WO2021217569A1 - Power supply system and method of operating the same - Google Patents

Power supply system and method of operating the same Download PDF

Info

Publication number
WO2021217569A1
WO2021217569A1 PCT/CN2020/088216 CN2020088216W WO2021217569A1 WO 2021217569 A1 WO2021217569 A1 WO 2021217569A1 CN 2020088216 W CN2020088216 W CN 2020088216W WO 2021217569 A1 WO2021217569 A1 WO 2021217569A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
power supply
circuit
capacitor
threshold
Prior art date
Application number
PCT/CN2020/088216
Other languages
French (fr)
Inventor
Donghao LI
Huajuan XIAO
Ying Cao
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget Lm Ericsson (Publ) filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Priority to EP20933125.5A priority Critical patent/EP4143958A4/en
Priority to US17/919,620 priority patent/US20230146270A1/en
Priority to PCT/CN2020/088216 priority patent/WO2021217569A1/en
Publication of WO2021217569A1 publication Critical patent/WO2021217569A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0096Means for increasing hold-up time, i.e. the duration of time that a converter's output will remain within regulated limits following a loss of input power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters

Definitions

  • the present disclosure generally relates to the technical field of electronic technology, and in particular, to a power supply system and a method of operating the power supply system.
  • Some of communication devices such as Radio Units (RUs)
  • RUs Radio Units
  • a capacitor with a larger value capacitance e.g. 8mF
  • a holdup capacitor is necessary to be introduced in the power supply system to suppress the oscillation caused by the dynamic load of the load circuit and supply power to the load circuit when the power source (e.g. denoted as 100, as shown in FIG. 1) is temporarily off.
  • the holdup capacitor may cause a surge current in the power supply system.
  • a power supply assisting sub-system as shown in FIG. 1, e.g., a hot swap circuit, is used in the power supply system to suppress the input surge current when the communication device is powered on.
  • a power supply system 10 includes a power source 100, a power supply assisting sub-system 101, and a control logic 102, and is configured to supply power to a load circuit 11 of a communication device (not shown) .
  • the power supply assisting sub-system 101 includes a holdup capacitor (denoted as C holdup ) , two Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs, denoted as Q 1 and Q 2 respectively) , two resistors (denoted as R s1 and R s2 respectively) , and a filtering capacitor (denoted as C o ) .
  • C holdup a holdup capacitor
  • MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistors
  • the holdup capacitor C holdup and the filtering capacitor C o are respectively connected in parallel with the load circuit 11, which is connected between Node 1 (V in +) and the transistor Q 1 /Q 2 ; the transistor Q 1 is connected to the holdup capacitor C holdup and to Node 2 (V in -) via R s1 , respectively; and the transistor Q 2 is connected to the holdup capacitor C holdup and to Node 2 (V in -) via R s2 , respectively.
  • the voltage difference between Node 1 and Node 2 that is applied by the power source 100 is the input voltage, denoted as V in .
  • the holdup capacitor C holdup is used for suppressing the oscillation caused by the dynamic load of the load circuit 11 and supplying power to the load circuit 11 when the power source V in is temporarily off, and has a capacitance much larger than that of the filtering capacitor C o , which is used for filtering interference to the load circuit 11.
  • the transistor Q 1 may be a big Safe Operating Area (SOA) FET that may be used for linear charging the holdup capacitor C holdup to suppress the surge current while the communication device, such as an RU, is powered on.
  • the transistor Q 2 may be a low Reducing Drain-Source On-resistance Rdson FET, and may be used for assisting to supply power to the load circuit 11 when the power supply system 10 is in a normal operation.
  • the resistor R s1 that is in series with the transistor Q 1 has a resistance much larger than that of the resistor R s2 that is in series with the transistor Q 2 .
  • the control logic 102 is schematically shown to illustrate a control principle of controlling the power supply assisting sub-system 101, which may be implemented in any of appropriate ways.
  • V gs1 and V gs2 are control signals for controlling ON/OFF of the transistors Q 1 and Q 2 , respectively.
  • N-type transistors are taken as an example for illustration only.
  • the N-type transistors Q 1 and Q 2 are respectively turned on by V gs1 and V gs2 in a high level, and turned off by V gs1 and V gs2 in a low level.
  • P-type transistors although not described herein, it will be understood that the difference between description on P-type transistors and N-type transistors only consists in that the P-type transistors Q 1 and Q 2 are respectively turned on by V gs1 and V gs2 in a low level, and turned off by V gs1 and V gs2 in a high level.
  • V ds_s represents a signal for characterizing V ds .
  • V ds_th a preset reference threshold
  • the transistor Q 2 is triggered by V ds_s to be turned on by V gs2 .
  • the magnitude of V gs1 depends on that of V RS1 .
  • V RS1 is larger, V RS1 pulls the magnitude of V gs1 down.
  • V gs1 is decreased, the flow capability of the transistor Q 1 is reduced, which in turn causes the current I 1 to be reduced.
  • a smaller V gs1 (e.g. in a middle level) may enable the transistor Q 1 to operate in the linear mode, wherein the current I 1 is proportional to V Rs1 . In the linear mode, the transistor Q 1 charges the holdup capacitor (C holdup ) .
  • FIG. 2 schematically shows an operating timing sequence diagram of the power supply assisting sub-system 101.
  • the power supply system 10 starts to supply power to the communication device (not shown) .
  • V gs1 in e.g. a middle level (which causes the transistor Q 1 to operate in the linear mode)
  • t 3 ⁇ t 4 The power supply of the power supply system 10 is normal at t 3 with the assistance of the power supply assisting sub-system 101, and thus a signal indicating power good is sent out. Accordingly, after a shorter delay at t 4 , the load circuit 11 of the communication device works normally under the good power supply of the power supply system 10 with the assistance of the power supply assisting sub-system 101.
  • the power supply assisting sub-system 101 as shown in FIG. 1 has some drawbacks:
  • the transistor Q 2 can’t be turned off, since the limited current I 1 of the transistor Q 1 is too small to support the load current (i.e., the communication device cannot work) after the transistor Q 2 is off. Since the transistor Q 2 is always on during the normal operation of the communication device, the surge current, if appears due to some reasons as mentioned above, would almost flow through the transistor Q 2 only. However, the transistor Q 2 can’t suppress the surge current, since it does not have such a current limitation function as the transistor Q 1 has.
  • the input residual voltage could be two times larger than normal operating voltage, it also induces the input surge current as large as hundreds Ampere if there are holdup capacitors with large capacitance.
  • the components used must have higher ratio values to sustain the high voltage and the high current, which increases cost and reduces performance and reliability.
  • a power supply system having a power supply assisting sub-system that can suppress the surge current due to the overshoot of voltage or current is desired.
  • the present disclosure provides technical solutions for suppressing the surge current due to the overshoot of voltage or current as follows.
  • a power supply system includes: a power source connected between a first node and a second node for applying an input voltage; a first circuit, connected between the first node and a second circuit; and configured to suppress oscillation caused by load variation of a load circuit that is connected between the first node and the second circuit, and to supply power to the load circuit when the power source is temporarily off; the second circuit, having a first port connected to the first circuit, a second port connected to the load circuit, and a third port connected to the second node; and configured to charge the first circuit and supply power to the load circuit; and a third circuit, connected between the first circuit and the load circuit; and configured to suppress a current flowing into the second circuit.
  • the power supply system further includes: a fourth circuit, connected between the first node and the load circuit, and configured to filter interference to the load circuit.
  • the first circuit includes a first capacitor, having a first electrode connected to the first node and a second electrode connected to the first port of the second circuit.
  • the filtering circuit includes a second capacitor, having a first electrode connected to the first node and a second electrode connected to the second port of the second circuit.
  • the second circuit includes: a first transistor, having a control terminal, a first terminal connected to the second node via a first resistor, and a second terminal, as the first port, connected to the second electrode of the first capacitor; a second transistor, having a control terminal, a first terminal connected to the second node via a second resistor, and a second terminal, as the second port, connected to the load circuit; the first resistor connected between the second node and the first terminal of the first transistor; and the second resistor connected between the second node and the first terminal of the second transistor, wherein the first resistor has a resistance larger than that of the second resistor.
  • the third circuit includes: a third transistor, having a control terminal, a first terminal connected to the second terminal of the second transistor, and a second terminal connected to the second electrode of the first capacitor.
  • control terminals of the first transistor, the second transistor, and the third transistor respectively correspond to gate electrodes of the first transistor, the second transistor, and the third transistor; the first terminal of each of the first transistor, the second transistor, and the third transistor corresponds to one of a source electrode and a drain electrode of the corresponding one of the first transistor, the second transistor, and the third transistor; and the second terminal of each of the charging circuit, the second transistor, and the third transistor corresponds to the other of the source electrode and the drain electrode of the corresponding one of the first transistor, the second transistor, and the third transistor.
  • the first transistor, the second transistor, and the third transistor are N-type transistors, each configured to be turned on by a high level control signal at the control terminal, and turned off by a low level control signal at the corresponding control terminal.
  • the first transistor, the second transistor, and the third transistor are P-type transistors, each configured to be turned on by a low level control signal at the control terminal, and turned off by a high level control signal at the corresponding control terminal.
  • the first transistor is configured to be turned on by a control signal at the control terminal of the first transistor to charge the first capacitor, when the input voltage is normal; and the second transistor is configured to be turned on by a control signal at the control terminal of the second transistor to supply power to the load circuit, if a voltage difference between the input voltage and a voltage across the first capacitor is smaller than a preset voltage threshold.
  • the third transistor is configured to be turned off by a control signal at the control terminal of the third transistor to suppress a current flowing through the second transistor, if the current flowing through the second transistor is not smaller than a preset Over-Current (OC) threshold.
  • OC Over-Current
  • the third transistor is kept off for a first predetermined period since the current flowing through the second transistor is smaller than the preset OC threshold; and is turned on by the control signal at the control terminal of the third transistor when the first predetermined period is expired.
  • the first predetermined period includes a hiccup period of Over-Current Protection (OCP) .
  • OCP Over-Current Protection
  • the first transistor and the second transistor are configured to be turned off respectively by respective control signals at the control terminals of the first transistor and the second transistor, and a signal for sensing the voltage difference is disabled.
  • OV Over-Voltage
  • the first transistor and the second transistor are configured to be turned on respectively by the respective control signals at the control terminals of the first transistor and the second transistor, wherein the second preset OV threshold is smaller than the first OV threshold.
  • the first transistor, the second transistor and the third transistor are configured to be turned off respectively by respective control signals at the control terminals of the first transistor, the second transistor and the third transistor, and a signal for sensing the voltage difference is disabled.
  • the first transistor, the second transistor, and the third transistor are configured to be turned on respectively by the respective control signals at the control terminals of the first transistor, the second transistor and the third transistor, wherein the second preset OV threshold is smaller than the first OV threshold.
  • the signal is enabled when a second predetermined period since the second transistor is controlled to be turned on is expired.
  • the second predetermined period is a period for the first capacitor being fully charged by the current flowing through the second transistor.
  • a method of operating the power supply system includes: turning on the first transistor by a control signal at the control terminal of the first transistor to charge the first capacitor, when the input voltage is normal; and turning on the second transistor by a control signal at the control terminal of the second transistor to supply power to the load circuit, if a voltage difference between the input voltage and a voltage across the first capacitor is smaller than a preset voltage threshold.
  • the method further includes: turning off the third transistor by a control signal at the control terminal of the third transistor to suppress a current flowing through the second transistor, if the current flowing through the second transistor is not smaller than a preset OC threshold.
  • the method further includes: keeping the third transistor off for a first predetermined period since the current flowing through the second transistor is smaller than the preset OC threshold; and turning on the third transistor by the control signal at the control terminal of the third transistor when the first predetermined period is expired.
  • the first predetermined period includes a hiccup period of OCP.
  • the method further includes: if a voltage across the second capacitor is not smaller than a first preset OV threshold, turning off the first transistor and the second transistor respectively by respective control signals at the control terminals of the first transistor and the second transistor, and disabling a signal for sensing the voltage difference.
  • the method further includes: if the voltage across the second capacitor is not larger than a second preset OV threshold, turning on the first transistor and the second transistor respectively by the respective control signals at the control terminals of the first transistor and the second transistor, wherein the second preset OV threshold is smaller than the first OV threshold.
  • the method further includes: if a voltage across the second capacitor is not smaller than a first preset OV threshold, turning off the first transistor, the second transistor and the third transistor respectively by respective control signals at the control terminals of the first transistor, the second transistor and the third transistor, and disabling a signal for sensing the voltage difference.
  • the method further includes: if the voltage across the second capacitor is not larger than a second preset OV threshold, turning on the first transistor, the second transistor and the third transistor respectively by the respective control signals at the control terminals of the first transistor, the second transistor and the third transistor, wherein the second preset OV threshold is smaller than the first OV threshold.
  • the method further includes: enabling the signal when a second predetermined period since the second transistor is controlled to be turned on is expired.
  • the second predetermined period is a period for the first capacitor being fully charged by the current flowing through the second transistor.
  • OVP Over-Voltage Protection
  • FIG. 1 schematically shows a structure of a power supply system in the prior art
  • FIG. 2 schematically shows an exemplary operating timing sequence diagram of a power supply assisting sub-system included in the power supply system of FIG. 1;
  • FIG. 3 schematically shows a structure of a power supply system according to an embodiment of the present disclosure
  • FIG. 4 schematically shows an exemplary operating timing sequence diagram of a power supply assisting sub-system included in the power supply system of FIG. 3, in a case that OC occurs first and in turn leads to OV;
  • FIG. 5 schematically shows another exemplary operating timing sequence diagram of a power supply assisting sub-system included in the power supply system of FIG. 3, in a case that OV occurs;
  • FIG. 6 schematically shows an exemplary flowchart of a method of operating the power supply system of FIG. 3 according to an embodiment of the present disclosure.
  • exemplary is used herein to mean “illustrative, ” or “serving as an example, ” and is not intended to imply that a particular embodiment is preferred over another or that a particular feature is essential.
  • first and second, ” and similar terms are used simply to distinguish one particular instance of an item or feature from another, and do not indicate a particular order or arrangement, unless the context clearly indicates otherwise.
  • step, ” as used herein is meant to be synonymous with “operation” or “action. ” Any description herein of a sequence of steps does not imply that these operations must be carried out in a particular order, or even that these operations are carried out in any order at all, unless the context or the details of the described operation clearly indicates otherwise.
  • the term "or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
  • the term “each, " as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.
  • the basic principle of the present disclosure consists in that a current suppression circuit is introduced in the power supply assisting sub-system of the power supply system for supplying power to the communication device, so that the surge current can be suppressed by enabling/disabling the current suppression circuit, without impacting the normal working of the communication device.
  • FIG. 3 schematically shows the structure of the power supply system 30 according to the embodiment of the present disclosure.
  • the power supply system 30 includes a power source 300, a power supply assisting sub-system 301, and a control logic 302.
  • the power source 300 is connected between Node 1 (V in+ ) and Node 2 (V in -) for applying an input voltage V in .
  • Node 2 may be 0V or grounded.
  • the power supply assisting sub-system 301 is connected between Node 1 (V in+ ) and Node 2 (V in- ) , and is configured to assist to supply power to a load circuit 31 of a communication device (not shown) under control of the control logic 302.
  • the control logic 302 is schematically shown to illustrate a control principle of controlling the power supply assisting sub-system 301, which may be implemented in any of appropriate ways.
  • the power supply assisting sub-system 301 may include:
  • a first circuit 3011 connected between Node 1 (V in+ ) and a second circuit 3012, wherein the first circuit 3011 is configured to suppress oscillation caused by load variation of a load circuit 31 that is connected between the Node 1 (V in+ ) and the second circuit 3012, and to supply power to the load circuit 31 when the power source 300 is temporarily off;
  • the second circuit 3012 having a first port connected to the first circuit 3011, a second port connected to the load circuit 31, and a third port connected to Node 2 (V in- ) , wherein the second circuit 3012 is configured to charge the first circuit 3011 and supply power to the load circuit 31;
  • a third circuit 3013 connected between the first circuit 3011 (i.e., the first port of the second circuit 3012) and the load circuit 31 (i.e., the second port of the second circuit 3012) , wherein the third circuit 3013 is configured to suppress a current flowing into the second circuit 3012.
  • the power supply assisting sub-system 301 may further include: a fourth circuit 3014 connected between Node 1 (V in+ ) and the load circuit 31, wherein the fourth circuit 3014 is configured to filter interference to the load circuit 31.
  • the first circuit 3011 may include a capacitor C holdup , which has a first electrode connected to Node 1 (V in+ ) and a second electrode connected to the second circuit 3012.
  • the second circuit 3012 may include: a first transistor Q 1 , a second transistor Q 2 , a first resistor R s1 , and a second resistor R s2 .
  • the first transistor Q 1 has a control terminal, a first terminal connected to Node 2 (V in- ) via the first resistor R s1 , and a second terminal (corresponding to the first port of the second circuit 3012) connected to the second electrode of the capacitor C holdup ;
  • the second transistor Q 2 has a control terminal, a first terminal connected to Node 2 (V in- ) via the second resistor R s2 , and a second terminal (corresponding to the second port of the second circuit 3012) connected to the load circuit 31;
  • the first resistor (R s1 ) is connected between Node 2 (V in- ) and the first terminal of the first transistor Q 1 ;
  • the second resistor R s2 is connected between Node 2 (V in- ) and the first terminal of the second transistor Q 2 .
  • the first resistor R s1 has a resistance much larger than that of the second resistor R s2 .
  • the third circuit 3013 may include a third transistor Q 3 , which has a control terminal, a first terminal connected to the second terminal of the second transistor Q 2 , and a second terminal connected to the second electrode of the capacitor C holdup .
  • the control terminals of the first transistor Q 1 , the second transistor Q 2 , and the third transistor Q 3 respectively correspond to gate electrodes of the first transistor Q 1 , the second transistor Q 2 , and the third transistor Q 3 ;
  • the first terminal of each of the first transistor Q 1 , the second transistor Q 2 , and the third transistor Q 3 corresponds to one of a source electrode and a drain electrode of the corresponding one of the first transistor Q 1 , the second transistor Q 2 , and the third transistor Q 3 ;
  • the second terminal of each of the charging circuit Q 1 , the second transistor Q 2 , and the third transistor Q 3 corresponds to the other of the source electrode and the drain electrode of the corresponding one of the first transistor Q 1 , the second transistor Q 2 , and the third transistor Q 3 .
  • the control logic 302 is schematically shown to illustrate a control principle of controlling the power supply assisting sub-system 301, which may be implemented in any of appropriate ways.
  • V gs1 , V gs2 , and V gs3 are control signals for controlling ON/OFF of the transistors Q 1 , Q 2 , and Q 3 respectively.
  • N-type transistors are taken as an example for illustration only.
  • the N-type transistors Q 1 , Q 2 , and Q 3 are respectively turned on by V gs1 , V gs2 , and V gs3 in a high level, and turned off by V gs1 , V gs2 , and V gs3 in a low level.
  • P-type transistors although not described herein, it will be understood that the difference between description on P-type transistors and N-type transistors only consists in that the P-type transistors Q 1 , Q 2 , and Q 3 are respectively turned on by V gs1 , V gs2 , and V gs3 in a low level, and turned off by V gs1 , V gs2 , and V gs3 in a high level.
  • V ds_s represents a signal for characterizing V ds .
  • V ds_th a preset reference threshold
  • the transistor Q 2 is triggered by V ds_s to be turned on by V gs2 .
  • the magnitude of V gs1 depends on that of V RS1 .
  • V RS1 may pull the magnitude of V gs1 down.
  • V gs1 is decreased, the flow capability of the transistor Q 1 is reduced, which in turn causes the current I 1 to be reduced.
  • a smaller V gs1 (e.g. in a middle level) may enable the transistor Q 1 to operate in the linear mode, wherein the current I 1 is proportional to V Rs1 . In the linear mode, the transistor Q 1 charges the capacitor C holdup .
  • the fourth circuit 3014 may include a capacitor C o , which has a first electrode connected to the first node (V in+ ) and a second electrode connected to the second port of the second circuit 3012, i.e., the second terminal of the second transistor Q 2 .
  • the first circuit 3011, the second circuit 3012, the third circuit 3013, and the fourth circuit 3014 are embodied to respectively include particular element (s) , the present disclosure does not limited to these. It should be understood that any circuit structures with any possible combinations of elements that may achieve the functions of the first circuit 3011, the second circuit 3012, the third circuit 3013, and the fourth circuit 3014 fall into the scope of the present disclosure, either.
  • the first transistor Q 1 when the power supply system 30 starts to supply power to the communication device (not shown) , and the input voltage V in is normal, the first transistor Q 1 is configured to be turned on by the control signal (V gs1 ) in e.g. a middle level (which causes the transistor Q 1 to operate in the linear mode) at the control terminal of the first transistor Q 1 to charge the capacitor C holdup , like the process during t 1 ⁇ t 2 as shown in FIG. 2.
  • the second transistor Q 2 is configured to be turned on by the control signal (V gs2 ) in a high level at the control terminal of the second transistor Q 2 to supply power to the load circuit 31.
  • V gs2 the control signal
  • the transistor Q 2 when the transistor Q 2 is turned on at t 2 , the current flows through the transistor Q 2 (as seen from FIG. 2, I 2 that is shown in a black line has a peak during t 2 ⁇ t 3 ) but almost does not flow through the transistor Q 1 any more (as seen from FIG.
  • I 1 that is shown in a gray line is decreased to nearly zero during t 2 ⁇ t 3 ) , since the resistor R s1 that is in series with the transistor Q 1 has a resistance much larger than that of the resistor R s2 .
  • the power supply of the power supply system 30 is normal with the assistance of the power supply assisting sub-system 301, and thus a signal indicating power good is sent out. Accordingly, after a shorter delay at t 4 , the load circuit 31 of the communication device works normally under the good power supply of the power supply system 30 with the assistance of the power supply assisting sub-system 301.
  • the power supply assisting sub-system 301 may alleviate or even eliminate the negative effects of a larger surge current caused by overshoot of the input voltage V in or the input current I in , or the power supply assisting sub-system 301 working in a hiccup mode (i.e., repetitive ON and OFF due to the abnormal load) , on the power supply assisting sub-system 301, especially on the second transistor Q 2 .
  • FIG. 4 schematically shows an exemplary operating timing sequence diagram of the power supply assisting sub-system 301 included in the power supply system 30 of FIG. 3, in a case that OC occurs first and in turn leads to OV, before which the power supply of the power supply system 30 is normal, as described previously with reference to FIG. 2.
  • the third transistor Q 3 is turned off to suppress the current I 2 flowing through the second transistor Q 2 , if the current I 2 flowing through the second transistor Q 2 is not smaller than a preset OC threshold, i.e., an OCP threshold for surge current; and is kept off for a first predetermined period T 1 since the current I 2 flowing through the second transistor Q 2 is smaller than the preset OC threshold, wherein the first predetermined period T 1 comprises a hiccup period of OCP; and is turned on when the first predetermined period T 1 is expired;
  • a preset OC threshold i.e., an OCP threshold for surge current
  • the first transistor Q 1 and the second transistor Q 2 are turned off respectively, and a signal for sensing the voltage difference (denoted as V ds ) between the input voltage V in and a voltage (denoted as V holdup ) across the capacitor C holdup is disabled; and if the voltage across the capacitor C o is not larger than a second preset OV threshold, the first transistor Q 1 and the second transistor Q 2 are turned on respectively, wherein the second preset OV threshold is smaller than the first OV threshold;
  • the signal sensing the voltage difference V ds is enabled when a second predetermined period T 2 since the second transistor is controlled to be turned on is expired, wherein the second predetermined period T 2 is a period for the capacitor C holdup being fully charged by the current I 2 flowing through the second transistor Q 2 .
  • the third transistor Q 3 is configured to be turned off by the control signal V gs3 in e.g. a low level at the control terminal of the third transistor Q 3 .
  • the first transistor Q 1 and the second transistor Q 2 are configured to be turned off respectively by respective control signals V gs1 and V gs2 e.g. in a low level at the control terminals of the first transistor Q 1 and the second transistor Q 2 .
  • the signal V ds_s for sensing the voltage difference V ds is disabled, so that the second transistor Q 2 can be turned on rapidly without being subject to the control of V ds ⁇ V ds_th .
  • the first transistor Q 1 and the second transistor Q 2 are configured to be turned on respectively by the respective control signals V gs1 and V gs2 e.g. in a high level at the control terminals of the first transistor Q 1 and the second transistor Q 2 , wherein the second preset OV threshold OV th2 is smaller than the first OV threshold OV th1 .
  • V holdup V o > V in
  • V o V holdup is continuously decreased.
  • the third transistor Q 3 is turned on by the control signal V gs3 in e.g. a high level at the control terminal of the third transistor Q3, when a first predetermined period T 1 since the current I 2 flowing through the second transistor Q 2 is smaller than the preset OC threshold OC th (i.e., the third transistor Q3 is turned off) is expired.
  • T 1 t 05 -t 01 .
  • T 1 may be predetermined to include a hiccup period of OCP.
  • V holdup V o > V in
  • V o V holdup is continuously decreased until V in at t 06 .
  • the signal V ds_s is enabled when a second predetermined period T 2 since the second transistor Q 2 is controlled to be turned on (i.e., the second transistor Q2 is turned on at t 03 ) is expired.
  • T 2 is a period for the capacitor C holdup being fully charged by the current I 2 flowing through the second transistor Q 2 .
  • FIG. 5 schematically shows an exemplary operating timing sequence diagram of the power supply assisting sub-system 301 included in the power supply system 30 of FIG. 3, in a case that OV occurs which necessarily leads to OC, before which the power supply of the power supply system 30 is normal, as described previously with reference to FIG. 2.
  • a voltage V o across the capacitor C o is not smaller than a first preset OV threshold, the first transistor Q 1 , the second transistor Q 2 and the third transistor Q 3 are turned off respectively, and a signal for sensing the voltage difference (denoted as V ds ) between the input voltage V in and a voltage (denoted as V holdup ) across the capacitor C holdup is disabled; and if the voltage V o across the capacitor C o is not larger than a second preset OV threshold, the first transistor Q 1 , the second transistor Q 2 and the third transistor Q 3 are turned on respectively, wherein the second preset OV threshold is smaller than the first OV threshold;
  • the signal sensing the voltage difference V ds is enabled when a second predetermined period T 2 since the second transistor is controlled to be turned on is expired, wherein the second predetermined period T 2 is a period for the capacitor C holdup being fully charged by the current I 2 flowing through the second transistor Q 2 .
  • the first transistor Q 1 , the second transistor Q 2 , and the third transistor Q 3 are configured to be turned off respectively by respective control signals V gs1 , V gs2 and V gs3 e.g. in a low level at the control terminals of the first transistor Q 1 , the second transistor Q 2 , and the third transistor Q 3 .
  • the signal V ds_s for sensing the voltage difference V ds is disabled, so that the second transistor Q 2 can be turned on rapidly without being subject to the control of V ds ⁇ V ds_th .
  • V holdup V o > V in
  • V o V holdup is continuously decreased until a second preset OV threshold OV th2 at t 002 .
  • the first transistor Q 1 , the second transistor Q 2 and the third transistor Q 3 are configured to be turned on respectively by the respective control signals V gs1 , V gs2 and V gs3 e.g. in a high level at the control terminals of the first transistor Q 1 , the second transistor Q 2 and the third transistor Q 3 , wherein the second preset OV threshold OV th2 is smaller than the first OV threshold OV th1 .
  • V o V holdup is continuously decreased until V in at t 003 .
  • the signal V ds_s is enabled when a second predetermined period T 2 since the second transistor Q 2 is controlled to be turned on (i.e., the second transistor Q2 is turned on at t 002 ) is expired.
  • T 2 is a period for the capacitor C holdup being fully charged by the current I 2 flowing through the second transistor Q 2 .
  • the power supply assisting sub-system 301 included in the power supply system 30 of FIG. 3 may well suppress the surge current especially flowing through the second transistor Q 2 .
  • FIG. 6 schematically shows an exemplary flowchart of a method of operating the power supply system 30 according to an embodiment of the present disclosure.
  • the structure of the power supply system 30 has been described in detail and the exemplary operating timing sequence diagrams of the power supply assisting sub-system 301 included in the power supply system 30 have been described in conjunction with FIGS. 3 ⁇ 5, and detailed description thereof may be referred to, which thus will not be described here for simplicity.
  • step S601 the power supply system 30 starts to supply power to the communication device, and the input voltage V in is normal.
  • the first transistor Q 1 is configured to be turned on by the control signal V gs1 in e.g. a middle level (which causes the transistor Q 1 to operate in the Iinear mode) at the control terminal of the first transistor Q 1 to charge the capacitor C holdup , like the process during t 1 ⁇ t 2 as shown in FIG. 2.
  • step S605 the voltage difference V ds between the input voltage V in and a voltage, denoted as V holdup , across the capacitor C holdup is smaller than the preset voltage threshold V ds_th , the second transistor Q 2 is configured to be turned on by the control signal (V gs2 ) in a high level at the control terminal of the second transistor Q 2 to supply power to the load circuit 31, like the process during t 2 ⁇ t 3 as shown in FIG. 2.
  • step S607 the power supply of the power supply system 30 is normal with the assistance of the power supply assisting sub-system 301, and thus a signal indicating power good is sent out, like t 3 as shown in FIG. 2. Accordingly, after a shorter delay at t 4 as shown in FIG. 2, the load circuit 31 of the communication device works normally under the good power supply of the power supply system 30 with the assistance of the power supply assisting sub-system 301.
  • step S609 It is thus determined in step S609 whether the voltage V o across the capacitor C o is not smaller than the first preset OV threshold OV th1 , i.e., OV occurs.
  • step S611 in which the first transistor Q 1 , the second transistor Q 2 , and the third transistor Q 3 are configured to be turned off at t 001 respectively by respective control signals V gs1 , V gs2 and V gs3 e.g. in a low level at the control terminals of the first transistor Q 1 , the second transistor Q 2 , and the third transistor Q 3 ; and the signal V ds_s for sensing the voltage difference V ds is disabled, so that the second transistor Q 2 can be turned on rapidly without being subject to the control of V ds ⁇ V ds_th .
  • step S613 It is determined in step S613 whether the voltage V o across the capacitor C o is not larger than the second preset OV threshold OV th2 .
  • step S615 in which the first transistor Q 1 , the second transistor Q 2 and the third transistor Q 3 are configured to be turned on at t 002 respectively by the respective control signals V gs1 , V gs2 and V gs3 e.g. in a high level at the control terminals of the first transistor Q 1 , the second transistor Q 2 and the third transistor Q 3 , wherein the second preset OV threshold OV th2 is smaller than the first OV threshold OV th1 .
  • step S607 in which the load circuit 31 is resumed to work normally under the good power supply of the power supply system 30 with the assistance of the power supply assisting sub-system 301.
  • T 2 is a period for the capacitor C holdup being fully charged by the current I 2 flowing through the second transistor Q 2 .
  • step S633 it is determined in step S633 whether the timer for T 2 is expired.
  • V ds V in -V holdup
  • step S617 It is thus determined in step S617 whether the current I 2 is not smaller than the preset OC threshold OC th , i.e., OC occurs.
  • step S619 in which the third transistor Q 3 is configured to be turned off at t 01 by the control signal V gs3 in e.g. a low level at the control terminal of the third transistor Q 3 .
  • the current I 2 flowing through the second transistor Q 2 is thus suppressed, since only the capacitor C o is charged by the current I 2 flowing through the second transistor Q 2 , and the capacitor C holdup is linear charged by the current I 1 flowing through the first transistor Q1 in the linear mode which is controlled by the control signal V gs1 in e.g. a middle level.
  • T 1 may be predetermined to include a hiccup period of OCP.
  • step S621 it is determined in step S621 whether the timer for T 1 is expired.
  • step S607 in which the load circuit 31 is resumed to work normally under the good power supply of the power supply system 30 with the assistance of the power supply assisting sub-system 301.
  • the current I 2 flowing through the second transistor Q 2 is thus suppressed, since only the capacitor C o is charged by the current I 2 flowing through the second transistor Q 2 , and the capacitor C holdup is linear charged by the current I 1 flowing through the first transistor Q1 in the linear mode which is controlled by the control signal V gs1 in e.g. a middle level.
  • the voltage V o across the capacitor C o is continuously increased until a first preset OV threshold, denoted as OV th1 , (i.e., a first OVP threshold) at t 02 . That is, the OC leads to OV.
  • OV th1 i.e., a first OVP threshold
  • step S625 It is thus further determined in step S625 whether the voltage V o across the capacitor C o is not smaller than the first preset OV threshold OV th1 , i.e., OV due to OC occurs.
  • step S627 in which the first transistor Q 1 and the second transistor Q 2 are configured to be turned off at t 02 respectively by respective control signals V gs1 and V gs2 e.g. in a low level at the control terminals of the first transistor Q 1 and the second transistor Q 2 .
  • the signal V ds_s for sensing the voltage difference V ds is disabled, so that the second transistor Q 2 can be turned on rapidly without being subject to the control of V ds ⁇ V ds_th .
  • step S629 It is thus determined in step S629 whether the voltage V o across the capacitor C o is not larger than the second preset OV threshold OV th2 .
  • step S631 in which the first transistor Q 1 and the second transistor Q 2 are configured to be turned on at t 03 respectively by the respective control signals V gs1 and V gs2 e.g. in a high level at the control terminals of the first transistor Q 1 and the second transistor Q 2 , wherein the second preset OV threshold OV th2 is smaller than the first OV threshold OV th1 .
  • step S607 in which the load circuit 31 is resumed to work normally under the good power supply of the power supply system 30 with the assistance of the power supply assisting sub-system 301.
  • T 2 is a period for the capacitor C holdup being fully charged by the current I 2 flowing through the second transistor Q 2 .
  • step S633 it is determined in step S633 whether the timer for T 2 is expired.
  • V ds V in -V holdup
  • OVP and OCP functions can be added more reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Electronic Switches (AREA)

Abstract

The present disclosure provides a power supply system, including: a power source connected between a first node and a second node for applying an input voltage; a first circuit, connected between the first node and a second circuit; and configured to suppress oscillation caused by load variation of a load circuit that is connected between the first node and the second circuit, and to supply power to the load circuit when the power source is temporarily off; the second circuit, having a first port connected to the first circuit, a second port connected to the load circuit, and a third port connected to the second node; and configured to charge the first circuit and supply power to the load circuit; and a third circuit, connected between the first circuit and the load circuit; and configured to suppress a current flowing into the second circuit. The present disclosure also provides a method of operating such a power supply system.

Description

POWER SUPPLY SYSTEM AND METHOD OF OPERATING THE SAME TECHNICAL FIELD
The present disclosure generally relates to the technical field of electronic technology, and in particular, to a power supply system and a method of operating the power supply system.
BACKGROUND
This section is intended to provide a background to the various embodiments of the technology described in this disclosure. The description in this section may include concepts that could be pursued, but are not necessarily ones that have been previously conceived or pursued. Therefore, unless otherwise indicated herein, what is described in this section is not prior art to the description and/or claims of this disclosure and is not admitted to be prior art by the mere inclusion in this section.
Some of communication devices, such as Radio Units (RUs) , work with a load circuit with dynamic load, which may cause oscillation of the input voltage and the input current from a power supply system. Thus, a capacitor with a larger value capacitance (e.g., 8mF) , also called a holdup capacitor, is necessary to be introduced in the power supply system to suppress the oscillation caused by the dynamic load of the load circuit and supply power to the load circuit when the power source (e.g. denoted as 100, as shown in FIG. 1) is temporarily off. On the other hand, however, the holdup capacitor may cause a surge current in the power supply system.
Generally, a power supply assisting sub-system as shown in FIG. 1, e.g., a hot swap circuit, is used in the power supply system to suppress the input surge current when the communication device is powered on.
As shown in FIG. 1, a power supply system 10 includes a power  source 100, a power supply assisting sub-system 101, and a control logic 102, and is configured to supply power to a load circuit 11 of a communication device (not shown) .
The power supply assisting sub-system 101 includes a holdup capacitor (denoted as C holdup) , two Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs, denoted as Q 1 and Q 2 respectively) , two resistors (denoted as R s1 and R s2 respectively) , and a filtering capacitor (denoted as C o) . In the power supply assisting sub-system 101, the holdup capacitor C holdup and the filtering capacitor C o are respectively connected in parallel with the load circuit 11, which is connected between Node 1 (V in+) and the transistor Q 1/Q 2; the transistor Q 1 is connected to the holdup capacitor C holdup and to Node 2 (V in-) via R s1, respectively; and the transistor Q 2 is connected to the holdup capacitor C holdup and to Node 2 (V in-) via R s2, respectively. Here, the voltage difference between Node 1 and Node 2 that is applied by the power source 100 is the input voltage, denoted as V in.
The holdup capacitor C holdup is used for suppressing the oscillation caused by the dynamic load of the load circuit 11 and supplying power to the load circuit 11 when the power source V in is temporarily off, and has a capacitance much larger than that of the filtering capacitor C o, which is used for filtering interference to the load circuit 11.
The transistor Q 1 may be a big Safe Operating Area (SOA) FET that may be used for linear charging the holdup capacitor C holdup to suppress the surge current while the communication device, such as an RU, is powered on. The transistor Q 2 may be a low Reducing Drain-Source On-resistance Rdson FET, and may be used for assisting to supply power to the load circuit 11 when the power supply system 10 is in a normal operation. The resistor R s1 that is in series with the transistor Q 1 has a resistance much larger than that of the resistor R s2 that is in series with the transistor Q 2.
The control logic 102 is schematically shown to illustrate a control principle of controlling the power supply assisting sub-system 101, which may be implemented in any of appropriate ways. Here, V gs1 and V gs2 are control signals for controlling ON/OFF of the transistors Q 1 and Q 2, respectively. Herein, N-type transistors are taken as an example for illustration only. Thus, the N-type transistors Q 1 and Q 2 are respectively turned on by V gs1 and V gs2 in a high level, and turned off by V gs1 and V gs2 in a low level. For P-type transistors, although not described herein, it will be understood that the difference between description on P-type transistors and N-type transistors only consists in that the P-type transistors Q 1 and Q 2 are respectively turned on by V gs1 and V gs2 in a low level, and turned off by V gs1 and V gs2 in a high level.
Here, V RS1 (=I 1*R S1) , V RS2 (=I 2*R S2) , and V ds_s represent feedback signals from the power supply assisting sub-system 101, wherein V RS1 (=I 1*R S1) is associated with the current I 1 flowing through the transistor Q 1, V RS2 (=I 2*R S2) is associated with the current I 2 flowing through the transistor Q 2; and V ds_s represents a signal for sensing a voltage difference, denoted as V ds, between the input voltage V in and the voltage, denoted as V holdup, across the holdup capacitor (C holdup) , i.e., V ds = V in-V holdup. Thus, V ds_s represents a signal for characterizing V ds. When V ds is smaller than a preset reference threshold (V ds_th) , the transistor Q 2 is triggered by V ds_s to be turned on by V gs2. The magnitude of V gs1 depends on that of V RS1. When V RS1 is larger, V RS1 pulls the magnitude of V gs1 down. Once V gs1 is decreased, the flow capability of the transistor Q 1 is reduced, which in turn causes the current I 1 to be reduced. A smaller V gs1 (e.g. in a middle level) may enable the transistor Q 1 to operate in the linear mode, wherein the current I 1 is proportional to V Rs1. In the linear mode, the transistor Q 1 charges the holdup capacitor (C holdup) .
Hereinafter, the operating principle of the power supply assisting sub-system 101 will be described in conjunction with FIG. 2. FIG. 2 schematically shows an operating timing sequence diagram of the power  supply assisting sub-system 101.
t 0: The power supply system 10 starts to supply power to the communication device (not shown) .
t 1~t 2: The transistor Q 1 is turned on by V gs1 in e.g. a middle level (which causes the transistor Q 1 to operate in the linear mode) , and the capacitor C holdup is linear charged through the transistor Q 1, wherein the charging current is limited to the current I 1 (a gray line as shown in FIG. 2) by comparing V RS1 (=I 1*R S1) to a preset reference of control.
t 2: When V ds (= V in -V holdup) is smaller than V ds_th (a preset reference threshold) , the transistor Q 2 is triggered to be turned on by V gs2.
t 2~t 3: When the transistor Q 2 is turned on at t 2, the current flows through the transistor Q 2 (as seen from FIG. 2, I 2 that is shown in a black line has a peak during t 2~t 3) but almost does not flow through the transistor Q 1 any more (as seen from FIG. 2, I 1 that is shown in a gray line is decreased to nearly zero during t 2~t 3) , since the resistor R s1 that is in series with the transistor Q 1 has a resistance much larger than that of the resistor R s2. The capacitor C holdup is quickly charged to V in by the current I 2, which is small since V ds (= V in -V holdup) is small at t 2. Meanwhile, V RS1 (=I 1*R S1) is reduced and may not pull V gs1 down any more. Consequently, V gs1 boosts up to its original high level at t 3, and thus the transistor Q 1 enters a switching mode at t 3.
t 3~t 4: The power supply of the power supply system 10 is normal at t 3 with the assistance of the power supply assisting sub-system 101, and thus a signal indicating power good is sent out. Accordingly, after a shorter delay at t 4, the load circuit 11 of the communication device works normally under the good power supply of the power supply system 10 with the assistance of the power supply assisting sub-system 101.
However, the power supply assisting sub-system 101 as shown in FIG. 1 has some drawbacks:
1. When there is overshoot of the input voltage V in or the input current I in, or the power supply assisting sub-system works in a hiccup mode, i.e., repetitive ON and OFF due to the abnormal load, there will be a large input surge current.
2. During the normal operation, the transistor Q 2 can’t be turned off, since the limited current I 1 of the transistor Q 1 is too small to support the load current (i.e., the communication device cannot work) after the transistor Q 2 is off. Since the transistor Q 2 is always on during the normal operation of the communication device, the surge current, if appears due to some reasons as mentioned above, would almost flow through the transistor Q 2 only. However, the transistor Q 2 can’t suppress the surge current, since it does not have such a current limitation function as the transistor Q 1 has.
3. Due to the above reasons, very big SOA FETs must be used in the power supply assisting sub-system of the power supply system to sustain the surge current, which increases cost.
For example, if lighting attacks an RU’s input port, the input residual voltage could be two times larger than normal operating voltage, it also induces the input surge current as large as hundreds Ampere if there are holdup capacitors with large capacitance. The components used must have higher ratio values to sustain the high voltage and the high current, which increases cost and reduces performance and reliability.
Therefore, a power supply system having a power supply assisting sub-system that can suppress the surge current due to the overshoot of voltage or current is desired.
SUMMARY
In order to solve or at least alleviate the problems as discussed above, the present disclosure provides technical solutions for suppressing the surge current due to the overshoot of voltage or current as follows.
According to a first aspect of the present disclosure, a power supply system is provided. The power supply system includes: a power source connected between a first node and a second node for applying an input voltage; a first circuit, connected between the first node and a second circuit; and configured to suppress oscillation caused by load variation of a load circuit that is connected between the first node and the second circuit, and to supply power to the load circuit when the power source is temporarily off; the second circuit, having a first port connected to the first circuit, a second port connected to the load circuit, and a third port connected to the second node; and configured to charge the first circuit and supply power to the load circuit; and a third circuit, connected between the first circuit and the load circuit; and configured to suppress a current flowing into the second circuit.
In an exemplary embodiment, the power supply system further includes: a fourth circuit, connected between the first node and the load circuit, and configured to filter interference to the load circuit.
In an exemplary embodiment, the first circuit includes a first capacitor, having a first electrode connected to the first node and a second electrode connected to the first port of the second circuit.
In an exemplary embodiment, the filtering circuit includes a second capacitor, having a first electrode connected to the first node and a second electrode connected to the second port of the second circuit.
In an exemplary embodiment, the second circuit includes: a first  transistor, having a control terminal, a first terminal connected to the second node via a first resistor, and a second terminal, as the first port, connected to the second electrode of the first capacitor; a second transistor, having a control terminal, a first terminal connected to the second node via a second resistor, and a second terminal, as the second port, connected to the load circuit; the first resistor connected between the second node and the first terminal of the first transistor; and the second resistor connected between the second node and the first terminal of the second transistor, wherein the first resistor has a resistance larger than that of the second resistor.
In an exemplary embodiment, the third circuit includes: a third transistor, having a control terminal, a first terminal connected to the second terminal of the second transistor, and a second terminal connected to the second electrode of the first capacitor.
In an exemplary embodiment, the control terminals of the first transistor, the second transistor, and the third transistor respectively correspond to gate electrodes of the first transistor, the second transistor, and the third transistor; the first terminal of each of the first transistor, the second transistor, and the third transistor corresponds to one of a source electrode and a drain electrode of the corresponding one of the first transistor, the second transistor, and the third transistor; and the second terminal of each of the charging circuit, the second transistor, and the third transistor corresponds to the other of the source electrode and the drain electrode of the corresponding one of the first transistor, the second transistor, and the third transistor.
In an exemplary embodiment, the first transistor, the second transistor, and the third transistor are N-type transistors, each configured to be turned on by a high level control signal at the control terminal, and turned off by a low level control signal at the corresponding control terminal.
In an exemplary embodiment, the first transistor, the second transistor, and the third transistor are P-type transistors, each configured to be turned on by a low level control signal at the control terminal, and turned off by a high level control signal at the corresponding control terminal.
In an exemplary embodiment, the first transistor is configured to be turned on by a control signal at the control terminal of the first transistor to charge the first capacitor, when the input voltage is normal; and the second transistor is configured to be turned on by a control signal at the control terminal of the second transistor to supply power to the load circuit, if a voltage difference between the input voltage and a voltage across the first capacitor is smaller than a preset voltage threshold.
In an exemplary embodiment, the third transistor is configured to be turned off by a control signal at the control terminal of the third transistor to suppress a current flowing through the second transistor, if the current flowing through the second transistor is not smaller than a preset Over-Current (OC) threshold.
In an exemplary embodiment, the third transistor is kept off for a first predetermined period since the current flowing through the second transistor is smaller than the preset OC threshold; and is turned on by the control signal at the control terminal of the third transistor when the first predetermined period is expired.
In an exemplary embodiment, the first predetermined period includes a hiccup period of Over-Current Protection (OCP) .
In an exemplary embodiment, if a voltage across the second capacitor is not smaller than a first preset Over-Voltage (OV) threshold, the first transistor and the second transistor are configured to be turned off respectively by respective control signals at the control terminals of the first transistor and  the second transistor, and a signal for sensing the voltage difference is disabled.
In an exemplary embodiment, if the voltage across the second capacitor is not larger than a second preset OV threshold, the first transistor and the second transistor are configured to be turned on respectively by the respective control signals at the control terminals of the first transistor and the second transistor, wherein the second preset OV threshold is smaller than the first OV threshold.
In an exemplary embodiment, if a voltage across the second capacitor is not smaller than a first preset OV threshold, the first transistor, the second transistor and the third transistor are configured to be turned off respectively by respective control signals at the control terminals of the first transistor, the second transistor and the third transistor, and a signal for sensing the voltage difference is disabled.
In an exemplary embodiment, if the voltage across the second capacitor is not larger than a second preset OV threshold, the first transistor, the second transistor, and the third transistor are configured to be turned on respectively by the respective control signals at the control terminals of the first transistor, the second transistor and the third transistor, wherein the second preset OV threshold is smaller than the first OV threshold.
In an exemplary embodiment, the signal is enabled when a second predetermined period since the second transistor is controlled to be turned on is expired.
In an exemplary embodiment, the second predetermined period is a period for the first capacitor being fully charged by the current flowing through the second transistor.
According to a second aspect of the present disclosure, a method of operating the power supply system according to the first aspect is provided. The method includes: turning on the first transistor by a control signal at the control terminal of the first transistor to charge the first capacitor, when the input voltage is normal; and turning on the second transistor by a control signal at the control terminal of the second transistor to supply power to the load circuit, if a voltage difference between the input voltage and a voltage across the first capacitor is smaller than a preset voltage threshold.
In an exemplary embodiment, the method further includes: turning off the third transistor by a control signal at the control terminal of the third transistor to suppress a current flowing through the second transistor, if the current flowing through the second transistor is not smaller than a preset OC threshold.
In an exemplary embodiment, the method further includes: keeping the third transistor off for a first predetermined period since the current flowing through the second transistor is smaller than the preset OC threshold; and turning on the third transistor by the control signal at the control terminal of the third transistor when the first predetermined period is expired.
In an exemplary embodiment, the first predetermined period includes a hiccup period of OCP.
In an exemplary embodiment, the method further includes: if a voltage across the second capacitor is not smaller than a first preset OV threshold, turning off the first transistor and the second transistor respectively by respective control signals at the control terminals of the first transistor and the second transistor, and disabling a signal for sensing the voltage difference.
In an exemplary embodiment, the method further includes: if the voltage across the second capacitor is not larger than a second preset OV  threshold, turning on the first transistor and the second transistor respectively by the respective control signals at the control terminals of the first transistor and the second transistor, wherein the second preset OV threshold is smaller than the first OV threshold.
In an exemplary embodiment, the method further includes: if a voltage across the second capacitor is not smaller than a first preset OV threshold, turning off the first transistor, the second transistor and the third transistor respectively by respective control signals at the control terminals of the first transistor, the second transistor and the third transistor, and disabling a signal for sensing the voltage difference.
In an exemplary embodiment, the method further includes: if the voltage across the second capacitor is not larger than a second preset OV threshold, turning on the first transistor, the second transistor and the third transistor respectively by the respective control signals at the control terminals of the first transistor, the second transistor and the third transistor, wherein the second preset OV threshold is smaller than the first OV threshold.
In an exemplary embodiment, the method further includes: enabling the signal when a second predetermined period since the second transistor is controlled to be turned on is expired.
In an exemplary embodiment, the second predetermined period is a period for the first capacitor being fully charged by the current flowing through the second transistor.
The technical solutions of the present disclosure may achieve at least the following beneficial technical effects:
the surge current during both powering on and normal operation period can be suppressed;
smaller SOA FETs can be used to reduce cost; and
Over-Voltage Protection (OVP) and OCP functions can be added more reliably.
BRIEF DESCRIPTION OF THE DRAWINGS
The objects, advantages and characteristics of the present disclosure will be more apparent, according to descriptions of preferred embodiments in connection with the drawings, in which:
FIG. 1 schematically shows a structure of a power supply system in the prior art;
FIG. 2 schematically shows an exemplary operating timing sequence diagram of a power supply assisting sub-system included in the power supply system of FIG. 1;
FIG. 3 schematically shows a structure of a power supply system according to an embodiment of the present disclosure;
FIG. 4 schematically shows an exemplary operating timing sequence diagram of a power supply assisting sub-system included in the power supply system of FIG. 3, in a case that OC occurs first and in turn leads to OV;
FIG. 5 schematically shows another exemplary operating timing sequence diagram of a power supply assisting sub-system included in the power supply system of FIG. 3, in a case that OV occurs;
FIG. 6 schematically shows an exemplary flowchart of a method of operating the power supply system of FIG. 3 according to an embodiment of the present disclosure.
It should be noted that throughout the drawings, same or similar  reference numbers are used for indicating same or similar elements; various parts in the drawings are not drawn to scale, but only for an illustrative purpose, and thus should not be understood as any limitations and constraints on the scope of the present disclosure.
DETAILED DESCRIPTION
Hereinafter, the present disclosure is described with reference to embodiments shown in the attached drawings. However, it is to be understood that those descriptions are just provided for illustrative purpose, rather than limiting the present disclosure. Further, in the following, descriptions of known structures and techniques are omitted so as not to unnecessarily obscure the concept of the present disclosure.
Those skilled in the art will appreciate that the term “exemplary” is used herein to mean “illustrative, ” or “serving as an example, ” and is not intended to imply that a particular embodiment is preferred over another or that a particular feature is essential. Likewise, the terms “first” and “second, ” and similar terms, are used simply to distinguish one particular instance of an item or feature from another, and do not indicate a particular order or arrangement, unless the context clearly indicates otherwise. Further, the term “step, ” as used herein, is meant to be synonymous with “operation” or “action. ” Any description herein of a sequence of steps does not imply that these operations must be carried out in a particular order, or even that these operations are carried out in any order at all, unless the context or the details of the described operation clearly indicates otherwise.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be liming of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be  further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. It will be also understood that the terms “connect (s) , ” “connecting” , “connected” , etc. when used herein, just means that there is an electrical or communicative connection between two elements and they can be connected either directly or indirectly, unless explicitly stated to the contrary.
Conditional language used herein, such as "can, " "might, " "may, " "e.g., " and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. Also, the term "or" is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term "or" means one, some, or all of the elements in the list. Further, the term "each, " as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term "each" is applied.
The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” Other definitions, explicit and implicit, may be included below. In addition, language such as the phrase "at least one of X, Y and Z, " unless specifically stated otherwise, is to be understood with the context as  used in general to convey that an item, term, etc. may be either X, Y, or Z, or a combination thereof.
Although multiple embodiments of the present disclosure will be described in the following detailed description in conjunction with the accompanying drawings, it should be understood that the present disclosure is not limited to the described embodiments, but instead is also capable of numerous rearrangements, modifications, and substitutions without departing from the present disclosure that as will be set forth and defined within the claims.
Further, it should be noted that although the following description of some embodiments of the present disclosure is given in the context of power supply system of a communication device, the present disclosure is not limited thereto.
The basic principle of the present disclosure consists in that a current suppression circuit is introduced in the power supply assisting sub-system of the power supply system for supplying power to the communication device, so that the surge current can be suppressed by enabling/disabling the current suppression circuit, without impacting the normal working of the communication device.
Hereinafter, a structure of a power supply system according to an embodiment of the present disclosure will be described in detail with reference to FIG. 3.
FIG. 3 schematically shows the structure of the power supply system 30 according to the embodiment of the present disclosure.
As shown in FIG. 3, the power supply system 30 includes a power source 300, a power supply assisting sub-system 301, and a control logic 302.
In particular, the power source 300 is connected between Node 1 (V in+) and Node 2 (V in-) for applying an input voltage V in. For example, Node 2 may be 0V or grounded.
The power supply assisting sub-system 301 is connected between Node 1 (V in+) and Node 2 (V in-) , and is configured to assist to supply power to a load circuit 31 of a communication device (not shown) under control of the control logic 302.
The control logic 302 is schematically shown to illustrate a control principle of controlling the power supply assisting sub-system 301, which may be implemented in any of appropriate ways.
In an exemplary embodiment, the power supply assisting sub-system 301 may include:
first circuit 3011, connected between Node 1 (V in+) and a second circuit 3012, wherein the first circuit 3011 is configured to suppress oscillation caused by load variation of a load circuit 31 that is connected between the Node 1 (V in+) and the second circuit 3012, and to supply power to the load circuit 31 when the power source 300 is temporarily off;
the second circuit 3012, having a first port connected to the first circuit 3011, a second port connected to the load circuit 31, and a third port connected to Node 2 (V in-) , wherein the second circuit 3012 is configured to charge the first circuit 3011 and supply power to the load circuit 31; and
third circuit 3013, connected between the first circuit 3011 (i.e., the first port of the second circuit 3012) and the load circuit 31 (i.e., the second port of the second circuit 3012) , wherein the third circuit 3013 is configured to suppress a current flowing into the second circuit 3012.
Alternatively, the power supply assisting sub-system 301 may further  include: a fourth circuit 3014 connected between Node 1 (V in+) and the load circuit 31, wherein the fourth circuit 3014 is configured to filter interference to the load circuit 31.
In an exemplary embodiment, the first circuit 3011 may include a capacitor C holdup, which has a first electrode connected to Node 1 (V in+) and a second electrode connected to the second circuit 3012.
In an exemplary embodiment, the second circuit 3012 may include: a first transistor Q 1, a second transistor Q 2, a first resistor R s1, and a second resistor R s2.
In particular, the first transistor Q 1 has a control terminal, a first terminal connected to Node 2 (V in-) via the first resistor R s1, and a second terminal (corresponding to the first port of the second circuit 3012) connected to the second electrode of the capacitor C holdup; the second transistor Q 2 has a control terminal, a first terminal connected to Node 2 (V in-) via the second resistor R s2, and a second terminal (corresponding to the second port of the second circuit 3012) connected to the load circuit 31; the first resistor (R s1) is connected between Node 2 (V in-) and the first terminal of the first transistor Q 1; and the second resistor R s2 is connected between Node 2 (V in-) and the first terminal of the second transistor Q 2. Here, the first resistor R s1 has a resistance much larger than that of the second resistor R s2.
In an exemplary embodiment, the third circuit 3013 may include a third transistor Q 3, which has a control terminal, a first terminal connected to the second terminal of the second transistor Q 2, and a second terminal connected to the second electrode of the capacitor C holdup.
It may be understood that the control terminals of the first transistor Q 1, the second transistor Q 2, and the third transistor Q 3 respectively correspond to gate electrodes of the first transistor Q 1, the second transistor Q 2, and the third  transistor Q 3; the first terminal of each of the first transistor Q 1, the second transistor Q 2, and the third transistor Q 3 corresponds to one of a source electrode and a drain electrode of the corresponding one of the first transistor Q 1, the second transistor Q 2, and the third transistor Q 3; and the second terminal of each of the charging circuit Q 1, the second transistor Q 2, and the third transistor Q 3 corresponds to the other of the source electrode and the drain electrode of the corresponding one of the first transistor Q 1, the second transistor Q 2, and the third transistor Q 3.
The control logic 302 is schematically shown to illustrate a control principle of controlling the power supply assisting sub-system 301, which may be implemented in any of appropriate ways. In the control logic 302, V gs1, V gs2, and V gs3 are control signals for controlling ON/OFF of the transistors Q 1, Q 2, and Q 3 respectively. Herein, N-type transistors are taken as an example for illustration only. Thus, the N-type transistors Q 1, Q 2, and Q 3 are respectively turned on by V gs1, V gs2, and V gs3 in a high level, and turned off by V gs1, V gs2, and V gs3 in a low level. For P-type transistors, although not described herein, it will be understood that the difference between description on P-type transistors and N-type transistors only consists in that the P-type transistors Q 1, Q 2, and Q 3 are respectively turned on by V gs1, V gs2, and V gs3 in a low level, and turned off by V gs1, V gs2, and V gs3 in a high level.
In addition, V RS1 (=I 1*R S1) , V RS2 (=I 2*R S2) , and V ds_s in the control logic 302 represent feedback signals from the power supply assisting sub-system 301, wherein V RS1 (=I 1*R S1) is associated with the current I 1 flowing through the transistor Q 1, V RS2 (=I 2*R S2) is associated with the current I 2flowing through the transistor Q 2; and V ds_s represents a signal for sensing a voltage difference, denoted as V ds, between the input voltage V in and the voltage, denoted as V holdup, across the capacitor C holdup, i.e., V ds = V in-V holdup. Thus, V ds_s represents a signal for characterizing V ds. When V ds is smaller than a preset reference threshold (V ds_th) , the transistor Q 2 is triggered by V ds_s to be turned on by V gs2.  The magnitude of V gs1 depends on that of V RS1. When V RS1 is larger, V RS1 may pull the magnitude of V gs1 down. Once V gs1 is decreased, the flow capability of the transistor Q 1 is reduced, which in turn causes the current I 1 to be reduced. A smaller V gs1 (e.g. in a middle level) may enable the transistor Q 1 to operate in the linear mode, wherein the current I 1 is proportional to V Rs1. In the linear mode, the transistor Q 1 charges the capacitor C holdup.
In an exemplary embodiment, the fourth circuit 3014 may include a capacitor C o, which has a first electrode connected to the first node (V in+) and a second electrode connected to the second port of the second circuit 3012, i.e., the second terminal of the second transistor Q 2.
Although in the above exemplary embodiments, the first circuit 3011, the second circuit 3012, the third circuit 3013, and the fourth circuit 3014 are embodied to respectively include particular element (s) , the present disclosure does not limited to these. It should be understood that any circuit structures with any possible combinations of elements that may achieve the functions of the first circuit 3011, the second circuit 3012, the third circuit 3013, and the fourth circuit 3014 fall into the scope of the present disclosure, either.
The description below will be made by taking the above particular implementations of the first circuit 3011, the second circuit 3012, the third circuit 3013, and the fourth circuit 3014 as an example, which is for illustration only without any limitations, as understood by the skilled in the art.
In an exemplary embodiment, when the power supply system 30 starts to supply power to the communication device (not shown) , and the input voltage V in is normal, the first transistor Q 1 is configured to be turned on by the control signal (V gs1) in e.g. a middle level (which causes the transistor Q 1 to operate in the linear mode) at the control terminal of the first transistor Q 1 to charge the capacitor C holdup, like the process during t 1~t 2 as shown in FIG. 2.
If the voltage difference V ds between the input voltage V in and a voltage, denoted as V holdup, across the capacitor C holdup is smaller than the preset voltage threshold V ds_th, the second transistor Q 2 is configured to be turned on by the control signal (V gs2) in a high level at the control terminal of the second transistor Q 2 to supply power to the load circuit 31. Like the process during t 2~t 4as shown in FIG. 2, when the transistor Q 2 is turned on at t 2, the current flows through the transistor Q 2 (as seen from FIG. 2, I 2 that is shown in a black line has a peak during t 2~t 3) but almost does not flow through the transistor Q 1 any more (as seen from FIG. 2, I 1 that is shown in a gray line is decreased to nearly zero during t 2~t 3) , since the resistor R s1 that is in series with the transistor Q 1 has a resistance much larger than that of the resistor R s2. The capacitor C holdup is quickly charged to V in by the current I 2, which is small since V ds (= V in -V holdup) is small at t 2. Meanwhile, V RS1 (=I 1*R S1) is reduced and may not pull V gs1 down any more. Consequently, V gs1 boosts up to its original high level at t 3, and thus the transistor Q 1 enters a switching mode at t 3. At t 3, the power supply of the power supply system 30 is normal with the assistance of the power supply assisting sub-system 301, and thus a signal indicating power good is sent out. Accordingly, after a shorter delay at t 4, the load circuit 31 of the communication device works normally under the good power supply of the power supply system 30 with the assistance of the power supply assisting sub-system 301.
Hereinafter, it will be described in conjunction with FIG. 4 and FIG. 5 respectively how the power supply assisting sub-system 301 according to the above embodiments of the present disclosure may alleviate or even eliminate the negative effects of a larger surge current caused by overshoot of the input voltage V in or the input current I in, or the power supply assisting sub-system 301 working in a hiccup mode (i.e., repetitive ON and OFF due to the abnormal load) , on the power supply assisting sub-system 301, especially on the second transistor Q 2.
FIG. 4 schematically shows an exemplary operating timing sequence diagram of the power supply assisting sub-system 301 included in the power supply system 30 of FIG. 3, in a case that OC occurs first and in turn leads to OV, before which the power supply of the power supply system 30 is normal, as described previously with reference to FIG. 2.
In this case, a technical solution provided by the embodiment of the present disclosure mainly consists in that
the third transistor Q 3 is turned off to suppress the current I 2 flowing through the second transistor Q 2, if the current I 2 flowing through the second transistor Q 2 is not smaller than a preset OC threshold, i.e., an OCP threshold for surge current; and is kept off for a first predetermined period T 1 since the current I 2 flowing through the second transistor Q 2 is smaller than the preset OC threshold, wherein the first predetermined period T 1 comprises a hiccup period of OCP; and is turned on when the first predetermined period T 1 is expired;
alternatively, if a voltage across the capacitor C o is not smaller than a first preset OV threshold, the first transistor Q 1 and the second transistor Q 2 are turned off respectively, and a signal for sensing the voltage difference (denoted as V ds) between the input voltage V in and a voltage (denoted as V holdup) across the capacitor C holdup is disabled; and if the voltage across the capacitor C o is not larger than a second preset OV threshold, the first transistor Q 1 and the second transistor Q 2 are turned on respectively, wherein the second preset OV threshold is smaller than the first OV threshold;
wherein the signal sensing the voltage difference V ds is enabled when a second predetermined period T 2 since the second transistor is controlled to be turned on is expired, wherein the second predetermined period T 2 is a period for the capacitor C holdup being fully charged by the current I 2 flowing  through the second transistor Q 2.
With reference to FIG. 4, the exemplary operating timing sequence of the power supply assisting sub-system 301 according to the embodiment of the present disclosure is described below in detail.
t 00: Overshoot of V in or I in occurs, or the power supply assisting sub-system 301 works in the hiccup mode.
t 00~t 01: The current I 2 flowing through the second transistor Q 2 is rapidly increased until a preset OC threshold OC th at t 01. Meanwhile, the voltage, denoted as V o, across the capacitor C o and the voltage V holdup across the capacitor C holdup are increased together, wherein V o=V holdup.
t 01: When the current I 2 is not smaller than the preset OC threshold OC th, i.e., OC occurs, the third transistor Q 3 is configured to be turned off by the control signal V gs3 in e.g. a low level at the control terminal of the third transistor Q 3.
t 01~t 02: The current I 2 flowing through the second transistor Q 2 is suppressed, since only the capacitor C o is charged by the current I 2 flowing through the second transistor Q 2, and the capacitor C holdup is linear charged by the current I 1 flowing through the first transistor Q1 in the linear mode which is controlled by the control signal V gs1 in e.g. a middle level. As the capacitor C o is charged by the current I 2, the voltage V o across the capacitor C o is continuously increased until a first preset OV threshold, denoted as OV th1, (i.e., a first OVP threshold) at t 02. As the capacitor C holdup is linear charged by the current I 1 which is smaller than I 2, the voltage V holdup across the capacitor C holdup is continuously increased, but is slower than V o.
t 02: When the voltage V o across the capacitor C o is not smaller than the first preset OV threshold OV th1, i.e., OV due to OC occurs, the first  transistor Q 1 and the second transistor Q 2 are configured to be turned off respectively by respective control signals V gs1 and V gs2 e.g. in a low level at the control terminals of the first transistor Q 1 and the second transistor Q 2. At the same time, the signal V ds_s for sensing the voltage difference V ds is disabled, so that the second transistor Q 2 can be turned on rapidly without being subject to the control of V ds<V ds_th.
t 02~t 03: The voltage V o across the capacitor C o which is larger than the voltage V holdup across the capacitor C holdup is decreased until a second preset OV threshold, denoted OV th2, (i.e., a second OVP threshold) at t 03, since the capacitor C o supplies power (discharges) to the load circuit 31.
t 03: When the voltage V o across the capacitor C o is not larger than the second preset OV threshold OV th2, the first transistor Q 1 and the second transistor Q 2 are configured to be turned on respectively by the respective control signals V gs1 and V gs2 e.g. in a high level at the control terminals of the first transistor Q 1 and the second transistor Q 2, wherein the second preset OV threshold OV th2 is smaller than the first OV threshold OV th1.
t 03~t 04: Since V in has resumed to be normal, and the voltage V o across the capacitor C o is still larger than the voltage V holdup across the capacitor C holdup, which is also larger than V in, the capacitor C o continuously supplies power (discharges) to the load circuit 31, until V o is reduced to be equal to V holdup at t 04.
t 04~t 05: Since V holdup = V o > V in, both C holdup and C o supply power (discharge) to the load circuit 31, wherein C holdup provides a current (I 3) through the body diode of the third transistor Q 3 during Q 3 is off (Here, I 3 is negative since V holdup = V o > V in) . Thus, V o= V holdup is continuously decreased.
t 05: the third transistor Q 3 is turned on by the control signal V gs3 in e.g. a high level at the control terminal of the third transistor Q3, when a first  predetermined period T 1 since the current I 2 flowing through the second transistor Q 2 is smaller than the preset OC threshold OC th (i.e., the third transistor Q3 is turned off) is expired. Here, T 1 = t 05 -t 01. Preferably, T 1 may be predetermined to include a hiccup period of OCP.
t 05~t 06: Since V holdup = V o > V in, both C holdup and C o supply power (discharge) to the load circuit 31, wherein C holdup provides the current I 3 through the third transistor Q 3 during Q 3 is on (I 3 is kept negative since V holdup =V o > V in) . Thus, V o= V holdup is continuously decreased until V in at t 06.
t 06: V o= V holdup=V in. Thus, the load circuit 31 is resumed to be power supplied by the current I 2 flowing through the second transistor Q 2, and I 3 becomes 0.
Here, the signal V ds_s is enabled when a second predetermined period T 2 since the second transistor Q 2 is controlled to be turned on (i.e., the second transistor Q2 is turned on at t 03) is expired. Preferably, T 2 is a period for the capacitor C holdup being fully charged by the current I 2 flowing through the second transistor Q 2.
FIG. 5 schematically shows an exemplary operating timing sequence diagram of the power supply assisting sub-system 301 included in the power supply system 30 of FIG. 3, in a case that OV occurs which necessarily leads to OC, before which the power supply of the power supply system 30 is normal, as described previously with reference to FIG. 2.
In this case, a technical solution provided by the embodiment of the present disclosure mainly consists in that
if a voltage V o across the capacitor C o is not smaller than a first preset OV threshold, the first transistor Q 1, the second transistor Q 2 and the third transistor Q 3 are turned off respectively, and a signal for sensing the voltage  difference (denoted as V ds) between the input voltage V in and a voltage (denoted as V holdup) across the capacitor C holdup is disabled; and if the voltage V o across the capacitor C o is not larger than a second preset OV threshold, the first transistor Q 1, the second transistor Q 2 and the third transistor Q 3 are turned on respectively, wherein the second preset OV threshold is smaller than the first OV threshold;
wherein the signal sensing the voltage difference V ds is enabled when a second predetermined period T 2 since the second transistor is controlled to be turned on is expired, wherein the second predetermined period T 2 is a period for the capacitor C holdup being fully charged by the current I 2 flowing through the second transistor Q 2.
With reference to FIG. 5, the exemplary operating timing sequence of the power supply assisting sub-system 301 according to the embodiment of the present disclosure is described below in detail.
t 000: Overshoot of V in or I in occurs, or the power supply assisting sub-system 301 works in the hiccup mode.
t 000~t 001: The voltage V o across the capacitor C o and the voltage V holdup across the capacitor C holdup are increased until a first preset OV threshold OV th1 at t 001, wherein V o=V holdup. Meanwhile, the current I 2 flowing through the second transistor Q 2 is increased rapidly.
t 001: When the voltage V o across the capacitor C o is not smaller than the first preset OV threshold OV th1, i.e., OV occurs, the first transistor Q 1, the second transistor Q 2, and the third transistor Q 3 are configured to be turned off respectively by respective control signals V gs1, V gs2 and V gs3 e.g. in a low level at the control terminals of the first transistor Q 1, the second transistor Q 2, and the third transistor Q 3. At the same time, the signal V ds_s for sensing the voltage difference V ds is disabled, so that the second transistor Q 2 can be turned on  rapidly without being subject to the control of V ds<V ds_th.
t 001~t 002: Since V holdup = V o > V in, both C holdup and C o supply power (discharge) to the load circuit 31, wherein C holdup provides a current (I 3) through the body diode of the third transistor Q 3 during Q 3 is off (Here, I 3 is negative since V holdup = V o > V in) . Thus, V o= V holdup is continuously decreased until a second preset OV threshold OV th2 at t 002.
t 002: When the voltage V o across the capacitor C o is not larger than the second preset OV threshold OV th2, the first transistor Q 1, the second transistor Q 2 and the third transistor Q 3 are configured to be turned on respectively by the respective control signals V gs1, V gs2 and V gs3 e.g. in a high level at the control terminals of the first transistor Q 1, the second transistor Q 2 and the third transistor Q 3, wherein the second preset OV threshold OV th2 is smaller than the first OV threshold OV th1.
t 002~t 003: Since V in has resumed to be normal, and V holdup = V o > V in, both C holdup and C o supply power (discharge) to the load circuit 31, wherein C holdup provides the current I 3 through the third transistor Q 3 during Q 3 is on (I 3 is kept negative since V holdup = V o > V in) . Thus, V o= V holdup is continuously decreased until V in at t 003.
t 003: V o= V holdup =V in. Thus, the load circuit 31 is resumed to be power supplied by the current I 2 flowing through the second transistor Q 2, and I 3 becomes 0.
Here, the signal V ds_s is enabled when a second predetermined period T 2 since the second transistor Q 2 is controlled to be turned on (i.e., the second transistor Q2 is turned on at t 002) is expired. Preferably, T 2 is a period for the capacitor C holdup being fully charged by the current I 2 flowing through the second transistor Q 2.
In connection with FIGS. 4 and 5, the power supply assisting sub-system 301 included in the power supply system 30 of FIG. 3 may well suppress the surge current especially flowing through the second transistor Q 2.
Hereinafter, a method of operating the power supply system 30 according to an embodiment of the present disclosure will be described in detail in conjunction with FIG. 6, which schematically shows an exemplary flowchart of a method of operating the power supply system 30 according to an embodiment of the present disclosure.
The structure of the power supply system 30 has been described in detail and the exemplary operating timing sequence diagrams of the power supply assisting sub-system 301 included in the power supply system 30 have been described in conjunction with FIGS. 3~5, and detailed description thereof may be referred to, which thus will not be described here for simplicity.
As shown in FIG. 6, in step S601, the power supply system 30 starts to supply power to the communication device, and the input voltage V in is normal.
In step S603, the first transistor Q 1 is configured to be turned on by the control signal V gs1 in e.g. a middle level (which causes the transistor Q 1 to operate in the Iinear mode) at the control terminal of the first transistor Q 1 to charge the capacitor C holdup, like the process during t 1~t 2 as shown in FIG. 2.
In step S605, the voltage difference V ds between the input voltage V in and a voltage, denoted as V holdup, across the capacitor C holdup is smaller than the preset voltage threshold V ds_th, the second transistor Q 2 is configured to be turned on by the control signal (V gs2) in a high level at the control terminal of the second transistor Q 2 to supply power to the load circuit 31, like the process during t 2~t 3 as shown in FIG. 2.
In step S607, the power supply of the power supply system 30 is normal with the assistance of the power supply assisting sub-system 301, and thus a signal indicating power good is sent out, like t 3 as shown in FIG. 2. Accordingly, after a shorter delay at t 4 as shown in FIG. 2, the load circuit 31 of the communication device works normally under the good power supply of the power supply system 30 with the assistance of the power supply assisting sub-system 301.
In connection with FIG. 5, once OV occurs due to overshoot of V in or I in occurs or the power supply assisting sub-system 301 working in the hiccup mode, the voltage V o across the capacitor C o and the voltage V holdup across the capacitor C holdup are increased.
It is thus determined in step S609 whether the voltage V o across the capacitor C o is not smaller than the first preset OV threshold OV th1, i.e., OV occurs.
If so ( ‘Y’ from S609) , the method proceeds to step S611, in which the first transistor Q 1, the second transistor Q 2, and the third transistor Q 3 are configured to be turned off at t 001 respectively by respective control signals V gs1, V gs2 and V gs3 e.g. in a low level at the control terminals of the first transistor Q 1, the second transistor Q 2, and the third transistor Q 3; and the signal V ds_s for sensing the voltage difference V ds is disabled, so that the second transistor Q 2 can be turned on rapidly without being subject to the control of V ds<V ds_th.
It is determined in step S613 whether the voltage V o across the capacitor C o is not larger than the second preset OV threshold OV th2.
If so ( ‘Y’ from S613) , the method proceeds to step S615, in which the first transistor Q 1, the second transistor Q 2 and the third transistor Q 3 are configured to be turned on at t 002 respectively by the respective control signals V gs1, V gs2 and V gs3 e.g. in a high level at the control terminals of the first  transistor Q 1, the second transistor Q 2 and the third transistor Q 3, wherein the second preset OV threshold OV th2 is smaller than the first OV threshold OV th1.
Then, the method goes back to step S607, in which the load circuit 31 is resumed to work normally under the good power supply of the power supply system 30 with the assistance of the power supply assisting sub-system 301.
Preferably, when the second transistor Q 2 is controlled to be turned on (i.e., the second transistor Q2 is turned on at t 002) , a timer for a predetermined period T 2 is started. Preferably, T 2 is a period for the capacitor C holdup being fully charged by the current I 2 flowing through the second transistor Q 2.
Then, it is determined in step S633 whether the timer for T 2 is expired.
If so ( ‘Y’ from S633) , the signal V ds_s is enabled so that On/OFF of the second transistor Q 2 is triggered by the voltage difference V ds (= V in-V holdup) . As previously described, if V ds< V ds_th, the second transistor Q 2 is controlled to be turned on, and vice versa.
In connection with FIG. 4, once OC occurs due to overshoot of V in or I in occurs or the power supply assisting sub-system 301 working in the hiccup mode, the current I 2 flowing through the second transistor Q 2 is rapidly increased; meanwhile, the voltage V o across the capacitor C o and the voltage V holdup across the capacitor C holdup are increased together, wherein V o=V holdup.
It is thus determined in step S617 whether the current I 2 is not smaller than the preset OC threshold OC th, i.e., OC occurs.
If so ( ‘Y’ from S617) , the method proceeds to step S619, in which the third transistor Q 3 is configured to be turned off at t 01 by the control signal V gs3 in e.g. a low level at the control terminal of the third transistor Q 3.
The current I 2 flowing through the second transistor Q 2 is thus suppressed, since only the capacitor C o is charged by the current I 2 flowing through the second transistor Q 2, and the capacitor C holdup is linear charged by the current I 1 flowing through the first transistor Q1 in the linear mode which is controlled by the control signal V gs1 in e.g. a middle level.
Preferably, if the current I 2 is smaller than the preset OC threshold OC th ( ‘N’ from S617) , a timer for a predetermined period T 1 is started. Preferably, T 1 may be predetermined to include a hiccup period of OCP.
Then, it is determined in step S621 whether the timer for T 1 is expired.
If so ( ‘Y’ from S621) , the third transistor Q 3 is controlled to be turned on in step S623.
In some case, after the third transistor Q 3 is controlled to be turned on, the method goes back to step S607, in which the load circuit 31 is resumed to work normally under the good power supply of the power supply system 30 with the assistance of the power supply assisting sub-system 301.
On the other hand, as previously described, the current I 2 flowing through the second transistor Q 2 is thus suppressed, since only the capacitor C o is charged by the current I 2 flowing through the second transistor Q 2, and the capacitor C holdup is linear charged by the current I 1 flowing through the first transistor Q1 in the linear mode which is controlled by the control signal V gs1 in e.g. a middle level. As the capacitor C o is charged by the current I 2, the voltage V o across the capacitor C o is continuously increased until a first preset OV threshold, denoted as OV th1, (i.e., a first OVP threshold) at t 02. That is, the OC leads to OV. Here, as the capacitor C holdup is linear charged by the current I 1 which is smaller than I 2, the voltage V holdup across the capacitor C holdup is continuously increased, but is slower than V o.
It is thus further determined in step S625 whether the voltage V o across the capacitor C o is not smaller than the first preset OV threshold OV th1, i.e., OV due to OC occurs.
If so ( ‘Y’ from S625) , the method proceeds to step S627, in which the first transistor Q 1 and the second transistor Q 2 are configured to be turned off at t 02 respectively by respective control signals V gs1 and V gs2 e.g. in a low level at the control terminals of the first transistor Q 1 and the second transistor Q 2. At the same time, the signal V ds_s for sensing the voltage difference V ds is disabled, so that the second transistor Q 2 can be turned on rapidly without being subject to the control of V ds<V ds_th.
Then, the voltage V o across the capacitor C o which is larger than the voltage V holdup across the capacitor C holdup is decreased, since the capacitor C o supplies power (discharges) to the load circuit 31.
It is thus determined in step S629 whether the voltage V o across the capacitor C o is not larger than the second preset OV threshold OV th2.
If so ( ‘Y’ from S629) , the method proceeds to step S631, in which the first transistor Q 1 and the second transistor Q 2 are configured to be turned on at t 03 respectively by the respective control signals V gs1 and V gs2 e.g. in a high level at the control terminals of the first transistor Q 1 and the second transistor Q 2, wherein the second preset OV threshold OV th2 is smaller than the first OV threshold OV th1.
Then, the method goes back to step S607, in which the load circuit 31 is resumed to work normally under the good power supply of the power supply system 30 with the assistance of the power supply assisting sub-system 301.
Preferably, when the second transistor Q 2 is controlled to be turned on (i.e., the second transistor Q 2 is turned on at t 03) , a timer for a  predetermined period T 2 is started. Preferably, T 2 is a period for the capacitor C holdup being fully charged by the current I 2 flowing through the second transistor Q 2.
Then, it is determined in step S633 whether the timer for T 2 is expired.
If so ( ‘Y’ from S633) , the signal V ds_s is enabled so that On/OFF of the second transistor Q 2 is triggered by the voltage difference V ds (= V in-V holdup) . As previously described, if V ds< V ds_th, the second transistor Q 2 is controlled to be turned on, and vice versa.
The above technical solutions of the embodiments according to the present disclosure may achieve at least the following beneficial technical effects:
the surge current during both powering on and normal operation period can be suppressed;
smaller SOA FETs can be used to reduce cost; and
OVP and OCP functions can be added more reliably.
The present disclosure has been described with reference to embodiments and drawings. It should be understood that various modifications, alternations and additions can be made by those skilled in the art without departing from the spirits and scope of the disclosure. Therefore, the scope of the present disclosure is not limited to the above particular embodiments but only defined by the claims as attached and equivalents thereof.

Claims (29)

  1. A power supply system (30) , comprising:
    a power source (300) connected between a first node (V in+) and a second node (V in-) for applying an input voltage (V in) ;
    a first circuit (3011) , connected between the first node (V in+) and a second circuit (3012) ; and configured to suppress oscillation caused by load variation of a load circuit (31) that is connected between the first node (V in+) and the second circuit (3012) , and to supply power to the load circuit (31) when the power source (300) is temporarily off;
    the second circuit (3012) , having a first port connected to the first circuit (3011) , a second port connected to the load circuit (31) , and a third port connected to the second node (V in-) ; and configured to charge the first circuit (3011) and supply power to the load circuit (31) ; and
    a third circuit (3013) , connected between the first circuit (3011) and the load circuit (31) ; and configured to suppress a current flowing into the second circuit (3012) .
  2. The power supply system (30) according to claim 1, further comprising:
    a fourth circuit (3014) , connected between the first node (V in+) and the load circuit (31) , and configured to filter interference to the load circuit (31) .
  3. The power supply system (30) according to claim 1 or 2, wherein
    the first circuit (3011) comprises a first capacitor (C holdup) , having a first electrode connected to the first node (V in+) and a second electrode connected to the first port of the second circuit (3012) .
  4. The power supply system according to claim 3, wherein
    the filtering circuit (3011) comprises a second capacitor (C o) , having a  first electrode connected to the first node (V in+) and a second electrode connected to the second port of the second circuit (3012) .
  5. The power supply system (30) according to any of claims 1 to 4, wherein the second circuit (3012) comprises:
    a first transistor (Q 1) , having a control terminal, a first terminal connected to the second node (V in-) via a first resistor (R s1) , and a second terminal, as the first port, connected to the second electrode of the first capacitor (C holdup) ;
    a second transistor (Q 2) , having a control terminal, a first terminal connected to the second node (V in-) via a second resistor (R s2) , and a second terminal, as the second port, connected to the load circuit (31) ;
    the first resistor (R s1) connected between the second node (V in-) and the first terminal of the first transistor (Q 1) ; and
    the second resistor (R s2) connected between the second node (V in-) and the first terminal of the second transistor (Q 2) ,
    wherein the first resistor (R s1) has a resistance larger than that of the second resistor (R s2) .
  6. The power supply system (30) according to claim 5, wherein
    the third circuit (3013) comprises a third transistor (Q 3) , having a control terminal, a first terminal connected to the second terminal of the second transistor (Q 2) , and a second terminal connected to the second electrode of the first capacitor (C holdup) .
  7. The power supply system (30) according to claim 6, wherein
    the control terminals of the first transistor (Q 1) , the second transistor (Q 2) , and the third transistor (Q 3) respectively correspond to gate electrodes of the first transistor (Q 1) , the second transistor (Q 2) , and the third transistor (Q 3) ;
    the first terminal of each of the first transistor (Q 1) , the second  transistor (Q 2) , and the third transistor (Q 3) corresponds to one of a source electrode and a drain electrode of the corresponding one of the first transistor (Q 1) , the second transistor (Q 2) , and the third transistor (Q 3) ; and
    the second terminal of each of the charging circuit (Q 1) , the second transistor (Q 2) , and the third transistor (Q 3) corresponds to the other of the source electrode and the drain electrode of the corresponding one of the first transistor (Q 1) , the second transistor (Q 2) , and the third transistor (Q 3) .
  8. The power supply system (30) according to claim 6 or 7, wherein
    the first transistor (Q 1) , the second transistor (Q 2) , and the third transistor (Q 3) are N-type transistors, each configured to be turned on by a high level control signal at the control terminal, and turned off by a low level control signal at the corresponding control terminal.
  9. The power supply system (30) according to claim 6 or 7, wherein
    the first transistor (Q 1) , the second transistor (Q 2) , and the third transistor (Q 3) are P-type transistors, each configured to be turned on by a low level control signal at the control terminal, and turned off by a high level control signal at the corresponding control terminal.
  10. The power supply system (30) according to any of claims 5 to 9, wherein
    the first transistor (Q 1) is configured to be turned on by a control signal at the control terminal of the first transistor (Q 1) to charge the first capacitor (C holdup) , when the input voltage (V in) is normal; and
    the second transistor (Q 2) is configured to be turned on by a control signal at the control terminal of the second transistor (Q 2) to supply power to the load circuit (31) , if a voltage difference (V ds) between the input voltage (V in) and a voltage (V holdup) across the first capacitor (C holdup) is smaller than a preset voltage threshold (V ds_th) .
  11. The power supply system (30) according to any of claims 6 to 10, wherein
    the third transistor (Q 3) is configured to be turned off by a control signal at the control terminal of the third transistor (Q 3) to suppress a current (I 2) flowing through the second transistor (Q 2) , if the current (I 2) flowing through the second transistor (Q 2) is not smaller than a preset Over-Current ‘OC’ threshold (OC th) .
  12. The power supply system (30) according to claim 11, wherein
    the third transistor (Q 3) is kept off for a first predetermined period (T 1) since the current (I 2) flowing through the second transistor (Q 2) is smaller than the preset OC threshold (OC th) ; and is turned on by the control signal at the control terminal of the third transistor (Q3) when the first predetermined period (T 1) is expired.
  13. The power supply system (30) according to claim 12, wherein
    the first predetermined period (T 1) comprises a hiccup period of Over-Current Protection ‘OCP’ .
  14. The power supply system (30) according to any of claims 11 to 13, wherein
    if a voltage (V o) across the second capacitor (C o) is not smaller than a first preset Over-Voltage ‘OV’ threshold (OV th1) ,
    the first transistor (Q 1) and the second transistor (Q 2) are configured to be turned off respectively by respective control signals at the control terminals of the first transistor (Q 1) and the second transistor (Q 2) , and
    a signal (V ds_s) for sensing the voltage difference (V ds) is disabled.
  15. The power supply system (30) according to claim 14, wherein
    if the voltage (V o) across the second capacitor (C o) is not larger than a second preset OV threshold (OV th2) , the first transistor (Q 1) and the second transistor (Q 2) are configured to be turned on respectively by the respective control signals at the control terminals of the first transistor (Q 1) and the second transistor (Q 2) , wherein the second preset OV threshold (OV th2) is smaller than the first OV threshold (OV th1) .
  16. The power supply system (30) according to any of claims 6 to 10, wherein if a voltage (V o) across the second capacitor (C o) is not smaller than a first preset Over-Voltage ‘OV’ threshold (OV th1) ,
    the first transistor (Q 1) , the second transistor (Q 2) and the third transistor (Q 3) are configured to be turned off respectively by respective control signals at the control terminals of the first transistor (Q 1) , the second transistor (Q 2) and the third transistor (Q 3) , and
    a signal (V ds_s) for sensing the voltage difference (V ds) is disabled.
  17. The power supply system (30) according to claim 16, wherein
    if the voltage (V o) across the second capacitor (C o) is not larger than a second preset OV threshold (OV th2) , the first transistor (Q 1) , the second transistor (Q 2) , and the third transistor (Q 3) are configured to be turned on respectively by the respective control signals at the control terminals of the first transistor (Q 1) , the second transistor (Q 2) and the third transistor (Q 3) , wherein the second preset OV threshold (OV th2) is smaller than the first OV threshold (OV th1) .
  18. The power supply system (30) according to claim 15 or 17, wherein
    the signal (V ds_s) is enabled when a second predetermined period (T 2) since the second transistor (Q 2) is controlled to be turned on is expired.
  19. The power supply system (30) according to claim 18, wherein
    the second predetermined period (T 2) is a period for the first capacitor (C holdup) being fully charged by the current (I 2) flowing through the second transistor (Q 2) .
  20. A method (600) of operating the power supply system (30) according to any of claims 1 to 9, comprising:
    turning (S603) on the first transistor (Q 1) by a control signal at the control terminal of the first transistor (Q 1) to charge the first capacitor (C holdup) , when the input voltage (V in) is normal (S601) ; and
    turning (S605) on the second transistor (Q 2) by a control signal at the control terminal of the second transistor (Q 2) to supply power to the load circuit (31) , if a voltage difference (V ds) between the input voltage (V in) and a voltage (Vholdup) across the first capacitor (C holdup) is smaller than a preset voltage threshold (V ds_th) .
  21. The method (600) according to claim 20, further comprising:
    turning (S619) off the third transistor (Q 3) by a control signal at the control terminal of the third transistor (Q 3) to suppress a current (I 2) flowing through the second transistor (Q 2) , if the current (I 2) flowing through the second transistor (Q 2) is not smaller than a preset Over-Current ‘OC’ threshold (OC th) ( ‘Y’ from S617) .
  22. The method (600) according to claim 21, further comprising:
    keeping (S619) the third transistor (Q 3) off for a first predetermined period (T 1) ( ‘N’ from S621) since the current (I 2) flowing through the second transistor (Q 2) is smaller than the preset OC threshold (OC th) ( ‘N’ from S617) ; and
    turning (S623) on the third transistor (Q 3) by the control signal at the control terminal of the third transistor (Q 3) when the first predetermined period  (T 1) is expired ( ‘Y’ from S621) .
  23. The method (600) according to claim 22, wherein
    the first predetermined period (T 1) comprises a hiccup period of Over-Current Protection ‘OCP’ .
  24. The method (600) according to any of claims 21 to 23, further comprising:
    if a voltage (V o) across the second capacitor (C o) is not smaller than a first preset Over-Voltage ‘OV’ threshold (OV th1) ( ‘Y’ from S625) ,
    turning (S627) off the first transistor (Q 1) and the second transistor (Q 2) respectively by respective control signals at the control terminals of the first transistor (Q 1) and the second transistor (Q 2) , and
    disabling (S627) a signal (V ds_s) for sensing the voltage difference (V ds) .
  25. The method (600) according to claim 24, further comprising:
    if the voltage (V o) across the second capacitor (C o) is not larger than a second preset OV threshold (OV th2) ( ‘Y’ from S629) ,
    turning (S631) on the first transistor (Q 1) and the second transistor (Q 2) respectively by the respective control signals at the control terminals of the first transistor (Q 1) and the second transistor (Q 2) , wherein the second preset OV threshold (OV th2) is smaller than the first OV threshold (OV th1) .
  26. The method (600) according to claim 20, further comprising:
    if a voltage (V o) across the second capacitor (C o) is not smaller than a first preset Over-Voltage ‘OV’ threshold (OV th1) ( ‘Y’ from S609) ,
    turning (S611) off the first transistor (Q 1) , the second transistor (Q 2) and the third transistor (Q 3) respectively by respective control signals at the control terminals of the first transistor (Q 1) , the second transistor (Q 2) and  the third transistor (Q 3) , and
    disabling (S611) a signal (V ds_s) for sensing the voltage difference (V ds) .
  27. The method (600) according to claim 26, further comprising:
    if the voltage (V o) across the second capacitor (C o) is not larger than a second preset OV threshold (OV th2) ( ‘Y’ from S613) ,
    turning (S615) on the first transistor (Q 1) , the second transistor (Q 2) and the third transistor (Q 3) respectively by the respective control signals at the control terminals of the first transistor (Q 1) , the second transistor (Q 2) and the third transistor (Q 3) , wherein the second preset OV threshold (OV th2) is smaller than the first OV threshold (OV th1) .
  28. The method (600) according to claim 25 or 27, further comprising:
    enabling (S635) the signal (V ds_s) when a second predetermined period (T 2) ( ‘Y’ from S633) since the second transistor (Q 2) is controlled to be turned on is expired.
  29. The method (600) according to claim 28, wherein
    the second predetermined period (T 2) is a period for the first capacitor (C holdup) is fully charged by the current (I 2) flowing through the second transistor (Q 2) .
PCT/CN2020/088216 2020-04-30 2020-04-30 Power supply system and method of operating the same WO2021217569A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20933125.5A EP4143958A4 (en) 2020-04-30 2020-04-30 Power supply system and method of operating the same
US17/919,620 US20230146270A1 (en) 2020-04-30 2020-04-30 Power supply system and method of operating the same
PCT/CN2020/088216 WO2021217569A1 (en) 2020-04-30 2020-04-30 Power supply system and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088216 WO2021217569A1 (en) 2020-04-30 2020-04-30 Power supply system and method of operating the same

Publications (1)

Publication Number Publication Date
WO2021217569A1 true WO2021217569A1 (en) 2021-11-04

Family

ID=78331670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088216 WO2021217569A1 (en) 2020-04-30 2020-04-30 Power supply system and method of operating the same

Country Status (3)

Country Link
US (1) US20230146270A1 (en)
EP (1) EP4143958A4 (en)
WO (1) WO2021217569A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179240A (en) * 1995-11-27 1998-04-15 菲利浦电子有限公司 Power-supply circuit
US20020175638A1 (en) * 2001-05-18 2002-11-28 General Electric Company Self-oscillating synchronous boost converter
US20080007976A1 (en) * 2006-06-16 2008-01-10 Rohm Co., Ltd. Power supply device and electric appliance provided therewith
CN201022180Y (en) * 2006-11-28 2008-02-13 尼克森微电子股份有限公司 First side feedback controlled exchange power supplier
US20140002145A1 (en) * 2012-06-27 2014-01-02 Infineon Technologies Austria Ag Driving circuit for a transistor
CN206894497U (en) * 2017-04-05 2018-01-16 合肥云杉光电科技有限公司 A kind of main control chip circuit of PFC Switching Power Supplies
WO2019134670A1 (en) * 2018-01-05 2019-07-11 Huawei Technologies Co., Ltd. Multi-level boost converter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016100891A1 (en) * 2014-12-19 2016-06-23 Black & Decker Inc. Power tool with electric motor and auxiliary switch path
US9337744B1 (en) * 2015-04-30 2016-05-10 Ixys Corporation Efficient inrush current control in power factor corrected AC-to-DC converter
JP6776046B2 (en) * 2016-07-29 2020-10-28 株式会社マキタ Electric work machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179240A (en) * 1995-11-27 1998-04-15 菲利浦电子有限公司 Power-supply circuit
US20020175638A1 (en) * 2001-05-18 2002-11-28 General Electric Company Self-oscillating synchronous boost converter
US20080007976A1 (en) * 2006-06-16 2008-01-10 Rohm Co., Ltd. Power supply device and electric appliance provided therewith
CN201022180Y (en) * 2006-11-28 2008-02-13 尼克森微电子股份有限公司 First side feedback controlled exchange power supplier
US20140002145A1 (en) * 2012-06-27 2014-01-02 Infineon Technologies Austria Ag Driving circuit for a transistor
CN206894497U (en) * 2017-04-05 2018-01-16 合肥云杉光电科技有限公司 A kind of main control chip circuit of PFC Switching Power Supplies
WO2019134670A1 (en) * 2018-01-05 2019-07-11 Huawei Technologies Co., Ltd. Multi-level boost converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4143958A4 *

Also Published As

Publication number Publication date
EP4143958A4 (en) 2024-03-06
US20230146270A1 (en) 2023-05-11
EP4143958A1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
KR101508391B1 (en) Voltage regulator
US4420700A (en) Semiconductor current regulator and switch
US5698973A (en) Soft-start switch with voltage regulation and current limiting
CN110299835B (en) System and method for powering a switching converter
CN110365324B (en) Grid driving circuit of power tube
JP2014117044A (en) Over current detection device and semiconductor driving apparatus with the same
US20220001817A1 (en) Vehicle power supply device
US10056896B2 (en) Switching element driving device
JP2882366B2 (en) Inrush current limiting type charge pump booster circuit
KR20200123348A (en) Voltage generator
US20170017249A1 (en) Power-down discharger
WO2021217569A1 (en) Power supply system and method of operating the same
KR101869565B1 (en) Voltage regulator
US7952385B2 (en) Temperature variance nullification in an inrush current suppression circuit
US11411397B2 (en) Polarity reversal protection circuit
US20230155475A1 (en) Hybrid linear-boost dc-dc converter with continuous input current regulation
US11977404B2 (en) Fast startup power regulator circuitry
CN112714997A (en) Method and apparatus for improving switching conditions in closed loop systems
US11482933B2 (en) Switching power supply device
CN113381386B (en) Electrical switching system including constant power controller and related methods
JP3745723B2 (en) Method of operating inrush current prevention circuit and inrush current prevention circuit
EP3545597B1 (en) Circuit and method for managing an inrush current
EP0971280A1 (en) Voltage regulator and method of regulating voltage
US10826388B2 (en) Charge pump circuits
JP2003324941A (en) Power source apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020933125

Country of ref document: EP

Effective date: 20221130