WO2021223581A1 - 柔性电容阵列及其制备方法、电容阵列检测系统和机器人 - Google Patents

柔性电容阵列及其制备方法、电容阵列检测系统和机器人 Download PDF

Info

Publication number
WO2021223581A1
WO2021223581A1 PCT/CN2021/086979 CN2021086979W WO2021223581A1 WO 2021223581 A1 WO2021223581 A1 WO 2021223581A1 CN 2021086979 W CN2021086979 W CN 2021086979W WO 2021223581 A1 WO2021223581 A1 WO 2021223581A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
array
capacitor
flexible
layer
Prior art date
Application number
PCT/CN2021/086979
Other languages
English (en)
French (fr)
Inventor
戴媛
谢珂玮
郭传飞
白宁宁
张瑞瑞
周钦钦
张正友
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to EP21800573.4A priority Critical patent/EP4019920A4/en
Priority to JP2022539324A priority patent/JP7478824B2/ja
Publication of WO2021223581A1 publication Critical patent/WO2021223581A1/zh
Priority to US17/702,275 priority patent/US12104968B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/146Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors for measuring force distributions, e.g. using force arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0052Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to impact
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the application relates to a flexible capacitor array and a preparation method thereof, a capacitor array detection system and a robot.
  • the mechanical sensors used in robots are usually multi-axis force sensors.
  • the applicant of this application found that most of the multi-axis force sensors are rigid and large in size.
  • the flexible sensor of the related technology can be miniaturized, the pressure that it can measure is relatively small, and it cannot be adapted to applications under ultra-high pressure such as robot motion detection.
  • the stability of the related art flexible sensor is not enough to accurately measure the pressure in the robot movement. Therefore, it is difficult to measure the force at the end of the robot's foot and the robot's standing stability through sensors of related technologies, which causes difficulties in the design and development of the robot's stable gait walking, running and jumping.
  • At least one embodiment of the present application provides a flexible capacitor array, including: a first flexible electrode layer on which a first electrode array is disposed; a second flexible electrode layer, the second flexible electrode layer Is provided with a second electrode array; a dielectric layer, the dielectric layer is disposed between the first flexible electrode layer and the second flexible electrode layer; a first spacer layer, the first spacer layer is disposed on Between the first electrode array and the dielectric layer, wherein each electrode pair disposed opposite to each other in the first electrode array and the second electrode array, and all the electrodes between the electrode pairs Portions of the first spacer layer and the dielectric layer constitute unit capacitors of the flexible capacitor array, each of the unit capacitors includes a first electric double layer capacitor, and the first electric double layer capacitor includes the first electric double layer capacitor.
  • Electrodes the first spacer layer and the dielectric layer; wherein, in the pressed state, the dielectric layer in the unit capacitor passes through the first spacer layer and contacts the first electrode to form at least one A contact surface, each of the at least one first contact surface forms a first miniature electric double layer capacitor, and at least one first miniature electric double layer capacitor at the at least one first contact surface is formed in parallel The first electric double layer capacitor.
  • At least one embodiment of the present application further provides a method for preparing a flexible capacitor array, including: setting a first flexible electrode layer on which a first electrode array is provided; setting a first spacer layer, The first spacer layer is disposed on the first flexible electrode layer; a dielectric layer is disposed, and the dielectric layer is disposed on the first spacer layer; a second flexible electrode layer is disposed, and the second The flexible electrode layer is provided with a second electrode array; the second flexible electrode layer is placed on the dielectric layer; the first flexible electrode layer, the dielectric layer, the spacer layer and the The second flexible electrode layer is encapsulated into the flexible capacitor array, wherein each electrode pair arranged opposite to each other in the first electrode array and the second electrode array, and the electrode pair between the electrode pairs Parts of the first spacer layer and the dielectric layer constitute unit capacitors of the flexible capacitor array, each of the unit capacitors includes a first electric double layer capacitor, and the first electric double layer capacitor includes the first electrode , The first spacer layer and the dielectric layer; wherein
  • At least one embodiment of the present application further provides a capacitor array detection system, including: the above-mentioned flexible capacitor array; a capacitor selection circuit configured to gate at least one unit capacitor in the flexible capacitor array; and an excitation circuit configured To output an excitation signal to at least one electrode lead in the first electrode array and at least one electrode lead in the second electrode array of the flexible capacitor array under the control of the capacitance selection circuit; the capacitance detection circuit is configured to detect The capacitance value of the at least one unit capacitor.
  • At least one embodiment of the present application also provides a robot that can perform motion balance control of the robot based on the result of the capacitance array detection system.
  • the robot includes: the above-mentioned capacitance array detection system, wherein the flexible capacitance array in the capacitance array detection system is arranged on at least a part of the pressure sensing detection surface of the robot; the impact force detector is configured to The capacitance value of at least one unit capacitor detected by the capacitance array detection system is used to calculate the impact force detection value and impact force occurrence location; the impact disturbance determiner is configured to determine the impact force detection value and impact force occurrence location based on the impact force detector Whether the impact disturbance occurs; the anti-impact disturbance controller is configured to adjust the operating parameters of the robot in response to the determined impact disturbance, so as to control the robot to resist the impact disturbance.
  • One or more embodiments of this application apply for a flexible capacitor array and its preparation method, a capacitor array detection system and a robot, which combine the flexible electrode layer and the dielectric layer to realize the flexibility, high sensing density and High sensing sensitivity, and the stability of the sensor is increased through the spacer layer, so that the flexible capacitor array as a whole exhibits flexibility and greatly improves the sensitivity, stability, and ability of the pressure sensing system to withstand high pressure.
  • Figure 1 shows a schematic diagram of an intelligent foot robot.
  • FIG. 2A is a schematic diagram of a flexible capacitor array provided by an embodiment of the application.
  • FIG. 2B is a schematic diagram of the principle of the flexible capacitor array provided by an embodiment of the application.
  • 2C is a schematic top view of the structure of the spacer layer in the flexible capacitor array provided by an embodiment of the application.
  • FIG. 2D is an equivalent circuit diagram of an electric double layer capacitor in a flexible capacitor array provided by an embodiment of the application.
  • FIG. 3A is a schematic diagram of a part of the first electrode array in the flexible capacitor array provided by an embodiment of the application.
  • FIG. 3B is a schematic diagram of a part of the second electrode array in the flexible capacitor array provided by an embodiment of the application.
  • FIG. 3C is a schematic structural diagram of a flexible capacitor array provided by an embodiment of the application.
  • FIG. 4A is a schematic diagram of another structure of a flexible capacitor array provided by an embodiment of the application.
  • 4B is a top view of the first electrode array of the flexible capacitor array provided by an embodiment of the application.
  • FIG. 4C is a schematic diagram of another structure of a flexible capacitor array provided by an embodiment of the application.
  • Fig. 5 shows a flow chart of a method for manufacturing a flexible capacitor array provided by an embodiment of the present application.
  • FIG. 6A is a schematic diagram of the sensitivity of a flexible capacitor array provided by an embodiment of the application.
  • FIG. 6B is a curve of capacitance drift over time of the flexible capacitor array provided by an embodiment of the application.
  • FIG. 6C is a cyclic test curve of the flexible capacitor array provided by the embodiment of the application.
  • FIG. 6D is an array diagram of a flexible capacitor array provided by an embodiment of the application.
  • FIG. 7A is an equivalent circuit diagram of the capacitance array detection system provided by an embodiment of the application.
  • FIG. 7B is a structural diagram of a capacitance array detection system provided by an embodiment of the application.
  • FIG. 7C is a flowchart of pressure sensing information detected by the capacitance array detection system provided by an embodiment of the application.
  • FIG. 7D is an equivalent circuit diagram of the crosstalk compensation circuit of the capacitance array detection system provided by an embodiment of the application.
  • Fig. 8 is a schematic diagram of a robot provided by an embodiment of the application.
  • FIG. 1 shows a schematic diagram of the intelligent foot robot 10.
  • the intelligent foot robot 10 in an actual environment, in order for the intelligent foot robot 10 to assist or replace humans in performing monotonous repetitive or high-risk tasks, the intelligent foot robot 10 needs to have stable mobility. Therefore, the smart foot robot 10 needs to be able to detect the magnitude and direction of the impact force on the ground on the sole of the foot during the movement. Therefore, a mechanical sensor is provided on the detection surface of the sole of the intelligent foot robot 10, so that the intelligent foot robot 10 can judge how to perform balance and stability control based on the impact force.
  • the smart foot robot 10 may be based on artificial intelligence.
  • Artificial Intelligence is a theory, method, technology and application system that uses digital computers or machines controlled by digital computers to simulate, extend and expand human intelligence, perceive the environment, acquire knowledge, and use knowledge to obtain the best results.
  • artificial intelligence is a comprehensive technology of computer science, which attempts to understand the essence of intelligence and produce a new kind of intelligent machine that can react in a similar way to human intelligence.
  • Artificial intelligence is to study the design principles and implementation methods of various intelligent machines, so that the machines have the functions of perception, reasoning and decision-making.
  • Artificial intelligence technology is a comprehensive discipline, covering a wide range of fields, including both hardware-level technology and software-level technology. Sensors can be used as one of the basic technologies of artificial intelligence.
  • the mechanical sensor used in the intelligent foot robot 10 of the related art is usually a multi-axis force sensor. Most of these mechanical sensors are rigid and bulky. Therefore, the installation of rigid mechanical sensors is not suitable for footed robots with a small sole area.
  • the flexible sensor of the related technology can be miniaturized, the pressure that it can measure is relatively small, and it cannot be adapted to applications under ultra-high pressure such as foot-type robot motion detection. At the same time, the stability of the related art flexible sensor is not enough to accurately measure the pressure in the motion of the robot.
  • the embodiment of the present application proposes a flexible capacitor array with fast response speed, high accuracy, large range, and strong impact resistance, which can be used as a mechanical sensor of the sole of the intelligent foot robot 10 as shown in FIG. 1, for example. .
  • the flexible capacitor array can accurately detect the magnitude and direction of the impact force of the ground on the sole 10 of the intelligent foot robot.
  • the intelligent foot robot 10 can calculate the zero torque point of the robot based on the impact force as a basis for determining whether it is unstable and whether it needs balance control.
  • the smart foot robot 10 can construct a whole-body dynamic balance controller based on this force, and use the measured impact force as an external force input to calculate the torque or angle compensation for maintaining balance of the joints under the impact force. quantity.
  • the smart foot robot 10 can also design a plantar damping controller based on the impact force, and adjust the interaction between the foot and the ground according to the error between the force detected by the flexible capacitor array and the pre-planned plantar force.
  • the force can achieve a more compliant landing with the swinging foot, reduce the impact of landing, and the supporting foot should fit the ground as much as possible to improve the movement stability of the foot-type robot. Since the flexible capacitor array in the embodiment of the present application is arranged in an array, it can be quickly installed without changing the mechanical structure of the sole, which is more suitable for the current design of the intelligent foot robot 10.
  • the embodiment of the present application also proposes a capacitor array detection system, which includes the above-mentioned flexible capacitor array.
  • the capacitance array detection system of the embodiment of the present application can also be used as a component of a human walking parameter measurement device.
  • the walking parameters of the human body are of great significance to the research in the field of biomedicine and biped robots. In the field of biomedicine, the walking parameters of the human body are strongly related to their physical state. For example, Parkinson's patients have unique plantar pressure distribution, and the common complications of diabetic foot ulcers will affect their walking gait.
  • the capacitance array detection system of the embodiments of the present application can detect the impact force of the ground on the sole of the person's feet while walking, and then measure and record the walking parameters of normal people and patients, and perform big data analysis in combination with machine learning to obtain different diseases. Under the walking parameters, so as to assist the doctor in treatment.
  • the biped robot is developed by simulating the human body motion mechanism to improve the ability of biped robot to adapt to complex environments.
  • One or more embodiments of the present application provide a flexible capacitor array and a preparation method thereof, a capacitor array detection system, and a robot, so that the flexible capacitor array exhibits flexibility as a whole and greatly improves the sensitivity, stability and endurance of the pressure sensing system High-pressure ability.
  • FIG. 2A is a schematic diagram of a flexible capacitor array 20 provided by an embodiment of the application.
  • FIG. 2B is a schematic diagram of the principle of the flexible capacitor array 20 provided by an embodiment of the application.
  • 2C is a schematic top view of the structure of the first spacer layer 204 in the flexible capacitor array 20 provided by an embodiment of the application.
  • FIG. 2D is an equivalent circuit diagram of the unit capacitors in the flexible capacitor array 20 provided by an embodiment of the application.
  • FIGS. 2A and 2B show the structure of a unit capacitor of the flexible capacitor array 20, but those skilled in the art should understand that the flexible capacitor array 20 may include multiple unit capacitor structures similar to those shown in FIGS. 2A and 2B. Cell capacitance.
  • the flexible capacitor array 20 includes: a first flexible electrode layer 201, a second flexible electrode layer 202, a dielectric layer 203 and a first spacer layer 204.
  • the first flexible electrode layer 201 is provided with a first electrode array 2012.
  • the plurality of first electrodes in the first electrode array 2012 are arranged in a matrix including M rows and N columns, where M and N are positive integers.
  • the second flexible electrode layer 202 is provided with a second electrode array 2022.
  • the plurality of second electrodes in the second electrode array are arranged in a matrix including M rows and N columns, and the second electrode in the i-th row and j-th column in the second electrode array is the same as the i-th electrode in the first electrode array.
  • the first electrodes in the j-th column are arranged opposite to each other to form an electrode pair, i is greater than or equal to zero and less than M, and j is greater than or equal to zero and less than N.
  • the second electrode in the i-th row and the j-th column in the second electrode array may also be arranged opposite to the first electrode in the j-th row and the i-th column in the first electrode array to form an electrode pair. Therefore, the embodiment of the present application It is not limited to the electrodes in the i-th row and j-th column in the first electrode array and the second electrode array being arranged opposite to each other to form an electrode pair.
  • a first spacer layer 204 and a dielectric layer 203 are arranged between the electrode pairs.
  • An electrode pair, and the first spacer layer 204 and the dielectric layer 203 in the middle of the electrode pair constitute a unit capacitor in the flexible capacitor array 20.
  • the first spacer layer 204 includes a cavity that separates the dielectric layer 203 from at least one electrode of the electrode pair.
  • a cross-sectional view of the first spacer layer 204 is shown. The cavity of the first spacer layer 204 separates the electrodes in the first electrode array 2012 from the dielectric layer 203.
  • another spacer layer (for example, a second spacer layer) may be designed in the electrode pair to separate the electrodes in the second electrode array 2022 from the dielectric layer 203, so that the first electrode array 2012 The electrodes in the second electrode array 2022 and the second electrode array 2022 are spaced apart from the dielectric layer 203.
  • the cavity in the first spacer layer 204 and/or the second spacer layer includes at least one of the following: a cavity formed by a polydimethylsiloxane (PDMS) support column, a cavity formed by a polymer film A cavity composed of a frame-shaped stent, a cavity composed of a mesh-shaped polymer film.
  • the cavity formed by the frame-shaped frame of the polymer film can be formed by cutting the middle part of the entire polymer film to form the frame with the frame.
  • FIG. 2C Various top views of the first spacer layer 204 and/or the second spacer layer are shown in FIG. 2C.
  • the meshes in the mesh-shaped polymer film may be honeycomb meshes, circular meshes, square meshes, prismatic meshes, etc. as shown in FIG. 2C.
  • the spacer layer can also be introduced in other ways, which is not limited in the embodiment of the present application.
  • the design of the first spacer layer 204 in the embodiment of the present application such as an air layer or a polymer film layer, separates the upper electrode layer from the dielectric layer, thereby reducing the signal drift of the sensor. And increase the stability of the sensor.
  • the dielectric layer 203 is an ionic gel film composed of polyvinyl alcohol-phosphoric acid (PVA-H 3 PO 4 ).
  • PVA-H 3 PO 4 polyvinyl alcohol-phosphoric acid
  • the stability and sensitivity of the dielectric layer 203 of polyvinyl alcohol-phosphoric acid (PVA-H 3 PO 4) material are higher.
  • PVA-H 3 PO 4 polyvinyl alcohol-phosphoric acid
  • the surface of the dielectric layer 203 may have a microstructure on one side and a flat surface on the other side.
  • the side of the dielectric layer 203 close to the second electrode array 2022 may be flat, and the side of the dielectric layer 203 close to the first spacer layer 204 may have a microstructure.
  • the flexible capacitor array 20 may also include other structures or functional layers as required.
  • the flexible capacitor array 20 may include a lead layer to realize the function of transmitting pressure sensing signals.
  • the flexible capacitor array 20 may further include a protective layer, for example, the protective layer is a flexible film protective layer.
  • the flexible capacitor array 20 may also include other functional layers, and these functional layers may be bonded to the first flexible electrode layer 201 or the second flexible electrode layer 202 by optically transparent glue (OCA glue).
  • OCA glue optically transparent glue
  • the first flexible electrode layer 201 includes a first flexible film layer 2011, and the first electrode array 2012 is fabricated on the first flexible film layer 2011.
  • the second flexible electrode layer 202 includes a second flexible film layer 2021, and the second electrode array 2022 is fabricated on the second flexible film layer 2021.
  • the flexible capacitor array 20 is packaged with a flexible film material. Since all the components in the flexible capacitor array 20 are made of flexible materials, the whole can be bent and stretched to a certain degree, and the stability of the mechanical sensing performance can be ensured under a certain deformation. When the flexible capacitor array 20 is applied to a footed robot, the flexible capacitor array 20 can be perfectly attached to the sole of the robot or any position on the outer surface of the robot, so that the pressure sensing signal is more stable and accurate.
  • the first electrode array 2012 and the second flexible electrode layer 202 may also be large-area flexible electrode layers. Therefore, the flexible capacitor array 20 can be compliantly attached to the sole of the robot or any position on the outer surface of the robot, so as to realize the omnidirectional mechanical sensing of the robot.
  • the first electrode array 2012 may be fabricated on the first flexible film layer 2011 by silver nano-spraying or physical vapor deposition.
  • the second electrode array 2022 can also be fabricated on the second flexible film layer 2021 by silver nano-spraying or physical vapor deposition.
  • physical vapor deposition methods include evaporation (for example, electron beam evaporation) or sputtering.
  • the first flexible film layer 2011 and the second flexible film layer 2021 may be composed of at least one of the following materials: thermoplastic polyurethane elastomer rubber (TPU), polyethylene terephthalate (PET), polyimide (PI), polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), nylon 6 (PA6), polylactic acid (PLA), polyacrylonitrile (PAN), and polyethersulfone (PES).
  • TPU thermoplastic polyurethane elastomer rubber
  • PET polyethylene terephthalate
  • PI polyimide
  • PVDF polyvinylidene fluoride
  • PVA polyvinyl alcohol
  • PA6 polylactic acid
  • PAN polyacrylonitrile
  • PES polyethersulfone
  • a mask with a preset electrode pattern can be prepared first, and then a patterned array electrode can be sprayed on the flexible film polyethylene terephthalate (PET) by spraying with silver nanowires.
  • Silver nanowire is a nano-scale silver wire.
  • silver nanowires also have light transmittance and resistance to flexure due to its nano-level size effect, thereby achieving high flexibility and conductivity.
  • the method of Electron Beam Evaporation can also be used to evaporate an Au film on a flexible film (for example, polyethylene terephthalate (PET)) to produce a patterned electrode array.
  • Electron beam evaporation is a physical vapor deposition process.
  • Electron beam evaporation can accurately use high-energy electrons to bombard the target material (such as gold (Au)) in the crucible under the cooperation of electromagnetic field, melt it and deposit it on the substrate (such as flexible film), and then deposit high purity and high Precision electrode array.
  • target material such as gold (Au)
  • Au gold
  • other methods can also be used to fabricate the first electrode array 2012 and the second electrode array 2022 on the flexible film, which is not limited in this application.
  • the first electrode, the first spacer layer 204, and the dielectric layer 203 in the first electrode array 2012 form a variable capacitor structure—a first electric double layer capacitor C 1EDL .
  • the first electrode here refers to any one of the first electrodes in the first electrode array 2012.
  • an electrode-spacer-dielectric layer structure 2041 is formed between the first electrode, the first spacer layer 204 and the dielectric layer 203 in the first electrode array 2012 in FIG. 2B.
  • the surface charges inside the first electrode will adsorb ions from the dielectric layer 203 (for example, as shown by the white circle in FIG. 2B).
  • the dielectric layer on the side of the spacer layer forms an ion interface layer with the same number of charges and the opposite sign of the surface charge inside the first electrode.
  • the first electrode forms a negative charge layer on the side of the first spacer layer 204
  • the dielectric layer 203 forms a cation on the side of the first spacer layer 204.
  • the side of the dielectric layer 203 adjacent to the first spacer layer 204 may have a microstructure.
  • the ionic gel surface microstructure of the dielectric layer 203 can partially penetrate the first spacer layer 204 and contact the electrode of the first electrode, so that the electrode-spacer-dielectric
  • the layer structure 2042 forms a variable capacitance structure.
  • FIG. 2D shows an equivalent circuit diagram of the unit capacitors of the flexible capacitor array after pressure is applied.
  • the distance between the electrode-spacer-dielectric layer structure 2041 is relatively large.
  • the distance between the first electrode and the dielectric layer 203 is reduced .
  • a part of the area in the dielectric layer 203 will touch the first electrode to form at least one first contact surface.
  • a first miniature electric double layer capacitor is formed at each first contact surface.
  • N contact surfaces are formed at the electrode-spacer-dielectric layer structure 2041 due to pressure, and the mini electric double layer capacitor formed by the i-th contact surface is C 1EDL/i .
  • the electrode-spacer-dielectric layer structure 2041 N miniature electric double layer capacitors formed by N contact surfaces are connected in parallel.
  • an electrode-dielectric layer structure (ie, the second electric double layer capacitor C 2EDL ) is formed between the second electrode of the second electrode array 2022 and the dielectric layer 203.
  • the second electrode here refers to any one of the second electrodes in the second electrode array 2022.
  • an electrode-dielectric layer structure 2042 is formed between the second electrode array 2022 and the dielectric layer 203 in FIG. 2B. At the electrode-dielectric layer structure 2042, the surface charge inside the second electrode will adsorb ions from the electrolyte of the dielectric layer 203 (for example, as shown by the white circle in FIG. 2B).
  • an ion interface layer with the same charge quantity and opposite sign as the surface charge inside the second electrode is formed on the side of the dielectric layer.
  • a positive voltage is applied to the second electrode, a positive charge layer is formed at the side of the electrode-dielectric layer structure 2042 on the side of the second electrode, and the electrode-dielectric layer structure 2042 is on the dielectric layer 203.
  • An anion layer is formed on one side.
  • the electrode-dielectric layer structure 2042 Due to the existence of the electrode-dielectric layer structure 2042, the positive charge of the positive charge layer and the anion on the anion layer cannot cross the boundary and neutralize each other, so a stable electric double layer capacitance is formed at the electrode-dielectric layer structure 2042 (That is, the second electric double layer capacitor C 2EDL ). At this time, since the second electrode in the electrode-dielectric layer structure 2042 is always in contact with the dielectric layer 203, the capacitance value of the second electric double layer capacitor C 2EDL remains unchanged.
  • the electrode pair, the first spacer layer 204 and the dielectric layer 203 between the electrode pair constitute a unit capacitor in the flexible capacitor array 20, and the unit capacitor is an ionic double-layer capacitor.
  • an electrostatic capacitance is formed between the first electrode and the second electrode. After the pressure is applied, the distance between the first electrode and the second electrode is reduced due to the compression of the dielectric layer and the spacer layer. According to the calculation formula (2) of the capacitance:
  • C represents the capacitance value of the electrostatic capacitance of the unit capacitor
  • represents the dielectric constant of the material
  • S represents the area facing the first electrode and the second electrode
  • k represents the electrostatic force constant
  • d represents the first electrode and the second electrode the distance between.
  • the first electrode and the second electrode are placed directly opposite, so that the electrostatic field of the flexible capacitor array 20 can be approximately a parallel electric field.
  • FIG. 2B under the action of pressure, the distance d between the first electrode array 2012 and the second electrode array 2022 is reduced.
  • the dielectric constant ⁇ increases accordingly, and the capacitance value of the electrostatic capacitance of the unit capacitor increases.
  • the electric double layer capacitance of the unit capacitor is much larger. Therefore, when the sensor is pressed, the contact area between the electrode and the microstructure increases, and the total C EDL size increases with The C 1EDL changes drastically with the increase, that is, it drastically increases with the increase of the contact area of the electrode and the microstructure of the dielectric layer, thereby showing a high degree of sensitivity.
  • the flexible electrode array is directly fabricated on the substrate of the flexible film material and the flexible ionic sensing active material is used as the dielectric layer to realize the flexibility, high sensing density and High sensing sensitivity.
  • the embodiment of the present application also greatly reduces the signal drift of the sensor through the design of the spacer layer, and increases the stability of the sensor. Therefore, the flexible capacitor array of the embodiment of the present application exhibits flexibility as a whole and greatly improves the sensitivity, stability, and ability of the pressure sensing system to withstand high pressure.
  • a second spacer layer may be further included between the dielectric layer 203 and the second electrode array 2022.
  • the second electric double layer capacitor C 2EDL includes a second electrode, a second spacer layer, and a dielectric layer 203.
  • the dielectric layer 203 in the unit capacitor passes through the second spacer layer to contact the second electrode to form at least one second contact surface, and at least one second contact surface is formed at each contact surface.
  • a second miniature electric double layer capacitor, and at least one second miniature electric double layer capacitor at the at least one second contact surface is connected in parallel to form a second electric double layer capacitor.
  • the second electric double layer capacitor C 2EDL is a variable electric double layer capacitor.
  • FIG. 3A is a schematic diagram of a part of the first electrode array 2012 in the flexible capacitor array 20 provided by an embodiment of the application.
  • FIG. 3B is a schematic diagram of a part of the second electrode array 2022 in the flexible capacitor array 20 provided by an embodiment of the application.
  • FIG. 3C is a schematic structural diagram of a flexible capacitor array 20 provided by an embodiment of the application.
  • a plurality of first electrodes in the same row in the first electrode array 2012 are electrically connected in the row direction to form M electrode strings parallel in the row direction, and the second electrodes The multiple second electrodes in the same column in the array 2022 are electrically connected in the column direction to form N electrode strings parallel in the column direction.
  • first electrode array 2012 and the second electrode array 2022 are arranged oppositely, and the row direction and the column direction are different. In some embodiments, the row direction and the column direction are almost perpendicular.
  • the electrode pattern of at least one of the first electrode or the second electrode is circular, rectangular or square.
  • the electrode pattern may be a square as shown in FIGS. 2A and 2B.
  • the size of the electrode pattern can be determined according to actual application scenarios, which is not limited in this application.
  • FIG. 3C shows a schematic diagram of the structure of the flexible capacitor array 20, which can be used in an intelligent foot robot.
  • the size of the flexible capacitor array 20 can be designed to be 5mm*5mm.
  • the single-foot plantar pressure distribution test array of the intelligent foot robot may include one or more 5mm*5mm flexible capacitor arrays 20.
  • at least 4 flexible capacitor arrays 20 may be provided for each leg of the smart foot robot 10 in FIG. 1, and 16 flexible capacitor arrays 20 may be required for four legs.
  • the embodiments of the present application can provide rapid and accurate feedback of the quantitative plantar pressure distribution and magnitude for the motion of a foot robot (such as a robot dog), which simplifies the calculation of torque using a rigid force sensor (such as a multi-axis force sensor). Complex process.
  • each flexible capacitor array 20 may include 4*4 unit capacitors, for a total of 16 unit capacitors.
  • the first electrode array 2012 uses 4 sensing units as a series electrode, a total of 4 columns.
  • the second electrode array 2022 also includes four electrode strings in which four electrodes are connected in series. Therefore, the flexible capacitor array 20 has 8 electrode lead wires in total.
  • the flexible capacitor array 20 when the flexible capacitor array 20 receives pressure, the flexible capacitor array 20 can be positioned to the change of one or more capacitances in the 4*4 electrode array, thereby determining the magnitude and position of the pressure.
  • the flexible mechanical electrode array is directly fabricated (for example, printed) on a flexible film material substrate and a flexible ion-type sensing active material is used as the dielectric layer, and at the same time, there is provided between the electrode and the dielectric layer.
  • the spacer layer realizes the flexibility of the flexible capacitor array 20, high sensing density, high sensing sensitivity, high stability, and ability to measure high pressure.
  • the material of the flexible capacitor array 20 is all composed of flexible materials, it can be better attached to the outer surface of the curved or uneven robot and is not easy to fall, thereby achieving In order to better conform to the shape.
  • the electrode arrangement shown in Fig. 3A to Fig. 3C has clear wiring arrangement, which simplifies the workload of the test (the entire series of electrodes can be tested at a time), reduces the wiring space of the leads and reduces the crosstalk between the electrodes , So as to achieve a high-density electrode arrangement.
  • FIGS. 3A to 3C schematically show an example of the electrode distribution mode of a part of the first electrode array 2012 and the second electrode array 2022, but the embodiment of the present application compares the first electrode array 2012 and the second electrode array 2012 to the second electrode array.
  • the number, arrangement, and specific positions of the electrodes included in the electrode array 2022 are not limited, as long as the flexible capacitor array 20 can detect touch positions and touch pressures.
  • FIG. 4A is a schematic diagram of another structure of the flexible capacitor array 20 provided by an embodiment of the application.
  • FIG. 4B is a top view of the first electrode array 2012 of the flexible capacitor array 20 according to an embodiment of the application.
  • FIG. 4C is a schematic diagram of another structure of the flexible capacitor array 20 provided by an embodiment of the application.
  • the electrode pattern of at least one electrode of the plurality of electrodes of the first electrode array 2012 or the second electrode array 2022 is circular, rectangular or square.
  • the plurality of first electrodes in the first electrode array are electrically connected to each other and are electrically connected to a common lead.
  • each electrode in the first electrode array 2012 is connected to at least another electrode in the first electrode array 2012 (forming a "four"), and each second electrode in the second electrode array 2022 The electrodes have separate leads.
  • the 16 electrodes of the first electrode array 2012 are respectively connected to other electrodes of the first electrode array 2012, and the 16 electrodes of the first electrode array 2012 have a total of one electrode lead-out line.
  • Each electrode of the second electrode array 2022 uses one electrode lead-out line, that is, the flexible capacitor array 20 has a total of 17 electrode lead-out lines (the first electrode array 2012 has one electrode lead-out line, and the second electrode array 2022 has 16 electrode lead-out lines. String).
  • each first electrode in the first electrode array 2012 has a separate lead.
  • Each second electrode in the second electrode array 2022 has a separate lead. Since each electrode is individually wired, it can reduce crosstalk between electrodes.
  • the electrical characteristics of each unit capacitor in FIG. 4C are independent, and the positions are arranged and fixed according to the array scheme. As a result, the electrical signal interference in the flexible capacitor array 20 is greatly eliminated. Since each unit capacitor requires at least two upper and lower electrodes, the arrangement of FIG. 4C has a total of 32 electrode lead wires.
  • each unit Capacitors can work alone as independent sensors, which is conducive to the mechanical detection of complex spaces.
  • FIGS. 4A to 4C schematically show examples of the electrode and lead distribution modes of a part of the first electrode array 2012 and the second electrode array 2022, but the embodiment of the present application has an effect on the first electrode array 2012
  • the number, arrangement, lead arrangement, and specific positions of the electrodes included in the second electrode array 2022 are not limited, as long as the flexible capacitor array 20 can detect the position and size of the pressure.
  • FIG. 5 shows a flow chart of a manufacturing method 500 of the flexible capacitor array 20 provided by an embodiment of the present application.
  • the preparation method 500 of the embodiment of the present application includes the following steps. Although the various steps 501-506 in the preparation method 500 are shown in order, those skilled in the art should understand that the steps may be performed in a different order from the order shown in FIG. 5, or these steps may also be performed at the same time. Examples of such alternate orders may include overlapping, interleaving, interrupting, reordering, incrementing, preparing, supplementing, simultaneous, reverse, or other variant orders.
  • a first flexible electrode layer 201 may be provided.
  • a first electrode array 2012 is provided on the first flexible electrode layer 201.
  • the plurality of first electrodes in the first electrode array 2012 are arranged in a matrix including M rows and N columns, where M and N are positive integers.
  • the patterned first electrode array 2012 can be sprayed on the first flexible thin film layer 2011 of the first flexible electrode layer 201 using a silver nanowire spraying method.
  • the patterned first electrode array 2012 may also be vapor-deposited on the first flexible thin film layer 2011 of the first flexible electrode layer 201 using an electron beam evaporation method.
  • the first flexible film layer 2011 may be composed of at least one of the following materials: thermoplastic polyurethane elastomer rubber (TPU), polyethylene terephthalate (PET), polyvinylidene fluoride (PVDF) , Polyvinyl alcohol (PVA), nylon 6 (PA6), polylactic acid (PLA), polyacrylonitrile (PAN), and polyethersulfone (PES).
  • TPU thermoplastic polyurethane elastomer rubber
  • PET polyethylene terephthalate
  • PVDF polyvinylidene fluoride
  • PVA Polyvinyl alcohol
  • PA6 polyvinyl alcohol
  • PA6 polylactic acid
  • PAN polyacrylonitrile
  • PES polyethersulfone
  • each electrode in the electrode pattern in the reticle may be circular, rectangular or square.
  • a first spacer layer 204 may be provided, and the first spacer layer 204 is placed on the first flexible electrode layer 201.
  • preparing the first spacer layer 204 may include at least one of the following: preparing a polydimethylsiloxane (PDMS) film with a micropillar structure to form a cavity composed of polydimethylsiloxane (PDMS) support pillars Preparation of a polymer film, and cutting the polymer film into a frame structure of the polymer film to form a cavity constituted by a frame-shaped support of the polymer film; preparation of the polymer solution placed on the template of the network structure, The first spacer layer 204 is obtained after curing the mixed solution to form a cavity composed of a mesh-shaped polymer film.
  • PDMS polydimethylsiloxane
  • a dielectric layer 203 may be provided, and the dielectric layer 203 may be placed on the first spacer layer 204.
  • the dielectric layer 203 is an ion gel film composed of polyvinyl alcohol-phosphoric acid (PVA-H 3 PO 4 ).
  • the preparation method of the dielectric layer 203 is to first dissolve the polyvinyl alcohol (PVA) element in water. For example, you can add PVA to a container filled with water, then heat the container through a water bath, and stir at about 90°C. After about 1-2 hours, the PVA is completely dissolved in water to form a colorless and transparent gel. ⁇ solution. Then phosphoric acid is added to the gel-like solution to form a mixed solution.
  • phosphoric acid H 3 PO 4
  • the mixed solution PVA-H 3 PO 4 aqueous solution
  • the mixed solution can be poured on the microstructure template, for example, the PVA-H 3 PO 4 aqueous solution is poured on the surface of the pre-prepared structural template, and the film can be peeled after curing to obtain polyvinyl alcohol-phosphoric acid (PVA-H 3 PO). 4
  • the ion gel film is cut into the required size, and sealed and stored for use.
  • the embodiment of the present application does not limit the order of preparing the dielectric layer 203 and the first spacer layer 204.
  • the dielectric layer 203 may be prepared first, and then the first spacer layer 204 may be prepared.
  • a second flexible electrode layer 202 is prepared, and a second electrode array 2022 is disposed thereon.
  • the plurality of second electrodes in the second electrode array 2022 are arranged in a matrix including M rows and N columns.
  • the patterned second electrode array 2022 can be sprayed on the second flexible thin film layer 2021 of the second flexible electrode layer 202 using a silver nanowire spraying method.
  • the patterned second electrode array 2022 can also be vapor-deposited on the second flexible film layer 2021 of the second flexible electrode layer 202 by using an electron beam evaporation method.
  • the second flexible film layer 2021 may be composed of at least one of the following materials: thermoplastic polyurethane elastomer rubber (TPU), polyethylene terephthalate (PET), polyvinylidene fluoride (PVDF) , Polyvinyl alcohol (PVA), nylon 6 (PA6), polylactic acid (PLA), polyacrylonitrile (PAN), and polyethersulfone (PES).
  • TPU thermoplastic polyurethane elastomer rubber
  • PET polyethylene terephthalate
  • PVDF polyvinylidene fluoride
  • PVA Polyvinyl alcohol
  • PA6 nylon 6
  • PVA polylactic acid
  • PAN polyacrylonitrile
  • PES polyethersulfone
  • the electrode pattern of the second electrode array 2022 may be similar to the electrode pattern of the first electrode array 2012.
  • the second flexible electrode layer 202 is placed on the dielectric layer 203, so that the second electrode in the i-th row and the j-th column in the second electrode array 2022 is the same as the i-th electrode in the first electrode array 2012.
  • the first electrodes in the j-th column are arranged opposite to each other to form an electrode pair, where i is greater than or equal to zero and less than M, and j is greater than or equal to zero and less than N.
  • step 506 the first flexible electrode layer 201, the dielectric layer 203, the first spacer layer 204, and the second flexible electrode layer 202 are packaged into a flexible capacitor array 20.
  • the vacant positions in the first flexible electrode layer 201 that are not in contact with the dielectric layer can be filled with various fillers, such as double-sided tape.
  • the second flexible electrode layer 202 is placed on the dielectric layer 203.
  • the first flexible electrode layer 201 and the second flexible electrode layer 202 are bonded together by fillers in the empty positions, thereby completing the packaging of the flexible capacitor array 20.
  • each electrode pair disposed oppositely in the first electrode array and the second electrode array, and the part of the first spacer layer and the dielectric layer between the electrode pairs constitute the unit capacitor of the flexible capacitor array, and each unit capacitor It includes a first electric double layer capacitor and a second electric double layer capacitor connected in series.
  • the first electric double layer capacitor includes a first electrode, a first spacer layer, and a dielectric layer. In the pressed state, the dielectric layer in the unit capacitor passes through the first spacer layer to contact the first electrode to form at least one first contact surface, and each of the at least one first contact surface forms a first miniature double An electric layer capacitor, and at least one first miniature electric double layer capacitor at at least one first contact surface is connected in parallel to form a first electric double layer capacitor.
  • FIG. 6A is a schematic diagram of the sensitivity of the flexible capacitor array 20 provided by an embodiment of the application.
  • FIG. 6B is a curve of capacitance drift over time of the flexible capacitor array 20 provided by an embodiment of the application.
  • FIG. 6C is a cyclic test curve of the flexible capacitor array 20 provided by an embodiment of the application.
  • FIG. 6D is an array diagram of the flexible capacitor array 20 provided by an embodiment of the application.
  • the abscissa of FIG. 6A is the pressure applied to the flexible capacitor array 20 (unit is kPa), and the ordinate is the change value of the capacitance.
  • the black points in Figure 6A are measured values, and the gray lines are fitted lines.
  • the fitting line 1 can be used to characterize the relationship between the capacitance change value and the pressure when the applied pressure is between 500 kPa and 1500 kPa.
  • Fitting line 2 can be used to characterize the relationship between the capacitance change value and the pressure when the applied pressure is between 2000 kPa and 4000 kPa. As shown in FIG.
  • the abscissa of the large diagram of FIG. 6B is the pressing retention time of pressing a unit capacitor in the flexible capacitor array 20 (the starting point of the pressing retention time is 0.0 seconds on the abscissa), and the ordinate is the capacitance value of the unit capacitor (starting The starting point is 0 point on the ordinate).
  • the small diagram of Fig. 6B shows the way of measuring the capacitance of the unit. For example, each curve of the small graph in FIG. 6B shows the situation where the pressing force is released after pressing a unit capacitor in the flexible capacitor array 20 for 0 seconds, 0.2 seconds, 0.5 seconds, 1 second, 1.5 seconds, and 2 seconds. Below, the capacitance value of the unit capacitor changes with time.
  • the maximum value of the capacitance of each curve in the small picture is the ordinate value corresponding to each point in the big picture.
  • the capacitance change value of the flexible capacitor array 20 is about 750 pF.
  • the capacitance change value of the flexible capacitor array 20 is also about 750 pF. It can be seen that even if the flexible capacitor array 20 is continuously pressed, the capacitance value of the flexible capacitor array 20 still does not change much. Compared with the related art flexible capacitor sensor, the stability of the flexible capacitor array 20 is significantly improved.
  • FIG. 6C The abscissa of FIG. 6C is the number of cycles of pressing the flexible capacitor array, and the ordinate is the maximum capacitance value in each cycle.
  • FIG. 6C shows a case where the flexible capacitor array 20 is pressed 1 to 150 times. As shown in FIG. 6C, when the flexible capacitor array 20 is repeatedly pressed, the capacitance value of the flexible capacitor array 20 is always stable without sudden change.
  • FIG. 6D shows a situation in which a certain unit capacitor in the flexible capacitor array 20 is pressed.
  • the coordinates X and Y correspond to the position of the unit capacitor, and the vertical coordinate is the amount of change of the unit capacitor.
  • the capacitance value of the unit capacitor at the pressed position is significantly higher than the capacitance value of the unit capacitor at the unpressed position. It can be seen that using the flexible capacitor array 20 as a mechanical sensor can accurately detect the position of the force.
  • FIG. 7A is an equivalent circuit diagram of the capacitance array detection system 70 provided by an embodiment of the application.
  • FIG. 7B is a structural diagram of a capacitance array detection system 70 provided by an embodiment of the application.
  • Fig. 7C is a flow chart of detecting pressure sensor information by the capacitance array detection system 70 according to an embodiment of the application.
  • FIG. 7D is an equivalent circuit diagram of the crosstalk compensation circuit of the capacitance array detection system 70 provided by an embodiment of the application.
  • the capacitance array detection system 70 includes an excitation circuit 71, a flexible capacitance array 20, a capacitance detection circuit 72 and a capacitance selection circuit 73.
  • the capacitor selection circuit 73 is configured to gate at least one unit capacitor of 20 in the flexible capacitor array.
  • the capacitance selection circuit 73 is a switch circuit.
  • the capacitance selection circuit in FIG. 7A can be equivalent to a switch.
  • the excitation circuit 71 is configured to output an excitation signal to at least one electrode lead in the first electrode array and at least one electrode lead in the second electrode array of the flexible capacitor array under the control of the capacitance selection circuit.
  • the excitation circuit 71 may be an AC power source or a pulse signal source. Due to the movement of anions and cations between the electrodes in the process of detecting capacitance, there is a correlation between the capacitance value and the excitation frequency. When the excitation frequency is higher, the capacitance value of the capacitor is smaller and more stable, but the ion characteristics are The worse. Therefore, the response characteristics of the unit capacitor may be completely different under different excitation frequencies. In some embodiments, the excitation frequency of the circuit 71 is 10 4 Hz.
  • the electrode A in the first flexible electrode layer 1012 can be connected to one end of the excitation circuit 71, and the second flexible electrode layer 1022 is positively connected to the electrode A.
  • the opposite electrode B can be connected to the other end of the excitation circuit 71.
  • the area where the electrode A and the electrode B overlap in the flexible capacitor array 20 can be equivalent to the capacitor C in FIG. 7A.
  • the remaining wires can be equivalent to a resistance R c .
  • the capacitance detection circuit 72 is configured to detect the capacitance value of at least one unit capacitance.
  • the capacitance detection circuit 72 may be the sampling resistor R sample in FIG. 7. As shown in FIG. 7A, the excitation circuit 71, the flexible capacitor array 20 and the capacitance detection circuit 72 form a loop. When an external force is applied, the capacitance value of the capacitor C changes. Furthermore, the voltage across the sampling resistor R sample changes. The voltage at both ends of the sampling resistor R sample may correspond to the capacitance value of the detected unit capacitor, and the capacitance value of the detected unit capacitor can be obtained through the corresponding relationship between the two.
  • the capacitance value of the cell capacitance is correspondingly measured by measuring the voltage across the resistor R sample , those skilled in the art should understand that the capacitance value of the cell capacitance can also be measured in other ways, which is not limited in this application.
  • the capacitance detection circuit 72 can also output the capacitance value of at least one unit capacitance to a signal processor (not shown).
  • the signal processor is configured to process and convert the capacitance value of at least one unit capacitor into the magnitude and position of the pressure.
  • the signal processor can be implemented as an analog signal processor that can convert the capacitance value into an analog signal, or the capacitance detection circuit 72 can also be implemented as a data signal processor (DSP) that can convert the capacitance value into a digital signal.
  • DSP data signal processor
  • FPGA Programmable gate array
  • the capacitance selection circuit 73 may include a pair of A multiplexer in which the electrode array performs row and column scanning, and one end of the multiplexer is connected to one end of the excitation circuit 71.
  • one end of each series electrode in the first electrode array 2012 can be connected to one end of the multiplexer, and the other end is suspended.
  • One end of each series electrode of the second electrode array 2022 can be connected to the other end of the excitation circuit 71, and the other end is suspended.
  • both ends of each series electrode in the first electrode array 2012 are connected to the multiplexer. Both ends of each series electrode of the second electrode array 2022 are connected to the capacitance detection circuit 72.
  • both ends of each series electrode in the first electrode array 2012 are connected to both ends of the excitation circuit 71, and both ends of each series electrode in the second electrode array 2022 are connected to the capacitance detection circuit 72.
  • the capacitance selection circuit 73 periodically selects a series electrode in the first electrode array 2012. It is assumed that the series electrodes formed by the series-connected electrodes A 1 ′, A 2 ′...A k ′ in the first electrode array 2012 are gated and gated at a certain time. At this moment, the capacitances formed by the electrodes B 1 ′, B 2 ′...B k ′ and the electrodes A 1 ′, A 2 ′...A k ′ in the regions where the second electrode array 2022 overlaps with the series electrodes are connected. The overlapping area of the electrode A 1 ′ and the electrode B 1 ′ can be equivalent to the capacitance C in FIG. 7A.
  • the wires of the electrode A 1 ′ and the electrode B 1 ′ can be equivalent to a resistance R c .
  • a total of k capacitors C are turned on.
  • the excitation circuit 61, any one of the k capacitors C and the capacitance detection circuit 72 can form a loop, and at this time, there are a total of k conduction loops.
  • the touch electrodes A 1 'and the electrode B 1' overlapping area of the electrode A 1 'and the electrode B 1' capacitor formed dramatic changes occur.
  • the voltage across the sampling resistor R sample changes.
  • the voltage across the sampling resistor R sample can correspond to the capacitance value of the capacitor C, and the capacitance value of the capacitor C can be calculated based on the voltage.
  • an impact force is generated after the robot touches an object or a person, and the flexible capacitor array 20 can detect the impact force through its capacitance change.
  • the position of the robot touching the object can be judged according to the position of the electrode array that produces the response, and the magnitude of the impact force can be roughly judged according to the amount of change in the capacitance value.
  • the capacitance array detection system according to the embodiment of the present application has great application value in aspects of robot safety, human-computer interaction, and the like.
  • FIG. 7A schematically shows an example of the capacitor array detection system 70, but the circuit connection mode of the capacitor array detection system 70 in the embodiment of the present application is not limited, as long as the flexible capacitor array 20 can be implemented Just check the pressure.
  • the capacitance selection circuit 73 may also include an MCU and an interface circuit.
  • a switching circuit suitable for controlling the electrodes in the first electrode array 2012 and a switching circuit for controlling the electrodes in the second electrode array 2022 can be designed, that is, through controllable switches.
  • the control leads of the controllable switches are controlled by the GPIO of the MCU.
  • the purpose is to realize the independent gating and shutting off of the capacitors of each unit in the array, and the controllable switch is used at the same time
  • the capacitance of a certain unit is selected to be connected to the subsequent-stage capacitance detection circuit 72 for capacitance value measurement. All unit capacitors in the flexible capacitor array 20 are controlled by the MCU to switch.
  • the MCU turns on the unit capacitors in turn, and realizes the detection of the capacitance values of all the unit capacitors of the entire flexible capacitor array 20 in a scanning manner.
  • the capacitance detection circuit 72 provides the following capacitance detection methods including but not limited to: 1 using the existing capacitance sensor chip to detect, 2 detecting by building a hardware detection circuit (such as the above-mentioned simple sampling resistor method, or including devices such as operational amplifiers) Other hardware detection circuits) and 3Using capacitance measuring instruments (such as LCR detection) and so on.
  • a hardware detection circuit such as the above-mentioned simple sampling resistor method, or including devices such as operational amplifiers
  • Other hardware detection circuits such as devices such as operational amplifiers
  • capacitance measuring instruments such as LCR detection
  • the capacitance detection circuit 72 may further include a crosstalk compensation circuit.
  • the circuit is composed of a controllable switch and a switching circuit, and the switch is also controlled by the MCU.
  • the capacitance array is scanned and detected, it is first sent to the crosstalk compensation circuit for processing, and then the capacitance value of each unit is measured by the above three detection methods. After that, the capacitance detection module connects the detected capacitance value of the corresponding unit capacitance to the signal processor for subsequent signal processing, compensation, and analysis.
  • the capacitance array detection system provided by the embodiment of the present application ensures that the capacitance array of the embodiment of the present application realizes an ultra-wide measurement range, and at the same time, enables the capacitance of each unit to have strong stability and consistency.
  • the equivalent circuit of the crosstalk compensation circuit can be as shown in FIG. 7D.
  • the crosstalk compensation circuit may be configured to control the capacitance detection circuit 72 to detect at least one crosstalk compensation value of at least one unit capacitance under the control of the capacitance selection circuit.
  • the terminals Ca and Cb of the crosstalk compensation circuit are respectively connected to the lead of the first electrode array and the lead of the second electrode array of the flexible capacitor array 20. For example, a specific capacitance to be measured can be selected through the lead wires connected to the terminals Ca and Cb through the MCU control.
  • the terminal Cc of the crosstalk compensation circuit is connected to the capacitance detection circuit 72 for the detection of the capacitance value/crosstalk compensation value.
  • the capacitance to be measured and other capacitances in the flexible capacitor array 20 that affect the capacitance to be measured can be equivalent to the capacitance to be measured, the crosstalk capacitor 1 and the crosstalk capacitor 2 in FIG. 7D.
  • the MCU can control the four switches of the crosstalk compensation circuit to sequentially measure multiple sets of values of the capacitance to be measured, the crosstalk capacitor 1 and the crosstalk capacitor 2 in a variety of series and parallel situations.
  • the accurate capacitance value of the capacitance to be measured can be calculated by calculating the capacitance value of the crosstalk capacitor 1 and the crosstalk capacitor 2 in various series and parallel situations (ie, the crosstalk compensation value).
  • the capacitance calculation circuit may be configured to update the capacitance value of at least one unit capacitor according to the at least one crosstalk compensation value.
  • the process of detecting the capacitance value by the capacitance array detection system 70 is as follows:
  • the flexible capacitor array 20 can be arranged on the pressure sensing detection surface, and each unit capacitance in the flexible capacitor array 20 corresponds to a pressure sensing detection position on the pressure sensing detection surface.
  • the pressure sensing detection surface may be at least a part of the robot arm.
  • the above-mentioned flexible capacitor array 20 can be attached to the pressure sensing detection surface, and the flexible capacitor array 20 can be connected with other components in the above-mentioned capacitor array detection system 70 to detect when the robot moves between the robot and the object or Touch pressure is generated when people touch each other.
  • the pressure sensing detection surface may be the outer surface of the wearable device. After the device is worn, the flexible capacitor array 20 can collect and analyze touch data.
  • the capacitance selection circuit 73 is configured to sequentially gate each cell capacitance in the flexible capacitance array 20.
  • the capacitor selection circuit 73 can initialize various parameters of the MCU so that it can sequentially gate each unit capacitor in the flexible capacitor array 20.
  • the capacitance selection circuit 73 can also detect whether its respective control interfaces (for example, the GPIO control interface 731) and the communication interface 732 are normal before gating the unit capacitance. When each interface is normal, the capacitor selection circuit 73 can start to gate the cell capacitors in the flexible capacitor array 20. If the interface is abnormal, you can reinitialize the parameters of the MCU.
  • the cell capacitance C ij in the flexible capacitor array 20 is taken as an example for description.
  • C ij represents the cell capacitance in the i-th row and j-th column in the flexible capacitor array 20.
  • the MCU controls the controllable switches of the upper and lower electrodes of the capacitor array to gate C ij , and then controls the controllable switches of the crosstalk compensation circuit in the capacitance detection module to switch C ij in the state of connecting multiple groups of circuits, so as to obtain the unit capacitance At least one crosstalk compensation value.
  • the capacitance calculation circuit updates the capacitance value of the unit capacitor according to at least one crosstalk compensation value, thereby calculating the true capacitance value of C ij after compensation and decoupling (the capacitance value after removing the crosstalk influence). After that, the MCU scans the column first, and then reads the capacitance values of all the capacitors of the capacitor array for subsequent operations.
  • the capacitance detection circuit 70 is also configured to sequentially output the capacitance value of each unit capacitance as the pressure sensing information of the pressure sensing detection position, so as to be used as the subsequent processing of the robot.
  • FIG. 8 is a schematic diagram of a robot 80 provided by an embodiment of the application.
  • the robot 80 includes the aforementioned capacitance array detection system 70, wherein the flexible capacitance array in the capacitance array detection system is arranged on at least a part of the pressure sensing detection surface of the robot.
  • the robot 80 also includes an impact force detector, an impact disturbance determiner, and an impact disturbance controller.
  • the impact force detector is configured to calculate the impact force detection value and the impact force occurrence location based on the capacitance value of at least one unit capacitor detected by the capacitance array detection system 70.
  • the capacitance array detection system 70 may periodically detect the capacitance value of each unit capacitance in the flexible capacitance array, and input the capacitance value to the impact detector.
  • the impact disturbance determiner is configured to determine whether the impact disturbance occurs based on the impact force detection value of the impact force detector and the location where the impact force occurs.
  • the impact force detector can calculate the ZMP (zero moment point) stability margin of the robot at the moment through the impact force detection value and the impact force occurrence position, and use it as a criterion for whether the robot is subject to external disturbances. Quantitative and rapid detection of disturbance size, direction and action time, and provide trigger conditions and calculation basis for subsequent control steps.
  • the anti-shock disturbance controller is configured to adjust the operating parameters of the robot in response to the determined shock disturbance to control the robot to resist the shock disturbance.
  • the operating parameters of the robot include parameters that control the stepping and landing points of the robot. If the impact disturbance determiner determines that the disturbance occurs, the anti-impact disturbance controller adjusts the landing point of the robot based on the detection value of the impact force and the position where the impact force occurs, and keeps the robot whole body stable by stepping; at the same time, the anti-impact disturbance controller is also based on the impact force
  • the detection value and impact force occurrence position are controlled by foot shock absorption, so that the soles of the feet can be smoothly landed and the impact of the foot can be reduced.
  • the flexible capacitor array 20 may be laid on the pressure sensing detection surface on the bottom surface of the foot of the footed robot. In some embodiments, at least 4 flexible capacitor arrays 20 may be provided for each leg of the footed robot 10 in FIG. 1, and 16 flexible capacitor arrays 20 may be required for four legs. Since pressure feedback information can be obtained for all four legs of the foot robot 10, the pressure feedback of the four feet can be comprehensively analyzed, so as to quickly respond to the tendency of the center of gravity of the intelligent foot robot to provide a criterion for motion stability.
  • adjusting the operating parameters of the robot by the anti-impact disturbance controller further includes adjusting the footing point or footing angle of the footed robot.
  • the anti-impact disturbance controller also includes: planning trajectory generator, adjustment trajectory generator and foot joint angle generator.
  • the planning trajectory generator is configured to plan the centroid trajectory and the footing point trajectory of the footed robot.
  • the planning trajectory generator can plan the trajectory of the footed robot through the ZMP stability margin, so that the robot always maintains a balance and stability.
  • the planning trajectory generator can also plan the motion trajectory of the footing point (or ankle joint) of the foot robot.
  • the adjustment trajectory generator may further adjust the traveling state of the footed robot according to the impact disturbance.
  • the adjustment trajectory generator may be configured to adjust the centroid trajectory of the footed robot based on the centroid trajectory of the footed robot and the impact force detection value; and adjust the footing point trajectory of the footed robot based on the footing trajectory of the footed robot.
  • its built-in linear quadratic regulator SQP
  • the robot 80 can use the foot joint angle generator to control the travel balance of the foot robot.
  • the foot joint angle generator may be configured to adjust the foot joint angle of the foot robot based on the adjusted mass center trajectory and footing point trajectory to adjust the footing point or the footing angle of the foot robot.
  • the foot joint angle generator can solve the time series of joint angles through inverse kinematics, and at the same time, the foot damping control performs online compensation for the calculated joint angles, and finally realizes that the foot robot can maintain stable walking even when it is disturbed by the outside world.
  • the embodiments of the present application can provide rapid and accurate quantitative feedback on the distribution and magnitude of plantar pressure for the motion of a foot robot (such as a robot dog), which simplifies the calculation of torque using a rigid force sensor (such as a multi-axis force sensor). Complex process.
  • the embodiments of the present application provide a flexible capacitor array and a preparation method thereof, a capacitor array detection system, and a robot, so that the flexible capacitor array exhibits flexibility as a whole and greatly improves the sensitivity, stability, and ability of the pressure sensing system to withstand high pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种柔性电容阵列(20),包括:第一柔性电极层(201),其上设置有第一电极阵列(2012);第二柔性电极层(202),其上设置有与第一电极阵列相对设置的第二电极阵列(2022);间隔层(204)和介电层(203),间隔层和介电层设置于第一电极阵列中与第二电极阵列中相对设置的每个电极对之间,其中,柔性电容阵列的单元电容包括电极对、间隔层和介电层。还公开了柔性电容阵列的制备方法、电容阵列检测系统和机器人,柔性电容阵列通过结合柔性电极层以及介电层,实现力学传感体系的柔性、高传感密度和高传感灵敏度,并通过间隔层在实现高灵敏度的同时提高柔性电容阵列的稳定性,从而使得柔性电容阵列整体呈现出柔性并大幅提高压力传感系统的灵敏度、稳定性和承受高压强的能力,可以基于电容阵列检测系统的结果进行该机器人的运动平衡控制。

Description

柔性电容阵列及其制备方法、电容阵列检测系统和机器人
相关申请的交叉引用
本申请实施例基于申请号为202010377743.6、申请日为2020年05月07日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请实施例作为参考。
技术领域
本申请涉及一种柔性电容阵列及其制备方法、电容阵列检测系统和机器人。
背景技术
随着智能机器人技术的发展和机器人应用场景的深化,人们希望机器人不但能够完成设定的机械运动,还可以感知外界环境并做出反馈。
目前,机器人所使用的力学传感器通常是多轴力传感器。本申请的申请人发现:多轴力传感器大多是刚性的,且体积较大。相关技术的柔性传感器虽然能够小型化,但是其能够测量的压强相对较小,并不能适应如机器人运动检测这类超高压强下的应用。同时,相关技术的柔性传感器的稳定性也不足以准确测量机器人运动中的压强。因此,通过相关技术的传感器很难测量机器人足端受力以及机器人站立稳定性,从而给机器人的稳定步态行走、奔跑跳跃的设计和开发造成了困难。
发明内容
本申请的至少一个实施例提供一种柔性电容阵列,包括:第一柔性电极层,所述第一柔性电极层上设置有第一电极阵列;第二柔性电极层,所述第二柔性电极层上设置有第二电极阵列;介电层,所述介电层设置于所述第一柔性电极层和所述第二柔性电极层之间;第一间隔层,所述第一间隔层设置于所述第一电极阵列和所述介电层之间,其中,所述第一电极阵列与所述第二电极阵列中相对设置的每个电极对、和介于所述电极对之间的所述第一间隔层和所述介电层的部分构成所述柔性电容阵列的单元电容,每个所述单元电容包括第一双电层电容,所述第一双电层电容包括所述第一电极、所述第一间隔层和所述介电层;其中,在按压状态下,所述单元电容中的介电层穿过所述第一间隔层与所述第一电极接触形成至少一个第一接触面,所述至少一个第一接触面中的每个接触面处形成第一微型双电层电容,且所述至少一个第一接触面处的至少一个第一微型双电层电容并 联形成第一双电层电容。
本申请的至少一个实施例还提供一种柔性电容阵列的制备方法,包括:设置第一柔性电极层,所述第一柔性电极层上设置有第一电极阵列;设置第一间隔层,将所述第一间隔层置于所述第一柔性电极层之上;设置介电层,将所述介电层置于所述第一间隔层之上;设置第二柔性电极层,所述第二柔性电极层上设置有第二电极阵列;将所述第二柔性电极层置于所述介电层之上;将所述第一柔性电极层、所述介电层、所述间隔层和所述第二柔性电极层封装成所述柔性电容阵列,其中,所述第一电极阵列与所述第二电极阵列中相对设置的每个电极对、和介于所述电极对之间的所述第一间隔层和所述介电层的部分构成所述柔性电容阵列的单元电容,每个所述单元电容包括第一双电层电容,所述第一双电层电容包括所述第一电极、所述第一间隔层和所述介电层;其中,在按压状态下,所述单元电容中的介电层穿过所述第一间隔层与所述第一电极接触形成至少一个第一接触面,所述至少一个第一接触面中的每个接触面处形成第一微型双电层电容,且所述至少一个第一接触面处的至少一个第一微型双电层电容并联以形成第一双电层电容。
本申请的至少一个实施例还提供一种电容阵列检测系统,包括:上述的柔性电容阵列;电容选择电路,被配置为选通所述柔性电容阵列中的至少一个单元电容;激励电路,被配置为在所述电容选择电路的控制下向所述柔性电容阵列的第一电极阵列中的至少一个电极引线和第二电极阵列中的至少一个电极引线输出激励信号;电容检测电路,被配置为检测所述至少一个单元电容的电容值。
本申请的至少一个实施例还提供一种机器人,可以基于电容阵列检测系统的结果进行该机器人的运动平衡控制。该机器人包括:上述的电容阵列检测系统,其中,所述的电容阵列检测系统中的柔性电容阵列设置在机器人的至少一部分的压力传感检测面上;冲击力检测器,被配置为根据所述的电容阵列检测系统所检测的至少一个单元电容的电容值计算冲击力检测值及冲击力发生位置;冲击扰动确定器,被配置为基于冲击力检测器的冲击力检测值及冲击力发生位置确定冲击扰动是否发生;抗冲击扰动控制器,被配置为响应于所确定的冲击扰动,调整所述机器人的操作参数,以控制机器人抗击冲击扰动。
本申请的一个或多个实施例申请了一种柔性电容阵列及其制备方法、电容阵列检测系统和机器人,结合柔性电极层以及介电层,实现力学传感体系的柔性、高传感密度和高传感灵敏度,并通过间隔层增加传感器的稳定性,从而使得柔性电容阵列整体呈现出柔性并大幅提高压力传感系统的灵敏度、稳定性和承受高压强的能力。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述的附图仅仅涉及本申请的一些实施例,而非对本申请的限制。
图1示出了智能足式机器人的示意图。
图2A为本申请实施例提供的柔性电容阵列的示意图。
图2B为本申请实施例提供的柔性电容阵列的原理的示意图。
图2C为本申请实施例提供的柔性电容阵列中的间隔层的结构的示意性的俯视图。
图2D为本申请实施例提供的柔性电容阵列中的双电层电容的等效电路图。
图3A为本申请实施例提供的柔性电容阵列中的第一电极阵列的一部分的示意图。
图3B为本申请实施例提供的柔性电容阵列中的第二电极阵列的一部分的示意图。
图3C为本申请实施例提供的柔性电容阵列的结构示意图。
图4A为本申请实施例提供的柔性电容阵列的另一种结构示意图。
图4B为本申请实施例提供的柔性电容阵列的第一电极阵列的俯视图。
图4C为本申请实施例提供的柔性电容阵列的另一种结构示意图。
图5示出了本申请实施例提供的柔性电容阵列的制备方法的流程图。
图6A为本申请实施例提供的柔性电容阵列的灵敏度示意图。
图6B为本申请实施例提供的柔性电容阵列随时间电容漂移曲线。
图6C为本申请实施例提供的柔性电容阵列的循环测试曲线。
图6D为本申请实施例提供的柔性电容阵列的阵列图。
图7A为本申请实施例提供的电容阵列检测系统的等效电路图。
图7B为本申请实施例提供的电容阵列检测系统的架构图。
图7C为本申请实施例提供的电容阵列检测系统检测压力传感信息的流程图。
图7D为本申请实施例提供的电容阵列检测系统的串扰补偿电路的等效电路图。
图8为本申请实施例提供的机器人的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本申请实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于所描述的本申请的实施例,本领域普通技术人员在无需创造性劳动的前提下 所获得的所有其他实施例,都属于本申请保护的范围。
除非另外定义,本申请使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。本申请中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
下面结合附图对本申请实施例及其示例进行详细说明。
图1示出了智能足式机器人10的示意图。参见图1,在实际环境之中,为了使得智能足式机器人10可以协助或替代人类执行单调重复或高危任务,智能足式机器人10需要具有稳定的移动能力。因此,智能足式机器人10需要能够在移动的过程中检测到足底所受到的地面对其冲击力的大小和方向。因此,在智能足式机器人10的足底的检测面上设置力学传感器,以使得智能足式机器人10可以根据该冲击力判断如何进行平衡稳定控制。
智能足式机器人10可以是基于人工智能的。人工智能(AI,Artificial Intelligence)是利用数字计算机或者数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术及应用系统。换句话说,人工智能是计算机科学的一个综合技术,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。人工智能也就是研究各种智能机器的设计原理与实现方法,使机器具有感知、推理与决策的功能。人工智能技术是一门综合学科,涉及领域广泛,既有硬件层面的技术也有软件层面的技术。传感器可以作为人工智能基础技术之一。
相关技术的智能足式机器人10所使用的力学传感器通常是多轴力传感器。这些力学传感器大多是刚性的,且体积较大。因此,安装刚性的力学传感器对于足底面积小的足式机器人并不适用。相关技术的柔性传感器虽然能够小型化,但是其能够测量的压强相对较小,并不能适应如足式机器人运动检测这类超高压强下的应用。同时,相关技术的柔性传感器的稳定性也不足以准确测量机器人运动中的压力。
为此,本申请实施例提出了一种响应速度快、精度高、量程大、抗冲击性能强的柔性电容阵列,其例如可以作为如图1所示的智能足式机器人10足底的力学传感器。该柔性电容阵列能够精确地检测出地面对智能足式 机器人足底10的冲击力的大小和方向。智能足式机器人10一方面可以基于该冲击力计算出机器人的零力矩点,作为其是否失稳、是否需要进行平衡控制的判定依据。另一方面,智能足式机器人10可以基于此力构建全身动力学平衡控制器,将测得的冲击力作为外力输入,从而计算出受到冲击力的状态下为保持平衡各关节的力矩或角度补偿量。同时,智能足式机器人10还可以基于该冲击力设计足底减震控制器,根据柔性电容阵列所检测到的力与预先规划的足底受力之间的误差,调整足部与地面的相互作用力,实现摆动脚较为柔顺落地,减小落地冲击,支撑脚尽量贴合地面,提高足式机器人的移动稳定性。由于本申请实施例中的柔性电容阵列是阵列化排布的,其能在不改变足底机械结构下快速安装,更适用于当前的智能足式机器人10的设计。
本申请实施例还提出了一种电容阵列检测系统,其包括上述的柔性电容阵列。本申请实施例的电容阵列检测系统还可以作为人体步行参数测量装置的组件来使用。人体的步行参数对生物医疗领域及双足机器人领域的研究具有重要意义。在生物医疗领域,人体的步行参数与其身体状态强相关,如帕金森病人有独特的足底压力分布情况,糖尿病人常见的并发症足部溃烂将影响其行走步态。本申请实施例的电容阵列检测系统可以通过检测人在步行时地面对人的足底的冲击力,进而测量并记录正常人与病人的步行参数,结合机器学习进行大数据分析,得到不同病症下的步行参数,从而辅助医生治疗。在双足机器人领域,由于人类经过数千万年的自然进化,具有极优秀的灵巧性和极强的环境适应性,根据本申请实施例的电容阵列检测系统可以测量人体行走步行参数,将其作为双足机器人步态规划的重要依据,模拟人体运动机理进行双足机器人的研发,以提高双足机器人对复杂环境的适应能力。
本申请的一个或多个实施例提供了一种柔性电容阵列及其制备方法、电容阵列检测系统和机器人,使得柔性电容阵列整体呈现出柔性并大幅提高压力传感系统的灵敏度、稳定性和承受高压强的能力。
图2A为本申请实施例提供的柔性电容阵列20的示意图。图2B为本申请实施例提供的柔性电容阵列20的原理的示意图。图2C为本申请实施例提供的柔性电容阵列20中的第一间隔层204的结构的示意性的俯视图。图2D为本申请实施例提供的柔性电容阵列20中的单元电容的等效电路图。
图2A和图2B示出了柔性电容阵列20的一个单元电容的结构,但是本领域技术人员应当理解,柔性电容阵列20中可以包括多个与图2A和图2B所示的单元电容结构类似的单元电容。
如图2A所示,该柔性电容阵列20包括:第一柔性电极层201、第二柔性电极层202、介电层203和第一间隔层204。其中,第一柔性电极层201设置有第一电极阵列2012。其中,第一电极阵列2012中的多个第一电极排列成包括M行和N列的矩阵,其中M、N为正整数。
第二柔性电极层202设置有第二电极阵列2022。其中,第二电极阵列中的多个第二电极排列成包括M行和N列的矩阵,并且第二电极阵列中的第i行第j列的第二电极与第一电极阵列中的第i行第j列的第一电极相对设置,以形成电极对,i大于或者等于零且小于M,j大于或者等于零且小于N。其中,第二电极阵列中的第i行第j列的第二电极还可以与第一电极阵列中的第j行第i列的第一电极相对设置,以形成电极对,因此本申请实施例并不局限于第一电极阵列与第二电极阵列中第i行第j列的电极相对设置,以形成电极对。
对于第一电极阵列2012中与第二电极阵列2022中相对设置的每个电极对,该电极对之间设置有第一间隔层204和介电层203。一个电极对,以及该电极对中间的第一间隔层204和介电层203组成了柔性电容阵列20中的一个单元电容。
在一些实施例中,第一间隔层204包括使介电层203与电极对中的至少一个电极间隔的空腔。例如,图2A中示出了第一间隔层204的横截面视图,第一间隔层204的空腔将第一电极阵列2012中的电极与介电层203间隔开。
在一些实施例中,电极对中还可以设计另一个间隔层(例如,第二间隔层),以将第二电极阵列2022中的电极与介电层203间隔开,从而使得第一电极阵列2012和第二电极阵列2022中的电极都与介电层203间隔开。
在一些实施例中,第一间隔层204和/或第二间隔层中的空腔包括以下至少之一:由聚二甲基硅氧烷(PDMS)支撑柱构成的空腔、由高分子薄膜的框型支架构成的空腔、由网孔状的高分子薄膜构成的空腔。由高分子薄膜的框型支架构成的空腔可以通过整张高分子薄膜切割中间部分来形成有边框的支架。
图2C中示出了第一间隔层204和/或第二间隔层的多种俯视图。网孔状的高分子薄膜中的网孔可以是如图2C所示蜂窝形网孔、圆形网孔、方形网孔、棱形网孔等。本领域技术人员应当理解,除引入空腔的方式增加空气层或有机层外,还可以通过其他方式引入间隔层,本申请实施例对此不作限定。
综上,由于相关技术中的离子型电容传感器的电极层与介电层相邻,造成传感器的信号漂移。相比于相关技术的离子型电容传感器,本申请实施例中第一间隔层204的设计,如空气层或高分子薄膜层使上电极层与介电层分离,从而可以减少传感器的信号漂移,并增加传感器的稳定性。
在一些实施例中,介电层203为由聚乙烯醇-磷酸(PVA-H 3PO 4)组成的离子凝胶薄膜。相比于相关技术的离子型电容传感器,聚乙烯醇-磷酸(PVA-H 3PO 4)材料的介电层203的稳定性和灵敏度都更高。本领域技术人员应当理解,还可以使用其它材料来替代聚乙烯醇-磷酸介电层,例如可以使用离子液体浸泡高分子纤维、纸张等方法而获得离子介电层,或者使用 液态离子液体作为介电层203。
在一些实施例中,介电层203的表面可以是一面具有微结构,而另一面平整的。在一些实施例中,介电层203靠近第二电极阵列2022的一侧可以是平整的,介电层203靠近第一间隔层204的一侧可以是具有微结构的。
此外,根据需要,柔性电容阵列20还可以包括其他结构或功能层。例如,该柔性电容阵列20可以包括引线层,以用于实现传输压力传感信号的功能。又例如,该柔性电容阵列20还可以包括保护层,例如该保护层为柔性薄膜保护层等。例如,该柔性电容阵列20还可以包括其他功能层,这些功能层可以通过光学透明胶(OCA胶)结合在第一柔性电极层201或第二柔性电极层202上,本申请实施例对柔性电容阵列20的其他结构不作具体限定。
第一柔性电极层201包括第一柔性薄膜层2011,第一电极阵列2012被制作在第一柔性薄膜层2011上。第二柔性电极层202包括第二柔性薄膜层2021,第二电极阵列2022被制作在第二柔性薄膜层2021上。柔性电容阵列20用柔性薄膜材料封装。由于柔性电容阵列20中的所有部件全部使用具有柔性的材料制作,其整体能够进行一定的弯曲和拉伸变形,能够在一定的变形下保证力学传感性能的稳定。当将柔性电容阵列20应用于足式机器人时,柔性电容阵列20能够完好的贴附在机器人的足底或机器人外表面的任意位置上,以使得压力传感信号更加稳定、准确。第一电极阵列2012和第二柔性电极层202还可以是大面积的柔性电极层。因此,柔性电容阵列20能够随形的贴附在机器人的足底或机器人外表面的任意位置上,以实现机器人的全方位力学传感。
例如,为了形成柔性电极层,第一电极阵列2012可以通过银纳米喷涂或物理气相沉积的方式被制作在第一柔性薄膜层2011上。类似地,第二电极阵列2022也可以通过银纳米喷涂或物理气相沉积的方式被制作在第二柔性薄膜层2021上。例如,物理气相沉积方式包括蒸镀(例如,电子束蒸镀)或溅射。第一柔性薄膜层2011和第二柔性薄膜层2021可以由以下材料中的至少一项组成:热塑性聚氨酯弹性体橡胶(TPU)、聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺(PI)、聚偏氟乙烯(PVDF)、聚乙烯醇(PVA)、尼龙6(PA6)、聚乳酸(PLA)、聚丙烯腈(PAN)、和聚醚砜(PES)。
例如,可以首先置备出具有预设电极图案的掩模版,然后使用银纳米线喷涂的方法在柔性薄膜聚对苯二甲酸乙二醇酯(PET)上喷涂出图案化的阵列电极。银纳米线是一种纳米尺度的银制的线。银纳米线除具有银的优良的导电性之外,由于其的纳米级别的尺寸效应,银纳米线还具有透光性和耐曲挠性,从而实现高度的柔性和导电性。或者,还可以使用电子束蒸镀(Electron Beam Evaporation)的方法在柔性薄膜(例如,聚对苯二甲酸乙二醇酯(PET))上蒸镀Au薄膜,制作出图案化的电极阵列。电子束蒸镀是一种物理气相沉积工艺。电子束蒸镀可以在电磁场的配合下,精准地 使用高能电子轰击坩埚内靶材(例如金(Au)),使之融化进而沉积在基片上(例如柔性薄膜上),进而镀出高纯度高精度电极阵列。当然,还可以使用其它的方式在柔性薄膜上制作出第一电极阵列2012和第二电极阵列2022,本申请对此不作限制。
由此,在第一柔性电极层201、第二柔性电极层202中形成了柔性电极层。
如图2B所示,第一电极阵列2012中的第一电极、第一间隔层204、和介电层203之间形成了可变的电容结构--第一双电层电容C 1EDL。为方便说明,此处的第一电极指代第一电极阵列2012中的任意一个第一电极。例如,图2B中第一电极阵列2012中的第一电极、第一间隔层204和介电层203之间形成电极-间隔层-介电层结构2041。在电极-间隔层-介电层结构2041上,第一电极内部的表面电荷会从介电层203中吸附离子(例如,图2B中的白色圆圈所示)。从而,在电极-间隔层-介电层界面2041处,介电层靠间隔层的一侧形成一个电荷数量与第一电极内部的表面电荷数量相等、且符号相反的离子界面层。例如,在第一电极上施加了负电压的情况下,第一电极靠第一间隔层204的一侧形成了负电荷层,而介电层203靠第一间隔层204的一侧形成了阳离子层。由于第一间隔层204的存在,使得阳离子层的阳离子和负电荷层中的负电荷都不能越界而彼此中和。在一些实施例中,介电层203靠第一间隔层204的一侧可以是具有微结构的。在对第一电极施加压力(按压状态)时,介电层203的离子凝胶表面微结构可以部分穿过第一间隔层204与第一电极的电极接触,从而在电极-间隔层-介电层结构2042处形成了可变的电容结构。
图2D示出了施加了压力之后的柔性电容阵列的单元电容的等效电路图。在未按压状态下,电极-间隔层-介电层结构2041的间距较大。而在按压状态下,由于第一间隔层204的存在并且介电层203靠第一电极的一侧的微结构具有不同的微锥高度,第一电极与介电层203之间的距离减小。并且介电层203中的部分区域将与第一电极产生相互触碰,进而形成至少一个第一接触面。在每个第一接触面处就形成了第一微型双电层电容。参考图2D,假设电极-间隔层-介电层结构2041处因压力而形成了N个接触面,其中,第i个接触面形成的微型双电层电容为C 1EDL/i。在电极-间隔层-介电层结构2041,N个接触面形成的N个微型双电层电容为并联关系。根据电容的并联公式,那么在电极-间隔层-介电层结构2041处的第一双电层电容C 1EDL大小为各微型双电层电容之和,也即C 1EDL=C 1EDL/1+C 1EDL/2+C 1EDL/3+…C 1EDL/i-1+C 1EDL/i+C 1EDL/i+1…=ΣC 1EDL/i(1≤i≤N)。
在一些实施例中,第二电极阵列2022的第二电极和介电层203之间形成了一个电极-介电层结构(即第二双电层电容C 2EDL)。为方便说明,此处的第二电极指代第二电极阵列2022中的任意一个第二电极。例如,图2B中第二电极阵列2022和介电层203之间形成电极-介电层结构2042。在电 极-介电层结构2042处,第二电极内部的表面电荷会从介电层203的电解质中吸附离子(例如,图2B中的白色圆圈所示)。从而,在电极-介电层结构2042处,靠介电层的一侧形成一个电荷数量与第二电极内部的表面电荷数量相等、且符号相反的离子界面层。例如,在第二电极上施加了正电压的情况下,电极-介电层结构2042处靠第二电极的一侧形成了正电荷层,而电极-介电层结构2042处靠介电层203的一侧形成了阴离子层。由于电极-介电层结构2042的存在,使得正电荷层的正电荷和阴离子层上的阴离子都不能越界而彼此中和,因此在电极-介电层结构2042处形成了稳定的双电层电容(也即第二双电层电容C 2EDL)。此时,由于电极-介电层结构2042中第二电极始终与介电层203接触,第二双电层电容C 2EDL的电容值保持不变。
假设电极-介电层2042处形成了大小为C 2EDL的双电层电容。参考图2D,C 1EDL与C 2EDL成串联关系。因此,在施加压力时,该单元电容的双电层电容的电容值C EDL与C 1EDL和C 2EDL的关系为:1/C EDL=1/C 1EDL+1/C 2EDL。因此,该单元电容的双电层电容的电容值C EDL的大小如公式(1)所示:
C EDL=C 1EDL·C 2EDL/(C 1EDL+C 2EDL)=ΣC 1EDL/i·C 2EDL/(ΣC 1EDL/i+C 2EDL)(1)
从而,电极对、电极对中间的第一间隔层204和介电层203组成了柔性电容阵列20中的一个单元电容,该单元电容为离子型的双电层电容。
此外,第一电极和第二电极之间还形成了一个静电容。在施加压力之后,由于挤压了介电层和间隔层,导致第一电极与第二电极之间的距离减小。根据电容的计算公式(2)所示:
Figure PCTCN2021086979-appb-000001
其中,C表示单元电容的静电容的电容值,ε表示材料的介电常数,S表示第一电极与第二电极的正对面积,k表示静电力常量,d表示第一电极与第二电极之间的距离。在柔性电容阵列20中第一电极与第二电极正对放置,从而柔性电容阵列20的静电场可以近似为平行电场。正如图2B中所示,在压力的作用下,第一电极阵列2012与第二电极阵列2022之间的距离d减小。又由于第一间隔层204中的空腔结构随着压力的作用体积也随之减小,因此介电常数ε就随之增加,进而单元电容的静电容的电容值增加。
相较于单元电容的静电容而言,该单元电容的双电层电容要大得多,因此传感器受压时,由于电极与微结构的接触面积增大,而总的C EDL的大小随着C 1EDL的增加而剧烈变化,即随着电极与介电层的微结构的接触面积的增加而剧烈增加,从而呈现出高度的灵敏性。
因此,本申请实施例通过将柔性电极阵列直接制作在柔性薄膜材料的衬底上并使用柔性的离子型传感活性材料作为介电层,实现了力学传感体系的柔性、高传感密度和高传感灵敏度。此外,本申请实施例还通过间隔层的设计大大减少传感器的信号漂移,并增加传感器的稳定性。由此,本申请实施例的柔性电容阵列整体呈现出柔性并大幅提高压力传感系统的灵敏度、稳定性和承受高压强的能力。
在一些实施例中,在介电层203和第二电极阵列2022之间还可以包括第二间隔层(未示出)。在这样的情况下,第二双电层电容C 2EDL包括第二电极、第二间隔层、介电层203。类似地,在按压状态下,单元电容中的介电层203穿过第二间隔层与第二电极接触以形成至少一个第二接触面,至少一个第二接触面中的每个接触面处形成第二微型双电层电容,且至少一个第二接触面处的至少一个第二微型双电层电容并联以形成第二双电层电容。此时,第二双电层电容C 2EDL为可变双电层电容。此时,在按压状态下,由于电极与微结构的接触面积增大,而总的C EDL的大小随着C 1EDL和C 2EDL的增加而剧烈变化,也即随着第一电极、第二电极与介电层的微结构的接触面积的增加而剧烈增加,从而呈现出高度的灵敏性。
图3A为本申请实施例提供的柔性电容阵列20中的第一电极阵列2012的一部分的示意图。图3B为本申请实施例提供的柔性电容阵列20中的第二电极阵列2022的一部分的示意图。图3C为本申请实施例提供的柔性电容阵列20的结构示意图。
在图3A和图3B中示出的实施例中,第一电极阵列2012中同一行的多个第一电极在行方向上电性连接以形成在行方向上平行的M个电极串,而第二电极阵列2022中同一列的多个第二电极在列方向上电性连接以形成在列方向上平行的N个电极串。
其中,第一电极阵列2012和第二电极阵列2022相对设置,并且行方向和列方向不同。在一些实施例中,行方向和列方向几乎垂直。
第一电极或第二电极中至少一个电极的电极图案为圆形、长方形或正方形。例如,电极图案可以是图2A和图2B中示出的正方形。当然,电极图案的尺寸可以根据实际的应用场景来进行确定,本申请对此不进行限制。
图3C示出了柔性电容阵列20的结构示意图,其可用于智能足式机器人。在一些实施例中,对于智能足式机器人而言,可以将柔性电容阵列20的大小设计为5mm*5mm。智能足式机器人的单足足底压力分布测试的阵列可以包括一个或多个5mm*5mm的柔性电容阵列20。在一些实施例中,对于图1中的智能足式机器人10的每条腿可以设置至少4个柔性电容阵列20,四条腿可能需要16个柔性电容阵列20。由于可以对智能足式机器人10的四条腿都可以获取压力反馈信息,因此可以对四足的压力反馈进行综合分析,从而对智能足式机器人的重心倾向进行快速反应,从而提供运动稳定性判据。因此,本申请实施例可以为足式机器人(比如机器狗)的运动,提供快速精确的定量化足底压力分布及大小的反馈,而简化了利用刚性力传感器(例如多轴力传感器)计算力矩的复杂过程。
在一些实施例中,每个柔性电容阵列20可以包括4*4个单元电容,共16个单元电容。第一电极阵列2012用4个传感单元作为一个串联电极,共计4列。第二电极阵列2022也包括4列串联了4个电极的电极串。由此,柔性电容阵列20共计有8个电极引出线。最后,通过交叉叠放介电层203 和第一间隔层204,即可制作出包括的4*4的标准阵列的柔性电容阵列20。
由此,当柔性电容阵列20接收到压力时,柔性电容阵列20可以定位到4*4的电极阵列中的一个或多个电容的变化,进而确定压力的大小和位置。本申请实施例通过将柔性力学电极阵列直接制作(例如印刷)在柔性薄膜材料的衬底上并使用柔性的离子型传感活性材料作为介电层,同时在电极和介电层之间设置有间隔层,实现了柔性电容阵列20的柔性、高传感密度、高传感灵敏度、高稳定性和可测高压强的能力。与相关技术的多轴力传感器相比,由于柔性电容阵列20的材料全部由柔性材料组成,由此其可以更好贴附在弯曲或不平整的机器人外表面上且不易掉落,由此实现了更好的随形贴附性。如图3A至图3C所示的电极排布方式线路排布清晰,可以简化测试的工作量(一次可以测试一整条串联的电极),减小引线的布线空间并减小电极之间的串扰,从而实现高密度的电极排布。
值得注意的是,图3A至图3C示意性地示出第一电极阵列2012和第二电极阵列2022中的一部分的电极分布方式的示例,但是本申请实施例对第一电极阵列2012和第二电极阵列2022中包括的电极的个数、排列方式和具体位置均不作限定,只要当柔性电容阵列20可以实现触摸位置和触摸压力的检测即可。
图4A为本申请实施例提供的柔性电容阵列20的另一种结构示意图。图4B为本申请实施例提供的柔性电容阵列20的第一电极阵列2012的俯视图。图4C为本申请实施例提供的柔性电容阵列20的另一种结构示意图。
参见图4A和图4C,与上述实施例类似地,第一电极阵列2012或第二电极阵列2022的多个电极中至少一个电极的电极图案为圆形、长方形或正方形。
其中,第一电极阵列中的多个第一电极相互电性连接且共同电性连接至一条共同的引线。例如,在图4A中第一电极阵列2012中的每个电极至少与第一电极阵列2012中的另一个电极连接(形成一个“四”字),而第二电极阵列2022中的每个第二电极具有单独的引线。针对4*4阵列而言,第一电极阵列2012的16个电极分别与第一电极阵列2012的其他电极连接,第一电极阵列2012的16个电极总共具有一个电极引出线。第二电极阵列2022的每个电极都使用一个电极引出线,即柔性电容阵列20共计有17根电极引出线(第一电极阵列2012具有一个电极引出线,第二电极阵列2022具有16个电极引出线)。
在图4C中,第一电极阵列2012中的每个第一电极具有单独的引线。第二电极阵列2022中的每个第二电极具有单独的引线。由于每个电极单独引线,其可以减少电极之间串扰。图4C中的每个单元电容的电学特性都是独立的,根据阵列方案进行位置排布和固定。由此,在柔性电容阵列20中电学信号干扰大幅消除。因为每个单元电容皆需要上下至少两个电极,因此图4C的排布方式共计32个电极引出线。
如图4A至图4C所示的电极排布方式,第一电极阵列2012和第二电极阵列2022中相对设置的两个电极与其之间的介电层和间隔层构成了单元电容,每个单元电容都可以作为独立的传感器单独工作,从而有利于复杂空间的力学检测。
值得注意的是,图4A至图4C示意性地示出第一电极阵列2012和第二电极阵列2022中的一部分的电极和引线分布方式的示例,但是本申请的实施例对第一电极阵列2012和第二电极阵列2022中包括的电极的个数、排列方式、引线排布和具体位置均不作限定,只要当柔性电容阵列20可以实现压力的位置和大小的检测即可。
图5示出了本申请实施例提供的柔性电容阵列20的制备方法500的流程图。本申请实施例的制备方法500包括以下步骤。虽然以顺序示出了制备方法500中的各个步骤501-506,但是本领域技术人员应当理解,步骤可以以与图5中所示的顺序不同的顺序执行,或这些步骤也可同时执行。此类替代顺序的实施例可包含重叠、交错、中断、重新排序、增量、准备、补充、同时、反向或其它变体顺序。
在步骤501中,可以设置第一柔性电极层201。第一柔性电极层201上设置有第一电极阵列2012。其中,第一电极阵列2012中的多个第一电极排列成包括M行和N列的矩阵,其中M、N为正整数。例如,可以使用银纳米线喷涂方式在第一柔性电极层201的第一柔性薄膜层2011喷涂出图案化的第一电极阵列2012。或者,还可以使用电子束蒸镀方式在第一柔性电极层201的第一柔性薄膜层2011蒸镀图案化的第一电极阵列2012。如上所述,第一柔性薄膜层2011可以由以下材料中的至少一项组成:热塑性聚氨酯弹性体橡胶(TPU)、聚对苯二甲酸乙二醇酯(PET)、聚偏氟乙烯(PVDF)、聚乙烯醇(PVA)、尼龙6(PA6)、聚乳酸(PLA)、聚丙烯腈(PAN)、和聚醚砜(PES)等。
例如,可以利用制作好的掩模版来辅助上述的银纳米线喷涂和电子束蒸镀工艺。例如,该掩模版中的电极图案中的每个电极可以是圆形、长方形或正方形。
在步骤502中,可以设置第一间隔层204,将第一间隔层204置于第一柔性电极层201之上。其中,制备第一间隔层204可以包括以下至少之一:制备微柱结构的聚二甲基硅氧烷(PDMS)薄膜以形成由聚二甲基硅氧烷(PDMS)支撑柱构成的空腔;制备高分子薄膜,并将该高分子薄膜切割成框架结构的高分子薄膜,以形成由高分子薄膜的框型支架构成的空腔;制备将高分子溶液置于网状结构的模板上,将混合溶液固化后获得第一间隔层204,以形成由网孔状的高分子薄膜构成的空腔。
在步骤503中,可以设置介电层203,并将介电层203放置在第一间隔层204之上。介电层203为由聚乙烯醇-磷酸(PVA-H 3PO 4)组成的离子凝胶薄膜。介电层203的制备方法为,首先将聚乙烯醇(PVA)单质溶解于水 中。例如,可以通过将PVA加入装有水的容器中,随后通过水浴加热该容器,在约90℃下同时进行搅拌,大约1-2小时后PVA完全溶解于水即可形成无色透明的凝胶状溶液。然后向凝胶状溶液加入磷酸以形成混合溶液。例如,可以向PVA水溶液中加入磷酸(H 3PO 4),并通过磁子进行常温下搅拌约1小时,随后整体呈透明状,其中混合有少许凝絮状物质。此时,混合溶液(PVA-H 3PO 4水溶液)即制备完成。接着,可以将混合溶液倒在微结构模板上,例如将PVA-H 3PO 4水溶液浇筑到预先准备好的结构模板表面,固化即可揭膜,得到聚乙烯醇-磷酸(PVA-H 3PO 4)的离子凝胶薄膜。最后将离子凝胶薄膜切割为所需求大小,并密封保存等待使用。
本申请实施例不对制备介电层203和第一间隔层204的顺序进行限制。例如,在本申请实施例中,可以先制备介电层203再制备第一间隔层204。
在步骤504中,制备第二柔性电极层202,其上设置有第二电极阵列2022。其中,第二电极阵列2022中的多个第二电极排列成包括M行和N列的矩阵。类似地,可以使用银纳米线喷涂方式在第二柔性电极层202的第二柔性薄膜层2021喷涂出图案化的第二电极阵列2022。或者,还可以使用电子束蒸镀方式在第二柔性电极层202的第二柔性薄膜层2021蒸镀图案化的第二电极阵列2022。如上所述,第二柔性薄膜层2021可以由以下材料中的至少一项组成:热塑性聚氨酯弹性体橡胶(TPU)、聚对苯二甲酸乙二醇酯(PET)、聚偏氟乙烯(PVDF)、聚乙烯醇(PVA)、尼龙6(PA6)、聚乳酸(PLA)、聚丙烯腈(PAN)、和聚醚砜(PES)等。第二电极阵列2022的电极图案可以与第一电极阵列2012的电极图案类似。
在步骤505中,将第二柔性电极层202置于介电层203之上,以使得第二电极阵列2022中的第i行第j列的第二电极与第一电极阵列2012中的第i行第j列的第一电极相对设置以形成电极对,其中,i大于或者等于零且小于M,j大于或者等于零且小于N。
在步骤506中,将第一柔性电极层201、介电层203、第一间隔层204和第二柔性电极层202封装成柔性电容阵列20。
例如,在第一柔性电极层201中没有与介电层接触的空余位置(例如多条串联电极之间的间隔)可以使用各种填料填充,例如双面胶。接着,再将第二柔性电极层202放置在介电层203之上。在一个实施例中,第一柔性电极层201和第二柔性电极层202通过空余位置中的填料粘合在一起,进而完成了柔性电容阵列20的封装。
其中,第一电极阵列与第二电极阵列中相对设置的每个电极对、和介于电极对之间的第一间隔层和介电层的部分构成柔性电容阵列的单元电容,每个单元电容包括串联连接的第一双电层电容和第二双电层电容,第一双电层电容包括第一电极、第一间隔层和介电层。在按压状态下,单元电容中的介电层穿过第一间隔层与第一电极接触以形成至少一个第一接触面,至少一个第一接触面中的每个接触面处形成第一微型双电层电容,且至少 一个第一接触面处的至少一个第一微型双电层电容并联以形成第一双电层电容。
图6A为本申请实施例提供的柔性电容阵列20的灵敏度示意图。图6B为本申请实施例提供的柔性电容阵列20随时间电容漂移曲线。图6C为本申请实施例提供的柔性电容阵列20的循环测试曲线。图6D为本申请实施例提供的柔性电容阵列20的阵列图。
图6A的横坐标为向柔性电容阵列20施加的压力(单位为kPa),纵坐标为电容的变化值。图6A中黑色的点为测量值,灰色的线为拟合线。拟合线1可用于表征施加的压力在500kPa-1500kPa的情况下的电容变化值与压力的关系。拟合线2可用于表征施加的压力在2000kPa-4000kPa的情况下的电容变化值与压力的关系。如图6A所示,柔性电容阵列20在施加1000kPa的压力的情况下,电容的变化值大约为1000kPa*13.41kPa -1=13.41*10 3。在施加3000kPa的压力的情况下,电容的变化值大约为3000kPa*5.54kPa -1=16.62*10 3。由此可见,柔性电容阵列20的灵敏度显著高于传统的电容器阵列。
图6B的大图的横坐标为按压柔性电容阵列20中的一个单元电容的按压保持时间(按压保持时间的起始点为横坐标上的0.0秒),纵坐标为该单元电容的电容值(起始点为纵坐标上的0点)。图6B的小图中示出测量该单元电容的方式。例如,图6B的小图的每条曲线分别示出了在按压柔性电容阵列20中的一个单元电容0秒、0.2秒、0.5秒、1秒、1.5秒和2秒后松开按压力的情况下,该单元电容的电容值随时间变化的曲线。小图中每条曲线电容的最大值即为大图中的每个点对应的纵坐标值。如图6B所示,在按压柔性电容阵列20的时间为0.5秒时,柔性电容阵列20的电容变化值为750pF左右。而在按压柔性电容阵列20的时间为1.5秒时,柔性电容阵列20的电容变化值也在750pF左右。可见即使持续按压柔性电容阵列20,柔性电容阵列20的电容值的变动仍旧不大,相比于相关技术的柔性电容传感器而言,柔性电容阵列20的稳定度显著提高。
图6C的横坐标为按压柔性电容阵列的循环次数,纵坐标为每次循环中的最大电容值。图6C示出了按压1次到150次柔性电容阵列20的情况。如图6C所示,在反复按压柔性电容阵列20的情况下,柔性电容阵列20的电容值一直稳定,而不会突变。
图6D示出了对柔性电容阵列20中的某一个单元电容进行按压的情况,其坐标X和Y对应于单元电容的位置,竖直坐标为该单元电容的变化量。在按压位置处的单元电容的电容值显著高于未按压的位置的单元电容的电容值。可见使用柔性电容阵列20作为力学传感器,可以准确的检测出受力的位置。
图7A为本申请实施例提供的电容阵列检测系统70的等效电路图。图7B为本申请实施例提供的电容阵列检测系统70的架构图。图7C为本申请 实施例提供的电容阵列检测系统70检测压力传感信息的流程图。图7D为本申请实施例提供的电容阵列检测系统70的串扰补偿电路的等效电路图。
电容阵列检测系统70包括激励电路71、柔性电容阵列20、电容检测电路72和电容选择电路73。
电容选择电路73,被配置为选通柔性电容阵列中20的至少一个单元电容。在一些实施例中,电容选择电路73为开关电路,例如图7A中的电容选择电路可以等效为一个开关。
激励电路71,被配置为在电容选择电路的控制下向柔性电容阵列的第一电极阵列中的至少一个电极引线和第二电极阵列中的至少一个电极引线输出激励信号。在图7A中,激励电路71可以为交流电源或脉冲信号源。由于在检测电容的过程中,阴阳离子在电极之间的运动,因此电容值的大小与激励频率存在相关关系,当激励频率越高,电容器的电容值则越小,越稳定,但离子特性则越差。因此在不同的激励频率下单元电容的响应特性可能截然不同。在一些实施例中,激励电路71的频率为10 4Hz。
例如,对于图4C中所示的每个电极的单独引线的实施例而言,第一柔性电极层1012中电极A可以接入激励电路71的一端,第二柔性电极层1022中与电极A正对的电极B可以接入激励电路71的另一端。柔性电容阵列20中的电极A和电极B重叠的区域可以等效为图7A中的电容C。其余导线可以等效为一个电阻R c
电容检测电路72,被配置为从检测至少一个单元电容的电容值。在一些实施例中,电容检测电路72可以是图7中的采样电阻R sample。如图7A所示,激励电路71、柔性电容阵列20和电容检测电路72构成一个回路。当施加外力作用时,电容C的电容值发生变化。进而,采样电阻R sample的两端的电压变化。采样电阻R sample两端的电压可以对应于检测的单元电容的电容值,通过二者的对应关系,可以获得检测的单元电容的电容值。虽然以测量电阻R sample两端的电压的方式来对应地测量单元电容的电容值,本领域技术人员应当理解还可以以其它的方式来测量单元电容的电容值,本申请对此不作限制。
接着电容检测电路72还可以将至少一个单元电容的电容值输出到信号处理器(未示出)。信号处理器,被配置为处理将至少一个单元电容的电容值转化为压力的大小和位置。信号处理器可以被实现为可以将电容值转换为模拟信号的模拟信号处理器,或者,电容检测电路72还可以被实现为可以将电容值转换为数字信号的数据信号处理器(DSP)、现场可编程门阵列(FPGA)等,本申请的实施例对信号处理器的实现方式不作限制。
此外,对于图3C中描述的电极阵列,由于第一电极阵列中的电极在第一方向上串联连接而第二电极阵列中的电极在第二方向上串联连接,则电容选择电路73可以包括对电极阵列进行行列扫描的多路选择器,该多路选择器一端与激励电路71的一端连接。例如,第一电极阵列2012中每条串 联电极的一端可以与多路选择器的一端相连,另一端悬空。第二电极阵列2022的每条串联电极的一端可以与激励电路71的另一端相连,另一端悬空。又例如,第一电极阵列2012中每条串联电极的两端都与多路选择器相连。第二电极阵列2022的每条串联电极的两端都与电容检测电路72相连。再例如,第一电极阵列2012中每条串联电极的两端分别与激励电路71的两端相连,第二电极阵列2022的每条串联电极的两端都与电容检测电路72相连。本申请不对图3C中描述的电极阵列进行行列扫描的方式进行限制。
在一些实施例中,电容选择电路73周期性地选通第一电极阵列2012中的一条串联电极。假设第一电极阵列2012中串联的电极A 1’、A 2’…A k’形成的串联电极被选通在某个时刻被选通。在该时刻,第二电极阵列2022与该串联电极有重叠的区域的电极B 1’、B 2’…B k’与电极A 1’、A 2’…A k’所形成的电容导通。电极A 1’和电极B 1’重叠的区域可以等效为图7A中的电容C。电极A 1’和电极B 1’的导线可以等效为一个电阻R c。此时,共有k个电容C导通。激励电路61、k个电容C中的任意一个电容和电容检测电路72构成都能构成一个回路,此时共有k个导通回路。如果此时触摸电极A 1’和电极B 1’的重叠区域,则电极A 1’和电极B 1’所构成的电容出现剧烈变化。进而,采样电阻R sample的两端的电压变化。采样电阻R sample两端的电压可以对应于电容C的电容值,基于该电压可以计算得到电容C的电容值。
由此,在智能机器人运动的过程中,在机器人与物体或人相触碰后产生冲击力,柔性电容阵列20能够通过其的电容变化来检测冲击力。根据电极阵列中产生响应的位置能够判断出机器人碰触物体的位置,并根据电容值的变化量大致的判断出冲击力的大小。通过分析电容值的变化,能够得到机器人与外界物体的接触情况,为机器人的下一步动作提供信息。根据本申请实施例的电容阵列检测系统在机器人安全、人机交互等方面有巨大的应用价值。
值得注意的是,图7A示意性地示出电容阵列检测系统70的某一种示例,但是本申请的实施例电容阵列检测系统70的电路连接方式并不作限定,只要当柔性电容阵列20可以实现压力的检测即可。
参见图7B,电容选择电路73还可以包括MCU和接口电路。针对图3C、图4A和图4C对应的电容阵列,可以设计适合控制第一电极阵列2012中的电极的开关电路和控制第二电极阵列2022中的电极的开关电路,即通过可控开关分别实现对阵列中各单元电容上下电极的可控连接,其可控开关的控制引线均由MCU的GPIO控制,目的是实现对阵列中各单元电容的独立选通与关断,同一时刻通过可控开关选通某一单元电容接入后级电容检测电路72进行电容值测量。柔性电容阵列20中的全部单元电容均由MCU来控制开关。MCU依次接通单元电容,以扫描的方式实现对整个柔性电容阵列20所有单元电容的电容值检测。
电容检测电路72,提供包括但不限于以下电容检测方式:①利用现有 的电容传感器芯片检测、②通过搭建硬件检测电路检测(例如上述的简单的采样电阻的方式,或者包括运放等器件的其它硬件检测电路)和③利用电容测量仪器(如LCR检测)等。本申请实施例不对电容检测电路72检测电容值的方式进行限制。
在一些实施例中,为了提高本申请实施例中柔性电容阵列20的稳定性,增强阵列各单元电容的抗串扰能力,在电容检测电路72还可以包括串扰补偿电路。该电路由可控开关及切换电路组成,开关同样由MCU控制。电容阵列扫描检测时,先送入串扰补偿电路中处理,再通过上述三种检测方法测量各单元电容值。之后电容检测模块将检测到的对应单元电容的容值接入信号处理器,进行后续的信号处理、补偿和分析等工作。本申请实施例提供的电容阵列检测系统在保证了本申请实施例电容阵列在实现超宽测量范围的同时,使得各单元电容具备强稳定性和一致性。
串扰补偿电路的等效电路可以如图7D所示。在一些实施例中,串扰补偿电路可以被配置为在电容选择电路的控制下控制电容检测电路72检测至少一个单元电容的至少一个串扰补偿值。如图7D所示,串扰补偿电路的端子Ca和Cb分别接入柔性电容阵列20的第一电极阵列的引线和第二电极阵列的引线。例如,可以通过MCU控制端子Ca和Cb接入的引线来选通某个特定的待测电容。此外串扰补偿电路的端子Cc接入电容检测电路72,以用于电容值/串扰补偿值的检测。当MCU选通某个待测电容时,该待测电容和柔性电容阵列20中对该待测电容产生影响的其他电容可以等效为图7D中的待测电容、串扰电容1和串扰电容2组成的等效电路。MCU可以控制串扰补偿电路的四个的开关,以依次测出待测电容、串扰电容1和串扰电容2在多种串并联的情况下的多组值。然后,通过电容计算电路,可以通过计算出串扰电容1和串扰电容2在各种串并联情况下的电容值(即串扰补偿值)来计算出待测电容的准确的电容值。例如,电容计算电路可以被配置为根据至少一个串扰补偿值更新至少一个单元电容的电容值。
参见图7C,电容阵列检测系统70检测电容值的流程如下:
首先,可以将柔性电容阵列20设置在压力传感检测面上,并且柔性电容阵列20中的每个单元电容对应于压力传感检测面的一个压力传感检测位置。例如,对于智能机器人,压力传感检测面可以是机器人臂的至少一部分。压力传感检测面上可以贴附上述的柔性电容阵列20,该柔性电容阵列20可以与上述的电容阵列检测系统70中的其它部件连接,进而检测在机器人运动的过程中,在机器人与物体或人相触碰后产生触碰压力。对于可穿戴设备而言,压力传感检测面可以是可穿戴设备的外表面。在该设备被穿戴上后,可以通过柔性电容阵列20采集并分析触摸数据。
然后,电容选择电路73被配置为依次选通柔性电容阵列20中的每个单元电容。在一些实施例中,电容选择电路73可以初始化MCU的各项参数,使得其可以依次选通柔性电容阵列20中的每个单元电容。电容选择电 路73在选通单元电容之前还可以检测其各个控制接口(例如,GPIO控制接口731)和通信接口732是否正常。在各个接口正常的情况下,电容选择电路73可以开始选通柔性电容阵列20中的单元电容。如果出现接口不正常的情况,可以重新初始化MCU的各项参数。
这里以选通柔性电容阵列20中单元电容C ij为例进行说明,C ij表示柔性电容阵列20中第i行第j列单元电容。在程序运行后,MCU控制电容阵列上下电极的可控开关选通C ij,再控制电容检测模块中串扰补偿电路的可控开关切换多组电路连接状态下的C ij,从而求解出单元电容的至少一个串扰补偿值。电容计算电路根据至少一个串扰补偿值更新单元电容的电容值,从而计算补偿解耦后的C ij真实容值(去掉串扰影响后的电容值)。之后MCU经过扫描的方式,先列后行,依次读取电容阵列所有电容的容值用于后续操作。电容检测电路70还被配置为依次输出每个单元电容的电容值作为压力传感检测位置的压力传感信息,以用作机器人的后续处理。
图8为本申请实施例提供的机器人80的示意图。机器人80包括上述的电容阵列检测系统70,其中,电容阵列检测系统中的柔性电容阵列设置在机器人的至少一部分的压力传感检测面上。
机器人80还包括冲击力检测器、冲击扰动确定器和抗冲击扰动控制器。在一些实施例中,冲击力检测器被配置为根据的电容阵列检测系统70所检测的至少一个单元电容的电容值计算冲击力检测值及冲击力发生位置。在一些实施例中,电容阵列检测系统70可以周期性地检测柔性电容阵列中的各个单元电容的电容值,并将电容值输入至冲击检测器。
在一些实施例中,冲击扰动确定器被配置为基于冲击力检测器的冲击力检测值及冲击力发生位置确定冲击扰动是否发生。在一些实施例中,冲击力检测器可以通过冲击力检测值及冲击力发生位置来计算为机器人此刻的ZMP(零力矩点)稳定裕度,将其作为机器人是否受到外界扰动的判据,实现扰动大小、方向及作用时间的定量快速检测,并为后续控制步骤提供触发条件和计算基础。
在一些实施例中,抗冲击扰动控制器被配置为响应于所确定的冲击扰动,调整机器人的操作参数,以控制机器人抗击冲击扰动。机器人的操作参数包括控制机器人的迈步和落脚点的参数。若冲击扰动确定器确定扰动发生,则抗冲击扰动控制器基于冲击力检测值及冲击力发生位置对机器人的落脚点进行调整,通过迈步保持机器人全身稳定;同时抗冲击扰动控制器还基于冲击力检测值及冲击力发生位置进行落脚减震控制,实现足底柔顺着地,减小落脚冲击。
在一些实施例中,在机器人为足式机器人的情况下,可以将柔性电容阵列20铺设在足式机器人的足部底面的压力传感检测面上。在一些实施例中,对于图1中的足式机器人10的每条腿可以设置至少4个柔性电容阵列20,四条腿可能需要16个柔性电容阵列20。由于可以对足式机器人10的 四条腿都可以获取压力反馈信息,因此可以对四足的压力反馈进行综合分析,从而对智能足式机器人的重心倾向进行快速反应从而提供运动稳定性判据。
在一些实施例中,抗冲击扰动控制器调整机器人的操作参数还包括:调整足式机器人的落脚点或落脚角度。抗冲击扰动控制器还包括:规划轨迹生成器、调整轨迹生成器和足关节角度生成器。其中,规划轨迹生成器,被配置为规划足式机器人的质心轨迹和落脚点轨迹。规划轨迹生成器可以通过ZMP稳定裕度来规划足式机器人的行进轨迹,使得机器人始终保持平衡稳定。规划轨迹生成器还可以规划足式机器人的落脚点(或踝关节)的运动轨迹。在冲击扰动确定器确定了冲击扰动发生的情况下,调整轨迹生成器可以进一步根据该冲击扰动来调整足式机器人的行进状态。例如,调整轨迹生成器可以被配置为基于足式机器人的质心轨迹和冲击力检测值,调整足式机器人的质心轨迹;以及基于足式机器人的落脚点轨迹,调整足式机器人的落脚点轨迹。在一些实施例中,调整轨迹生成器再对原规划轨迹进行调整后,可以利用其内置的线性二次型调节器(SLQP)来控制生成质心轨迹。最后,机器人80可以利用足关节角度生成器来控制足式机器人的行进平衡。在一些实施例中,足关节角度生成器可以被配置为基于调整后的质心轨迹和落脚点轨迹,调整足式机器人的足关节角度来调整足式机器人的落脚点或落脚角度。足关节角度生成器可以通过逆运动学求解出关节角度时间序列,同时落脚减震控制对计算出的关节角度进行在线补偿,最终实现足式机器人在受到外界扰动时仍能维持稳定行走。
本申请实施例可以为足式机器人(比如机器狗)的运动,提供快速精确的定量化足底压力分布及大小的反馈,而简化了传统的利用刚性力传感器(例如多轴力传感器)计算力矩的复杂过程。
本申请实施例提供了一种柔性电容阵列及其制备方法、电容阵列检测系统和机器人,使得柔性电容阵列整体呈现出柔性并大幅提高压力传感系统的灵敏度、稳定性和承受高压强的能力。
接下来,有以下几点需要说明:
(1)本申请实施例附图只涉及到与本申请实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本申请实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本申请实施例中的特征可以相互组合以得到新的实施例。
以上所述仅是本申请的示范性实施方式,而非用于限制本申请的保护范围,本申请的保护范围由所附的权利要求确定。

Claims (17)

  1. 一种柔性电容阵列,包括:
    第一柔性电极层,所述第一柔性电极层上设置有第一电极阵列;
    第二柔性电极层,所述第二柔性电极层上设置有第二电极阵列;
    介电层,所述介电层设置于所述第一柔性电极层和所述第二柔性电极层之间;
    第一间隔层,所述第一间隔层设置于所述第一电极阵列和所述介电层之间,
    其中,所述第一电极阵列与所述第二电极阵列中相对设置的每个电极对、和介于所述电极对之间的所述第一间隔层和所述介电层的部分构成所述柔性电容阵列的单元电容,每个所述单元电容包括第一双电层电容,所述第一双电层电容包括所述第一电极、所述第一间隔层和所述介电层;
    其中,在按压状态下,所述单元电容中的介电层穿过所述第一间隔层与所述第一电极接触形成至少一个第一接触面,所述至少一个第一接触面中的每个接触面处形成第一微型双电层电容,且所述至少一个第一接触面处的至少一个第一微型双电层电容并联形成第一双电层电容。
  2. 如权利要求1所述的柔性电容阵列,其中,所述第一电极阵列中的多个第一电极排列成包括M行和N列的矩阵,其中M、N为正整数;所述第二电极阵列中的多个第二电极排列成包括M行和N列的矩阵,并且所述第二电极阵列中的第i行第j列的第二电极与所述第一电极阵列中的第i行第j列的第一电极相对设置形成电极对,i大于或者等于零且小于M,j大于或者等于零且小于N。
  3. 如权利要求1所述的柔性电容阵列,其中,所述单元电容还包括与所述第一双电层电容串联的第二双电层电容,所述第二双电层电容包括所述第二电极和所述介电层,其中,所述第二电极和所述介电层接触形成第二双电层电容,所述第二双电层电容与所述第一双电层电容串联。
  4. 如权利要求1所述的柔性电容阵列,所述柔性电容阵列还包括第二间隔层,所述第二间隔层设置于所述第二电极阵列和所述介电层之间,其中,
    所述单元电容还包括与所述第一双电层电容串联的第二双电层电容,所述第二双电层电容包括所述第二电极、所述第二间隔层、所述介电层,
    其中,在按压状态下,所述单元电容中的介电层穿过所述第二间隔层与所述第二电极接触形成至少一个第二接触面,所述至少一个第二接触面中的每个接触面处形成第二微型双电层电容,且所述至少一个第二接触面处的至少一个第二微型双电层电容并联形成第二双电层电容。
  5. 如权利要求1所述的柔性电容阵列,其中,所述间隔层包括使所述介电层与所述电极对中的至少一个电极间隔的空腔。
  6. 如权利要求5所述的柔性电容阵列,其中,所述空腔包括以下至少之一:由聚二甲基硅氧烷(PDMS)支撑柱构成的空腔;由高分子薄膜的框型支架构成的空腔;由网孔状的高分子薄膜构成的空腔。
  7. 如权利要求1所述的柔性电容阵列,其中,
    所述第一电极阵列中同一行的多个第一电极在行方向上电性连接,形成在行方向上平行的M个电极串;
    所述第二电极阵列中同一列的多个第二电极在列方向上电性连接,形成在列方向上平行的N个电极串。
  8. 如权利要求1所述的柔性电容阵列,其中,
    所述第一电极阵列中的多个所述第一电极相互电性连接、且共同电性连接至一条共同的引线,并且所述第二电极阵列中的每个所述第二电极具有单独的引线。
  9. 如权利要求1所述的柔性电容阵列,其中,所述第一电极阵列中的每个所述第一电极具有单独的引线,以及所述第二电极阵列中的每个所述第二电极具有单独的引线。
  10. 一种柔性电容阵列的制备方法,包括:
    设置第一柔性电极层,所述第一柔性电极层上设置有第一电极阵列;
    设置第一间隔层,将所述第一间隔层置于所述第一柔性电极层之上;
    设置介电层,将所述介电层置于所述第一间隔层之上;
    设置第二柔性电极层,所述第二柔性电极层上设置有第二电极阵列;
    将所述第二柔性电极层置于所述介电层之上;
    将所述第一柔性电极层、所述介电层、所述间隔层和所述第二柔性电极层封装成所述柔性电容阵列,
    其中,所述第一电极阵列与所述第二电极阵列中相对设置的每个电极对、和介于所述电极对之间的所述第一间隔层和所述介电层的部分构成所述柔性电容阵列的单元电容,每个所述单元电容包括第一双电层电容,所述第一双电层电容包括所述第一电极、所述第一间隔层和所述介电层;
    其中,在按压状态下,所述单元电容中的介电层穿过所述第一间隔层与所述第一电极接触形成至少一个第一接触面,所述至少一个第一接触面中的每个接触面处形成第一微型双电层电容,且所述至少一个第一接触面处的至少一个第一微型双电层电容并联以形成第一双电层电容。
  11. 如权利要求10所述的柔性电容阵列的制备方法,其中,所述第一电极阵列中的多个第一电极排列成包括M行和N列的矩阵,其中M、N为正整数,所述第二电极阵列中的多个第二电极排列成包括M行和N列的矩阵,其中,所述第二电极阵列中的第i行第j列的第二电极与所述第一电极阵列中的第i行第j列的第一电极相对设置形成电极对,其中,i大于或者等于零且小于M,j大于或者等于零且小于N。
  12. 如权利要求10所述的柔性电容阵列的制备方法,其中,所述介电层的制备方法包括:
    将聚乙烯醇溶解于水中形成凝胶状溶液;
    向所述凝胶状溶液加入磷酸形成混合溶液;
    将所述混合溶液置于微结构模板上;
    将所述混合溶液固化后得到所述介电层。
  13. 一种电容阵列检测系统,包括:
    如权利要求1-9中任一项所述的柔性电容阵列;
    电容选择电路,被配置为选通所述柔性电容阵列中的至少一个单元电容;
    激励电路,被配置为在所述电容选择电路的控制下向所述柔性电容阵列的第一电极阵列中的至少一个电极引线和第二电极阵列中的至少一个电极引线输出激励信号;
    电容检测电路,被配置为检测所述至少一个单元电容的电容值。
  14. 如权利要求13所述的电容阵列检测系统,其中,所述电容检测电路还包括:
    串扰补偿电路,被配置为在所述电容选择电路的控制下控制所述电容检测电路检测所述至少一个单元电容的至少一个串扰补偿值;
    电容计算电路,被配置为基于所述至少一个串扰补偿值更新所述至少一个单元电容的电容值。
  15. 如权利要求14所述的电容阵列检测系统,其中,
    所述柔性电容阵列设置在压力传感检测面上,并且所述柔性电容阵列中的每个所述单元电容对应于所述压力传感检测面的一个压力传感检测位置;
    所述电容选择电路,被配置为依次选通所述柔性电容阵列中的每个所述单元电容;
    所述电容检测电路被配置为:对于每个所述单元电容,
    检测所述单元电容的电容值,并利用所述串扰补偿电路来控制所述 电容检测电路检测所述单元电容的至少一个串扰补偿值;
    利用所述电容计算电路,基于所述至少一个串扰补偿值更新所述单元电容的电容值;
    依次输出每个所述单元电容的电容值作为所述压力传感检测位置的压力传感信息。
  16. 一种机器人,包括:
    如权利要求13至15中的任一项所述的电容阵列检测系统,其中,所述的电容阵列检测系统中的柔性电容阵列设置在所述机器人的至少一部分的压力传感检测面上;
    冲击力检测器,被配置为基于所述的电容阵列检测系统所检测的至少一个单元电容的电容值计算冲击力检测值及冲击力发生位置;
    冲击扰动确定器,被配置为基于所述冲击力检测器的冲击力检测值及所述冲击力发生位置确定冲击扰动;
    抗冲击扰动控制器,被配置为响应于所确定的冲击扰动,调整所述机器人的操作参数,控制所述机器人抗击所述冲击扰动。
  17. 如权利要求16所述机器人,其中,
    所述机器人为足式机器人,所述柔性电容阵列铺设在所述足式机器人的足部底面的压力传感检测面上;
    所述调整所述机器人的操作参数包括:调整所述足式机器人的落脚点或落脚角度;
    所述抗冲击扰动控制器还包括:规划轨迹生成器、调整轨迹生成器和足关节角度生成器,其中,
    所述规划轨迹生成器,被配置为规划所述足式机器人的质心轨迹和落脚点轨迹;
    所述调整轨迹生成器,被配置为基于所述足式机器人的质心轨迹和所述冲击力检测值,调整所述足式机器人的质心轨迹;以及基于所述足式机器人的落脚点轨迹,调整所述足式机器人的落脚点轨迹;
    所述足关节角度生成器,被配置为基于调整后的质心轨迹和调整后的落脚点轨迹,通过调整所述足式机器人的足关节角度来调整所述足式机器人的落脚点或落脚角度。
PCT/CN2021/086979 2020-05-07 2021-04-13 柔性电容阵列及其制备方法、电容阵列检测系统和机器人 WO2021223581A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21800573.4A EP4019920A4 (en) 2020-05-07 2021-04-13 FLEXIBLE CAPACITOR ARRANGEMENT AND METHOD OF MANUFACTURE THEREOF, CAPACITOR ARRAY DETECTION SYSTEM AND ROBOT
JP2022539324A JP7478824B2 (ja) 2020-05-07 2021-04-13 フレキシブルコンデンサアレイおよびその製造方法、コンデンサアレイ検出システムならびにロボット
US17/702,275 US12104968B2 (en) 2020-05-07 2022-03-23 Flexible capacitor array and preparation method therefor, capacitor array detection system, and robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010377743.6 2020-05-07
CN202010377743.6A CN111504521B (zh) 2020-05-07 2020-05-07 柔性电容阵列及其制备方法、和电容阵列检测系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/702,275 Continuation US12104968B2 (en) 2020-05-07 2022-03-23 Flexible capacitor array and preparation method therefor, capacitor array detection system, and robot

Publications (1)

Publication Number Publication Date
WO2021223581A1 true WO2021223581A1 (zh) 2021-11-11

Family

ID=71869809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086979 WO2021223581A1 (zh) 2020-05-07 2021-04-13 柔性电容阵列及其制备方法、电容阵列检测系统和机器人

Country Status (5)

Country Link
US (1) US12104968B2 (zh)
EP (1) EP4019920A4 (zh)
JP (1) JP7478824B2 (zh)
CN (1) CN111504521B (zh)
WO (1) WO2021223581A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504521B (zh) * 2020-05-07 2021-09-03 腾讯科技(深圳)有限公司 柔性电容阵列及其制备方法、和电容阵列检测系统
CN113541670B (zh) * 2020-07-21 2024-07-09 腾讯科技(深圳)有限公司 电容检测电路、方法及电子设备
CN113970393B (zh) * 2020-11-06 2024-10-22 钛深科技(深圳)有限公司 压力传感装置、电路、称重装置和压力分布检测系统
CN113188711A (zh) * 2021-04-29 2021-07-30 苏州凝智新材料发展有限公司 一种压力传感器及其制备方法和应用
CN113647937B (zh) * 2021-08-16 2024-09-20 宁波荣勃通机电科技有限公司 检测装置、检测方法、鞋垫、训练方法和识别方法
CN114577381B (zh) * 2022-03-04 2024-05-28 哈尔滨工业大学 一种机器人关节扭矩传感器及其扭矩测量方法
CN114894377B (zh) * 2022-04-06 2023-05-23 华南理工大学 离子电容式柔性压力传感器的性能评估方法、装置及介质
CN115112272A (zh) * 2022-06-16 2022-09-27 中国人民解放军国防科技大学 一种柔性力传感器、柔性力/磁场复合传感器及机器人

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151859A (en) * 1989-06-29 1992-09-29 Honda Giken Kogyo Kabushiki Kaisha Legged walking robot and system for controlling the same
US20020078757A1 (en) * 2000-06-30 2002-06-27 Jacqueline Hines Surface-acoustic-wave pressure sensor and associated methods
US20040255681A1 (en) * 2003-06-18 2004-12-23 Honeywell International, Inc. Pressure sensor apparatus and method
US20090033341A1 (en) * 2005-05-18 2009-02-05 Pressure Profile Systems, Inc. Capacitive tactile tile sensor
CN101414190A (zh) * 2008-10-28 2009-04-22 北京理工大学 基于有效稳定区域仿人机器人稳定行走的控制方法和系统
CN102589759A (zh) * 2012-02-20 2012-07-18 浙江大学 基于压阻式和电容式组合的仿生柔性触觉传感阵列
CN103631463A (zh) * 2012-08-24 2014-03-12 智点科技(深圳)有限公司 一种数字式电容触控面板
CN106706176A (zh) * 2016-11-23 2017-05-24 浙江大学 具有图案化微结构阵列的电容式触觉传感器
CN107655498A (zh) * 2016-07-24 2018-02-02 程媛 一种电容式触觉传感器信号检测系统
CN111504521A (zh) * 2020-05-07 2020-08-07 腾讯科技(深圳)有限公司 柔性电容阵列及其制备方法、和电容阵列检测系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609071B2 (en) * 2000-12-06 2003-08-19 Project Cd System for monitoring and controlling pressure and concentration values in a fluid conduit
US7422921B2 (en) * 2002-11-27 2008-09-09 Abc Taiwan Electronics Corp. Micromesh material and micromesh mono-crystal high frequency capacitor and its producing method
US20060196281A1 (en) 2005-03-02 2006-09-07 Delphi Technologies, Inc. Capacitive load cell apparatus having a non-planar nonconductive elastomeric dielectric
CN101059380B (zh) * 2007-02-16 2010-05-19 中国科学院上海微系统与信息技术研究所 一种柔性电容式触觉传感器的制作方法
CN101925793A (zh) 2008-01-28 2010-12-22 可乐丽股份有限公司 具有柔性的变形传感器
WO2011043224A1 (ja) 2009-10-09 2011-04-14 東京エレクトロン株式会社 圧力センサ素子およびシート状圧力センサ
JP2011185858A (ja) 2010-03-10 2011-09-22 Yaskawa Electric Corp 触覚センサ
FR3001800B1 (fr) * 2013-02-04 2016-03-11 Amcube Ist Capteur de pression capacitif souple
CN103399681B (zh) * 2013-08-13 2016-08-10 深圳市华星光电技术有限公司 单层电容触控单元及电容式触摸屏
WO2015089491A1 (en) 2013-12-14 2015-06-18 The Regents Of The University Of California Liquid column-based capacitive sensors
JP2015187561A (ja) 2014-03-26 2015-10-29 株式会社日本自動車部品総合研究所 圧力センサ
US20170177114A1 (en) 2014-08-07 2017-06-22 3M Innovative Properties Company Force-sensing capacitor elements, deformable membranes and electronic devices fabricated therefrom
KR20170125933A (ko) 2015-03-06 2017-11-15 더 유니버시티 오브 브리티쉬 콜롬비아 피에조이온 층에서 이동성 이온의 재분포에 의해 발생된 전기 신호에 기초한 압력 감지 방법 및 센서
JP6842821B2 (ja) * 2015-04-02 2021-03-17 株式会社トーキン 固体電解コンデンサ
US10126191B2 (en) 2015-08-28 2018-11-13 The Regents Of The University Of California Capacitive pressure sensing using ionic film sensors
KR101742240B1 (ko) 2015-08-31 2017-06-01 숭실대학교산학협력단 커패시터형 촉각센서 및 그 제조방법
DE102015218891A1 (de) * 2015-09-30 2017-03-30 Robert Bosch Gmbh Prüfanordnung zur Dehnungs- und Körperschallmessung eines Prüfkörpers
US10054501B2 (en) 2016-03-16 2018-08-21 Nissan North America, Inc. In-situ stress detector for an electrode and a method of use
US20190078946A1 (en) * 2017-09-11 2019-03-14 Regents Of The University Of Minnesota Supercapacitor-based sensors with flexible electrolytes
JP2019067125A (ja) * 2017-09-29 2019-04-25 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置
CN109990927B (zh) 2019-05-07 2024-04-02 河北工业大学 一种双电层电容式柔性触觉传感器及其制作方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151859A (en) * 1989-06-29 1992-09-29 Honda Giken Kogyo Kabushiki Kaisha Legged walking robot and system for controlling the same
US20020078757A1 (en) * 2000-06-30 2002-06-27 Jacqueline Hines Surface-acoustic-wave pressure sensor and associated methods
US20040255681A1 (en) * 2003-06-18 2004-12-23 Honeywell International, Inc. Pressure sensor apparatus and method
US20090033341A1 (en) * 2005-05-18 2009-02-05 Pressure Profile Systems, Inc. Capacitive tactile tile sensor
CN101414190A (zh) * 2008-10-28 2009-04-22 北京理工大学 基于有效稳定区域仿人机器人稳定行走的控制方法和系统
CN102589759A (zh) * 2012-02-20 2012-07-18 浙江大学 基于压阻式和电容式组合的仿生柔性触觉传感阵列
CN103631463A (zh) * 2012-08-24 2014-03-12 智点科技(深圳)有限公司 一种数字式电容触控面板
CN107655498A (zh) * 2016-07-24 2018-02-02 程媛 一种电容式触觉传感器信号检测系统
CN106706176A (zh) * 2016-11-23 2017-05-24 浙江大学 具有图案化微结构阵列的电容式触觉传感器
CN111504521A (zh) * 2020-05-07 2020-08-07 腾讯科技(深圳)有限公司 柔性电容阵列及其制备方法、和电容阵列检测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4019920A4 *

Also Published As

Publication number Publication date
EP4019920A4 (en) 2022-12-07
US12104968B2 (en) 2024-10-01
EP4019920A1 (en) 2022-06-29
JP7478824B2 (ja) 2024-05-07
JP2023511020A (ja) 2023-03-16
US20220214233A1 (en) 2022-07-07
CN111504521B (zh) 2021-09-03
CN111504521A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
WO2021223581A1 (zh) 柔性电容阵列及其制备方法、电容阵列检测系统和机器人
WO2021147454A1 (zh) 柔性电容触觉传感器及其制备方法和触觉传感系统
Tang et al. Hybridized wearable patch as a multi-parameter and multi-functional human-machine interface
CN109406012B (zh) 一种柔性压电式的三维触觉传感器阵列及其制备方法
Pu et al. Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing
Tao et al. Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin
Li et al. Skin-inspired large area iontronic pressure sensor with ultra-broad range and high sensitivity
Guo et al. Self-powered multifunctional electronic skin for a smart anti-counterfeiting signature system
CN103954382B (zh) 一种变介质式电容柔性三维力触觉传感器
US8132468B2 (en) Flexural deformation sensing device and a user interface using the same
CN106706176A (zh) 具有图案化微结构阵列的电容式触觉传感器
CN204924512U (zh) 一种浮动电极式的三维电容触觉传感阵列
CN106768508B (zh) 一种测量足底压力及动态变化的凝胶电容式传感器及方法
CN206192550U (zh) 一种具有图案化微结构阵列的电容式触觉传感器
CN102980691B (zh) 三维界面应力传感器
KR20170103758A (ko) 이온 전도성 물질로 된 플렉서블 투명 센서
Zhang et al. Flexible wearable capacitive sensors based on ionic gel with full-pressure ranges
Wang et al. Highly sensitive and flexible three-dimensional force tactile sensor based on inverted pyramidal structure
Tian et al. Pressure sensor array with low-power near-sensor cmos chip for human gait monitoring
CN105319245A (zh) 一种可同时感应湿度和气体的柔性有机薄膜电容传感器及其制作方法
CN104997515A (zh) 一种足底压力分布测量装置
Li et al. Structural Electronic Skin for Conformal Tactile Sensing
Chen et al. Flexible dual-mode sensor with accurate contact pressure sensing and contactless distance detection functions for robotic perception
Sakthivelpathi et al. Advancements and Applications of Micro and Nanostructured Capacitive Sensors: A Review
Wang et al. Femtosecond laser-induced flexible and highly sensitive capacitive pressure sensor with treefrog suckers bionic microstructure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021800573

Country of ref document: EP

Effective date: 20220325

ENP Entry into the national phase

Ref document number: 2022539324

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE