热量,与之相背的另一端释放热量。此外,所述半导体制冷器件的热端和冷端是可互换的,其决定于通电电流的方向。具体的,假如当所述实际温 度小于所述预设温度时,可为其提供顺时针方向的电流使得所述半导体制冷器件靠近上电极的一端为热端,对所述上电极进行加热;相应的,当所述实际温度大于所述预设温度时,可为其提供逆时针方向的电流使得所述半导体制冷器件靠近上电极的一端为冷端,对所述上电极进行降温。由于半导体制冷器件是电流换能型片件,热惯性非常小,制冷/制热速度很快,通过输入电流的控制,可实现高精度、快速的温度控制;此外,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。
在其中一个实施例中,所述半导体制冷器件包括至少一个半导体制冷片。本实施例中,所述半导体制冷器件包括多个半导体制冷片,通过控制部件200分别驱动每一所述半导体制冷片,可进一步提高温控精度。
请结合图3和图4,所述半导体制冷片包括至少一个单体制冷元件。所述单体制冷元件包括一P型半导体121、一N型半导体122、一导热石墨片123及一陶瓷片124。半导体制冷片的单体制冷元件对的功率很小,但组合成半导体制冷片,用同类型的半导体制冷片串、并联的方法组合成制冷系统,功率就可以做的很大。
所述陶瓷片124位于所述P型半导体121及所述N型半导体122的同一侧,所述导热石墨片123位于所述P型半导体121或所述N型半导体122远离所述陶瓷片124的一侧;所述P型半导体121、所述N型半导体122、所述导热石墨片123及所述陶瓷片124紧密贴合。具体工艺中,所述P型半导体121及所述N型半导体122的材料均可以为掺杂的赝二元碲化铋Bi 2Te 3及其固溶体、赝三元碲化铋及其固溶体、掺杂的碲化铅PbTe及其固溶体(如PbTe-SnTe、PbTe-SnTe-MnTe)、碲化锗GeTe及其固溶体(如GeTe-PbTe、GeTe-AgSbTe 2)单填或多填的CoSb 3方钴矿类温差电材料、Half-Heusler温差电材料、掺杂的Si-Ge 合金、Zintl相温差电材料以及其他温差电材料。
请参见图5,在其中一个实施例中,所述温控部件包括多个所述半导体制冷片,多个所述半导体制冷片形成同心设置的多个环形加热区块110,位于同一所述环形加热区块110内的多个所述半导体制冷片通过并联、串联或混联的方式相连接。可以理解,通过将多个所述半导体制冷片形成同心设置成环形加热区块110对应的上电极的区域,可提高上电极的温度均匀性。
请参见图6,在其中一个实施例中,所述环形加热区块被划分为多个加热区域111,所述控制部件200分别控制每一所述加热区域111进行制冷或加热。
可以理解,同一环形加热区块对应的上电极的区域,不同位置的温度也可能不同,因此通过将所述环形加热区块划分为多个加热区域111,并通过所述控制部件200分别控制每一所述加热区域111进行制冷或加热,进一步提高了温控的精度。
在其中一个实施例中,所述上电极面向所述温控部件100的一侧的表面总面积与被多个所述半导体制冷片覆盖的表面总面积的比值为1~5。
由于半导体制冷片的制冷/制热效果比较好,因此可以在上电极表面布满半导体制冷片,也可以在不影响温控效果的前提下,均匀间隔排布半导体制冷片,同时降低制作成本。本实施例中,所述上电极面向所述温控部件100的一侧的表面总面积与被多个所述半导体制冷片覆盖的表面总面积的比值为2~3,在保证控温效果的基础上,降低了制作成本。
在其中一个实施例中,所述控制部件200包括检测结构210、主控电路220和电流控制电路230。
所述检测结构210用于实时获取所述上电极的实际温度。一般的,所述检测结构210包括多个测温元件,如热电偶、热电阻、热敏电阻等。本实施例中, 若所述温控部件包括多个加热区域,则针对每一所述加热区域,所述检测结构210都会实时检测所述加热区域的实际温度。
所述主控电路220与所述检测结构210电连接,用于比较所述预设温度和所述实际温度,当所述实际温度大于所述预设温度时生成第一控制信号,当所述实际温度等于所述预设温度时生成第二控制信号,以及所述实际温度小于所述预设温度时生成第三控制信号。
所述电流控制电路230与所述主控电路220以及所述半导体制冷器件分别电连接,用于根据所述第一控制信号为所述半导体制冷器件提供第一方向的工作电流,根据所述第二控制信号停止为所述半导体制冷器件供电,以及根据所述第三控制信号为所述半导体制冷器件提供第二方向的工作电流,其中所述第一方向和所述第二方向反向。
本实施例中,假定预设温度为80℃,温差阈值Δt的值为1,第一方向的工作电流为图2所示的逆时针方向的电流,第二方向的工作电流为图2所示的顺时针方向的电流。为了避免频率的切换电路,当实际温度T与所述预设温度T 0的温差阈值Δt≤1时,近似认为实际温度T与所述预设温度T 0相同。具体工作过程中,当主控电路220判定所述实际温度T与所述预设温度T 0的温差阈值Δt≤1时,生成第二控制信号并发送给电流控制电路230,通过所述电流控制电路230停止为所述半导体制冷器件供电,以使电极维持当前温度;当所述实际温度T大于所述预设温度T 0,且所述实际温度T与所述预设温度T 0大于温差阈值Δt时,即实际温度超过81℃时,表明此时上电极过热,需要进行降温,此时主控电路生成第一控制信号,并发送给电流控制电路230,通过所述电流控制电路230为半导体制冷片提供第二方向(即逆时针方向)的工作电流,使得所述半导体制冷器件靠近上电极的一端为冷端,对所述上电极进行降温;当所述实际温 度T小于所述预设温度T 0,且所述实际温度T与所述预设温度T 0大于温差阈值Δt时,即实际温度低于79℃时,表明此时上电极过冷,需要进行对其进行加热,此时主控电路生成第三控制信号,并发送给电流控制电路230,通过所述电流控制电路230为半导体制冷片提供第一方向(即顺时针方向)的工作电流,使得所述半导体制冷器件靠近上电极的一端为热端,对所述上电极进行加热,从而通过一个温控器件,对上电极实现加热和降温。
请参见图7,在其中一个实施例中,所述电流控制电路230包括多个换向继电器231和多个导电线组232,且所述换向继电器231、所述导电线组232与所述加热区域111一一对应。
所述换相继电器的控制端与所述主控电路220电连接,所述换相继电器的两个动触点分别与电源的正、负输出端电连接,所述换相继电器的两个静触点分别与对应的所述导电线组232的正、负输入端电连接,通过所述导电线组232为对应的所述加热区域内的半导体制冷片提供工作电流。
可以理解,为了提高上电极的温度均匀性,将半导体制冷器件中的半导体制冷片按照需要划分为多个加热区域111,并通过所述控制部件200分别控制每一所述加热区域111进行制冷或加热。为了实现对每一所述加热区域111进行分别控制,需要为每一加热区域111配置一个换向继电器231和一个导电线组232,换向继电器231根据主控电路的控制切换工作电流的方向,并将工作电流提供给导电线组232,然后再通过所述导电线组232提给加热区域内的半导体制冷片。由于每一加热区域111的半导体制冷片的工作模式是一致的,且位于同一所述环形加热区块110内的多个所述半导体制冷片通过并联、串联或混联的方式相连接,因此可通过一个导电线组232为同一加热区域111的半导体制冷片提供工作电流。
在其中一个实施例中,所述导电线组232位于相邻的所述加热区域111之间。可以理解,将所述导电线组232设置在相邻的所述加热区域111之间的区域内,可以提高空间利用率。
请参见图8,基于同一发明构思,针对上述任一实施例提供的控温装置,本发明实施例还提供了一种控温装置的控制方法,包括:
步骤S810,实时获取等离子设备中上电极的实际温度;
步骤S820,根据预设温度和所述实际温度控制所述温控部件100对所述上电极进行加热或降温。
本实施例中,通过实时获取等离子设备中上电极的实际温度,并根据预设温度和所述实际温度控制所述温控部件100对所述上电极进行加热或降温,在温度异常时实现快速反应,有利于提高温控效果。
在其中一个实施例中,所述温控部件100包括至少一个半导体制冷器件,所述根据预设温度和所述实际温度控制所述温控部件100对所述上电极进行加热或降温,包括:
当所述实际温度大于所述预设温度时,生成第一控制信号;
根据所述第一控制信号为所述半导体制冷器件提供第一方向的工作电流,利用所述半导体制冷器件对所述上电极进行降温;
当所述实际温度等于所述预设温度时;生成第二控制信号;
根据所述第二控制信号停止为所述半导体制冷器件供电;
当所述实际温度小于所述预设温度时,生成第三控制信号;
根据所述第三控制信号为所述半导体制冷器件提供第二方向的工作电流,利用所述半导体制冷器件对所述上电极进行加热,其中所述第一方向和所述第二方向反向。
本实施例中,通过控制部件200将所述实际温度与所述预设温度进行比较,并根据比较结果进行相应的操作,在温度异常时实现快速反应,以使所述实际温度趋近于所述预设温度。例如,假定所述预设温度T 0为80℃,当所述实际温度T大于80℃时,即利用所述温控部件100对所述上电极进行降温;当所述实际温度T小于80℃时,即利用所述温控部件100对所述上电极进行升温;以及,当所述实际温度T等于80℃时,表明此时上电极温度恰好合适,即可通过断电或休眠的方式控制所述温控部件100停止工作。
此外,当直流电通过所述半导体制冷器件时,所述半导体制冷器件的一端吸收热量,与之相背的另一端释放热量。此外,所述半导体制冷器件的热端和冷端是可互换的,其决定于通电电流的方向。具体的,假如当所述实际温度小于所述预设温度时,可为其提供顺时针方向的电流使得所述半导体制冷器件靠近上电极的一端为热端,对所述上电极进行加热;相应的,当所述实际温度大于所述预设温度时,可为其提供逆时针方向的电流使得所述半导体制冷器件靠近上电极的一端为冷端,对所述上电极进行降温。由于半导体制冷器件是电流换能型片件,热惯性非常小,制冷/制热速度很快,通过输入电流的控制,可实现高精度、快速的温度控制;此外,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。
基于同一发明构思,本发明实施例还提供了一种等离子设备,包括上述任一实施例所述的控温装置,所述温控装置位于所述等离子设备的上电极的上方。
在本说明书的描述中,参考术语“其中一个实施例”、“其他实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种控温装置,包括:
    温控部件;和
    控制部件,与所述温控部件电连接,用于实时获取等离子设备中上电极的实际温度,并根据预设温度和所述实际温度控制所述温控部件对所述上电极进行加热或降温。
  2. 如权利要求1所述的控温装置,其中,当所述实际温度大于所述预设温度时,所述控制部件控制所述温控部件对所述上电极进行降温;
    当所述实际温度小于所述预设温度时,所述控制部件控制所述温控部件对所述上电极进行加热;
    当所述实际温度等于所述预设温度时,所述控制部件控制所述温控部件停止工作。
  3. 如权利要求1所述的控温装置,其中,所述温控部件包括至少一个半导体制冷器件,所述半导体制冷器件位于所述上电极的表面。
  4. 如权利要求3所述的控温装置,其中,所述半导体制冷器件包括至少一个半导体制冷片。
  5. 如权利要求4所述的控温装置,其中,所述温控部件包括多个所述半导体制冷片,多个所述半导体制冷片形成同心设置的多个环形加热区块,位于同一所述环形加热区块内的多个所述半导体制冷片通过并联、串联或混联的方式相连接。
  6. 如权利要求5所述的控温装置,其中,所述环形加热区块被划分为多个加热区域,所述控制部件分别控制每一所述加热区域进行制冷或加热。
  7. 如权利要求4所述的控温装置,其中,所述上电极面向所述温控部件的一侧的表面总面积与被多个所述半导体制冷片覆盖的表面总面积的比值为1~5。
  8. 如权利要求6所述的控温装置,其中,所述控制部件包括:
    检测结构,用于实时获取所述上电极的实际温度;
    主控电路,与所述检测结构电连接,用于比较所述预设温度和所述实际温度,当所述实际温度大于所述预设温度时生成第一控制信号,当所述实际温度等于所述预设温度时生成第二控制信号,以及所述实际温度小于所述预设温度时生成第三控制信号;以及
    电流控制电路,与所述主控电路以及所述半导体制冷器件分别电连接,用于根据所述第一控制信号为所述半导体制冷器件提供第一方向的工作电流,根据所述第二控制信号停止为所述半导体制冷器件供电,以及根据所述第三控制信号为所述半导体制冷器件提供第二方向的工作电流,其中所述第一方向和所述第二方向反向。
  9. 如权利要求8所述的控温装置,其中,所述电流控制电路包括多个换向继电器和多个导电线组,且所述换向继电器、所述导电线组与所述加热区域一一对应;
    所述换相继电器的控制端与所述主控电路电连接,所述换相继电器的两个动触点分别与电源的正、负输出端电连接,所述换相继电器的两个静触点分别与对应的所述导电线组的正、负输入端电连接,通过所述导电线组为对应的所述加热区域内的半导体制冷片提供工作电流。
  10. 如权利要求9述的控温装置,其中,所述导电线组位于相邻的所述加热区域之间。
  11. 一种等离子设备,包括如权利要求1~10任一项所述的控温装置,所述 温控装置位于所述等离子设备的上电极的上方。
  12. 一种如权利要求1~10任一项所述的控温装置的控制方法,包括:
    实时获取等离子设备中上电极的实际温度;
    根据预设温度和所述实际温度控制所述温控部件对所述上电极进行加热或降温。
  13. 如权利要求12所述的控温装置的控制方法,其中,所述温控部件包括至少一个半导体制冷器件,所述根据预设温度和所述实际温度控制所述温控部件对所述上电极进行加热或降温,包括:
    当所述实际温度大于所述预设温度时,生成第一控制信号;
    根据所述第一控制信号为所述半导体制冷器件提供第一方向的工作电流,利用所述半导体制冷器件对所述上电极进行降温;
    当所述实际温度等于所述预设温度时;生成第二控制信号;
    根据所述第二控制信号停止为所述半导体制冷器件供电;
    当所述实际温度小于所述预设温度时,生成第三控制信号;
    根据所述第三控制信号为所述半导体制冷器件提供第二方向的工作电流,利用所述半导体制冷器件对所述上电极进行加热,其中所述第一方向和所述第二方向反向。
PCT/CN2021/091842 2020-05-09 2021-05-06 控温装置及其控制方法、等离子设备 WO2021227913A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/399,117 US20210375594A1 (en) 2020-05-09 2021-08-11 Apparatus and method for temperature control, and plasma equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010386829.5A CN113628949A (zh) 2020-05-09 2020-05-09 控温装置及其控制方法、等离子设备
CN202010386829.5 2020-05-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/399,117 Continuation US20210375594A1 (en) 2020-05-09 2021-08-11 Apparatus and method for temperature control, and plasma equipment

Publications (1)

Publication Number Publication Date
WO2021227913A1 true WO2021227913A1 (zh) 2021-11-18

Family

ID=78376294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091842 WO2021227913A1 (zh) 2020-05-09 2021-05-06 控温装置及其控制方法、等离子设备

Country Status (3)

Country Link
US (1) US20210375594A1 (zh)
CN (1) CN113628949A (zh)
WO (1) WO2021227913A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171436A (zh) * 2021-11-30 2022-03-11 北京北方华创微电子装备有限公司 晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备
CN114400211A (zh) * 2022-01-17 2022-04-26 长鑫存储技术有限公司 一种半导体结构及其形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259829A (ja) * 2003-02-25 2004-09-16 Hitachi High-Technologies Corp プラズマ処理装置
CN101389178A (zh) * 2007-09-14 2009-03-18 爱德牌工程有限公司 具有电极构件的衬底处理设备
CN206076197U (zh) * 2016-09-29 2017-04-05 昆山工研院新型平板显示技术中心有限公司 真空腔室温控装置
CN109461641A (zh) * 2018-11-29 2019-03-12 吉林大学 一种等离子刻蚀装置
CN112750676A (zh) * 2020-11-24 2021-05-04 乐金显示光电科技(中国)有限公司 一种等离子体处理装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2960631A (en) * 1955-10-11 1960-11-15 Gen Electric Phase sequence responsive electromagnetic device
KR100317829B1 (ko) * 1999-03-05 2001-12-22 윤종용 반도체 제조 공정설비용 열전냉각 온도조절장치
US6741446B2 (en) * 2001-03-30 2004-05-25 Lam Research Corporation Vacuum plasma processor and method of operating same
US7645341B2 (en) * 2003-12-23 2010-01-12 Lam Research Corporation Showerhead electrode assembly for plasma processing apparatuses
US7712434B2 (en) * 2004-04-30 2010-05-11 Lam Research Corporation Apparatus including showerhead electrode and heater for plasma processing
US8375890B2 (en) * 2007-03-19 2013-02-19 Micron Technology, Inc. Apparatus and methods for capacitively coupled plasma vapor processing of semiconductor wafers
WO2009058376A2 (en) * 2007-10-31 2009-05-07 Lam Research Corporation Temperature control module using gas pressure to control thermal conductance between liquid coolant and component body
CN102446738A (zh) * 2011-11-29 2012-05-09 上海华力微电子有限公司 一种等离子体刻蚀装置
CN103730315B (zh) * 2012-10-11 2016-03-09 中微半导体设备(上海)有限公司 一种改善等离子体刻蚀工艺的方法
CN105088353B (zh) * 2014-05-04 2018-07-06 北京北方华创微电子装备有限公司 等离子反应设备及其温度监控方法
CN106054975B (zh) * 2016-08-17 2019-02-15 科纳技术(苏州)有限公司 一种恒温控制装置及方法
CN110519905B (zh) * 2018-05-21 2022-07-22 北京北方华创微电子装备有限公司 温控装置和等离子设备
CN210073760U (zh) * 2019-08-14 2020-02-14 长鑫存储技术有限公司 腔盖及半导体刻蚀装置
CN110846635A (zh) * 2019-11-06 2020-02-28 福建华佳彩有限公司 一种控温接触板和蒸镀设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259829A (ja) * 2003-02-25 2004-09-16 Hitachi High-Technologies Corp プラズマ処理装置
CN101389178A (zh) * 2007-09-14 2009-03-18 爱德牌工程有限公司 具有电极构件的衬底处理设备
CN206076197U (zh) * 2016-09-29 2017-04-05 昆山工研院新型平板显示技术中心有限公司 真空腔室温控装置
CN109461641A (zh) * 2018-11-29 2019-03-12 吉林大学 一种等离子刻蚀装置
CN112750676A (zh) * 2020-11-24 2021-05-04 乐金显示光电科技(中国)有限公司 一种等离子体处理装置

Also Published As

Publication number Publication date
CN113628949A (zh) 2021-11-09
US20210375594A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2021227913A1 (zh) 控温装置及其控制方法、等离子设备
US5740016A (en) Solid state temperature controlled substrate holder
JP3610275B2 (ja) 半導体製造工程設備用熱電冷却温度調節装置
Shakouri et al. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators
KR102506497B1 (ko) 인-시튜 반도체 프로세싱 챔버 온도 장치
JP2008522446A (ja) 空間温度分布の制御方法及び装置
US20080121821A1 (en) Techniques for low-temperature ion implantation
US6034408A (en) Solid state thermal switch
JP2008252102A (ja) 基板熱管理システム
TWI648814B (zh) 溫控晶圓安裝台及其溫控方法
CN1962416A (zh) 一种碲化铋基热电材料的制备工艺
CN111490000A (zh) 静电卡盘及半导体加工设备
KR100920399B1 (ko) 냉각블럭 및 이를 포함하는 기판처리장치
CN215731640U (zh) 静电卡盘装置及半导体处理设备
Dang et al. Thermoelectric micro-refrigerator based on bismuth/antimony telluride
US6735378B1 (en) Pressure controlled heat source and method for using such for RTP
KR20060118747A (ko) 온도 조절 어셈블리 및 이를 갖는 이온 주입 장치
CN111383885A (zh) 一种能提高控温精度的基片安装台及等离子体处理设备
KR101839451B1 (ko) 고전압을 이용한 온도제어시스템
US20040248430A1 (en) Wafer cooling chuck with direct coupled peltier unit
KR100459944B1 (ko) 고체온도제어기판지지대
CN209133484U (zh) 具有温度调整功能的承载盘组件及机械手臂
KR100404430B1 (ko) 열전소자를 이용한 고안정도의 항온장치
KR100420226B1 (ko) 플라즈마 처리장치용 정전척
KR19990027878A (ko) 반도체 제조장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804805

Country of ref document: EP

Kind code of ref document: A1