WO2021223507A1 - 一种通信方法、装置及芯片 - Google Patents

一种通信方法、装置及芯片 Download PDF

Info

Publication number
WO2021223507A1
WO2021223507A1 PCT/CN2021/079811 CN2021079811W WO2021223507A1 WO 2021223507 A1 WO2021223507 A1 WO 2021223507A1 CN 2021079811 W CN2021079811 W CN 2021079811W WO 2021223507 A1 WO2021223507 A1 WO 2021223507A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
information
network element
plmn
supported
Prior art date
Application number
PCT/CN2021/079811
Other languages
English (en)
French (fr)
Inventor
孙海洋
李岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21799923.4A priority Critical patent/EP4138438A4/en
Publication of WO2021223507A1 publication Critical patent/WO2021223507A1/zh
Priority to US17/978,727 priority patent/US20230068860A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/06Registration at serving network Location Register, VLR or user mobility server
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/40Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/12Mobility data transfer between location registers or mobility servers

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method, device, and chip.
  • Network slicing is an end-to-end logical network virtualized on a hardware infrastructure through network slicing technology. It is a key technology to meet the requirements of the fifth generation (5G) mobile communication technology for network differentiation.
  • 5G fifth generation
  • 5G fifth generation
  • Through network slicing technology operators can virtualize multiple network slices on a hardware infrastructure, and each network slice allocates resources on demand and flexibly combines capabilities to meet the different needs of various services. When a new requirement is proposed and the current network cannot meet the requirement, the operator only needs to create a new slice network for this demand, without affecting the existing slice network, and can launch services at the fastest speed.
  • the unified data management (UDM) network element corresponding to the terminal device will respond to the request for contract information from the visited AMF network element and send it to the visited AMF network.
  • the element sends steering of roaming (SoR) information, and the terminal device selects a public land mobile network (PLMN) based on the SoR information fed back by the visited AMF network element.
  • SoR roaming
  • PLMN public land mobile network
  • the PLMN priority contained in the SoR information is sorted according to a predetermined strategy. There will be a problem that the PLMN selected by the terminal device does not support the network slice that the terminal device will use, which causes the terminal device to select the PLMN multiple times to try to access, which affects the access efficiency. .
  • the embodiments of the present application provide a communication method, device, and chip to avoid the problem that the PLMN selected by the terminal device does not support the network slice to be used by the terminal device, which causes the terminal device to select the PLMN multiple times to try to access, which affects the access efficiency.
  • the PLMN selected by the terminal device can support the network slice to be used by the terminal device, which prevents the terminal device from selecting the PLMN to try to access multiple times, thereby improving the access efficiency.
  • this application provides a communication method, which includes: after receiving a registration request sent by a terminal device, the access and mobility management function AMF network element sends first information to the unified data management UDM network element,
  • the first information includes the network slice selection assistance information NSSAI requested by the terminal device, or the single network slice selection assistance information S-NSSAI corresponding to the home domain of the NSSAI requested by the terminal device, or the subscription S-NSSAI of the terminal device.
  • NSSAI the AMF network element receives the roaming preferred SoR information of the terminal device from the UDM network element, wherein the SoR information includes information of each public land mobile network PLMN preferred by the terminal device; the AMF The network element sends the SoR information to the terminal device.
  • the UDM network element determines the SoR information of the terminal device, it can determine each PLMN preferred by the terminal device based on the network slice expected (or requested) by the terminal device to ensure that the PLMN selected by the terminal device supports the terminal device expected to use Network slicing can avoid the problem of low access efficiency when the terminal device selects the PLMN multiple times to try to access, and improves access efficiency.
  • the method further includes: when the NSSAI requested by the terminal device changes, the AMF network element sends the NSSAI change notification requested by the terminal device to the UDM network element.
  • each PLMN supports the network slicing expected (requested) by the terminal device, which can further avoid the problem of low access efficiency when the terminal device selects the PLMN for multiple times to try to access.
  • the AMF network element is a visited AMF network element of the terminal device.
  • the AMF network element in the roaming scenario, can be the AMF network element of the visitor of the terminal device to ensure that the terminal device efficiently selects the PLMN in the roaming scenario.
  • the present application provides a communication method, the method includes: access and mobility management function AMF network element determining each public land mobile network PLMN supported by the terminal device and information about the network slices supported by each PLMN; The AMF network element sends information about each PLMN supported by the terminal device and network slices supported by each PLMN to the terminal device.
  • the AMF network element sends information about each PLMN supported by the terminal device and the network slice supported by each PLMN to the terminal device.
  • the terminal device accesses the PLMN, it can support the terminal device according to the network slice expected by the terminal device.
  • select a PLMN that supports the network slice expected by the terminal device for access so as to avoid that the PLMN selected by the terminal device does not support the network slice that the terminal device expects to access.
  • the terminal device selects the PLMN multiple times to try to access. The problem of low efficiency improves access efficiency.
  • the AMF network element determining the information of each PLMN supported by the terminal device and the network slice supported by the each PLMN includes: the AMF network element obtains the terminal device from the unified data management UDM network element Information of each supported PLMN; the AMF network element obtains the information of the network slice supported by each PLMN supported by the terminal device from the network slice selection function NSSF network element according to the information of each PLMN supported by the terminal device.
  • the AMF network element determines the information of each PLMN supported by the terminal device and the network slices supported by each PLMN, including: the AMF network element obtains one or more PLMNs supported by the NSSF network element The network slice information is obtained from the UDM network element of each PLMN supported by the terminal device, where the one or more PLMNs support roaming; the AMF network element is based on the network slices supported by the one or more PLMNs The information of determining the network slice information supported by each PLMN supported by the terminal device.
  • the AMF network element determining information about each PLMN supported by the terminal device and the network slice supported by each PLMN includes: the AMF network element receives the roaming preference of the terminal device from the UDM network element SoR information, where the SoR information includes information about each PLMN supported by the terminal device and network slices supported by each PLMN.
  • the AMF network element determines the information of each PLMN supported by the terminal device and the network slice supported by each PLMN, which can meet different scenarios.
  • the AMF network element determines each PLMN supported by the terminal device and all Describes the information implementation requirements of the network slicing supported by each PLMN.
  • the AMF network element sending information about each PLMN supported by the terminal device and the network slice supported by each PLMN to the terminal device includes: Send SoR information, where the SoR information includes information about each PLMN supported by the terminal device and network slices supported by each PLMN.
  • the AMF network element can send to the terminal device the information of each PLMN supported by the terminal device and the network slice supported by each PLMN through the SoR information, so as to ensure that the terminal device accurately selects and supports the terminal device's expected connection. PLMN of the incoming network slice.
  • each PLMN supported by the terminal device is each PLMN supported by the terminal device in the registration domain.
  • the determined PLMNs supported by the terminal equipment are only the PLMNs supported by the terminal equipment in the registration domain, and the signaling overhead can be effectively saved without affecting the access effect of the terminal equipment.
  • the AMF network element is a visited AMF network element of the terminal device.
  • the present application provides a communication method, the method includes: a unified data management UDM network element determines each public land mobile network PLMN supported by a terminal device according to first information, the first information includes the terminal device request The network slice selection assistance information NSSAI, or the single network slice selection assistance information S-NSSAI of the home domain corresponding to the NSSAI requested by the terminal device, or the contract S-NSSAI of the terminal device; the UDM network element sends the access and The mobility management function AMF network element sends the roaming preferred SoR information of the terminal device, where the SoR information includes the information of each PLMN preferred by the terminal device.
  • the method further includes: the UDM network element receives the first information from the AMF network element.
  • the method further includes: the UDM network element receives the NSSAI change notification requested by the terminal device from the AMF network element; and the UDM network element updates the NSSAI requested by the terminal device.
  • the AMF network element is a visited AMF network element of the terminal device.
  • the present application provides a communication method, which includes: a unified data management UDM network element determining information about each PLMN supported by a terminal device and a network slice supported by each PLMN;
  • the mobility management function AMF network element sends the roaming preferred SoR information of the terminal device, where the SoR information includes information about each PLMN supported by the terminal device and network slices supported by each PLMN.
  • each PLMN supported by the terminal device is each PLMN supported by the terminal device in the registration domain.
  • the AMF network element is a visited AMF network element of the terminal device.
  • an embodiment of the present application provides a communication device that has the function of realizing any of the possible design methods in the first aspect or the first aspect, or realizing any of the second aspect or the second aspect.
  • the function of a method in a possible design can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units (modules) corresponding to the above-mentioned functions, such as a transceiver unit and a processing unit.
  • the device can be a chip or an integrated circuit.
  • the device includes a processor and a transceiver, and the processor is coupled with the transceiver to implement the method described in the first aspect or any one of the possible designs of the first aspect.
  • the device may further include a memory, and the memory stores a function that can be executed by the processor to implement the method described in the first aspect or any one of the possible designs of the first aspect, or to implement the second aspect. Or the program of the function of the method in any one of the possible designs of the second aspect.
  • the device may be an AMF network element.
  • an embodiment of the present application provides a communication device that has the function of realizing any of the foregoing third aspect or any of the possible design methods in the third aspect, or implementing any of the foregoing fourth aspect or the fourth aspect.
  • the function of a method in a possible design can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units (modules) corresponding to the above-mentioned functions, such as a transceiver unit and a processing unit.
  • the device can be a chip or an integrated circuit.
  • the device includes a processor and a transceiver, and the processor is coupled with the transceiver to implement the method described in the third aspect or any one of the possible designs of the third aspect.
  • the device may further include a memory, and the memory stores a function that can be executed by the processor to implement the method described in the third aspect or any one of the possible designs of the third aspect, or to implement the fourth aspect. Or the function of any one of the possible design methods in the fourth aspect.
  • the device may be a UDM network element.
  • an embodiment of the present application provides a communication system.
  • the communication system may include an AMF network element and a UDM network element.
  • the AMF network element may perform the above-mentioned first aspect or any one of the possible designs of the first aspect.
  • the UDM network element can execute the method described in the third aspect or any one of the possible designs of the third aspect; or, the AMF network element can execute any one of the second aspect or the second aspect.
  • the UDM network element may execute the method described in the fourth aspect or any one of the possible designs of the fourth aspect.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium is configured to execute the method described in the first aspect or any one of the possible designs of the first aspect, or Execute the method described in the foregoing second aspect or any one of the possible designs of the second aspect, or implement the method described in the foregoing third aspect or any one of the possible designs of the third aspect, or implement the foregoing fourth aspect Aspect or the computer program or instruction of the method described in any one of the possible designs of the fourth aspect.
  • the embodiments of the present application also provide a computer program product, including a computer program or instruction.
  • the computer program or instruction When the computer program or instruction is executed, the first aspect or any possible design of the first aspect can be implemented.
  • this application also provides a chip that is used to implement the method described in the first aspect or any one of the possible designs of the first aspect, or to implement the second aspect or the second aspect.
  • the method described in any possible design, or the method described in the third aspect or any of the possible designs of the third aspect, or the method described in the fourth or the fourth aspect of the foregoing The method described in the design.
  • FIG. 1 is one of the schematic diagrams of application scenarios provided by an embodiment of the application
  • Figure 2 is a second schematic diagram of an application scenario provided by an embodiment of the application.
  • Figure 3 is the third schematic diagram of an application scenario provided by an embodiment of the application.
  • FIG. 4 is a fourth schematic diagram of an application scenario provided by an embodiment of this application.
  • Figure 5 is the fifth schematic diagram of an application scenario provided by an embodiment of the application.
  • FIG. 6 is a sixth schematic diagram of an application scenario provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of three major application scenarios of 5G provided by an embodiment of the application.
  • 8A and 8B are schematic diagrams of the application of eMBB and mMTC provided by the embodiments of the application;
  • FIG. 9 is a schematic diagram of network slicing characteristics provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of network slice types corresponding to the three major application scenarios of 5G provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of terminal device registration provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of the process of HPLMN updating SoR information during registration provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of the process of HPLMN updating SoR information after registration according to an embodiment of the application
  • FIG. 14 is one of the schematic diagrams of the communication process provided by an embodiment of this application.
  • 15A and 15B are schematic diagrams for introducing S-NSSAI information provided by an embodiment of the application.
  • FIG. 17 is the third schematic diagram of the communication process provided by the embodiment of this application.
  • FIG. 18 is one of the schematic diagrams of a communication device provided by an embodiment of this application.
  • FIG. 19 is a second schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 20 is the third schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 21 is a fourth schematic diagram of a communication device provided by an embodiment of this application.
  • the technical solutions provided by the embodiments of the present application can be generally applicable to systems such as 5G, can be used in an architecture based on a service-oriented interface, and can also be used in an architecture based on a reference point, and can further include roaming scenarios and non-roaming scenarios. These scenarios are respectively introduced below.
  • the terminal device is the UE as an example.
  • Figure 1 is an architecture diagram of a non-roaming scenario based on a service-oriented interface in a 5G system.
  • network slice selection function NEF
  • NEF network service exposure function
  • NF network function
  • NF repository function NF repository function
  • PCF policy control function
  • UDM network elements
  • AF application function
  • AUSF authentication server function
  • AMF access and mobility Management function
  • SMF session management function
  • the NSSF network element is connected to the connection line through the Nnssf interface, and the NEF network element Connect to the cable through the Nnef interface, the NRF network element is connected to the cable through the Nnrf interface, the PCF network element is connected to the cable through the Npcf interface, the UDM network element is connected to the cable through the Nudm interface, and the AF network element is connected through the Naf
  • the interface is connected to the connection line
  • the AUSF network element is connected to the connection line through the Nausf interface
  • the AMF network element is connected to the connection line through the Namf interface
  • the SMF network element is connected to the connection line through the Nsmf interface.
  • the AMF network element also communicates with the (radio access network, (R) AN) through the N2 interface, and communicates with the UE through the N1 interface, the UE can communicate with the (R) AN, and the (R) AN passes
  • the N3 interface communicates with the UPF network element, the UPF network element is connected to the SMF network element through the N4 interface, and is connected to the data network (DN) through the N6 interface.
  • Figure 2 is a non-roaming scenario architecture diagram based on reference points in the 5G system.
  • the UE can communicate with the AMF network element through the (R)AN, and the (R)AN communicates with the AMF network element through the N2 interface.
  • the UE can also directly communicate with the AMF network element through the N1 interface.
  • (R)AN also communicates with UPF network element through N3 interface
  • UPF network element communicates with other UPF network elements through N9 interface
  • UPF network element also communicates with DN through N6 interface
  • the AMF network element communicates with other AMF network elements through the N14 interface.
  • the AMF network element also communicates with the SMF network element through the N11 interface, communicates with the AUSF network element through the N12 interface, communicates with the UDM network element through the N8 interface, and communicates with the PCF through the N15 interface
  • the network element communicates and communicates with the NSSF network element through the N22 interface
  • the SMF network element communicates with the UDM network element through the N10 interface
  • the PCF network element through the N7 interface
  • the PCF network element communicates with the AF network element through the N5 interface.
  • Figure 3 is one of the architecture diagrams of roaming scenarios based on service-oriented interfaces in the 5G system.
  • Figure 3 is a local breakout (LBO) scenario, that is, a scenario where service data packets only need to be transmitted in the VPLMN.
  • the visit public land mobile network (visit public land mobile network, VPLMN) represents the network where the UE is after roaming
  • the home public land mobile network (HPLMN) represents the network where the UE is before roaming, that is Said that the UE roamed from HPLMN to VPLMN.
  • NSSF network element In VPLMN, NSSF network element, NEF network element, NRF network element, PCF network element, AF network element, AMF network element and SMF network element are all connected to the same connection line, and the NSSF network element is connected to the connection line through the Nnssf interface , NEF network element is connected to the connection line through the Nnef interface, NRF network element is connected to the connection line through the Nnrf interface, PCF network element is connected to the connection line through the Npcf interface, AF network element is connected to the connection line through the Naf interface, AMF The network element is connected to the connection line through the Namf interface, and the SMF network element is connected to the connection line through the Nsmf interface.
  • connection line is also connected to the visit security edge protection proxy (vSEPP) network element.
  • the AMF network element also communicates with the (radio access network, (R)AN) through the N2 interface and communicates with the UE through the N1 interface.
  • the UE can communicate with the (R)AN, and the (R)AN can communicate with the (R)AN through the N1 interface.
  • the N3 interface communicates with the UPF network element, the UPF network element is connected to the SMF network element through the N4 interface, and is connected to the DN through the N6 interface.
  • HPLMN UDM network elements, NRF network elements, NSSF network elements, AUSF network elements, PCF network elements, and NEF network elements are all connected to the same connection line.
  • the UDM network element is connected to the connection line through the Nudm interface, and the NSSF network element Connect to the cable through the Nnssf interface, the NEF network element is connected to the cable through the Nnef interface, the NRF network element is connected to the cable through the Nnrf interface, the PCF network element is connected to the cable through the Npcf interface, and the cable is also connected HSEPP network element, and the vSEPP network element and the home security edge protection proxy (home security edge protection proxy, hSEPP) network element are connected through the N32 interface.
  • the vSEPP network element and the home security edge protection proxy home security edge protection proxy, hSEPP
  • Figure 4 is the second architecture diagram of a roaming scenario based on a service-oriented interface in a 5G system.
  • Figure 4 is a home routed (HR) scenario, that is, a scenario where service data packets need to be transmitted back to HPLMN.
  • HR home routed
  • VPLMN represents the network where the UE is located after roaming
  • HPLMN represents the network where the UE is located before roaming.
  • NSSF network elements, NEF network elements, NRF network elements, PCF network elements, AMF network elements, and SMF network elements are all connected to the same connection line.
  • the NSSF network element is connected to the connection line through the Nnssf interface, and the NEF network element Connect to the cable through the Nnef interface, the NRF network element is connected to the cable through the Nnrf interface, the PCF network element is connected to the cable through the Npcf interface, the AMF network element is connected to the cable through the Namf interface, and the SMF network element is connected through the Nsmf
  • the interface is connected to the connecting line, and the connecting line is also connected to the vSEPP network element.
  • the AMF network element also communicates with the (R)AN through the N2 interface, and communicates with the UE through the N1, the UE can communicate with the (R)AN, the (R)AN communicates with the UPF network element through the N3 interface, and the UPF network element through the N4
  • the interface is connected with the SMF network element, and is connected with the UPF network element in the HPLMN through the N9 interface.
  • UDM network elements, NRF network elements, AUSF network elements, SMF network elements, AF network elements, PCF network elements and NEF network elements are all connected to the same connection line, among which the UDM network element is connected to the connection line through the Nudm interface
  • the NSSF network element is connected to the cable through the Nnssf interface
  • the NEF network element is connected to the cable through the Nnef interface
  • the NRF network element is connected to the cable through the Nnrf interface
  • the PCF network element is connected to the cable through the Npcf interface.
  • the network element is connected to the cable through Naf
  • the SMF network element is connected to the cable through Nsmf.
  • the cable is also connected to the hSEPP network element.
  • the vSEPP network element and hSEPP network element are connected through the N32 interface
  • the UPF network element is connected through the N4 interface. Connect with SMF network element and connect with DN through N6 interface.
  • Figure 5 is one of the architecture diagrams of the roaming scenario based on the reference point in the 5G system.
  • Figure 5 is also the LBO scenario, that is, the scenario where service data packets only need to be transmitted in the VPLMN.
  • VPLMN represents the network where the UE is located after roaming
  • HPLMN represents the network where the UE is located before roaming.
  • the NSSF network element in the VPLMN communicates with the AMF network element through the N22 interface
  • the AMF network element communicates with the UE through the N1 interface
  • the interface communicates with the vPCF network element, communicates with the AUSF network element in HPLMN through the N12 interface, and communicates with the UDM network element in HPLMN through the N8 interface.
  • the SMF network element communicates with the UPF network element through the N4 interface and communicates with the vPCF network through the N7 interface.
  • Meta communication and communication with UDM network elements in HPLMN through N10 interface vPCF network elements communicate with AF network elements through N5 interface and hPCF network elements in HPLMN through N24 interface
  • UE can communicate with (R)AN
  • ( R) AN communicates with UPF network element through N3 interface
  • UPF network element communicates with DN through N6 interface.
  • Figure 6 is the second architecture diagram of a roaming scenario based on reference points in a 5G system.
  • Figure 6 is a home routed (HR) scenario, that is, a scenario where service data packets need to be transmitted back to HPLMN.
  • HR home routed
  • VPLMN represents the network where the UE is located after roaming
  • HPLMN represents the network where the UE is located before roaming.
  • the V-NSSF network element in the VPLMN communicates with the AMF network element through the N22 interface, and communicates with the H-NSSF network element in the HPLMN through the N31 interface.
  • the AMF network element communicates with the UE through the N1 interface, and communicates with the UE through the N2 interface.
  • (R) AN communication communication with AUSF network element in PLMN through N12 interface, communication with V-PCF network element through N15 interface, communication with V-SMF network element through N11 interface, and UDM network in HPLMN through N8 interface Element communication
  • V-SMF network element communicates with UPF network element in VPLMN through N4 interface
  • H-SMF network element communicates with H-SMF network element in HPLMN through N16 interface
  • H-SMF network element communicates with UPF network element in HPLMN through N4 interface
  • UDM network element communicates with AUSF network element through N13 interface
  • H-PCF network element communicates with V-PCF network element through N24 interface
  • the UE can communicate with the AF network element through the N5 interface
  • the (R)AN communicates with the UPF network element in the VPLMN through the N3 interface
  • adding "V” or “v” before a certain network element has the same meaning, and both indicate that the network element belongs to the VPLMN.
  • a V-PCF network element or a vPCF network element means the PCF network element in the VPLMN.
  • adding "H” or “h” before a certain network element has the same meaning, indicating that the network element belongs to HPLMN, such as H-PCF network element or hPCF network element, it means PCF network element in HPLMN
  • “V” or “H” is only a description of the network or location, and does not represent a restriction on the function.
  • the functions of the V-PCF network element and the H-PCF network element may be the same or different.
  • any one of the scenarios shown in FIG. 1 to the scenarios shown in FIG. 6 above may be used as an application scenario of the embodiment of the present application.
  • the above several scenarios are only examples, and the embodiments of the present application are not limited to be applied to the above application scenarios.
  • Terminal device is a device with wireless transceiver function. It can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air ( For example, airplanes, balloons, satellites, etc.).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and wireless terminals in transportation safety , Wireless terminals in smart cities, wireless terminals in smart homes, user equipment (UE), etc.
  • a mobile phone mobile phone
  • a tablet computer pad
  • a computer with wireless transceiver function a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and wireless terminals in transportation safety , Wireless terminals in smart cities, wireless terminals in smart homes, user equipment (UE), etc.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • the above-mentioned terminal device may establish a connection with the operator's network through an interface (such as N1, etc.) provided by the operator's network, and use services such as data and/or voice provided by the operator's network.
  • the terminal device can also access the DN through the operator's network, and use the operator's service deployed on the DN and/or the service provided by a third party.
  • the above-mentioned third party may be a service party other than the operator's network and terminal equipment, and may provide other services such as data and/or voice for the terminal equipment.
  • the specific form of expression of the above-mentioned third party can be determined according to actual application scenarios, and is not limited here.
  • RAN is a sub-network of the operator's network, which is an implementation system between service nodes and terminal equipment in the operator's network.
  • the terminal device To access the operator's network, the terminal device first passes through the RAN, and then can be connected to the service node of the operator's network through the RAN.
  • RAN equipment is a type of equipment that provides wireless communication functions for terminal equipment.
  • RAN equipment is also called access network equipment.
  • RAN equipment includes but is not limited to: next-generation base stations (gnodeB, gNB) in 5G, evolved node B (evolved node B, eNB), radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU) , Transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • next-generation base stations gnodeB, gNB
  • 5G evolved node B (evolved node B, eNB), radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, H
  • UPF network elements include: data packet routing and transmission, packet inspection, service usage reporting, quality of service (QoS) processing, lawful monitoring, upstream packet inspection, downstream data packet storage and other user plane-related functions.
  • QoS quality of service
  • AMF network elements include: connection management, mobility management, registration management, access authentication and authorization, reachability management, security context management and other access and mobility-related functions.
  • SMF network elements include: session management (such as session establishment, modification and release, including tunnel maintenance between UPF network elements and AN), selection and control of UPF network elements, service and session continuity , SSC) session-related functions such as mode selection and roaming.
  • session management such as session establishment, modification and release, including tunnel maintenance between UPF network elements and AN
  • SSC service and session continuity
  • PCF network elements include: unified policy formulation, provision of policy control, and policy-related functions such as obtaining contract information related to policy decisions from unified data repository (UDR) network elements.
  • UDR unified data repository
  • NSSF network elements include: selecting a set of network slice instances for terminal equipment, determining the allowed NSSAI, and determining the set of AMF network elements that can serve the terminal equipment.
  • NRF network elements include: service discovery function, maintenance of available network function (network function, NF) instances of the NF text and the services they support.
  • service discovery function maintenance of available network function (network function, NF) instances of the NF text and the services they support.
  • NF network function
  • the main functions of the AF network element include: interacting with the 3GPP core network to provide services or services, including interaction with the NEF network element, and policy framework interaction.
  • NEF network elements include: safe and open services and capabilities provided by 3GPP network functions, which are internally open or open to third parties.
  • the main functions include: support 3GPP authentication and key agreement mechanism in the authentication credential processing, user identity processing, access authorization, registration and mobility management, contract management, short message management, etc.
  • the main functions of the AUSF network element include: interacting with the UDM network element to obtain user information, and perform authentication-related functions, such as generating intermediate keys.
  • a DN is a network located outside the operator's network.
  • the operator's network can access multiple DNs.
  • a variety of services can be deployed on the DN to provide terminal equipment with services such as data and/or voice.
  • DN is the private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal devices.
  • a control server for the sensors is deployed in the DN, and the control server can provide services for the sensors.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • the DN is the internal office network of a company.
  • the mobile phones or computers of the employees of the company can be terminal devices, and the mobile phones or computers of the employees can access the information and data resources on the internal office network of the company.
  • the aforementioned network elements or functions may be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on a platform (for example, a cloud platform).
  • a platform for example, a cloud platform.
  • the foregoing network element or function may be implemented by one device, or jointly implemented by multiple devices, or may be a functional module in one device, which is not specifically limited in the embodiment of the present application.
  • 5G will usher in an era of Internet of Everything. As shown in Figure 7, 5G supports three scenarios: enhanced mobile broadband (eMBB), large-scale machine communication services (mMTC), and ultra-reliable low-latency communication services (uRLLC).
  • eMBB enhanced Mobile Broadband
  • 5G can provide a transmission rate that is more than 10 times faster than 4G.
  • the ultra-high rate of 5G can meet the demand, and the transmission rate of 4G may not be supported. Now when using VR to watch high-definition or large-scale interactive games, you must drag the network cable to obtain data.
  • mMTC large-scale machine communication service
  • 5G can support 1 million devices per square kilometer, which is 10 times that of 4G.
  • public facilities such as street lights, manhole covers, and water meters have network connectivity and can be remotely managed, but 5G will have even greater innovations.
  • the public equipment of various industries in the city can be connected to the intelligent management platform.
  • uRLLC ultra-reliable low-latency communication service
  • network slicing technology is introduced in 5G.
  • network slicing has the three characteristics of isolation, on-demand customization, and end-to-end.
  • network slicing technology Through network slicing technology, multiple independent logical networks can be virtualized on the same network infrastructure. Meet different needs.
  • eMBB slices, mMTC slices, and uRLLC slices can be virtualized in the three major scenarios corresponding to 5G.
  • the selection process of the network slicing When network slicing is deployed in the core network and the terminal device is initially registered to the network, the selection process of the network slicing will be triggered.
  • the selection process of the network slice depends on the subscription data of the terminal device, the local configuration information, the roaming agreement, the strategy of the operator, and so on. In the selection process of network slicing, the above parameters need to be considered comprehensively to select the best slicing type for the terminal device.
  • the RAN first selects an AMF (ie, initial AMF) network element for the terminal device to provide services for the terminal device according to the locally stored information and the terminal device registration request message.
  • the initial AMF (Initial AMF) network element may not support the network slice to be used by the terminal device.
  • the initial AMF network element only supports the uRLLC type network slice, but the terminal device requests the eMBB type network slice.
  • the initial AMF network element queries the NSSF network element and selects the target AMF (Target AMF) network element that can support the network slicing of the terminal device, and then sends the registration request message of the terminal device through the direct Or indirectly sent to the target AMF network element, and the target AMF network element processes the registration request of the terminal device to provide network services for the terminal device.
  • target AMF Target AMF
  • the terminal equipment selects the PLMN according to the following priority order: 1.
  • a user-defined PLMN priority list (User-controlled PLMN selector); 4.
  • An operator-defined priority list (Operator-controlled PLMN selector).
  • the user-defined PLMN priority list or the operator-defined priority list may include a group of priority PLMN lists for terminal equipment to choose.
  • the HPLMN can update the terminal device by sending steering of roaming (SoR) information to the terminal device, thereby controlling the terminal device's selection of the PLMN.
  • SoR roaming
  • the process for HPLMN to update SoR information during registration includes:
  • the terminal device sends a registration request (registration request) to the AMF network element, and the registration request carries the network slice selection assistance information (network slice selection assistance information, NSSAI) requested by the terminal device.
  • registration request registration request
  • NSSAI network slice selection assistance information
  • the AMF network element After receiving the registration request, the AMF network element sends a subscription information request to the UDM network element.
  • the subscription information request carries identification information of the terminal device.
  • the subscription permanent identifier of the terminal device that is, the globally unique user identifier (subscription permanent identifier, SUPI) in the 5G system.
  • SUPI subscription permanent identifier
  • the UDM network element determines the SoR information of the terminal device.
  • the terminal device Since the terminal device is initially registered in the VPLMN, if the user's subscription information indicates that the terminal device is to register and send SoR information in the VPLMN, then when the terminal device is initially registered in the VPLMN, the UDM network element needs to provide the terminal device with SoR information.
  • UDM network elements can generate SoR based on the terminal device’s contract information, the preferred PLMN/access technology combination list (list of preferred PLMN/access technology combinations) corresponding to the terminal device, or the secured packet corresponding to the terminal device. information.
  • the security package corresponding to the terminal device includes a preferred PLMN/access technology combination list encapsulated by a security mechanism.
  • the UDM network element can provide the preferred application function for roaming (SoR-AF) network element Send the SoR acquisition request, and acquire the preferred PLMN/access technology combination list corresponding to the terminal device or the security package corresponding to the terminal device from the SoR-AF network element.
  • SoR-AF preferred application function for roaming
  • the SoR-AF network element may also not provide the preferred PLMN/access technology combination list corresponding to the terminal device, or the security package corresponding to the terminal device (neither of them). Or it may not respond to the SoR acquisition request of the UDM network element within the set time.
  • the SoR information of the terminal device determined by the UDM network element may indicate'no change of the "Operator Controlled PLMN Selector with Access Technology" list stored in the UE is needed and thus no list of preferred PLMN/access technology combinations is provided' (that is, the operator-defined priority list stored on the terminal device does not need to be changed, so there is no need to provide a list of preferred PLMN/access technology combinations) .
  • the UDM network element responds to the subscription information request of the AMF network element, which includes SoR information.
  • the AMF network element may also subscribe to the UDM network element to notify the change of the subscription information. Further, the UDM network element may also subscribe to the SoR-AF network element to notify the SoR change.
  • S1206 The AMF network element sends the SoR information to the terminal device in the registration acceptance message.
  • S1207 The terminal device performs PLMN selection according to the SoR information.
  • the process includes:
  • the SoR-AF network element sends a SoR update notification to the UDM network element, notifying the UDM network element of the preferred PLMN/access technology combination list (list of preferred PLMN/access technology combinations) corresponding to the terminal device updated, or the terminal device corresponding The secure packet, etc.
  • the UDM network element updates the SoR information and sends it to the AMF network element.
  • the AMF network element sends SoR information to the terminal device.
  • the terminal device selects the PLMN according to the SoR information.
  • the PLMN contained in the existing SoR information is usually all PLMNs supported by the terminal device, and the PLMN priority is ordered according to a predetermined strategy. There may be PLMNs selected by the terminal device that do not support the (desired) network slice to be used by the terminal device. The terminal device selects the PLMN to try to access for many times, which affects the problem of access efficiency. This application aims to solve the above-mentioned problem.
  • the first communication process provided in this embodiment of the application includes:
  • the terminal device sends a registration request (registration request) to an AMF network element, and the AMF network element receives the registration request, and the registration request carries the NSSAI (requested NSSAI) requested by the terminal device.
  • registration request registration request
  • NSSAI quested NSSAI
  • the AMF network element here may refer to the visited AMF network element of the terminal device, that is, in the VPLMN of the terminal device AMF network element.
  • NSSAI refers to a collection of single network slice selection assistance information (S-NSSAI), and S-NSSAI is used to identify network slices.
  • S-NSSAI single network slice selection assistance information
  • one S-NSSAI can be associated with one or more network slice instances, and one network slice instance can be associated with one or more S-NSSAIs.
  • eMBB slice 1, eMBB slice 2, and fixed wireless broadband access (FWA) slice 1 are all eMBB-type slices, and their S-NSSAI values are all 0x01000000;
  • eMBB+ mMTC slice 4 can provide services for both eMBB-type services and mMTC services. Therefore, it is both an eMBB-type slice and a mMTC-type slice.
  • the corresponding S-NSSAI values are 0x01000000 and 0x03000000, respectively.
  • the S-NSSAI includes two parts: a slice/service type (SST) and a slice difference (SD).
  • SST refers to the expected network slicing behavior in terms of characteristics and services.
  • the standard value range of SST is 1, 2, 3, with a value of 1 for eMBB, 2 for URLLC, and 3 for MIoT (mMTC).
  • SD is an optional information used to supplement SST to distinguish multiple network slices of the same slice/service type.
  • the two parts of SST and SD are combined to represent the slice type and multiple slices of the same slice type.
  • S-NSSAI is 0x01000000, 0x02000000, and 0x03000000, which respectively represent eMBB type slices, uRLLC type slices, and MIoT type slices.
  • the S-NSSAI values 0x01000001 and 0x01000002 indicate eMBB type slices, serving user group 1 and user group 2, respectively.
  • the NSSAI commonly used in communication systems includes requested NSSAI (requested NSSAI), allowed NSSAI (allowed NSSAI), and configured NSSAI (configured NSSAI). Their definitions are shown in Table 1.
  • the terminal device When the terminal device registers, it can send a registration request carrying the requested NSSAI to the AMF network element, so that the AMF network element knows the network slice that the terminal device expects to use.
  • the AMF network element sends the first information to the UDM network element, and the UDM network element receives the first information.
  • the first information includes the NSSAI requested by the terminal device, or the S-NSSAI of the home domain corresponding to the NSSAI requested by the terminal device, or the contracted S-NSSAI of the terminal device.
  • the UDM network element does not perceive the NSSAI requested by the terminal device.
  • the AMF network element may send the first information including the NSSAI requested by the terminal device to the UDM network element according to the NSSAI requested by the terminal device carried in the registration request.
  • the AMF network element may also map the NSSAI requested by the terminal device to determine that the NSSAI requested by the terminal device corresponds to the S-NSSAI of the home domain or the contracted S-NSSAI of the terminal device.
  • the NSSAI requested by the terminal device corresponds to the roaming domain (that is, the S-NSSAI contained in it is the unique S-NSSAI of the VPLMN).
  • the AMF network element needs to map it to the S-NSSAI of the corresponding HPLMN .
  • the AMF network element can generate the S-NSSAI (corresponding to the HPLMN S-NSSAI) of the home domain corresponding to the NSSAI requested by the terminal device according to the "mapping to HPLMN S-NSSAIs (that is, the mapping relationship to HPLMN S-NSSAI)" provided by the terminal device , And send it to the UDM network element.
  • the AMF network element judges that the terminal device sending the registration request is a roaming user (for example, the PLMN ID in SUPI is different from the serving PLMN), the AMF network element can send a separate instruction message to the UDM network element to notify the UDM network element that it needs to follow "S-NSSAI of terminal equipment subscription" generates SoR.
  • the "Signed S-NSSAI of the terminal equipment” received from the UDM network element is sent back to the UDM network element.
  • the UDM network element can directly generate SoR based on the "terminal equipment contract S-NSSAI", because the "terminal equipment contract S-NSSAI" itself is stored in the UDM network element. That is, from the perspective of the UDM network element, it may not receive the contracted S-NSSAI of the terminal device from the AMF network element.
  • the UDM network element determines each PLMN preferred by the terminal device according to the first information.
  • the UDM network element may determine each PLMN preferred by the terminal device according to the subscription information of the terminal device and the first information. For example, the UDM network element determines according to the preferred PLMN/access technology combinations corresponding to the terminal device (the list of preferred PLMN/access technology combinations), or the secured packet corresponding to the terminal device, and the first information. Each PLMN preferred by the terminal device, and SoR information can be generated according to each PLMN preferred by the terminal device.
  • the network slices subscribed by the terminal device include: network slice 1, network slice 2, network slice 3, network slice 4, and network slice 5.
  • PLMN1 supports network slice 1 and network slice 2.
  • PLMN2 supports network slice 3
  • PLMN3 supports network slice 4 and network slice 5. If the UDM network element can learn that the NSSAI requested by the terminal device only contains the S-NSSAI corresponding to network slice 5, the UDM network element determines that the preferred PLMN for the terminal device is PLMN3.
  • SoR information is generated (for example, PLMN3 has a higher priority than PLMN2 and PLMN1; or SoR information only includes PLMN3, but does not include PLMN2 and PLMN1).
  • PLMN1 has a higher priority than PLMN2
  • PLMN2 has a higher priority than PLMN3 in the SoR information generated by UDM network elements. After trying to access with PLMN2, PLMN3 can be selected to try to access, which reduces the access efficiency.
  • the network slices signed by the terminal device include: network slice 1, network slice 2, network slice 3, network slice 4, and network slice 5.
  • PLMN1 supports network slice 1 and network slice 2.
  • Network slice 3; PLMN3 supports network slice 4 and network slice 5, then the UDM network element determines that the priority of PLMN3 preferred by the terminal device is higher than the priority of PLMN1. And generate SoR information accordingly.
  • the priority of PLMN1 in the SoR information generated by the UDM network element is higher than the priority of PLMN3, and the terminal device cannot directly select PLMN3 to try to access. After entering, PLMN3 can be selected to try to access, which reduces the access efficiency.
  • the UDM network element may locally configure the slice information supported by the relevant PLMN, or directly obtain it from the NSSF network element, or the AMF network element may obtain it from the NSSF network element and send it to the UDM network element.
  • the SoR-AF network element can locally configure the slice information supported by the relevant PLMN, or obtain it directly from the NSSF network element, or obtain it from the UDM network element and send it to the SoR-AF network element. If it is configured in the SoR-AF network element or the SoR-AF network element obtains the information from the NSSF network element, the UDM network element can also obtain the information from the SoR-AF network element.
  • the determined PLMNs preferred by the terminal device are only the PLMNs supported by the terminal device in the registration domain at the time, that is, the location information of the terminal device and the time information for sending the request are considered at the same time. Because the same PLMN may have different slices supported by different locations at different times. That is, the above-mentioned first information may additionally include location information and/or requested time information of the terminal device.
  • UDM network element, SoR-AF network element can be configured with the information shown in Table 2 below.
  • the UDM network element can send an SoR request to the SoR-AF network element, which can include the VPLMN ID in the request.
  • Terminal equipment identification information such as terminal equipment SUPI), access type (access type), radio access technology type (radio access technology type, RAT type), one or more of information
  • SoR-AF network element It can respond to the SoR acquisition request of the UDM network element, and provide the UDM network element with a preferred PLMN/access technology combination list corresponding to the terminal device, or a security package corresponding to the terminal device.
  • the SoR-AF network element may also not provide the preferred PLMN/access technology combination list corresponding to the terminal device, or the security package corresponding to the terminal device (neither of them); or it may not be within the set time period.
  • the SoR information of the terminal device determined by the UDM network element can indicate that the operator-defined priority list stored on the terminal device does not need to be changed, so there is no need to provide a list of preferred PLMN/access technology combinations (no change of the" Operator Controlled PLMN Selector with Access Technology "list stored in the UE is required and thus no list of preferred PLMN/access technology combinations is provided).
  • the UDM network element may also send the first information to the SoR-AF network element when sending the SoR acquisition request to the SoR-AF network element, and the SoR-AF network element will use the first information according to the first information.
  • the specific SoR-AF network element determines each PLMN preferred by the terminal device according to the first information, and generates SoR information can refer to the implementation of the above UDM network element, and the repetition will not be repeated.
  • the UDM network element sends the SoR information of the terminal device to the AMF network element, and the AMF network element receives the SoR information of the terminal device.
  • the AMF network element sends the SoR information to the terminal device, and the terminal device receives the SoR information.
  • the AMF network element may send the SoR information of the terminal device to the terminal device in the registration acceptance message; it may also send the SoR information of the terminal device to the terminal device in the registration rejection message. (Because the PLMN that the terminal device accesses may not support the network slice that the terminal device expects (requested), thus rejecting the terminal device's registration).
  • the terminal device selects a PLMN based on the SoR information.
  • the network slices contracted by the terminal device include: network slice 1, network slice 2, network slice 3, network slice 4, and network slice 5.
  • PLMN1 supports network slice 1 and network slice 2.
  • PLMN2 supports network slice 3
  • PLMN3 supports network slice 4 and network slice 5
  • the network slice that the terminal device wants to access is network slice 5
  • the NSSAI requested by the terminal device only contains the S-NSSAI corresponding to network slice 5.
  • the UDM network element determines that the preferred PLMN for the terminal device is only the PLMN3 that supports network slice 5.
  • the terminal device can directly choose PLMN3 to try to access.
  • PLMN1 has a higher priority than PLMN2
  • PLMN2 has a higher priority than PLMN3 in the SoR information generated by UDM network elements.
  • the network slices signed by the terminal device include: network slice 1, network slice 2, network slice 3, network slice 4, and network slice 5.
  • PLMN1 supports network slice 1 and network slice 2.
  • Network slice 3 In the case that PLMN3 supports network slice 4 and network slice 5, the network slice that the terminal device wants to access is network slice 5.
  • the NSSAI requested by the terminal device only contains the S-NSSAI corresponding to network slice 5.
  • the UDM network element determines the preferred PLMN for the terminal device, which is only the PLMN3 that supports network slice 5.
  • the terminal device can directly choose PLMN3 to try to access.
  • the priority of PLMN1 in the SoR information generated by the UDM network element is higher than the priority of PLMN3. enter.
  • the UDM network element may also subscribe to the AMF network element the notification of "change of network slice information requested by the terminal device".
  • the AMF network element may send the terminal to the UDM network element.
  • the NSSAI change notification requested by the device After receiving the NSSAI change notification requested by the terminal device, the UDM network element can update the NSSAI requested by the terminal device and trigger the HPLMN update SoR message flow after the UDM network element registers.
  • the second communication process provided by this embodiment of the application can be applied to roaming or non-roaming scenarios, and can also be applied to HPLMN updating SoR information during registration or HPLMN updating SoR information after registration.
  • the following describes the communication process which includes:
  • the AMF network element determines information about each PLMN supported by the terminal device and the network slice supported by each PLMN.
  • the AMF network element can be realized through the UDM network element and/or the NSSF network element. It should be understood that each PLMN supported by the terminal device can refer to The PLMN that has a roaming agreement with the HPLMN of the terminal device may also refer to preferred PLMN information, such as SoR information in the prior art.
  • the AMF network element obtains the information of each PLMN supported by the terminal device from the UDM network element, and obtains from the NSSF network element the information of each PLMN supported by the terminal device according to the information of each PLMN supported by the terminal device. information.
  • the AMF network element may obtain the preferred PLMN/access technology combination list corresponding to the terminal device from the UDM network element, or the security package corresponding to the terminal device (such as SoR information in the subscription information of the terminal device in the prior art) , So as to obtain the information of each PLMN supported by the terminal device. For example, if information indicating that the terminal device supports PLMN1, PLMN3, and PLMN4 is recorded in the preferred PLMN list corresponding to the terminal device in descending order of priority, the AMF network element determines that the terminal device supports PLMN1, PLMN3, and PLMN4.
  • the AMF network element can send a query request to the NSSF network element.
  • the query request can include the identification information of the PLMN1, PLMN3, and PLMN4 supported by the terminal device.
  • the NSSF network element queries PLMN1, PLMN3, and PLMN4.
  • PLMN4 separately supports the network slice information, and responds to the AMF network element.
  • the AMF network element obtains from the NSSF network element information about one or more network slices supported by the PLMN that supports roaming, and obtains information about each PLMN supported by the terminal device from the UDM network element; according to the one or more support
  • the information of the network slices supported by the roaming PLMN and the information of each PLMN supported by the terminal equipment determine the information of the network slices supported by each PLMN supported by the terminal equipment.
  • the PLMNs that the AMF network element obtains from the NSSF network element that support roaming include PLMN1, PLMN2, PLMN3, and PLMN5.
  • PLMN1 supports network slice 1 and network slice 2
  • PLMN2 supports network slice 3
  • PLMN3 supports network slice 4 and network.
  • Slice 5 supports network slice 7, and obtains from the UDM network element that the terminal device supports PLMN1 and PLMN5, then the AMF network element determines that the terminal device supports PLMN1 and PLMN5, PLMN1 supports network slice 1 and network slice 2, and PLMN5 supports network slice 7.
  • the AMF network element receives SoR information of the terminal device from the UDM network element, where the SoR information includes information about each PLMN supported by the terminal device and network slices supported by each PLMN.
  • the UDM network element can further interact with the SoR-AF network element to generate SoR information (the process can refer to the prior art).
  • the UDM network element may locally configure the slice information supported by the relevant PLMN, or obtain it directly from the NSSF network element, or the AMF network element may obtain it from the NSSF network element and send it to the UDM network element.
  • the SoR-AF network element can locally configure the slice information supported by the relevant PLMN, or obtain it directly from the NSSF network element, or obtain it from the UDM network element and send it to the SoR-AF network element. If it is configured in the SoR-AF network element or obtained from the NSSF network element, the UDM network element can also obtain the information from the SoR-AF network element.
  • the determined PLMNs supported by the terminal device are only the PLMNs supported by the terminal device in the registration domain at the time, that is, the location information of the terminal device and the time information of the sending request are considered at the same time. Because the same PLMN may have different slices supported by different locations at different times.
  • location and/or time information can be included in the issued information at the same time.
  • UDM network elements, SoR-AF network elements can be configured with the information shown in Table 2 above.
  • the terminal device supports PLMN1 and PLMN5, PLMN1 supports network slice 1 and network slice 2, and PLMN5 supports network slice 7.
  • PLMN5 belongs to the registration domain corresponding to the terminal device, and each PLMN supported by the determined terminal device is only PLMN5 .
  • the AMF network element is the AMF network element of the terminal device's visit.
  • the AMF network element sends information about each PLMN supported by the terminal device and network slices supported by each PLMN to the terminal device.
  • the terminal device performs PLMN selection according to the information of each PLMN supported by the terminal device and the network slice supported by each PLMN.
  • the terminal device After the terminal device obtains the information of each PLMN supported by the terminal device and the network slices supported by each PLMN, it can select the corresponding PLMN to try to access according to the network slice expected by the terminal device, which can avoid the terminal device from selecting the PLMN to try to access multiple times.
  • the problem of low access efficiency and low access efficiency enables the PLMN selected by the terminal device to support the network slice to be used by the terminal device, which prevents the terminal device from selecting the PLMN multiple times to try to access, thereby improving the access efficiency.
  • the terminal device supports PLMN1 and PLMN5, PLMN1 supports network slice 1 and network slice 2, and PLMN5 supports network slice 7. Where the terminal device expects (requests) to access network slice 7, the terminal device can directly select PLMN5 to try to access.
  • FIG. 17 Take an example of the process of updating the SoR information by the HPLMN when the terminal device is registered, as shown in FIG. 17, which is the third communication process provided in this embodiment of the application.
  • the terminal device sends a registration request (registration request) to the AMF network element, where the registration request carries the NSSAI (requested NSSAI) requested by the terminal device.
  • the AMF network element After receiving the registration request, the AMF network element sends a contract information request to the UDM network element, where the contract information request carries identification information of the terminal device.
  • the UDM network element determines information about each PLMN supported by the terminal device in the registration domain and the network slice supported by each PLMN.
  • the UDM network element responds to the subscription information request of the AMF, which includes SoR information, and the SoR information includes information about each PLMN supported by the terminal device in the registration domain and the network slice supported by each PLMN.
  • the AMF network element may also subscribe to the UDM network element to notify the change of the subscription information.
  • S1706 The AMF network element sends the SoR information to the terminal device in the registration acceptance message.
  • the AMF network element may send SoR information to the terminal device in the registration acceptance message; it may also send the SoR information to the terminal device in the registration rejection message. (Because the PLMN accessed by the terminal device may not support the network slice expected (requested) by the terminal device, thus rejecting the registration of the terminal device).
  • S1707 The terminal device performs PLMN selection according to the SoR information.
  • each network element includes a hardware structure and/or software module (or unit) corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 18 shows a possible exemplary block diagram of a communication device involved in an embodiment of the present application, and the communication device 1800 may exist in the form of software.
  • the apparatus 1800 may include: a processing unit 1802 and a transceiving unit 1803.
  • the processing unit 1802 is used to implement corresponding processing functions.
  • the transceiver unit 1803 is used to support the communication between the device 1800 and other network entities.
  • the transceiving unit 1803 may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 1800 may further include a storage unit 1801 for storing program codes and/or data of the device 1800.
  • the device 1800 may be an AMF network element in any of the foregoing embodiments (for example, the AMF network element is the AMF network element in Embodiment 1), or may also be a component such as a chip provided in the AMF network element.
  • the processing unit 1802 may support the apparatus 1800 to perform the actions of the AMF network element in the above method examples.
  • the processing unit 1802 mainly executes the internal actions of the AMF network element in the method example, and the transceiving unit 1803 can support communication between the apparatus 1800 and the UDM network element, terminal equipment, and the like.
  • the processing unit 1802 is configured to determine first information after receiving the registration request sent by the terminal device, where the first information includes the network slice selection assistance information NSSAI requested by the terminal device, Or the single network slice selection assistance information S-NSSAI of the home domain corresponding to the NSSAI requested by the terminal device, or the subscription S-NSSAI of the terminal device;
  • the transceiver unit 1803 is configured to send the first network element to the unified data management UDM network element A message;
  • the transceiver unit 1803 is also used to receive the roaming preferred SoR information of the terminal device from the UDM network element, wherein the SoR information includes the preferred public land mobile network PLMN information of the terminal device Information;
  • the transceiver unit 1803 is also used to send the SoR information to the terminal device.
  • the transceiving unit 1803 is further configured to send the NSSAI change notification requested by the terminal device to the UDM network element when the NSSAI requested by the terminal device changes.
  • the AMF network element is a visited AMF network element of the terminal device.
  • the processing unit 1802 is configured to determine the information of each public land mobile network PLMN supported by the terminal device and the network slices supported by the respective PLMN; the transceiver unit 1803 is configured to send the terminal device to the terminal device. Information about each PLMN supported by the terminal device and the network slice supported by each PLMN.
  • the processing unit 1802 when the information about each PLMN supported by the terminal device and the network slice supported by each PLMN is determined, the processing unit 1802 is specifically configured to obtain the terminal from a unified data management UDM network element Information of each PLMN supported by the device; according to the information of each PLMN supported by the terminal device, obtain the information of the network slice supported by each PLMN supported by the terminal device from the network slice selection function NSSF network element.
  • the processing unit 1802 when the information about each PLMN supported by the terminal device and the network slice supported by each PLMN is determined, the processing unit 1802 is specifically configured to obtain one or more PLMN support from the NSSF network element The information of the network slices of, obtain the information of each PLMN supported by the terminal device from the UDM network element, wherein the one or more PLMNs support roaming; according to the information of the network slices supported by the one or more PLMNs, determine Information about network slices supported by each PLMN supported by the terminal device.
  • the processing unit 1802 when the information about each PLMN supported by the terminal device and the network slice supported by each PLMN is determined, the processing unit 1802 is specifically configured to receive the information from the UDM network element through the transceiver unit 1803 Roaming of the terminal device prefers SoR information, where the SoR information includes information about each PLMN supported by the terminal device and network slices supported by each PLMN.
  • the transceiving unit 1803 when the information about each PLMN supported by the terminal device and the network slice supported by each PLMN is sent to the terminal device, the transceiving unit 1803 is specifically configured to transmit information to the terminal device.
  • the device sends SoR information, where the SoR information includes information about each PLMN supported by the terminal device and network slices supported by each PLMN.
  • each PLMN supported by the terminal device is each PLMN supported by the terminal device in the registration domain.
  • the AMF network element is a visited AMF network element of the terminal device.
  • an embodiment of the present application further provides a communication device 1900.
  • the communication device 1900 includes a processor 1910 and a transceiver 1930, and may also include a memory 1920.
  • the memory 1920 stores instructions or programs or data
  • the memory 1920 may be used to implement the functions of the storage unit 1801 in the foregoing embodiment.
  • the processor 1910 is configured to read instructions or programs or data stored in the memory 1920. When the instructions or programs stored in the memory 1920 are executed, the processor 1910 is used to perform operations performed by the processing unit 1802 in the foregoing embodiment, and the transceiver 1930 is used to perform operations performed by the transceiving unit 1803 in the foregoing embodiment.
  • FIG. 20 shows a possible exemplary block diagram of another communication device involved in an embodiment of the present application, and the communication device 2000 may exist in the form of software.
  • the device 2000 may include: a processing unit 2002 and a transceiver unit 2003.
  • the processing unit 2002 is used to implement corresponding processing functions.
  • the transceiver unit 2003 is used to support the communication between the device 2000 and other network entities.
  • the transceiver unit 2003 may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 2000 may further include a storage unit 2001 for storing the program code and/or data of the device 2000.
  • the device 2000 may be a UDM network element in any of the foregoing embodiments (for example, the UDM network element is the UDM network element in Embodiment 1), or may also be a component such as a chip provided in the UDM network element.
  • the processing unit 2002 may support the apparatus 2000 to perform the actions of the UDM network element in the above method examples.
  • the processing unit 2002 mainly performs the internal actions of the UDM network element in the method example, and the transceiver unit 2003 can support the communication between the apparatus 2000 and the AMF network element, terminal equipment, and the like.
  • the processing unit 2002 is configured to determine each public land mobile network PLMN preferred by the terminal device according to the first information, and the first information includes the network slice selection assistance requested by the terminal device.
  • Information NSSAI or the single network slice selection assistance information S-NSSAI of the home domain corresponding to the NSSAI requested by the terminal device, or the subscription S-NSSAI of the terminal device; the transceiver unit 2003, used for access and mobility management functions
  • the AMF network element sends the roaming preferred SoR information of the terminal device, where the SoR information includes the information of each PLMN supported by the terminal device.
  • the transceiver unit 2003 is further configured to receive the first information from the AMF network element.
  • the transceiver unit 2003 is further configured to receive the NSSAI change notification requested by the terminal device from the AMF network element;
  • the processing unit 2002 is further configured to update the NSSAI requested by the terminal device.
  • the AMF network element is a visited AMF network element of the terminal device.
  • the processing unit 2002 is configured to determine each PLMN supported by the terminal device and the network slice information supported by each PLMN; the transceiver unit 2003 is configured to send information to the access and mobility management function AMF network element The roaming preference SoR information of the terminal device, wherein the SoR information includes the information of each PLMN supported by the terminal device and the network slice supported by each PLMN.
  • each PLMN supported by the terminal device is each PLMN supported by the terminal device in the registration domain.
  • the AMF network element is a visited AMF network element of the terminal device.
  • an embodiment of the present application further provides a communication device 2100.
  • the communication device 2100 includes a processor 2110 and a transceiver 2130, and may also include a memory 2120.
  • the memory 2120 stores instructions or programs or data, and the memory 2120 may be used to implement the functions of the storage unit 2001 in the foregoing embodiment.
  • the processor 2110 is configured to read instructions or programs or data stored in the memory 2120. When the instructions or programs stored in the memory 2120 are executed, the processor 2110 is used to perform the operations performed by the processing unit 2002 in the foregoing embodiment, and the transceiver 2130 is used to perform the operations performed by the transceiver unit 2003 in the foregoing embodiment.
  • the aforementioned processor may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor may further include a hardware chip or other general-purpose processors.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (generic array logic, GAL) and other programmable logic devices , Discrete gates or transistor logic devices, discrete hardware components, etc. or any combination thereof.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种通信方法、装置及芯片。该方法包括:在接收到终端设备发送的注册请求后,AMF网元向UDM网元发送第一信息,所述第一信息包括终端设备请求的NSSAI、或终端设备请求的NSSAI对应归属域的S-NSSAI、或终端设备的签约S-NSSAI;AMF网元从UDM网元接收终端设备的SoR信息,其中,所述SoR信息中包括终端设备优选的各个PLMN的信息;AMF网元向终端设备发送所述SoR信息。基于该方案,UDM网元在确定终端设备的SoR信息时,可以基于终端设备期望(请求)的网络切片,确定终端设备优选的各个PLMN,可以避免终端设备多次选择PLMN尝试接入,接入效率低的问题。

Description

一种通信方法、装置及芯片
相关申请的交叉引用
本申请要求在2020年05月07日提交中国国家知识产权局、申请号为202010379338.8、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法、装置及芯片。
背景技术
网络切片(network slice)是通过网络切片技术在一个硬件基础设施上虚拟出的一个端对端的逻辑网络,是满足第五代(5th generation,5G)移动通信技术关于网络差异化需求的关键技术。通过网络切片技术运营商可以在一个硬件基础设施上虚拟出多个网络切片,每个网络切片按需分配资源、灵活组合能力,以满足各种业务的不同需求。当新需求提出而目前网络无法满足要求时,运营商只需要为此需求虚拟出一张新的切片网络,而不需要影响已有的切片网络,能以最快速度上线业务。
在终端设备位于拜访地(即漫游场景)的注册流程中,终端设备对应的统一数据管理(unified data management,UDM)网元,会响应拜访地AMF网元的签约信息请求,向拜访地AMF网元发送漫游优选(steering of roaming,SoR)信息,终端设备根据拜访地AMF网元反馈的SoR信息进行公共陆地移动网络(public land mobile network,PLMN)的选择。然而,SoR信息包含的PLMN优先级是按照预定策略排序的,会存在终端设备选择的PLMN不支持终端设备将要使用的网络切片,导致终端设备多次选择PLMN尝试接入,影响接入效率的问题。
发明内容
本申请实施例提供一种通信方法、装置及芯片,用以避免终端设备选择的PLMN不支持终端设备将要使用的网络切片,导致终端设备多次选择PLMN尝试接入,影响接入效率的问题,使得终端设备选择的PLMN能够支持终端设备将要使用的网络切片,避免了终端设备多次选择PLMN尝试接入,从而提高了接入效率。
第一方面,本申请提供了一种通信方法,该方法包括:在接收到终端设备发送的注册请求后,接入和移动性管理功能AMF网元向统一数据管理UDM网元发送第一信息,所述第一信息包括所述终端设备请求的网络切片选择协助信息NSSAI、或所述终端设备请求的NSSAI对应归属域的单网络切片选择协助信息S-NSSAI、或所述终端设备的签约S-NSSAI;所述AMF网元从所述UDM网元接收所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备优选的各个公共陆地移动网PLMN的信息;所述AMF网元向所述终端设备发送所述SoR信息。
采用上述方法,UDM网元在确定终端设备的SoR信息时,可以基于终端设备期望(或 请求)的网络切片,确定终端设备优选的各个PLMN,以保障终端设备选择的PLMN支持终端设备期望使用的网络切片,从而可以避免终端设备多次选择PLMN尝试接入,接入效率低的问题,提高接入效率。
在一个可能的设计中,所述方法还包括:当所述终端设备请求的NSSAI改变时,所述AMF网元向所述UDM网元发送所述终端设备请求的NSSAI改变通知。
上述设计中,当终端设备请求的NSSAI改变,AMF网元向UDM网元发送终端设备请求的NSSAI改变通知,使得UDM网元对终端设备请求的NSSAI进行更新,可以保证UDM网元确定的终端设备优选的各个PLMN支持终端设备期望(请求)的网络切片,可以进一步避免终端设备多次选择PLMN尝试接入,接入效率低的问题。
在一种可能的设计中,所述AMF网元为所述终端设备的拜访地AMF网元。
上述设计中,在漫游场景下,AMF网元可以为终端设备的拜访地AMF网元,保证终端设备在漫游场景下对PLMN的高效选择。
第二方面,本申请提供一种通信方法,该方法包括:接入和移动性管理功能AMF网元确定终端设备支持的各个公共陆地移动网PLMN及所述各个PLMN支持的网络切片的信息;所述AMF网元向所述终端设备发送所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
采用上述方法,AMF网元向终端设备发送终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息,终端设备在接入PLMN时,可以根据终端设备期望的网络切片,在终端设备支持的各个PLMN中,选取支持终端设备期望的网络切片的PLMN进行接入,从而可以避免终端设备选择的PLMN不支持终端设备期望接入的网络切片,终端设备多次选择PLMN尝试接入,接入效率低的问题,提高接入效率。
在一个可能的设计中,所述AMF网元确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息,包括:所述AMF网元从统一数据管理UDM网元获取所述终端设备支持的各个PLMN的信息;所述AMF网元根据所述终端设备支持的各个PLMN的信息,从网络切片选择功能NSSF网元获取所述终端设备支持的各个PLMN支持的网络切片的信息。
在一个可能的设计中,所述AMF网元确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息,包括:所述AMF网元从NSSF网元获取一个或多个PLMN支持的网络切片的信息,从UDM网元获取所述终端设备支持的各个PLMN的信息,其中,所述一个或多个PLMN支持漫游;所述AMF网元根据所述一个或多个PLMN支持的网络切片的信息,确定所述终端设备支持的各个PLMN支持的网络切片的信息。
在一个可能的设计中,所述AMF网元确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息,包括:所述AMF网元从UDM网元接收所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
上述设计中,提供了多种AMF网元确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息的方式,可以满足不同场景下,AMF网元确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息实施需求。
在一个可能的设计中,所述AMF网元向所述终端设备发送所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息,包括:所述AMF网元向所述终端设备 发送SoR信息,其中,所述SoR信息中包括所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
上述设计中,对于终端设备的漫游场景,AMF网元可以通过SoR信息向终端设备发送终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息,保证终端设备准确选择支持终端设备期望接入的网络切片的PLMN。
在一种可能的设计中,所述终端设备支持的各个PLMN为所述终端设备在注册域支持的各个PLMN。
上述设计中,确定的终端设备支持的各个PLMN仅为终端设备在注册域支持的各个PLMN,在不影响终端设备接入效果的情况下,可以有效节约信令开销。
在一种可能的设计中,所述AMF网元为所述终端设备的拜访地AMF网元。
第三方面,本申请提供一种通信方法,该方法包括:统一数据管理UDM网元根据第一信息,确定终端设备支持的各个公共陆地移动网PLMN,所述第一信息包括所述终端设备请求的网络切片选择协助信息NSSAI、或所述终端设备请求的NSSAI对应归属域的单网络切片选择协助信息S-NSSAI、或所述终端设备的签约S-NSSAI;所述UDM网元向接入和移动性管理功能AMF网元发送所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备优选的各个PLMN的信息。
在一种可能的设计中,所述方法还包括:所述UDM网元从所述AMF网元接收所述第一信息。
在一种可能的设计中,所述方法还包括:所述UDM网元从所述AMF网元接收所述终端设备请求的NSSAI改变通知;所述UDM网元更新所述终端设备请求的NSSAI。
在一种可能的设计中,所述AMF网元为所述终端设备的拜访地AMF网元。
上述第三方面所能达到的技术效果请参照上述第一方面所能达到的技术效果,这里不再重复赘述。
第四方面,本申请提供一种通信方法,该方法包括:统一数据管理UDM网元确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息;所述UDM网元向接入和移动性管理功能AMF网元发送所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
在一种可能的设计中,所述终端设备支持的各个PLMN为所述终端设备在注册域支持的各个PLMN。
在一种可能的设计中,所述AMF网元为所述终端设备的拜访地AMF网元。
上述第四方面所能达到的技术效果请参照上述第二方面所能达到的技术效果,这里不再重复赘述。
第五方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面或者第一方面的任一种可能的设计中方法的功能,或者实现上述第二方面或者第二方面的任一项可能的设计中方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元(模块),比如包括收发单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括处理器和收发器,所述处理器与所述收发器耦合,用于实现上述第一方面或者第一方面的任一种可能的设计中所述的方法的功能,或者实现 上述第二方面或者第二方面的任一项可能的设计中方法的功能。该装置还可以包括存储器,所述存储器存储有可被处理器执行的用于实现上述第一方面或者第一方面的任一种可能的设计中所述的方法的功能,或者实现上述第二方面或者第二方面的任一项可能的设计中方法的功能的程序。
在一个可能的设计中,该装置可以为AMF网元。
第六方面,本申请实施例提供一种通信装置,该装置具有实现上述第三方面或者第三方面的任一种可能的设计中方法的功能,或者实现上述第四方面或者第四方面的任一项可能的设计中方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元(模块),比如包括收发单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括处理器和收发器,所述处理器与所述收发器耦合,用于实现上述第三方面或者第三方面的任一种可能的设计中所述的方法的功能,或者实现上述第四方面或者第四方面的任一项可能的设计中方法的功能。该装置还可以包括存储器,所述存储器存储有可被处理器执行的用于实现上述第三方面或者第三方面的任一种可能的设计中所述的方法的功能,或者实现上述第四方面或者第四方面的任一项可能的设计中方法的功能的程序。
在一个可能的设计中,该装置可以为UDM网元。
第七方面,本申请实施例提供一种通信系统,该通信系统可以包括AMF网元和UDM网元,其中AMF网元可以执行上述第一方面或者第一方面的任一种可能的设计中所述的方法,UDM网元可以执行上述第三方面或者第三方面的任一种可能的设计中所述的方法;或者,AMF网元可以执行上述第二方面或者第二方面的任一种可能的设计中所述的方法,UDM网元可以执行上述第四方面或者第四方面的任一种可能的设计中所述的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质具有用于执行上述第一方面或者第一方面的任一种可能的设计中所述的方法,或执行上述第二方面或者第二方面的任一种可能的设计中所述的方法,或执行上述第三方面或者第三方面的任一种可能的设计中所述的方法,或执行上述第四方面或者第四方面的任一种可能的设计中所述的方法的计算机程序或指令。
第九方面,本申请实施例还提供一种计算机程序产品,包括计算机程序或指令,当所述计算机程序或指令被执行时,可以实现上述第一方面或者第一方面的任一种可能的设计中所述的方法,或实现上述第二方面或者第二方面的任一种可能的设计中所述的方法,或实现上述第三方面或者第三方面的任一种可能的设计中所述的方法,或实现上述第四方面或者第四方面的任一种可能的设计中所述的方法。
第十方面,本申请还提供一种芯片,所述芯片用于实现上述第一方面或者第一方面的任一种可能的设计中所述的方法,或实现上述第二方面或者第二方面的任一种可能的设计中所述的方法,或实现上述第三方面或者第三方面的任一种可能的设计中所述的方法,或实现上述第四方面或者第四方面的任一种可能的设计中所述的方法。
上述第五方面至第十方面所能达到的技术效果请参照上述第一方面至第二方面所能达到的技术效果,这里不再重复赘述。
附图说明
图1为本申请实施例提供的应用场景示意图之一;
图2为本申请实施例提供的应用场景示意图之二;
图3为本申请实施例提供的应用场景示意图之三;
图4为本申请实施例提供的应用场景示意图之四;
图5为本申请实施例提供的应用场景示意图之五;
图6为本申请实施例提供的应用场景示意图之六;
图7为本申请实施例提供的5G的三大应用场景示意图;
图8A和图8B为本申请实施例提供的eMBB和mMTC应用示意图;
图9为本申请实施例提供的网络切片特性示意图;
图10为本申请实施例提供的5G的三大应用场景对应的网络切片类型示意图;
图11为本申请实施例提供的终端设备注册示意图;
图12为本申请实施例提供的注册时HPLMN更新SoR信息的流程示意图;
图13为本申请实施例提供的注册后HPLMN更新SoR信息的流程示意图;
图14为本申请实施例提供的通信过程示意图之一;
图15A和图15B为本申请实施例提供的S-NSSAI信息介绍示意图;
图16为本申请实施例提供的通信过程示意图之二;
图17为本申请实施例提供的通信过程示意图之三;
图18为本申请实施例提供的通信装置示意图之一;
图19为本申请实施例提供的通信装置示意图之二;
图20为本申请实施例提供的通信装置示意图之三;
图21为本申请实施例提供的通信装置示意图之四。
具体实施方式
本申请实施例提供的技术方案可以普遍适用于5G等系统,可以用于基于服务化接口的架构,也可以用于基于参考点的架构,进一步的可以包含漫游场景和非漫游场景。下面分别介绍这几种场景,在下面的场景介绍中,以终端设备为UE为例。
请参考图1,为5G系统中基于服务化接口的非漫游场景架构图。图1中,网络切片选择功能(network slice selection function,NSSF)网元、网络业务呈现功能(network exposure function,NEF)网元、网络功能(network function,NF)存储功能(NF repository function,NRF)网元、策略控制功能(policy control function,PCF)网元、UDM网元、应用功能(application function,AF)网元、鉴权服务功能(authentication server function,AUSF)网元、接入和移动性管理功能(access and mobility management function,AMF)网元和会话管理功能(session management function,SMF)网元均连接到同一连接线,其中,NSSF网元通过Nnssf接口与该连接线连接,NEF网元通过Nnef接口与该连接线连接,NRF网元通过Nnrf接口与该连接线连接,PCF网元通过Npcf接口与该连接线连接,UDM网元通过Nudm接口与该连接线连接,AF网元通过Naf接口与该连接线连接,AUSF网元通过Nausf接口与该连接线连接,AMF网元通过Namf接口与该连接线连接,SMF网元通过Nsmf接口与该连接线连接。另外,AMF网元还通过N2接口与(无线)接入网(radio access network,(R) AN)通信,以及通过N1接口与UE通信,UE能够与(R)AN通信,(R)AN通过N3接口与UPF网元通信,UPF网元通过N4接口与SMF网元连接,以及通过N6接口与数据网络(data network,DN)连接。
请参考图2,为5G系统中基于参考点的非漫游场景架构图。图2中,UE可通过(R)AN与AMF网元通信,其中(R)AN通过N2接口与AMF网元通信。另外UE也可通过N1接口直接与AMF网元通信。另外(R)AN还通过N3接口与UPF网元通信,UPF网元通过N9接口与其他的UPF网元通信,UPF网元还通过N6接口与DN通信,以及通过N4接口与SMF网元通信。AMF网元通过N14接口与其他的AMF网元通信,AMF网元还通过N11接口与SMF网元通信、通过N12接口与AUSF网元通信、通过N8接口与UDM网元通信、通过N15接口与PCF网元通信、以及通过N22接口与NSSF网元通信,SMF网元通过N10接口与UDM网元通信,以及通过N7接口与PCF网元通信,PCF网元通过N5接口与AF网元通信。
请参考图3,为5G系统中基于服务化接口的漫游场景架构图之一,图3为本地疏导(local breakout,LBO)场景,即业务的数据包只需要在VPLMN进行传输的场景。图3中,访问公共陆地移动网络(visit public land mobile network,VPLMN)表示UE漫游之后所在的网络,归属公共陆地移动网络(home public land mobile network,HPLMN)表示UE漫游之前所在的网络,也就是说,UE是从HPLMN漫游到了VPLMN。VPLMN中,NSSF网元、NEF网元、NRF网元、PCF网元、AF网元、AMF网元和SMF网元均连接到同一连接线,其中,NSSF网元通过Nnssf接口与该连接线连接,NEF网元通过Nnef接口与该连接线连接,NRF网元通过Nnrf接口与该连接线连接,PCF网元通过Npcf接口与该连接线连接,AF网元通过Naf接口与该连接线连接,AMF网元通过Namf接口与该连接线连接,SMF网元通过Nsmf接口与该连接线连接,该连接线还连接了访问地安全边缘保护代理(visit security edge protection proxy,vSEPP)网元。另外,AMF网元还通过N2接口与(无线)接入网(radio access network,(R)AN)通信,以及通过N1接口与UE通信,UE能够与(R)AN通信,(R)AN通过N3接口与UPF网元通信,UPF网元通过N4接口与SMF网元连接,以及通过N6接口与DN连接。HPLMN中,UDM网元、NRF网元、NSSF网元、AUSF网元、PCF网元和NEF网元均与同一连接线连接,其中,UDM网元通过Nudm接口与该连接线连接,NSSF网元通过Nnssf接口与该连接线连接,NEF网元通过Nnef接口与该连接线连接,NRF网元通过Nnrf接口与该连接线连接,PCF网元通过Npcf接口与该连接线连接,该连接线还连接了hSEPP网元,且vSEPP网元和归属地安全边缘保护代理(home security edge protection proxy,hSEPP)网元通过N32接口连接。
请参考图4,为5G系统中基于服务化接口的漫游场景架构图之二,图4为归属路由(home routed,HR)场景,即业务的数据包需要传回HPLMN的场景。图4中,VPLMN表示UE漫游之后所在的网络,HPLMN表示UE漫游之前所在的网络。VPLMN中,NSSF网元、NEF网元、NRF网元、PCF网元、AMF网元和SMF网元均连接到同一连接线,其中,NSSF网元通过Nnssf接口与该连接线连接,NEF网元通过Nnef接口与该连接线连接,NRF网元通过Nnrf接口与该连接线连接,PCF网元通过Npcf接口与该连接线连接,AMF网元通过Namf接口与该连接线连接,SMF网元通过Nsmf接口与该连接线连接,该连接线还连接了vSEPP网元。另外,AMF网元还通过N2接口与(R)AN通信,以及通过N1与UE通信,UE能够与(R)AN通信,(R)AN通过N3接口与UPF网元通信,UPF网 元通过N4接口与SMF网元连接,以及通过N9接口与HPLMN中的UPF网元连接。HPLMN中,UDM网元、NRF网元、AUSF网元、SMF网元、AF网元、PCF网元和NEF网元均与同一连接线连接,其中,UDM网元通过Nudm接口与该连接线连接,NSSF网元通过Nnssf接口与该连接线连接,NEF网元通过Nnef接口与该连接线连接,NRF网元通过Nnrf接口与该连接线连接,PCF网元通过Npcf接口与该连接线连接,AF网元通过Naf与该连接线连接,SMF网元通过Nsmf与该连接线连接,该连接线还连接了hSEPP网元,且vSEPP网元和hSEPP网元通过N32接口连接,UPF网元通过N4接口与SMF网元连接,以及通过N6接口与DN连接。
请参考图5,为5G系统中基于参考点的漫游场景架构图之一,图5也为LBO场景,即业务的数据包只需要在VPLMN进行传输的场景。图5中,VPLMN表示UE漫游之后所在的网络,HPLMN表示UE漫游之前所在的网络。图5中,VPLMN中的NSSF网元通过N22接口与AMF网元通信,AMF网元通过N1接口与UE通信、通过N2接口与(R)AN通信、通过N11接口与SMF网元通信、通过N15接口与vPCF网元通信、通过N12接口与HPLMN中的AUSF网元通信、以及通过N8接口与HPLMN中的UDM网元通信,SMF网元通过N4接口与UPF网元通信、通过N7接口与vPCF网元通信、以及通过N10接口与HPLMN中的UDM网元通信,vPCF网元通过N5接口与AF网元通信以及通过N24接口与HPLMN中的hPCF网元通信,UE能够与(R)AN通信,(R)AN通过N3接口与UPF网元通信,UPF网元通过N6接口与DN通信。
请参考图6,为5G系统中基于参考点的漫游场景架构图之二,图6为归属路由(home routed,HR)场景,即业务的数据包需要传回HPLMN的场景。图6中,VPLMN表示UE漫游之后所在的网络,HPLMN表示UE漫游之前所在的网络。图6中,VPLMN中的V-NSSF网元通过N22接口与AMF网元通信,以及通过N31接口与HPLMN中的H-NSSF网元通信,AMF网元通过N1接口与UE通信、通过N2接口与(R)AN通信、通过N12接口与PLMN中的AUSF网元通信、通过N15接口与V-PCF网元通信、通过N11接口与V-SMF网元通信、以及通过N8接口与HPLMN中的UDM网元通信,V-SMF网元通过N4接口与VPLMN中的UPF网元通信、通过N16接口与HPLMN中的H-SMF网元通信,H-SMF网元通过N4接口与HPLMN中的UPF网元通信、通过N7接口与H-PCF网元通信以及通过N10接口与UDM网元通信,UDM网元通过N13接口与AUSF网元通信,H-PCF网元通过N24接口与V-PCF网元通信,以及通过N5接口与AF网元通信,UE能够与(R)AN通信,(R)AN通过N3接口与VPLMN中的UPF网元通信,VPLMN中的UPF网元通过N9接口与HPLMN中的UPF网元通信,HPLMN中的UPF网元还通过N6接口与DN通信。
其中,在某种网元之前加“V”或“v”,意义相同,都表明该网元是属于VPLMN中的,例如V-PCF网元或vPCF网元,就表示VPLMN中的PCF网元,而在某种网元之前加“H”或“h”,意义也相同,表明该网元是属于HPLMN中的,例如H-PCF网元或hPCF网元,就表示HPLMN中的PCF网元,也就是说,“V”或“H”仅是对所处的网络或所处的位置的说明,不代表对功能的限制。例如,V-PCF网元和H-PCF网元,功能可能是相同的,也可能不同。
如上的图1所示的场景~图6所示的场景中的任意一种场景,均可作为本申请实施例的应用场景。当然以上几种场景只是示例,本申请实施例不限于应用在以上应用场景。
下面对其中的部分网元或设备的功能进行简单介绍说明。
终端设备(terminal device),是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、用户设备(user equipment,UE)等。
上述终端设备可通过运营商网络提供的接口(例如N1等)与运营商网络建立连接,使用运营商网络提供的数据和/或语音等服务。终端设备还可通过运营商网络访问DN,使用DN上部署的运营商业务,和/或第三方提供的业务。其中,上述第三方可为运营商网络和终端设备之外的服务方,可为终端设备提供他数据和/或语音等服务。其中,上述第三方的具体表现形式,具体可根据实际应用场景确定,在此不做限制。
(R)AN是运营商网络的子网络,是运营商网络中业务节点与终端设备之间的实施系统。终端设备要接入运营商网络,首先是经过RAN,进而可通过RAN与运营商网络的业务节点连接。RAN设备,是一种为终端设备提供无线通信功能的设备,RAN设备也称为接入网设备。RAN设备包括但不限于:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
UPF网元,主要功能包含:数据包路由和传输、包检测、业务用量上报、服务质量(quality of service,QoS)处理、合法监听、上行包检测、下行数据包存储等用户面相关的功能。
AMF网元,主要功能包含:连接管理、移动性管理、注册管理、接入认证和授权、可达性管理、安全上下文管理等接入和移动性相关的功能。
SMF网元,主要功能包含:会话管理(如会话建立、修改和释放,包含UPF网元和AN之间的隧道维护)、UPF网元的选择和控制、业务和会话连续性(service and session continuity,SSC)模式选择、漫游等会话相关的功能。
PCF网元,主要功能包含:统一策略制定、策略控制的提供和从统一数据库(unified data repository,UDR)网元中获取策略决策相关的签约信息等策略相关的功能。
NSSF网元,主要功能包含:为终端设备选择一组网络切片实例、确定允许的NSSAI和确定可以服务终端设备的AMF网元集等。
NRF网元,主要功能包括:服务发现功能,维护可用的网络功能(network function,NF)实例的NF文本以及他们支持的服务。
AF网元,主要功能包括:与3GPP核心网交互提供业务或者服务,包括与NEF网元交互,策略架构交互等。
NEF网元,主要功能包括:安全的开放3GPP网络功能提供的业务和能力,有内部开放,或者开放给第三方等。转化或翻译与AF网元交互的信息和内部网络功能交互的信息, 如AF服务标识和内部5G核心网信息如DNN,S-NSSAI等。
UDM网元,主要功能包括:支持3GPP认证和密钥协商机制中的认证信任状处理,用户身份处理,接入授权,注册和移动性管理,签约管理,短消息管理等。
AUSF网元,主要功能包括:与UDM网元交互获取用户信息,并执行认证相关的功能,如生成中间密钥等。
DN,是位于运营商网络之外的网络,运营商网络可以接入多个DN,DN上可部署多种业务,可为终端设备提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端设备,DN中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
5G会开启一个万物互联的时代,如图7所示5G支持增强型移动宽带(eMBB)、大规模的机器通信业务(mMTC)和超可靠低时延通信业务(uRLLC)三大场景。eMBB(增强型移动宽带):基于无线侧频谱利用率和频谱带宽技术的突破,5G可以提供比4G快10倍以上的传输速率。如图8A所示,对于当下流行的AR/VR、高清视频直播,5G超高速率才能满足需求,4G的传输速率可能是无法支持的。现在使用VR看高清或者大型交互游戏时,必须要拖着网线来获取数据,在未来通过5G网络进行无线连接,VR/AR可以获得快捷的体验。mMTC(大规模机器通信业务):通过多用户共享接入,超密集异构网络等技术,如图8B所示,5G可以支持每平方公里接入100万个设备,是4G的10倍。近来智慧城市的快速发展,路灯,井盖,水表等公共设施都已经拥有了网络连接能力,可以进行远程管理,但是5G会有更大的革新。基于5G网络的强大连接能力,才可以把城市各个行业的公共设备都接入智能管理平台。这些公共设施通过5G网络协同工作,只需要少量的维护人员就可以统一管理,大大提升城市的运营效率。uRLLC(超可靠低时延通信业务):在5G场景下最典型的应用就是自动驾驶,自动驾驶最常用的场景如急刹车、车对车,车对人,车对基础设施等多路通信同时进行,需要瞬间进行大量的数据处理并决策。因此需要网络同时具有大带宽、低时延和高可靠性,5G网络具备应对这种场景的能力。
不同于4G时代通过一张网络满足所有的应用场景和客户群体,要构筑网络可靠性,就增加网元设备级的冗余备份,通过不断叠加特性去满足大众市场不断提出的诉求。在5G时代将有数以千亿计的物联网设备接入网络,并且各种业务在时延、连接数、可靠性、安全性等方面的要求相去甚远而且具有不可预知性,比如AR业务需要使用>1600Mbps的网络超高带宽、能源抄表业务需要网络提供海量连接,自动驾驶需要网络保证几毫秒的端到端低时延以及99.999%以上的高可靠性,如果还想通过一张网络满足目前所有需求以及未来可能提出的需求,根本不可能实现。因此在5G中引入了网络切片技术,如图9所述网络切片具有隔离性、按需定制和端到端三大特性,通过网络切片技术可以在同一网络基础 设施上虚拟出多个独立逻辑网络满足不同的需求。相应的如图10所示,对应于5G的三大场景可以虚拟出eMBB切片、mMTC切片、uRLLC切片。
当核心网部署了网络切片,终端设备初始注册到网络时,就会触发网络切片的选择过程。网络切片的选择过程取决于终端设备的签约数据、本地配置信息、漫游协议、运营商的策略等等。在网络切片的选择过程中,需要综合考虑以上参数,才能为终端设备选择最佳的切片类型。
如图11所示,终端设备注册流程中,RAN首先根据本地存储信息及终端设备注册请求消息为终端设备选择一个AMF(即初始AMF)网元为其提供服务。但是初始AMF(Initial AMF)网元可能不支持终端设备要使用的网络切片,例如初始AMF网元只支持uRLLC类型网络切片,但是终端设备请求的是eMBB类型的网络切片。如果初始AMF网元无法为终端设备提供服务,则初始AMF网元向NSSF网元查询和选择能支持终端设备网络切片的目标AMF(Target AMF)网元,然后将终端设备的注册请求消息通过直接或间接的方式发送给目标AMF网元,由目标AMF网元处理终端设备的注册请求进而为终端设备提供网络服务。
按照当前标准,终端设备是按照如下优先级顺序选择PLMN的:1、上次关机或脱网前注册的PLMN,或者与之等效的PLMN(registered PLMN或者equivalent RPLMN):2、归属PLMN,或者与之对等的PLMN(HPLMN or EPLMN);3、用户定义的PLMN优先级列表(User-controlled PLMN selector);4、运营商定义的优先级列表(Operator-controlled PLMN selector)。其中用户定义的PLMN优先级列表或运营商定义的优先级列表中可以包含了一组有优先级的PLMN列表,供终端设备选择。对于运营商定义的优先级列表,HPLMN可以通过向终端设备发送漫游优选(steering of roaming,SoR)信息来进行更新,从而控制终端设备对PLMN的选择。
如图12所示,为注册时HPLMN更新SoR信息的流程,该流程包括:
S1201:终端设备向AMF网元发送注册请求(registration request),注册请求中携带终端设备请求的网络切片选择辅助信息(network slice selection assistance information,NSSAI)。
S1202:AMF网元接收到注册请求后,向UDM网元发送签约信息请求。
其中,签约信息请求中携带终端设备的标识信息。例如:携带终端设备的签约永久标识,即5G系统中全球唯一的用户标识(subscription permanent identifier,SUPI)。
S1203:UDM网元确定终端设备的SoR信息。
由于终端设备在VPLMN初始注册,如果用户的签约信息指示要在终端设备在VPLMN注册发送SoR信息,那么在终端设备在VPLMN初始注册时,UDM网元需要向终端设备提供SoR信息。
UDM网元可以根据终端设备的签约信息中,终端设备对应的优选PLMN/接入技术组合列表(list of preferred PLMN/access technology combinations),或者终端设备对应的安全包(the secured packet),产生SoR信息。其中,在终端设备对应的安全包中包含了有安全机制封装的优选PLMN/接入技术组合列表。
当UDM网元中没有配置有终端设备对应的优选PLMN/接入技术组合列表,及终端设备对应的安全包时,UDM网元可以向用于提供漫游优选的应用功能(SoR-AF)网元发送SoR获取请求,从SoR-AF网元获取终端设备对应的优选PLMN/接入技术组合列表,或者终端设备对应的安全包。当然SoR-AF网元也可能对终端设备对应的优选PLMN/接入技术 组合列表,或者终端设备对应的安全包二者均不提供(neither of them)。或者也可能在设定时长内没有响应UDM网元的SoR获取请求,此时UDM网元确定的终端设备的SoR信息中可以指示'no change of the"Operator Controlled PLMN Selector with Access Technology"list stored in the UE is needed and thus no list of preferred PLMN/access technology combinations is provided'(即终端设备上存储的运营商定义的优先级列表不需要改变,因此不需要提供优选PLMN/接入技术组合的列表)。
S1204:UDM网元响应AMF网元的签约信息请求,其中包含SoR信息。
S1205:AMF网元还可能向UDM网元订阅签约信息改变的通知。进一步的UDM网元还可能向SoR-AF网元订阅SoR改变的通知。
S1206:AMF网元在注册接受消息中将SoR信息发送给终端设备。
S1207:终端设备根据SoR信息执行PLMN的选择。
如图13所示,为注册后HPLMN更新SoR信息的流程,该流程包括:
S1301:SoR-AF网元向UDM网元发送SoR更新通知,通知UDM网元更新的终端设备对应的优选PLMN/接入技术组合列表(list of preferred PLMN/access technology combinations),或者终端设备对应的安全包(the secured packet)等。
S1302:UDM网元更新SoR信息并发送给AMF网元。
S1303:AMF网元将SoR信息发送给终端设备。
S1304:终端设备根据SoR信息进行PLMN的选择。
然而,现有SoR信息包含的PLMN通常是终端设备支持的所有PLMN,并且PLMN优先级是按照预定策略排序的,会存在终端设备选择的PLMN不支持终端设备将要使用的(期望的)网络切片,导致终端设备多次选择PLMN尝试接入,影响接入效率的问题,本申请旨在解决上述问题。
【实施例一】
如图14所示,为本申请实施例提供的第一种通信过程,该过程包括:
S1401:终端设备向AMF网元发送注册请求(registration request),所述AMF网元接收所述注册请求,所述注册请求中携带终端设备请求的NSSAI(requested NSSAI)。
本申请实施例可以适用于终端设备位于拜访地(即漫游场景)的注册流程中更新SoR信息,因此这里的AMF网元可以是指终端设备的拜访地AMF网元,也即终端设备的VPLMN中的AMF网元。
NSSAI是指单网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI)的集合,S-NSSAI用于标识网络切片。具体的,根据运营商的运营或部署需求,一个S-NSSAI可以关联一个或多个网络切片实例,一个网络切片实例可以关联一个或多个S-NSSAI。示例的,如图15A所示,eMBB切片1、eMBB切片2、固定无线宽带接入(fixed wireless access,FWA)切片1都是eMBB类型的切片,它们的S-NSSAI值都是0x01000000;eMBB+mMTC切片4既可以为eMBB类型业务提供服务,同时又可以为mMTC业务提供服务,所以它既是eMBB类型切片,又是mMTC类型的切片,对应的S-NSSAI值分别是0x01000000和0x03000000。
具体的,参照图15B所示,S-NSSAI包括切片/服务类型(slice/service type,SST)和切片差异(slice sifferentiator,SD)两部分。SST是指在特性和服务方面预期的网络切片 行为,SST的标准取值范围为1、2、3,取值1表示eMBB、2表示URLLC、3表示MIoT(mMTC)。SD是一个可选信息,用来补充SST以区分同一个切片/业务类型的多个网络切片。SST和SD两部分结合起来表示切片类型及同一切片类型的多个切片。例如S-NSSAI取值为0x01000000、0x02000000、0x03000000分别表示eMBB类型切片、uRLLC类型切片、MIoT类型切片。而S-NSSAI取值为0x01000001、0x01000002则表示eMBB类型切片,分别服务于用户群1和用户群2。
在通信系统中通常使用到的NSSAI有请求的NSSAI(requested NSSAI)、允许的NSSAI(allowed NSSAI)以及配置的NSSAI(configured NSSAI),它们的定义如表1所示,在本申请实施例中,终端设备在注册时,可以向AMF网元发送携带有请求的NSSAI的注册请求,使得AMF网元获知终端设备期望使用的网络切片。
Figure PCTCN2021079811-appb-000001
表1
S1402:所述AMF网元向UDM网元发送第一信息,所述UDM网元接收第一信息。
其中,所述第一信息包括所述终端设备请求的NSSAI、或所述终端设备请求的NSSAI对应归属域的S-NSSAI、或所述终端设备的签约S-NSSAI。
不同于现有技术中,UDM网元对终端设备请求的NSSAI不感知。在本申请实施例中,AMF网元接收到终端设备发送的注册请求后,可以根据注册请求中携带的终端设备请求的NSSAI,向UDM网元发送包括终端设备请求的NSSAI的第一信息。
当然,AMF网元也可以对终端设备请求的NSSAI进行映射,确定终端设备请求的NSSAI对应归属域的S-NSSAI、或终端设备的签约S-NSSAI。
在漫游场景时,终端设备请求的NSSAI对应漫游域(即其中包含的S-NSSAI为VPLMN特有的S-NSSAI),这种情况下,AMF网元需要将其映射为对应的HPLMN的S-NSSAI。AMF网元可以根据终端设备提供的“the mapping to HPLMN S-NSSAIs(即到HPLMN S-NSSAI的映射关系)”生成终端设备请求的NSSAI对应归属域的S-NSSAI(对应HPLMN的S-NSSAI),并将其发送给UDM网元。
或者,AMF网元判断发送注册请求的终端设备是漫游用户(例如SUPI中的PLMN ID与serving PLMN不同),AMF网元可以向UDM网元发送一个单独的指示信息,以通知UDM网元需要根据“终端设备的签约S-NSSAI”产生SoR。比如,将从UDM网元收到的“终 端设备的签约S-NSSAI”发回给UDM网元。当然,实现时,UDM网元可以直接根据“终端设备的签约S-NSSAI”产生SoR,因为“终端设备的签约S-NSSAI”本身存储在UDM网元。即从UDM网元的角度,其也可以不从AMF网元接收终端设备的签约S-NSSAI。
S1403:所述UDM网元根据所述第一信息,确定所述终端设备优选的各个PLMN。
在一种可能的实施中,UDM网元可以根据终端设备的签约信息以及所述第一信息,确定终端设备优选的各个PLMN。例如:UDM网元根据终端设备对应的优选PLMN/接入技术组合列表(list of preferred PLMN/access technology combinations),或终端设备对应的安全包(the secured packet),以及所述第一信息,确定终端设备优选的各个PLMN,并可以根据终端设备优选的各个PLMN生成SoR信息。
示例的:终端设备签约的网络切片包括:网络切片1、网络切片2、网络切片3、网络切片4和网络切片5,在终端设备对应的优选PLMN列表中PLMN1支持网络切片1和网络切片2、PLMN2支持网络切片3、PLMN3支持网络切片4和网络切片5,如果UDM网元可以获知终端设备请求的NSSAI中仅包含对应网络切片5的S-NSSAI,则UDM网元确定终端设备优选的PLMN为PLMN3。并根据终端设备优选的PLMN为PLMN3,生成SoR信息(如PLMN3的优先级高于PLMN2和PLMN1;或者SoR信息中仅包含PLMN3、不包含PLMN2和PLMN1)。相比之下,如采用如图12的现有技术,UDM网元生成的SoR信息中PLMN1优先级高于PLMN2、PLMN2优先级高于PLMN3,终端设备不能直接选择PLMN3尝试接入,需选择PLMN1和PLMN2尝试接入后,才能选择PLMN3尝试接入,降低了接入效率。
又一示例:终端设备签约的网络切片包括:网络切片1、网络切片2、网络切片3、网络切片4和网络切片5,在终端设备对应的优选PLMN列表中PLMN1支持网络切片1和网络切片2、网络切片3;PLMN3支持网络切片4和网络切片5,则UDM网元确定终端设备优选的PLMN3的优先级比PLMN1的优先级更高。并据此生成SoR信息。相比之下,如采用如图12的现有技术,UDM网元生成的SoR信息中PLMN1优先级比PLMN3的优先级更高,终端设备不能直接选择PLMN3尝试接入,需在选择PLMN1尝试接入后,才能选择PLMN3尝试接入,降低了接入效率。
对于相关PLMN支持的切片信息的获取,UDM网元可以本地配置相关PLMN支持的切片信息,也可以直接从NSSF网元获取,还可以由AMF网元从NSSF网元获取后发送给UDM网元。
SoR-AF网元可以本地配置相关PLMN支持的切片信息,或者直接从NSSF网元获取,或者由UDM网元获取后发送给SoR-AF网元。若配置在SoR-AF网元或是SoR-AF网元从NSSF网元获取的情况,UDM网元还可以从SoR-AF网元获取该信息。
在一种可能的实施中,为了减少信令开销,确定的终端设备优选的各个PLMN仅为终端设备当时在注册域支持的各个PLMN,即同时考虑终端设备的位置信息及发送请求的时间信息。因为同一PLMN在不同时间,不同位置所支持的切片可能不同。即,上述第一信息可以额外包含终端设备的位置信息和/或请求的时间信息。例如:UDM网元,SoR-AF网元中可以配置如下述表2所示的信息。
Figure PCTCN2021079811-appb-000002
表2
另外,当UDM网元中没有配置有终端设备对应的优选PLMN/接入技术组合列表,或安全包时,UDM网元可以向SoR-AF网元发送SoR请求,其中在请求中可以包含VPLMN ID、终端设备的标识信息(例如终端设备的SUPI)、访问类型(access type)、无线接入技术类型(radio access technology type,RAT type)等中的一种或多种信息,SoR-AF网元可以响应UDM网元的SoR获取请求,向UDM网元提供终端设备对应的优选PLMN/接入技术组合列表,或者终端设备对应的安全包。
当然,SoR-AF网元也可能对终端设备对应的优选PLMN/接入技术组合列表,或者终端设备对应的安全包二者均不提供(neither of them);或者也可能在设定时长内没有响应UDM网元的SoR获取请求。此时UDM网元确定的终端设备的SoR信息中可以指示终端设备上存储的运营商定义的优先级列表不需要改变,因此不需要提供优选PLMN/接入技术组合的列表(no change of the"Operator Controlled PLMN Selector with Access Technology"list stored in the UE is needed and thus no list of preferred PLMN/access technology combinations is provided)。
在另一种可能的实施中,UDM网元也可以在向SoR-AF网元发送SoR获取请求时,同时将第一信息发送给SoR-AF网元,由SoR-AF网元根据第一信息确定上述信息,并响应给UDM网元,具体SoR-AF网元根据第一信息确定终端设备优选的各个PLMN,并生成SoR信息可以参照上述UDM网元的实施,重复之处不再赘述。
S1404:所述UDM网元向所述AMF网元发送所述终端设备的SoR信息,所述AMF网元接收所述终端设备的SoR信息。
S1405:所述AMF网元向所述终端设备发送所述SoR信息,所述终端设备接收所述SoR信息。
在本申请实施例中,AMF网元可以在注册接受消息中将终端设备的SoR信息发送给终端设备;也可以在注册拒绝消息中将终端设备的SoR信息发送给终端设备。(因为终端设备接入的PLMN可能不支持终端设备期望(请求)的网络切片,从而拒绝终端设备的注册)。
S1406:所述终端设备基于所述SoR信息进行PLMN的选择。
示例的,在终端设备签约的网络切片包括:网络切片1、网络切片2、网络切片3、网络切片4和网络切片5,在终端设备对应的优选PLMN列表中PLMN1支持网络切片1和网络切片2、PLMN2支持网络切片3、PLMN3支持网络切片4和网络切片5的情况下,终端设备想要接入的网络切片为网络切片5,终端设备请求的NSSAI中仅包含对应网络切片5的S-NSSAI,则UDM网元确定终端设备优选的PLMN,仅为支持网络切片5的PLMN3。终端设备可以直接选择PLMN3尝试接入。相比之下,如采用如图12的现有技术,UDM网元生成的SoR信息中PLMN1优先级高于PLMN2、PLMN2优先级高于PLMN3,终端 设备需要选择PLMN1和PLMN2尝试接入后,才能选择PLMN3尝试接入。通过本申请实施例的技术方案,避免了终端设备多次选择PLMN尝试接入,从而提高了接入效率。
又一示例:终端设备签约的网络切片包括:网络切片1、网络切片2、网络切片3、网络切片4和网络切片5,在终端设备对应的优选PLMN列表中PLMN1支持网络切片1和网络切片2、网络切片3;PLMN3支持网络切片4和网络切片5的情况下,终端设备想要接入的网络切片为网络切片5,终端设备请求的NSSAI中仅包含对应网络切片5的S-NSSAI,则UDM网元确定终端设备优选的PLMN,仅为支持网络切片5的PLMN3。终端设备可以直接选择PLMN3尝试接入。相比之下,如采用如图12的现有技术,UDM网元生成的SoR信息中PLMN1优先级比PLMN3的优先级更高,终端设备需在选择PLMN1尝试接入后,才能选择PLMN3尝试接入。通过本申请实施例的技术方案,避免了终端设备多次选择PLMN尝试接入,从而提高了接入效率。
另外,UDM网元还可以向AMF网元订阅“终端设备请求的网络切片信息改变”的通知,当所述终端设备请求的NSSAI改变时,AMF网元可以向所述UDM网元发送所述终端设备请求的NSSAI改变通知,在收到终端设备请求的NSSAI改变通知后,UDM网元可以更新终端设备请求的NSSAI,并触发UDM网元进行注册后HPLMN更新SoR消息的流程。
【实施例二】
如图16所示,为本申请实施例提供的第二种通信过程,本申请实施例可以适用于漫游或非漫游场景,也可以适用于注册时HPLMN更新SoR信息或者注册后HPLMN更新SoR信息,下面对该通信过程进行介绍,该过程包括:
S1601:AMF网元确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
对于终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息的确定,AMF网元可以通过UDM网元和/或NSSF网元实现,需要理解的是,终端设备支持的各个PLMN可以指与终端设备的HPLMN有漫游协议的PLMN,也可以指优选的PLMN信息,如现有技术中的SoR信息。
方式一:AMF网元从UDM网元获取终端设备支持的各个PLMN的信息,根据所述终端设备支持的各个PLMN的信息,从NSSF网元获取所述终端设备支持的各个PLMN支持的网络切片的信息。
示例的,AMF网元可以从UDM网元中获取终端设备对应的优选PLMN/接入技术组合列表、或者终端设备对应的安全包(如现有技术中的终端设备的签约信息中的SoR信息),从而获取终端设备支持的各个PLMN的信息。例如:终端设备对应的优选PLMN列表中按照优先级从高到低记录有终端设备支持PLMN1、PLMN3和PLMN4的信息,则AMF网元确定终端设备支持PLMN1、PLMN3和PLMN4。
获取终端设备支持的各个PLMN的信息后,AMF网元可以向NSSF网元发送查询请求,查询请求中可以包含终端设备支持的PLMN1、PLMN3和PLMN4的标识信息,由NSSF网元查询PLMN1、PLMN3和PLMN4分别支持的网络切片的信息,并回应给AMF网元。
方式二:AMF网元从NSSF网元获取一个或多个支持漫游的PLMN支持的网络切片的信息,从UDM网元获取所述终端设备支持的各个PLMN的信息;根据所述一个或多个 支持漫游的PLMN支持的网络切片的信息,以及终端设备支持的各个PLMN的信息,确定所述终端设备支持的各个PLMN支持的网络切片的信息。
示例的,AMF网元从NSSF网元获取到的支持漫游的PLMN包括PLMN1、PLMN2、PLMN3、PLMN5,其中PLMN1支持网络切片1和网络切片2、PLMN2支持网络切片3、PLMN3支持网络切片4和网络切片5、PLMN5支持网络切片7,从UDM网元获取终端设备支持PLMN1和PLMN5,则AMF网元确定终端设备支持PLMN1和PLMN5、PLMN1支持网络切片1和网络切片2、PLMN5支持网络切片7。
方式三:所述AMF网元从UDM网元接收所述终端设备的SoR信息,其中,所述SoR信息中包括所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
UDM网元可以进一步和SoR-AF网元交互产生SoR信息(流程可参照现有技术)。UDM网元可以本地配置相关PLMN支持的切片信息,或者直接从NSSF网元获取,或者由AMF网元从NSSF网元获取后发送给UDM网元。SoR-AF网元可以本地配置相关PLMN支持的切片信息,或者直接从NSSF网元获取,或者由UDM网元获取后发送给SoR-AF网元。若配置在SoR-AF网元或从NSSF网元获取的情况,UDM网元还可以从SoR-AF网元获取该信息。
在一种可能的实施中,为了减少信令开销,确定的终端设备支持的各个PLMN仅为终端设备当时在注册域支持的各个PLMN,即同时考虑终端设备的位置信息及发送请求的时间信息。因为同一PLMN在不同时间,不同位置所支持的切片可能不同。
当然作为另一种实现方式,可以在下发的信息中同时包含位置和/或时间信息。例如UDM网元,SoR-AF网元中可以配置如上述表2所示的信息。
示例的,终端设备支持PLMN1和PLMN5、PLMN1支持网络切片1和网络切片2、PLMN5支持网络切片7,其中仅有PLMN5属于终端设备对应的注册域,则确定的终端设备支持的各个PLMN仅为PLMN5。
需要理解的是,当终端设备的进行注册的PLMN为VPLMN时,所述AMF网元为所述终端设备的拜访地AMF网元。
S1602:所述AMF网元向所述终端设备发送所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
S1603:所述终端设备根据终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息,进行PLMN选择。
终端设备获取到终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息后,可以根据终端设备期望的网络切片,选择相应的PLMN尝试接入,可以避免终端设备多次选择PLMN尝试接入,接入效率低的问题,使得终端设备选择的PLMN能够支持终端设备将要使用的网络切片,避免了终端设备多次选择PLMN尝试接入,从而提高了接入效率。
示例的,终端设备支持PLMN1和PLMN5、PLMN1支持网络切片1和网络切片2、PLMN5支持网络切片7,其中终端设备期望(请求)接入网络切片7,则终端设备可以直接选择PLMN5尝试接入。
以终端设备在注册时HPLMN更新SoR信息的流程例,如图17所示,为本申请实施例提供的第三种通信过程。
S1701:终端设备向AMF网元发送注册请求(registration request),所述注册请求中携带终端设备请求的NSSAI(requested NSSAI)。
S1702:AMF网元接收到注册请求后,向UDM网元发送签约信息请求,其中签约信息请求中携带终端设备的标识信息。
S1703:UDM网元确定终端设备在注册域支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
S1704:UDM网元响应AMF的签约信息请求,其中包含SoR信息,SoR信息中包含终端设备在注册域支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
S1705:AMF网元还可能向UDM网元订阅签约信息改变的通知。
S1706:AMF网元在注册接受消息中将SoR信息发送给终端设备。
需要理解的是,在本申请实施例中,AMF网元可以在注册接受消息中将SoR信息发送给终端设备;也可以在注册拒绝消息中将SoR信息发送给终端设备。(因为终端设备接入的PLMN可能不支持终端设备期望的(请求的)网络切片,从而拒绝终端设备的注册)。
S1707:终端设备根据SoR信息执行PLMN的选择。
上述主要从AMF网元和UDM网元之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,为了实现上述功能,各网元包括了执行各个功能相应的硬件结构和/或软件模块(或单元)。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在采用集成的单元(模块)的情况下,图18示出了本申请实施例中所涉及的一种通信装置的可能的示例性框图,该通信装置1800可以以软件的形式存在。装置1800可以包括:处理单元1802和收发单元1803。
一种可能的设计中,处理单元1802用于实现相应的处理功能。收发单元1803用于支持装置1800与其他网络实体的通信。可选地,收发单元1803可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。可选的,装置1800还可以包括存储单元1801,用于存储装置1800的程序代码和/或数据。
该装置1800可以为上述任一实施例中的AMF网元(比如,AMF网元为实施例一中的AMF网元)、或者还可以为设置在AMF网元中的芯片等部件。处理单元1802可以支持装置1800执行上文中各方法示例中AMF网元的动作。或者,处理单元1802主要执行方法示例中的AMF网元内部动作,收发单元1803可以支持装置1800与UDM网元和终端设备等之间的通信。
具体地,在一个实施例中,处理单元1802,用于在接收到终端设备发送的注册请求后,确定第一信息,所述第一信息包括所述终端设备请求的网络切片选择协助信息NSSAI、或所述终端设备请求的NSSAI对应归属域的单网络切片选择协助信息S-NSSAI、或所述终端设备的签约S-NSSAI;收发单元1803,用于向统一数据管理UDM网元发送所述第一信息;所述收发单元1803,还用于从所述UDM网元接收所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备优选的各个公共陆地移动网PLMN的信息;所述 收发单元1803,还用于向所述终端设备发送所述SoR信息。
在一种可能的设计中,所述收发单元1803,还用于当所述终端设备请求的NSSAI改变时,向所述UDM网元发送所述终端设备请求的NSSAI改变通知。
在一种可能的设计中,所述AMF网元为所述终端设备的拜访地AMF网元。
在另一个实施例中,处理单元1802,用于确定终端设备支持的各个公共陆地移动网PLMN及所述各个PLMN支持的网络切片的信息;收发单元1803,用于向所述终端设备发送所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
在一种可能的设计中,所述确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息时,所述处理单元1802,具体用于从统一数据管理UDM网元获取所述终端设备支持的各个PLMN的信息;根据所述终端设备支持的各个PLMN的信息,从网络切片选择功能NSSF网元获取所述终端设备支持的各个PLMN支持的网络切片的信息。
在一种可能的设计中,所述确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息时,所述处理单元1802,具体用于从NSSF网元获取一个或多个PLMN支持的网络切片的信息,从UDM网元获取所述终端设备支持的各个PLMN的信息,其中,所述一个或多个PLMN支持漫游;根据所述一个或多个PLMN支持的网络切片的信息,确定所述终端设备支持的各个PLMN支持的网络切片的信息。
在一种可能的设计中,所述确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息时,所述处理单元1802,具体用于通过收发单元1803从UDM网元接收所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
在一种可能的设计中,所述向所述终端设备发送所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息时,所述收发单元1803,具体用于向所述终端设备发送SoR信息,其中,所述SoR信息中包括所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
在一种可能的设计中,所述终端设备支持的各个PLMN为所述终端设备在注册域支持的各个PLMN。
在一种可能的设计中,所述AMF网元为所述终端设备的拜访地AMF网元。
如图19所示,本申请实施例还提供一种通信装置1900,该通信装置1900包括处理器1910与收发器1930,还可以包括存储器1920。一种可能的设计中,存储器1920中存储指令或程序或数据,存储器1920可以用于实现上述实施例中存储单元1801的功能。处理器1910用于读取存储器1920中存储的指令或程序或数据。存储器1920中存储的指令或程序被执行时,该处理器1910用于执行上述实施例中处理单元1802执行的操作,收发器1930用于执行上述实施例中收发单元1803执行的操作。
在采用集成的单元(模块)的情况下,图20示出了本申请实施例中所涉及的又一种通信装置的可能的示例性框图,该通信装置2000可以以软件的形式存在。装置2000可以包括:处理单元2002和收发单元2003。一种可能的设计中,处理单元2002用于实现相应的处理功能。收发单元2003用于支持装置2000与其他网络实体的通信。可选地,收发单元2003可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。可选的,装置2000还可以包括存储单元2001,用于存储装置2000的程序代码和/或数据。
该装置2000可以为上述任一实施例中的UDM网元(比如,UDM网元为实施例一中的UDM网元)、或者还可以为设置在UDM网元中的芯片等部件。处理单元2002可以支持装置2000执行上文中各方法示例中UDM网元的动作。或者,处理单元2002主要执行方法示例中的UDM网元内部动作,收发单元2003可以支持装置2000与AMF网元和终端设备等之间的通信。
具体地,在一个实施例中,处理单元2002,用于根据所述第一信息,确定终端设备优选的各个公共陆地移动网PLMN,所述第一信息包括所述终端设备请求的网络切片选择协助信息NSSAI、或所述终端设备请求的NSSAI对应归属域的单网络切片选择协助信息S-NSSAI、或所述终端设备的签约S-NSSAI;收发单元2003,用于向接入和移动性管理功能AMF网元发送所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备支持的各个PLMN的信息。
在一种可能的设计中,收发单元2003,还用于从所述AMF网元接收所述第一信息。
在一种可能的设计中,所述收发单元2003,还用于从所述AMF网元接收所述终端设备请求的NSSAI改变通知;
所述处理单元2002,还用于更新所述终端设备请求的NSSAI。
在一种可能的设计中,所述AMF网元为所述终端设备的拜访地AMF网元。
在另一个实施例中,处理单元2002,用于确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息;收发单元2003,用于向接入和移动性管理功能AMF网元发送所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
在一种可能的设计中,所述终端设备支持的各个PLMN为所述终端设备在注册域支持的各个PLMN。
在一种可能的设计中,所述AMF网元为所述终端设备的拜访地AMF网元。
如图21所示,本申请实施例还提供一种通信装置2100,该通信装置2100包括处理器2110与收发器2130,还可以包括存储器2120。一种可能的设计中,存储器2120中存储指令或程序或数据,存储器2120可以用于实现上述实施例中存储单元2001的功能。处理器2110用于读取存储器2120中存储的指令或程序或数据。存储器2120中存储的指令或程序被执行时,该处理器2110用于执行上述实施例中处理单元2002执行的操作,收发器2130用于执行上述实施例中收发单元2003执行的操作。
上述的处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读 存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    在接收到终端设备发送的注册请求后,接入和移动性管理功能AMF网元向统一数据管理UDM网元发送第一信息,所述第一信息包括所述终端设备请求的网络切片选择协助信息NSSAI、或所述终端设备请求的NSSAI对应归属域的单网络切片选择协助信息S-NSSAI、或所述终端设备的签约S-NSSAI;
    所述AMF网元从所述UDM网元接收所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备优选的各个公共陆地移动网PLMN的信息;
    所述AMF网元向所述终端设备发送所述SoR信息。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述终端设备请求的NSSAI改变时,所述AMF网元向所述UDM网元发送所述终端设备请求的NSSAI改变通知。
  3. 一种通信方法,其特征在于,包括:
    接入和移动性管理功能AMF网元确定终端设备支持的各个公共陆地移动网PLMN及所述各个PLMN支持的网络切片的信息;
    所述AMF网元向所述终端设备发送所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
  4. 如权利要求3所述的方法,其特征在于,所述AMF网元确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息,包括:
    所述AMF网元从统一数据管理UDM网元获取所述终端设备支持的各个PLMN的信息;
    所述AMF网元根据所述终端设备支持的各个PLMN的信息,从网络切片选择功能NSSF网元获取所述终端设备支持的各个PLMN支持的网络切片的信息。
  5. 如权利要求3所述的方法,其特征在于,所述AMF网元确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息,包括:
    所述AMF网元从NSSF网元获取一个或多个PLMN支持的网络切片的信息,从UDM网元获取所述终端设备支持的各个PLMN的信息,其中,所述一个或多个PLMN支持漫游;
    所述AMF网元根据所述一个或多个PLMN支持的网络切片的信息,确定所述终端设备支持的各个PLMN支持的网络切片的信息。
  6. 如权利要求3所述的方法,其特征在于,所述AMF网元确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息,包括:
    所述AMF网元从UDM网元接收所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
  7. 如权利要求3-6中任一项所述的方法,其特征在于,所述AMF网元向所述终端设备发送所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息,包括:
    所述AMF网元向所述终端设备发送SoR信息,其中,所述SoR信息中包括所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
  8. 如权利要求3-7中任一项所述的方法,其特征在于,所述终端设备支持的各个PLMN 为所述终端设备在注册域支持的各个PLMN。
  9. 一种通信方法,其特征在于,包括:
    统一数据管理UDM网元根据第一信息,确定终端设备优选的各个公共陆地移动网PLMN,所述第一信息包括所述终端设备请求的网络切片选择协助信息NSSAI、或所述终端设备请求的NSSAI对应归属域的单网络切片选择协助信息S-NSSAI、或所述终端设备的签约S-NSSAI;
    所述UDM网元向接入和移动性管理功能AMF网元发送所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备优选的各个PLMN的信息。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述UDM网元从所述AMF网元接收所述终端设备请求的NSSAI改变通知;
    所述UDM网元更新所述终端设备请求的NSSAI。
  11. 一种通信方法,其特征在于,包括:
    统一数据管理UDM网元确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息;
    所述UDM网元向接入和移动性管理功能AMF网元发送所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
  12. 如权利要求11所述的方法,其特征在于,所述终端设备支持的各个PLMN为所述终端设备在注册域支持的各个PLMN。
  13. 如权利要求1-12中任一项所述的方法,其特征在于,所述AMF网元为所述终端设备的拜访地AMF网元。
  14. 一种通信装置,其特征在于,包括:
    处理单元,用于在接收到终端设备发送的注册请求后,确定第一信息,所述第一信息包括所述终端设备请求的网络切片选择协助信息NSSAI、或所述终端设备请求的NSSAI对应归属域的单网络切片选择协助信息S-NSSAI、或所述终端设备的签约S-NSSAI;
    收发单元,用于向统一数据管理UDM网元发送所述第一信息;
    所述收发单元,还用于从所述UDM网元接收所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备优选的各个公共陆地移动网PLMN的信息;
    所述收发单元,还用于向所述终端设备发送所述SoR信息。
  15. 如权利要求14所述的装置,其特征在于,所述收发单元,还用于当所述终端设备请求的NSSAI改变时,向所述UDM网元发送所述终端设备请求的NSSAI改变通知。
  16. 一种通信装置,其特征在于,包括:
    处理单元,用于确定终端设备支持的各个公共陆地移动网PLMN及所述各个PLMN支持的网络切片的信息;
    收发单元,用于向所述终端设备发送所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
  17. 如权利要求16所述的装置,其特征在于,所述确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息时,所述处理单元,具体用于从统一数据管理UDM网元获取所述终端设备支持的各个PLMN的信息;根据所述终端设备支持的各个PLMN的信息,从网络切片选择功能NSSF网元获取所述终端设备支持的各个PLMN支持的网络 切片的信息。
  18. 如权利要求16所述的装置,其特征在于,所述确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息时,所述处理单元,具体用于从NSSF网元获取一个或多个PLMN支持的网络切片的信息,从UDM网元获取所述终端设备支持的各个PLMN的信息,其中,所述一个或多个PLMN支持漫游;根据所述一个或多个PLMN支持的网络切片的信息,确定所述终端设备支持的各个PLMN支持的网络切片的信息。
  19. 如权利要求16所述的装置,其特征在于,所述确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息时,所述处理单元,具体用于通过收发单元从UDM网元接收所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
  20. 如权利要求16-19中任一项所述的装置,其特征在于,所述向所述终端设备发送所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息时,所述收发单元,具体用于向所述终端设备发送SoR信息,其中,所述SoR信息中包括所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
  21. 如权利要求16-20中任一项所述的装置,其特征在于,所述终端设备支持的各个PLMN为所述终端设备在注册域支持的各个PLMN。
  22. 一种通信装置,其特征在于,包括:
    处理单元,用于根据第一信息,确定终端设备优选的各个公共陆地移动网PLMN,所述第一信息包括所述终端设备请求的网络切片选择协助信息NSSAI、或所述终端设备请求的NSSAI对应归属域的单网络切片选择协助信息S-NSSAI、或所述终端设备的签约S-NSSAI;
    所述收发单元,还用于向接入和移动性管理功能AMF网元发送所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备优选的各个PLMN的信息。
  23. 如权利要求22所述的装置,其特征在于,所述收发单元,还用于从所述AMF网元接收所述终端设备请求的NSSAI改变通知;
    所述处理单元,还用于更新所述终端设备请求的NSSAI。
  24. 一种通信装置,其特征在于,包括:
    处理单元,用于确定终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息;
    收发单元,用于向接入和移动性管理功能AMF网元发送所述终端设备的漫游优选SoR信息,其中,所述SoR信息中包括所述终端设备支持的各个PLMN及所述各个PLMN支持的网络切片的信息。
  25. 如权利要求23所述的装置,其特征在于,所述终端设备支持的各个PLMN为所述终端设备在注册域支持的各个PLMN。
  26. 如权利要求14-25中任一项所述的装置,其特征在于,所述AMF网元为所述终端设备的拜访地AMF网元。
  27. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1-2中任一项所述的方法,或者实现如权利要求3-8中任一项所述的方法,或者实现如权利要求9-10中任一项所述的方法,或者实现如权利要求11-13中任一项所述的方法。
  28. 一种芯片,其特征在于,所述芯片运行时,实现如权利要求1-2中任一项所述的方法,或者实现如权利要求3-8中任一项所述的方法,或者实现如权利要求9-10中任一项所述的方法,或者实现如权利要求11-13中任一项所述的方法。
PCT/CN2021/079811 2020-05-07 2021-03-09 一种通信方法、装置及芯片 WO2021223507A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21799923.4A EP4138438A4 (en) 2020-05-07 2021-03-09 COMMUNICATION METHOD AND APPARATUS, AND CHIP
US17/978,727 US20230068860A1 (en) 2020-05-07 2022-11-01 Communication method, apparatus, and chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010379338.8 2020-05-07
CN202010379338.8A CN113630783B (zh) 2020-05-07 2020-05-07 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/978,727 Continuation US20230068860A1 (en) 2020-05-07 2022-11-01 Communication method, apparatus, and chip

Publications (1)

Publication Number Publication Date
WO2021223507A1 true WO2021223507A1 (zh) 2021-11-11

Family

ID=78376985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079811 WO2021223507A1 (zh) 2020-05-07 2021-03-09 一种通信方法、装置及芯片

Country Status (4)

Country Link
US (1) US20230068860A1 (zh)
EP (1) EP4138438A4 (zh)
CN (2) CN113630783B (zh)
WO (1) WO2021223507A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024030390A1 (en) * 2022-07-31 2024-02-08 Google Llc Steering of roaming techniques in a communication system
WO2024065857A1 (en) * 2022-09-30 2024-04-04 Nokia Shanghai Bell Co., Ltd. Method and apparatus for providing a security mechanism for a steering of roaming procedure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118020348A (zh) * 2021-11-29 2024-05-10 Oppo广东移动通信有限公司 无线通信方法、终端设备和接入网设备
CN114286437B (zh) * 2021-12-10 2024-06-25 Oppo广东移动通信有限公司 一种plmn选择方法、装置、终端设备及存储介质
US20230300714A1 (en) * 2022-03-15 2023-09-21 Verizon Patent And Licensing Inc. Systems and methods for anchoring relationship management between base stations
CN116867027A (zh) * 2022-03-28 2023-10-10 华为技术有限公司 网络选择方法和网络选择装置
CN117641311A (zh) * 2022-08-10 2024-03-01 华为技术有限公司 通信方法和通信装置
CN117641514A (zh) * 2022-08-18 2024-03-01 维沃移动通信有限公司 网络接入方法、装置、终端及通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190174449A1 (en) * 2018-02-09 2019-06-06 Intel Corporation Technologies to authorize user equipment use of local area data network features and control the size of local area data network information in access and mobility management function
CN110324813A (zh) * 2019-07-03 2019-10-11 中国联合网络通信集团有限公司 漫游场景下基于非标准s-nssai的网络切片注册方法及装置
CN110603830A (zh) * 2017-04-27 2019-12-20 三星电子株式会社 网络可切片区域信息获取方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11202330B2 (en) * 2017-06-17 2021-12-14 Lg Electronics Inc. Method for registering terminal in wireless communication system and apparatus therefor
CN115515122A (zh) * 2017-07-18 2022-12-23 三星电子株式会社 无线通信网络中检测漫游活动的反引导的方法和系统
CN116744310A (zh) * 2017-12-22 2023-09-12 联想(新加坡)私人有限公司 网络片选择辅助信息配置
US11388661B2 (en) * 2018-04-14 2022-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Network slice configuration update
JP7099536B2 (ja) * 2018-09-28 2022-07-12 日本電気株式会社 コアネットワーク装置、通信端末、コアネットワーク装置の方法、プログラム、及び通信端末の方法
US20230107525A1 (en) * 2020-02-14 2023-04-06 Samsung Electronics Co., Ltd. Method and system for improving plmn selection based on required services/slices for roaming subscribers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603830A (zh) * 2017-04-27 2019-12-20 三星电子株式会社 网络可切片区域信息获取方法
US20190174449A1 (en) * 2018-02-09 2019-06-06 Intel Corporation Technologies to authorize user equipment use of local area data network features and control the size of local area data network information in access and mobility management function
CN110324813A (zh) * 2019-07-03 2019-10-11 中国联合网络通信集团有限公司 漫游场景下基于非标准s-nssai的网络切片注册方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Acquiring User Location Information for SOR", 3GPP DRAFT; C1-196344_5GPROTOC16_23.122_USER LOCATION INFORMATION FOR SOR, vol. CT WG1, 30 September 2019 (2019-09-30), Portoroz (Slovenia), pages 1 - 9, XP051787963 *
See also references of EP4138438A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024030390A1 (en) * 2022-07-31 2024-02-08 Google Llc Steering of roaming techniques in a communication system
WO2024065857A1 (en) * 2022-09-30 2024-04-04 Nokia Shanghai Bell Co., Ltd. Method and apparatus for providing a security mechanism for a steering of roaming procedure

Also Published As

Publication number Publication date
CN113630783B (zh) 2023-11-03
CN113630783A (zh) 2021-11-09
CN117615390A (zh) 2024-02-27
EP4138438A1 (en) 2023-02-22
US20230068860A1 (en) 2023-03-02
EP4138438A4 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2021223507A1 (zh) 一种通信方法、装置及芯片
US11903048B2 (en) Connecting to virtualized mobile core networks
WO2020224622A1 (zh) 一种信息配置方法及装置
US20240073848A1 (en) Network Slice in a Wireless Network
CN114423074A (zh) 一种通信方法及装置
CN115996378A (zh) 鉴权方法及装置
KR20230137998A (ko) Af 세션에 대한 외부 매개변수 프로비저닝을 위한 새로운 방법
US20230422293A1 (en) Network Slice Based Priority Access
US20240031929A1 (en) Connection Establishment
US20240015569A1 (en) Quality of service management for 5g networks
US20230247548A1 (en) Failure and Recovery of Electrical Supply Service For Wireless Communications
US20240236680A1 (en) Mobile Base Station Relay Access
WO2021164428A1 (zh) 通信方法、装置及系统
US20240064626A1 (en) Support For Network Service
US20220386401A1 (en) Multiple Access
US20240114441A1 (en) Network Access Management
WO2021159523A1 (zh) 通信方法、装置及系统
WO2024148144A1 (en) Network slice management
CN116647832A (zh) 一种通信方法及装置
CN117062179A (zh) 一种网络切片的通信方法、通信装置、接入网设备和终端设备
CN117135610A (zh) 策略控制的方法与装置
CN115988473A (zh) 一种通信方法、通信装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21799923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021799923

Country of ref document: EP

Effective date: 20221115

NENP Non-entry into the national phase

Ref country code: DE