WO2021207933A1 - A method to avoid irat ping-pong and save power - Google Patents

A method to avoid irat ping-pong and save power Download PDF

Info

Publication number
WO2021207933A1
WO2021207933A1 PCT/CN2020/084750 CN2020084750W WO2021207933A1 WO 2021207933 A1 WO2021207933 A1 WO 2021207933A1 CN 2020084750 W CN2020084750 W CN 2020084750W WO 2021207933 A1 WO2021207933 A1 WO 2021207933A1
Authority
WO
WIPO (PCT)
Prior art keywords
irat
wireless device
determining
cell
detected
Prior art date
Application number
PCT/CN2020/084750
Other languages
French (fr)
Inventor
Tairan MENG
Fojian ZHANG
Chengcheng HU
Deng QIANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/084750 priority Critical patent/WO2021207933A1/en
Publication of WO2021207933A1 publication Critical patent/WO2021207933A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • H04W36/008375Determination of triggering parameters for hand-off based on historical data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • H04W36/00224Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies between packet switched [PS] and circuit switched [CS] network technologies, e.g. circuit switched fallback [CSFB]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Second Generation (2G) technologies such as Global System for Mobile Communications (GSM) , General Packet Radio Service (GPRS) , etc.
  • Third Generation (3G) technologies such as Universal Mobile Telecommunications System (UMTS) , Wideband Code Division Multiple Access (W-CDMA) , GSM Enhanced Data rates for Global Evolution (EDGE) , etc.
  • Fourth Generation (4G) technologies such as Long Term Evolution (LTE) , LTE Advanced, Mobile Worldwide Interoperability for Microwave Access (WiMAX) , etc.
  • Fifth Generation (5G) technologies such as 5G new radio (NR) (5GNR) , etc., and other communication technologies allow wireless devices to communicate information in a variety of different types of networks.
  • NR new radio
  • a common multimode configuration is a wireless device configured to support at least both a 4G mode of operation and a 2G/3G mode of operation.
  • Such a multimode configuration in which a 4G mode and a 2G/3G mode are supported by the wireless device can support circuit switched fallback (CSFB) by the wireless device, as 2G/3G radio access networks (RANs) can support circuit switched (CS) calls, while 4G RANs can only support packet switched (PS) calls.
  • CSFB circuit switched fallback
  • the different available communication technologies are enabling many different network implementations.
  • One such network implementation is a radio access network (RAN) providing both 2G/3G support (e.g., via 2G/3G cells, such as UMTS Terrestrial RAN (UTRAN) base stations (nodeBs) ) and 4G support (e.g., via 4G cells, such as LTE Evolved nodeBs (eNodeBs or eNBs) ) .
  • RAN radio access network
  • 2G/3G support e.g., via 2G/3G cells, such as UMTS Terrestrial RAN (UTRAN) base stations (nodeBs)
  • 4G support e.g., via 4G cells, such as LTE Evolved nodeBs (eNodeBs or eNBs)
  • Various aspects include systems and methods for avoiding repeated inter-radio transfer (IRAT) thrashing or “ping-pong” operations by a processor of a wireless device configured to support a Second Generation (2G) /Third Generation (3G) mode and a Fourth Generation (4G) mode.
  • IRAT inter-radio transfer
  • Various aspects may include determining whether an IRAT counter exceeds a maximum counter value, in which the IRAT counter tracks a total number of counted IRAT to 4G IRAT events within a predefined time interval, determining whether a signal quality of a 4G signal is at or above a minimum 4G threshold in response to determining that the IRAT counter exceeds the maximum counter value, and setting the wireless device to a 4G only mode in response to determining that the signal quality of the 4G signal is at or above the minimum 4G threshold.
  • Various aspects may further include determining whether a signal quality of a 2G/3G signal is at or above a minimum 2G/3G threshold in response to determining that the signal quality of the 4G signal is below the minimum 4G threshold, and setting the wireless device to a 2G/3G only mode in response to determining that the signal quality of the 2G/3G signal is at or above the minimum 2G/3G threshold.
  • Various aspects may further include setting the wireless device to the 4G only mode in response to determining that the signal quality of the 2G/3G signal is below the minimum 2G/3G threshold.
  • Various aspects may further include, in the 4G only mode or the 2G/3G only mode, determining whether a 4G cell identifier (4G cell ID) of a current 4G cell the wireless device is camped on has changed or a screen of the wireless device transitioned to an ON state, and setting the wireless device to a both 4G and 2G/3G mode in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has changed or the screen of the wireless device transitioned to the ON state.
  • 4G cell identifier 4G cell ID
  • Various aspects may further include detecting an IRAT to 4G, determining whether the detected IRAT to 4G qualifies for counting, incrementing the IRAT counter in response to determining that the detected IRAT to 4G qualifies for counting, and resetting the IRAT counter to zero in response to determining that the detected IRAT to 4G does not qualify for counting.
  • determining whether the detected IRAT to 4G qualifies for counting may include determining whether the detected IRAT to 4G was caused by a circuit switched fall back (CSFB) operation, and determining that the detected IRAT to 4G does not quality for counting in response to determining that the detected IRAT to 4G was caused by a CSFB operation.
  • CSFB circuit switched fall back
  • determining whether the detected IRAT to 4G qualifies for counting may include determining whether a time between a last IRAT to 4G and the detected IRAT to 4G is less than or equal to the predefined time interval, determining that the detected IRAT to 4G does not quality for counting in response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is greater than the predefined time interval, determining whether a 4G cell ID of a current 4G cell the wireless device is camped on has changed in response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is less than or equal to the predefined time interval, determining that the detected IRAT to 4G qualifies for counting in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has not changed, and determining that the detected IRAT to 4G does not qualify for counting in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has changed.
  • Further aspects may include a wireless device having a processor configured to perform one or more operations of any of the methods summarized above. Further aspects may include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a wireless device to perform operations of any of the methods summarized above. Further aspects include a wireless device having means for performing functions of any of the methods summarized above. Further aspects include a system-on-chip for use in a wireless device that includes a processor configured to perform one or more operations of any of the methods summarized above. Further aspects include a system in a package that includes two systems on chip for use in a wireless device that includes a processor configured to perform one or more operations of any of the methods summarized above.
  • FIG. 1 is a system block diagram illustrating an example communication system suitable for implementing any of the various embodiments.
  • FIG. 2 is a component block diagram illustrating an example computing and wireless modem system suitable for implementing any of the various embodiments.
  • FIG. 3 is a component block diagram illustrating a software architecture including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments.
  • FIG. 4 is a component block diagram illustrating a system configured for wireless communication in accordance with various embodiments.
  • FIG. 5 is a process flow diagram illustrating a method for avoiding inter-radio transfer (IRAT) ping-pong in accordance with various embodiments.
  • IRAT inter-radio transfer
  • FIG. 6 is a process flow diagram illustrating a method for determining whether the detected IRAT to Fourth Generation (4G) qualifies for counting in accordance with various embodiments.
  • FIG. 7 is a process flow diagram illustrating a method for determining whether the detected IRAT to 4G qualifies for counting in accordance with various embodiments.
  • FIG. 8 is a component block diagram of a network computing device suitable for use with various embodiments.
  • FIG. 9 is a component block diagram of a wireless device suitable for use with various embodiments.
  • Various embodiments include systems and methods for avoiding repeated inter-radio transfer (IRAT) thrashing or “ping-pong” by a processor of a wireless device configured to support a Second Generation (2G) /Third Generation (3G) mode and a Fourth Generation (4G) mode.
  • IRAT inter-radio transfer
  • Various embodiments may provide power savings for a wireless device, especially in an unstable network environment, by preventing IRAT ping-ponging.
  • various embodiments may enable a modem of a wireless device to enter a state other than a searching state, such as an idle state.
  • the modem may use less power than is used in the searching state and the power consumption by the modem when IRAT ping-pong is avoided may be reduced in comparison to the power consumption of the modem that would have occurred during IRAT ping-pong when the modem stayed in the searching state.
  • wireless device is used herein to refer to any one or all of cellular telephones, smartphones, portable computing devices, personal or mobile multi-media players, laptop computers, tablet computers, smartbooks, ultrabooks, palmtop computers, wireless electronic mail receivers, multimedia Internet-enabled cellular telephones, wireless router devices, wireless appliances, medical devices and equipment, biometric sensors/devices, wearable devices including smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart rings, smart bracelets, etc. ) , entertainment devices (e.g., wireless gaming controllers, music and video players, satellite radios, etc.
  • wireless-network enabled Internet of Things (IoT) devices including smart meters/sensors, industrial manufacturing equipment, large and small machinery and appliances for home or enterprise use, wireless communication elements within autonomous and semiautonomous vehicles, wireless devices affixed to or incorporated into various mobile platforms, global positioning system devices, and similar electronic devices that include a memory, wireless communication components and a programmable processor.
  • IoT Internet of Things
  • SOC system-on-chip
  • a single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions.
  • a single SOC may also include any number of general purpose and/or specialized processors (digital signal processors, modem processors, video processors, etc. ) , memory blocks (e.g., ROM, RAM, Flash, etc. ) , and resources (e.g., timers, voltage regulators, oscillators, etc. ) .
  • SOCs may also include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
  • SIP system in a package
  • a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration.
  • the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate.
  • MCMs multi-chip modules
  • a SIP may also include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single wireless device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
  • the terms “network, ” “system, ” “wireless network, ” “cellular network, ” and “wireless communication network” may interchangeably refer to a portion or all of a wireless network of a carrier associated with a wireless device and/or subscription on a wireless device.
  • the techniques described herein may be used for various wireless communication networks, such as Code Division Multiple Access (CDMA) , time division multiple access (TDMA) , FDMA, orthogonal FDMA (OFDMA) , single carrier FDMA (SC-FDMA) and other networks.
  • CDMA Code Division Multiple Access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single carrier FDMA
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support at least one radio access technology, which may operate on one or more frequency or range of frequencies.
  • a CDMA network may implement Universal Terrestrial Radio Access (UTRA) (including Wideband Code Division Multiple Access (WCDMA) standards) , CDMA2000 (including IS-2000, IS-95 and/or IS-856 standards) , etc.
  • UTRA Universal Terrestrial Radio Access
  • CDMA2000 including IS-2000, IS-95 and/or IS-856 standards
  • a TDMA network may implement GSM Enhanced Data rates for GSM Evolution (EDGE) .
  • EDGE GSM Enhanced Data rates for GSM Evolution
  • an OFDMA network may implement Evolved UTRA (E-UTRA) (including LTE standards) , IEEE 802.11 (WiFi) , IEEE 802.16 (WiMAX) , IEEE 802.20, etc.
  • E-UTRA Evolved UTRA
  • E-UTRAN Evolved Universal Terrestrial Radio Access
  • eNodeB eNodeB
  • RF resource refers to the components in a communication device that send, receive, and decode radio frequency signals.
  • An RF resource typically includes a number of components coupled together that transmit RF signals that are referred to as a “transmit chain, ” and a number of components coupled together that receive and process RF signals that are referred to as a “receive chain. ”
  • a multimode wireless device configured to support a 2G/3G mode and a 4G mode can switch between modes (e.g., 2G/3G mode to 4G mode or 4G mode to 2G/3G mode) in a RAN providing both 2G/3G support and 4G support.
  • modes e.g., 2G/3G mode to 4G mode or 4G mode to 2G/3G mode
  • the wireless device can register for 2G/3G service with a 2G/3G cell and camp on that 2G/3G cell to monitor the 2G/3G cell for system information, paging information, and/or to make measurements of that 2G/3G cell.
  • the wireless device can register for 4G service with a 4G cell and camp on that 4G cell to monitor the 4G cell for system information, paging information, and/or to make measurements of that 4G cell.
  • IRAT inter-radio transfer
  • switching between a 4G mode of operation in which the wireless device is registered for 4G service and camped on a 4G cell to a 2G/3G mode of operations in which the wireless device attempts to register for 2G/3G service and camp on a 2G/3G cell can be referred to as IRAT to 2G/3G.
  • IRAT to 4G and/or IRAT to 2G/3G by a multimode wireless device configured to support a 2G/3G mode and a 4G mode can be caused by different scenarios (e.g., a CSFB operation, loss of signal, loss of signal stability, network settings, etc. ) .
  • the wireless device may frequently switch back and forth between the two RATs in a process referred to herein as IRAT ping-pong.
  • the wireless device may repeatedly and frequently IRAT to 2G/3G due to the 4G QoS issue, IRAT back to 4G because 4G mode is of higher priority, and then IRAT to 2G/3G again due to the 4G QoS issue.
  • the repeated IRATs performed between a 2G/3G network and a 4G network can continue in such a manner for a period of time, sometimes as long as a few hours, especially when the wireless device is stationary so the wireless device repeatedly connects to the same 4G cell and thus repeatedly encounters the same 4G QoS issues.
  • This frequent performance of IRATs between 2G/3G and 4G networks can cause the modem of the wireless device to operate in a searching mode frequently, causing elevated battery drain in the wireless device compared to when the modem remains camped on one RAN, as the modem uses more power in the searching mode than in an idle state.
  • IRAT ping-pong may involve a series of actions by a wireless device. Initially the wireless device enters a 4G mode, registers with a 4G cell, and camps on that 4G cell to monitor for system information, paging information, and/or to make measurements of that 4G cell. Next, the wireless device performs an IRAT to 2G/3G by scanning 2G/3G frequencies to identify a suitable 2G/3G cell, registering with a 2G/3G cell, and camping on that 2G/3G cell to monitor for system information, paging information, and/or to make measurements of that 2G/3G cell.
  • the IRAT to 2G/3G may be in response to the 4G signal from the 4G cell having marginal signal strength or QoS characteristics, such as being below a minimum 4G threshold (e.g., having an undesirable signal to noise ratio (SNR) ) .
  • the wireless device performs an IRAT to 4G by scanning 4G frequencies to identify a suitable 4G cell, registering with a 4G cell, and camping on that 4G cell to monitor for system information, paging information, and/or to make measurements of that 4G cell.
  • IRAT operations may then be repeated so long as the signal strength of the 4G cell remains the same (e.g., when the wireless device remains in the same place) , resulting in the IRAT ping-pong between IRAT to 2G/3G and IRAT to 4G and back again.
  • IRAT ping-pong can occur in various scenarios in wireless networks.
  • One cause of IRAT ping-pong can be instability of a 4G signal in a network while a wireless device is set to give 4G mode of operations the highest priority on the wireless device. As the 4G signal is unstable, the wireless device will IRAT to 2G/3G upon entering 4G mode, but soon IRAT to 4G after entering 2G/3G mode because 4G has the highest priority.
  • Another cause of IRAT ping-pong can be network measurement settings that control how often a wireless device is to make measurements of 4G cells. For example, the network may set the network measurement settings such that a wireless device is required to frequently measure a SNR of a 4G signal and the wireless device may IRAT to 4G frequently to make the required SNR measurements.
  • IRAT ping-pong results in switching between modes of operation to attempt registration and camping on a cell of a selected RAT in an IRAT procedure that can keep the modem in a searching state and increase power consumption by the modem, and therefore the wireless device. While some IRAT procedures may be needed, such as IRAT procedures to support CSFB, IRAT procedures when a wireless device enters a new cell coverage area, etc., IRAT procedures associated with IRAT ping-pong cause unnecessary battery drain. The problem of unnecessary battery drain caused by IRAT ping-pong can be a particular problem when a wireless device is stationary and the screen of a wireless device is in the off state.
  • Various embodiments may provide systems and methods for avoiding IRAT ping-pong by a processor of a wireless device configured to support a 2G/3G mode and a 4G mode.
  • Various embodiments may include tracking a number of IRAT to 4G (and/or to 2G/3G) events during a predefined time interval and setting the wireless device to a 4G only mode or a 2G/3G only mode in response to the number of IRAT to 4G events exceeding a maximum counter value within the predefined time interval. Setting the wireless device to a 4G only mode or a 2G/3G only mode according to various embodiments may avoid IRAT ping-pong because the wireless device remains in that mode without performing IRAT operations.
  • a wireless device configured to support a 2G/3G mode and a 4G mode initially camped on a 4G cell and registered for 4G network service while a screen of the wireless device is in an off state.
  • the wireless device may initially be operating in a both 4G and 2G/3G mode in which the wireless device may be configured to switch freely between 4G operations and 2G/3G operations.
  • a processor e.g., an application processor (AP) , modem processor, etc.
  • the wireless device may have stored an indication of an IRAT to 4G including the current 4G cell identifier (4G cell ID) (e.g., the 4G cell ID of the 4G cell the wireless device camped on) and a time (e.g., a system time) at which the wireless device camped on that 4G cell.
  • 4G cell ID the 4G cell ID of the 4G cell the wireless device camped on
  • time e.g., a system time
  • the wireless device may IRAT to 2G/3G due to 4G signal issues.
  • the wireless device may transition to a 2G/3G mode, scan 2G/3G frequencies to find a suitable 2G/3G cell, camp on a 2G/3G cell and register for 2G/3G network service and monitor for system information, monitor for paging information, and/or make measurements of that 2G/3G cell.
  • the processor e.g., the AP, modem processor, etc.
  • the wireless device may store an indication of an IRAT to 2G/3G including a time (e.g., a system time) at which the wireless device camped on that 2G/3G cell (or starts the IRAT procedure) .
  • the wireless device may perform an IRAT to 4G because 4G is the prioritized wireless technology.
  • the wireless device may transition to a 4G mode, scan 4G frequencies to find a suitable 4G cell, camp on a 4G cell and register for 4G network service, and monitor for system information, monitor for paging information, and/or make measurements of that 4G cell.
  • the processor e.g., the AP, modem processor, etc.
  • IRAT to 4G and/or IRAT to 2G/3G may be detected by the processor (e.g., the AP, modem processor, etc. ) of the wireless device in various manners, such as by IRAT reporting from a modem, monitoring radio resources of the wireless devices, and/or in any other manner.
  • the processor e.g., the AP, modem processor, etc.
  • the processor e.g., the AP, modem processor, etc.
  • the processor may perform operations to determine whether or not IRAT ping-pong may be occurring in response to detecting the IRAT to 4G.
  • the processor e.g., the AP, modem processor, etc.
  • the processor may compare the most recent stored indication of an IRAT to 4G to the prior stored indication of an IRAT to 4G.
  • the processor e.g., the AP, modem processor, etc.
  • the wireless device may determine a time between the last IRAT to 4G and the detected IRAT to 4G based on the times (e.g., system times) in the stored indications and also determine whether the 4G cell ID is the same for both indications (e.g., whether the 4G cell ID changed) .
  • the processor e.g., the AP, modem processor, etc.
  • the wireless device may determine that the detected IRAT to 4G qualifies for counting and may increment an IRAT counter that tracks a total number of counted IRAT to 4G events.
  • the processor e.g., the AP, modem processor, etc.
  • the wireless device may determine that the detected IRAT to 4G does not qualify for counting and may reset the IRAT counter that tracks a total number of counted IRAT to 4G events to zero.
  • the processor e.g., the AP, modem processor, etc.
  • the wireless device may also determine whether the detected IRAT to 4G was caused by a CSFB operation.
  • the processor e.g., the AP, modem processor, etc.
  • the wireless device may determine that the detected IRAT to 4G does not qualify for counting and may reset the IRAT counter that tracks a total number of counted IRAT to 4G events to zero.
  • the processor e.g., the AP, modem processor, etc.
  • the processor may perform operations to determine whether the IRAT counter that tracks a total number of counted IRAT to 4G events exceeds a maximum counter value.
  • the maximum counter value may be any selected value to avoid IRAT ping-pong, such as 1, 2, or more.
  • the processor may determine whether a signal quality of a 4G signal is at or above a minimum 4G threshold and determine whether a signal quality of a 2G/3G signal is at or above a minimum 2G/3G threshold.
  • the signal qualities of the 2G/3G signal and/or the 4G signal may have been measured during the most recent respective IRAT to 2G/3G and/or IRAT to 4G.
  • signal qualities may be measurements of SNR and/or other attributes of the signals and minimum thresholds may be values associated with minimum signal qualities.
  • a signal quality of a 4G signal being at or above a minimum 4G threshold may indicate the 4G signal is “good” .
  • a signal quality of a 4G signal being below a minimum 4G threshold may indicate the 4G signal is “bad” .
  • a signal quality of a 2G/3G signal being at or above a minimum 2G/3G threshold may indicate the 2G/3G signal is “good” .
  • a signal quality of a 2G/3G signal being below a minimum 2G/3G threshold may indicate the 2G/3G signal is “bad” .
  • “good” signals may be preferred for communications over “bad” signals.
  • the processor of the wireless device may set the wireless device to a 4G only mode.
  • the processor of the wireless device may set the wireless device to a 2G/3G only mode.
  • the processor e.g., the AP, modem processor, etc.
  • the wireless device may set the wireless device to a 4G only mode.
  • the wireless device may perform only 4G operations and may prevent IRAT to 2G/3G.
  • the wireless device may perform only 2G/3G operations and may prevent IRAT to 4G.
  • the processor of the wireless device may monitor whether a cell ID of the cell on which the wireless device is currently camped changes or the screen of the wireless device transitioned to an ON state.
  • a 4G cell ID changing may indicate the wireless device has changed cell coverage areas.
  • the change of a screen of the wireless device transitioning to an ON state may indicate a user is interacting with the wireless device and data services may be needed.
  • the processor e.g., the AP, modem processor, etc.
  • the wireless device may set the wireless device back to a both 4G and 2G/3G mode in which the wireless device may be configured to switch freely between 4G operations and 2G/3G operations. In this manner, both IRAT to 4G and IRAT to 2G/3G may be reenabled on the wireless device.
  • FIG. 1 is a system block diagram illustrating an example communication system 100 suitable for implementing any of the various embodiments.
  • the communications system 100 may be a 5G New Radio (NR) network, or any other suitable network, such as 4G network, 2G/3G network, etc.
  • NR 5G New Radio
  • the communications system 100 may include a heterogeneous network architecture that includes a core network 140 and a variety of mobile devices (illustrated as wireless device 120a-120e in FIG. 1) .
  • the communications system 100 may also include a number of base stations (illustrated as the BS 110a, the BS 110b, the BS 110c, and the BS 110d) and other network entities.
  • a base station is an entity that communicates with wireless devices (mobile devices) , and also may be referred to as a Node B, an LTE Evolved nodeB (eNodeB or eNB) , an access point (AP) , a Radio head, a transmit receive point (TRP) , a New Radio base station (NR BS) , a 5G NodeB (NB) , a Next Generation NodeB (gNodeB or gNB) , or the like.
  • Each base station may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station, a base station Subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
  • a base station 110a-110d may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof.
  • a macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by mobile devices with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by mobile devices with service subscription.
  • a femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by mobile devices having association with the femto cell (for example, mobile devices in a closed subscriber group (CSG) ) .
  • a base station for a macro cell may be referred to as a macro BS.
  • a base station for a pico cell may be referred to as a pico BS.
  • a base station for a femto cell may be referred to as a femto BS or a home BS.
  • a base station 110a may be a macro BS for a macro cell 102a
  • a base station 110b may be a pico BS for a pico cell 102b
  • a base station 110c may be a femto BS for a femto cell 102c.
  • a base station 110a-110d may support one or multiple (for example, three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not be stationary, and the geographic area of the cell may move according to the location of a mobile base station.
  • the base stations 110a-110d may be interconnected to one another as well as to one or more other base stations or network nodes (not illustrated) in the communications system 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network
  • the base station 110a-110d may communicate with the core network 140 over a wired or wireless communication link 126.
  • the wireless device 120a-120e may communicate with the base station 110a-110d over a wireless communication link 122.
  • the wired communication link 126 may use a variety of wired networks (e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections) that may use one or more wired communication protocols, such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
  • wired networks e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections
  • wired communication protocols such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
  • HDMI High-Level Data Link Control
  • ADCCP Advanced Data Communication Control Protocol
  • TCP/IP Transmission Control Protocol/Internet Protocol
  • the communications system 100 also may include relay stations (e.g., relay BS 110d) .
  • a relay station is an entity that can receive a transmission of data from an upstream station (for example, a base station or a mobile device) and transmit the data to a downstream station (for example, a wireless device or a base station) .
  • a relay station also may be a mobile device that can relay transmissions for other wireless devices.
  • a relay station 110d may communicate with macro the base station 110a and the wireless device 120d in order to facilitate communication between the base station 110a and the wireless device 120d.
  • a relay station also may be referred to as a relay base station, a relay base station, a relay, etc.
  • the communications system 100 may be a heterogeneous network that includes base stations of different types, for example, macro base stations, pico base stations, femto base stations, relay base stations, etc. These different types of base stations may have different transmit power levels, different coverage areas, and different impacts on interference in communications system 100. For example, macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
  • macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of base stations and may provide coordination and control for these base stations.
  • the network controller 130 may communicate with the base stations via a backhaul.
  • the base stations also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
  • the wireless devices 120a, 120b, 120c may be dispersed throughout communications system 100, and each wireless device may be stationary or mobile.
  • a wireless device also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc.
  • a macro base station 110a may communicate with the communication network 140 over a wired or wireless communication link 126.
  • the wireless devices 120a, 120b, 120c may communicate with a base station 110a-110d over a wireless communication link 122.
  • the wireless communication links 122, 124 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical channels.
  • the wireless communication links 122 and 124 may utilize one or more Radio access technologies (RATs) .
  • RATs Radio access technologies
  • Examples of RATs that may be used in a wireless communication link include 2G, 2G/3G, 3GPP LTE, 3G, 4G, 5G (e.g., NR) , GSM, CDMA, WCDMA, Worldwide Interoperability for Microwave Access (WiMAX) , Time Division Multiple Access (TDMA) , and other mobile telephony communication technologies cellular RATs.
  • RATs that may be used in one or more of the various wireless communication links 122, 124 within the communication system 100 include medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire, and relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
  • medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire
  • relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum Resource allocation (called a “resource block” ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast File Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 Resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • NR may utilize OFDM with a cyclic prefix (CP) on the uplink (UL) and downlink (DL) and include support for half-duplex operation using time division duplex (TDD) .
  • CP cyclic prefix
  • TDD time division duplex
  • a single component carrier bandwidth of 100 MHz may be supported.
  • NR Resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 millisecond (ms) duration.
  • Each Radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms.
  • Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched.
  • Each subframe may include DL/UL data as well as DL/UL control data.
  • Beamforming may be supported and beam direction may be dynamically configured.
  • Multiple Input Multiple Output (MIMO) transmissions with precoding may also be supported.
  • MIMO configurations in the DL may support up to eight transmit antennas with multi-layer DL transmissions up to eight streams and up to two streams per wireless device. Multi-layer transmissions with up to 2 streams per wireless device may be supported. Aggregation of multiple cells may be supported with up to eight serving cells.
  • NR may support a different air interface, other than an OFDM-based air interface.
  • MTC and eMTC mobile devices include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some mobile devices may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices.
  • a wireless device 120a-e may be included inside a housing that houses components of the wireless device, such as processor components, memory components, similar components, or a combination thereof.
  • any number of communication systems and any number of wireless networks may be deployed in a given geographic area.
  • Each communications system and wireless network may support a particular Radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT also may be referred to as a Radio technology, an air interface, etc.
  • a frequency also may be referred to as a carrier, a frequency channel, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between communications systems of different RATs.
  • 2G/3G, 2G/3G/4G/LTE, 4G/LTE, and/or 5G/NR RAT networks may be deployed.
  • two or more mobile devices 120a-e may communicate directly using one or more sidelink channels 124 (for example, without using a base station 110 as an intermediary to communicate with one another) .
  • the wireless devices 120a-e may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or similar protocol) , a mesh network, or similar networks, or combinations thereof.
  • V2X vehicle-to-everything
  • the wireless device 120a-e may perform scheduling operations, Resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110a
  • FIG. 2 is a component block diagram illustrating an example computing and wireless modem system 200 suitable for implementing any of the various embodiments.
  • Various embodiments may be implemented on a number of single processor and multiprocessor computer systems, including a system-on-chip (SOC) or system in a package (SIP) .
  • SOC system-on-chip
  • SIP system in a package
  • the illustrated example computing system 200 (which may be a SIP in some embodiments) includes a two SOCs 202, 204 coupled to a clock 206, a voltage regulator 208, and a wireless transceiver 266 configured to send and receive wireless communications via an antenna (not shown) to/from wireless devices, such as a base station 110a.
  • the first SOC 202 operate as central processing unit (CPU) of the wireless device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions.
  • the second SOC 204 may operate as a specialized processing unit.
  • the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (e.g., 5 Gbps, etc. ) , and/or very high frequency short wave length (e.g., 28 GHz mmWave spectrum, etc. ) communications.
  • high speed e.g., 5 Gbps, etc.
  • very high frequency short wave length e.g., 28 GHz mmWave spectrum, etc.
  • the first SOC 202 may include a digital signal processor (DSP) 210, a modem processor 212, a graphics processor 214, an application processor 216, one or more coprocessors 218 (e.g., vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234.
  • DSP digital signal processor
  • modem processor 212 e.g., a graphics processor 214
  • an application processor 216 e.g., one or more coprocessors 218 (e.g., vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234.
  • TPE
  • the second SOC 204 may include a 5G modem processor 252, a power management unit 254, an interconnection/bus module 264, the plurality of mmWave transceivers 256, memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
  • Each processor 210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores.
  • the first SOC 202 may include a processor that executes a first type of operating system (e.g., FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (e.g., MICROSOFT WINDOWS 10) .
  • a first type of operating system e.g., FreeBSD, LINUX, OS X, etc.
  • a second type of operating system e.g., MICROSOFT WINDOWS 10.
  • processors 210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
  • a processor cluster architecture e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc.
  • the first and second SOC 202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser.
  • the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a wireless device.
  • the system components and resources 224 and/or custom circuitry 222 may also include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless devices, external memory chips, etc.
  • the first and second SOC 202, 204 may communicate via interconnection/bus module 250.
  • the various processors 210, 212, 214, 216, 218, may be interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226.
  • the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various additional processors 260 via the interconnection/bus module 264.
  • the interconnection/bus module 226, 250, 264 may include an array of reconfigurable logic gates and/or implement a bus architecture (e.g., CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
  • NoCs high-performance networks-on chip
  • the first and/or second SOCs 202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206 and a voltage regulator 208.
  • resources external to the SOC e.g., clock 206, voltage regulator 208 may be shared by two or more of the internal SOC processors/cores.
  • various embodiments may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
  • FIG. 3 is a component block diagram illustrating a software architecture 300 including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments.
  • the wireless device 320 may implement the software architecture 300 to facilitate communication between a wireless device 320 (e.g., the wireless device 120a-120e, 200) and the base station 350 (e.g., the base station 110a) of a communication system (e.g., 100) .
  • layers in software architecture 300 may form logical connections with corresponding layers in software of the base station 350.
  • the software architecture 300 may be distributed among one or more processors (e.g., the processors 212, 214, 216, 218, 252, 260) .
  • the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different mode (e.g., two protocol stacks associated with two modes, respectively, such as a 2G/3G mode and a 4G mode) . While described below with reference to LTE communication layers, the software architecture 300 may support any of variety of standards and protocols for wireless communications, and/or may include additional protocol stacks that support any of variety of standards and protocols wireless communications.
  • the software architecture 300 may include a Non-Access Stratum (NAS) 302 and an Access Stratum (AS) 304.
  • the NAS 302 may include functions and protocols to support Packet filtering, security management, mobility control, session management, and traffic and signaling between a SIM (s) of the wireless device (e.g., SIM (s) 204) and its core network 140.
  • the AS 304 may include functions and protocols that support communication between a SIM (s) (e.g., SIM (s) 204) and entities of supported access networks (e.g., a base station) .
  • the AS 304 may include at least three layers (Layer 1, Layer 2, and Layer 3) , each of which may contain various sub-layers.
  • Layer 1 (L1) of the AS 304 may be a physical layer (PHY) 306, which may oversee functions that enable transmission and/or reception over the air interface.
  • PHY physical layer
  • Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc.
  • the physical layer may include various logical channels, including the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared Channel (PDSCH) .
  • PDCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • Layer 2 (L2) of the AS 304 may be responsible for the link between the wireless device 320 and the base station 350 over the physical layer 306.
  • Layer 2 may include a Media Access Control (MAC) sublayer 308, a Radio link Control (RLC) sublayer 310, and a Packet data convergence protocol (PDCP) 312 sublayer, each of which form logical connections terminating at the base station 350.
  • MAC Media Access Control
  • RLC Radio link Control
  • PDCP Packet data convergence protocol
  • Layer 3 (L3) of the AS 304 may include a Radio Resource Control (RRC) sublayer 3.
  • RRC Radio Resource Control
  • the software architecture 300 may include additional Layer 3 sublayers, as well as various upper layers above Layer 3.
  • the RRC sublayer 313 may provide functions including broadcasting system information, paging, and establishing and releasing an RRC signaling connection between the wireless device 320 and the base station 350.
  • the PDCP sublayer 312 may provide uplink functions including multiplexing between different Radio bearers and logical channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression.
  • the PDCP sublayer 312 may provide functions that include in-sequence delivery of data packets, duplicate data Packet detection, integrity validation, deciphering, and header decompression.
  • the RLC sublayer 310 may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and Automatic Repeat Request (ARQ) .
  • ARQ Automatic Repeat Request
  • the RLC sublayer 310 functions may include reordering of data packets to compensate for out-of-order reception, reassembly of upper layer data packets, and ARQ.
  • MAC sublayer 308 may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid-ARQ (HARQ) operations.
  • the MAC layer functions may include channel mapping within a cell, de-multiplexing, discontinuous reception (DRX) , and HARQ operations.
  • the software architecture 300 may provide functions to transmit data through physical media
  • the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the wireless device 320.
  • application-specific functions provided by the at least one host layer 314 may provide an interface between the software architecture and the general-purpose processor 206.
  • the software architecture 300 may include one or more higher logical layer (e.g., transport, session, presentation, application, etc. ) that provide host layer functions.
  • the software architecture 300 may include a network layer (e.g., Internet protocol (IP) layer) in which a logical connection terminates at a packet data network (PDN) gateway (PGW) .
  • the software architecture 300 may include an application layer in which a logical connection terminates at another device (e.g., end user device, server, etc. ) .
  • the software architecture 300 may further include in the AS 304 a hardware interface 316 between the physical layer 306 and the communication hardware (e.g., one or more RF transceivers) .
  • FIG. 4 is a component block diagram illustrating a communication system 400 configured for wireless communication in accordance with various embodiments.
  • the communication system 400 may include one or more wireless devices 120 and one or more base stations 110 forming a wireless communication network 424, which may provide connections to external resources 422.
  • External resources 422 may include sources of information outside of system 400, external entities participating with the system 400, and/or other resources.
  • a wireless device 120 may be configured by machine-readable instructions 406.
  • Machine-readable instructions 406 may include one or more instruction modules.
  • the instruction modules may include computer program modules.
  • the instruction modules may include one or more of a 4G mode module 408, a 2G/3G mode module 410, an IRAT tracking module 412, a signal measurement module 414, a state detection module 416, and/or other instruction modules.
  • the 4G mode module 408 may be configured to set the wireless device 120 to a 4G only mode. In a 4G only mode the wireless device 120 may perform only 4G operations and the 4G mode module 408 may prevent IRAT to 2G/3G.
  • the 4G mode module 408 may be configured to set the wireless device 120 to a both 4G and 2G/3G mode in which the 4G mode module 408 may allow the wireless device 120 to switch freely between 4G operations and 2G/3G operations.
  • the 4G mode module 408 may be configured to control operations of the wireless device 120 to perform an IRAT to 4G. During the IRAT to 4G, the wireless device 120 may transition to a 4G mode, register for 4G network service, camp on a 4G cell, and monitor for system information, monitor for paging information, and/or make measurements of that 4G cell.
  • the 4G mode module 408 may be configured to output an indication of an IRAT to 4G to other modules, such as the 2G/3G mode module 410, the IRAT tracking module 412, and/or the signal measurement module 414.
  • the 4G mode module 408 may be configured to communicate with the IRAT tracking module 412, such as to receive signaling that an IRAT counter exceeds a maximum counter value, etc.
  • the 4G mode module 408 may be configured to communicate with the signal measurement module 414, such as to receive signaling that a signal quality of a 4G signal is at or above a minimum 4G threshold, a signal quality of a 4G signal is below a minimum 4G threshold, a signal quality of the 2G/3G signal is below the minimum 2G/3G threshold, and/or a signal quality of the 2G/3G signal is at or above a minimum 2G/3G threshold.
  • the 4G mode module 408 may be configured to communicate with the signal measurement module 414, such as to receive signaling that a 4G cell ID of a current 4G cell on which the wireless device 120 is camped has changed, etc.
  • the 4G mode module 408 may be configured to communicate with the state detection module 416, such as to receive signaling that a screen of the wireless device 120 has transitioned to an ON state.
  • the 2G/3G mode module 410 may be configured to set the wireless device 120 to 2G/3G only mode. In a 2G/3G only mode the wireless device 120 may perform only 2G/3G operations and the 2G/3G mode module 410 may prevent IRAT to 4G.
  • the 2G/3G mode module 410 may be configured to set the wireless device 120 to a both 4G and 2G/3G mode in which the 2G/3G mode module 410 may allow the wireless device 120 to switch freely between 2G/3G operations and 4G operations.
  • the 2G/3G mode module 410 may be configured to control operations of the wireless device 120 to perform an IRAT to 2G/3G.
  • the wireless device 120 may transition to a 2G/3G mode, register for 2G/3G network service, camp on a 2G/3G cell, and monitor for system information, monitor for paging information, and/or make measurements of that 2G/3G cell.
  • the 2G/3G mode module 410 may be configured to output an indication of an IRAT to 2G/3G to other modules, such as the 4G mode module 408, the IRAT tracking module 412, and/or the signal measurement module 414.
  • the 2G/3G mode module 410 may be configured to may be configured to communicate with the IRAT tracking module 412, such as to receive signaling that an IRAT counter exceeds a maximum counter value, etc.
  • the 2G/3G mode module 410 may be configured to communicate with the signal measurement module 414, such as to receive signaling that a signal quality of a 4G signal is at or above a minimum 4G threshold, a signal quality of a 4G signal is below a minimum 4G threshold, a signal quality of the 2G/3G signal is below the minimum 2G/3G threshold, and/or a signal quality of the 2G/3G signal is at or above a minimum 2G/3G threshold.
  • the 2G/3G mode module 410 may be configured to communicate with the signal measurement module 414, such as to receive signaling that that a 4G cell ID of a current 4G cell the wireless device 120 is camped on has changed, etc.
  • the 2G/3G mode module 410 may be configured to communicate with the state detection module 416, such as to receive signaling that a screen of the wireless device 120 has transitioned to an ON state.
  • the IRAT tracking module 412 may be configured to detect an IRAT to 4G and/or an IRAT to 2G/3G, such as in response to signaling from the 4G mode module 408 and/or the 2G/3G module 410.
  • the IRAT tracking module 412 may be configured to store an indication of an IRAT to 4G including the current 4G cell identifier (4G cell ID) (e.g., the 4G cell ID of the 4G cell the wireless device camped on) and a time (e.g., a system time) at which the wireless device camped on that 4G cell.
  • the IRAT tracking module 412 may be configured to store an indication of an IRAT to 2G/3G including a time (e.g., a system time) at which the wireless device camped on that 2G/3G cell.
  • the IRAT tracking module 412 may be configured to determine whether a detected IRAT to 4G qualifies for counting.
  • the IRAT tracking module 412 may be configured to determine whether an IRAT counter exceeds a maximum counter value, wherein the IRAT counter tracks a total number of counted IRAT to 4G events.
  • the IRAT tracking module 412 may be configured to determine whether the detected IRAT to 4G was caused by a CSFB operation.
  • the IRAT tracking module 412 may be configured to determine that the detected IRAT to 4G does not quality for counting in response to determining that the detected IRAT to 4G was caused by a CSFB operation.
  • the IRAT tracking module 412 may be configured to determine whether a time between a last IRAT to 4G and the detected IRAT to 4G is less than or equal to a predefined time interval, such as a minute, etc.
  • the IRAT tracking module 412 may be configured to determine a time between a last IRAT to 4G and the detected IRAT to 4G based on the times (e.g., system times) in the stored indications and/or determine whether a 4G cell ID is the same for both indications (e.g., whether the 4G cell ID has changed or not) .
  • the IRAT tracking module 412 may be configured to determine that the detected IRAT to 4G does not quality for counting in response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is greater than the predefined time interval.
  • the IRAT tracking module 412 may be configured to determine whether a 4G cell ID of a current 4G cell the wireless device is camped on has changed in response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is less than or equal to the predefined time interval.
  • the IRAT tracking module 412 may be configured to determine that the detected IRAT to 4G qualifies for counting in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has not changed.
  • the IRAT tracking module 412 may be configured to determine that the detected IRAT to 4G does not qualify for counting in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has changed.
  • the IRAT tracking module 412 may be configured to increment an IRAT counter in response to determining that a detected IRAT to 4G qualifies for counting.
  • the IRAT tracking module 412 may be configured to reset an IRAT counter to zero in response to determining that the detected IRAT to 4G does not qualify for counting.
  • the IRAT tracking module 412 may be configured to receive an indication of an IRAT to 4G and/or IRAT to 2G/3G from other modules, such as the 4G mode module 408, 2G/3G mode module 410, and/or the signal measurement module 414.
  • the IRAT tracking module 412 may be configured to communicate with the 4G mode module 408 and/or the 2G/3G mode module, such as to send signaling that an IRAT counter exceeds a maximum counter value, etc.
  • the IRAT tracking module 412 may be configured to communicate with the signal measurement module 414, such as to receive signaling that that a 4G cell ID of a current 4G cell the wireless device 120 is camped on has changed, etc.
  • the signal measurement module 414 may be configured to determine a signal quality of a 4G signal and/or a 2G/3G signal.
  • the signal measurement module 414 may be configured to determine whether a signal quality of a 4G signal relative to a minimum 4G threshold, such as at or below, above, etc.
  • the signal measurement module 414 may be configured to determine whether a signal quality of a 2G/3G signal relative to a minimum 2G/3G threshold, such as at or below, above, etc.
  • the signal measurement module 414 may be configured to determine a 4G cell ID of a current 4G cell the wireless device 120 is camped on.
  • the signal measurement module 414 may be configured to receive an indication of an IRAT to 4G and/or an IRAT to 2G/3G from other modules, such as the 4G mode module 408, the 2G/3G mode module 410, and/or the IRAT tracking module 412.
  • the signal measurement module 414 may be configured to communicate with the IRAT tracking module 412, such as to receive signaling that an IRAT counter exceeds a maximum counter value, etc.
  • the signal measurement module 414 may be configured to communicate with the 4G mode module 408, 2G/3G mode module, and/or IRAT tracking module 410, such as to send signaling that a signal quality of a 4G signal is at or above a minimum 4G threshold, a signal quality of a 4G signal is below a minimum 4G threshold, a signal quality of the 2G/3G signal is below the minimum 2G/3G threshold, and/or a signal quality of the 2G/3G signal is at or above a minimum 2G/3G threshold.
  • the signal measurement module 414 may be configured to communicate with the 4G mode module 408, 2G/3G mode module, and/or IRAT tracking module 410, such as to send signaling that that a 4G cell ID of a current 4G cell the wireless device 120 is camped on has changed, etc.
  • the state detection module 416 may be configured to monitor a state of one or more screens of the wireless device 120.
  • the state detection module 416 may determine whether a screen of the wireless device 120 has transitioned to an ON state and/or transitioned to an off state.
  • the state detection module 416 may be configured to communicate with the 4G mode module 408, 2G/3G mode module, IRAT tracking module 410, and/or signal measurement module 412, such as to send signaling that that state detection module 416 a screen of the wireless device 120 transitioned to an ON state.
  • the wireless device 120, remote platform (s) 110, and/or external resources 422 may be operatively linked via one or more electronic communication links of the wireless communication network.
  • the wireless communication network may establish links via a network such as the Internet and/or other networks.
  • the wireless device 120 may include electronic storage 424, one or more processors 426, one or more wireless transceivers 266, and/or other components.
  • the wireless device 120 may include communication lines, or ports to enable the exchange of information with a network and/or other wireless devices.
  • the illustration of the wireless device 120 is not intended to be limiting.
  • Electronic storage 424 may include non-transitory storage media that electronically stores information.
  • Electronic storage 424 may be a memory of the wireless device 120.
  • the electronic storage media of electronic storage 424 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with wireless device 120 and/or removable storage that is removably connectable to wireless device 120 via, for example, a port (e.g., a universal serial bus (USB) port, a firewire port, etc. ) or a drive (e.g., a disk drive, etc. ) .
  • Electronic storage 424 may include one or more of optically readable storage media (e.g., optical disks, etc.
  • Electronic storage 424 may include one or more virtual storage resources (e.g., cloud storage, a virtual private network, and/or other virtual storage resources) .
  • Electronic storage 424 may store software algorithms, information determined by processor (s) 426, information received from wireless device 120, information received from remote platform (s) 110, and/or other information that enables wireless device 120 to function as described herein.
  • the processor (s) 426 may be configured to provide information processing capabilities in wireless device 120.
  • the processor (s) 426 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information.
  • the processor (s) 426 is illustrated as a single entity, this is for illustrative purposes only. In some embodiments, the processor (s) 426 may include a plurality of processing units and/or processor cores.
  • the processor (s) 426 may be configured to execute modules 408, 410, 412, 414, and/or 416 and/or other modules by software; hardware; firmware; some combination of software, hardware, and/or firmware; and/or other mechanisms for configuring processing capabilities on processor (s) 426.
  • module may refer to any component or set of components that perform the functionality attributed to the module. This may include one or more physical processors during execution of processor readable instructions, the processor readable instructions, circuitry, hardware, storage media, or any other components.
  • modules 408, 410, 412, 414, and/or 416 are illustrated as being implemented within a single processing unit, in embodiments in which the processor (s) 426 includes multiple processing units and/or processor cores.
  • the description of the functionality provided by the different modules 408, 410, 412, 414, and/or 416 described below is for illustrative purposes, and is not intended to be limiting, as any of modules 408, 410, 412, 414, and/or 416 may provide more or less functionality than is described.
  • one or more of the modules 408, 410, 412, 414, and/or 416 may be eliminated, and some or all of its functionality may be provided by other modules 408, 410, 412, 414, and/or 416.
  • the processor (s) 426 may be configured to execute one or more additional modules that may perform some or all of the functionality attributed below to one of the modules 408, 410, 412, 414, and/or 416.
  • FIG. 5 is a process flow diagram illustrating a method 500 that may be performed by a processor of a wireless device for avoiding IRAT ping-pong.
  • the method 500 may be implemented by a processor (such as 210, 212, 214, 216, 218, 252, 260, 426) of a wireless device (such as the wireless device 120, 120a-120e, 200, 320) .
  • the operations of method 500 may be performed by a processor of a wireless device that is configured to support a 2G/3G mode and a 4G mode.
  • the processor may determine whether an IRAT to 4G is detected.
  • the wireless device may transition to a 4G mode, register for 4G network service, camp on a 4G cell, and monitor for system information, monitor for paging information, and/or make measurements of that 4G cell.
  • an IRAT to 4G may be detected based on signaling on the wireless device, such as signaling by a modem that an IRAT to 4G occurred.
  • the processor may await detection of an IRAT to 4G and continue to determine whether an IRAT to 4G is detected in determination block 502.
  • the processor may determine whether the detected IRAT to 4G qualifies for counting.
  • not all IRAT to 4G events may be associated with a potential IRAT ping-pong condition.
  • IRAT to 4G after CSFB may be an expected operation not associated with IRAT ping-pong.
  • IRAT to 4G occurring infrequently e.g., spaced apart more than a predefined time interval, such as a minute or more
  • IRAT to 4G occurring infrequently (e.g., spaced apart more than a predefined time interval, such as a minute or more) , may not be associated with a potential IRAT ping-pong condition.
  • IRAT to 4G related to movement to a new cell coverage area may not be associated with a potential IRAT ping-pong condition.
  • an IRAT to 4G associated with a potential IRAT ping-pong condition may qualify for counting, while an IRAT to 4G not associated with a potential IRAT ping-pong condition may not qualify for counting.
  • the processor may increment an IRAT counter in block 508.
  • the IRAT counter may track a total number of counted IRAT to 4G events, such as a total number of detected IRAT to 4G events associated with a potential IRAT ping-pong condition.
  • the processor may determine whether the IRAT counter exceeds a maximum counter value.
  • the maximum counter value may be any value selected to avoid IRAT ping-pong, such as 1, 2, or more.
  • the processor may determine whether a next IRAT to 4G is detected in determination block 502.
  • the processor may reset an IRAT counter to zero in block 510. In this manner, a detected IRAT to 4G that may not be associated with a potential IRAT ping-pong condition may restart the tracking of IRAT to 4G events anew, and the processor continue to determine whether an IRAT to 4G is detected in determination block 502.
  • the processor may determine whether a signal quality of a 4G signal is at or above a minimum 4G threshold in determination block 514.
  • the signal quality of the 4G signal may have been measured during the most recent IRAT to 4G.
  • 4G signal quality may be a measurement of SNR and/or other attributes of the 4G signal and a 4G minimum threshold may be a value associated with minimum 4G signal quality.
  • a signal quality of a 4G signal being at or above a minimum 4G threshold may indicate the 4G signal is “good” .
  • a signal quality of a 4G signal being below a minimum 4G threshold may indicate the 4G signal is “bad” .
  • the processor may set the wireless device to 4G only mode in block 520.
  • the processor may determine whether a signal quality of a 2G/3G signal is at or above a minimum 2G/3G threshold in determination block 516.
  • the signal quality of the 2G/3G signal may have been measured during the most recent IRAT to 2G/3G.
  • 2G/3G signal quality may be a measurement of SNR and/or other attributes of the 2G/3G signal and a 2G/3G minimum threshold may be a value associated with minimum 2G/3G signal quality.
  • a signal quality of a 2G/3G signal being at or above a minimum 2G/3G threshold may indicate the 2G/3G signal is “good” .
  • a signal quality of a 2G/3G signal being below a minimum 2G/3G threshold may indicate the 2G/3G signal is “bad” .
  • the processor may set the wireless device to 2G/3G only mode in block 518.
  • the wireless device may perform only 2G/3G operations and may prevent IRAT to 4G.
  • the processor may set the wireless device to 4G only mode in block 520.
  • the wireless device may perform only 4G operations and may prevent IRAT to 2G/3G.
  • the processor may determine whether a 4G cell ID of a current 4G cell the wireless device is camped on has changed or a screen of the wireless device transitioned to an ON state in determination block 522.
  • the processor may continue to determine whether a 4G cell ID of a current 4G cell the wireless device is camped on has changed or a screen of the wireless device transitioned to an ON state in determination block 522.
  • a 4G cell ID changing may indicate the wireless device has changed cell coverage areas.
  • the change of a screen of the wireless device transitioning to an ON state may indicate a user is interacting with the wireless device and data services may be needed.
  • the processor may set the wireless device to both 4G and 2G/3G mode in block 524.
  • the wireless device may be configured to switch freely between 4G operations and 2G/3G operations. In this manner, both IRAT to 4G and IRAT to 2G/3G may be enabled on the wireless device.
  • FIG. 6 is a process flow diagram of an example method 600 that may be performed as part of the method 500 for avoiding IRAT ping-pong.
  • the method 600 may be implemented by a processor (such as 212, 216, 252 or 260) of a wireless device (such as the wireless device 120, 120a-120e, 200, 320) .
  • the method 600 may be performed in conjunction with the operations of the method 500 (FIG. 5) .
  • the operations of method 600 may be performed as part of the operations for determining whether a detected IRAT to 4G qualifies for counting in determination block 504 in the method 500.
  • the operations of the method 600 may be performed by a processor of a wireless device that is configured to support a 2G/3G mode and a 4G mode.
  • the processor may determine whether the detected IRAT to 4G was caused by a CSFB operation.
  • the processor may determine that the detected IRAT to 4G does not quality for counting in block 606. The processor may then perform operations of block 510 of the method 500 as described.
  • the processor may determine that the detected IRAT to 4G qualifies for counting in block 604. The processor may then perform operations of block 508 of the method 500 as described.
  • FIG. 7 is a process flow diagram of an example method 700 that may be performed as part of the method 500 for avoiding IRAT ping-pong.
  • the method 700 may be implemented by a processor (such as 212, 216, 252 or 260) of a wireless device (such as the wireless device 120, 120a-120e, 200, 320) .
  • the method 700 may be performed in conjunction with the operations of the methods 500 and/or 600.
  • the operations of the method 700 may be performed as part of the operations for determining whether a detected IRAT to 4G qualifies for counting in determination block 504 of the method 500.
  • the processor may determine whether a time between a last IRAT to 4G and the detected IRAT to 4G is less than or equal to a predefined time interval.
  • the predefined time interval may be an amount of time associated with detecting a potential IRAT ping-pong condition, such as a minute, etc.
  • the processor may compare the most recent stored indication of an IRAT to 4G to the prior stored indication of an IRAT to 4G and may determine a time between a last IRAT to 4G and the detected IRAT to 4G based on the times (e.g., system times) in the stored indications.
  • the processor may determine that the detected IRAT to 4G does not quality for counting in block 606. The processor may then perform operations of block 510 of the method 500 as described.
  • the processor may determine whether a 4G cell ID of a current 4G cell the wireless device is camped on has changed in determination block 704. For example, the processor may compare the most recent stored indication of an IRAT to 4G to the prior stored indication of an IRAT to 4G and determine whether the 4G cell ID has changed or not based on the 4G cell ID being the same for both indications (not changed) or different (changed) .
  • the processor may determine that the detected IRAT to 4G does not quality for counting in block 606. The processor may then perform operations of block 510 of the method 500 as described.
  • the processor may determine that the detected IRAT to 4G qualifies for counting in block 604. The processor may then perform operations of block 508 of the method 500 as described.
  • FIG. 8 is a component block diagram of a network computing device 800 suitable for use with various embodiments.
  • Such network computing devices may include at least the components illustrated in FIG. 8.
  • the network computing device 800 may include a processor 801 coupled to volatile memory 802 and a large capacity nonvolatile memory, such as a disk drive 803.
  • the network computing device 800 may also include a peripheral memory access device such as a floppy disc drive, compact disc (CD) or digital video disc (DVD) drive 806 coupled to the processor 801.
  • the network computing device 800 may also include network access ports 804 (or interfaces) coupled to the processor 801 for establishing data connections with a network, such as the Internet and/or a local area network coupled to other system computers and servers.
  • a network such as the Internet and/or a local area network coupled to other system computers and servers.
  • the network computing device 800 may include one or more antennas 807 for sending and receiving electromagnetic radiation that may be connected to a wireless communication link.
  • the network computing device 800 may include additional access ports, such as USB, Firewire, Thunderbolt, and the like for coupling to peripherals, external memory, or other devices.
  • FIG. 9 is a component block diagram of a wireless device 900 suitable for use with various embodiments.
  • various embodiments may be implemented on a variety of wireless devices 900 (e.g., the wireless device 120a-120e, 200, 320, 120) , an example of which is illustrated in FIG. 9 in the form of a smartphone.
  • the wireless device 900 may include a first SOC 202 (e.g., a SOC-CPU) coupled to a second SOC 204 (e.g., a 5G capable SOC) .
  • the first and second SOCs 202, 204 may be coupled to internal memory 424, 916, a display 912, and to a speaker 914.
  • the wireless device 900 may include an antenna 904 for sending and receiving electromagnetic radiation that may be connected to a wireless transceiver 266 coupled to one or more processors in the first and/or second SOCs 202, 204.
  • the wireless device 900 may also include menu selection buttons or rocker switches 920 for receiving user inputs.
  • the wireless device 900 also includes a sound encoding/decoding (CODEC) circuit 910, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound.
  • CODEC sound encoding/decoding
  • one or more of the processors in the first and second SOCs 202, 204, wireless transceiver 266 and CODEC 910 may include a digital signal processor (DSP) circuit (not shown separately) .
  • DSP digital signal processor
  • the processors of the wireless network computing device 800 and the wireless device 900 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of the various embodiments described below.
  • multiple processors may be provided, such as one processor within an SOC 204 dedicated to wireless communication functions and one processor within an SOC 202 dedicated to running other applications.
  • Software applications may be stored in the memory 424, 916 before they are accessed and loaded into the processor.
  • the processors may include internal memory sufficient to store the application software instructions.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a wireless device and the wireless device may be referred to as a component.
  • One or more components may reside within a process and/or thread of execution and a component may be localized on one processor or core and/or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions and/or data structures stored thereon. Components may communicate by way of local and/or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, and/or process related communication methodologies.
  • Such services and standards include, e.g., third generation partnership project (3GPP) , LTE systems, second generation wireless mobile communication technology (2G) , third generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) , global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general Packet Radio service (GPRS) , code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA1020TM) , enhanced data rates for GSM evolution (EDGE) , advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless telecommunications (DECT) , Worldwide Interoperability for Microwave Access (WiMAX) , wireless
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium.
  • the operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium.
  • Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor.
  • non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media.
  • the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments include systems and methods for avoiding inter-radio transfer (IRAT) Ping-Pong by a processor of a wireless device configured to support a Second Generation (2G) /Third Generation (3G) mode and a Fourth Generation (4G) mode. Various embodiments may include determining whether an IRAT counter exceeds a maximum counter value, wherein the IRAT counter tracks a total number of counted IRAT to 4G events, determining whether a signal quality of a 4G signal is at or above a minimum 4G threshold in response to determining that the IRAT counter exceeds the maximum counter value, and setting the wireless device to a 4G only mode in response to determining that the signal quality of the 4G signal is at or above the minimum 4G threshold.

Description

A Method To Avoid IRAT ping-pong And Save Power BACKGROUND
Second Generation (2G) technologies, such as Global System for Mobile Communications (GSM) , General Packet Radio Service (GPRS) , etc., Third Generation (3G) technologies, such as Universal Mobile Telecommunications System (UMTS) , Wideband Code Division Multiple Access (W-CDMA) , GSM Enhanced Data rates for Global Evolution (EDGE) , etc., Fourth Generation (4G) technologies, such as Long Term Evolution (LTE) , LTE Advanced, Mobile Worldwide Interoperability for Microwave Access (WiMAX) , etc., Fifth Generation (5G) technologies, such as 5G new radio (NR) (5GNR) , etc., and other communication technologies allow wireless devices to communicate information in a variety of different types of networks.
With the prevalence of different technologies, many wireless devices are configured to operate in two or more different modes to support service via two or more different radio access technologies (RATs. ) . Such wireless devices are referred to as “multimode. ” A common multimode configuration is a wireless device configured to support at least both a 4G mode of operation and a 2G/3G mode of operation. Such a multimode configuration in which a 4G mode and a 2G/3G mode are supported by the wireless device can support circuit switched fallback (CSFB) by the wireless device, as 2G/3G radio access networks (RANs) can support circuit switched (CS) calls, while 4G RANs can only support packet switched (PS) calls.
The different available communication technologies, such as 2G/3G, 4G, 5G, etc., are enabling many different network implementations. One such network implementation is a radio access network (RAN) providing both 2G/3G support (e.g., via 2G/3G cells, such as UMTS Terrestrial RAN (UTRAN) base stations (nodeBs) ) and 4G support (e.g., via 4G cells, such as LTE Evolved nodeBs (eNodeBs or eNBs) ) .
SUMMARY
Various aspects include systems and methods for avoiding repeated inter-radio transfer (IRAT) thrashing or “ping-pong” operations by a processor of a wireless device configured to support a Second Generation (2G) /Third Generation (3G) mode and a Fourth  Generation (4G) mode. Various aspects may include determining whether an IRAT counter exceeds a maximum counter value, in which the IRAT counter tracks a total number of counted IRAT to 4G IRAT events within a predefined time interval, determining whether a signal quality of a 4G signal is at or above a minimum 4G threshold in response to determining that the IRAT counter exceeds the maximum counter value, and setting the wireless device to a 4G only mode in response to determining that the signal quality of the 4G signal is at or above the minimum 4G threshold. Various aspects may further include determining whether a signal quality of a 2G/3G signal is at or above a minimum 2G/3G threshold in response to determining that the signal quality of the 4G signal is below the minimum 4G threshold, and setting the wireless device to a 2G/3G only mode in response to determining that the signal quality of the 2G/3G signal is at or above the minimum 2G/3G threshold. Various aspects may further include setting the wireless device to the 4G only mode in response to determining that the signal quality of the 2G/3G signal is below the minimum 2G/3G threshold.
Various aspects may further include, in the 4G only mode or the 2G/3G only mode, determining whether a 4G cell identifier (4G cell ID) of a current 4G cell the wireless device is camped on has changed or a screen of the wireless device transitioned to an ON state, and setting the wireless device to a both 4G and 2G/3G mode in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has changed or the screen of the wireless device transitioned to the ON state.
Various aspects may further include detecting an IRAT to 4G, determining whether the detected IRAT to 4G qualifies for counting, incrementing the IRAT counter in response to determining that the detected IRAT to 4G qualifies for counting, and resetting the IRAT counter to zero in response to determining that the detected IRAT to 4G does not qualify for counting. In some aspects, determining whether the detected IRAT to 4G qualifies for counting may include determining whether the detected IRAT to 4G was caused by a circuit switched fall back (CSFB) operation, and determining that the detected IRAT to 4G does not quality for counting in response to determining that the detected IRAT to 4G was caused by a CSFB operation. In some aspects, determining whether the detected IRAT to 4G qualifies for counting may include determining whether a time between a last IRAT to 4G and the detected IRAT to 4G is less than or equal to the predefined time interval, determining  that the detected IRAT to 4G does not quality for counting in response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is greater than the predefined time interval, determining whether a 4G cell ID of a current 4G cell the wireless device is camped on has changed in response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is less than or equal to the predefined time interval, determining that the detected IRAT to 4G qualifies for counting in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has not changed, and determining that the detected IRAT to 4G does not qualify for counting in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has changed.
Further aspects may include a wireless device having a processor configured to perform one or more operations of any of the methods summarized above. Further aspects may include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a wireless device to perform operations of any of the methods summarized above. Further aspects include a wireless device having means for performing functions of any of the methods summarized above. Further aspects include a system-on-chip for use in a wireless device that includes a processor configured to perform one or more operations of any of the methods summarized above. Further aspects include a system in a package that includes two systems on chip for use in a wireless device that includes a processor configured to perform one or more operations of any of the methods summarized above.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments of the claims, and together with the general description given above and the detailed description given below, serve to explain the features of the claims.
FIG. 1 is a system block diagram illustrating an example communication system suitable for implementing any of the various embodiments.
FIG. 2 is a component block diagram illustrating an example computing and wireless modem system suitable for implementing any of the various embodiments.
FIG. 3 is a component block diagram illustrating a software architecture including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments.
FIG. 4 is a component block diagram illustrating a system configured for wireless communication in accordance with various embodiments.
FIG. 5 is a process flow diagram illustrating a method for avoiding inter-radio transfer (IRAT) ping-pong in accordance with various embodiments.
FIG. 6 is a process flow diagram illustrating a method for determining whether the detected IRAT to Fourth Generation (4G) qualifies for counting in accordance with various embodiments.
FIG. 7 is a process flow diagram illustrating a method for determining whether the detected IRAT to 4G qualifies for counting in accordance with various embodiments.
FIG. 8 is a component block diagram of a network computing device suitable for use with various embodiments.
FIG. 9 is a component block diagram of a wireless device suitable for use with various embodiments.
DETAILED DESCRIPTION
Various embodiments will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and embodiments are for illustrative purposes, and are not intended to limit the scope of the claims.
Various embodiments include systems and methods for avoiding repeated inter-radio transfer (IRAT) thrashing or “ping-pong” by a processor of a wireless device configured to support a Second Generation (2G) /Third Generation (3G) mode and a Fourth Generation (4G) mode. Various embodiments may provide power savings for a wireless device, especially in an unstable network environment, by preventing IRAT ping-ponging. By avoiding IRAT ping-ponging, various embodiments may enable a modem of a wireless device to enter a state other than a searching state, such as an idle state. In the state other  than a searching state, the modem may use less power than is used in the searching state and the power consumption by the modem when IRAT ping-pong is avoided may be reduced in comparison to the power consumption of the modem that would have occurred during IRAT ping-pong when the modem stayed in the searching state.
The term “wireless device” is used herein to refer to any one or all of cellular telephones, smartphones, portable computing devices, personal or mobile multi-media players, laptop computers, tablet computers, smartbooks, ultrabooks, palmtop computers, wireless electronic mail receivers, multimedia Internet-enabled cellular telephones, wireless router devices, wireless appliances, medical devices and equipment, biometric sensors/devices, wearable devices including smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart rings, smart bracelets, etc. ) , entertainment devices (e.g., wireless gaming controllers, music and video players, satellite radios, etc. ) , wireless-network enabled Internet of Things (IoT) devices including smart meters/sensors, industrial manufacturing equipment, large and small machinery and appliances for home or enterprise use, wireless communication elements within autonomous and semiautonomous vehicles, wireless devices affixed to or incorporated into various mobile platforms, global positioning system devices, and similar electronic devices that include a memory, wireless communication components and a programmable processor.
The term “system-on-chip” (SOC) is used herein to refer to a single integrated circuit (IC) chip that contains multiple resources and/or processors integrated on a single substrate. A single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions. A single SOC may also include any number of general purpose and/or specialized processors (digital signal processors, modem processors, video processors, etc. ) , memory blocks (e.g., ROM, RAM, Flash, etc. ) , and resources (e.g., timers, voltage regulators, oscillators, etc. ) . SOCs may also include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
The term “system in a package” (SIP) may be used herein to refer to a single module or package that contains multiple resources, computational units, cores and/or processors on two or more IC chips, substrates, or SOCs. For example, a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration. Similarly, the SIP may include one or more multi-chip modules (MCMs) on  which multiple ICs or semiconductor dies are packaged into a unifying substrate. A SIP may also include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single wireless device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
As used herein, the terms “network, ” “system, ” “wireless network, ” “cellular network, ” and “wireless communication network” may interchangeably refer to a portion or all of a wireless network of a carrier associated with a wireless device and/or subscription on a wireless device. The techniques described herein may be used for various wireless communication networks, such as Code Division Multiple Access (CDMA) , time division multiple access (TDMA) , FDMA, orthogonal FDMA (OFDMA) , single carrier FDMA (SC-FDMA) and other networks. In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support at least one radio access technology, which may operate on one or more frequency or range of frequencies. For example, a CDMA network may implement Universal Terrestrial Radio Access (UTRA) (including Wideband Code Division Multiple Access (WCDMA) standards) , CDMA2000 (including IS-2000, IS-95 and/or IS-856 standards) , etc. In another example, a TDMA network may implement GSM Enhanced Data rates for GSM Evolution (EDGE) . In another example, an OFDMA network may implement Evolved UTRA (E-UTRA) (including LTE standards) , IEEE 802.11 (WiFi) , IEEE 802.16 (WiMAX) , IEEE 802.20, 
Figure PCTCN2020084750-appb-000001
etc. Reference may be made to wireless networks that use LTE standards, and therefore the terms “Evolved Universal Terrestrial Radio Access, ” “E-UTRAN” and “eNodeB” may also be used interchangeably herein to refer to a wireless network. However, such references are provided merely as examples, and are not intended to exclude wireless networks that use other communication standards, such as networks using 2G/3G standards, 5GNR standards, etc.
As used herein, the term “RF resource” refers to the components in a communication device that send, receive, and decode radio frequency signals. An RF resource typically includes a number of components coupled together that transmit RF signals that are referred to as a “transmit chain, ” and a number of components coupled together that receive and process RF signals that are referred to as a “receive chain. ”
A multimode wireless device configured to support a 2G/3G mode and a 4G mode can switch between modes (e.g., 2G/3G mode to 4G mode or 4G mode to 2G/3G mode) in a RAN providing both 2G/3G support and 4G support. In the 2G/3G mode of operation the wireless device can register for 2G/3G service with a 2G/3G cell and camp on that 2G/3G cell to monitor the 2G/3G cell for system information, paging information, and/or to make measurements of that 2G/3G cell. In the 4G mode of operation the wireless device can register for 4G service with a 4G cell and camp on that 4G cell to monitor the 4G cell for system information, paging information, and/or to make measurements of that 4G cell. Switching between modes of operation to attempt registration and camping on a cell of a selected RAT may be referred to as an inter-radio transfer (IRAT) procedure. For example, switching between a 2G/3G mode of operation in which the wireless device is registered for 2G/3G service and camped on a 2G/3G cell to a 4G mode of operations in which the wireless device attempts to register for 4G service and camp on a 4G cell can be referred to as IRAT to 4G. As another example, switching between a 4G mode of operation in which the wireless device is registered for 4G service and camped on a 4G cell to a 2G/3G mode of operations in which the wireless device attempts to register for 2G/3G service and camp on a 2G/3G cell can be referred to as IRAT to 2G/3G.
IRAT to 4G and/or IRAT to 2G/3G by a multimode wireless device configured to support a 2G/3G mode and a 4G mode can be caused by different scenarios (e.g., a CSFB operation, loss of signal, loss of signal stability, network settings, etc. ) . In situations in which the 4G mode is the higher priority mode but the 4G signal has a minimal quality of signal (QoS) , such as unstable or intermittent reception, or QoS below a minimum signal quality metric, the wireless device may frequently switch back and forth between the two RATs in a process referred to herein as IRAT ping-pong. In such situations, the wireless device may repeatedly and frequently IRAT to 2G/3G due to the 4G QoS issue, IRAT back to 4G because 4G mode is of higher priority, and then IRAT to 2G/3G again due to the 4G QoS issue. The repeated IRATs performed between a 2G/3G network and a 4G network can continue in such a manner for a period of time, sometimes as long as a few hours, especially when the wireless device is stationary so the wireless device repeatedly connects to the same 4G cell and thus repeatedly encounters the same 4G QoS issues. This frequent performance of IRATs between 2G/3G and 4G networks can cause the modem of the wireless device to operate in a searching mode frequently, causing elevated battery drain in the wireless device  compared to when the modem remains camped on one RAN, as the modem uses more power in the searching mode than in an idle state.
IRAT ping-pong may involve a series of actions by a wireless device. Initially the wireless device enters a 4G mode, registers with a 4G cell, and camps on that 4G cell to monitor for system information, paging information, and/or to make measurements of that 4G cell. Next, the wireless device performs an IRAT to 2G/3G by scanning 2G/3G frequencies to identify a suitable 2G/3G cell, registering with a 2G/3G cell, and camping on that 2G/3G cell to monitor for system information, paging information, and/or to make measurements of that 2G/3G cell. The IRAT to 2G/3G may be in response to the 4G signal from the 4G cell having marginal signal strength or QoS characteristics, such as being below a minimum 4G threshold (e.g., having an undesirable signal to noise ratio (SNR) ) . Next, the wireless device performs an IRAT to 4G by scanning 4G frequencies to identify a suitable 4G cell, registering with a 4G cell, and camping on that 4G cell to monitor for system information, paging information, and/or to make measurements of that 4G cell. These IRAT operations may then be repeated so long as the signal strength of the 4G cell remains the same (e.g., when the wireless device remains in the same place) , resulting in the IRAT ping-pong between IRAT to 2G/3G and IRAT to 4G and back again.
IRAT ping-pong can occur in various scenarios in wireless networks. One cause of IRAT ping-pong can be instability of a 4G signal in a network while a wireless device is set to give 4G mode of operations the highest priority on the wireless device. As the 4G signal is unstable, the wireless device will IRAT to 2G/3G upon entering 4G mode, but soon IRAT to 4G after entering 2G/3G mode because 4G has the highest priority. Another cause of IRAT ping-pong can be network measurement settings that control how often a wireless device is to make measurements of 4G cells. For example, the network may set the network measurement settings such that a wireless device is required to frequently measure a SNR of a 4G signal and the wireless device may IRAT to 4G frequently to make the required SNR measurements.
Regardless of the cause, IRAT ping-pong results in switching between modes of operation to attempt registration and camping on a cell of a selected RAT in an IRAT procedure that can keep the modem in a searching state and increase power consumption by the modem, and therefore the wireless device. While some IRAT procedures may be needed,  such as IRAT procedures to support CSFB, IRAT procedures when a wireless device enters a new cell coverage area, etc., IRAT procedures associated with IRAT ping-pong cause unnecessary battery drain. The problem of unnecessary battery drain caused by IRAT ping-pong can be a particular problem when a wireless device is stationary and the screen of a wireless device is in the off state.
Various embodiments may provide systems and methods for avoiding IRAT ping-pong by a processor of a wireless device configured to support a 2G/3G mode and a 4G mode. Various embodiments may include tracking a number of IRAT to 4G (and/or to 2G/3G) events during a predefined time interval and setting the wireless device to a 4G only mode or a 2G/3G only mode in response to the number of IRAT to 4G events exceeding a maximum counter value within the predefined time interval. Setting the wireless device to a 4G only mode or a 2G/3G only mode according to various embodiments may avoid IRAT ping-pong because the wireless device remains in that mode without performing IRAT operations.
To illustrate various embodiments, consider the example of a wireless device configured to support a 2G/3G mode and a 4G mode initially camped on a 4G cell and registered for 4G network service while a screen of the wireless device is in an off state. The wireless device may initially be operating in a both 4G and 2G/3G mode in which the wireless device may be configured to switch freely between 4G operations and 2G/3G operations. At the time the wireless device camped on the 4G cell, a processor (e.g., an application processor (AP) , modem processor, etc. ) of the wireless device may have stored an indication of an IRAT to 4G including the current 4G cell identifier (4G cell ID) (e.g., the 4G cell ID of the 4G cell the wireless device camped on) and a time (e.g., a system time) at which the wireless device camped on that 4G cell.
Continuing with this example, the wireless device may IRAT to 2G/3G due to 4G signal issues. During the IRAT to 2G/3G, the wireless device may transition to a 2G/3G mode, scan 2G/3G frequencies to find a suitable 2G/3G cell, camp on a 2G/3G cell and register for 2G/3G network service and monitor for system information, monitor for paging information, and/or make measurements of that 2G/3G cell. When the wireless device camps on the 2G/3G cell, the processor (e.g., the AP, modem processor, etc. ) of the wireless device  may store an indication of an IRAT to 2G/3G including a time (e.g., a system time) at which the wireless device camped on that 2G/3G cell (or starts the IRAT procedure) .
After a period of time, the wireless device may perform an IRAT to 4G because 4G is the prioritized wireless technology. During the IRAT to 4G, the wireless device may transition to a 4G mode, scan 4G frequencies to find a suitable 4G cell, camp on a 4G cell and register for 4G network service, and monitor for system information, monitor for paging information, and/or make measurements of that 4G cell. At the time the wireless device camps on the 4G cell (or starts the IRAT procedure) , the processor (e.g., the AP, modem processor, etc. ) of the wireless device may have stored an indication of an IRAT to 4G including the current 4G cell identifier (4G cell ID) (e.g., the 4G cell ID of the 4G cell the wireless device camped on) and a time (e.g., a system time) at which the wireless device camped on that 4G cell. IRAT to 4G and/or IRAT to 2G/3G may be detected by the processor (e.g., the AP, modem processor, etc. ) of the wireless device in various manners, such as by IRAT reporting from a modem, monitoring radio resources of the wireless devices, and/or in any other manner.
Continuing with the example, the processor (e.g., the AP, modem processor, etc. ) of the wireless device may perform operations to determine whether or not IRAT ping-pong may be occurring in response to detecting the IRAT to 4G. The processor (e.g., the AP, modem processor, etc. ) of the wireless device may compare the most recent stored indication of an IRAT to 4G to the prior stored indication of an IRAT to 4G. Specifically, the processor (e.g., the AP, modem processor, etc. ) of the wireless device may determine a time between the last IRAT to 4G and the detected IRAT to 4G based on the times (e.g., system times) in the stored indications and also determine whether the 4G cell ID is the same for both indications (e.g., whether the 4G cell ID changed) . In response to determining that the time passed (e.g., the time between the last IRAT to 4G and the detected IRAT to 4G) is less than or equal to a predefined time interval, such as a minute, etc., and that the 4G cell ID has not changed, the processor (e.g., the AP, modem processor, etc. ) of the wireless device may determine that the detected IRAT to 4G qualifies for counting and may increment an IRAT counter that tracks a total number of counted IRAT to 4G events. In response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is greater than the predefined time interval, such as a minute, etc., or that the 4G cell ID has changed, the  processor (e.g., the AP, modem processor, etc. ) of the wireless device may determine that the detected IRAT to 4G does not qualify for counting and may reset the IRAT counter that tracks a total number of counted IRAT to 4G events to zero. The processor (e.g., the AP, modem processor, etc. ) of the wireless device may also determine whether the detected IRAT to 4G was caused by a CSFB operation. In response to determining that the detected IRAT to 4G was caused by a CSFB operation, the processor (e.g., the AP, modem processor, etc. ) of the wireless device may determine that the detected IRAT to 4G does not qualify for counting and may reset the IRAT counter that tracks a total number of counted IRAT to 4G events to zero.
Continuing with the example, the processor (e.g., the AP, modem processor, etc. ) of the wireless device may perform operations to determine whether the IRAT counter that tracks a total number of counted IRAT to 4G events exceeds a maximum counter value. The maximum counter value may be any selected value to avoid IRAT ping-pong, such as 1, 2, or more. In response to determining that the IRAT counter exceeds the maximum counter value, the processor may determine whether a signal quality of a 4G signal is at or above a minimum 4G threshold and determine whether a signal quality of a 2G/3G signal is at or above a minimum 2G/3G threshold. The signal qualities of the 2G/3G signal and/or the 4G signal may have been measured during the most recent respective IRAT to 2G/3G and/or IRAT to 4G. For example, signal qualities may be measurements of SNR and/or other attributes of the signals and minimum thresholds may be values associated with minimum signal qualities. A signal quality of a 4G signal being at or above a minimum 4G threshold may indicate the 4G signal is “good” . A signal quality of a 4G signal being below a minimum 4G threshold may indicate the 4G signal is “bad” . A signal quality of a 2G/3G signal being at or above a minimum 2G/3G threshold may indicate the 2G/3G signal is “good” . A signal quality of a 2G/3G signal being below a minimum 2G/3G threshold may indicate the 2G/3G signal is “bad” . In various embodiments, “good” signals may be preferred for communications over “bad” signals. In response to determining that the signal quality of the 4G signal is at or above the minimum 4G threshold, the processor of the wireless device may set the wireless device to a 4G only mode. In response to determining that the signal quality of the 2G/3G signal is at or above the minimum 2G/3G threshold, the processor of the wireless device may set the wireless device to a 2G/3G only mode. In response to determining that both the signal quality of the 4G signal is below the minimum  4G threshold and the signal quality of the 2G/3G signal is below the minimum 2G/3G threshold, the processor (e.g., the AP, modem processor, etc. ) of the wireless device may set the wireless device to a 4G only mode. In a 4G only mode the wireless device may perform only 4G operations and may prevent IRAT to 2G/3G. In a 2G/3G only mode the wireless device may perform only 2G/3G operations and may prevent IRAT to 4G.
Continuing with the example, while in 4G only mode or 2G/3G only mode, the processor of the wireless device may monitor whether a cell ID of the cell on which the wireless device is currently camped changes or the screen of the wireless device transitioned to an ON state. A 4G cell ID changing may indicate the wireless device has changed cell coverage areas. The change of a screen of the wireless device transitioning to an ON state may indicate a user is interacting with the wireless device and data services may be needed. In response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has changed or the screen of the wireless device transitioned to the ON state, the processor (e.g., the AP, modem processor, etc. ) of the wireless device may set the wireless device back to a both 4G and 2G/3G mode in which the wireless device may be configured to switch freely between 4G operations and 2G/3G operations. In this manner, both IRAT to 4G and IRAT to 2G/3G may be reenabled on the wireless device.
FIG. 1 is a system block diagram illustrating an example communication system 100 suitable for implementing any of the various embodiments. The communications system 100 may be a 5G New Radio (NR) network, or any other suitable network, such as 4G network, 2G/3G network, etc.
The communications system 100 may include a heterogeneous network architecture that includes a core network 140 and a variety of mobile devices (illustrated as wireless device 120a-120e in FIG. 1) . The communications system 100 may also include a number of base stations (illustrated as the BS 110a, the BS 110b, the BS 110c, and the BS 110d) and other network entities. A base station is an entity that communicates with wireless devices (mobile devices) , and also may be referred to as a Node B, an LTE Evolved nodeB (eNodeB or eNB) , an access point (AP) , a Radio head, a transmit receive point (TRP) , a New Radio base station (NR BS) , a 5G NodeB (NB) , a Next Generation NodeB (gNodeB or gNB) , or the like. Each base station may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a base station, a  base station Subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
base station 110a-110d may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof. A macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by mobile devices with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by mobile devices with service subscription. A femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by mobile devices having association with the femto cell (for example, mobile devices in a closed subscriber group (CSG) ) . A base station for a macro cell may be referred to as a macro BS. A base station for a pico cell may be referred to as a pico BS. A base station for a femto cell may be referred to as a femto BS or a home BS. In the example illustrated in FIG. 1, a base station 110a may be a macro BS for a macro cell 102a, a base station 110b may be a pico BS for a pico cell 102b, and a base station 110c may be a femto BS for a femto cell 102c. A base station 110a-110d may support one or multiple (for example, three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some examples, a cell may not be stationary, and the geographic area of the cell may move according to the location of a mobile base station. In some examples, the base stations 110a-110d may be interconnected to one another as well as to one or more other base stations or network nodes (not illustrated) in the communications system 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network
The base station 110a-110d may communicate with the core network 140 over a wired or wireless communication link 126. The wireless device 120a-120e may communicate with the base station 110a-110d over a wireless communication link 122.
The wired communication link 126 may use a variety of wired networks (e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections) that may use one or more wired communication protocols, such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
The communications system 100 also may include relay stations (e.g., relay BS 110d) . A relay station is an entity that can receive a transmission of data from an upstream station (for example, a base station or a mobile device) and transmit the data to a downstream station (for example, a wireless device or a base station) . A relay station also may be a mobile device that can relay transmissions for other wireless devices. In the example illustrated in FIG. 1, a relay station 110d may communicate with macro the base station 110a and the wireless device 120d in order to facilitate communication between the base station 110a and the wireless device 120d. A relay station also may be referred to as a relay base station, a relay base station, a relay, etc.
The communications system 100 may be a heterogeneous network that includes base stations of different types, for example, macro base stations, pico base stations, femto base stations, relay base stations, etc. These different types of base stations may have different transmit power levels, different coverage areas, and different impacts on interference in communications system 100. For example, macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
network controller 130 may couple to a set of base stations and may provide coordination and control for these base stations. The network controller 130 may communicate with the base stations via a backhaul. The base stations also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
The  wireless devices  120a, 120b, 120c may be dispersed throughout communications system 100, and each wireless device may be stationary or mobile. A wireless device also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc.
macro base station 110a may communicate with the communication network 140 over a wired or wireless communication link 126. The  wireless devices  120a, 120b, 120c may communicate with a base station 110a-110d over a wireless communication link 122.
The  wireless communication links  122, 124 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical  channels. The  wireless communication links  122 and 124 may utilize one or more Radio access technologies (RATs) . Examples of RATs that may be used in a wireless communication link include 2G, 2G/3G, 3GPP LTE, 3G, 4G, 5G (e.g., NR) , GSM, CDMA, WCDMA, Worldwide Interoperability for Microwave Access (WiMAX) , Time Division Multiple Access (TDMA) , and other mobile telephony communication technologies cellular RATs. Further examples of RATs that may be used in one or more of the various  wireless communication links  122, 124 within the communication system 100 include medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire, and relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum Resource allocation (called a “resource block” ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast File Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 Resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While descriptions of some embodiments may use terminology and examples associated with LTE technologies, various embodiments may be applicable to other wireless communications systems, such as a new Radio (NR) or 5G network. NR may utilize OFDM with a cyclic prefix (CP) on the uplink (UL) and downlink (DL) and include support for half-duplex operation using time division duplex (TDD) . A single component carrier bandwidth of 100 MHz may be supported. NR Resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 millisecond (ms) duration. Each Radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a  length of 0.2 ms. Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched. Each subframe may include DL/UL data as well as DL/UL control data. Beamforming may be supported and beam direction may be dynamically configured. Multiple Input Multiple Output (MIMO) transmissions with precoding may also be supported. MIMO configurations in the DL may support up to eight transmit antennas with multi-layer DL transmissions up to eight streams and up to two streams per wireless device. Multi-layer transmissions with up to 2 streams per wireless device may be supported. Aggregation of multiple cells may be supported with up to eight serving cells. Alternatively, NR may support a different air interface, other than an OFDM-based air interface.
Some mobile devices may be considered machine-type communication (MTC) or Evolved or enhanced machine-type communication (eMTC) mobile devices. MTC and eMTC mobile devices include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some mobile devices may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices. A wireless device 120a-e may be included inside a housing that houses components of the wireless device, such as processor components, memory components, similar components, or a combination thereof.
In general, any number of communication systems and any number of wireless networks may be deployed in a given geographic area. Each communications system and wireless network may support a particular Radio access technology (RAT) and may operate on one or more frequencies. A RAT also may be referred to as a Radio technology, an air interface, etc. A frequency also may be referred to as a carrier, a frequency channel, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between communications systems of different RATs. In some cases, 2G/3G, 2G/3G/4G/LTE, 4G/LTE, and/or 5G/NR RAT networks may be deployed.
In some embodiments, two or more mobile devices 120a-e (for example, illustrated as the wireless device 120a and the wireless device 120e) may communicate  directly using one or more sidelink channels 124 (for example, without using a base station 110 as an intermediary to communicate with one another) . For example, the wireless devices 120a-e may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or similar protocol) , a mesh network, or similar networks, or combinations thereof. In this case, the wireless device 120a-e may perform scheduling operations, Resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110a
FIG. 2 is a component block diagram illustrating an example computing and wireless modem system 200 suitable for implementing any of the various embodiments. Various embodiments may be implemented on a number of single processor and multiprocessor computer systems, including a system-on-chip (SOC) or system in a package (SIP) .
With reference to FIGS. 1 and 2, the illustrated example computing system 200 (which may be a SIP in some embodiments) includes a two  SOCs  202, 204 coupled to a clock 206, a voltage regulator 208, and a wireless transceiver 266 configured to send and receive wireless communications via an antenna (not shown) to/from wireless devices, such as a base station 110a. In some embodiments, the first SOC 202 operate as central processing unit (CPU) of the wireless device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions. In some embodiments, the second SOC 204 may operate as a specialized processing unit. For example, the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (e.g., 5 Gbps, etc. ) , and/or very high frequency short wave length (e.g., 28 GHz mmWave spectrum, etc. ) communications.
The first SOC 202 may include a digital signal processor (DSP) 210, a modem processor 212, a graphics processor 214, an application processor 216, one or more coprocessors 218 (e.g., vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234. The second  SOC 204 may include a 5G modem processor 252, a power management unit 254, an interconnection/bus module 264, the plurality of mmWave transceivers 256, memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
Each  processor  210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores. For example, the first SOC 202 may include a processor that executes a first type of operating system (e.g., FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (e.g., MICROSOFT WINDOWS 10) . In addition, any or all of the  processors  210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
The first and  second SOC  202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser. For example, the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a wireless device. The system components and resources 224 and/or custom circuitry 222 may also include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless devices, external memory chips, etc.
The first and  second SOC  202, 204 may communicate via interconnection/bus module 250. The  various processors  210, 212, 214, 216, 218, may be interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226. Similarly, the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various additional processors 260 via the interconnection/bus module 264. The interconnection/ bus module  226, 250, 264 may include an array of reconfigurable logic gates and/or implement a bus architecture (e.g.,  CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
The first and/or  second SOCs  202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206 and a voltage regulator 208. Resources external to the SOC (e.g., clock 206, voltage regulator 208) may be shared by two or more of the internal SOC processors/cores.
In addition to the example SIP 200 discussed above, various embodiments may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
FIG. 3 is a component block diagram illustrating a software architecture 300 including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments. With reference to FIGS. 1–3, the wireless device 320 may implement the software architecture 300 to facilitate communication between a wireless device 320 (e.g., the wireless device 120a-120e, 200) and the base station 350 (e.g., the base station 110a) of a communication system (e.g., 100) . In various embodiments, layers in software architecture 300 may form logical connections with corresponding layers in software of the base station 350. The software architecture 300 may be distributed among one or more processors (e.g., the  processors  212, 214, 216, 218, 252, 260) . While illustrated with respect to one Radio protocol stack, in a multimode wireless device, the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different mode (e.g., two protocol stacks associated with two modes, respectively, such as a 2G/3G mode and a 4G mode) . While described below with reference to LTE communication layers, the software architecture 300 may support any of variety of standards and protocols for wireless communications, and/or may include additional protocol stacks that support any of variety of standards and protocols wireless communications.
The software architecture 300 may include a Non-Access Stratum (NAS) 302 and an Access Stratum (AS) 304. The NAS 302 may include functions and protocols to support Packet filtering, security management, mobility control, session management, and traffic and signaling between a SIM (s) of the wireless device (e.g., SIM (s) 204) and its core network 140. The AS 304 may include functions and protocols that support communication between  a SIM (s) (e.g., SIM (s) 204) and entities of supported access networks (e.g., a base station) . In particular, the AS 304 may include at least three layers (Layer 1, Layer 2, and Layer 3) , each of which may contain various sub-layers.
In the user and control planes, Layer 1 (L1) of the AS 304 may be a physical layer (PHY) 306, which may oversee functions that enable transmission and/or reception over the air interface. Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc. The physical layer may include various logical channels, including the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared Channel (PDSCH) .
In the user and control planes, Layer 2 (L2) of the AS 304 may be responsible for the link between the wireless device 320 and the base station 350 over the physical layer 306. In the various embodiments, Layer 2 may include a Media Access Control (MAC) sublayer 308, a Radio link Control (RLC) sublayer 310, and a Packet data convergence protocol (PDCP) 312 sublayer, each of which form logical connections terminating at the base station 350.
In the control plane, Layer 3 (L3) of the AS 304 may include a Radio Resource Control (RRC) sublayer 3. While not shown, the software architecture 300 may include additional Layer 3 sublayers, as well as various upper layers above Layer 3. In various embodiments, the RRC sublayer 313 may provide functions including broadcasting system information, paging, and establishing and releasing an RRC signaling connection between the wireless device 320 and the base station 350.
In various embodiments, the PDCP sublayer 312 may provide uplink functions including multiplexing between different Radio bearers and logical channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression. In the downlink, the PDCP sublayer 312 may provide functions that include in-sequence delivery of data packets, duplicate data Packet detection, integrity validation, deciphering, and header decompression.
In the uplink, the RLC sublayer 310 may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and Automatic Repeat  Request (ARQ) . In the downlink, while the RLC sublayer 310 functions may include reordering of data packets to compensate for out-of-order reception, reassembly of upper layer data packets, and ARQ.
In the uplink, MAC sublayer 308 may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid-ARQ (HARQ) operations. In the downlink, the MAC layer functions may include channel mapping within a cell, de-multiplexing, discontinuous reception (DRX) , and HARQ operations.
While the software architecture 300 may provide functions to transmit data through physical media, the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the wireless device 320. In some embodiments, application-specific functions provided by the at least one host layer 314 may provide an interface between the software architecture and the general-purpose processor 206.
In other embodiments, the software architecture 300 may include one or more higher logical layer (e.g., transport, session, presentation, application, etc. ) that provide host layer functions. For example, in some embodiments, the software architecture 300 may include a network layer (e.g., Internet protocol (IP) layer) in which a logical connection terminates at a packet data network (PDN) gateway (PGW) . In some embodiments, the software architecture 300 may include an application layer in which a logical connection terminates at another device (e.g., end user device, server, etc. ) . In some embodiments, the software architecture 300 may further include in the AS 304 a hardware interface 316 between the physical layer 306 and the communication hardware (e.g., one or more RF transceivers) .
FIG. 4 is a component block diagram illustrating a communication system 400 configured for wireless communication in accordance with various embodiments. With reference to FIGS. 1–4, the communication system 400 may include one or more wireless devices 120 and one or more base stations 110 forming a wireless communication network 424, which may provide connections to external resources 422. External resources 422 may include sources of information outside of system 400, external entities participating with the system 400, and/or other resources.
wireless device 120 may be configured by machine-readable instructions 406. Machine-readable instructions 406 may include one or more instruction modules. The instruction modules may include computer program modules. The instruction modules may include one or more of a 4G mode module 408, a 2G/3G mode module 410, an IRAT tracking module 412, a signal measurement module 414, a state detection module 416, and/or other instruction modules.
The 4G mode module 408 may be configured to set the wireless device 120 to a 4G only mode. In a 4G only mode the wireless device 120 may perform only 4G operations and the 4G mode module 408 may prevent IRAT to 2G/3G. The 4G mode module 408 may be configured to set the wireless device 120 to a both 4G and 2G/3G mode in which the 4G mode module 408 may allow the wireless device 120 to switch freely between 4G operations and 2G/3G operations. The 4G mode module 408 may be configured to control operations of the wireless device 120 to perform an IRAT to 4G. During the IRAT to 4G, the wireless device 120 may transition to a 4G mode, register for 4G network service, camp on a 4G cell, and monitor for system information, monitor for paging information, and/or make measurements of that 4G cell.
The 4G mode module 408 may be configured to output an indication of an IRAT to 4G to other modules, such as the 2G/3G mode module 410, the IRAT tracking module 412, and/or the signal measurement module 414. The 4G mode module 408 may be configured to communicate with the IRAT tracking module 412, such as to receive signaling that an IRAT counter exceeds a maximum counter value, etc. The 4G mode module 408 may be configured to communicate with the signal measurement module 414, such as to receive signaling that a signal quality of a 4G signal is at or above a minimum 4G threshold, a signal quality of a 4G signal is below a minimum 4G threshold, a signal quality of the 2G/3G signal is below the minimum 2G/3G threshold, and/or a signal quality of the 2G/3G signal is at or above a minimum 2G/3G threshold. The 4G mode module 408 may be configured to communicate with the signal measurement module 414, such as to receive signaling that a 4G cell ID of a current 4G cell on which the wireless device 120 is camped has changed, etc. The 4G mode module 408 may be configured to communicate with the state detection module 416, such as to receive signaling that a screen of the wireless device 120 has transitioned to an ON state.
The 2G/3G mode module 410 may be configured to set the wireless device 120 to 2G/3G only mode. In a 2G/3G only mode the wireless device 120 may perform only 2G/3G operations and the 2G/3G mode module 410 may prevent IRAT to 4G. The 2G/3G mode module 410 may be configured to set the wireless device 120 to a both 4G and 2G/3G mode in which the 2G/3G mode module 410 may allow the wireless device 120 to switch freely between 2G/3G operations and 4G operations. The 2G/3G mode module 410 may be configured to control operations of the wireless device 120 to perform an IRAT to 2G/3G. During an IRAT to 2G/3G, the wireless device 120 may transition to a 2G/3G mode, register for 2G/3G network service, camp on a 2G/3G cell, and monitor for system information, monitor for paging information, and/or make measurements of that 2G/3G cell.
The 2G/3G mode module 410 may be configured to output an indication of an IRAT to 2G/3G to other modules, such as the 4G mode module 408, the IRAT tracking module 412, and/or the signal measurement module 414. The 2G/3G mode module 410 may be configured to may be configured to communicate with the IRAT tracking module 412, such as to receive signaling that an IRAT counter exceeds a maximum counter value, etc. The 2G/3G mode module 410 may be configured to communicate with the signal measurement module 414, such as to receive signaling that a signal quality of a 4G signal is at or above a minimum 4G threshold, a signal quality of a 4G signal is below a minimum 4G threshold, a signal quality of the 2G/3G signal is below the minimum 2G/3G threshold, and/or a signal quality of the 2G/3G signal is at or above a minimum 2G/3G threshold. The 2G/3G mode module 410 may be configured to communicate with the signal measurement module 414, such as to receive signaling that that a 4G cell ID of a current 4G cell the wireless device 120 is camped on has changed, etc. The 2G/3G mode module 410 may be configured to communicate with the state detection module 416, such as to receive signaling that a screen of the wireless device 120 has transitioned to an ON state.
The IRAT tracking module 412 may be configured to detect an IRAT to 4G and/or an IRAT to 2G/3G, such as in response to signaling from the 4G mode module 408 and/or the 2G/3G module 410. The IRAT tracking module 412 may be configured to store an indication of an IRAT to 4G including the current 4G cell identifier (4G cell ID) (e.g., the 4G cell ID of the 4G cell the wireless device camped on) and a time (e.g., a system time) at which the wireless device camped on that 4G cell. The IRAT tracking module 412 may be  configured to store an indication of an IRAT to 2G/3G including a time (e.g., a system time) at which the wireless device camped on that 2G/3G cell.
The IRAT tracking module 412 may be configured to determine whether a detected IRAT to 4G qualifies for counting. The IRAT tracking module 412 may be configured to determine whether an IRAT counter exceeds a maximum counter value, wherein the IRAT counter tracks a total number of counted IRAT to 4G events.
The IRAT tracking module 412 may be configured to determine whether the detected IRAT to 4G was caused by a CSFB operation. The IRAT tracking module 412 may be configured to determine that the detected IRAT to 4G does not quality for counting in response to determining that the detected IRAT to 4G was caused by a CSFB operation.
The IRAT tracking module 412 may be configured to determine whether a time between a last IRAT to 4G and the detected IRAT to 4G is less than or equal to a predefined time interval, such as a minute, etc. The IRAT tracking module 412 may be configured to determine a time between a last IRAT to 4G and the detected IRAT to 4G based on the times (e.g., system times) in the stored indications and/or determine whether a 4G cell ID is the same for both indications (e.g., whether the 4G cell ID has changed or not) . The IRAT tracking module 412 may be configured to determine that the detected IRAT to 4G does not quality for counting in response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is greater than the predefined time interval. The IRAT tracking module 412 may be configured to determine whether a 4G cell ID of a current 4G cell the wireless device is camped on has changed in response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is less than or equal to the predefined time interval. The IRAT tracking module 412 may be configured to determine that the detected IRAT to 4G qualifies for counting in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has not changed. The IRAT tracking module 412 may be configured to determine that the detected IRAT to 4G does not qualify for counting in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has changed.
The IRAT tracking module 412 may be configured to increment an IRAT counter in response to determining that a detected IRAT to 4G qualifies for counting. The IRAT  tracking module 412 may be configured to reset an IRAT counter to zero in response to determining that the detected IRAT to 4G does not qualify for counting.
The IRAT tracking module 412 may be configured to receive an indication of an IRAT to 4G and/or IRAT to 2G/3G from other modules, such as the  4G mode module  408, 2G/3G mode module 410, and/or the signal measurement module 414. The IRAT tracking module 412 may be configured to communicate with the 4G mode module 408 and/or the 2G/3G mode module, such as to send signaling that an IRAT counter exceeds a maximum counter value, etc. The IRAT tracking module 412 may be configured to communicate with the signal measurement module 414, such as to receive signaling that that a 4G cell ID of a current 4G cell the wireless device 120 is camped on has changed, etc.
The signal measurement module 414 may be configured to determine a signal quality of a 4G signal and/or a 2G/3G signal. The signal measurement module 414 may be configured to determine whether a signal quality of a 4G signal relative to a minimum 4G threshold, such as at or below, above, etc. The signal measurement module 414 may be configured to determine whether a signal quality of a 2G/3G signal relative to a minimum 2G/3G threshold, such as at or below, above, etc. The signal measurement module 414 may be configured to determine a 4G cell ID of a current 4G cell the wireless device 120 is camped on.
The signal measurement module 414 may be configured to receive an indication of an IRAT to 4G and/or an IRAT to 2G/3G from other modules, such as the 4G mode module 408, the 2G/3G mode module 410, and/or the IRAT tracking module 412. The signal measurement module 414 may be configured to communicate with the IRAT tracking module 412, such as to receive signaling that an IRAT counter exceeds a maximum counter value, etc. The signal measurement module 414 may be configured to communicate with the  4G mode module  408, 2G/3G mode module, and/or IRAT tracking module 410, such as to send signaling that a signal quality of a 4G signal is at or above a minimum 4G threshold, a signal quality of a 4G signal is below a minimum 4G threshold, a signal quality of the 2G/3G signal is below the minimum 2G/3G threshold, and/or a signal quality of the 2G/3G signal is at or above a minimum 2G/3G threshold. The signal measurement module 414 may be configured to communicate with the  4G mode module  408, 2G/3G mode module, and/or IRAT tracking  module 410, such as to send signaling that that a 4G cell ID of a current 4G cell the wireless device 120 is camped on has changed, etc.
The state detection module 416 may be configured to monitor a state of one or more screens of the wireless device 120. The state detection module 416 may determine whether a screen of the wireless device 120 has transitioned to an ON state and/or transitioned to an off state. The state detection module 416 may be configured to communicate with the  4G mode module  408, 2G/3G mode module, IRAT tracking module 410, and/or signal measurement module 412, such as to send signaling that that state detection module 416 a screen of the wireless device 120 transitioned to an ON state.
The wireless device 120, remote platform (s) 110, and/or external resources 422 may be operatively linked via one or more electronic communication links of the wireless communication network. For example, the wireless communication network may establish links via a network such as the Internet and/or other networks.
The wireless device 120 may include electronic storage 424, one or more processors 426, one or more wireless transceivers 266, and/or other components. The wireless device 120 may include communication lines, or ports to enable the exchange of information with a network and/or other wireless devices. The illustration of the wireless device 120 is not intended to be limiting.
Electronic storage 424 may include non-transitory storage media that electronically stores information. Electronic storage 424 may be a memory of the wireless device 120. The electronic storage media of electronic storage 424 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with wireless device 120 and/or removable storage that is removably connectable to wireless device 120 via, for example, a port (e.g., a universal serial bus (USB) port, a firewire port, etc. ) or a drive (e.g., a disk drive, etc. ) . Electronic storage 424 may include one or more of optically readable storage media (e.g., optical disks, etc. ) , magnetically readable storage media (e.g., magnetic tape, magnetic hard drive, floppy drive, etc. ) , electrical charge-based storage media (e.g., EEPROM, RAM, etc. ) , solid-state storage media (e.g., flash drive, etc. ) , and/or other electronically readable storage media. Electronic storage 424 may include one or more virtual storage resources (e.g., cloud storage, a virtual private network, and/or other virtual storage resources) . Electronic storage 424 may store software algorithms, information  determined by processor (s) 426, information received from wireless device 120, information received from remote platform (s) 110, and/or other information that enables wireless device 120 to function as described herein.
The processor (s) 426 may be configured to provide information processing capabilities in wireless device 120. As such, the processor (s) 426 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information. Although the processor (s) 426 is illustrated as a single entity, this is for illustrative purposes only. In some embodiments, the processor (s) 426 may include a plurality of processing units and/or processor cores. The processor (s) 426 may be configured to execute  modules  408, 410, 412, 414, and/or 416 and/or other modules by software; hardware; firmware; some combination of software, hardware, and/or firmware; and/or other mechanisms for configuring processing capabilities on processor (s) 426. As used herein, the term “module” may refer to any component or set of components that perform the functionality attributed to the module. This may include one or more physical processors during execution of processor readable instructions, the processor readable instructions, circuitry, hardware, storage media, or any other components.
It should be appreciated that although  modules  408, 410, 412, 414, and/or 416 are illustrated as being implemented within a single processing unit, in embodiments in which the processor (s) 426 includes multiple processing units and/or processor cores. The description of the functionality provided by the  different modules  408, 410, 412, 414, and/or 416 described below is for illustrative purposes, and is not intended to be limiting, as any of  modules  408, 410, 412, 414, and/or 416 may provide more or less functionality than is described. For example, one or more of the  modules  408, 410, 412, 414, and/or 416 may be eliminated, and some or all of its functionality may be provided by  other modules  408, 410, 412, 414, and/or 416. As another example, the processor (s) 426 may be configured to execute one or more additional modules that may perform some or all of the functionality attributed below to one of the  modules  408, 410, 412, 414, and/or 416.
FIG. 5 is a process flow diagram illustrating a method 500 that may be performed by a processor of a wireless device for avoiding IRAT ping-pong. With reference to FIGS. 1-5, the method 500 may be implemented by a processor (such as 210, 212, 214, 216, 218, 252,  260, 426) of a wireless device (such as the  wireless device  120, 120a-120e, 200, 320) . In some embodiments, the operations of method 500 may be performed by a processor of a wireless device that is configured to support a 2G/3G mode and a 4G mode.
In block 502, the processor may determine whether an IRAT to 4G is detected. During an IRAT to 4G, the wireless device may transition to a 4G mode, register for 4G network service, camp on a 4G cell, and monitor for system information, monitor for paging information, and/or make measurements of that 4G cell. As an example, an IRAT to 4G may be detected based on signaling on the wireless device, such as signaling by a modem that an IRAT to 4G occurred.
Until an IRAT to 4G is detected (i.e., so long as determination block 502 = “No” ) , the processor may await detection of an IRAT to 4G and continue to determine whether an IRAT to 4G is detected in determination block 502.
In response to detecting an IRAT to 4G (i.e., determination block 502 = “Yes” ) , the processor may determine whether the detected IRAT to 4G qualifies for counting. In some embodiments, not all IRAT to 4G events may be associated with a potential IRAT ping-pong condition. For example, IRAT to 4G after CSFB may be an expected operation not associated with IRAT ping-pong. As another example, IRAT to 4G occurring infrequently (e.g., spaced apart more than a predefined time interval, such as a minute or more) , may not be associated with a potential IRAT ping-pong condition. As a further example, IRAT to 4G related to movement to a new cell coverage area (e.g., in response to camping on a 4G cell with a new 4G cell ID) may not be associated with a potential IRAT ping-pong condition. In various embodiments, an IRAT to 4G associated with a potential IRAT ping-pong condition may qualify for counting, while an IRAT to 4G not associated with a potential IRAT ping-pong condition may not qualify for counting.
In response to determining that an IRAT to 4G does qualify for counting (i.e., determination block 504 = “Yes” ) , the processor may increment an IRAT counter in block 508. In this manner, the IRAT counter may track a total number of counted IRAT to 4G events, such as a total number of detected IRAT to 4G events associated with a potential IRAT ping-pong condition.
In determination block 512, the processor may determine whether the IRAT counter exceeds a maximum counter value. The maximum counter value may be any value selected to avoid IRAT ping-pong, such as 1, 2, or more.
In response to determining that the IRAT counter does not exceed the maximum counter value (i.e., determination block 512 = “No” ) , the processor may determine whether a next IRAT to 4G is detected in determination block 502.
In response to determining that an IRAT to 4G does not qualify for counting (i.e., determination block 504 = “No” ) , the processor may reset an IRAT counter to zero in block 510. In this manner, a detected IRAT to 4G that may not be associated with a potential IRAT ping-pong condition may restart the tracking of IRAT to 4G events anew, and the processor continue to determine whether an IRAT to 4G is detected in determination block 502.
In response to determining that the IRAT counter exceeds the maximum counter value (i.e., determination block 512 = “Yes” ) , the processor may determine whether a signal quality of a 4G signal is at or above a minimum 4G threshold in determination block 514. The signal quality of the 4G signal may have been measured during the most recent IRAT to 4G. For example, 4G signal quality may be a measurement of SNR and/or other attributes of the 4G signal and a 4G minimum threshold may be a value associated with minimum 4G signal quality. A signal quality of a 4G signal being at or above a minimum 4G threshold may indicate the 4G signal is “good” . A signal quality of a 4G signal being below a minimum 4G threshold may indicate the 4G signal is “bad” .
In response to determining that the signal quality of the 4G signal is at or above the minimum 4G threshold (i.e., determination block 514 = “Yes” ) , the processor may set the wireless device to 4G only mode in block 520.
In response to determining that the signal quality of the 4G signal is below the minimum 4G threshold (i.e., determination block 514 = “No” ) , the processor may determine whether a signal quality of a 2G/3G signal is at or above a minimum 2G/3G threshold in determination block 516. The signal quality of the 2G/3G signal may have been measured during the most recent IRAT to 2G/3G. For example, 2G/3G signal quality may be a measurement of SNR and/or other attributes of the 2G/3G signal and a 2G/3G minimum threshold may be a value associated with minimum 2G/3G signal quality. A signal quality of  a 2G/3G signal being at or above a minimum 2G/3G threshold may indicate the 2G/3G signal is “good” . A signal quality of a 2G/3G signal being below a minimum 2G/3G threshold may indicate the 2G/3G signal is “bad” .
In response to determining that the signal quality of the 2G/3G signal is at or above the minimum 2G/3G threshold (i.e., determination block 516 = “Yes” ) , the processor may set the wireless device to 2G/3G only mode in block 518. In a 2G/3G only mode the wireless device may perform only 2G/3G operations and may prevent IRAT to 4G.
In response to determining that the signal quality of the 2G/3G signal is below the minimum 2G/3G threshold (i.e., determination block 516 = “No” ) , the processor may set the wireless device to 4G only mode in block 520. In a 4G only mode the wireless device may perform only 4G operations and may prevent IRAT to 2G/3G.
In response to setting the wireless device to 2G/3G only mode in block 518 or setting the wireless device to 4G only mode in block 520, the processor may determine whether a 4G cell ID of a current 4G cell the wireless device is camped on has changed or a screen of the wireless device transitioned to an ON state in determination block 522.
Until the 4G cell ID of the current 4G cell changes or a screen transitions to the ON state (i.e., so long as determination block 522 = “No” ) , the processor may continue to determine whether a 4G cell ID of a current 4G cell the wireless device is camped on has changed or a screen of the wireless device transitioned to an ON state in determination block 522. A 4G cell ID changing may indicate the wireless device has changed cell coverage areas. The change of a screen of the wireless device transitioning to an ON state may indicate a user is interacting with the wireless device and data services may be needed.
In response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has changed or a screen of the wireless device transitioned to the ON state (i.e., determination block 522 = “Yes” ) , the processor may set the wireless device to both 4G and 2G/3G mode in block 524. In a both 4G and 2G/3G mode, the wireless device may be configured to switch freely between 4G operations and 2G/3G operations. In this manner, both IRAT to 4G and IRAT to 2G/3G may be enabled on the wireless device.
FIG. 6 is a process flow diagram of an example method 600 that may be performed as part of the method 500 for avoiding IRAT ping-pong. With reference to FIGS.  1–6, the method 600 may be implemented by a processor (such as 212, 216, 252 or 260) of a wireless device (such as the  wireless device  120, 120a-120e, 200, 320) . In various embodiments, the method 600 may be performed in conjunction with the operations of the method 500 (FIG. 5) . For example, the operations of method 600 may be performed as part of the operations for determining whether a detected IRAT to 4G qualifies for counting in determination block 504 in the method 500. In some embodiments, the operations of the method 600 may be performed by a processor of a wireless device that is configured to support a 2G/3G mode and a 4G mode.
In determination block 602, the processor may determine whether the detected IRAT to 4G was caused by a CSFB operation.
In response to determining that the detected IRAT to 4G was caused by a CSFB operation (i.e., determination block 602 = “Yes” ) , the processor may determine that the detected IRAT to 4G does not quality for counting in block 606. The processor may then perform operations of block 510 of the method 500 as described.
In response to determining that the detected IRAT to 4G was not caused by a CSFB operation (i.e., determination block 602 = “No” ) , the processor may determine that the detected IRAT to 4G qualifies for counting in block 604. The processor may then perform operations of block 508 of the method 500 as described.
FIG. 7 is a process flow diagram of an example method 700 that may be performed as part of the method 500 for avoiding IRAT ping-pong. With reference to FIGS. 1–7, the method 700 may be implemented by a processor (such as 212, 216, 252 or 260) of a wireless device (such as the  wireless device  120, 120a-120e, 200, 320) . In various embodiments, the method 700 may be performed in conjunction with the operations of the methods 500 and/or 600. For example, the operations of the method 700 may be performed as part of the operations for determining whether a detected IRAT to 4G qualifies for counting in determination block 504 of the method 500. As another example, the operations of the method 700 may be performed in response to determining that the detected IRAT to 4G was not caused by a CSFB operation in determination block 602 of the method 600 (i.e., determination block 602 = “No” ) .
In determination block 702, the processor may determine whether a time between a last IRAT to 4G and the detected IRAT to 4G is less than or equal to a predefined time interval. The predefined time interval may be an amount of time associated with detecting a potential IRAT ping-pong condition, such as a minute, etc. For example, the processor may compare the most recent stored indication of an IRAT to 4G to the prior stored indication of an IRAT to 4G and may determine a time between a last IRAT to 4G and the detected IRAT to 4G based on the times (e.g., system times) in the stored indications.
In response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is greater than the predefined time interval (i.e., determination block 702 = “No” ) , the processor may determine that the detected IRAT to 4G does not quality for counting in block 606. The processor may then perform operations of block 510 of the method 500 as described.
In response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is less than or equal to the predefined time interval (i.e., determination block 702 = “Yes” ) , the processor may determine whether a 4G cell ID of a current 4G cell the wireless device is camped on has changed in determination block 704. For example, the processor may compare the most recent stored indication of an IRAT to 4G to the prior stored indication of an IRAT to 4G and determine whether the 4G cell ID has changed or not based on the 4G cell ID being the same for both indications (not changed) or different (changed) .
In response to determining that the 4G cell ID of the current 4G cell on which the wireless device is camped has changed (i.e., determination block 704 = “Yes” ) , the processor may determine that the detected IRAT to 4G does not quality for counting in block 606. The processor may then perform operations of block 510 of the method 500 as described.
In response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has not changed (i.e., determination block 704 = “No” ) , the processor may determine that the detected IRAT to 4G qualifies for counting in block 604. The processor may then perform operations of block 508 of the method 500 as described.
FIG. 8 is a component block diagram of a network computing device 800 suitable for use with various embodiments. Such network computing devices may include at least the components illustrated in FIG. 8. With reference to FIGS. 1–8, the network computing  device 800 may include a processor 801 coupled to volatile memory 802 and a large capacity nonvolatile memory, such as a disk drive 803. The network computing device 800 may also include a peripheral memory access device such as a floppy disc drive, compact disc (CD) or digital video disc (DVD) drive 806 coupled to the processor 801. The network computing device 800 may also include network access ports 804 (or interfaces) coupled to the processor 801 for establishing data connections with a network, such as the Internet and/or a local area network coupled to other system computers and servers. The network computing device 800 may include one or more antennas 807 for sending and receiving electromagnetic radiation that may be connected to a wireless communication link. The network computing device 800 may include additional access ports, such as USB, Firewire, Thunderbolt, and the like for coupling to peripherals, external memory, or other devices.
FIG. 9 is a component block diagram of a wireless device 900 suitable for use with various embodiments. With reference to FIGS. 1–9, various embodiments may be implemented on a variety of wireless devices 900 (e.g., the wireless device 120a-120e, 200, 320, 120) , an example of which is illustrated in FIG. 9 in the form of a smartphone. The wireless device 900 may include a first SOC 202 (e.g., a SOC-CPU) coupled to a second SOC 204 (e.g., a 5G capable SOC) . The first and  second SOCs  202, 204 may be coupled to  internal memory  424, 916, a display 912, and to a speaker 914. Additionally, the wireless device 900 may include an antenna 904 for sending and receiving electromagnetic radiation that may be connected to a wireless transceiver 266 coupled to one or more processors in the first and/or  second SOCs  202, 204. The wireless device 900 may also include menu selection buttons or rocker switches 920 for receiving user inputs.
The wireless device 900 also includes a sound encoding/decoding (CODEC) circuit 910, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound. Also, one or more of the processors in the first and  second SOCs  202, 204, wireless transceiver 266 and CODEC 910 may include a digital signal processor (DSP) circuit (not shown separately) .
The processors of the wireless network computing device 800 and the wireless device 900 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a  variety of functions, including the functions of the various embodiments described below. In some mobile devices, multiple processors may be provided, such as one processor within an SOC 204 dedicated to wireless communication functions and one processor within an SOC 202 dedicated to running other applications. Software applications may be stored in the  memory  424, 916 before they are accessed and loaded into the processor. The processors may include internal memory sufficient to store the application software instructions.
As used in this application, the terms “component, ” “module, ” “system, ” and the like are intended to include a computer-related entity, such as, but not limited to, hardware, firmware, a combination of hardware and software, software, or software in execution, which are configured to perform particular operations or functions. For example, a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a wireless device and the wireless device may be referred to as a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one processor or core and/or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions and/or data structures stored thereon. Components may communicate by way of local and/or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, and/or process related communication methodologies.
A number of different cellular and mobile communication services and standards are available or contemplated in the future, all of which may implement and benefit from the various embodiments. Such services and standards include, e.g., third generation partnership project (3GPP) , LTE systems, second generation wireless mobile communication technology (2G) , third generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) , global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general Packet Radio service (GPRS) , code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA1020TM) , enhanced data rates for GSM evolution (EDGE) , advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless  telecommunications (DECT) , Worldwide Interoperability for Microwave Access (WiMAX) , wireless local area network (WLAN) , Wi-Fi Protected Access I &II (WPA, WPA2) , and integrated digital enhanced network (iDEN) . Each of these technologies involves, for example, the transmission and reception of voice, data, signaling, and/or content messages. It should be understood that any references to terminology and/or technical details related to an individual telecommunication standard or technology are for illustrative purposes only, and are not intended to limit the scope of the claims to a particular communication system or technology unless specifically recited in the claim language.
Various embodiments illustrated and described are provided merely as examples to illustrate various features of the claims. However, features shown and described with respect to any given embodiment are not necessarily limited to the associated embodiment and may be used or combined with other embodiments that are shown and described. Further, the claims are not intended to be limited by any one example embodiment. For example, one or more of the operations of the  methods  500, 600, and/or 700 may be substituted for or combined with one or more operations of the  methods  500, 600, and/or 700.
The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that the operations of various embodiments must be performed in the order presented. As will be appreciated by one of skill in the art the order of operations in the foregoing embodiments may be performed in any order. Words such as “thereafter, ” “then, ” “next, ” etc. are not intended to limit the order of the operations; these words are used to guide the reader through the description of the methods. Further, any reference to claim elements in the singular, for example, using the articles “a, ” “an, ” or “the” is not to be construed as limiting the element to the singular.
Various illustrative logical blocks, modules, components, circuits, and algorithm operations described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and operations have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each  particular application, but such embodiment decisions should not be interpreted as causing a departure from the scope of the claims.
The hardware used to implement various illustrative logics, logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
In one or more embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium. The operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium. Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor. By way of example but not limitation, such non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable  media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.
The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the claims. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the claims. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.

Claims (22)

  1. A method for avoiding inter-radio transfer (IRAT) ping-pong by a processor of a wireless device configured to support a Second Generation (2G) /Third Generation (3G) mode and a Fourth Generation (4G) mode, comprising:
    determining whether an IRAT counter exceeds a maximum counter value, wherein the IRAT counter tracks a total number of counted IRAT to 4G events within a predefined time interval;
    determining whether a signal quality of a 4G signal is at or above a minimum 4G threshold in response to determining that the IRAT counter exceeds the maximum counter value; and
    setting the wireless device to a 4G only mode in response to determining that the signal quality of the 4G signal is at or above the minimum 4G threshold.
  2. The method of claim 1, further comprising:
    determining whether a signal quality of a 2G/3G signal is at or above a minimum 2G/3G threshold in response to determining that the signal quality of the 4G signal is below the minimum 4G threshold; and
    setting the wireless device to a 2G/3G only mode in response to determining that the signal quality of the 2G/3G signal is at or above the minimum 2G/3G threshold.
  3. The method of claim 2, further comprising:
    setting the wireless device to the 4G only mode in response to determining that the signal quality of the 2G/3G signal is below the minimum 2G/3G threshold.
  4. The method of claim 3, further comprising, in the 4G only mode or the 2G/3G only mode:
    determining whether a 4G cell identifier (4G cell ID) of a current 4G cell the wireless device is camped on has changed or a screen of the wireless device transitioned to an ON state; and
    setting the wireless device to a both 4G and 2G/3G mode in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has changed or the screen of the wireless device transitioned to the ON state.
  5. The method of claim 1, further comprising:
    detecting an IRAT to 4G;
    determining whether the detected IRAT to 4G qualifies for counting;
    incrementing the IRAT counter in response to determining that the detected IRAT to 4G qualifies for counting; and
    resetting the IRAT counter to zero in response to determining that the detected IRAT to 4G does not qualify for counting.
  6. The method of claim 5, wherein determining whether the detected IRAT to 4G qualifies for counting comprises:
    determining whether the detected IRAT to 4G was caused by a circuit switched fall back (CSFB) operation; and
    determining that the detected IRAT to 4G does not quality for counting in response to determining that the detected IRAT to 4G was caused by a CSFB operation.
  7. The method of claim 5, wherein determining whether the detected IRAT to 4G qualifies for counting comprises:
    determining whether a time between a last IRAT to 4G and the detected IRAT to 4G is less than or equal to the predefined time interval;
    determining that the detected IRAT to 4G does not quality for counting in response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is greater than the predefined time interval;
    determining whether a 4G cell identifier (4G cell ID) of a current 4G cell the wireless device is camped on has changed in response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is less than or equal to the predefined time interval;
    determining that the detected IRAT to 4G qualifies for counting in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has not changed; and
    determining that the detected IRAT to 4G does not qualify for counting in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has changed.
  8. A wireless device, comprising:
    a processor configured to:
    determine whether an inter-radio transfer (IRAT) counter exceeds a maximum counter value, wherein the IRAT counter tracks a total number of counted IRAT to Fourth Generation (4G) events within a predefined time interval;
    determine whether a signal quality of a 4G signal is at or above a minimum 4G threshold in response to determining that the IRAT counter exceeds the maximum counter value; and
    set the wireless device to a 4G only mode in response to determining that the signal quality of the 4G signal is at or above the minimum 4G threshold.
  9. The wireless device of claim 8, wherein the processor is further configured to:
    determine whether a signal quality of a Second Generation (2G) /Third Generation (3G) signal is at or above a minimum 2G/3G threshold in response to determining that the signal quality of the 4G signal is below the minimum 4G threshold; and
    set the wireless device to a 2G/3G only mode in response to determining that the signal quality of the 2G/3G signal is at or above the minimum 2G/3G threshold.
  10. The wireless device of claim 9, wherein the processor is further configured to:
    set the wireless device to the 4G only mode in response to determining that the signal quality of the 2G/3G signal is below the minimum 2G/3G threshold.
  11. The wireless device of claim 10, wherein the processor is further configured to, in the 4G only mode or the 2G/3G only mode:
    determine whether a 4G cell identifier (4G cell ID) of a current 4G cell the wireless device is camped on has changed or a screen of the wireless device transitioned to an ON state; and
    set the wireless device to a both 4G and 2G/3G mode in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has changed or the screen of the wireless device transitioned to the ON state.
  12. The wireless device of claim 8, wherein the processor is further configured to:
    detect an IRAT to 4G;
    determine whether the detected IRAT to 4G qualifies for counting;
    increment the IRAT counter in response to determining that the detected IRAT to 4G qualifies for counting; and
    reset the IRAT counter to zero in response to determining that the detected IRAT to 4G does not qualify for counting.
  13. The wireless device of claim 12, wherein the processor is further configured to determine whether the detected IRAT to 4G qualifies for counting by:
    determining whether the detected IRAT to 4G was caused by a circuit switched fall back (CSFB) operation; and
    determining that the detected IRAT to 4G does not quality for counting in response to determining that the detected IRAT to 4G was caused by a CSFB operation.
  14. The wireless device of claim 12, wherein the processor is further configured to determine whether the detected IRAT to 4G qualifies for counting by:
    determining whether a time between a last IRAT to 4G and the detected IRAT to 4G is less than or equal to the predefined time interval;
    determining that the detected IRAT to 4G does not quality for counting in response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is greater than the predefined time interval;
    determining whether a 4G cell identifier (4G cell ID) of a current 4G cell the wireless device is camped on has changed in response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is less than or equal to the predefined time interval;
    determining that the detected IRAT to 4G qualifies for counting in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has not changed; and
    determining that the detected IRAT to 4G does not qualify for counting in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has changed.
  15. A wireless device, comprising:
    means for determining whether an inter-radio transfer (IRAT) counter exceeds a maximum counter value, wherein the IRAT counter tracks a total number of counted IRAT to Fourth Generation (4G) events within a predefined time interval;
    means for determining whether a signal quality of a 4G signal is at or above a minimum 4G threshold in response to determining that the IRAT counter exceeds the maximum counter value; and
    means for setting the wireless device to a 4G only mode in response to determining that the signal quality of the 4G signal is at or above the minimum 4G threshold.
  16. A non-transitory processor readable medium having stored thereon processor-executable instructions configured to cause a processor of a wireless device to perform operations comprising:
    determining whether an inter-radio transfer (IRAT) counter exceeds a maximum counter value, wherein the IRAT counter tracks a total number of counted IRAT to Fourth Generation (4G) events within a predefined time interval;
    determining whether a signal quality of a 4G signal is at or above a minimum 4G threshold in response to determining that the IRAT counter exceeds the maximum counter value; and
    setting the wireless device to a 4G only mode in response to determining that the signal quality of the 4G signal is at or above the minimum 4G threshold.
  17. The non-transitory processor readable medium of claim 16, wherein the stored processor-executable instructions are further configured to cause a processor of a wireless device to perform operations further comprising:
    determining whether a signal quality of a Second Generation (2G) /Third Generation (3G) signal is at or above a minimum 2G/3G threshold in response to determining that the signal quality of the 4G signal is below the minimum 4G threshold; and
    setting the wireless device to a 2G/3G only mode in response to determining that the signal quality of the 2G/3G signal is at or above the minimum 2G/3G threshold.
  18. The non-transitory processor readable medium of claim 17, wherein the stored processor-executable instructions are further configured to cause a processor of a wireless device to perform operations further comprising:
    setting the wireless device to the 4G only mode in response to determining that the signal quality of the 2G/3G signal is below the minimum 2G/3G threshold.
  19. The non-transitory processor readable medium of claim 18, wherein the stored processor-executable instructions are further configured to cause a processor of a wireless device to perform operations further comprising, in the 4G only mode or the 2G/3G only mode:
    determining whether a 4G cell identifier (4G cell ID) of a current 4G cell the wireless device is camped on has changed or a screen of the wireless device transitioned to an ON state; and
    setting the wireless device to a both 4G and 2G/3G mode in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has changed or the screen of the wireless device transitioned to the ON state.
  20. The non-transitory processor readable medium of claim 16, wherein the stored processor-executable instructions are further configured to cause a processor of a wireless device to perform operations further comprising:
    detecting an IRAT to 4G;
    determining whether the detected IRAT to 4G qualifies for counting;
    incrementing the IRAT counter in response to determining that the detected IRAT to 4G qualifies for counting; and
    resetting the IRAT counter to zero in response to determining that the detected IRAT to 4G does not qualify for counting.
  21. The non-transitory processor readable medium of claim 20, wherein the stored processor-executable instructions are further configured to cause a processor of a wireless device to  perform operations such that determining whether the detected IRAT to 4G qualifies for counting comprises:
    determining whether the detected IRAT to 4G was caused by circuit switched fall back (CSFB) ; and
    determining that the detected IRAT to 4G does not quality for counting in response to determining that the detected IRAT to 4G was caused by a CSFB operation.
  22. The non-transitory processor readable medium of claim 20, wherein the stored processor-executable instructions are further configured to cause a processor of a wireless device to perform operations such that determining whether the detected IRAT to 4G qualifies for counting comprises:
    determining whether a time between a last IRAT to 4G and the detected IRAT to 4G is less than or equal to a predefined time interval;
    determining that the detected IRAT to 4G does not quality for counting in response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is greater than the predefined time interval;
    determining whether a 4G cell identifier (4G cell ID) of a current 4G cell the wireless device is camped on has changed in response to determining that the time between the last IRAT to 4G and the detected IRAT to 4G is less than or equal to the predefined time interval;
    determining that the detected IRAT to 4G qualifies for counting in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has not changed; and
    determining that the detected IRAT to 4G does not qualify for counting in response to determining that the 4G cell ID of the current 4G cell the wireless device is camped on has changed.
PCT/CN2020/084750 2020-04-14 2020-04-14 A method to avoid irat ping-pong and save power WO2021207933A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084750 WO2021207933A1 (en) 2020-04-14 2020-04-14 A method to avoid irat ping-pong and save power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084750 WO2021207933A1 (en) 2020-04-14 2020-04-14 A method to avoid irat ping-pong and save power

Publications (1)

Publication Number Publication Date
WO2021207933A1 true WO2021207933A1 (en) 2021-10-21

Family

ID=78083649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084750 WO2021207933A1 (en) 2020-04-14 2020-04-14 A method to avoid irat ping-pong and save power

Country Status (1)

Country Link
WO (1) WO2021207933A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104170469A (en) * 2012-03-02 2014-11-26 瑞典爱立信有限公司 Methods and apparatus for detecting possible repeated handover different radio access technologies
US20150264648A1 (en) * 2010-04-21 2015-09-17 Samsung Electronics Co., Ltd. Method and apparatus for providing hibernation of multi-mode mobile terminal
CN105142188A (en) * 2015-06-19 2015-12-09 联想(北京)有限公司 Network type switching method and electronic equipment
CN105873145A (en) * 2016-05-31 2016-08-17 努比亚技术有限公司 Method and device for achieving network type switching
CN107113684A (en) * 2014-11-19 2017-08-29 联发科技股份有限公司 Wireless communications method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150264648A1 (en) * 2010-04-21 2015-09-17 Samsung Electronics Co., Ltd. Method and apparatus for providing hibernation of multi-mode mobile terminal
CN104170469A (en) * 2012-03-02 2014-11-26 瑞典爱立信有限公司 Methods and apparatus for detecting possible repeated handover different radio access technologies
CN107113684A (en) * 2014-11-19 2017-08-29 联发科技股份有限公司 Wireless communications method and device
CN105142188A (en) * 2015-06-19 2015-12-09 联想(北京)有限公司 Network type switching method and electronic equipment
CN105873145A (en) * 2016-05-31 2016-08-17 努比亚技术有限公司 Method and device for achieving network type switching

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "MRO inter-system ping-pong", 3GPP DRAFT; R3-195731 MRO INTER SYSTEM PING PONG, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Chongqing, China; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051792750 *

Similar Documents

Publication Publication Date Title
US12058581B2 (en) Enhancements of VoWi-Fi handover from ePDG to LTE when VoNR is not supported
US11690081B2 (en) Bandwidth part (BWP) for unicast/multicast and resource allocation for multicast
US11671849B2 (en) Autonomous beam switching
US11805493B2 (en) Compressed DC location reporting scheme for UL CA
WO2022036491A1 (en) Metrics collection and reporting in 5g media streaming
WO2021258259A1 (en) Determining a channel state for wireless communication
WO2021026852A1 (en) User equipment (ue) mobility history information management
US11930494B2 (en) Managing transmit timing of data transmissions
WO2021208107A1 (en) An optimization method to recover ps service quickly
WO2021203228A1 (en) Method to fast recover ue from ps call failure in 5g nsa
WO2021207996A1 (en) Method to speed up 5gnr sa network register for dual-sim device during roaming
WO2021163919A1 (en) Performing cell selection prioritizing non-standalone operation cells
WO2021097692A1 (en) Managing control channel monitoring
WO2021207933A1 (en) A method to avoid irat ping-pong and save power
US11523404B2 (en) Radio link prioritization
US11825490B2 (en) Power and performance efficient algorithms for idle and inactive mode use equipment in 5G new radio
WO2021258392A1 (en) Dynamic srs configuration based on cqi in 5g network
US20240171965A1 (en) Modem System Selection Optimization in WLAN-Only Mode
WO2022205051A1 (en) Managing downlink traffic reception and cross-link interference
WO2022067469A1 (en) New cell selection scheduling method for mmtc high space density ue and network to reduce rach congestion
WO2023060968A1 (en) Attention (at) command for managing data measurement reporting
WO2021223220A1 (en) Recovery from ps call failure caused by network release of rrc connections on dual 5gnr subscription wireless devices
WO2021212361A1 (en) Method to fast recover 5g service from abnormal data stop
WO2022051985A1 (en) Managing a communication link for transfer control protocol communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931406

Country of ref document: EP

Kind code of ref document: A1