WO2021220387A1 - 車両相対位置演算装置及び車両制御装置 - Google Patents

車両相対位置演算装置及び車両制御装置 Download PDF

Info

Publication number
WO2021220387A1
WO2021220387A1 PCT/JP2020/018073 JP2020018073W WO2021220387A1 WO 2021220387 A1 WO2021220387 A1 WO 2021220387A1 JP 2020018073 W JP2020018073 W JP 2020018073W WO 2021220387 A1 WO2021220387 A1 WO 2021220387A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
position information
information
relative position
unit
Prior art date
Application number
PCT/JP2020/018073
Other languages
English (en)
French (fr)
Inventor
純平 神谷
雅也 遠藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022518475A priority Critical patent/JP7317223B2/ja
Priority to PCT/JP2020/018073 priority patent/WO2021220387A1/ja
Priority to CN202080099898.6A priority patent/CN115427277A/zh
Priority to US17/907,902 priority patent/US20230116247A1/en
Priority to DE112020007133.2T priority patent/DE112020007133T5/de
Publication of WO2021220387A1 publication Critical patent/WO2021220387A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/103Side slip angle of vehicle body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position

Definitions

  • the present application relates to a vehicle relative position calculation device and a vehicle control device.
  • the relative position between the own vehicle and the peripheral object detected by the own vehicle is memorized, and the memorized relative position of the peripheral object is expressed as the peripheral object position coordinate in the vehicle body fixed coordinate system at the current time.
  • Patent Document 1 the amount of rotation of the own vehicle in the yaw direction and the amount of movement in the front-rear direction and the lateral direction are calculated, and the peripheral object position coordinates are rotationally converted from the amount of rotation in the yaw direction of the own vehicle.
  • the peripheral object position coordinates in the vehicle body fixed coordinate system are estimated from the peripheral object position coordinates after the rotation conversion and the movement amount of the own vehicle.
  • the lateral slip angle of the own vehicle is taken into consideration in the calculation of the lateral movement amount of the own vehicle, and the lateral slip angle is calculated by using the vehicle speed, the steering angle, and the yaw rate.
  • the present application discloses a technique for solving the above-mentioned problems, and it is easy to calculate peripheral object position coordinates in a vehicle body fixed coordinate system without being affected by offset error and vehicle modeling error. It is an object of the present invention to provide a vehicle relative position calculation device that estimates accurately.
  • the vehicle relative position calculation device disclosed in the present application is Vehicle status information acquisition unit that acquires the status information of the own vehicle while driving, Peripheral object information acquisition unit that acquires information on the peripheral objects of the own vehicle, It is connected to the vehicle state information acquisition unit and the peripheral object information acquisition unit, and is determined from the state information of the own vehicle acquired by the vehicle condition information acquisition unit and the peripheral object information acquired by the peripheral object information acquisition unit.
  • Relative position information which is relative information of the surrounding objects of the own vehicle to the own vehicle, is input, and the input relative position information is converted into relative position information when the specific position of the own vehicle is set as the origin.
  • Position information conversion input section A position information storage unit that is connected to the relative position information conversion input unit and stores the relative position information converted by the relative position information conversion input unit.
  • the relative position information stored by the position information storage unit is input by inputting the state information of the own vehicle acquired by the vehicle state information acquisition unit while being connected to the vehicle state information acquisition unit and the position information storage unit.
  • Vehicle fixed coordinate conversion unit which converts to the current time relative position information, which is the relative position information at the current time, and outputs it to the position information storage unit. It is characterized by having.
  • the peripheral object position coordinates in the vehicle body fixed coordinate system at the current time can be easily calculated and accurately estimated without being affected by offset error and vehicle modeling error. be able to.
  • FIG. 5 is a schematic system configuration diagram of a vehicle equipped with the vehicle control device according to the first embodiment. It is explanatory drawing of the coordinate system used for the operation explanation of the vehicle control apparatus which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the steady circular turning at an extremely low speed of the vehicle equipped with the vehicle control device which concerns on Embodiment 1.
  • FIG. It is explanatory drawing when the centrifugal force cannot be ignored in the steady circular turning of the vehicle equipped with the vehicle control device which concerns on Embodiment 1.
  • FIG. It is a figure which shows the flowchart which shows the operation procedure of the vehicle control device which concerns on Embodiment 1.
  • FIG. 1 It is a figure for demonstrating an example of the movement locus of the peripheral object stored in the vehicle relative position calculation apparatus of the vehicle control apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the hardware which concerns on the signal processing of the vehicle relative position calculation apparatus of the vehicle control apparatus which concerns on Embodiment 1.
  • FIG. 1
  • the present embodiment generally relates to a technique for estimating the relative position between the own vehicle and surrounding objects.
  • the same or corresponding parts will be described with the same reference numerals.
  • Embodiment 1 the preceding vehicle traveling in front of the own vehicle detected by the own vehicle is represented as a locus of the vehicle body fixed coordinate system at the current time, and the vehicle control device controls the vehicle so as to follow the detected preceding vehicle. To describe.
  • FIG. 1 is a block diagram showing a schematic configuration of the vehicle control device according to the first embodiment.
  • the vehicle relative position calculation device 210 according to the present embodiment is provided in the vehicle control device 200, and includes a vehicle state information acquisition unit 211, a peripheral object information acquisition unit 212, a vehicle fixed coordinate conversion unit 213, and a position information storage unit 214. , The relative position information conversion input unit 215 and the relative position information conversion output unit 216 are provided.
  • the vehicle control device 200 is a device that controls a vehicle, and is composed of a ROM that stores various programs, a RAM, and a CPU that executes the programs. For example, it is an advanced driver assistance system electronic control unit (ADAS (Advanced Driver Assistance System) -ECU).
  • ADAS Advanced Driver Assistance System
  • the relative position information conversion input unit 215 uses the vehicle state of the own vehicle acquired by the vehicle state information acquisition unit 211 and the peripheral objects acquired by the peripheral object information acquisition unit 212. Based on the position information, the relative position conversion for finding the relative position between the own vehicle and the peripheral object is performed, and the side slip angle of the vehicle is zero with respect to the peripheral object position information acquired by the peripheral object information acquisition unit 212. Coordinate conversion is performed with the point as the origin, and the obtained result is output to the position information storage unit 214.
  • the vehicle fixed coordinate conversion unit 213 converts the peripheral object position information stored in the position information storage unit 214 into the vehicle fixed coordinate system based on the state of the own vehicle acquired from the vehicle state information acquisition unit 211. I do.
  • the position information storage unit 214 also updates the locus information of the stored peripheral object positions.
  • the relative position information conversion output unit 216 sets the relative position conversion value calculated by the relative position information conversion input unit 215 and the origin of the peripheral object position information with respect to the peripheral object position information stored in the position information storage unit 214. The conversion is performed based on the preset value determined by the location.
  • the vehicle control unit 220 is provided in the vehicle control device 200, and is a target value to be output to the actuator control unit 300 based on the peripheral object position information of the own vehicle calculated by the vehicle relative position calculation device and the state of the own vehicle. Is calculated and output to the actuator control unit 300.
  • the vehicle control device 200 includes a vehicle state information detection unit 110 and a peripheral object information detection unit 120 as external input devices.
  • the vehicle state information detection unit 110 is a detection unit that detects information on the own vehicle, and is equipped with, for example, a vehicle speed sensor and a yaw rate sensor.
  • the information detected by the vehicle state information detection unit 110 is acquired by the vehicle state information acquisition unit 211 provided in the vehicle relative position calculation device 210.
  • the peripheral object information detection unit 120 is a detection unit that detects information including the position of the peripheral object, and the front camera corresponds to this, for example.
  • LiDAR Light Detection and Ringing
  • laser laser
  • sonar sonar
  • vehicle-to-vehicle communication device vehicle-to-vehicle communication device
  • road-to-vehicle communication device fall under this category.
  • the information detected by the peripheral object information detection unit 120 is acquired by the peripheral object information acquisition unit 212 provided in the vehicle relative position calculation device 210.
  • the vehicle control device 200 is provided with an actuator control unit 300 as an external device.
  • the actuator control unit 300 is a control unit that controls the actuator so as to achieve a target value, and is, for example, an electric power steering ECU. Alternatively, it is a power train ECU or a brake ECU.
  • FIG. 2 is a system configuration diagram showing a schematic configuration of a vehicle equipped with the vehicle control device of the first embodiment.
  • the vehicle 1 includes a steering wheel 2, a steering shaft 3, a steering unit 4, an electric power steering unit 5, a power train unit 6, a brake unit 7, a yaw rate sensor 111, and a vehicle speed sensor 112.
  • the front camera 121, the vehicle control device 200, the electric power steering controller 310, the power train controller 320, and the brake controller 330 are provided.
  • the steering wheel 2 installed for the driver to operate the vehicle 1 is connected to the steering shaft 3.
  • a steering unit 4 is connected to the steering shaft 3.
  • the steering unit 4 rotatably supports the front wheels as steering wheels and is rotatably supported by the vehicle body frame.
  • the torque generated by the operation of the steering wheel 2 of the driver rotates the steering shaft 3, and the steering unit 4 steers the front wheels to the left and right.
  • the driver can control the lateral movement amount of the vehicle when the vehicle moves forward and backward.
  • the steering shaft 3 can also be rotated by the electric power steering unit 5, and the front wheels can be freely steered independently of the operation of the driver's steering wheel 2 by instructing the electric power steering controller 310. be able to.
  • the vehicle control device 200 is composed of an integrated circuit such as a microprocessor, and includes an A / D conversion circuit, a D / A conversion circuit, a CPU, a ROM, a RAM, and the like.
  • the vehicle control device 200 is connected to a yaw rate sensor 111 that detects the yaw rate of the vehicle 1, a vehicle speed sensor 112 that detects the vehicle speed of the vehicle 1, a front camera 121, an electric power steering controller 310, a power train controller 320, and a brake controller 330. ing.
  • the vehicle control device 200 processes the information input from the connected sensor according to the program stored in the ROM, transmits the target steering angle to the electric power steering controller 310, and drives the target to the power train controller 320. The force is transmitted and the target braking force is transmitted to the brake controller 330.
  • the vehicle control device 200 does not perform acceleration / deceleration control, it is not necessary to connect the power train controller 320 and the brake controller 330 to the vehicle control device 200.
  • the front camera 121 is installed at a position where the lane marking in front of the vehicle can be detected as an image, and detects lane information or information on surrounding objects in front of the own vehicle such as the position of an obstacle based on the image information.
  • a camera that detects peripheral objects in front is given as an example, but a camera that detects peripheral objects in the rear or side may be installed.
  • the electric power steering controller 310 controls the electric power steering unit 5 so as to realize the target steering angle transmitted from the vehicle control device 200.
  • the power train controller 320 controls the power train unit 6 so as to realize the target driving force transmitted from the vehicle control device 200.
  • the power train unit 6 is controlled based on the amount of depression of the accelerator pedal.
  • a vehicle using only the engine as a driving force source is given as an example, but a vehicle using only an electric motor as a driving force source, a vehicle using both an engine and an electric motor as a driving force source, and the like. May be applied to.
  • the brake controller 330 controls the brake unit 7 so as to realize the target braking force transmitted from the vehicle control device 200.
  • the brake unit 7 is controlled based on the amount of depression of the brake pedal.
  • FIG. 3 is a diagram showing a coordinate system used in this explanation.
  • the coordinates indicated by X 0 and Y 0 are camera coordinates with the detection reference position of the front camera 121 mounted on the central axis indicated by the dotted line of the vehicle 1 as the origin O CAM.
  • the coordinates indicated by X 2 and Y 2 are bumper coordinates with the bumper position on the central axis of the vehicle 1 as the origin O BUM.
  • FIG. 4 shows a state in which the vehicle 1 in the first embodiment makes a steady circular turn at an extremely low speed.
  • the preceding vehicle 10 is traveling in front of the vehicle 1, and the front camera 121 detects the relative position between the preceding vehicle 10 and the vehicle 1.
  • l cr is the distance from the detection reference position of the front camera 121 to the center of the rear axis
  • x t and y t are the positions where the preceding vehicle 10 is detected from the detection reference position of the front camera 121, respectively. It represents the distance (the PCAM_p t see) X-direction (traveling direction of the vehicle at the point O CAM) up, and the Y direction (direction perpendicular to the X direction).
  • FIG. 5 shows a state when the vehicle speed is not extremely low and the centrifugal force of the steady circular turning cannot be ignored.
  • the turning radius R and the side slip angle ⁇ of the steady circular turning of the center of gravity are the vehicle weight m, the distance between the front axle centers of gravity l f , the distance between the rear axle centers of gravity l r , the wheelbase l w , the front wheel cornering power K f , It can be calculated from the rear wheel cornering power Kr , the vehicle speed ⁇ , and the steering angle ⁇ by equations (1) and (2) (see, for example, equations 3.29 and 3.31 of Non-Patent Document 1).
  • PCAM_p t be the position of the preceding vehicle at time t, and consider the position PCAM_p t-1 of the preceding vehicle at time t-1 at time t.
  • PCAM_p is the camera coordinate system.
  • the yaw rate detected by the vehicle 1 is the yaw rotation center coordinate system. Therefore, in consideration of the yaw angular momentum and the amount of movement of the vehicle 1 during the control cycle from time t-1 to t, the position PCAM_p t-1 of the preceding vehicle in the camera coordinate system at time t-1 is set to the current time.
  • PCAM_p t-1 is coordinate-converted to the yaw rotation center coordinate system at the current time t-1, and then the yaw angle between the control cycles of the vehicle 1 Calculations that reflect the amount of momentum and the amount of movement may be performed. Further, in order to convert to the camera coordinate system at time t, the coordinate conversion from the yaw rotation center coordinate system to the camera coordinate system may be performed thereafter.
  • the relative position conversion value L c that can be calculated by the equation (4) is used.
  • the preceding vehicle position PYAW_p in the yaw rotation center coordinate system is a coordinate system in which the side slip angle is zero.
  • the relative position conversion value L c is calculated with the vehicle speed ⁇ as one input, and the vehicle weight m, the distance between the front axle center of gravity l f , the wheelbase l w , and the rear wheel cornering power K r are predefined parameters for each vehicle. Therefore, the calculation is easy. Moreover, since the number of predefined parameters is small, the occurrence of modeling error can be reduced. Moreover, since the calculation does not include the integral, no offset error occurs.
  • FIG. 6 is a flowchart showing an operation procedure of the vehicle control device according to the first embodiment. Using this flowchart, the operation corresponding to one control cycle described below in the vehicle control device will be described. In an actual device, this series of operations is repeated for the required control cycle. In order to clearly show this, in this flowchart, the bottom row is not “end” but “return” which is usually used in the display of the sub-flow chart.
  • the vehicle state information acquisition unit acquires the vehicle state information.
  • the vehicle state information is information such as the yaw rate and the vehicle speed of the own vehicle, and in the present embodiment, the yaw rate ⁇ and the vehicle speed ⁇ are acquired.
  • the movement amount [sx, sy] T of the own vehicle is approximated by an arc, and is calculated by the equation (5) from the vehicle speed ⁇ , the yaw rate ⁇ , and the control period dt acquired in step S100 (for example). , See Non-Patent Document 2).
  • the control period dt is the calculation period of the entire flowchart of FIG. 6, and is, for example, 100 ms.
  • the conversion matrix to the current time in the yaw rotation center coordinate system is set as in Eq. (7) based on the yaw rate ⁇ and the control period dt acquired in the movement amount [sx, sy] T of the own vehicle and step S100. do.
  • the peripheral object information acquisition unit acquires the peripheral object information.
  • the relative position conversion value is calculated by the relative position information conversion input unit, and the peripheral object information acquired in step S120 is converted into the yaw rotation center reference coordinate system.
  • the relative position conversion value L c is acquired in step S100 with the vehicle weight m preset according to the vehicle, the distance between the front axle center of gravity l f , the wheelbase l w , and the rear wheel cornering power K r. From the obtained vehicle speed ⁇ , the calculation is performed using the equation (4).
  • the transformation matrix to the yaw rotation center reference coordinate system is set as in the following equation (9) based on the relative position conversion value L c.
  • Yaw rotation center coordinate system and the peripheral object position PYAW_p t, using the transformation matrix PYAW_T CAM was determined by the equation (9) is calculated by the following equation (10).
  • step S140 the locus information of the peripheral object position stored in the position information storage unit is updated.
  • the relative position information conversion input unit converts the locus information of the peripheral object position stored in the position information storage unit into the bumper coordinate system.
  • the transformation matrix to the bumper coordinate system is based on the relative position conversion value L c calculated in step S130 and the distance l bc between the origin of the bumper coordinate system and the origin of the camera coordinate system. To set.
  • the locus information of the peripheral object position stored in the position information storage unit can be set to the origin at any place. For example, if you want to convert to the camera coordinate system, you can set the transformation matrix as in equation (14) and calculate with equation (15).
  • the target steering angle is calculated so as to follow the preceding vehicle from the locus of the peripheral object positions calculated in step S150.
  • the actuator control unit controls the actuator so as to achieve the target value.
  • steering control is assumed, and the electric power steering unit is controlled by a known technique such as PID control so as to realize the target steering angle.
  • FIG. 7 shows the periphery stored by the position information storage unit when the vehicle relative position calculation device of the present embodiment described with reference to FIG. 6 is applied to control the vehicle following the preceding vehicle. It is a figure which showed the locus of an object position.
  • the calculation is easy, and the position of the peripheral object in the past can be estimated accurately without being affected by the offset error and the modeling error. Therefore, a highly accurate trajectory can be obtained and the vehicle can be accurately preceded. Control that can follow the car can be realized.
  • the peripheral object position is provided.
  • vehicle control device having the vehicle control unit, it is possible to obtain a highly accurate past peripheral object position, so that the control performance of the vehicle behavior is improved. Specifically, for example, vehicle control that follows a preceding vehicle can improve followability, or vehicle control that avoids obstacles can avoid obstacles with high accuracy.
  • FIG. 8 shows an example of the hardware 30 related to the signal processing of the vehicle relative position calculation device of the present application.
  • the hardware 30 related to the signal processing of the present device includes the processor 31 and the storage device 32.
  • the storage device 32 includes a volatile storage device such as a random access memory (not shown) and a non-volatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory.
  • the processor 31 executes the program input from the storage device 32. In this case, a program is input from the auxiliary storage device to the processor 31 via the volatile storage device. Further, the processor 31 may output data such as a calculation result to the volatile storage device of the storage device 32, or may store the data in the auxiliary storage device via the volatile storage device.
  • the content described in the above-described embodiment is an example, and is not limited to the content of the described embodiment.
  • various application examples other than the present embodiment in which the position of the peripheral object of the own vehicle is represented by the vehicle body fixed coordinates at the current time and the vehicle is controlled can be considered.
  • a vehicle control device that detects an obstacle as a peripheral object and controls the vehicle to avoid or stop or a vehicle control device that detects a white line on the road as a peripheral object and controls the vehicle so as to follow the white line.
  • a person skilled in the art can implement the vehicle relative position calculation device and the control device according to the present embodiment in various other modes without departing from the gist of the present embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

車両相対位置演算装置において、走行時の自車の状態情報を取得する車両状態情報取得部(211)、自車の周辺物の情報を取得する周辺物情報取得部(212)、車両状態情報取得部(211)で取得した自車の状態情報と周辺物情報取得部(212)で取得した周辺物の情報から定まる、自車に対する自車の周辺物の相対情報である相対位置情報を入力するとともに、この入力した相対位置情報を自車の特定の位置を原点とした場合での相対位置情報に変換する相対位置情報変換入力部(215)、相対位置情報変換入力部(215)で変換した相対位置情報を記憶する位置情報記憶部(214)、車両状態情報取得部(211)で取得された自車の状態情報を入力して位置情報記憶部(214)が記憶した相対位置情報を、現時刻における相対位置情報である現時刻相対位置情報に変換し、位置情報記憶部(214)に出力する車両固定座標変換部(213)を備えるようにした。

Description

車両相対位置演算装置及び車両制御装置
 本願は、車両相対位置演算装置及び車両制御装置に関するものである。
 従来から、自車と自車で検知した周辺物との相対位置を記憶し、記憶した周辺物の相対位置は周辺物位置座標として、現時刻の車体固定座標系で表すことは知られている(例えば、下記の特許文献1)。ここでは、自車のヨー方向の回転量と、前後方向と横方向の移動量の計算を行い、自車のヨー方向の回転量から周辺物位置座標を回転変換する。回転変換後の周辺物位置座標と自車の移動量から、車体固定座標系での周辺物位置座標を推定している。ここで、自車の横方向移動量の計算には、自車両の横すべり角度を考慮しており、横すべり角度は、車速と、操舵角、ヨーレートを用いて演算している。
特開2008-94213号公報
安部正人、「自動車の運動と制御(第2版)」、東京電機大学出版局、pp.64-65、2012年1月 C.M.Wang , "Location estimation and uncertainty analysis for mobile robots," IEEE, pp.1230-1235, 1988
 しかしながら、上記特許文献1に開示されている方式では、自車のヨー方向の回転量から周辺物位置座標を回転変換する際、横すべりを考慮しておらず、精度よく車体固定座標系における周辺物位置座標を推定することができない課題がある。また、車速と操舵角度を入力とする車両モデルから横すべり角度を推定する場合、操舵角度と車速の2入力からなる車両モデルから横すべり角度を演算するため、演算が複雑になり、横すべり角度を演算する過程での積分処理によるオフセット誤差の発生および車両モデルのモデル化誤差による推定誤差の発生という課題がある。
 本願は、上記のような課題を解決するための技術を開示するものであり、車体固定座標系における周辺物位置座標を、演算が容易で、オフセット誤差及び車両モデル化誤差の影響を受けずに精度よく推定する、車両相対位置演算装置を提供することを目的とする。
 本願に開示される車両相対位置演算装置は、
走行時の自車の状態情報を取得する車両状態情報取得部、
前記自車の周辺物の情報を取得する周辺物情報取得部、
前記車両状態情報取得部および前記周辺物情報取得部と接続され、前記車両状態情報取得部で取得した前記自車の状態情報と前記周辺物情報取得部で取得した周辺物の情報から定まる、前記自車に対する前記自車の周辺物の相対情報である相対位置情報を入力するとともに、この入力した相対位置情報を前記自車の特定の位置を原点とした場合での相対位置情報に変換する相対位置情報変換入力部、
前記相対位置情報変換入力部に接続され、当該相対位置情報変換入力部で変換した相対位置情報を記憶する位置情報記憶部、
前記車両状態情報取得部と前記位置情報記憶部に接続されるとともに、前記車両状態情報取得部で取得した前記自車の状態情報を入力して前記位置情報記憶部が記憶した相対位置情報を、現時刻における相対位置情報である現時刻相対位置情報に変換し、前記位置情報記憶部に出力する車両固定座標変換部、
を備えたことを特徴とするものである。
 本願に開示される車両相対位置演算装置によれば、現時刻の車体固定座標系における周辺物位置座標を、演算が容易で、オフセット誤差および車両モデル化誤差の影響を受けずに精度よく推定することができる。
実施の形態1に係る車両制御装置の構成を示すブロック図である。 実施の形態1に係る車両制御装置を搭載した車両の概略システム構成図である。 実施の形態1に係る車両制御装置の動作説明に用いる座標系の説明図である。 実施の形態1に係る車両制御装置を搭載した車両の極低速時での定常円旋回を説明するための図である。 実施の形態1に係る車両制御装置を搭載した車両の定常円旋回において、遠心力が無視できない場合の説明図である。 実施の形態1に係る車両制御装置の動作手順を示すフローチャートを表す図である。 実施の形態1に係る車両制御装置の車両相対位置演算装置で記憶された周辺物の移動軌跡の一例を説明するための図である。 実施の形態1に係る車両制御装置の車両相対位置演算装置の信号処理に係るハードウエアの一例を示す図である。
 以下、本願に係る車両相対位置演算装置と車両制御装置の好適な実施の形態につき図面を用いて説明する。本実施の形態は、一般的には、自車と周辺物との相対位置を推定する技術に関わるものである。なお、各図において同一、または相当する部分については、同一符号を付して説明する。
実施の形態1.
 本実施の形態では、自車で検知した自車の前方を走行する先行車を、現時刻の車体固定座標系の軌跡として表し、検知した先行車を追従するように車両を制御する車両制御装置に関して記載する。
 図1は、実施の形態1の車両制御装置の概略構成を示すブロック図である。本実施形態に係る車両相対位置演算装置210は車両制御装置200に設けられ、車両状態情報取得部211と、周辺物情報取得部212と、車両固定座標変換部213と、位置情報記憶部214と、相対位置情報変換入力部215と、相対位置情報変換出力部216とを備える。
 車両制御装置200は、車両の制御を行う装置であり、各種プログラムを記憶するROM、RAM、プログラムを実行するCPUから構成される。例えば、先進運転支援システム電子制御ユニット(ADAS(Advanced Driver Assistance System)-ECU)である。
 本実施の形態の車両相対位置演算装置210において、相対位置情報変換入力部215は、車両状態情報取得部211で取得した自車の車両の状態と、周辺物情報取得部212で取得した周辺物位置情報とに基づいて、自車と周辺物との相対位置を求めるための相対位置変換を行うとともに、周辺物情報取得部212で取得した周辺物位置情報に対して車両の横すべり角が零となる点が原点となる座標変換を行い、得られた結果を位置情報記憶部214に出力する。車両固定座標変換部213は、位置情報記憶部214で記憶している周辺物位置情報に対して、車両状態情報取得部211から取得した自車の状態に基づいて車両固定座標系への座標変換を行う。なお、位置情報記憶部214は、記憶している周辺物位置の軌跡情報の更新も行う。相対位置情報変換出力部216は、位置情報記憶部214で記憶している周辺物位置情報に対し、相対位置情報変換入力部215で演算した相対位置変換値と、周辺物位置情報の原点とする場所により決まる予め設定しておいた値とに基づいて変換を行う。
 また、車両制御部220は車両制御装置200に設けられ、車両相対位置演算装置で演算された自車の周辺物位置情報と自車の状態とに基づいて、アクチェータ制御部300へ出力する目標値を演算してアクチェータ制御部300へ出力する。
 また、この車両制御装置200には、外部の入力装置として、車両状態情報検出部110と、周辺物情報検出部120を備える。ここで、車両状態情報検出部110は、自車の情報を検出する検出部であり、例えば車速センサ、ヨーレートセンサが搭載されている。車両状態情報検出部110で検出された情報は、車両相対位置演算装置210に設けられた車両状態情報取得部211によって取得される。
 次に、周辺物情報検出部120は、周辺物の位置を含む情報を検出する検出部であり、例えば、前方カメラがこれに該当する。あるいは、LiDAR(Light Detection and Ranging)、レーザー、ソナー、車車間通信装置、路車間通信装置がこれに該当する。周辺物情報検出部120で検出した情報は、車両相対位置演算装置210に設けられた周辺物情報取得部212によって取得される。
 また、車両制御装置200には外部の装置としてアクチェータ制御部300を備える。アクチェータ制御部300は、アクチェータが目標値を実現するように制御を行う制御部であり、例えば、電動パワーステアリングECUである。あるいは、パワートレインECU、ブレーキECUである。
 図2は、実施の形態1の車両制御装置を搭載した車両の概略構成を示すシステム構成図である。図2において、車両1は、ステアリングホイール2と、ステアリング軸3と、操舵ユニット4と、電動パワーステアリングユニット5と、パワートレインユニット6と、ブレーキユニット7と、ヨーレートセンサ111と、車速センサ112と、前方カメラ121と、車両制御装置200と、電動パワーステアリングコントローラ310と、パワートレインコントローラ320と、ブレーキコントローラ330とを備える。
 ドライバが車両1を操作するために設置されているステアリングホイール2は、ステアリング軸3に結合されている。ステアリング軸3には操舵ユニット4が連接されている。操舵ユニット4は、操舵輪としての前輪を回動自在に支持すると共に、車体フレームに転舵自在に支持されている。
 従って、ドライバのステアリングホイール2の操作によって発生したトルクはステアリング軸3を回転させ、操舵ユニット4によって前輪を左右方向へ転舵する。これによって、ドライバは車両が前進・後進する際の車両の横移動量を操作することができる。なお、ステアリング軸3は電動パワーステアリングユニット5によって回転させることも可能であり、電動パワーステアリングコントローラ310に指示することによって、ドライバのステアリングホイール2の操作と独立して、前輪を自在に転舵させることができる。
 車両制御装置200は、マイクロプロセッサ等の集積回路で構成されており、A/D変換回路、D/A変換回路、CPU、ROM、RAM等を備える。車両制御装置200には、車両1のヨーレートを検出するヨーレートセンサ111、車両1の車速を検出する車速センサ112、前方カメラ121、電動パワーステアリングコントローラ310、パワートレインコントローラ320、ブレーキコントローラ330が接続されている。
 そして、車両制御装置200は、接続されているセンサから入力された情報を、ROMに格納されたプログラムに従って処理し、電動パワーステアリングコントローラ310に目標舵角を送信し、パワートレインコントローラ320に目標駆動力を送信し、ブレーキコントローラ330に目標制動力を送信する。なお、車両制御装置200で加減速制御を行わない場合は、車両制御装置200にパワートレインコントローラ320とブレーキコントローラ330を接続しなくてもよい。
 また、前方カメラ121は、車両前方の区画線が画像として検出できる位置に設置され、画像情報を基に、車線情報、あるいは障害物の位置など自車両の前方周辺物の情報を検出する。なお、本実施の形態では、前方周辺物を検出するカメラのみを例に挙げたが、後方、あるいは側方の周辺物を検出するカメラを設置してもよい。
 また、電動パワーステアリングコントローラ310は、車両制御装置200から送信された目標舵角を実現するように電動パワーステアリングユニット5を制御する。また、パワートレインコントローラ320は、車両制御装置200から送信された目標駆動力を実現するようにパワートレインユニット6を制御する。また、速度制御を運転手が行う場合には、アクセルペダル踏み込み量に基づきパワートレインユニット6が制御される。
 なお、本実施の形態では、エンジンのみを駆動力源とする車両を例に挙げたが、電動モータのみを駆動力源とする車両、あるいはエンジンと電動モータの両方を駆動力源とする車両等に適用してもよい。
 さらに、ブレーキコントローラ330は、車両制御装置200から送信された目標制動力を実現するように、ブレーキユニット7を制御する。また、速度制御を運転手が行う場合には、ブレーキペダル踏み込み量に基づきブレーキユニット7を制御する。
 そこで、以下、上述の車両制御装置200の実際の動作について図を用いてさらに詳しく説明する。
 図3は、この説明に用いる座標系を表した図である。ここでは、車両固定座標系のサブ座標系として、以下の3種類の座標系を定義し、これらの座標系を用いて説明する。図中、X、Yで示す座標は、車両1の点線で示した中心軸上に取り付けられた前方カメラ121の検出基準位置を原点OCAMとするカメラ座標である。X、Yで示す座標は、車両1の中心軸上における横すべり角が零となる位置を原点Oβ=0とするヨー回転中心座標である。X、Yで示す座標は、車両1の中心軸上におけるバンパー位置を原点OBUMとするバンパー座標である。
 また、以後の説明においては、これらの複数の座標系を扱うに当たり次の表記を行う。例えば位置ベクトルの場合、カメラ座標系ではPCAM_p、ヨー回転中心座標ではPYAW_p、バンパー座標ではPBUM_pと表し、位置ベクトル記号pの前方に基準となる座標系の略称を3文字で記載する。なお、イタリック体で示した文字(ここではp)は、ベクトルであることを示すものである。
 図4は、実施の形態1における車両1が極低速時での定常円旋回の様子を示したものである。図4において、先行車10は、車両1の前方を走行しており、前方カメラ121は、先行車10と車両1との相対位置を検出する。検出した相対位置はPCAM_pt =[xt,yt,1]T(ここで、「t」は検出した時の時刻tを表わす。また、「T」は転置行列であることを示すための符号である。以下同様)である。車両1が極低速では、遠心力が車両に働かないため、アッカーマンステアリングジオメトリ(Ackermann steering geometry)の幾何学的関係(この場合、前後の4車輪の回転中心が同一点Ocとなる)で定常円旋回をしており、後軸中心では、横すべり角が発生しない。そこで、ここでは、後軸中心をヨー回転中心座標系での原点Oβ=0に設定する。
 また、この図において、lcrは、前方カメラ121の検出基準位置から後軸中心までの距離、x、yは、それぞれ、前方カメラ121の検出基準位置から先行車10が検出される位置(上記PCAM_p参照)までのX方向(点OCAMにおける自車の進行方向)、およびY方向(前記X方向に直交する方向)の距離を表わす。
 次に、車速が極低速ではなく、定常円旋回の遠心力が無視できない車速の時の様子を図5に示す。車速が上がるにつれて、車両中心軸上の横すべり角が零の位置Oβ=0は、後軸中心から前方に移動する。
 ここで、重心の定常円旋回の旋回半径R、および横すべり角βは、車両重量m、前軸重心間距離lf、後軸重心間距離lr、ホイールベースlw、前輪コーナリングパワーKf、後輪コーナリングパワーKr、車速ν、操舵角δから式(1)、式(2)で計算できる(例えば、非特許文献1の式3.29および式3.31を参照)。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 式(1)および式(2)より、重心から車体中心軸上の横すべり角が零の位置までの距離をLβ=0とすると式(3)となる。
Figure JPOXMLDOC01-appb-M000003
 式(3)を用いて、前方カメラ121の検出基準位置から後軸中心までの距離をlcrとすると、カメラ座標系の原点OCAMからヨー回転中心座標系の原点Oβ=0までの距離Lcは式(4)となる。
Figure JPOXMLDOC01-appb-M000004
ここで、この距離Lを以下では相対位置変換値とも呼ぶ。
 車両1が定常円旋回している時、時刻tにおける先行車の位置をPCAM_ptとし、時刻tにおける時刻t-1での先行車の位置PCAM_pt-1について考える。ここでPCAM_pはカメラ座標系である。一方、車両1で検出するヨーレートはヨー回転中心座標系である。
 したがって、時刻t-1からtの制御周期間の車両1のヨー角運動量と移動量を考慮して、時刻t-1でのカメラ座標系における先行車の位置PCAM_pt-1を、現在の時刻tでのヨー回転中心座標系に変換するためには、PCAM_pt-1を現在の時刻t-1でのヨー回転中心座標系に座標変換を行ってから、車両1の制御周期間のヨー角運動量と移動量を反映させる演算をすればよい。さらに、時刻tでのカメラ座標系に変換するためには、その後、ヨー回転中心座標系からカメラ座標系に座標変換を行えばよい。
 座標変換には、式(4)で演算できる相対位置変換値Lcを使用する。ヨー回転中心座標系の先行車位置PYAW_pは、横すべり角が零での座標系である。
 相対位置変換値Lcの演算は、車速νを1入力とし、車両重量m、前軸重心間距離lf、ホイールベースlw、後輪コーナリングパワーKrは車両ごとに事前定義可能なパラメータであるため、演算が容易である。また、事前定義するパラメータが少ないためモデル化誤差の発生を低減することができる。また、演算に積分を含まないため、オフセット誤差の発生もない。
 前方カメラで逐次検出した先行車の位置PCAM_ptに対して、以上の手法で自車の運動量を逐次演算することで、車両固定座標系での先行車の位置を軌跡として精度よく表すことができる。
 図6は、実施の形態1の車両制御装置の動作手順を示すフローチャートである。このフローチャートを用いて、本車両制御装置における、以下で説明する制御周期1回分に対応する動作を説明する。実際の装置においては、必要な制御周期だけ、この一連の動作を繰り返すことになる。なお、このことを明確に示すため、このフローチャートでは、最下段は、「エンド」ではなく、サブフローチャートの表示で通常用いられる「リターン」と表示した。
 図6に示す全工程において、まず、ステップS100においては、車両状態情報取得部が車両状態情報を取得する。車両状態情報は、自車両のヨーレート、車速などの情報であり、本実施の形態では、ヨーレートγ、車速νが取得されるものとする。
 次の工程であるステップS110においては、車両固定座標変換部で、前回制御周期からの自車の移動量とヨー方向の回転量と位置情報記憶部で記憶しているヨー回転中心座標系の周辺物位置PYAW_pk(k=1、・・・、N)の軌跡に基づいて、現時刻でのヨー回転中心座標系の周辺物位置PYAW_cpkを演算する。
 本実施の形態では、自車の移動量[sx,sy]Tは円弧で近似し、ステップS100で取得した車速νとヨーレートγと制御周期dtより、式(5)で演算して求める(例えば、非特許文献2参照)。制御周期dtは、図6のフローチャート全体の演算周期とし、例えば100msである。
Figure JPOXMLDOC01-appb-M000005
なお、γdtが十分に小さい場合は式(6)としてもよい。
Figure JPOXMLDOC01-appb-M000006
 ヨー回転中心座標系における現時刻への変換行列は、自車の移動量[sx,sy]TとステップS100で取得した、ヨーレートγと制御周期dtに基づいて、式(7)のように設定する。
Figure JPOXMLDOC01-appb-M000007
 次に、ヨー回転中心座標系における現時刻の周辺物位置PYAW_cpk(k=1、・・・、N)は、式(8)で演算する。
Figure JPOXMLDOC01-appb-M000008
 次のステップS120において、周辺物情報取得部で周辺物情報が取得される。周辺物情報は、周辺物の位置を含む情報である。本実施の形態では、現時刻tでの自車の追従対象となる先行車の位置PCAM_pt=[xt,yt,1]Tが取得されるものとする。
 次のステップS130において、相対位置情報変換入力部で相対位置変換値を演算し、ステップS120で取得した周辺物情報をヨー回転中心基準座標系へ変換する。 本実施の形態では、相対位置変換値Lcは、車両に応じてあらかじめ設定した車両重量m、前軸重心間距離lf、ホイールベースlw、後輪コーナリングパワーKrと、ステップS100で取得した車速νより、式(4)を用いて演算する。
 また、ヨー回転中心基準座標系への変換行列は相対位置変換値Lcに基づいて次式(9)のように設定する。
Figure JPOXMLDOC01-appb-M000009
 ヨー回転中心座標系とした周辺物位置PYAW_ptは、この式(9)で定めた変換行列PYAW_TCAMを用いて、次の式(10)により演算する。
Figure JPOXMLDOC01-appb-M000010
 次のステップS140において、位置情報記憶部で記憶している周辺物位置の軌跡情報の更新を行う。ステップS130で演算した周辺物位置PYAW_ptを最新値として追加し、ステップS110で更新した現時刻の周辺物位置PYAW_cpk(k=1、・・・、N)の内、最も古い時刻での周辺物位置PYAW_cpNは削除し、式(11)のように設定する。
Figure JPOXMLDOC01-appb-M000011
 次のステップS150において、相対位置情報変換入力部で、位置情報記憶部で記憶している周辺物位置の軌跡情報をバンパー座標系へ変換する。本実施の形態では、バンパー座標系への変換行列はステップS130で演算した相対位置変換値Lcとバンパー座標系の原点とカメラ座標系の原点間の距離lbcに基づいて式(12)のように設定する。
Figure JPOXMLDOC01-appb-M000012
 また、バンパー座標系における周辺物位置の軌跡PBUM_pk(k=1、・・・、N)は、式(13)より演算する。
Figure JPOXMLDOC01-appb-M000013
 なお、ここで変換行列を任意に変更することで、位置情報記憶部で記憶している周辺物位置の軌跡情報は、任意の場所を原点にすることが可能である。例えば、カメラ座標系に変換したい場合は変換行列を式(14)のように設定し、式(15)で演算すればよい。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 次のステップS160において、ステップS150で演算した周辺物位置の軌跡より、先行車に追従するよう目標舵角を演算する。
 最終のステップS170において、アクチェータ制御部で目標値を実現するようにアクチェータを制御する。本実施の形態では、操舵制御を想定し、目標操舵角を実現するように、電動パワーステアリングユニットでPID制御など公知の技術で制御する。
 図7は、上記図6を用いて説明した本実施の形態の車両相対位置演算装置を適用して、先行車に追従して車両を制御しているときの、位置情報記憶部で記憶した周辺物位置の軌跡を表した図である。PYAW_pk(k=1、・・・、N)で示す点群は先行車が走行した軌跡を表している。
 上記した構成によれば、演算が容易で、オフセット誤差およびモデル化誤差の影響を受けずに精度よく過去の周辺物位置を推定することができるため、精度の高い軌跡が得られ、正確に先行車への追従が可能な制御が実現できる。
 また、前記位置情報記憶部で記憶した周辺物位置情報を、自車の任意の点を原点とした相対値位置に変換する相対位置情報変換入力部を備えた構成とすることにより、周辺物位置は車両上の任意の点を原点とした周辺物位置情報にすることができる。例えば、カメラ座標系で制御を行う車両制御装置があった場合、周辺物位置情報をカメラ座標系に変換出力することで、車両制御装置の制御系の変更が不要かつ、高精度な周辺物位置情報を利用できる。
 さらに、上述の車両相対位置演算装置、及び車両制御部を有する車両制御装置を備えた構成とすることにより、精度の高い過去の周辺物位置を得られるため、車両挙動の制御性能が向上する。具体的には、例えば、先行車に追従する車両制御で追従性の向上、あるいは障害物を回避する車両制御で障害物回避が高精度に行える。
 なお、本願の車両相対位置演算装置の信号処理に係るハードウエア30の一例を図8に示す。この図に示すように、本装置の信号処理に係るハードウエア30にはプロセッサ31と記憶装置32が含まれる。この記憶装置32は、図示していないランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ31は、記憶装置32から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ31にプログラムが入力される。また、プロセッサ31は、演算結果等のデータを記憶装置32の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
 なお、上記した実施形態で説明した内容は例示であり、説明した実施形態の内容のみに限定するものではない。例えば、自車の周辺物の位置を現時刻の車体固定座標で表して、車両制御を行う応用例は本実施の形態以外も様々考えられる。例えば、障害物を周辺物として検知して回避もしくは停車するように車両を制御する車両制御装置、あるいは、道路上の白線を周辺物として検知して白線に沿うように車両を制御する車両制御装置である。当業者は、本実施の形態の要旨を逸脱することなしに、他の様々な様態で本実施の形態に係る車両相対位置演算装置および制御装置を実施することができる。
 1 車両、2 ステアリングホイール、3 ステアリング軸、4 操舵ユニット、5 電動パワーステアリングユニット、6 パワートレインユニット、7 ブレーキユニット、10 先行車、111 ヨーレートセンサ、112 車速センサ、121 前方カメラ、200 車両制御装置、210 車両相対位置演算装置、211 車両状態情報取得部、212 周辺物情報取得部、213 車両固定座標変換部、214 位置情報記憶部、215 相対位置情報変換入力部、216 相対位置情報変換出力部、220 車両制御部、300 アクチェータ制御部、310 電動パワーステアリングコントローラ、320 パワートレインユニット、330 ブレーキコントローラ

Claims (4)

  1. 走行時の自車の状態情報を取得する車両状態情報取得部、
    前記自車の周辺物の情報を取得する周辺物情報取得部、
    前記車両状態情報取得部および前記周辺物情報取得部と接続され、前記車両状態情報取得部で取得した前記自車の状態情報と前記周辺物情報取得部で取得した周辺物の情報から定まる、前記自車に対する前記自車の周辺物の相対情報である相対位置情報を入力するとともに、この入力した相対位置情報を前記自車の特定の位置を原点とした場合での相対位置情報に変換する相対位置情報変換入力部、
    前記相対位置情報変換入力部に接続され、当該相対位置情報変換入力部で変換した相対位置情報を記憶する位置情報記憶部、
    前記車両状態情報取得部と前記位置情報記憶部に接続されるとともに、前記車両状態情報取得部で取得した前記自車の状態情報を入力して前記位置情報記憶部が記憶した相対位置情報を、現時刻における相対位置情報である現時刻相対位置情報に変換し、前記位置情報記憶部に出力する車両固定座標変換部、
    を備えたことを特徴とする車両相対位置演算装置。
  2. 前記特定の位置は、前記自車の横すべり角が零の位置であることを特徴とする請求項1に記載の車両相対位置演算装置。
  3. 前記位置情報記憶部で記憶した、前記車両固定座標変換部から出力された前記現時刻相対位置情報を、前記自車の予め定められた位置を原点とした場合における現時刻位置情報に変換する相対位置情報変換出力部を備えることを特徴とする請求項1または請求項2に記載の車両相対位置演算装置。
  4. 請求項1から3のいずれか1項に記載の車両相対位置演算装置と、
    前記車両相対位置演算装置で得られた、前記現時刻相対位置情報および前記自車の状態情報に基づいて、車両の挙動を制御する車両制御部と、
    を備えたことを特徴とする車両制御装置。
PCT/JP2020/018073 2020-04-28 2020-04-28 車両相対位置演算装置及び車両制御装置 WO2021220387A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022518475A JP7317223B2 (ja) 2020-04-28 2020-04-28 車両相対位置演算装置及び車両制御装置
PCT/JP2020/018073 WO2021220387A1 (ja) 2020-04-28 2020-04-28 車両相対位置演算装置及び車両制御装置
CN202080099898.6A CN115427277A (zh) 2020-04-28 2020-04-28 车辆相对位置运算装置和车辆控制装置
US17/907,902 US20230116247A1 (en) 2020-04-28 2020-04-28 Vehicle relative-position calculation device and vehicle control device
DE112020007133.2T DE112020007133T5 (de) 2020-04-28 2020-04-28 Fahrzeugrelativpositionsberechnungsvorrichtung und Fahrzeugregelvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018073 WO2021220387A1 (ja) 2020-04-28 2020-04-28 車両相対位置演算装置及び車両制御装置

Publications (1)

Publication Number Publication Date
WO2021220387A1 true WO2021220387A1 (ja) 2021-11-04

Family

ID=78373452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018073 WO2021220387A1 (ja) 2020-04-28 2020-04-28 車両相対位置演算装置及び車両制御装置

Country Status (5)

Country Link
US (1) US20230116247A1 (ja)
JP (1) JP7317223B2 (ja)
CN (1) CN115427277A (ja)
DE (1) DE112020007133T5 (ja)
WO (1) WO2021220387A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015077908A (ja) * 2013-10-17 2015-04-23 トヨタ自動車株式会社 自動操舵制御装置
JP2019131149A (ja) * 2018-02-02 2019-08-08 日立オートモティブシステムズ株式会社 車両制御装置及びその制御方法並びに車両制御システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011866B2 (ja) * 2006-01-23 2012-08-29 日産自動車株式会社 横すべり角推定装置、自動車、及び横すべり角推定方法
KR102055156B1 (ko) * 2018-02-05 2019-12-12 주식회사 만도 적응형 순항 제어 시스템의 제어 장치 및 제어 방법
US11834058B2 (en) * 2019-01-04 2023-12-05 Toyota Research Institute, Inc. Systems and methods for controlling a vehicle based on vehicle states and constraints of the vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015077908A (ja) * 2013-10-17 2015-04-23 トヨタ自動車株式会社 自動操舵制御装置
JP2019131149A (ja) * 2018-02-02 2019-08-08 日立オートモティブシステムズ株式会社 車両制御装置及びその制御方法並びに車両制御システム

Also Published As

Publication number Publication date
JP7317223B2 (ja) 2023-07-28
JPWO2021220387A1 (ja) 2021-11-04
CN115427277A (zh) 2022-12-02
US20230116247A1 (en) 2023-04-13
DE112020007133T5 (de) 2023-04-27

Similar Documents

Publication Publication Date Title
JP6666304B2 (ja) 走行制御装置、走行制御方法、およびプログラム
JP6489135B2 (ja) 車両の運転支援装置
US8918273B2 (en) Method for determining an evasion trajectory for a motor vehicle, and safety device or safety system
US11603132B2 (en) Steering control method and steering control device
JP6610799B2 (ja) 車両の走行制御方法および走行制御装置
JP6631289B2 (ja) 車両制御システム
JP2017124744A (ja) 車線変更支援装置
KR20090122205A (ko) 운송 수단 운전 보조 장치
JP7156924B2 (ja) 車線境界設定装置、車線境界設定方法
JP7106872B2 (ja) 車両の自動運転制御装置及び自動運転制御方法
JP6642331B2 (ja) 運転支援制御装置
CN113386747B (zh) 一种具有紧急转向功能的控制方法、系统及存储介质
JP2010102435A (ja) 操舵支援装置
CN112428991B (zh) 车辆控制方法、装置、介质、设备及车辆
JP2020032949A (ja) 自動運転システム
CN114670815A (zh) 车辆控制方法、装置、电子设备和存储介质
CN108860137B (zh) 失稳车辆的控制方法、装置及智能车辆
JP2018010360A (ja) 運転支援装置
CN114475646A (zh) 车辆控制装置、车辆控制方法及存储介质
WO2021220387A1 (ja) 車両相対位置演算装置及び車両制御装置
JP7144271B2 (ja) 道路形状認識装置
JP6377971B2 (ja) 車両の挙動制御装置及び車両の挙動制御方法
JP7332785B2 (ja) 車両制御装置
JP5916559B2 (ja) 車両の操舵制御装置
JP2011063107A (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518475

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20933032

Country of ref document: EP

Kind code of ref document: A1