WO2021227655A1 - 化合物、有机电致发光器件和显示装置 - Google Patents

化合物、有机电致发光器件和显示装置 Download PDF

Info

Publication number
WO2021227655A1
WO2021227655A1 PCT/CN2021/081915 CN2021081915W WO2021227655A1 WO 2021227655 A1 WO2021227655 A1 WO 2021227655A1 CN 2021081915 W CN2021081915 W CN 2021081915W WO 2021227655 A1 WO2021227655 A1 WO 2021227655A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
compound
layer
group
Prior art date
Application number
PCT/CN2021/081915
Other languages
English (en)
French (fr)
Inventor
黄金华
曾礼昌
孙龙
刘嵩
Original Assignee
北京鼎材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011181935.6A external-priority patent/CN114430016A/zh
Priority claimed from CN202011186015.3A external-priority patent/CN114430009A/zh
Application filed by 北京鼎材科技有限公司 filed Critical 北京鼎材科技有限公司
Priority to KR1020227043538A priority Critical patent/KR20230023651A/ko
Priority to JP2022568978A priority patent/JP2023528214A/ja
Priority to US17/924,692 priority patent/US20230200219A1/en
Publication of WO2021227655A1 publication Critical patent/WO2021227655A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/86Ring systems containing bridged rings containing four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the technical field of organic electroluminescence, in particular to a compound, an organic electroluminescence device and a display device.
  • OLED organic light-emitting diodes
  • OLED organic field effect tubes
  • organic photovoltaic cells organic sensors
  • OLED has developed particularly rapidly and has achieved commercial success in the field of information display.
  • OLED can provide high-saturation red, green, and blue colors.
  • the full-color display device made with it does not require an additional backlight source, and has the advantages of dazzling colors, light, thin and soft.
  • the core of the OLED device is a thin film structure containing a variety of organic functional materials.
  • Common functionalized organic materials include: hole injection materials, hole transport materials, hole blocking materials, electron injection materials, electron transport materials, electron blocking materials, and luminescent host materials and luminescent guests (dyes). When energized, electrons and holes are respectively injected and transported to the light-emitting area and recombined there, thereby generating excitons and emitting light.
  • TADF Thermally excited delayed fluorescence
  • Thermally excited sensitized fluorescence (TASF) technology uses materials with TADF properties to sensitize the luminous body through energy transfer, which can also achieve higher luminous efficiency.
  • the field urgently needs to develop an organic electroluminescent material that can improve the luminous efficiency of the device, reduce the driving voltage, and prolong the service life, so as to develop more types and higher performance OLED devices.
  • the main purpose of the present invention is to provide a compound, an organic electroluminescent device and a display device, so as to provide a new organic electroluminescent material in order to improve the luminous efficiency of the OLED device.
  • One of the objectives of the present invention is to provide a compound, which can improve the luminous efficiency of the device, reduce the driving voltage, and prolong the service life when the compound is applied to an organic electroluminescent device.
  • the present invention provides a compound having the structure shown in formula I;
  • the Ar 1 and Ar 2 are independently selected from substituted or unsubstituted C6-C30 (for example, C10, C12, C14, C16, C18, C20, C26, C28, etc.) aryl or substituted or unsubstituted C3-C30 (such as C4, C6, C8, C12, C15, C18, C20, C23, C25, C28, etc.) heteroaryl groups;
  • the substituted or unsubstituted C6-C30 aryl group includes a C6-C30 monocyclic aryl group and a C10-C30 condensed ring aryl group;
  • the substituted or unsubstituted C3-C30 heteroaryl group includes a C3-C30 monocyclic heteroaryl group Group and C6-C30 fused ring heteroaryl group;
  • the L 1 is selected from substituted or unsubstituted C6-C30 (for example, C10, C12, C14, C16, C18, C20, C26, C28, etc.) arylene or substituted or unsubstituted C3-C30 ( For example, C4, C6, C8, C12, C15, C18, C20, C23, C25, C28, etc.) Heteroarylene;
  • the L 2 is selected from a single bond, substituted or unsubstituted C6-C30 (for example, C10, C12, C14, C16, C18, C20, C26, C28, etc.) arylene or substituted or unsubstituted C3 -C30 (such as C4, C6, C8, C12, C15, C18, C20, C23, C25, C28, etc.) one of the heteroarylene groups;
  • the R 1 , R 2 and R 3 are independently selected from substituted or unsubstituted C1-C20 (such as C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, etc.) chain alkyl, substituted or unsubstituted C3-C20 (e.g. C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, etc.) cycloalkyl, substituted or unsubstituted C1-C20 (e.g.
  • the m is an integer of 0-6, such as 1, 2, 3, 4, 5, etc.; when m ⁇ 2, R 4 is the same or different;
  • the R 4 is independently selected from substituted or unsubstituted C1-C20 (e.g., C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, etc.) chain alkyl, substituted or unsubstituted C3-C20 (e.g. C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, etc.) cycloalkyl, substituted or unsubstituted C1-C20 (e.g.
  • Substituted or unsubstituted C6-C30 e.g. C10, C12, C14, C16, C18, C20, C26, C28, etc.
  • aryl substituted or unsubstituted C3-C30 (e.g. C4, C6, C8, C12, C15 , C18, C20, C23, C25, C28, etc.) one of heteroaryl groups;
  • the substituent is selected from halogen, C1-C10 (e.g. C2, C3, C4, C5, C6, C7, C8, C9, etc.) chain alkyl, C3-C10 (e.g. C4, C5, C6, C7, C8, C9, etc.) cycloalkyl, C1-C10 (e.g. C2, C3, C4, C5, etc.) alkoxy, C1-C10 (e.g. C2, C3, C4, C5, etc.) thioalkoxy, C6-C30 (e.g.
  • C10, C12, C14, C16, C18, C20, C26, C28, etc. arylamino, C3-C30 (for example, C4, C6, C8, C12, C15, C18, C20, C23, C25, C28, etc.) heteroarylamino, C6-C30 (e.g. C10, C12, C14, C16, C18, C20, C26, C28, etc.) Cyclic aryl, C10-C30 (e.g. C10, C12, C14, C16, C18, C20, C26, C28, etc.) fused ring aryl, C3-C30 (e.g.
  • substituted or unsubstituted groups may be substituted with one substituent or multiple substituents. When there are multiple substituents, they may be selected from different substituents.
  • the present invention refers to the same In the expression mode, they all have the same meaning, and the selection range of the substituents is as shown above and will not be repeated one by one.
  • H hydrogen
  • C carbon
  • the heteroatom of the heteroaryl group is usually selected from N, O, and S.
  • the expression of the ring structure crossed by "—" means that the connection site is at any position on the ring structure that can form a bond.
  • the aforementioned C1-C20 chain alkyl group is preferably a C1-C10 chain alkyl group, more preferably a C1-C6 chain alkyl group, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, Isobutyl, tert-butyl, n-hexyl, n-octyl, n-pentyl, n-heptyl, n-nonyl, n-decyl, etc.
  • the aforementioned C3-C20 cycloalkyl group is preferably cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
  • the aforementioned substituted or unsubstituted C6-C30 aryl group preferably C6-C20 aryl group, preferably the aryl group is composed of phenyl, biphenyl, terphenyl, naphthyl, anthryl, phenanthryl, indenyl, fluorene Group and its derivatives, fluoranthene group, triphenylene group, pyrenyl group, perylene group, A group in the group consisting of a tetraphenyl group and a tetraphenyl group.
  • the biphenyl group is selected from 2-biphenyl group, 3-biphenyl group and 4-biphenyl group; said terphenyl group includes p-terphenyl-4-yl and p-terphenyl-3-yl , P-terphenyl-2-yl, m-terphenyl-4-yl, m-terphenyl-3-yl and m-terphenyl-2-yl; the naphthyl includes 1-naphthyl Or 2-naphthyl; the anthryl group is selected from the group consisting of 1-anthryl, 2-anthryl and 9-anthryl; the fluorenyl group is selected from the group consisting of 1-fluorenyl, 2-fluorenyl, 3- Fluorenyl, 4-fluorenyl and 9-fluorenyl; the fluorenyl derivative is selected from the group consisting of 9,9'-dimethylfluorene, 9,9'-spirobifluor
  • the aforementioned substituted or unsubstituted C3-C30 heteroaryl group is preferably C4-C20 heteroaryl group, preferably the heteroaryl group is furyl, thienyl, pyrrolyl, benzofuranyl, benzothienyl, isobenzo Furanyl, indolyl, dibenzofuranyl, dibenzothienyl, carbazolyl and derivatives thereof, wherein the carbazolyl derivative is preferably 9-phenylcarbazole, 9-naphthylcarbazole Azobenzocarbazole, dibenzocarbazole, or indolocarbazole.
  • the labels of the substitution sites on the naphthalene ring are as follows:
  • the introduction of the substituent Ar 2 at the 1-position of the naphthalene ring can not only adjust the size of the 1-site hindrance, but also effectively control the twist of the molecule to reduce the molecular crystallinity; secondly, the 2-position is substituted with an arylamino group. Group, and the tri-substituted structure on the arylamine group
  • the introduction of can effectively control the three-dimensional structure of the molecules, increase the density of the molecules, and then enable the designed materials to meet the material requirements of the device.
  • the naphthalene ring core structure substituted by the 1-position and the 2-position at the same time is matched with Ar 1 , Ar 2 , R 1 ⁇ R 4 and other substituents to achieve the best effect, so that the material can be used in organic electro-induced electrolysis.
  • the light-emitting device especially when used as an electron blocking layer, can improve the luminous efficiency, reduce the starting voltage and prolong the service life of the device.
  • the preparation process of the compound of the present invention is simple and feasible, and the raw materials are easily available, which is suitable for mass production and scale-up.
  • the L 2 is selected from one of a single bond, a substituted or unsubstituted C6-C20 arylene group, or a substituted or unsubstituted C3-C20 heteroarylene group, preferably a single bond or a phenylene group.
  • the Ar 2 is selected from substituted or unsubstituted C6-C20 aryl groups or substituted or unsubstituted C3-C20 heteroaryl groups.
  • the Ar 2 is selected from any one of the following substituted or unsubstituted groups: phenyl, biphenyl, terphenyl, naphthyl, phenanthryl, anthracenyl, dibenzofuranyl, dibenzofuran Benzothienyl, carbazolyl, 9,9dimethylfluorenyl, 9,9diphenylfluorenyl, spirofluorenyl, triphenylene, fluoranthene, benzo9,9dimethylfluorenyl, Benzospirofluorenyl.
  • the Ar 2 is selected from any one of the following substituted or unsubstituted groups:
  • the dashed line represents the connecting bond of the group.
  • the L 2 is a single bond
  • the Ar 2 is selected from a substituted or unsubstituted C10-C30 fused ring aryl group or a substituted or unsubstituted C6-C30 fused ring heteroaryl group.
  • the L 2 is a single bond
  • the Ar 2 is selected from any one of the following substituted or unsubstituted groups: naphthyl, phenanthryl, anthracenyl, dibenzofuranyl, dibenzo Thienyl, carbazolyl, 9,9dimethylfluorenyl, 9,9diphenylfluorenyl, spirofluorenyl, triphenylene, fluoranthene, benzo9,9dimethylfluorenyl, benzo Spirofluorenyl.
  • the L 2 is a single bond
  • the Ar 2 is selected from any of the following groups:
  • the dashed line represents the connecting bond of the group.
  • the expression of the ring structure crossed by the dashed line indicates that the connection site is at any position on the ring structure where a bond can be formed.
  • the L 2 is a phenylene group
  • the Ar 2 is selected from a substituted or unsubstituted C6-C30 aryl group or a substituted or unsubstituted C3-C30 heteroaryl group.
  • the L 2 is a phenylene group
  • the Ar 2 is selected from any one of the following substituted or unsubstituted groups: phenyl, biphenyl, terphenyl, naphthyl, phenanthryl, Anthryl, dibenzofuranyl, dibenzothienyl, carbazolyl, 9,9dimethylfluorenyl, 9,9diphenylfluorenyl, spirofluorenyl, triphenylene, fluoranthene, benzene And 9,9 dimethyl fluorenyl, benzospirofluorenyl.
  • the L 2 is a phenylene group
  • the Ar 2 is selected from any one of the following substituted or unsubstituted groups:
  • the dashed line represents the connecting bond of the group.
  • the R 1 , R 2 and R 3 are independently selected from one of methyl, ethyl or phenyl.
  • the R 1 , R 2 and R 3 are all methyl groups.
  • said L 1 is selected from one of the following substituted or unsubstituted groups: phenylene, biphenylene, naphthylene, dibenzofuranyl, dibenzothienyl, One of 9,9 dimethylfluorenyl groups.
  • said L 1 is selected from any one of the following substituted or unsubstituted groups:
  • the dashed line represents the connecting bond of the group.
  • the m is 0.
  • the compound has any one of the following structures shown in P1-P777:
  • the second object of the present invention is to provide an application of the compound described in the first object, and the compound is applied to an organic electroluminescent device.
  • the compound is used as an electron blocking layer material in the organic electroluminescent device.
  • the third object of the present invention is to provide an organic electroluminescent device, the organic electroluminescent device comprising a first electrode, a second electrode, and at least one organic layer interposed between the first electrode and the second electrode ,
  • the organic layer contains at least one compound described in one of the objectives.
  • the driving voltage is as low as 3.8 V and below, and the current efficiency is as high as 18.2 cd/A and above.
  • the organic layer includes an electron blocking layer, and the electron blocking layer contains at least one compound according to one of the objectives.
  • the compound of the present invention can be applied not only to organic electroluminescence devices, but also to other types of organic electronic devices, including organic field effect transistors, organic thin-film solar cells, information tags, electronic artificial skin sheets, sheet-type scanners Or electronic paper.
  • an organic electroluminescent device including a substrate, and an anode layer, a plurality of light-emitting function layers, and a cathode layer sequentially formed on the substrate; the light-emitting function
  • the layer includes at least one of a hole injection layer, a hole transport layer, a light-emitting layer, an electron blocking layer, and an electron transport layer, wherein the electron blocking layer contains at least one of the aforementioned compounds.
  • the OLED includes a first electrode and a second electrode, and an organic material layer between the electrodes.
  • the organic material layer can be divided into multiple regions.
  • the organic material layer may include a hole transport region, a light-emitting layer, and an electron transport region.
  • a substrate may be used below the first electrode or above the second electrode.
  • the substrates are all glass or polymer materials with excellent mechanical strength, thermal stability, water resistance, and transparency.
  • thin film transistors TFT may also be provided on the substrate used as a display.
  • the first electrode may be formed by sputtering or depositing a material used as the first electrode on the substrate.
  • transparent conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide (SnO 2 ), zinc oxide (ZnO), and any combination thereof can be used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • SnO 2 tin dioxide
  • ZnO zinc oxide
  • magnesium (Mg) silver
  • silver (Ag) aluminum
  • Al-lithium (Al-Li) aluminum-lithium (Al-Li)
  • magnesium-silver can be used (Mg-Ag) and other metals or alloys and any combination between them.
  • the organic material layer can be formed on the electrode by methods such as vacuum thermal evaporation, spin coating, and printing.
  • the compound used as the organic material layer may be organic small molecules, organic macromolecules, and polymers, and combinations thereof.
  • the hole transport region is located between the anode and the light-emitting layer.
  • the hole transport region may be a single-layered hole transport layer (HTL), including a single-layer hole transport layer containing only one compound and a single-layer hole transport layer containing multiple compounds.
  • the hole transport region may also be a multilayer structure including at least one of a hole injection layer (HIL), a hole transport layer (HTL), and an electron blocking layer (EBL), and the electron blocking layer adopts the formula I of the present invention compound of.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • the material of the hole transport region can be selected from, but not limited to, phthalocyanine derivatives such as CuPc, conductive polymers or conductive dopant-containing polymers such as polyphenylene vinylene, polyaniline/dodecyl benzene sulfonic acid (Pani /DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate) (PEDOT/PSS), polyaniline/camphorsulfonic acid (Pani/CSA), polyaniline/poly( 4-styrene sulfonate) (Pani/PSS), aromatic amine derivatives, wherein the aromatic amine derivatives include the following compounds HT-1 to HT-34; or any combination thereof.
  • phthalocyanine derivatives such as CuPc
  • conductive polymers or conductive dopant-containing polymers such as polyphenylene vinylene, polyaniline/dodecyl benzene sul
  • the hole injection layer is located between the anode and the hole transport layer.
  • the hole injection layer may be a single compound material or a combination of multiple compounds.
  • the hole injection layer may use one or more compounds of the aforementioned HT-1 to HT-34, or use one or more of the following HI-1 to HI-3 compounds; or HT-1
  • One or more compounds to HT-34 are doped with one or more compounds in the following HI-1 to HI-3.
  • the light-emitting layer includes light-emitting dyes (ie, dopants) that can emit different wavelength spectra, and may also include a host material (Host) at the same time.
  • the light-emitting layer may be a monochromatic light-emitting layer emitting a single color such as red, green, and blue.
  • the monochromatic light-emitting layers of multiple different colors can be arranged in a plane according to the pixel pattern, or they can be stacked together to form a color light-emitting layer. When light-emitting layers of different colors are stacked together, they can be separated from each other or connected to each other.
  • the light-emitting layer can also be a single-color light-emitting layer capable of emitting red, green, and blue at the same time.
  • the light-emitting layer material can use different materials such as fluorescent electroluminescent materials, phosphorescent electroluminescent materials, and thermally activated delayed fluorescent luminescent materials.
  • a single light-emitting technology can be used, or a combination of multiple different light-emitting technologies can be used.
  • These different luminescent materials classified by technology can emit light of the same color or different colors of light.
  • the light-emitting layer adopts fluorescent electroluminescence technology.
  • the fluorescent host material of the light-emitting layer can be selected from, but not limited to, one or more combinations of BFH-1 to BFH-17 listed below.
  • the light-emitting layer adopts fluorescent electroluminescence technology.
  • the fluorescent dopant of the light-emitting layer can be selected from, but not limited to, one or a combination of BFD-1 to BFD-12 listed below.
  • the light-emitting layer adopts phosphorescence electroluminescence technology.
  • the host material of the light-emitting layer is selected from, but not limited to, one or a combination of GPH-1 to GPH-80.
  • the light-emitting layer adopts phosphorescence electroluminescence technology.
  • the phosphorescent dopant of the light-emitting layer can be selected from, but not limited to, one or a combination of GPD-1 to GPD-47 listed below.
  • the light-emitting layer adopts phosphorescence electroluminescence technology.
  • the phosphorescent dopant of the light-emitting layer can be selected from, but not limited to, one or a combination of RPD-1 to RPD-28 listed below.
  • the light-emitting layer adopts phosphorescence electroluminescence technology.
  • the phosphorescent dopant of the light-emitting layer can be selected from, but not limited to, one or more combinations of YPD-1 to YPD-11 listed below.
  • the light-emitting layer adopts thermally activated delayed fluorescent light emission technology.
  • the fluorescent dopant of the light-emitting layer can be selected from, but not limited to, one or a combination of TDE-1 to TDE-39 listed below.
  • the light-emitting layer adopts thermally activated delayed fluorescent light emission technology.
  • the host material of the light-emitting layer is selected from, but not limited to, one or a combination of TDH1 to TDH24.
  • the OLED organic material layer may also include an electron transport region between the light-emitting layer and the cathode.
  • the electron transport region can be a single-layered electron transport layer (ETL), including a single-layer electron transport layer containing only one compound and a single-layer electron transport layer containing multiple compounds.
  • the electron transport region may also be a multilayer structure including at least one of an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer (HBL).
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the electron transport layer material can be selected from, but not limited to, one or more combinations of ET-1 to ET-57 listed below.
  • the device may also include an electron injection layer located between the electron transport layer and the cathode.
  • the materials of the electron injection layer include but are not limited to one or a combination of the following: LiQ, LiF, NaCl, CsF, Li 2 O, Cs 2 CO 3 , BaO, Na, Li or Ca.
  • the introduction of the substituent Ar 2 at the 1-position of the naphthalene ring can not only adjust the size of the ortho steric hindrance, but also effectively control the twist of the molecule to reduce the molecular crystallinity; secondly, the 2-position is substituted with aromatic amines
  • the introduction of the tri-substituted structure on the arylamine group can effectively control the three-dimensional structure of the molecule and increase the packing density of the molecule, so that the designed material can meet the material requirements of the device.
  • the naphthalene ring core structure substituted by the 1-position and the 2-position at the same time is matched with Ar 1 , Ar 2 , R 1 ⁇ R 4 and other substituents to achieve the best effect, so that the material can be used in organic electro-induced electrolysis.
  • the light-emitting device especially when used as an electron blocking layer, can improve the luminous efficiency, reduce the starting voltage and prolong the service life of the device.
  • the preparation process of the compound of the present invention is simple and feasible, and the raw materials are easily available, which is suitable for mass production and scale-up.
  • the driving voltage is as low as 3.8 V and below, and the current efficiency is as high as 18.2 cd/A and above.
  • an organic electroluminescent device with improved photoelectric performance includes an anode layer, a cathode layer, and an organic layer disposed between the anode layer and the cathode layer;
  • the organic layer includes a light-emitting layer, and the light-emitting layer contains a host material and a dopant material;
  • the main body material includes a first main body material and a second main body material, and the first main body material has the structure represented by the aforementioned formula I;
  • Ar 1 and Ar 2 are independently selected from substituted or unsubstituted C6-C30 aryl groups or substituted or unsubstituted C3-C30 heteroaryl groups;
  • the L 1 is selected from a substituted or unsubstituted C6-C30 arylene group or a substituted or unsubstituted C3-C30 heteroarylene group;
  • the L 2 is selected from one of a single bond, a substituted or unsubstituted C6-C30 arylene group, or a substituted or unsubstituted C3-C30 heteroarylene group;
  • R 1 , R 2 and R 3 are independently selected from substituted or unsubstituted C1-C20 chain alkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C6-C30 arylamino , Any one of substituted or unsubstituted C3-C30 heteroarylamino, substituted or unsubstituted C6-C30 aryl, substituted or unsubstituted C3-C30 heteroaryl;
  • the m is an integer of 0-6, such as 1, 2, 3, 4, 5, etc.;
  • the R 4 is independently selected from substituted or unsubstituted C1-C20 chain alkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C6-C30 arylamino, substituted or unsubstituted Any one of C3-C30 heteroarylamino, substituted or unsubstituted C6-C30 aryl;
  • the substituted or unsubstituted substituents are each independently selected from halogen, C1-C10 chain alkyl, C3 -C10 cycloalkyl, C1-C10 alkoxy, C1-C10 thioalkoxy, C6-C30 arylamino, C3-C30 heteroarylamino, C6-C30 monocyclic aryl, C10-C30 fused ring One or a combination of at least two of the aryl group, C3-C30 monocyclic heteroaryl group, and C6-C30 condensed ring heteroaryl group.
  • the "substituted or unsubstituted substituent” refers to the selection range of the substituent when the "substituted or unsubstituted" group is a substituted group.
  • substituted or unsubstituted groups may be substituted with one substituent or multiple substituents. When there are multiple substituents, they may be selected from different substituents.
  • the present invention refers to the same In the expression mode, they all have the same meaning, and the selection range of the substituents is as shown above and will not be repeated one by one.
  • H hydrogen
  • C carbon
  • the heteroatom of the heteroaryl group is usually selected from N, O, and S.
  • the expression of the ring structure crossed by "—" means that the connection site is at any position on the ring structure that can form a bond.
  • the aforementioned C1-C20 chain alkyl group is preferably a C1-C10 chain alkyl group, more preferably a C1-C6 chain alkyl group, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, Isobutyl, tert-butyl, n-hexyl, n-octyl, n-pentyl, n-heptyl, n-nonyl, n-decyl, etc.
  • the aforementioned C3-C20 cycloalkyl group is preferably cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
  • the aforementioned substituted or unsubstituted C6-C30 (arylene) group preferably C6-C20 (arylene) group, preferably the aryl group is composed of phenyl, biphenyl, terphenyl, naphthyl, anthracenyl, phenanthrene Group, indenyl, fluorenyl and its derivatives, fluoranthene, triphenylene, pyrenyl, perylene, A group in the group consisting of a tetraphenyl group and a tetraphenyl group.
  • the biphenyl group is selected from 2-biphenyl group, 3-biphenyl group and 4-biphenyl group; said terphenyl group includes p-terphenyl-4-yl and p-terphenyl-3-yl , P-terphenyl-2-yl, m-terphenyl-4-yl, m-terphenyl-3-yl and m-terphenyl-2-yl; the naphthyl includes 1-naphthyl Or 2-naphthyl; the anthryl group is selected from the group consisting of 1-anthryl, 2-anthryl and 9-anthryl; the fluorenyl group is selected from the group consisting of 1-fluorenyl, 2-fluorenyl, 3- Fluorenyl, 4-fluorenyl and 9-fluorenyl; the fluorenyl derivative is selected from the group consisting of 9,9-dimethylfluorene, 9,9-spirobifluorene
  • the aryl group includes a monocyclic aryl group and a condensed ring aryl group
  • the heteroaryl group also includes a monocyclic heteroaryl group and a condensed ring heteroaryl group.
  • the aforementioned substituted or unsubstituted C3-C30 (ylidene) heteroaryl group is preferably C4-C20 (ylidene) heteroaryl group, preferably the heteroaryl group is furyl, thienyl, pyrrolyl, benzofuranyl, benzo Thienyl, isobenzofuranyl, indolyl, dibenzofuranyl, dibenzothienyl, carbazolyl and derivatives thereof, wherein the carbazolyl derivative is preferably 9-phenylcarbazole , 9-naphthylcarbazole, benzocarbazole, dibenzocarbazole, or indolocarbazole.
  • the aforementioned C6-C30 arylamino group refers to a group formed by connecting an aryl group and an amino group, and the linkage can be on the amino group or on the aryl group.
  • the foregoing preferred embodiment provides an organic electroluminescent device using a dual-host light-emitting layer, wherein the first host material is a compound represented by formula I, which has a higher hole mobility and a suitable energy level, and can Adjust the carrier distribution inside the light-emitting layer, thereby regulating the carrier recombination area, and have a higher spatial accumulation structure.
  • the first host material is a compound represented by formula I, which has a higher hole mobility and a suitable energy level, and can Adjust the carrier distribution inside the light-emitting layer, thereby regulating the carrier recombination area, and have a higher spatial accumulation structure.
  • the dual hosts When used as one of the dual hosts, it can be combined with the second host material to precisely control the internal carrier of the light-emitting layer.
  • the distribution of currents improves the light extraction efficiency of the organic electroluminescent device, thereby improving the photoelectric performance of the device.
  • the Ar 1 is selected from any one of the following substituted or unsubstituted groups: phenyl, biphenyl, terphenyl, naphthyl, phenanthryl, anthryl, dibenzo Furanyl, dibenzothienyl, carbazolyl, 9,9 dimethyl fluorenyl, 9,9 diphenyl fluorenyl, spirofluorenyl, triphenylene, fluoranthene, benzo 9,9 dimethyl Base fluorenyl, benzospirofluorenyl.
  • the Ar 2 is selected from any one of the following substituted or unsubstituted groups: phenyl, biphenyl, terphenyl, naphthyl, phenanthryl, anthryl, and diphenyl Furanyl, dibenzothienyl, carbazolyl, 9,9 dimethyl fluorenyl, 9,9 diphenyl fluorenyl, spirofluorenyl, triphenylene, fluoranthene, benzo 9,9 two Methylfluorenyl and benzospirofluorenyl are preferably substituted or unsubstituted naphthyl.
  • the Ar 2 is selected from any one of the following substituted or unsubstituted groups:
  • the dashed line represents the connecting bond of the group.
  • the R 1 , R 2 and R 3 are independently selected from one of methyl, ethyl or phenyl, and preferably all are methyl.
  • the L 1 is selected from one of the following substituted or unsubstituted groups: phenylene, biphenylene, naphthylene, dibenzofuranyl, diphenylene One of thiophenyl and 9,9 dimethylfluorenyl.
  • the L 2 is selected from one of a single bond, a substituted or unsubstituted C6-C20 arylene group or a substituted or unsubstituted C3-C20 heteroarylene group, preferably a single bond or a Phenyl.
  • the first host material is selected from any one or a combination of at least two of the aforementioned compounds P1 to P777.
  • the mass ratio of the first host material to the second host material is 0.01:1-1.5:1, for example, 0.05:1, 0.1:1, 0.2:1, 1:0.3, 0.4:1, 0.5:1, 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1.0, 1.1:1, 1.2:1, 1.3:1, 1.4:1, etc., preferably 0.1:1 to 1:1.
  • the mass ratio of the first host material (ie the compound of formula I) to the second host material is 0.01:1-1.5:1.
  • the photoelectric performance of the device is optimal. If the compound of formula I Too much addition will cause the voltage of the device to rise and the device efficiency to decrease, if the addition amount is too small, the device efficiency will not be significantly improved.
  • the HOMO energy level of the second host material is -5.3eV to -5.7eV, such as -5.4eV, -5.5eV, -5.6eV, etc.;
  • the LUMO energy level of the second host material is -2.3eV to -2.6eV, such as -2.4eV, -2.5eV, etc.
  • the HOMO energy level of the second host material is -5.3 eV to -5.7 eV
  • the LUMO energy level is -2.3 eV to -2.6 eV.
  • the second host material has the aforementioned specific HOMO energy level and LUMO energy level, so that it can better match with the first host material, and more accurately regulate the carrier distribution in the light-emitting layer, thereby further improving organic electroluminescence.
  • the light extraction efficiency of the device improves the efficiency of the device.
  • the second host material is selected from any one or a combination of at least two of the following compounds PH-1 to PH-85:
  • the thickness of the light-emitting layer is 10-65 nm, such as 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, etc., preferably 15-55 nm.
  • the thickness of the light-emitting layer of the present invention is preferably 10-65nm. Within this thickness range, the efficiency of the device is further improved. If the thickness is too low, the device chromaticity will shift. And the efficiency is reduced, and the thickness is too high, which will cause the voltage of the device to increase and the efficiency to decrease.
  • the first host material and the second host material can be co-evaporated or pre-mixed to obtain the light-emitting layer, but it is not limited to co-evaporation or pre-mixing.
  • the organic layer further includes any one or a combination of at least two of a hole injection layer, a hole transport layer, an electron blocking layer, an electron transport layer, or an electron injection layer.
  • the organic layer in OLED can be divided into multiple regions.
  • the organic material layer may include a hole transport region, a light-emitting layer, and an electron transport region.
  • a substrate may be used below the first electrode or above the second electrode.
  • the substrates are all glass or polymer materials with excellent mechanical strength, thermal stability, water resistance, and transparency.
  • thin film transistors TFT may also be provided on the substrate used as a display.
  • the first electrode may be formed by sputtering or depositing a material used as the first electrode on the substrate.
  • transparent conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide (SnO 2 ), zinc oxide (ZnO), and any combination thereof can be used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • SnO 2 tin dioxide
  • ZnO zinc oxide
  • magnesium Mg
  • silver (Ag) silver
  • Al aluminum
  • Al-lithium (Al-Li aluminum-lithium
  • Ca calcium
  • Yb ytterbium
  • magnesium-indium (Mg-In) magnesium-silver (Mg-Ag) and other metals or alloys and any combination between them.
  • the organic material layer can be formed on the electrode by methods such as vacuum thermal evaporation, spin coating, and printing.
  • the compound used as the organic material layer may be organic small molecules, organic macromolecules, and polymers, and combinations thereof.
  • the hole transport region is located between the anode and the light-emitting layer.
  • the hole transport region may be a single-layered hole transport layer (HTL), including a single-layer hole transport layer containing only one compound and a single-layer hole transport layer containing multiple compounds.
  • the hole transport region may also be a multilayer structure including at least one of a hole injection layer (HIL), a hole transport layer (HTL), and an electron blocking layer (EBL); wherein the HIL is located between the anode and the HTL, and the EBL Located between the HTL and the light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • the material of the hole transport region can be selected from, but not limited to, phthalocyanine derivatives such as CuPc, conductive polymers or polymers containing conductive dopant materials such as polyphenylene vinylene, polyaniline/dodecyl benzene sulfonic acid (Pani /DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate) (PEDOT/PSS), polyaniline/camphorsulfonic acid (Pani/CSA), polyaniline/poly( 4-styrene sulfonate) (Pani/PSS), aromatic amine derivatives as shown below HT-1 to HT-51 (wherein HT-1 to HT-34 are as described above, HT-35 to HT-51 The structure is as follows); or any combination thereof.
  • phthalocyanine derivatives such as CuPc
  • conductive polymers or polymers containing conductive dopant materials such as polypheny
  • the hole injection layer is located between the anode and the hole transport layer.
  • the hole injection layer may be a single compound material or a combination of multiple compounds.
  • the hole injection layer may use one or more compounds of the aforementioned HT-1 to HT-51, or use one or more of the aforementioned HI-1-HI-3 compounds; or HT-1 to HT-51.
  • One or more compounds of HT-51 are doped with one or more compounds of the aforementioned HI-1-HI-3.
  • the luminescent layer includes luminescent dyes (that is, dopants) capable of emitting different wavelength spectra, and may also include a host material (Host) at the same time.
  • the light-emitting layer may be a monochromatic light-emitting layer emitting a single color such as red, green, and blue.
  • the monochromatic light-emitting layers of multiple different colors can be arranged in a plane according to the pixel pattern, or they can be stacked together to form a color light-emitting layer. When light-emitting layers of different colors are stacked together, they can be separated from each other or connected to each other.
  • the light-emitting layer can also be a single-color light-emitting layer capable of emitting red, green, and blue at the same time.
  • the material of the light-emitting layer can be different materials such as phosphorescent light-emitting materials.
  • the light-emitting layer adopts phosphorescence electroluminescence technology.
  • the phosphorescent dopant material of the light-emitting layer can be selected from, but not limited to, one or a combination of the aforementioned GPD-1 to GPD-47.
  • the light-emitting layer adopts phosphorescence electroluminescence technology.
  • the phosphorescent dopant material of the light-emitting layer can be selected from, but not limited to, one or a combination of the aforementioned RPD-1 to RPD-28.
  • the light-emitting layer adopts phosphorescence electroluminescence technology.
  • the phosphorescent dopant material of the light-emitting layer can be selected from, but not limited to, one or more combinations of YPD-1 to YPD-11 listed above.
  • the OLED organic material layer may also include an electron transport region between the light-emitting layer and the cathode.
  • the electron transport region can be a single-layered electron transport layer (ETL), including a single-layer electron transport layer containing only one compound and a single-layer electron transport layer containing multiple compounds.
  • the electron transport region may also be a multilayer structure including at least one of an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer (HBL).
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the electron transport layer material may be selected from, but not limited to, the aforementioned ET-1 to ET-57 and one or more combinations of the following ET-58 to ET-73.
  • the device may also include an electron injection layer located between the electron transport layer and the cathode.
  • the material of the electron injection layer includes but is not limited to one or a combination of the following: LiQ, LiF, NaCl, CsF, Li 2 O, Cs 2 CO 3 , BaO, Na, Li, Ca, Mg, Yb.
  • a display device in another embodiment, includes the organic electroluminescent device described in one of the objectives.
  • the foregoing preferred embodiment provides an organic electroluminescence device using a dual-host light-emitting layer, wherein the first host material is a compound represented by formula I, which has a higher hole mobility than the prior art And a suitable energy level, it can adjust the distribution of carriers inside the light-emitting layer, thereby regulating the carrier recombination area, and has a higher spatial accumulation structure.
  • the dual hosts When used as one of the dual hosts, it can be combined with the second host material. Precisely regulate the distribution of carriers in the light-emitting layer, thereby improving the light extraction efficiency of the organic electroluminescent device, thereby improving the photoelectric performance of the device.
  • the current efficiencies of the organic electroluminescent devices provided by the foregoing preferred embodiments are all above 11.7 cd/A, most of which can reach above 15 cd/A, and the highest can reach above 17 cd/A.
  • an organic electroluminescent device is provided.
  • the organic electroluminescent device has higher efficiency.
  • the organic electroluminescent device includes an anode layer, a cathode layer, and an organic layer disposed between the anode layer and the cathode layer;
  • the organic layer contains compound I and compound II;
  • the Ar 1 and Ar 2 are independently selected from substituted or unsubstituted C6-C30 aryl groups or substituted or unsubstituted C3-C30 heteroaryl groups;
  • the L 1 is selected from a substituted or unsubstituted C6-C30 arylene group or a substituted or unsubstituted C3-C30 heteroarylene group;
  • the L 2 is selected from one of a single bond, a substituted or unsubstituted C6-C30 arylene group, or a substituted or unsubstituted C3-C30 heteroarylene group;
  • R 1 , R 2 and R 3 are independently selected from substituted or unsubstituted C1-C20 chain alkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C6-C30 arylamino , Any one of substituted or unsubstituted C3-C30 heteroarylamino, substituted or unsubstituted C6-C30 aryl, substituted or unsubstituted C3-C30 heteroaryl;
  • the m is an integer of 0-6, such as 1, 2, 3, 4, 5, etc.;
  • the R 4 is independently selected from substituted or unsubstituted C1-C20 chain alkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C6-C30 arylamino, substituted or unsubstituted Any one of C3-C30 heteroarylamino, substituted or unsubstituted C6-C30 aryl;
  • the compound II has a structure represented by formula (3),
  • the r is an integer of 0-6, such as 1, 2, 3, 4, 5, etc.;
  • the Ar 3 to Ar 5 are independently selected from substituted or unsubstituted C6-C30 aryl groups or substituted or unsubstituted C3-C30 heteroaryl groups;
  • the L 3 -L 5 are each independently selected from any one of a single bond, a substituted or unsubstituted C6-C30 arylene group, and a substituted or unsubstituted C3-C30 heteroarylene group;
  • the R 5 is independently selected from substituted or unsubstituted C1-C20 chain alkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C6-C30 aryl, substituted or unsubstituted Any one of the C3-C30 heteroaryl groups;
  • the Rx is a substituent at any substitutable position, and any substitutable position refers to the substitutable position of the structure within the dashed circle, for example, it may be a naphthalene ring, Ar 3 to Ar 5 , L 3 -L 5 and R The position where any one of 5 can be substituted; the number y of Rx, y is an integer from 1 to 15, (for example, it can be 2, 3, 4, 5, 6, 7, 8, 9 1, 10, 11, 12, 13, 14, etc.; the Rx is selected from substituted or unsubstituted C3-C20 cycloalkyl groups;
  • the substituted groups are independently selected from Halogen, C1-C10 chain alkyl, C3-C10 cycloalkyl, C1-C10 alkoxy, C1-C10 thioalkoxy, C6-C30 arylamino, C3-C30 heteroarylamino, C6- One or a combination of at least two C30 monocyclic aryl groups, C10-C30 fused ring aryl groups, C3-C30 monocyclic heteroaryl groups, and C6-C30 fused ring heteroaryl groups.
  • substituted or unsubstituted groups may be substituted with one substituent or multiple substituents. When there are multiple substituents, they may be selected from different substituents.
  • the present invention refers to the same In the expression mode, they all have the same meaning, and the selection range of the substituents is as shown above and will not be repeated one by one.
  • H hydrogen
  • C carbon
  • the heteroatom of the heteroaryl group is usually selected from N, O, and S.
  • the expression of the ring structure crossed by "—" means that the connection site is at any position on the ring structure that can form a bond.
  • the aforementioned C1-C20 chain alkyl group is preferably a C1-C10 chain alkyl group, more preferably a C1-C6 chain alkyl group, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, Isobutyl, tert-butyl, n-hexyl, n-octyl, n-pentyl, n-heptyl, n-nonyl, n-decyl, etc.
  • the aforementioned C3-C20 cycloalkyl group is preferably cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
  • the aforementioned substituted or unsubstituted C6-C30 (arylene) group is preferably a C6-C20 aryl group.
  • the aryl group is composed of phenyl, biphenyl, terphenyl, naphthyl, anthryl, phenanthryl, and indene Group, fluorenyl and its derivatives, fluoranthene, triphenylene, pyrenyl, perylene, A group in the group consisting of a tetraphenyl group and a tetraphenyl group.
  • the biphenyl group is selected from 2-biphenyl group, 3-biphenyl group and 4-biphenyl group; said terphenyl group includes p-terphenyl-4-yl and p-terphenyl-3-yl , P-terphenyl-2-yl, m-terphenyl-4-yl, m-terphenyl-3-yl and m-terphenyl-2-yl; the naphthyl includes 1-naphthyl Or 2-naphthyl; the anthryl group is selected from the group consisting of 1-anthryl, 2-anthryl and 9-anthryl; the fluorenyl group is selected from the group consisting of 1-fluorenyl, 2-fluorenyl, 3- Fluorenyl, 4-fluorenyl and 9-fluorenyl; the fluorenyl derivative is selected from the group consisting of 9,9'-dimethylfluorene, 9,9'-spirobifluor
  • the aryl group includes a monocyclic aryl group and a condensed ring aryl group
  • the heteroaryl group also includes a monocyclic heteroaryl group and a condensed ring heteroaryl group.
  • the aforementioned substituted or unsubstituted C3-C30 (ylidene) heteroaryl group is preferably C4-C20 heteroaryl group, preferably the heteroaryl group is furyl, thienyl, pyrrolyl, benzofuranyl, benzothienyl, Isobenzofuranyl, indolyl, dibenzofuranyl, dibenzothienyl, carbazolyl and derivatives thereof, wherein the carbazolyl derivative is preferably 9-phenylcarbazole, 9- Naphthylcarbazole, benzocarbazole, dibenzocarbazole, or indolocarbazole.
  • the aforementioned C6-C30 arylamino group refers to a group formed by connecting an aryl group and an amino group, and the linkage can be on the amino group or on the aryl group.
  • This embodiment uses both compound I and compound II as the material of the organic layer.
  • Compound I can adjust the distribution of carriers inside the light-emitting layer, thereby regulating the carrier recombination area, and has a higher spatial accumulation structure.
  • Compound II has higher molecular plane expansion characteristics, so as to achieve faster hole transfer, improve hole mobility, and has a higher triplet energy level, which can block excess excitons. The combination of the two can effectively improve The efficiency of the device.
  • the compound I has any one of the structures shown in the aforementioned P1-P777.
  • the compound II has any one of the structures shown in A1 to A291:
  • the organic layer includes a light-emitting layer and an electron blocking layer.
  • the light-emitting layer contains compound I
  • the electron blocking layer contains compound II
  • the light-emitting layer contains compound II
  • the electron blocking layer contains compound I
  • one of Compound I and Compound II is used as the material of the light-emitting layer and the other is used as the material of the electron blocking layer.
  • the material of the layer can balance the effect of faster electron transfer, so that the position of the recombination center occurs in the center of the light-emitting layer, which can further improve the efficiency of the device.
  • the light-emitting layer contains a first host material, a second host material and a dopant material.
  • the first host material is compound I and the electron blocking layer contains compound II, or the first host material is compound II and the electron blocking layer contains compound I.
  • the present invention preferably uses compound I or compound II as one of the host materials in the dual-host light-emitting layer, which can better adjust the carrier distribution inside the light-emitting layer, thereby regulating the carrier recombination area, and It has a higher spatial accumulation structure.
  • compound I or compound II as one of the host materials in the dual-host light-emitting layer, which can better adjust the carrier distribution inside the light-emitting layer, thereby regulating the carrier recombination area, and It has a higher spatial accumulation structure.
  • the dual main bodies it can improve the light extraction efficiency. In conjunction with other main body materials, it can further improve the efficiency under low gray scales, reduce the degree of efficiency roll-off of the device, and further improve the device's efficiency. efficient.
  • the mass ratio of the first host material to the second host material is 0.01:1-1.5:1, for example, 0.05:1, 0.1:1, 0.15:1, 0.2:1 , 0.25:1, 0.3:1, 0.35:1, 0.4:1, 0.45:1, 0.5:1, 0.55:1, 0.6:1, 0.65:1, 0.7:1, 0.75:1, 0.8:1, 0.85 :1, 0.9:1, 0.95:1, 1:1, 1.05:1, 1.1:1, 1.15:1, 1.2:1, 1.25:1, 1.3:1, 1.35:1, 1.4:1, 1.45:1 Etc., preferably 0.1:1 to 1:1.
  • the addition amount of Compound I or Compound II in the dual-host light-emitting layer is selected to be within the aforementioned specific range. Within this range, the efficiency of the device can be further improved. If the addition amount is too high, it will lead to voids. If the hole transport is too fast, it will destroy the internal balance of the device. If the amount is too low, the regulation effect will not be achieved.
  • the second host material includes a phosphorescent material.
  • the thickness of the aforementioned dual-host light-emitting layer is 10-60 nm, such as 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 55 nm, etc., preferably 20-50 nm.
  • the thickness of the light-emitting layer containing compound I or compound II is preferably 10-60 nm. Within this thickness range, the efficiency of the device can be further improved. If the thickness is too small, the internal excitons cannot be fully recombined, and the thickness is too large to cause holes and The electron transmission process is longer, and the internal loss will increase, which will reduce the efficiency.
  • the thickness of the electron blocking layer is 2-100nm, such as 10nm, 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm, etc., preferably 3-90nm.
  • the thickness of the electron blocking layer containing compound I or compound II is preferably 2-100nm. Within this thickness range, the efficiency of the device can be further improved. If the thickness is too small, the internal excitons cannot be fully recombined, and the thickness is too large to cause holes And the electron transmission process is longer, the internal loss will increase, and both will reduce the efficiency.
  • the organic layer further includes a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer.
  • the Ar 1 is selected from any one of the following substituted or unsubstituted groups: phenyl, biphenyl, terphenyl, naphthyl, phenanthryl, anthryl, dibenzo Furanyl, dibenzothienyl, carbazolyl, 9,9 dimethyl fluorenyl, 9,9 diphenyl fluorenyl, spirofluorenyl, triphenylene, fluoranthene, benzo 9,9 dimethyl Base fluorenyl, benzospirofluorenyl.
  • the Ar 2 is selected from any one of the following substituted or unsubstituted groups: phenyl, biphenyl, terphenyl, naphthyl, phenanthryl, anthryl, dibenzo Furanyl, dibenzothienyl, carbazolyl, 9,9 dimethyl fluorenyl, 9,9 diphenyl fluorenyl, spirofluorenyl, triphenylene, fluoranthene, benzo 9,9 dimethyl
  • the fluorenyl group and the benzospirofluorenyl group are preferably substituted or unsubstituted naphthyl groups.
  • the Ar 2 is selected from any one of the following substituted or unsubstituted groups:
  • the dashed line represents the connecting bond of the group.
  • the R 1 , R 2 and R 3 are independently selected from one of methyl, ethyl or phenyl, and preferably all are methyl.
  • said L 1 is selected from one of the following substituted or unsubstituted groups: phenylene, biphenylene, naphthylene, dibenzofuranyl, diphenylene One of thiophenyl and 9,9 dimethylfluorenyl.
  • the L 2 is selected from one of a single bond, a substituted or unsubstituted C6-C20 arylene group or a substituted or unsubstituted C3-C20 heteroarylene group, preferably a single bond or a sub Phenyl.
  • the compound II is a compound formed by substituting at least one Rx at any substitutable position on the structure shown in formula (3-1);
  • the Rx is selected from any one of the following groups:
  • the wavy line or * mark represents the connecting bond of the group.
  • the Ar 3 to Ar 5 are each independently selected from any one of the following substituted or unsubstituted groups:
  • the dotted line represents the connecting bond of the group.
  • the L 3 and L 4 are each independently selected from a single bond, a phenylene group or a naphthylene group, preferably a single bond.
  • the L 5 is a single bond.
  • the OLED includes a first electrode and a second electrode, and an organic material layer between the electrodes.
  • the organic material can be divided into multiple regions.
  • the organic material layer may include a hole transport region, a light-emitting layer, and an electron transport region.
  • a substrate may be used below the first electrode or above the second electrode.
  • the substrates are all glass or polymer materials with excellent mechanical strength, thermal stability, water resistance, and transparency.
  • thin film transistors TFT may also be provided on the substrate used as a display.
  • the first electrode may be formed by sputtering or depositing a material used as the first electrode on the substrate.
  • transparent conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide (SnO 2 ), zinc oxide (ZnO), and any combination thereof can be used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • SnO 2 tin dioxide
  • ZnO zinc oxide
  • magnesium Mg
  • silver (Ag) silver
  • Al aluminum
  • Al-lithium (Al-Li aluminum-lithium
  • Ca calcium
  • Yb ytterbium
  • magnesium-indium (Mg-In) magnesium-silver (Mg-Ag) and other metals or alloys and any combination between them.
  • the organic material layer can be formed on the electrode by methods such as vacuum thermal evaporation, spin coating, and printing.
  • the compound used as the organic material layer may be organic small molecules, organic macromolecules, and polymers, and combinations thereof.
  • the hole transport region is located between the anode and the light-emitting layer.
  • the hole transport region may be a single-layered hole transport layer (HTL), including a single-layer hole transport layer containing only one compound and a single-layer hole transport layer containing multiple compounds.
  • the hole transport region may also be a multilayer structure including at least one of a hole injection layer (HIL), a hole transport layer (HTL), and an electron blocking layer (EBL); wherein the HIL is located between the anode and the HTL, and the EBL Located between the HTL and the light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • the material of the hole transport region can be selected from, but not limited to, phthalocyanine derivatives such as CuPc, conductive polymers or conductive dopant-containing polymers such as polyphenylene vinylene, polyaniline/dodecyl benzene sulfonic acid (Pani /DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate) (PEDOT/PSS), polyaniline/camphorsulfonic acid (Pani/CSA), polyaniline/poly( 4-styrene sulfonate) (Pani/PSS), aromatic amine derivatives, wherein the aromatic amine derivatives are the compounds shown in the aforementioned HT-1 to HT-51; or any combination thereof.
  • phthalocyanine derivatives such as CuPc
  • conductive polymers or conductive dopant-containing polymers such as polyphenylene vinylene, polyaniline/dodecyl benz
  • the hole injection layer is located between the anode and the hole transport layer.
  • the hole injection layer may be a single compound material or a combination of multiple compounds.
  • the hole injection layer may use one or more compounds of the aforementioned HT-1 to HT-51, or use one or more of the aforementioned HI-1-HI-3 compounds; or HT-1 to HT-51.
  • One or more compounds of HT-51 are doped with one or more compounds of the aforementioned HI-1-HI-3.
  • the light-emitting layer includes light-emitting dyes (ie, dopants) that can emit different wavelength spectra, and may also include a host material (Host) at the same time.
  • the light-emitting layer may be a monochromatic light-emitting layer emitting a single color such as red, green, and blue.
  • the monochromatic light-emitting layers of multiple different colors can be arranged in a plane according to the pixel pattern, or they can be stacked together to form a color light-emitting layer. When light-emitting layers of different colors are stacked together, they can be separated from each other or connected to each other.
  • the light-emitting layer can also be a single-color light-emitting layer capable of emitting red, green, and blue at the same time.
  • phosphorescent electroluminescent materials can be used as the material of the light-emitting layer.
  • a single light-emitting technology can be used, or a combination of multiple different light-emitting technologies can be used.
  • These different luminescent materials classified by technology can emit light of the same color or different colors of light.
  • the second host material of the light-emitting layer is a phosphorescent material, and the phosphorescent material is selected from, but not limited to, one or a combination of PH-1 to PH-86.
  • the light-emitting layer adopts phosphorescence electroluminescence technology.
  • the phosphorescent dopant of the light-emitting layer can be selected from, but not limited to, one or a combination of the aforementioned GPD-1 to GPD-47.
  • the light-emitting layer adopts phosphorescence electroluminescence technology.
  • the phosphorescent dopant of the light-emitting layer can be selected from, but not limited to, one or a combination of the aforementioned RPD-1 to RPD-28.
  • the light-emitting layer adopts phosphorescence electroluminescence technology.
  • the phosphorescent dopant of the light-emitting layer can be selected from, but not limited to, one or a combination of the aforementioned YPD-1 to YPD-11.
  • the light-emitting layer adopts thermally activated delayed fluorescent light emission technology.
  • the host material of the light-emitting layer is selected from, but not limited to, one or a combination of the aforementioned PH-1 to PH-86.
  • the electron blocking layer is located between the hole transport layer and the light emitting layer.
  • the electron blocking layer may use, but is not limited to, one or more compounds included in the aforementioned compound I and compound II.
  • the OLED organic material layer may also include an electron transport region between the light-emitting layer and the cathode.
  • the electron transport region can be a single-layered electron transport layer (ETL), including a single-layer electron transport layer containing only one compound and a single-layer electron transport layer containing multiple compounds.
  • the electron transport region may also be a multilayer structure including at least one of an electron injection layer (EIL) and an electron transport layer (ETL).
  • the electron transport layer material can be selected from, but not limited to, one or a combination of the aforementioned ET-1 to ET-65.
  • the device may also include an electron injection layer located between the electron transport layer and the cathode.
  • the material of the electron injection layer includes but is not limited to one or a combination of the following: LiQ, LiF, NaCl, CsF, Li 2 O, Cs 2 CO 3 , BaO, Na, Li, Ca, Mg, Yb.
  • Another embodiment of the present invention provides a display device containing the organic electroluminescent device described in one of the objectives.
  • the present invention uses both compound I and compound II as the material of the organic layer, wherein compound I can adjust the distribution of carriers inside the light-emitting layer, thereby regulating the carrier recombination area, and has a higher spatial accumulation structure.
  • compound II has higher molecular plane expansion characteristics, so as to achieve faster hole transfer, improve hole mobility, and has a higher triplet energy level, which can block excess excitons. The combination of the two can effectively improve the device s efficiency.
  • Fig. 1 is a schematic structural diagram of an organic electroluminescent device provided in a specific embodiment of the present invention
  • R 1 , R 2 , R 3 , R 4 , L 1 , L 2 , Ar 1 and Ar 2 have the same meaning as the symbols in formula I;
  • Pd 2 (dba) 3 represents tris(dibenzylacetone) )Dipalladium(0)
  • IPr.HCl stands for 1, bis(2, diisopropylphenyl) imidazolium chloride
  • NaOBu-t stands for sodium tert-butoxide
  • (t-Bu) 3 P stands for tri-tert-butyl ⁇ phosphine.
  • the following synthesis examples of the present invention exemplarily provide specific synthesis methods of representative compounds, the solvents and reagents used in the following synthesis examples, such as 3-bromo-9,9-dimethylfluorene, 1,bis(2, Diisopropylphenyl) imidazolium chloride, tris(dibenzylacetone)dipalladium(0), toluene, methanol, ethanol, tri-tert-butylphosphine, potassium/sodium tert-butylate and other chemical reagents, both It can be purchased or customized from the domestic chemical product market, such as from Sinopharm Reagent Company, Sigma-Aldrich Company, and Bailingwei Reagent Company. Intermediates M1 to M7 can be customized by the reagent company. In addition, those skilled in the art can also synthesize by known methods.
  • This embodiment provides an organic electroluminescent device, and the specific preparation process is as follows:
  • the glass plate coated with ITO transparent conductive layer (as anode) is ultrasonically treated in a commercial cleaning agent, rinsed in deionized water, ultrasonically degreasing in acetone: ethanol mixed solvent, and baked in a clean environment until it is completely removed Moisture, clean with ultraviolet light and ozone, and bombard the surface with low-energy cation beams;
  • Vacuum evaporate HI-3 as a hole injection layer on the aforementioned anode film, and the evaporation rate is 0.1nm /s, the evaporation film thickness is 10nm;
  • Vacuum evaporate HT-4 on the hole injection layer as the hole transport layer of the device the evaporation rate is 0.1nm/s, and the total evaporation film thickness is 80nm;
  • the compound P1 was vacuum vapor-deposited on the hole transport layer as the electron blocking layer material of the device, the vapor deposition rate was 0.1 nm/s, and the total vapor deposition film thickness was 80 nm.
  • the light-emitting layer of the device is vacuum-evaporated on the electron blocking layer.
  • the light-emitting layer includes the host material and the dye material.
  • the evaporation rate of the host material GPH-59 is adjusted to 0.1nm/s, and the dye RPD-8
  • the evaporation rate is set at a ratio of 3% of the main material, and the total film thickness of the evaporation is 30nm;
  • the electron transport layer material ET-46 of the device is vacuum-evaporated on the light-emitting layer, the evaporation rate is 0.1nm/s, and the total evaporation film thickness is 30nm;
  • ETL electron transport layer
  • LiF with a thickness of 0.5 nm was vacuum-evaporated as the electron injection layer
  • Al layer with a thickness of 150 nm was used as the cathode of the device.
  • the manufacturing process of the organic electroluminescent device provided in Examples 2-18 and Comparative Examples 1-6 is the same as that of Example 1, except that the electron blocking layer material compound P1 is replaced with the compound shown in Table 1 respectively.
  • R-1 and R-2 are detailed in compound 39 and compound 94 in patent application CN109749735A
  • R-3 to R-6 are detailed in compound P405, P389, P406 and compound P418 in patent application CN110511151A.
  • the organic electroluminescent device prepared by the aforementioned process was tested as follows:
  • Driving voltage and current efficiency of electroluminescent devices Specifically, the voltage is increased at a rate of 0.1V per second, and the voltage when the brightness of the organic electroluminescent device reaches 3000cd/m 2 is measured, that is, the driving voltage, and the current density at this time is measured at the same time; the ratio of brightness to current density It is the current efficiency, and the test results are shown in Table 1.
  • Example 13 P322 3.6 19.4
  • Example 14 P323 3.6 19.5
  • Example 15 P375 3.5 20.0
  • Example 16 P613 3.4 19.9
  • Example 17 P628 3.3 18.9
  • Example 18 P602 3.5 18.4
  • the compounds of the present invention is used with a material of the electron blocking layer of an organic electroluminescent device, the device luminance of 3000cd / m 2, the driving voltage as low as 3.8V, and the current efficiency of up 18.2cd / Above A, it can effectively improve the driving voltage and improve the current efficiency. It is a good-performance electron blocking layer material.
  • compound R-1 of Comparative Example 1 differs in that in the structure of compound R-1, the 1-position of naphthalene is unsubstituted and the 4-position is substituted by benzene ring.
  • the compound is used as an organic electroluminescent device.
  • the driving voltage of the device is 5.3V, and the current efficiency is 11cd/A.
  • the turn-on voltage and current efficiency of this compound are worse than that of P602, which may be attributed to the better spatial accumulation of compound P602, which improves the hole transport performance.
  • the arylamine group of compound R-2 of Comparative Example 2 is substituted at the 1-position of the naphthalene ring, and the benzene ring is substituted at the 2-position and 3-position, and does not contain the substituent of the tert-butyl structure.
  • This compound is used as When the electron blocking layer material of the organic electroluminescent device is used, the driving voltage of the device is 5.8V, and the current efficiency is 10.1 cd/A, which is obviously inferior to that of Example 1-18.
  • the compound R-3 of Comparative Example 3 is different in that the four-position of the phenyl group connected to N is not substituted by tert-butyl.
  • the driving voltage of the device is 3.3V, and the current efficiency is 19cd/A.
  • the current efficiency of this compound is worse than that of P1, which may be attributed to the fact that the 4-tert-butyl group in compound P1 can not only provide a strong electron donating capacity, but also improve the molecular space stacking structure, thereby effectively improving the hole transport performance of the material.
  • the compound R-4 of Comparative Example 4 is different in that the biphenyl end connected to N in the molecule has no tert-butyl substitution.
  • the driving voltage of the device is 3.1V, and the current efficiency is 19.3cd/A.
  • the current efficiency of this compound is worse than that of P2, which may be attributed to the fact that the 4-tert-butyl group in compound P2 can not only provide electron-donating capacity, but also improve the molecular space stacking structure, thereby effectively improving the hole transport performance of the material.
  • the compound R-5 of Comparative Example 5 differs in that the 4-position of the biphenyl group linked to N has no tertiary butyl substitution.
  • the driving voltage of the device is 3.4V, and the current efficiency is 18.5cd/A.
  • the current efficiency of the compound is worse than that of P5, which may be attributed to the fact that the 4-tert-butyl group in the compound P5 can not only provide a strong electron donating capacity, but also improve the molecular space stacking structure, thereby effectively improving the hole transport performance of the material.
  • the compound R-6 of Comparative Example 6 differs in that the terminal of the 2-phenyl biphenyl group linked to the nitrogen in the molecule is not substituted by a tert-butyl group.
  • the driving voltage of the device is 3.5V, and the current efficiency is 17.8cd/A.
  • the current efficiency of this compound is worse than that of P6, which may be attributed to the fact that the tertiary butyl group in compound P6 can not only provide electron-donating capacity, but also improve the molecular space stacking structure, thereby effectively improving the hole transport performance of the material.
  • This embodiment provides an organic electroluminescent device whose structure is shown in FIG. , The electron transport layer 6, the electron injection layer 7, the cathode layer 8 and the external power source 9.
  • the glass plate coated with the transparent conductive layer of ITO is ultrasonically treated in a commercial cleaning agent, rinsed in deionized water, degreasing ultrasonically in a mixed solvent of acetone and ethanol, and baked in a clean environment until the water is completely removed. Light and ozone cleaning, and bombard the surface with low-energy cation beams;
  • the total vapor deposition rate of all organic layers and LiF is controlled at 0.1 nm/sec, and the vapor deposition rate of the metal electrode is controlled at 1 nm/sec.
  • "97/3, w/w" represents a mass ratio of 97:3.
  • Example 19-42 Comparative Examples 7-8 and Example 19 are listed in Table 3, and the parts not mentioned in Table 3 are the same as those of Example 19.
  • Comparative Example 7 is a single body device, in which the mass ratio of PH-34 to RPD-10 is 130:3; Comparative Example 8 is also a single body device, in which the mass ratio of P1 to RPD-10 is 130:3.
  • the organic electroluminescent device containing the dual-host light-emitting layer provided by the present invention has excellent photoelectric properties, and its current efficiency is above 11.7cd/A, most of which can reach above 15cd/A, and the highest can reach 17cd. /A above.
  • Comparative Examples 7 and 8 adopt single-body devices, and the effect is obviously inferior to that of the present invention.
  • Example 19 22-27 By comparing Examples 19, 22-27, it can be seen that when the mass ratio of the first host material to the second host material is 0.01:1-1.5:1 (Examples 19, 22-27), the device efficiency can be further improved. It has the best effect at 0.1:1 to 1:1 (Examples 19, 24 and 25).
  • Example 19 28-33 By comparing Examples 19, 28-33, it can be seen that when the thickness of the dual-host light-emitting layer is 10-65nm (Examples 19, 28-31), the device efficiency can be further improved, where the thickness is in the range of 15-55nm (Example 19, 30 and 31) have the best results.
  • Example 19 By comparing Example 19 and Example 34, it can be seen that when the second host material meets the specific LUMO energy level and HOMO energy level (Example 19), it is beneficial to further improve the efficiency of the device.
  • This embodiment provides an organic electroluminescent device whose structure is shown in FIG. , The electron transport layer 6, the electron injection layer 7, the cathode layer 8 and the external power source 9.
  • the glass plate coated with the transparent conductive layer of ITO is ultrasonically treated in a commercial cleaning agent, rinsed in deionized water, degreasing ultrasonically in a mixed solvent of acetone and ethanol, and baked in a clean environment until the water is completely removed. Light and ozone cleaning, and bombard the surface with low-energy cation beams;
  • Example 44-68 Comparative Examples 9-12 and Example 43 are listed in Table 4, and the parts not mentioned in Table 4 are all the same as Example 43.
  • the external quantum efficiency (EQE, %) of the organic electroluminescent device prepared in the example and the comparative example was measured, and the required brightness was 3000 cd/m 2 .
  • Comparative Example 10 and Example 56 The difference between Comparative Example 10 and Example 56 is only that the electron blocking layer material is HT5, and its external quantum efficiency is significantly lower than that of Example 14.
  • the difference between Comparative Example 11 and Example 45 is only that the electron blocking layer material is HT5, which The external quantum efficiency is significantly lower than that of Example 45;
  • the difference between Comparative Example 4 and Example 45 is only that the host materials are PH86 and HT-10, and the external quantum efficiency is significantly lower than that of Example 45; the foregoing results prove that, In the present invention, the combination of compound I and compound II can effectively improve the efficiency of the device, and replacing any one of them will reduce the efficiency.
  • Example 45 By comparing Example 45 with Example 57, Example 56 and Example 58, it can be seen that when Compound I or Compound II is applied to the dual host light-emitting layer, the device efficiency can be further improved (Example 45, Example 56), alone The use effect deteriorates (Example 57, Example 58).
  • Example 43-47 By comparing Examples 43-47, 59 and 60, it can be seen that when the mass ratio of the first host material to the second host material is 0.01:1-1.5:1 (Examples 43-47), it can be further improved. Improve external quantum efficiency. The addition amount is too low (Example 59) or too high (Example 60) will reduce the efficiency.
  • Example 45, 48-51 By comparing Examples 45, 48-51 and Examples 61, 62, it can be seen that controlling the thickness of the light-emitting layer to 10-60 nm (Examples 45, 48-51) can further improve the external quantum efficiency of the device, and the thickness is too small (implementation Example 61) or too large (Example 62) will reduce the efficiency.
  • Example 45, 52-55 By comparing Examples 45, 52-55 and Examples 63, 64, it can be seen that controlling the thickness of the electron blocking layer to 2-100 nm (Examples 45, 52-55) can further improve the external quantum efficiency of the device, and the thickness is too small (Example 63) or too large (Example 64) will reduce the efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种化合物、有机电致发光器件和显示装置。其中化合物具有式I所示的结构,在萘环1-位引入取代基Ar2不仅能够调节邻位位阻大小,还能有效调控分子的扭曲度以降低分子结晶性;其次,2-位引入芳胺基团,且芳胺基团上三取代结构的引入能够有效调控分子的立体结构,提高分子的堆积致密度,进而使所设计材料能够满足器件对材料的需求。本发明的化合物应用于有机电致发光器件,特别是作为电子阻挡层时,可以提高发光效率、降低启动电压及延长器件的使用寿命。

Description

化合物、有机电致发光器件和显示装置 技术领域
本发明涉及有机电致发光技术领域,具体而言,涉及一种化合物、有机电致发光器件和显示装置。
背景技术
近年来,基于有机材料的光电子器件已经变得越来越受欢迎。有机材料固有的柔性令其十分适合用于在柔性基板上制造,可根据需求设计、生产出美观而炫酷的光电子产品,获得相对于无机材料无以比拟的优势。此类有机光电子器件的示例包括有机发光二极管(OLED),有机场效应管,有机光伏打电池,有机传感器等。其中OLED发展尤其迅速,已经在信息显示领域取得商业上的成功。OLED可以提供高饱和度的红、绿、蓝三颜色,用其制成的全色显示装置无需额外的背光源,具有色彩炫丽,轻薄柔软等优点。
OLED器件核心为含有多种有机功能材料的薄膜结构。常见的功能化有机材料有:空穴注入材料、空穴传输材料、空穴阻挡材料、电子注入材料、电子传输材料,电子阻挡材料以及发光主体材料和发光客体(染料)等。通电时,电子和空穴被分别注入、传输到发光区域并在此复合,从而产生激子并发光。
人们已经开发出多种有机材料,结合各种奇特的器件结构,可以提升载流子迁移率、调控载流子平衡、突破电致发光效率、延缓器件衰减。出于量子力学的原因,常见的荧光发光体主要利用电子和空穴结合时产生的单线态激子发光,现在仍然广泛地应用于各种OLED产品中。有些金属络合物如铱络合物,可以同时利用三线态激子和单线态激子进行发光,被称为磷光发光体,其能量转换效率可以比传统的荧光发光体提升高达四倍。热激发延迟荧光(TADF)技术通过促进三线态激子朝单线态激子的转变,在不采用金属配合物的情况下,仍然可以有效地利用三线态激子而实现较高的发光效率。热激发敏化荧光(TASF)技术则采用具TADF性质的材料,通过能量转移的方式来敏化发光体,同样可以实现较高的发光效率。
随着OLED产品逐步进入市场,人们对这类产品的性能有越来越高的要求。当前使用的OLED材料和器件结构无法完全解决OLED产品效率、寿命、成本等各方面的问题。
因此,本领域亟待开发一种能够提高器件发光效率、降低驱动电压、延长使用寿命的有机电致发光材料,以便开发更多种类、更高性能的OLED器件。
发明内容
本发明的主要目的在于提供一种化合物、有机电致发光器件和显示装置,以提供一种新的有机电致发光材料以便提高OLED器件的发光效率。
本发明的目的之一在于提供一种化合物,所述化合物应用于有机电致发光器件能够提升器件发光效率、降低驱动电压、延长使用寿命。
为达此目的,本发明提供一种化合物,所述化合物具有式I所示的结构;
Figure PCTCN2021081915-appb-000001
式I中,所述Ar 1和Ar 2独立地选自取代或未取代的C6-C30(例如C10、C12、C14、C16、C18、C20、C26、C28等)芳基或者取代或未取代的C3-C30(例如C4、C6、C8、C12、C15、C18、C20、C23、C25、C28等)杂芳基;
所述取代或未取代的C6-C30芳基包括C6-C30单环芳基和C10-C30稠环芳基;所述取代或未取代的C3-C30杂芳基包括C3-C30单环杂芳基和C6-C30稠环杂芳基;
式I中,所述L 1选自取代或未取代的C6-C30(例如C10、C12、C14、C16、C18、C20、C26、C28等)亚芳基或者取代或未取代的C3-C30(例如C4、C6、C8、C12、C15、C18、C20、C23、C25、C28等)亚杂芳基;
式I中,所述L 2选自单键、取代或未取代的C6-C30(例如C10、C12、C14、C16、C18、C20、C26、C28等)亚芳基或者取代或未取代的C3-C30(例如C4、C6、C8、C12、C15、C18、C20、C23、C25、C28等)亚杂芳基中的一种;
式I中,所述R 1、R 2和R 3独立地选自取代或未取代的C1-C20(例如C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19等)链状烷基、取代或未取代的C3-C20(例如C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19等)环烷基、取代或未取代的C1-C20(例如C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19等)链状烷氧基、取代或未取代的C3-C20(例如C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19等)环烷氧基、取代或未取代的C2-C10(例如C2、C3、C4、C5、C6、C7、C8、C9等)烯基、取代或未取代的C2-C10(例如C2、C3、C4、C5、C6、C7、C8、C9等)炔基、卤素、氰基、硝基、羟基、C1-C20(例如C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19等)硅烷基、氨基、取代或未取代的C6-C30(例如C10、C12、C14、C16、C18、C20、C26、C28等)芳基氨基、取代或未取代的C3-C30(例如C4、C6、C8、C12、C15、C18、C20、C23、C25、C28等)杂芳基氨基、取代或未取代的C6-C30(例如C10、C12、C14、C16、C18、C20、C26、C28等) 芳基、取代或未取代的C3-C30(例如C4、C6、C8、C12、C15、C18、C20、C23、C25、C28等)杂芳基中的任意一种;所述R 1、R 2和R 3相互连接成环或不连接成环;
式I中,所述m为0~6的整数,例如1、2、3、4、5等;当m≥2时,R 4相同或不同;
式I中,所述R 4独立地选自取代或未取代的C1-C20(例如C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19等)链状烷基、取代或未取代的C3-C20(例如C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19等)环烷基、取代或未取代的C1-C20(例如C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19等)链状烷氧基、取代或未取代的C3-C20(例如C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19等)环烷氧基、取代或未取代的C2-C10(例如C2、C3、C4、C5、C6、C7、C8、C9等)烯基、取代或未取代的C2-C10(例如C2、C3、C4、C5、C6、C7、C8、C9等)炔基、卤素、氰基、硝基、羟基、取代或未取代的C1-C20(例如C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19等)硅烷基、氨基、取代或未取代的C6-C30(例如C10、C12、C14、C16、C18、C20、C26、C28等)芳基氨基、取代或未取代的C3-C30(例如C4、C6、C8、C12、C15、C18、C20、C23、C25、C28等)杂芳基氨基、取代或未取代的C6-C30(例如C10、C12、C14、C16、C18、C20、C26、C28等)芳基、取代或未取代的C3-C30(例如C4、C6、C8、C12、C15、C18、C20、C23、C25、C28等)杂芳基中的一种;
Ar 1、Ar 2、L 1、L 2、R 1、R 2、R 3和R 4中,所述取代基选自卤素、C1-C10(例如C2、C3、C4、C5、C6、C7、C8、C9等)链状烷基、C3-C10(例如C4、C5、C6、C7、C8、C9等)环烷基、C1-C10(例如C2、C3、C4、C5等)烷氧基、C1-C10(例如C2、C3、C4、C5等)硫代烷氧基、C6-C30(例如C10、C12、C14、C16、C18、C20、C26、C28等)芳基氨基、C3-C30(例如C4、C6、C8、C12、C15、C18、C20、C23、C25、C28等)杂芳基氨基、C6-C30(例如C10、C12、C14、C16、C18、C20、C26、C28等)单环芳基、C10-C30(例如C10、C12、C14、C16、C18、C20、C26、C28等)稠环芳基、C3-C30(例如C4、C6、C8、C12、C15、C18、C20、C23、C25、C28等)单环杂芳基、C6-C30(例如C10、C12、C14、C16、C18、C20、C26、C28等)稠环杂芳基中的一种或者至少两种的组合。
前述“取代或未取代”的基团,可以取代有一个取代基,也可以取代有多个取代基,当取代基为多个时,可以选自不同的取代基,本发明中涉及到相同的表达方式时,均具有同样的意义,且取代基的选择范围均如上所示不再一一赘述。
本发明中,对于化学元素的表述包含化学性质相同的同位素的概念,例如,氢(H)则包括 1H(氕或作H)、 2H(氘或作D)等;碳(C)则包括 12C、 13C等。
本发明中,杂芳基的杂原子,通常指选自N、O、S。
本发明中,“—”划过的环结构的表达方式,表示连接位点于该环结构上任意能够成键的位置。
前述C1-C20链状烷基优选C1-C10链状烷基,更优选C1-C6链状烷基,例如可举出:甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正己基、正辛基、正戊基、正庚基、正壬基、正癸基等。
前述C3-C20环烷基优选环丙基、环丁基、环戊基、环己基。
前述取代或未取代的C6-C30芳基,优选C6-C20芳基,优选所述芳基为由苯基、联苯基、三联苯基、萘基、蒽基、菲基、茚基、芴基及其衍生物、荧蒽基、三亚苯基、芘基、苝基、
Figure PCTCN2021081915-appb-000002
基和并四苯基所组成的组中的基团。所述联苯基选自2-联苯基、3-联苯基和4-联苯基;所述三联苯基包括对-三联苯基-4-基、对-三联苯基-3-基、对-三联苯基-2-基、间-三联苯基-4-基、间-三联苯基-3-基和间-三联苯基-2-基;所述萘基包括1-萘基或2-萘基;所述蒽基选自由1-蒽基、2-蒽基和9-蒽基所组成的组中;所述芴基选自由1-芴基、2-芴基、3-芴基、4-芴基和9-芴基所组成的组中;所述芴基衍生物选自由9,9’-二甲基芴、9,9’-螺二芴和苯并芴所组成的组中;所述芘基选自由1-芘基、2-芘基和4-芘基所组成的组中;所述并四苯基选自由1-并四苯基、2-并四苯基和9-并四苯基所组成的组中。
前述取代或未取代的C3-C30杂芳基,优选C4-C20杂芳基,优选所述杂芳基为呋喃基、噻吩基、吡咯基、苯并呋喃基、苯并噻吩基、异苯并呋喃基、吲哚基、二苯并呋喃基、二苯并噻吩基、咔唑基及其衍生物,其中,所述咔唑基衍生物优选为9-苯基咔唑、9-萘基咔唑苯并咔唑、二苯并咔唑、或吲哚并咔唑。
本发明中,对于萘环上取代位点的标号如下:
Figure PCTCN2021081915-appb-000003
在本发明的化合物结构中,萘环1-位引入取代基Ar 2不仅能够调节1位阻大小,还能有效调控分子的扭曲度以降低分子结晶性;其次,2-位取代有芳胺基团,且芳胺基团上三取代结构
Figure PCTCN2021081915-appb-000004
的引入能够有效调控分子的立体结构,提高分子的堆积致密度,进而使所设计材料能够满足器件对材料的需求。
本发明中由1-位、2-位同时取代的萘环母核结构配合Ar 1、Ar 2、R 1~R 4等取代基,能够达到最佳的效果,使该材料应用于有机电致发光器件,特别是作为电子阻挡层时,可以提高发光效率、降低启动电压及延长器件的使用寿命。
另外,本发明化合物的制备工艺简单易行,原料易得,适合于量产放大。
优选地,所述L 2选自单键、取代或未取代的C6-C20亚芳基或者取代或未取代的C3-C20亚杂芳基中的一种,优选单键或亚苯基。
优选地,所述Ar 2选自取代或未取代的C6-C20芳基或者取代或未取代的C3-C20杂芳基。
优选地,所述Ar 2选自取代或者未取代的如下基团中的任意一种:苯基、联苯基、三联苯基、萘基、菲基、蒽基、二苯并呋喃基、二苯并噻吩基、咔唑基、9,9二甲基芴基、9,9二苯基芴基、螺芴基、三亚苯基、荧蒽基、苯并9,9二甲基芴基、苯并螺芴基。
优选地,所述Ar 2选自取代或者未取代的如下基团中的任意一种:
Figure PCTCN2021081915-appb-000005
其中,虚线代表基团的连接键。
优选地,所述L 2为单键,且所述Ar 2选自取代或未取代的C10-C30稠环芳基或者取代或未取代的C6-C30稠环杂芳基。
优选地,所述L 2为单键,且所述Ar 2选自取代或者未取代的如下基团中的任意一种:萘基、菲基、蒽基、二苯并呋喃基、二苯并噻吩基、咔唑基、9,9二甲基芴基、9,9二苯基芴基、螺芴基、三亚苯基、荧蒽基、苯并9,9二甲基芴基、苯并螺芴基。
优选地,所述L 2为单键,且所述Ar 2选自取代或者未取代如下基团中的任意一种:
Figure PCTCN2021081915-appb-000006
其中,虚线代表基团的连接键。
本发明中,虚线划过的环结构的表达方式,表示连接位点于该环结构上任意能够成键的位置。
优选地,所述L 2为亚苯基,且所述Ar 2选自取代或未取代的C6-C30芳基或者取代或未取代的C3-C30杂芳基。
优选地,所述L 2为亚苯基,且所述Ar 2选自取代或者未取代的如下基团中的任意一种:苯基、联苯基、三联苯基、萘基、菲基、蒽基、二苯并呋喃基、二苯并噻吩基、咔唑基、9,9二甲基芴基、9,9二苯基芴基、螺芴基、三亚苯基、荧蒽基、苯并9,9二甲基芴基、苯并螺芴基。
优选地,所述L 2为亚苯基,且所述Ar 2选自取代或者未取代的如下基团中的任意一种:
Figure PCTCN2021081915-appb-000007
其中,虚线代表基团的连接键。
优选地,所述R 1、R 2和R 3独立地选自甲基、乙基或苯基中的一种。
优选地,所述R 1、R 2和R 3均为甲基。
优选地,所述L 1选自取代或者未取代的下述基团中的一种:亚苯基、亚联苯基、亚萘基、亚二苯并呋喃基、亚二苯并噻吩基、亚9,9二甲基芴基中的一种。
优选地,所述L 1选自取代或者未取代的如下基团中的任意一种:
Figure PCTCN2021081915-appb-000008
其中,虚线代表基团的连接键。
优选地,所述m为0。
优选地,所述化合物具有如下P1-P777所示的结构中的任意一种:
Figure PCTCN2021081915-appb-000009
Figure PCTCN2021081915-appb-000010
Figure PCTCN2021081915-appb-000011
Figure PCTCN2021081915-appb-000012
Figure PCTCN2021081915-appb-000013
Figure PCTCN2021081915-appb-000014
Figure PCTCN2021081915-appb-000015
Figure PCTCN2021081915-appb-000016
Figure PCTCN2021081915-appb-000017
Figure PCTCN2021081915-appb-000018
Figure PCTCN2021081915-appb-000019
Figure PCTCN2021081915-appb-000020
Figure PCTCN2021081915-appb-000021
Figure PCTCN2021081915-appb-000022
Figure PCTCN2021081915-appb-000023
Figure PCTCN2021081915-appb-000024
Figure PCTCN2021081915-appb-000025
Figure PCTCN2021081915-appb-000026
Figure PCTCN2021081915-appb-000027
Figure PCTCN2021081915-appb-000028
Figure PCTCN2021081915-appb-000029
Figure PCTCN2021081915-appb-000030
Figure PCTCN2021081915-appb-000031
Figure PCTCN2021081915-appb-000032
Figure PCTCN2021081915-appb-000033
Figure PCTCN2021081915-appb-000034
Figure PCTCN2021081915-appb-000035
Figure PCTCN2021081915-appb-000036
Figure PCTCN2021081915-appb-000037
Figure PCTCN2021081915-appb-000038
Figure PCTCN2021081915-appb-000039
Figure PCTCN2021081915-appb-000040
Figure PCTCN2021081915-appb-000041
Figure PCTCN2021081915-appb-000042
Figure PCTCN2021081915-appb-000043
Figure PCTCN2021081915-appb-000044
Figure PCTCN2021081915-appb-000045
Figure PCTCN2021081915-appb-000046
Figure PCTCN2021081915-appb-000047
Figure PCTCN2021081915-appb-000048
Figure PCTCN2021081915-appb-000049
Figure PCTCN2021081915-appb-000050
Figure PCTCN2021081915-appb-000051
Figure PCTCN2021081915-appb-000052
Figure PCTCN2021081915-appb-000053
Figure PCTCN2021081915-appb-000054
Figure PCTCN2021081915-appb-000055
Figure PCTCN2021081915-appb-000056
Figure PCTCN2021081915-appb-000057
Figure PCTCN2021081915-appb-000058
Figure PCTCN2021081915-appb-000059
Figure PCTCN2021081915-appb-000060
Figure PCTCN2021081915-appb-000061
Figure PCTCN2021081915-appb-000062
Figure PCTCN2021081915-appb-000063
Figure PCTCN2021081915-appb-000064
Figure PCTCN2021081915-appb-000065
Figure PCTCN2021081915-appb-000066
Figure PCTCN2021081915-appb-000067
Figure PCTCN2021081915-appb-000068
Figure PCTCN2021081915-appb-000069
Figure PCTCN2021081915-appb-000070
本发明的目的之二在于提供一种目的之一所述的化合物的应用,所述化合物应用于有机电致发光器件。
优选地,所述化合物在所述有机电致发光器件中作为电子阻挡层材料。
本发明的目的之三在于提供一种有机电致发光器件,所述有机电致发光器件包括第一电极、第二电极和插入所述第一电极和第二电极之间的至少一层有机层,所述有机层中含有至少一种目的之一所述的化合物。
本发明提供的含有式I化合物的有机电致发光器件亮度达到3000cd/m 2时,驱动电压低至3.8V及以下,电流效率高达18.2cd/A及以上。
优选地,所述有机层包括电子阻挡层,所述电子阻挡层中含有至少一种目的之一所述的化合物。
本发明的化合物不仅可以应用于有机电致发光器件,还可应用于其他类型的有机电子器件,包括有机场效应晶体管、有机薄膜太阳能电池、信息标签、电子人工皮肤片材、片材型扫描器或电子纸。
具体而言,本发明的另一个技术方案提供了一种有机电致发光器件,包括基板,以及依次形成在所述基板上的阳极层、多个发光功能层和阴极层;所述的发光功能层包括空穴注入层、空穴传输层、发光层、电子阻挡层、电子传输层中的至少一个,其中,所述电子阻挡层中含有至少一个前述的化合物。
OLED包括位于第一电极和第二电极,以及位于电极之间的有机材料层。该有机材料层又可以分为多个区域。比如,该有机材料层可以包括空穴传输区、发光层、电子传输区。
在具体实施例中,在第一电极下方或者第二电极上方可以使用基板。基板均为具有机械强度、热稳定性、防水性、透明度优异的玻璃或聚合物材料。此外,作为显示器用的基板上也可以带有薄膜晶体管(TFT)。
第一电极可以通过在基板上溅射或者沉积用作第一电极的材料的方式来形成。当第一电极作为阳极时,可以采用铟锡氧(ITO)、铟锌氧(IZO)、二氧化锡(SnO 2)、氧化锌(ZnO)等氧化物透明导电材料和它们的任意组合。第一电极作为阴极时,可以采用镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镁-铟(Mg-In)、镁-银(Mg-Ag)等金属或合金以及它们之间的任意组合。
有机材料层可以通过真空热蒸镀、旋转涂敷、打印等方法形成于电极之上。用作有机材料层的化合物可以为有机小分子、有机大分子和聚合物,以及它们的组合。
空穴传输区位于阳极和发光层之间。空穴传输区可以为单层结构的空穴传输层(HTL),包括只含有一种化合物的单层空穴传输层和含有多种化合物的单层空穴传输层。空穴传输区也可以为包括空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)中的至少一层的多层结构,电子阻挡层采用本发明式I所示的化合物。
空穴传输区的材料可以选自、但不限于酞菁衍生物如CuPc、导电聚合物或含导电掺杂剂的聚合物如聚苯撑乙烯、聚苯胺/十二烷基苯磺酸(Pani/DBSA)、聚(3,4-乙撑二氧噻吩)/聚(4-苯乙烯磺酸盐)(PEDOT/PSS)、聚苯胺/樟脑磺酸(Pani/CSA)、聚苯胺/聚(4-苯乙烯磺酸盐)(Pani/PSS)、芳香胺衍生物,其中芳香胺衍生物包括如下面HT-1至HT-34所示的化合物;或者其任意组合。
Figure PCTCN2021081915-appb-000071
Figure PCTCN2021081915-appb-000072
空穴注入层位于阳极和空穴传输层之间。空穴注入层可以是单一化合物材料,也可以是多种化合物的组合。例如,空穴注入层可以采用前述HT-1至HT-34的一种或多种化合物,或者采用下述HI-1至HI-3中的一种或多种化合物;也可以采用HT-1至HT-34的一种或多种化合物掺杂下述HI-1至HI-3中的一种或多种化合物。
Figure PCTCN2021081915-appb-000073
发光层包括可以发射不同波长光谱的发光染料(即掺杂剂,dopant),还可以同时包括主体材料(Host)。发光层可以是发射红、绿、蓝等单一颜色的单色发光层。多种不同颜色的单色发光层可以按照像素图形进行平面排列,也可以堆叠在一起而形成彩色发光层。当不同颜色的发光层堆叠在一起时,它们可以彼此隔开,也可以彼此相连。发光层也可以是能同时发射红、绿、蓝等不同颜色的单一彩色发光层。
根据不同的技术,发光层材料可以采用荧光电致发光材料、磷光电致发光材料、热活化延迟荧光发光材料等不同的材料。在一个OLED器件中,可以采用单一的发光技术,也可以采用多种不同的发光技术的组合。这些按技术分类的不同发光材料可以发射同种颜色的光,也可以发射不同种颜色的光。
在本发明的一方面,发光层采用荧光电致发光的技术。其发光层荧光主体材料可以选自、但不限于以下所罗列的BFH-1至BFH-17的一种或多种的组合。
Figure PCTCN2021081915-appb-000074
在本发明的一方面,发光层采用荧光电致发光的技术。其发光层荧光掺杂剂可以选自、但不限于以下所罗列的BFD-1至BFD-12的一种或多种的组合。
Figure PCTCN2021081915-appb-000075
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层主体材料选自、但不限于GPH-1至GPH-80中的一种或多种的组合。
Figure PCTCN2021081915-appb-000076
Figure PCTCN2021081915-appb-000077
Figure PCTCN2021081915-appb-000078
Figure PCTCN2021081915-appb-000079
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于以下所罗列的GPD-1至GPD-47的一种或多种的组合。
Figure PCTCN2021081915-appb-000080
Figure PCTCN2021081915-appb-000081
其中D为氘。
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于以下所罗列的RPD-1至RPD-28的一种或多种的组合。
Figure PCTCN2021081915-appb-000082
Figure PCTCN2021081915-appb-000083
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于以下所罗列的YPD-1至YPD-11的一种或多种的组合。
Figure PCTCN2021081915-appb-000084
Figure PCTCN2021081915-appb-000085
在本发明的一方面,发光层采用热活化延迟荧光发光的技术。其发光层荧光掺杂剂可以选自、但不限于以下所罗列的TDE-1至TDE-39的一种或多种的组合。
Figure PCTCN2021081915-appb-000086
Figure PCTCN2021081915-appb-000087
在本发明的一方面,发光层采用热活化延迟荧光发光的技术。其发光层主体材料选自、但不限于TDH1至TDH24中的一种或多种的组合。
Figure PCTCN2021081915-appb-000088
Figure PCTCN2021081915-appb-000089
OLED有机材料层还可以包括发光层与阴极之间的电子传输区。电子传输区可以为单层结构的电子传输层(ETL),包括只含有一种化合物的单层电子传输层和含有多种化合物的单层电子传输层。电子传输区也可以为包括电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)中的至少一层的多层结构。
本发明的一方面,电子传输层材料可以选自、但不限于以下所罗列的ET-1至ET-57的一种或多种的组合。
Figure PCTCN2021081915-appb-000090
Figure PCTCN2021081915-appb-000091
Figure PCTCN2021081915-appb-000092
器件中还可以包括位于电子传输层与阴极之间的电子注入层,电子注入层材料包括但不限于以下罗列的一种或多种的组合:LiQ、LiF、NaCl、CsF、Li 2O、Cs 2CO 3、BaO、Na、Li或Ca。
相对于现有技术,本发明的前述方案具有以下有益效果:
在本发明的化合物结构中,萘环1-位引入取代基Ar 2不仅能够调节邻位位阻大小,还能有效调控分子的扭曲度以降低分子结晶性;其次,2-位取代有芳胺基团,且芳胺基团上三取代结构的引入能够有效调控分子的立体结构,提高分子的堆积致密度,进而使所设计材料能够满足器件对材料的需求。
本发明中由1-位、2-位同时取代的萘环母核结构配合Ar 1、Ar 2、R 1~R 4等取代基,能够达到最佳的效果,使该材料应用于有机电致发光器件,特别是作为电子阻挡层时,可以提高发光效率、降低启动电压及延长器件的使用寿命。
另外,本发明化合物的制备工艺简单易行,原料易得,适合于量产放大。
本发明提供的含有式I化合物的有机电致发光器件亮度达到3000cd/m 2时,驱动电压低至3.8V及以下,电流效率高达18.2cd/A及以上。
在本发明的另一些优选实施例中,提供了一种光电性能得到提升的有机电致发光器件。所述有机电致发光器件包括阳极层、阴极层以及设置在所述阳极层和阴极层之间的有机层;
所述有机层包括发光层,所述发光层中含有主体材料和掺杂材料;
所述主体材料包括第一主体材料和第二主体材料,所述第一主体材料具有前述式I所示的结构;
Figure PCTCN2021081915-appb-000093
其中,所述Ar 1和Ar 2独立地选自取代或未取代的C6-C30芳基或者取代或未取代的C3-C30杂芳基;
所述L 1选自取代或未取代的C6-C30亚芳基或者取代或未取代的C3-C30亚杂芳基;
所述L 2选自单键、取代或未取代的C6-C30亚芳基或者取代或未取代的C3-C30亚杂芳基中的一种;
所述R 1、R 2和R 3独立地选自取代或未取代的C1-C20链状烷基、取代或未取代的C3-C20环烷基、取代或未取代的C6-C30芳基氨基、取代或未取代的C3-C30杂芳基氨基、取代或未取代的C6-C30芳基、取代或未取代的C3-C30杂芳基中的任意一种;
所述m为0~6的整数,例如1、2、3、4、5等;
所述R 4独立地选自取代或未取代的C1-C20链状烷基、取代或未取代的C3-C20环烷基、取代或未取代的C6-C30芳基氨基、取代或未取代的C3-C30杂芳基氨基、取代或未取代的C6-C30芳基中的任意一种;
Ar 1、Ar 2、L 1、L 2、R 1、R 2、R 3和R 4中,所述取代或未取代的取代基各自独立地选自卤素、C1-C10链状烷基、C3-C10环烷基、C1-C10烷氧基、C1-C10硫代烷氧基、C6-C30芳基氨基、C3-C30杂芳基氨基、C6-C30单环芳基、C10-C30稠环芳基、C3-C30单环杂芳基、C6-C30稠环杂芳基中的一种或者至少两种的组合。“取代或未取代的取代基”指的是当“取代或未取代”的基团为取代的基团时,取代基的选择范围。
前述“取代或未取代”的基团,可以取代有一个取代基,也可以取代有多个取代基,当取代基为多个时,可以选自不同的取代基,本发明中涉及到相同的表达方式时,均具有同样的意义,且取代基的选择范围均如上所示不再一一赘述。
本发明中,对于化学元素的表述包含化学性质相同的同位素的概念,例如,氢(H)则包括 1H(氕或作H)、 2H(氘或作D)等;碳(C)则包括 12C、 13C等。
本发明中,杂芳基的杂原子,通常指选自N、O、S。
本发明中,“—”划过的环结构的表达方式,表示连接位点于该环结构上任意能够成键的位置。
前述C1-C20链状烷基优选C1-C10链状烷基,更优选C1-C6链状烷基,例如可举出:甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正己基、正辛基、正戊基、正庚基、正壬基、正癸基等。
前述C3-C20环烷基优选环丙基、环丁基、环戊基、环己基。
前述取代或未取代的C6-C30(亚)芳基,优选C6-C20(亚)芳基,优选所述芳基为由苯基、联苯基、三联苯基、萘基、蒽基、菲基、茚基、芴基及其衍生物、荧蒽基、三亚苯基、芘基、苝基、
Figure PCTCN2021081915-appb-000094
基和并四苯基所组成的组中的基团。所述联苯基选自2-联苯基、3-联苯基和4-联苯基;所述三联苯基包括对-三联苯基-4-基、对-三联苯基-3-基、对-三联苯基-2-基、间-三联苯基-4-基、间-三联苯基-3-基和间-三联苯基-2-基;所述萘基包括1-萘基或2-萘基;所述蒽基选自由1-蒽基、2-蒽基和9-蒽基所组成的组中;所述芴基选自由1-芴基、2-芴基、3-芴基、4-芴基和9-芴基所组成的组中;所述芴基衍生物选自由9,9-二甲基芴、9,9-螺二芴和苯并芴所组成的组中;所述芘基选自由1-芘基、2-芘基和4-芘基所组成的组中;所述并四苯基选自由1-并四苯基、2-并四苯基和9-并四苯基所组成的组中。
本发明中,所述芳基包括单环芳基和稠环芳基,所述杂芳基也包括单环杂芳基和稠环杂芳基。
前述取代或未取代的C3-C30(亚)杂芳基,优选C4-C20(亚)杂芳基,优选所述杂芳基为呋喃基、噻吩基、吡咯基、苯并呋喃基、苯并噻吩基、异苯并呋喃基、吲哚基、二苯并呋喃基、二苯并噻吩基、咔唑基及其衍生物,其中,所述咔唑基衍生物优选为9-苯基咔唑、9-萘基咔唑苯并咔唑、二苯并咔唑、或吲哚并咔唑。
前述C6-C30芳基氨基指的是芳基与氨基连接而成的基团,其连接键可以在氨基上,也可以是在芳基上,C3-C30杂芳基氨基同理。
前述优选实施例提供了一种采用双主体发光层的有机电致发光器件,其中第一主体材料选用式I所示的化合物,该化合物具有较高的空穴迁移率和适合的能级,能够调节发光层内部的载流子分布,从而调控载流子复合区域,并且又具备较高的空间堆积结构,当作为双主体之一时,与第二主体材料搭配组合,精准的调控发光层内部载流子的分布,从而提升有机电致发光器件的光取出效率,进而提高器件的光电性能。
优选地,式I中,所述Ar 1选自取代或者未取代的如下基团中的任意一种:苯基、联苯基、三联苯基、萘基、菲基、蒽基、二苯并呋喃基、二苯并噻吩基、咔唑基、9,9二甲基芴基、9,9二苯基芴基、螺芴基、三亚苯基、荧蒽基、苯并9,9二甲基芴基、苯并螺芴基。
和/或,式I中,所述Ar 2选自取代或者未取代的如下基团中的任意一种:苯基、联苯基、三联苯基、萘基、菲基、蒽基、二苯并呋喃基、二苯并噻吩基、咔唑基、9,9二甲基芴基、9,9二苯基芴基、螺芴基、三亚苯基、荧蒽基、苯并9,9二甲基芴基、苯并螺芴基,优选取代或未取代的萘基。
优选地,所述Ar 2选自取代或者未取代的如下基团中的任意一种:
Figure PCTCN2021081915-appb-000095
其中,虚线代表基团的连接键。
优选地,式I中,所述R 1、R 2和R 3独立地选自甲基、乙基或苯基中的一种,优选均为甲基。
优选地,式I中,所述L 1选自取代或者未取代的下述基团中的一种:亚苯基、亚联苯基、亚萘基、亚二苯并呋喃基、亚二苯并噻吩基、亚9,9二甲基芴基中的一种。
优选地,式I中,所述L 2选自单键、取代或未取代的C6-C20亚芳基或者取代或未取代的C3-C20亚杂芳基中的一种,优选单键或亚苯基。
优选地,所述第一主体材料选自前述化合物P1至化合物P777中的任意一种或至少两种组合。
优选地,所述第一主体材料与所述第二主体材料的质量比为0.01:1-1.5:1,例如,0.05:1、0.1:1、0.2:1、1:0.3、0.4:1、0.5:1、0.6:1、0.7:1、0.8:1、0.9:1、1:1.0、1.1:1、1.2:1、1.3:1、1.4:1等,优选0.1:1-1:1。
本发明优选第一主体材料(即式I化合物)与所述第二主体材料的质量比为0.01:1-1.5:1,在前述范围之内,器件的光电性能达到最佳,若式I化合物添加量过多,会导致器件的电压上升且器件效率降低,添加量过少,器件效率无明显提升。
优选地,所述第二主体材料的HOMO能级为-5.3eV至-5.7eV,例如-5.4eV、-5.5eV、-5.6eV等;
和/或,所述第二主体材料的LUMO能级为-2.3eV至-2.6eV,例如-2.4eV、-2.5eV等。
优选地,所述第二主体材料的HOMO能级为-5.3eV至-5.7eV,LUMO能级为-2.3eV至-2.6eV。
本发明优选第二主体材料具有前述特定的HOMO能级和LUMO能级,使其与第一主体材料更好的搭配,更加精准的调控发光层内部载流子分布,从而进一步提升有机电致发光器件的光取出效率,提高器件效率。
优选地,所述第二主体材料选自如下化合物PH-1至化合物PH-85中的任意一种或至少两种组合:
Figure PCTCN2021081915-appb-000096
Figure PCTCN2021081915-appb-000097
Figure PCTCN2021081915-appb-000098
Figure PCTCN2021081915-appb-000099
优选地,所述发光层的厚度为10-65nm,例如15nm、20nm、25nm、30nm、35nm、40nm、45nm、50nm、55nm、60nm等,优选15-55nm。
基于前述优选实施例中发光层的特定物质组成,本发明优选发光层的厚度为10-65nm,在该厚度范围之内,器件的效率得到进一步提升,厚度过低,会导致器件色度偏移且效率降低,厚度过高,会导致器件电压升高且效率降低。
本发明中,可以将第一主体材料和第二主体材料共蒸或预混得到发光层,但并不限于共蒸或预混。
优选地,所述有机层还包括空穴注入层、空穴传输层、电子阻挡层、电子传输层或电子注入层中的任意一种或至少两种组合。
OLED中有机层可以分为多个区域。比如,该有机材料层可以包括空穴传输区、发光层、电子传输区。
在具体实施例中,在第一电极下方或者第二电极上方可以使用基板。基板均为具有机械强度、热稳定性、防水性、透明度优异的玻璃或聚合物材料。此外,作为显示器用的基板上也可以带有薄膜晶体管(TFT)。
第一电极可以通过在基板上溅射或者沉积用作第一电极的材料的方式来形成。当第一电极作为阳极时,可以采用铟锡氧(ITO)、铟锌氧(IZO)、二氧化锡(SnO 2)、氧化锌(ZnO)等氧化物透明导电材料和它们的任意组合。第一电极作为阴极时,可以采用镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镱(Yb)、镁-铟(Mg-In)、镁-银(Mg-Ag)等金属或合金以及它们之间的任意组合。
有机材料层可以通过真空热蒸镀、旋转涂敷、打印等方法形成于电极之上。用作有机材料层的化合物可以为有机小分子、有机大分子和聚合物,以及它们的组合。
空穴传输区位于阳极和发光层之间。空穴传输区可以为单层结构的空穴传输层(HTL),包括只含有一种化合物的单层空穴传输层和含有多种化合物的单层空穴传输层。空穴传输区也可以为包括空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)中的至少一层的多层结构;其中HIL位于阳极和HTL之间,EBL位于HTL与发光层之间。
空穴传输区的材料可以选自、但不限于酞菁衍生物如CuPc、导电聚合物或含导电掺杂材料的聚合物如聚苯撑乙烯、聚苯胺/十二烷基苯磺酸(Pani/DBSA)、聚(3,4-乙撑二氧噻吩)/聚(4-苯乙烯磺酸盐)(PEDOT/PSS)、聚苯胺/樟脑磺酸(Pani/CSA)、聚苯胺/聚(4-苯乙烯磺酸盐) (Pani/PSS)、如下面HT-1至HT-51所示的芳香胺衍生物(其中HT-1至HT-34如前述,HT-35至HT-51的结构如下);或者其任意组合。
Figure PCTCN2021081915-appb-000100
空穴注入层位于阳极和空穴传输层之间。空穴注入层可以是单一化合物材料,也可以是多种化合物的组合。例如,空穴注入层可以采用前述HT-1至HT-51的一种或多种化合物,或者采用前述HI-1-HI-3中的一种或多种化合物;也可以采用HT-1至HT-51的一种或多种化合物掺杂前述HI-1-HI-3中的一种或多种化合物。
发光层包括可以发射不同波长光谱的的发光染料(即掺杂材料,dopant),还可以同时包括主体材料(Host)。发光层可以是发射红、绿、蓝等单一颜色的单色发光层。多种不同颜色的单色发光层可以按照像素图形进行平面排列,也可以堆叠在一起而形成彩色发光层。当不同颜色的发光层堆叠在一起时,它们可以彼此隔开,也可以彼此相连。发光层也可以是能同时发射红、绿、蓝等不同颜色的单一彩色发光层。
根据不同的技术,发光层材料可以采用磷光电致发光材料等不同的材料。
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂材料可以选自、但不限于前述GPD-1至GPD-47的一种或多种的组合。
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂材料可以选自、但不限于前述的RPD-1至RPD-28的一种或多种的组合。
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂材料可以选自、但不限于前述所罗列的YPD-1至YPD-11的一种或多种的组合。
OLED有机材料层还可以包括发光层与阴极之间的电子传输区。电子传输区可以为单层结构的电子传输层(ETL),包括只含有一种化合物的单层电子传输层和含有多种化合物的单层电子传输层。电子传输区也可以为包括电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)中的至少一层的多层结构。
本发明的一方面,电子传输层材料可以选自、但不限于前述的ET-1至ET-57以及以下ET-58至ET-73的一种或多种的组合。
Figure PCTCN2021081915-appb-000101
Figure PCTCN2021081915-appb-000102
器件中还可以包括位于电子传输层与阴极之间的电子注入层,电子注入层材料包括但不限于以下罗列的一种或多种的组合:LiQ,LiF,NaCl,CsF,Li 2O,Cs 2CO 3,BaO,Na,Li,Ca,Mg,Yb。
本发明的另一实施例中,提供了一种显示装置,所述显示装置包括目的之一所述的有机电致发光器件。
前述优选实施例提供了一种采用双主体发光层的有机电致发光器件,其中第一主体材料选用式I所示的化合物,相较于现有技术,该化合物具有较高的空穴迁移率和适合的能级,能够调节发光层内部的载流子分布,从而调控载流子复合区域,并且又具备较高的空间堆积结构,当作为双主体之一时,与第二主体材料搭配组合,精准的调控发光层内部载流子的分布,从而提升有机电致发光器件的光取出效率,进而提高器件的光电性能。前述优选实施例提供的有机电致发光器件的电流效率均在11.7cd/A以上,大部分可达15cd/A以上,最高可达17cd/A以上。
根据本发明的另一方面,提供了一种有机电致发光器件。所述有机电致发光器件具有较高的效率。所述有机电致发光器件包括阳极层、阴极层以及设置在所述阳极层和阴极层之间的有机层;
所述有机层中含有化合物I和化合物II;
Figure PCTCN2021081915-appb-000103
所述Ar 1和Ar 2独立地选自取代或未取代的C6-C30芳基或者取代或未取代的C3-C30杂芳基;
所述L 1选自取代或未取代的C6-C30亚芳基或者取代或未取代的C3-C30亚杂芳基;
所述L 2选自单键、取代或未取代的C6-C30亚芳基或者取代或未取代的C3-C30亚杂芳基中的一种;
所述R 1、R 2和R 3独立地选自取代或未取代的C1-C20链状烷基、取代或未取代的C3-C20环烷基、取代或未取代的C6-C30芳基氨基、取代或未取代的C3-C30杂芳基氨基、取代或未取代的C6-C30芳基、取代或未取代的C3-C30杂芳基中的任意一种;
所述m为0~6的整数,例如1、2、3、4、5等;
所述R 4独立地选自取代或未取代的C1-C20链状烷基、取代或未取代的C3-C20环烷基、取代或未取代的C6-C30芳基氨基、取代或未取代的C3-C30杂芳基氨基、取代或未取代的C6-C30芳基中的任意一种;
所述化合物II具有式(3)所示的结构,
Figure PCTCN2021081915-appb-000104
所述r为0-6的整数,例如1、2、3、4、5等;
所述Ar 3至Ar 5独立地选自取代或未取代的C6-C30芳基或者取代或未取代的C3-C30杂芳基;
所述L 3-L 5各自独立地选自单键、取代或未取代的C6-C30亚芳基、取代或未取代的C3-C30亚杂芳基中的任意一种;
所述R 5独立地选自取代或未取代的C1-C20的链状烷基、取代或未取代的C3-C20的环烷基、取代或未取代的C6-C30芳基、取代或未取代的C3-C30杂芳基中的任意一种;
其中,所述Rx为任意可取代位置的取代基,任意可取代位置是指虚线圈内结构的可取代的位置,比如,可以是萘环、Ar 3至Ar 5、L 3-L 5和R 5中的任意一个可以取代的位置;Rx的个数y,y为1至15的整数,(例如可以是2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个等;所述Rx选自取代或未取代的C3-C20的环烷基;
上述式I和式(3)中,Ar 1至Ar 5、L 1至L 5、R 1、R 2、R 3、R 4、R 5和Rx中,所述取代的基团独立地选自卤素、C1-C10链状烷基、C3-C10环烷基、C1-C10烷氧基、C1-C10硫代烷氧基、C6-C30芳基氨基、C3-C30杂芳基氨基、C6-C30单环芳基、C10-C30稠环芳基、C3-C30单环杂芳基、C6-C30稠环杂芳基中的一种或者至少两种的组合。
前述“取代或未取代”的基团,可以取代有一个取代基,也可以取代有多个取代基,当取代基为多个时,可以选自不同的取代基,本发明中涉及到相同的表达方式时,均具有同样的意义,且取代基的选择范围均如上所示不再一一赘述。
本发明中,对于化学元素的表述包含化学性质相同的同位素的概念,例如,氢(H)则包括 1H(氕或作H)、 2H(氘或作D)等;碳(C)则包括 12C、 13C等。
本发明中,杂芳基的杂原子,通常指选自N、O、S。
本发明中,“—”划过的环结构的表达方式,表示连接位点于该环结构上任意能够成键的位置。
前述C1-C20链状烷基优选C1-C10链状烷基,更优选C1-C6链状烷基,例如可举出:甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正己基、正辛基、正戊基、正庚基、正壬基、正癸基等。
前述C3-C20环烷基优选环丙基、环丁基、环戊基、环己基。
前述取代或未取代的C6-C30(亚)芳基,优选C6-C20芳基,优选所述芳基为由苯基、联苯基、三联苯基、萘基、蒽基、菲基、茚基、芴基及其衍生物、荧蒽基、三亚苯基、芘基、苝基、
Figure PCTCN2021081915-appb-000105
基和并四苯基所组成的组中的基团。所述联苯基选自2-联苯基、3-联苯基和4-联苯基;所述三联苯基包括对-三联苯基-4-基、对-三联苯基-3-基、对-三联苯基-2-基、间-三联苯基-4-基、间-三联苯基-3-基和间-三联苯基-2-基;所述萘基包括1-萘基或2-萘基;所述蒽基选自由1-蒽基、2-蒽基和9-蒽基所组成的组中;所述芴基选自由1-芴基、2-芴基、3-芴基、4-芴基和9-芴基所组成的组中;所述芴基衍生物选自由9,9’-二甲基芴、9,9’-螺二芴和苯并芴所组成的组中;所述芘基选自由1-芘基、2-芘基和4-芘基所组成的组中;所述并四苯基选自由1-并四苯基、2-并四苯基和9-并四苯基所组成的组中。
本发明中,所述芳基包括单环芳基和稠环芳基,所述杂芳基也包括单环杂芳基和稠环杂芳基。
前述取代或未取代的C3-C30(亚)杂芳基,优选C4-C20杂芳基,优选所述杂芳基为呋喃基、噻吩基、吡咯基、苯并呋喃基、苯并噻吩基、异苯并呋喃基、吲哚基、二苯并呋喃基、二苯并噻吩基、咔唑基及其衍生物,其中,所述咔唑基衍生物优选为9-苯基咔唑、9-萘基咔唑苯并咔唑、二苯并咔唑、或吲哚并咔唑。
前述C6-C30芳基氨基指的是芳基与氨基连接而成的基团,其连接键可以在氨基上,也可以是在芳基上,C3-C30杂芳基氨基同理。
本实施例同时采用化合物I和化合物II作为有机层的材料,其中化合物I能够调节发光层内部的载流子分布,从而调控载流子复合区域,并且又具备较高的空间堆积结构,同时,化合物II具有较高的分子平面展开特性,从而实现空穴更快的传递,提升空穴迁移率,且具有较高的三线态能级,可阻挡过剩激子,二者搭配使用,能够有效提高器件的效率。 优选地,所述化合物I具有如前述P1-P777所示的结构中的任意一种。优选地,所述化合物II具有如A1至A291所示的结构中的任意一种:
Figure PCTCN2021081915-appb-000106
Figure PCTCN2021081915-appb-000107
Figure PCTCN2021081915-appb-000108
Figure PCTCN2021081915-appb-000109
Figure PCTCN2021081915-appb-000110
Figure PCTCN2021081915-appb-000111
Figure PCTCN2021081915-appb-000112
Figure PCTCN2021081915-appb-000113
Figure PCTCN2021081915-appb-000114
Figure PCTCN2021081915-appb-000115
Figure PCTCN2021081915-appb-000116
Figure PCTCN2021081915-appb-000117
Figure PCTCN2021081915-appb-000118
Figure PCTCN2021081915-appb-000119
Figure PCTCN2021081915-appb-000120
Figure PCTCN2021081915-appb-000121
Figure PCTCN2021081915-appb-000122
Figure PCTCN2021081915-appb-000123
Figure PCTCN2021081915-appb-000124
Figure PCTCN2021081915-appb-000125
Figure PCTCN2021081915-appb-000126
Figure PCTCN2021081915-appb-000127
Figure PCTCN2021081915-appb-000128
Figure PCTCN2021081915-appb-000129
Figure PCTCN2021081915-appb-000130
优选地,所述有机层包括发光层和电子阻挡层。
优选地,所述发光层中含有化合物I,所述电子阻挡层中含有化合物II。
优选地,所述发光层中含有化合物II,所述电子阻挡层中含有化合物I。
在本发明的一种优选技术方案中,将化合物I和化合物II一个作为发光层材料,一个作为电子阻挡层材料,是由于这两种材料均具有空穴传输特性,分别作为电子阻挡层和发光层的材料,能够平衡电子传递较快的影响,从而使得复合中心的位置发生在发光层中心,从而能够进一步提高器件效率。
优选地,所述发光层中含有第一主体材料、第二主体材料和掺杂材料。
所述第一主体材料为化合物I,所述电子阻挡层中含有化合物II,或者,所述第一主体材料为化合物II,所述电子阻挡层中含有化合物I。
更进一步地,本发明优选将化合物I或化合物II用作双主体发光层中的其中一个主体材料,能够更好的调节发光层内部的载流子分布,从而调控载流子复合区域,并且又具备较高的空间堆积结构,作为双主体之一,可以提升光取出效率,与其他主体材料配合,能够进一步提高低灰阶下的效率,降低器件的效率滚降的程度,从而进一步提高器件的效率。
在一种优选的实施例中,所述第一主体材料与所述第二主体材料的质量比为0.01:1-1.5:1,例如0.05:1、0.1:1、0.15:1、0.2:1、0.25:1、0.3:1、0.35:1、0.4:1、0.45:1、0.5:1、0.55:1、0.6:1、0.65:1、0.7:1、0.75:1、0.8:1、0.85:1、0.9:1、0.95:1、1:1、1.05:1、1.1:1、1.15:1、1.2:1、1.25:1、1.3:1、1.35:1、1.4:1、1.45:1等,优选0.1:1-1:1。
在本发明的又一优选技术方案中,选择双主体发光层中化合物I或化合物II的添加量在前述特定范围内,在该范围内,能够进一步提高器件的效率,添加量过高会导致空穴传输过快,反而破坏器件内部的平衡,添加量过低则起不到调控的效果。
优选地,所述第二主体材料包括磷光材料。
优选地,前述的双主体发光层的厚度为10-60nm,例如15nm、20nm、25nm、30nm、35nm、40nm、45nm、50nm、55nm等,优选20-50nm。
本发明优选含有化合物I或化合物II的发光层厚度为10-60nm,在该厚度范围内,能够进一步提高器件的效率,厚度过小会导致内部激子无法充分复合,厚度过大会导致空穴和电子传输过程较长,内部损耗也会变多,均会使效率降低。
优选地,所述电子阻挡层的厚度为2-100nm,例如10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm等,优选3-90nm。
本发明优选含有化合物I或化合物II的电子阻挡层厚度为2-100nm,在该厚度范围内,能够进一步提高器件的效率,厚度过小会导致内部激子无法充分复合,厚度过大会导致空穴和电子传输过程较长,内部损耗也会变多,均会使效率降低。
优选地,所述有机层还包括空穴注入层、空穴传输层、电子传输层和电子注入层。
优选地,化合物I中,所述Ar 1选自取代或者未取代的如下基团中的任意一种:苯基、联苯基、三联苯基、萘基、菲基、蒽基、二苯并呋喃基、二苯并噻吩基、咔唑基、9,9二甲基芴基、9,9二苯基芴基、螺芴基、三亚苯基、荧蒽基、苯并9,9二甲基芴基、苯并螺芴基。
优选地,化合物I中,所述Ar 2选自取代或者未取代的如下基团中的任意一种:苯基、联苯基、三联苯基、萘基、菲基、蒽基、二苯并呋喃基、二苯并噻吩基、咔唑基、9,9二甲基芴基、9,9二苯基芴基、螺芴基、三亚苯基、荧蒽基、苯并9,9二甲基芴基、苯并螺芴基,优选取代或未取代的萘基。
优选地,所述Ar 2选自取代或者未取代的如下基团中的任意一种:
Figure PCTCN2021081915-appb-000131
其中,虚线代表基团的连接键。
优选地,化合物I中,所述R 1、R 2和R 3独立地选自甲基、乙基或苯基中的一种,优选均为甲基。
优选地,化合物I中,所述L 1选自取代或者未取代的下述基团中的一种:亚苯基、亚联苯基、亚萘基、亚二苯并呋喃基、亚二苯并噻吩基、亚9,9二甲基芴基中的一种。
优选地,化合物I中,所述L 2选自单键、取代或未取代的C6-C20亚芳基或者取代或未取代的C3-C20亚杂芳基中的一种,优选单键或亚苯基。
优选地,所述化合物II为在式(3-1)所示的结构上的任意可取代位置取代至少一个Rx所形成的化合物;
Figure PCTCN2021081915-appb-000132
优选地,所述Rx选自如下基团中的任意一种:
Figure PCTCN2021081915-appb-000133
其中,波浪线或*标记处代表基团的连接键。
优选地,所述Ar 3至Ar 5各自独立地选自取代或未取代的如下基团中的任意一种:
Figure PCTCN2021081915-appb-000134
其中,虚线处代表基团的连接键。
优选地,所述L 3和L 4各自独立地选自单键、亚苯基或亚萘基,优选为单键。
优选地,所述L 5为单键。
OLED包括位于第一电极和第二电极,以及位于电极之间的有机材料层。该有机材料又可以分为多个区域。比如,该有机材料层可以包括空穴传输区、发光层、电子传输区。
在具体实施例中,在第一电极下方或者第二电极上方可以使用基板。基板均为具有机械强度、热稳定性、防水性、透明度优异的玻璃或聚合物材料。此外,作为显示器用的基板上也可以带有薄膜晶体管(TFT)。
第一电极可以通过在基板上溅射或者沉积用作第一电极的材料的方式来形成。当第一电极作为阳极时,可以采用铟锡氧(ITO)、铟锌氧(IZO)、二氧化锡(SnO 2)、氧化锌(ZnO)等氧化物透明导电材料和它们的任意组合。第一电极作为阴极时,可以采用镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镱(Yb)、镁-铟(Mg-In)、镁-银(Mg-Ag)等金属或合金以及它们之间的任意组合。
有机材料层可以通过真空热蒸镀、旋转涂敷、打印等方法形成于电极之上。用作有机材料层的化合物可以为有机小分子、有机大分子和聚合物,以及它们的组合。
空穴传输区位于阳极和发光层之间。空穴传输区可以为单层结构的空穴传输层(HTL),包括只含有一种化合物的单层空穴传输层和含有多种化合物的单层空穴传输层。空穴传输区也可以为包括空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)中的至少一层的多层结构;其中HIL位于阳极和HTL之间,EBL位于HTL与发光层之间。
空穴传输区的材料可以选自、但不限于酞菁衍生物如CuPc、导电聚合物或含导电掺杂剂的聚合物如聚苯撑乙烯、聚苯胺/十二烷基苯磺酸(Pani/DBSA)、聚(3,4-乙撑二氧噻吩)/聚(4-苯 乙烯磺酸盐)(PEDOT/PSS)、聚苯胺/樟脑磺酸(Pani/CSA)、聚苯胺/聚(4-苯乙烯磺酸盐)(Pani/PSS)、芳香胺衍生物,其中芳香胺衍生物如前述HT-1至HT-51所示的化合物;或者其任意组合。
空穴注入层位于阳极和空穴传输层之间。空穴注入层可以是单一化合物材料,也可以是多种化合物的组合。例如,空穴注入层可以采用前述HT-1至HT-51的一种或多种化合物,或者采用前述HI-1-HI-3中的一种或多种化合物;也可以采用HT-1至HT-51的一种或多种化合物掺杂前述HI-1-HI-3中的一种或多种化合物。
发光层包括可以发射不同波长光谱的发光染料(即掺杂剂,dopant),还可以同时包括主体材料(Host)。发光层可以是发射红、绿、蓝等单一颜色的单色发光层。多种不同颜色的单色发光层可以按照像素图形进行平面排列,也可以堆叠在一起而形成彩色发光层。当不同颜色的发光层堆叠在一起时,它们可以彼此隔开,也可以彼此相连。发光层也可以是能同时发射红、绿、蓝等不同颜色的单一彩色发光层。
根据不同的技术,发光层材料可以采用磷光电致发光材料。在一个OLED器件中,可以采用单一的发光技术,也可以采用多种不同的发光技术的组合。这些按技术分类的不同发光材料可以发射同种颜色的光,也可以发射不同种颜色的光。
在本发明的一方面,发光层的第二主体材料为磷光材料,所述磷光材料选自、但不限于PH-1至PH-86中的一种或多种的组合。
Figure PCTCN2021081915-appb-000135
Figure PCTCN2021081915-appb-000136
Figure PCTCN2021081915-appb-000137
Figure PCTCN2021081915-appb-000138
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于前述的GPD-1至GPD-47的一种或多种的组合。
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于前述的RPD-1至RPD-28的一种或多种的组合。
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于前述的YPD-1至YPD-11的一种或多种的组合。
在本发明的一方面,发光层采用热活化延迟荧光发光的技术。其发光层主体材料选自、但不限于前述PH-1至PH-86中的一种或多种的组合。
本发明的一方面,电子阻挡层(EBL)位于空穴传输层与发光层之间。电子阻挡层可以采用、但不限于前述化合物I和化合物II包含的一种或多种化合物。
OLED有机材料层还可以包括发光层与阴极之间的电子传输区。电子传输区可以为单层结构的电子传输层(ETL),包括只含有一种化合物的单层电子传输层和含有多种化合物的单层电子传输层。电子传输区也可以为包括电子注入层(EIL)、电子传输层(ETL)中的至少一层的多层结构。
本发明的一方面,电子传输层材料可以选自、但不限于前述的ET-1至ET-65的一种或多种的组合。
器件中还可以包括位于电子传输层与阴极之间的电子注入层,电子注入层材料包括但不限于以下罗列的一种或多种的组合:LiQ,LiF,NaCl,CsF,Li 2O,Cs 2CO 3,BaO,Na,Li,Ca,Mg,Yb。
本发明的另一实施例提供了一种显示装置,所述显示装置中含有目的之一所述的有机电致发光器件。
相较于现有技术,本发明的上述优选实施例具有如下有益效果:
本发明同时采用化合物I和化合物II作为有机层的材料,其中化合物I能够调节发光层内部的载流子分布,从而调控载流子复合区域,并且又具备较高的空间堆积结构,同时,化合物II具有较高的分子平面展开特性,从而实现空穴更快的传递,提升空穴迁移率,且具有较高的三线态能级,可阻挡过剩激子,二者搭配使用,能够有效提高器件的效率。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明的一个具体实施方式中提供的有机电致发光器件的结构示意图;
其中,1、带有阳极的玻璃基片;2、空穴注入层;3、空穴传输层;4、电子阻挡层;5、发光层;6、电子传输层;7、电子注入层;8、阴极层;9、外加电源。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
本发明式I化合物的代表合成路径如下:
Figure PCTCN2021081915-appb-000139
其中,R 1、R 2、R 3、R 4、L 1、L 2、Ar 1和Ar 2均与式I中的符号具有相同的意义;Pd 2(dba) 3代表三(二苄基丙酮)二钯(0),IPr.HCl代表1,双(2,二异丙基苯基)氯化咪锉嗡,NaOBu-t代表叔丁醇钠,(t-Bu) 3P代表三叔丁基膦。
更具体的,本发明如下合成例示例性地提供了代表化合物的具体合成方法,如下合成例中所用溶剂和试剂,例如3-溴-9,9-二甲基芴、1,双(2,二异丙基苯基)氯化咪锉嗡、三(二苄基丙酮)二钯(0)、甲苯、甲醇、乙醇、三叔丁基膦、叔丁基醇钾/钠等化学试剂,均可以从国内化工产品市场购买或定制,例如购买自国药集团试剂公司、Sigma-Aldrich公司、百灵威试剂公司,中间体M1~M7通过试剂公司定制。另外,本领域技术人员也可以通过公知方法合成。
合成例1:化合物P1的合成
Figure PCTCN2021081915-appb-000140
在1000mL单口瓶中,加入13.5g(50mmol)M1、13.6g(50mmol)3-溴-9,9-二甲基芴、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5g IPr.HCl,500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至90℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末M1-1。
在1000mL单口瓶中,加入23g(50mmol)M1-1、11g(50mmol)4-溴-叔丁基苯、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P1。
M/Z理论值:593;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:594。
合成例2:化合物P2的合成
Figure PCTCN2021081915-appb-000141
在1000mL单口瓶中,加入23g(50mmol)M1-1、14.4g(50mmol)4-溴-4’-叔丁基联苯、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd2(dba)3)、0.5mL三叔丁基膦((t-Bu)3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P2。
M/Z理论值:669;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:670。
合成例3:化合物P5的合成
Figure PCTCN2021081915-appb-000142
在1000mL单口瓶中,加入23g(50mmol)M1-1、14.5g(50mmol)2-溴-5-叔丁基联苯、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P5。
M/Z理论值:669;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:670。
合成例4:化合物P6的合成
Figure PCTCN2021081915-appb-000143
在1000mL单口瓶中,加入23g(50mmol)M1-1、18.5g(50mmol)4-溴-3苯基-4’-叔丁基联苯、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃ 反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P6。
M/Z理论值:745;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:746。
合成例5:化合物P7的合成
Figure PCTCN2021081915-appb-000144
在1000mL单口瓶中,加入13.5g(50mmol)M1、20g(50mmol)3-溴-9,9-二苯基芴、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5g IPr.HCl,500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至90℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末M1-2。
在1000mL单口瓶中,加入29g(50mmol)M1-2、11g(50mmol)4-溴-叔丁基苯、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P7。
M/Z理论值:717;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:718。
合成例6:化合物P15的合成
Figure PCTCN2021081915-appb-000145
在1000mL单口瓶中,加入13.5g(50mmol)M1、16.5g(50mmol)3-溴-[6,7]-苯并-9,9-二甲基芴、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5g IPr.HCl,500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至90℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末M1-3。
在1000mL单口瓶中,加入25.5g(50mmol)M1-3、11g(50mmol)4-溴-叔丁基苯、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P15。
M/Z理论值:643;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:644。
合成例7:化合物P37的合成
Figure PCTCN2021081915-appb-000146
在1000mL单口瓶中,加入16g(50mmol)M2、13.5g(50mmol)3-溴-9,9-二甲基芴、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5g IPr.HCl,500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至90℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末M2-1。
在1000mL单口瓶中,加入26g(50mmol)M2-1、11g(50mmol)4-溴-叔丁基苯、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P37。
M/Z理论值:649;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:650。
合成例8:化合物P38的合成
Figure PCTCN2021081915-appb-000147
在1000mL单口瓶中,加入26g(50mmol)M2-1、14.5g(50mmol)4-溴-4’-叔丁基联苯、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P38。
M/Z理论值:725;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:726。
合成例9:化合物P74的合成
Figure PCTCN2021081915-appb-000148
在1000mL单口瓶中,加入15.5g(50mmol)M3、13.5g(50mmol)3-溴-9,9-二甲基芴、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5g IPr.HCl,500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至90℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末M3-1。
在1000mL单口瓶中,加入25g(50mmol)M3-1、14.5g(50mmol)4-溴-4’-叔丁基联苯、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P74。
M/Z理论值:709;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:710。
合成例10:化合物P253的合成
Figure PCTCN2021081915-appb-000149
在1000mL单口瓶中,加入16.5g(50mmol)M4、13.6g(50mmol)3-溴-9,9-二甲基芴、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5g IPr.HCl,500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至90℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末M4-1。
在1000mL单口瓶中,加入26.5g(50mmol)M4-1、11g(50mmol)4-溴-叔丁基苯、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P253。
M/Z理论值:659;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:660。
合成例11:化合物P284的合成
Figure PCTCN2021081915-appb-000150
在1000mL单口瓶中,加入26.5g(50mmol)M4-1、20g(50mmol)1-(4-溴苯基)-1,1,1-三苯基甲烷、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P284。
M/Z理论值:845;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:846。
合成例12:化合物P375的合成
Figure PCTCN2021081915-appb-000151
在1000mL单口瓶中,加入15g(50mmol)M5、13.5g(50mmol)3-溴-9,9-二甲基芴、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5g IPr.HCl,500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至90℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末M5-1。
在1000mL单口瓶中,加入25g(50mmol)M5-1、14.5g(50mmol)2-苯基4-溴叔丁基苯、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P375。
M/Z理论值:695;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:696。
合成例13:化合物P322的合成
Figure PCTCN2021081915-appb-000152
在1000mL单口瓶中,加入16.5g(50mmol)M7、13.5g(50mmol)3-溴-9,9-二甲基芴、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5g IPr.HCl,500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至90℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末M7-1。
在1000mL单口瓶中,加入26.5g(50mmol)M7-1、14g(50mmol)1-(4-溴苯基)-1,1-二甲基-1-苯基甲烷、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P322。
M/Z理论值:721;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:722。
合成例14:化合物P323的合成
Figure PCTCN2021081915-appb-000153
在1000mL单口瓶中,加入16.5g(50mmol)M7、16.5g(50mmol)3-溴-9,9-二甲基-6,7-苯并芴、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5g IPr.HCl,500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至90℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末M7-2。
在1000mL单口瓶中,加入29g(50mmol)M7-2、12.7g(50mmol)1-(4-溴苯基)-1,1,1-三乙基甲烷、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P323。
M/Z理论值:751;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:752。
合成例15:化合物P20的合成
Figure PCTCN2021081915-appb-000154
在1000mL单口瓶中,加入25.5g(50mmol)M1-3、16g(50mmol)3-溴-6-叔丁基二苯并噻吩、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃ 反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P20。
M/Z理论值:749;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:750。
合成例16:化合物P628的合成
Figure PCTCN2021081915-appb-000155
在1000mL单口瓶中,加入13.5g(50mmol)M1、16.5g(50mmol)3-溴-9,9-二甲基-5,6-苯并芴、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5g IPr.HCl,500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至90℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末M1-4。
在1000mL单口瓶中,加入25.5g(50mmol)M1-4、14.5g(50mmol)2-溴-5-叔丁基联苯、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P628。
M/Z理论值:719;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:720。
合成例17:化合物P613的合成
Figure PCTCN2021081915-appb-000156
在1000mL单口瓶中,加入13.5g(50mmol)M1、12.3g(50mmol)3-溴-二苯并呋喃、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5g IPr.HCl,500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至90℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末M1-5。
在1000mL单口瓶中,加入22g(50mmol)M1-5、11g(50mmol)4-溴-叔丁基苯、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P613。
M/Z理论值:567;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:568。
合成例18:化合物P602的合成
Figure PCTCN2021081915-appb-000157
在1000mL单口瓶中,加入21g(50mmol)M1-5、14.5g(50mmol)4-溴-4’-叔丁基联苯、0.9g(1mmol)三(二亚苄基丙酮)二钯(即Pd 2(dba) 3)、0.5mL三叔丁基膦((t-Bu) 3P),500mL甲苯,14.4g(150mmol)叔丁醇钠(NaOBu-t),抽真空换氮气3次,反应升温至110℃反应5h。反应完毕,停止反应。冷却至室温,对反应液分液,浓缩有机相,加入甲醇搅拌1h,抽滤得到淡黄色粉末P602。
M/Z理论值:629;ZAB-HS型质谱仪(英国Micromass公司制造)M/Z实测值:630。
实施例1
本实施例提供一种有机电致发光器件,具体制备过程如下:
将涂布了ITO透明导电层(作为阳极)的玻璃板在商用清洗剂中超声处理后,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
把前述带有阳极的玻璃基片置于真空腔内,抽真空至小于1×10 -5Pa,在前述阳极层膜上真空蒸镀HI-3作为空穴注入层,蒸镀速率为0.1nm/s,蒸镀膜厚为10nm;
在空穴注入层之上真空蒸镀HT-4作为器件的空穴传输层,蒸镀速率为0.1nm/s,蒸镀总膜厚为80nm;
在空穴传输层之上真空蒸镀化合物P1作为器件的电子阻挡层材料,蒸镀速率为0.1nm/s,蒸镀总膜厚为80nm。
在电子阻挡层之上真空蒸镀器件的发光层,发光层包括主体材料和染料材料,利用多源共蒸的方法,调节主体材料GPH-59蒸镀速率为0.1nm/s,染料RPD-8蒸镀速率为主体材料的3%进行比例设定,蒸镀总膜厚为30nm;
在发光层之上真空蒸镀器件的电子传输层材料ET-46,其蒸镀速率为0.1nm/s,蒸镀总膜厚为30nm;
在电子传输层(ETL)上真空蒸镀厚度为0.5nm的LiF作为电子注入层,厚度为150nm的Al层作为器件的阴极。
实施例2~18、对比例1~6提供的有机电致发光器件的制作过程同实施例1,区别是将电子阻挡层材料化合物P1分别替换为如表1中所示化合物。
对比例1~6的电子阻挡层材料的结构如下所示:
Figure PCTCN2021081915-appb-000158
其中,R-1和R-2详见专利申请CN109749735A中的化合物39和化合物94,R-3至R-6详见专利申请CN110511151A中的化合物P405、P389、P406和化合物P418。
对由前述过程制备的有机电致发光器件进行如下性能测定:
在同样亮度下,使用数字源表(Keithley2400)及亮度计(ST-86LA型亮度计,北京师范大学光电仪器厂)及亮度计测定实施例1-18以及比较例1-6中制备得到的有机电致发光器件的驱动电压和电流效率。具体而言,以每秒0.1V的速率提升电压,测定当有机电致发光器件的亮度达到3000cd/m 2时的电压即驱动电压,同时测出此时的电流密度;亮度与电流密度的比值即为电流效率,测试结果见表1。
表1
  电子阻挡层材料 电压/V 电流效率/cd/A
对比例1 R-1 5.3 11
对比例2 R-2 5.8 10.1
对比例3 R-3 3.3 19.0
对比例4 R-4 3.1 19.3
对比例5 R-5 3.4 18.5
对比例6 R-6 3.5 17.8
实施例1 P1 3.3 19.5
实施例2 P2 3.2 20.1
实施例3 P5 3.4 19.0
实施例4 P6 3.5 18.2
实施例5 P7 3.4 19.3
实施例6 P15 3.3 19.4
实施例7 P20 3.4 18.7
实施例8 P37 3.2 19.8
实施例9 P38 3.1 20.3
实施例10 P74 3.3 19.6
实施例11 P253 3.2 19.7
实施例12 P284 3.5 19.5
实施例13 P322 3.6 19.4
实施例14 P323 3.6 19.5
实施例15 P375 3.5 20.0
实施例16 P613 3.4 19.9
实施例17 P628 3.3 18.9
实施例18 P602 3.5 18.4
由表1中数据可以看出,本发明的化合物用于有机电致发光器件的电子阻挡层材料时,器件亮度达到3000cd/m 2时,驱动电压低至3.8V以下,电流效率高达18.2cd/A以上,可以有效的改善驱动电压、提高电流效率,是性能良好的电子阻挡层材料。
对比例1的化合物R-1与实施例18中的化合物P602相比,区别在于化合物R-1的结构中萘1位无取代,4位为苯环取代,该化合物用作有机电致发光器件的电子阻挡层材料时,器件的驱动电压为5.3V,电流效率为11cd/A。该化合物的开启电压及电流效率差于P602,这可能归结于化合物P602具有更优的空间堆积从而提高了空穴传输性能。
对比例2的化合物R-2的芳胺基团取代在萘环的1-位上,苯环取代在2-位和3-位,且不含有叔丁基结构的取代基,该化合物用作有机电致发光器件的电子阻挡层材料时,器件的驱动电压为5.8V,电流效率为10.1cd/A,效果明显差于实施例1-18。
对比例3的化合物R-3与实施例1中的化合物P1相比,区别在于同N连接的苯基的四位无叔丁基取代。该化合物用作有机电致发光器件的电子阻挡层材料时,器件的驱动电压为3.3V,电流效率为19cd/A。该化合物的电流效率差于P1,这可能归结于化合物P1中4位叔丁基既能提供较强供电子能力,又能改善分子空间堆积结构,从而有效提高材料的空穴传输性能。
对比例4的化合物R-4与实施例2中的化合物P2相比,区别在于分子中同N连接的联苯端无叔丁基取代。该化合物用作为有机电致发光器件的电子阻挡层材料时,器件的驱动电压为3.1V,电流效率为19.3cd/A。该化合物的电流效率差于P2,这可能归结于化合物P2中4位叔丁基既能提供供电子能力,又能改善分子空间堆积结构,从而有效提高材料的空穴传输性能。
对比例5的化合物R-5与实施例3中的化合物P5相比,区别在于同N连接的联苯基的4位无叔丁基取代。该化合物用作有机电致发光器件的电子阻挡层材料时,器件的驱动电压为3.4V,电流效率为18.5cd/A。该化合物的电流效率差于P5,这可能归结于化合物P5化合物中4位叔丁基既能提供较强供电子能力,又能改善分子空间堆积结构,从而有效提高材料的空穴传输性能。
对比例6的化合物R-6与实施例4中的化合物P6相比,区别在于分子中同氮连接的2-苯基联苯基的终端无叔丁基取代。该化合物用作为有机电致发光器件的电子阻挡层材料时,器件的驱动电压为3.5V,电流效率为17.8cd/A。该化合物的电流效率差于P6,这可能归结于化合物P6化合物中的叔丁基既能提供供电子能力,又能改善分子空间堆积结构,从而有效提高材料的空穴传输性能。
由此可知,本发明提供的化合物中,萘环的1-位取代Ar 2、2-位取代芳胺及叔丁基结构取代基的取代是使该化合物应用于有机电致发光器件能够带来优异性能的重要因素。
实施例19
本实施例提供一种有机电致发光器件,其结构如图1所示,包括带有阳极的玻璃基片1,空穴注入层2,空穴传输层3,电子阻挡层4,发光层5,电子传输层6,电子注入层7,阴极层8和外加电源9。
前述有机电致发光器件的制备方法如下:
将涂布了ITO透明导电层的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
把前述带有阳极的玻璃基片置于真空腔内,抽真空至<1×10 -5Pa,在前述阳极层膜上按先后顺序真空热蒸镀10nm的HT-4:HI-3(97/3,w/w)混合物作为空穴注入层;60nm的化合物HT-4作为空穴传输层;5nm的化合物HT-48作为电子阻挡层;40nm的PH-34:P1:RPD-10(100:30:3,w/w/w)三元混合物作为发光层;5nm的ET-23作为空穴阻挡层,25nm的化合物ET-69:ET-57(50/50,w/w)混合物作为电子传输层,1nm的LiF作为电子注入层,150nm的金属铝作为阴极。所有有机层和LiF的蒸镀总速率控制在0.1nm/秒,金属电极的蒸镀速率控制在1nm/秒。其中,“97/3,w/w”代表质量比为97:3。
实施例19-42,对比例7-8与实施例19的区别分别列于表3,表3中没有提及的部分均与实施例19相同。
性能测试
(1)前述实施例和对比例中所使用的第二主体材料的HOMO能级和LUMO能级详见表2。
表2
  HOMO能级(eV) LUMO能级(eV)
PH-34 -5.4eV -2.4eV
PH-27 -5.2eV -2.2eV
(2)在同样亮度下,测定实施例以及对比例中制备得到的有机电致发光器件的电流效率。具体而言,以每秒0.1V的速率提升电压,测定当有机电致发光器件的亮度达到3000cd/m 2时的电流密度;亮度与电流密度的比值即为电流效率。测试结果如表3所示。
表3
Figure PCTCN2021081915-appb-000159
Figure PCTCN2021081915-appb-000160
对比例7为单主体器件,其中PH-34与RPD-10的质量比为130:3;对比例8也为单主体器件,其中P1与RPD-10的质量比为130:3。
由表3可知,本发明提供的含有双主体发光层的有机电致发光器件具有优异的光电性能,其电流效率均在11.7cd/A以上,大部分可达15cd/A以上,最高可达17cd/A以上。对比例7和8采用单主体器件,效果明显不及本发明。
通过对比实施例19、22-27可知,当第一主体材料与第二主体材料的质量比为0.01:1-1.5:1时(实施例19、22-27),能够进一步提高器件效率,其中在0.1:1-1:1(实施例19、24和25)效果最佳。
通过对比实施例19、28-33可知,当双主体发光层的厚度为10-65nm时(实施例19、28-31),能够进一步提高器件效率,其中,厚度在15-55nm范围(实施例19、30和31)内效果最佳。
通过对比实施例19和实施例34可知,当第二主体材料满足特定的LUMO能级和HOMO能级时(实施例19),有利于进一步提高器件效率。
以下实施例中,化合物I的合成方法如前述,化合物II的合成方法参见公开号为CN110950762A的中国专利申请(申请号为201910857132.9)。
实施例43
本实施例提供一种有机电致发光器件,其结构如图1所示,包括带有阳极的玻璃基片1,空穴注入层2,空穴传输层3,电子阻挡层4,发光层5,电子传输层6,电子注入层7,阴极层8和外加电源9。
前述有机电致发光器件的制备方法如下:
将涂布了ITO透明导电层的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
把前述带有阳极的玻璃基片置于真空腔内,抽真空至<1×10-5Pa,在前述阳极层膜上按先后顺序真空热蒸镀10nm的HT-4:HI-3(97/3,w/w)混合物作为空穴注入层,60nm的化合物HT-4作为空穴传输层,60nm的化合物A1作为电子阻挡层;30nm的化合物PH86:P1:RPD-10(1:0.01:0.05,w/w/w)三元混合物作为发光层(其中,PH86和P1为主体材料);25nm的化合物ET-61:ET-57(50/50,w/w)混合物作为电子传输层,1nm的LiF作为电子注入层,150nm的金属铝作为阴极。所有有机层和LiF的蒸镀总速率控制在0.1nm/秒,金属电极的蒸镀速率控制在1nm/秒。
实施例44-68、对比例9-12与实施例43的区别均列于表4,表4中没有提及的部分均与实施例43相同。
性能测试
在同样亮度下,测定实施例以及对比例中制备得到的有机电致发光器件的外量子效率(EQE,%),要求亮度为3000cd/m 2
表4
Figure PCTCN2021081915-appb-000161
Figure PCTCN2021081915-appb-000162
Figure PCTCN2021081915-appb-000163
由表4可知,本发明将化合物I和化合物II用于有机电致发光器件,可以有效提高外量子效率,从而提升器件性能,最终表现为降低器件能耗,提高亮度等优异特性,是性能良好的电子阻挡层和发光层材料,器件的外量子效率可达到19%。
对比例10与实施例56的差别仅在于电子阻挡层材料为HT5,其外量子效率相较于实施例14明显降低;对比例11与实施例45的差别仅在于电子阻挡层材料为HT5,其外量子效率相较于实施例45明显降低;对比例4与实施例45的区别仅在于,主体材料为PH86和HT-10,其外量子效率相较于实施例45明显降低;前述结果证明,本发明将化合物I与化合物II搭配能够有效的提高器件效率,替换掉任一种,均会使效率降低。
通过对比实施例45和实施例57、实施例56和实施例58可知,当将化合物I或化合物II应用于双主体发光层时,能够进一步提高器件效率(实施例45、实施例56),单独使用效果变差(实施例57、实施例58)。
通过对比实施例43-47、59和60可知,当所述第一主体材料与所述第二主体材料的质量比为0.01:1-1.5:1时(实施例43-47),能够进进一步提高外量子效率。添加量过低(实施例59)或过高(实施例60)均会使效率降低。
通过对比实施例45、48-51和实施例61、62可知,将发光层厚度控制在10-60nm(实施例45、48-51),能够进一步提高器件的外量子效率,厚度过小(实施例61)或者过大(实施例62)均会使效率降低。
通过对比实施例45、52-55和实施例63、64可知,将电子阻挡层的厚度控制在2-100nm(实施例45、52-55),能够进一步提高器件的外量子效率,厚度过小(实施例63)或者过大(实施例64)均会使效率降低。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (32)

  1. 一种化合物,其特征在于,所述化合物具有式I所示的结构;
    Figure PCTCN2021081915-appb-100001
    式I中,所述Ar 1和Ar 2独立地选自取代或未取代的C6-C30芳基或者取代或未取代的C3-C30杂芳基;
    式I中,所述L 1选自取代或未取代的C6-C30亚芳基或者取代或未取代的C3-C30亚杂芳基;
    式I中,所述L 2选自单键、取代或未取代的C6-C30亚芳基或者取代或未取代的C3-C30亚杂芳基中的一种;
    式I中,所述R 1、R 2和R 3独立地选自取代或未取代的C1-C20链状烷基、取代或未取代的C3-C20环烷基、取代或未取代的C1-C20链状烷氧基、取代或未取代的C3-C20环烷氧基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、卤素、氰基、硝基、羟基、C1-C20硅烷基、氨基、取代或未取代的C6-C30芳基氨基、取代或未取代的C3-C30杂芳基氨基、取代或未取代的C6-C30芳基、取代或未取代的C3-C30杂芳基中的任意一种;所述R 1、R 2和R 3相互连接成环或不连接成环;
    式I中,所述m为0~6的整数;
    式I中,所述R 4独立地选自取代或未取代的C1-C20链状烷基、取代或未取代的C3-C20环烷基、取代或未取代的C1-C20链状烷氧基、取代或未取代的C3-C20环烷氧基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、卤素、氰基、硝基、羟基、取代或未取代的C1-C20硅烷基、氨基、取代或未取代的C6-C30芳基氨基、取代或未取代的C3-C30杂芳基氨基、取代或未取代的C6-C30芳基、取代或未取代的C3-C30杂芳基中的一种;
    Ar 1、Ar 2、L 1、L 2、R 1、R 2、R 3和R 4中,所述取代的基团各自独立地选自卤素、C1-C10链状烷基、C3-C10环烷基、C1-C10烷氧基、C1-C10硫代烷氧基、C6-C30芳基氨基、C3-C30杂芳基氨基、C6-C30单环芳基、C10-C30稠环芳基、C3-C30单环杂芳基、C6-C30稠环杂芳基中的一种或者至少两种的组合。
  2. 根据权利要求1所述的化合物,其特征在于,所述L 2选自单键、取代或未取代的C6-C20亚芳基或者取代或未取代的C3-C20亚杂芳基中的一种,优选单键或亚苯基。
  3. 根据权利要求1所述的化合物,其特征在于,所述Ar 2选自取代或未取代的C6-C20芳基或者取代或未取代的C3-C20杂芳基。
  4. 根据权利要求1所述的化合物,其特征在于,所述Ar 2选自取代或者未取代的如下基团中的任意一种:苯基、联苯基、三联苯基、萘基、菲基、蒽基、二苯并呋喃基、二苯并噻吩基、咔唑基、9,9二甲基芴基、9,9二苯基芴基、螺芴基、三亚苯基、荧蒽基、苯并9,9二甲基芴基、苯并螺芴基;
    优选地,所述Ar 2选自取代或者未取代的如下基团中的任意一种:
    Figure PCTCN2021081915-appb-100002
    其中,虚线代表基团的连接键。
  5. 根据权利要求1所述的化合物,其特征在于,所述L 2为单键,且所述Ar 2选自取代或未取代的C10-C30稠环芳基或者取代或未取代的C6-C30稠环杂芳基;
    优选地,所述L 2为单键,且所述Ar 2选自取代或者未取代如下基团中的任意一种:萘基、菲基、蒽基、二苯并呋喃基、二苯并噻吩基、咔唑基、9,9二甲基芴基、9,9二苯基芴基、螺芴基、三亚苯基、荧蒽基、苯并9,9二甲基芴基、苯并螺芴基;
    优选地,所述L 2为单键,且所述Ar 2选自取代或者未取代如下基团中的任意一种:
    Figure PCTCN2021081915-appb-100003
    其中,虚线代表基团的连接键。
  6. 根据权利要求1所述的化合物,其特征在于,所述L 2为亚苯基,且所述Ar 2选自取代或未取代的C6-C30芳基或者取代或未取代的C3-C30杂芳基;
    优选地,所述L 2为亚苯基,且所述Ar 2选自取代或者未取代的如下基团中的任意一种:苯基、联苯基、三联苯基、萘基、菲基、蒽基、二苯并呋喃基、二苯并噻吩基、咔唑基、9,9二甲基芴基、9,9二苯基芴基、螺芴基、三亚苯基、荧蒽基、苯并9,9二甲基芴基、苯并螺芴基;
    优选地,所述L 2为亚苯基,且所述Ar 2选自取代或者未取代的如下基团中的任意一种:
    Figure PCTCN2021081915-appb-100004
    其中,虚线代表基团的连接键。
  7. 根据权利要求1-6中任一项所述的化合物,其特征在于,所述R 1、R 2和R 3独立地选自甲基、乙基或苯基中的一种。
  8. 根据权利要求1-6中任一项所述的化合物,其特征在于,所述R 1、R 2和R 3均为甲基。
  9. 根据权利要求1-6中任一项所述的化合物,其特征在于,所述L 1选自取代或者未取代的下述基团中的一种:亚苯基、亚联苯基、亚萘基、亚二苯并呋喃基、亚二苯并噻吩基、亚9,9二甲基芴基中的一种;
    所述L 1选自取代或者未取代的如下基团中的任意一种:
    Figure PCTCN2021081915-appb-100005
    其中,虚线代表基团的连接键。
  10. 根据权利要求1-9中任一项所述的化合物,其特征在于,所述m为0。
  11. 根据权利要求1所述的化合物,其特征在于,所述化合物具有如下P1-P777所示的结构中的任意一种:
    Figure PCTCN2021081915-appb-100006
    Figure PCTCN2021081915-appb-100007
    Figure PCTCN2021081915-appb-100008
    Figure PCTCN2021081915-appb-100009
    Figure PCTCN2021081915-appb-100010
    Figure PCTCN2021081915-appb-100011
    Figure PCTCN2021081915-appb-100012
    Figure PCTCN2021081915-appb-100013
    Figure PCTCN2021081915-appb-100014
    Figure PCTCN2021081915-appb-100015
    Figure PCTCN2021081915-appb-100016
    Figure PCTCN2021081915-appb-100017
    Figure PCTCN2021081915-appb-100018
    Figure PCTCN2021081915-appb-100019
    Figure PCTCN2021081915-appb-100020
    Figure PCTCN2021081915-appb-100021
    Figure PCTCN2021081915-appb-100022
    Figure PCTCN2021081915-appb-100023
    Figure PCTCN2021081915-appb-100024
    Figure PCTCN2021081915-appb-100025
    Figure PCTCN2021081915-appb-100026
    Figure PCTCN2021081915-appb-100027
    Figure PCTCN2021081915-appb-100028
    Figure PCTCN2021081915-appb-100029
    Figure PCTCN2021081915-appb-100030
    Figure PCTCN2021081915-appb-100031
    Figure PCTCN2021081915-appb-100032
    Figure PCTCN2021081915-appb-100033
    Figure PCTCN2021081915-appb-100034
    Figure PCTCN2021081915-appb-100035
    Figure PCTCN2021081915-appb-100036
    Figure PCTCN2021081915-appb-100037
    Figure PCTCN2021081915-appb-100038
    Figure PCTCN2021081915-appb-100039
    Figure PCTCN2021081915-appb-100040
    Figure PCTCN2021081915-appb-100041
    Figure PCTCN2021081915-appb-100042
    Figure PCTCN2021081915-appb-100043
    Figure PCTCN2021081915-appb-100044
    Figure PCTCN2021081915-appb-100045
    Figure PCTCN2021081915-appb-100046
    Figure PCTCN2021081915-appb-100047
    Figure PCTCN2021081915-appb-100048
    Figure PCTCN2021081915-appb-100049
    Figure PCTCN2021081915-appb-100050
    Figure PCTCN2021081915-appb-100051
    Figure PCTCN2021081915-appb-100052
    Figure PCTCN2021081915-appb-100053
    Figure PCTCN2021081915-appb-100054
    Figure PCTCN2021081915-appb-100055
    Figure PCTCN2021081915-appb-100056
    Figure PCTCN2021081915-appb-100057
    Figure PCTCN2021081915-appb-100058
    Figure PCTCN2021081915-appb-100059
    Figure PCTCN2021081915-appb-100060
    Figure PCTCN2021081915-appb-100061
    Figure PCTCN2021081915-appb-100062
    Figure PCTCN2021081915-appb-100063
    Figure PCTCN2021081915-appb-100064
    Figure PCTCN2021081915-appb-100065
    Figure PCTCN2021081915-appb-100066
    Figure PCTCN2021081915-appb-100067
  12. 一种有机电致发光器件,其特征在于,所述有机电致发光器件包括第一电极、第二电极和插入所述第一电极和第二电极之间的至少一层有机层,所述有机层中含有至少一种权利要求1-11中任一项所述的化合物。
  13. 根据权利要求12所述的有机电致发光器件,其特征在于,所述有机层包括电子阻挡层,所述电子阻挡层中含有至少一种权利要求1-11中任一项所述的化合物。
  14. 根据权利要求12所述的有机电致发光器件,其特征在于,所述第一电极为阳极层,所述第二电极为阴极层,所述有机层包括发光层,所述发光层中含有主体材料和掺杂材料;所述主体材料包括第一主体材料和第二主体材料,所述第一主体材料为权利要求1所述的化合物。
  15. 根据权利要求14所述的有机电致发光器件,其特征在于,式I中,所述Ar 1选自取代或者未取代的如下基团中的任意一种:苯基、联苯基、三联苯基、萘基、菲基、蒽基、二苯并呋喃基、二苯并噻吩基、咔唑基、9,9二甲基芴基、9,9二苯基芴基、螺芴基、三亚苯基、荧蒽基、苯并9,9二甲基芴基、苯并螺芴基;
    和/或,式I中,所述Ar 2选自取代或者未取代的如下基团中的任意一种:苯基、联苯基、三联苯基、萘基、菲基、蒽基、二苯并呋喃基、二苯并噻吩基、咔唑基、9,9二甲基芴基、9,9二苯基芴基、螺芴基、三亚苯基、荧蒽基、苯并9,9二甲基芴基、苯并螺芴基,优选取代或未取代的萘基。
  16. 根据权利要求14或15所述的有机电致发光器件,其特征在于,式I中,所述R 1、R 2和R 3独立地选自甲基、乙基或苯基中的一种,优选均为甲基。
  17. 根据权利要求14或15所述的有机电致发光器件,其特征在于,所述第一主体材料选自权利要求11所示的化合物中的任意一种或至少两种组合。
  18. 根据权利要求14至16中任一项所述的有机电致发光器件,其特征在于,所述第一主体材料与所述第二主体材料的质量比为0.01:1-1.5:1,优选0.1:1-1:1。
  19. 根据权利要求14至18中任一项所述的有机电致发光器件,其特征在于,所述第二主体材料的HOMO能级为-5.3eV至-5.7eV;
    和/或,所述第二主体材料的LUMO能级为-2.3eV至-2.6eV;
    优选地,所述第二主体材料的HOMO能级为-5.3eV至-5.7eV,LUMO能级为-2.3eV至-2.6eV。
  20. 根据权利要求14至19中任一项所述的有机电致发光器件,其特征在于,所述第二主体材料选自如下化合物PH-1至化合物PH-85中的任意一种或至少两种组合:
    Figure PCTCN2021081915-appb-100068
    Figure PCTCN2021081915-appb-100069
    Figure PCTCN2021081915-appb-100070
    Figure PCTCN2021081915-appb-100071
  21. 根据权利要求14至20中任一项所述的有机电致发光器件,其特征在于,所述发光层的厚度为10-65nm,优选15-55nm。
  22. 根据权利要求14至21中任一项所述的有机电致发光器件,其特征在于,所述有机层还包括空穴注入层、空穴传输层、电子阻挡层、电子传输层或电子注入层中的任意一种或至少两种的组合,其中,所述空穴注入层、所述空穴传输层、所述电子阻挡层、所述发光层、所述电子传输层及所述电子注入层,沿从所述阳极层至所述阴极层的方向上依次设置。
  23. 根据权利要求12所述的有机电致发光器件,其特征在于,所述第一电极为阳极层,所述第二电极为阴极层,所述有机层中含有化合物I和化合物II,所述化合物I为权利要求1所述的化合物;
    所述化合物II具有式(3)所示的结构,
    Figure PCTCN2021081915-appb-100072
    所述r为0-6的整数;
    所述Ar 3至Ar 5独立地选自取代或未取代的C6-C30芳基或者取代或未取代的C3-C30杂芳基;
    所述L 3-L 5各自独立地选自单键、取代或未取代的C6-C30亚芳基、取代或未取代的C3-C30亚杂芳基中的任意一种;
    所述R 5独立地选自取代或未取代的C1-C20的链状烷基、取代或未取代的C3-C20的环烷基、取代或未取代的C6-C30芳基、取代或未取代的C3-C30杂芳基中的任意一种;
    所述y为1至15的整数,所述Rx为任意可取代位置的取代基,且至少一个Rx选自 取代或未取代的C3-C20的环烷基;
    在所述式I和所述式(3)中,Ar 1至Ar 5、L 1至L 5、R 1、R 2、R 3、R 4、R 5和Rx中,所述取代的基团独立地选自卤素、C1-C10链状烷基、C3-C10环烷基、C1-C10烷氧基、C1-C10硫代烷氧基、C6-C30芳基氨基、C3-C30杂芳基氨基、C6-C30单环芳基、C10-C30稠环芳基、C3-C30单环杂芳基、C6-C30稠环杂芳基中的一种或者至少两种的组合。
  24. 根据权利要求23所述的有机电致发光器件,其特征在于,所述化合物I为权利要求11所述的化合物中的任意一种。
  25. 根据权利要求23所述的有机电致发光器件,其特征在于,所述化合物II具有如A1至A291所示的结构中的任意一种:
    Figure PCTCN2021081915-appb-100073
    Figure PCTCN2021081915-appb-100074
    Figure PCTCN2021081915-appb-100075
    Figure PCTCN2021081915-appb-100076
    Figure PCTCN2021081915-appb-100077
    Figure PCTCN2021081915-appb-100078
    Figure PCTCN2021081915-appb-100079
    Figure PCTCN2021081915-appb-100080
    Figure PCTCN2021081915-appb-100081
    Figure PCTCN2021081915-appb-100082
    Figure PCTCN2021081915-appb-100083
    Figure PCTCN2021081915-appb-100084
    Figure PCTCN2021081915-appb-100085
    Figure PCTCN2021081915-appb-100086
    Figure PCTCN2021081915-appb-100087
    Figure PCTCN2021081915-appb-100088
    Figure PCTCN2021081915-appb-100089
    Figure PCTCN2021081915-appb-100090
    Figure PCTCN2021081915-appb-100091
    Figure PCTCN2021081915-appb-100092
    Figure PCTCN2021081915-appb-100093
    Figure PCTCN2021081915-appb-100094
    Figure PCTCN2021081915-appb-100095
    Figure PCTCN2021081915-appb-100096
    Figure PCTCN2021081915-appb-100097
    Figure PCTCN2021081915-appb-100098
  26. 根据权利要求23所述的有机电致发光器件,其特征在于,沿从所述阴极层至所述阳极层的方向上,所述有机层依次包括发光层和电子阻挡层,
    所述发光层中含有所述化合物I,所述电子阻挡层中含有所述化合物II;或者
    所述发光层中含有所述化合物II,所述电子阻挡层中含有所述化合物I。
  27. 根据权利要求26所述的有机电致发光器件,其特征在于,所述发光层中含有第一主体材料、第二主体材料和掺杂材料;
    所述第一主体材料为所述化合物I,所述电子阻挡层中含有所述化合物II,或者,所述第一主体材料为所述化合物II,所述电子阻挡层中含有所述化合物I。
  28. 根据权利要求27所述的有机电致发光器件,其特征在于,所述第一主体材料与所述第二主体材料的质量比为0.01:1-1.5:1,优选为0.1:1-1:1。
  29. 根据权利要求26所述的有机电致发光器件,其特征在于,所述发光层的厚度为10-60nm,优选为20-50nm。
  30. 根据权利要求27所述的有机电致发光器件,其特征在于,所述电子阻挡层的厚度为2-100nm,优选为3-90nm。
  31. 根据权利要求27所述的有机电致发光器件,其特征在于,所述有机层还包括空穴注入层、空穴传输层、电子传输层和电子注入层,沿从所述阳极层至所述阴极层的方向上,所述有机层依次包括所述空穴注入层、所述空穴传输层、所述电子阻挡层、所述发光层、所述电子传输层和所述电子注入层。
  32. 一种显示装置,其特征在于,所述显示装置中含有权利要求14至22中任一项或者权利要求25-31中任一项所述的有机电致发光器件。
PCT/CN2021/081915 2020-05-11 2021-03-19 化合物、有机电致发光器件和显示装置 WO2021227655A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227043538A KR20230023651A (ko) 2020-05-11 2021-03-19 화합물, 유기 전계 발광 소자 및 디스플레이 장치
JP2022568978A JP2023528214A (ja) 2020-05-11 2021-03-19 化合物、有機エレクトロルミネッセンスデバイス及び表示装置
US17/924,692 US20230200219A1 (en) 2020-05-11 2021-03-19 A compound, an organic electroluminescent device and a display device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010394523 2020-05-11
CN202010394523.4 2020-05-11
CN202011181935.6 2020-10-29
CN202011181935.6A CN114430016A (zh) 2020-10-29 2020-10-29 一种有机电致发光器件和显示装置
CN202011186015.3 2020-10-29
CN202011186015.3A CN114430009A (zh) 2020-10-29 2020-10-29 一种有机电致发光器件和显示装置

Publications (1)

Publication Number Publication Date
WO2021227655A1 true WO2021227655A1 (zh) 2021-11-18

Family

ID=78526379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081915 WO2021227655A1 (zh) 2020-05-11 2021-03-19 化合物、有机电致发光器件和显示装置

Country Status (4)

Country Link
US (1) US20230200219A1 (zh)
JP (1) JP2023528214A (zh)
KR (1) KR20230023651A (zh)
WO (1) WO2021227655A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031609A (zh) * 2021-12-14 2022-02-11 北京燕化集联光电技术有限公司 一种含咔唑及喹唑啉类结构化合物及其应用
CN115583887A (zh) * 2022-09-23 2023-01-10 吉林奥来德光电材料股份有限公司 一种有机电致发光化合物及其制备方法和应用
WO2023202198A1 (zh) * 2022-04-19 2023-10-26 陕西莱特光电材料股份有限公司 有机材料、电子元件和电子装置
WO2024117003A1 (ja) * 2022-12-01 2024-06-06 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210154289A (ko) * 2020-06-11 2021-12-21 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 아민 화합물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173973A (ja) * 2010-02-24 2011-09-08 Toyo Ink Sc Holdings Co Ltd 有機エレクトロルミネッセンス素子用材料およびその用途
CN109749735A (zh) * 2017-11-08 2019-05-14 Sfc株式会社 胺取代的萘衍生物和包含其的有机发光二极管
CN109912431A (zh) * 2019-04-09 2019-06-21 江苏三月光电科技有限公司 一种含萘的三芳胺类有机化合物及其应用
CN110511151A (zh) * 2019-04-30 2019-11-29 北京鼎材科技有限公司 一种化合物、包含其的有机电致发光器件及其应用
CN110950762A (zh) * 2019-09-10 2020-04-03 北京鼎材科技有限公司 有机化合物及含有其的有机电致发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173973A (ja) * 2010-02-24 2011-09-08 Toyo Ink Sc Holdings Co Ltd 有機エレクトロルミネッセンス素子用材料およびその用途
CN109749735A (zh) * 2017-11-08 2019-05-14 Sfc株式会社 胺取代的萘衍生物和包含其的有机发光二极管
CN109912431A (zh) * 2019-04-09 2019-06-21 江苏三月光电科技有限公司 一种含萘的三芳胺类有机化合物及其应用
CN110511151A (zh) * 2019-04-30 2019-11-29 北京鼎材科技有限公司 一种化合物、包含其的有机电致发光器件及其应用
CN110950762A (zh) * 2019-09-10 2020-04-03 北京鼎材科技有限公司 有机化合物及含有其的有机电致发光器件

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031609A (zh) * 2021-12-14 2022-02-11 北京燕化集联光电技术有限公司 一种含咔唑及喹唑啉类结构化合物及其应用
WO2023202198A1 (zh) * 2022-04-19 2023-10-26 陕西莱特光电材料股份有限公司 有机材料、电子元件和电子装置
CN115583887A (zh) * 2022-09-23 2023-01-10 吉林奥来德光电材料股份有限公司 一种有机电致发光化合物及其制备方法和应用
WO2024117003A1 (ja) * 2022-12-01 2024-06-06 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Also Published As

Publication number Publication date
JP2023528214A (ja) 2023-07-04
US20230200219A1 (en) 2023-06-22
KR20230023651A (ko) 2023-02-17

Similar Documents

Publication Publication Date Title
CN110950762B (zh) 有机化合物及含有其的有机电致发光器件
WO2021227655A1 (zh) 化合物、有机电致发光器件和显示装置
CN112979478B (zh) 一种化合物及其应用、包含其的有机电致发光器件
CN113861041B (zh) 一种化合物及其应用
CN112142605B (zh) 一种化合物及其应用、包含其的有机电致发光器件
WO2023125276A1 (zh) 一种有机化合物及其应用
CN113004153B (zh) 一种化合物及其应用
CN113511978A (zh) 一种化合物、其应用及采用其的有机电致发光器件
WO2023273998A1 (zh) 一种化合物及其应用、一种有机电致发光器件
WO2022042737A1 (zh) 用于有机电致发光器件的有机化合物及有机电致发光器件
CN114430016A (zh) 一种有机电致发光器件和显示装置
WO2023273997A1 (zh) 一种有机化合物及其应用
CN113636945B (zh) 一种化合物及其应用
CN115594596A (zh) 一种化合物及其应用
CN113861042A (zh) 一种化合物及其应用
CN112125812B (zh) 一种化合物及其应用以及包含该化合物的器件
CN113045481A (zh) 一种化合物及其应用、包含其的有机电致发光器件
CN114478268B (zh) 一种化合物及其应用
CN113861043B (zh) 一种化合物及其应用
CN115304494A (zh) 一种化合物及其应用
CN113929646A (zh) 有机化合物及有机电致发光器件
CN112110917A (zh) 一种化合物及其应用以及采用该化合物的有机电致发光器件
CN113929585B (zh) 有机化合物及有机电致发光器件
CN112079786B (zh) 一种化合物、包含其的有机电子发光器件及其应用
CN115490600A (zh) 一种化合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568978

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804490

Country of ref document: EP

Kind code of ref document: A1