WO2021206204A1 - Monitoring method and system using plurality of drones - Google Patents

Monitoring method and system using plurality of drones Download PDF

Info

Publication number
WO2021206204A1
WO2021206204A1 PCT/KR2020/004935 KR2020004935W WO2021206204A1 WO 2021206204 A1 WO2021206204 A1 WO 2021206204A1 KR 2020004935 W KR2020004935 W KR 2020004935W WO 2021206204 A1 WO2021206204 A1 WO 2021206204A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
auxiliary
drones
flight
main
Prior art date
Application number
PCT/KR2020/004935
Other languages
French (fr)
Korean (ko)
Inventor
정승호
정승현
Original Assignee
(주)아르고스다인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아르고스다인 filed Critical (주)아르고스다인
Priority to PCT/KR2020/004935 priority Critical patent/WO2021206204A1/en
Publication of WO2021206204A1 publication Critical patent/WO2021206204A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • B64U2101/31UAVs specially adapted for particular uses or applications for imaging, photography or videography for surveillance

Definitions

  • the present invention relates to a monitoring system, and more particularly, to a monitoring method and system using a plurality of drones.
  • Drones which are unmanned robots, were initially developed for military use, but have the advantages of convenient transport and storage, and easy operation, so they are widely used for filming for TV broadcasts and the like. Recently, by building an unmanned delivery service system using a drone, goods can be delivered by minimizing human interference, and a technology that provides a safe unmanned delivery service through mutual authentication between the sender and the drone has also emerged.
  • drones are highly mobile because they move in the air, they can move quickly through the air even in severe traffic jams and rough road conditions. Using these characteristics of drones, drones are also being used to manage and monitor specific areas that are difficult for humans to access. That is, the drone can perform remote monitoring of a specific area through the mounted camera or sensor. For example, drones can be used for public purposes, such as searching for survivors, monitoring wildfires, cracking down on traffic violations, and monitoring crime zones and border areas.
  • Patent Document 1 Domestic Registered Patent No. 10-1851539
  • Patent Document 2 Domestic Patent Publication No. 10-2017-0070713
  • the present specification has been devised to solve the above problems, and an object of the present specification is to provide a monitoring method and system using a plurality of drones capable of increasing the monitoring and surveying area through swarm flight.
  • Another object of the present invention is to provide a monitoring method and system using a plurality of drones capable of simultaneously controlling several drones in a ground control server.
  • a monitoring system using a plurality of drones includes a plurality of auxiliary drones performing monitoring using a camera; Sets a mothership coordinate system with its own position as the origin, controls the flight of the plurality of auxiliary drones through short-distance communication based on the set mothership coordinate system to form a flight squadron, and maintains the flight squadron together with the plurality of auxiliary drones a main drone that performs surveillance using a camera; and a ground control server that controls the flight of the main drone to monitor a predetermined area.
  • the main drone determines the X coordinate values of the plurality of auxiliary drones according to the shape of the flight squadron, and sets the Y coordinate values of the plurality of auxiliary drones according to the performance of a camera mounted on each auxiliary drone. and setting the Z coordinate values of the plurality of auxiliary drones using a scanning area determined by the angle of view of the camera of each auxiliary drone and a preset scanning area tolerance.
  • the main drone controls the flight of the plurality of auxiliary drones so that the scanning area determined by the angle of view of the camera of each auxiliary drone does not overlap by more than a preset scanning area tolerance.
  • the main drone is characterized in that when an abnormality occurs in at least one auxiliary drone among the plurality of auxiliary drones, the flight squadron is reconfigured except for the at least one auxiliary drone.
  • At least one auxiliary drone among the plurality of auxiliary drones includes a long-distance communication module, and when an abnormality occurs in the main drone, it gives its authority to any one auxiliary drone among the at least one auxiliary drones. It is characterized by delegating
  • the main drone is characterized in that it controls the flight of the auxiliary drone by using a mesh communication technique with respect to the auxiliary drone separated from itself by a predetermined distance or more.
  • the main drone is characterized in that it changes the flight squadron according to the size of the determined area.
  • the main drone is characterized in that the flight squadron is changed according to the monitoring purpose.
  • a monitoring method using a plurality of drones includes: setting, by a main drone, a mother ship coordinate system having its own position as an origin; configuring, by the main drone, a flight squadron by controlling the flight of a plurality of auxiliary drones through short-distance communication based on a set mothership coordinate system; and controlling, by the ground control server, the flight of the main drone to perform monitoring of a predetermined area using a camera while maintaining a flight squadron together with the plurality of auxiliary drones.
  • the main drone controls the flight of the plurality of auxiliary drones so that the scanning area determined by the angle of view of the camera of each auxiliary drone does not overlap by more than a preset scanning area tolerance. characterized in that
  • the method comprising: determining, by the main drone, whether an abnormality has occurred in at least one auxiliary drone among the plurality of auxiliary drones; and when the main drone determines that an abnormality has occurred in at least one auxiliary drone among the plurality of drones, reconfiguring a flight squadron except for the at least one auxiliary drone.
  • the method comprising: determining, by the main drone, whether an abnormality has occurred in itself; and when the main drone determines that an abnormality has occurred in itself, delegating its authority to any one auxiliary drone among at least one auxiliary drone including a long-range communication module among the plurality of auxiliary drones characterized in that
  • the main drone controls the flight of a plurality of auxiliary drones through short-range communication to configure a flight squadron
  • the ground control server recognizes the flight squadron as a single virtual drone and controls the plurality of
  • FIG. 1 is a view showing a schematic configuration of a monitoring system using a plurality of drones according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a schematic configuration of the inside of the main drone according to an embodiment of the present invention
  • FIG. 3 is a view for explaining a positional relationship between a main drone and an auxiliary drone according to an embodiment of the present invention
  • FIG. 4 is a view for explaining a position evaluation index between a main drone and an auxiliary drone according to an embodiment of the present invention
  • FIG. 5 is a view for explaining a method for calculating positions of drones according to an embodiment of the present invention.
  • 6 is a view showing the reconstruction of the squadron configuration when any one of the own ships in the squadron has landed or crashed for some reason;
  • FIG. 7 is a diagram showing the reconstruction of the squadron configuration if the mothership in the squadron has landed or crashed for some reason.
  • FIG. 8 is a flowchart illustrating a monitoring method using a plurality of drones according to an embodiment of the present invention.
  • first, second, etc. used herein may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • a surveillance mission refers to an arbitrary operation or combination of operations programmed to be performed by a drone in order to cope with a situation occurring within a predetermined area.
  • Programming commands for performing the surveillance mission may be sent to the drone or stored in the drone in advance, and the drone performs the surveillance mission by driving one or more parts of the drone according to the programming commands.
  • the monitoring mission may be autonomously performed by the drone according to a pre-programmed command, or may be performed by user intervention in one or more steps.
  • the performance of the surveillance mission described in the present specification refers to movement of a specific type of drone, movement or rotation of a part of the drone, and detection of information by the drone, output of images and/or sounds, other objects or servers It refers to one or more combinations of individual operations, such as communication with a specific number, or a call or video call connection to a specific number.
  • a camera is exemplified as a monitoring means of a drone, but is not limited thereto, and the drone includes an infrared camera, an RGB camera, a voice recognition sensor including a microphone, a radar using sound waves, etc. It includes distance detection and collision avoidance sensors, altitude detection and control sensors, etc., acquires images and surrounding information to monitor people or animals, and recognizes sounds with a size or frequency higher than the standard value from people or animals to detect a crisis situation can be detected.
  • ground control server 210 long-distance communication module
  • control unit 240 control unit
  • FIG. 1 is a view showing a schematic configuration of a monitoring system using a plurality of drones according to an embodiment of the present invention.
  • a monitoring system using a plurality of drones may include a plurality of auxiliary drones 110 , a main drone 120 , and a ground control server 130 .
  • the plurality of auxiliary drones 110 form a flight squadron together with the main drone 120 under the control of the main drone 120 and shoot detailed images of the predetermined area while flying in the predetermined area to capture the detailed image of the main drone 120 through short-distance communication.
  • the plurality of auxiliary drones 110 may include a camera and a short-range communication module.
  • the main drone 120 sets a mother ship coordinate system with its own position as the origin, and controls the flight of a plurality of auxiliary drones 110 through short-distance communication based on the set mother ship coordinate system to form a flight control server of a flight control server. It performs a role and performs monitoring using a camera while flying while maintaining a flight squadron together with a plurality of auxiliary drones 110 . That is, the main drone 120 collects images captured by the plurality of auxiliary drones 110 and transmits them to the ground control server 130 through long-distance communication, thereby monitoring a predetermined area.
  • the main drone 120 may include a video and/or audio output device, and when detecting a crisis situation, output the corresponding information in video and/or audio to inform people in the area.
  • the main drone 120 calculates the direction of a sudden movement of a human body or an object around the user, predicts a crisis situation resulting therefrom, and outputs the predicted information as an image and/or voice to the It can be possible to prepare in advance.
  • the main drone 120 may control one or more user devices based on the information on the crisis situation. For example, when a crisis situation is detected, the main drone 120 may transmit an alert message to one or more users' smartphones designated in advance, or may control and move the user's vehicle. In addition, the main drone 120 may control the user device according to a command from the user even in a non-crisis situation. For example, the main drone 120 may perform an operation such as waiting the user's vehicle at a time and/or place designated by the user, or parking the vehicle in a preset place after the user gets off the vehicle.
  • the main drone 120 when the main drone 120 detects a crisis situation from the image and surrounding information, it may take measures according to the crisis situation by communicating with one or more related agency servers. For example, the main drone 120 may transmit a report or a help request signal to a server of a related institution through long-distance communication.
  • the related institution server may collectively refer to a plurality of servers operated by a plurality of institutions.
  • the related institution server may be a server operated by the police or a hospital, but is not limited thereto.
  • Communication with the related agency server may be automatically performed by the main drone 120 after detecting a crisis situation, or may be made in response to receiving a specific input from the user or user device after notifying the user of the crisis situation have.
  • the main drone 120 may collect information from one or more Big Data servers, and present the collected information to a user or transmit it to a user device. For example, the main drone 120 obtains geographic information about the area where the user is currently located, for example, an address, a map, information about a nearby public institution, etc. can do. Meanwhile, a detailed configuration of the main drone 120 will be described with reference to FIG. 2 .
  • the ground control server 130 transmits/receives data to and from the main drone 120 through long-distance communication, and transmits a command for controlling the main drone 120 based on the WGS84 coordinate system, or receives a plurality of The image information collected from the auxiliary drone 110 may be received. Also, when the main drone 120 detects a crisis situation, the ground control server 130 may receive the corresponding information from the main drone 120 .
  • the ground control server 130 may be implemented in the form of a computing device possessed by the user, for example, a smartphone, a tablet computer, a notebook computer, or a desktop computer. Alternatively, the ground control server 130 may be implemented in the form of a server operated by an operator providing a monitoring service.
  • the ground control server 130 and the main drone 120 may perform communication through satellite communication, but is not limited thereto, and is not limited thereto, and includes a LAN, a Metropolitan Area Network (MAN), a Global System for Mobile Network (GSM), and an Enhanced EDGE (EDGE). Data GSM Environment), High Speed Downlink Packet Access (HSDPA), Wideband Code Division Multiple Access (W-CDMA), Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Bluetooth, Zigbee , Voice over Internet Protocol (VoIP), LTE Advanced, IEEE802.16m, WirelessMAN-Advanced, HSPA+, 3GPP Long Term Evolution (LTE), Mobile WiMAX (IEEE 802.16e), UMB (formerly EV-DO Rev.
  • HSDPA High Speed Downlink Packet Access
  • W-CDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • VoIP Voice over Internet Protocol
  • LTE Advanced IEEE802.16m
  • WirelessMAN-Advanced HSPA
  • Flash - Communication is performed by any communication method selected from the group consisting of OFDM, iBurst and MBWA (IEEE 802.20) systems, HIPERMAN, Beam-Division Multiple Access (BDMA), Wi-MAX (World Interoperability for Microwave Access), and ultrasound-based communication. can be configured to perform.
  • FIG. 2 is a block diagram showing a schematic configuration of the inside of the main drone according to an embodiment of the present invention.
  • the main drone 120 may include a long-distance communication module 210 , a short-range communication module 220 , a camera module 230 , and a controller 240 .
  • the main drone 120 is powered by a battery and has the configuration of a general aircraft such as wings and an engine, so that it can take off, land, and fly.
  • the long-distance communication module 210 communicates with the ground control server 130 through long-distance communication. Specifically, the long-distance communication module 210 may receive a command for flight control of the main drone 120 from the ground control server 130 , and provide its own location information and a plurality of assistants to the ground control server 130 . Location information of the drone 110 may be transmitted. Also, the long-distance communication module 210 may transmit image information received from the plurality of auxiliary drones 110 to the ground control server 130 .
  • the wireless Internet technology of the long-distance communication module 210 is a wireless LAN (WLAN), Wi-Fi (Wi-Fi), Wi-Bro (Wireless Broadband: Wibro), Wimax (World Interoperability for Microwave Access: Wimax) , High Speed Downlink Packet Access (HSDPA), IEEE 802.16, Long Term Evolution (LTE), Broadband Wireless Mobile Broadband Service (WMBS), and the like.
  • WLAN wireless LAN
  • Wi-Fi Wi-Fi
  • Wi-Bro Wireless Broadband: Wibro
  • Wimax Worldwide Interoperability for Microwave Access: Wimax
  • HSDPA High Speed Downlink Packet Access
  • LTE Long Term Evolution
  • WMBS Broadband Wireless Mobile Broadband Service
  • the short-range communication module 220 communicates with the plurality of auxiliary drones 110 through short-range communication. Specifically, the short-range communication module 220 may transmit a command for controlling the flight of the plurality of auxiliary drones 110 , and the location information of the plurality of auxiliary drones 110 and the plurality of auxiliary drones 110 from the plurality of auxiliary drones 110 . Image information captured by the auxiliary drone 110 may be received.
  • the short-distance communication technology of the short-range communication module 220 Bluetooth (Bluetooth), RFID (Radio Frequency Identification), infrared communication (Infrared Data Association: IrDA), ultra-wideband radio (Ultra Wideband: UWB), Zigbee ( ZigBee) and the like.
  • Bluetooth Bluetooth
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband radio
  • ZigBee ZigBee
  • the camera module 230 captures an image of a predetermined area by a predetermined angle of view.
  • the camera module 230 may capture a moving image as well as a still image of a predetermined area.
  • the camera module 230 may be attached to the main body of the drone 120 and tilted.
  • the controller 240 controls the long-distance communication module 210 , the short-range communication module 220 , and the camera module 230 .
  • the control unit 240 sets the mothership coordinate system with its own position as the origin, and controls the flight of the plurality of auxiliary drones 110 through the short-distance communication module 220 based on the set mothership coordinate system to configure the flight squadron, Monitoring is performed using the camera module 230 while flying while maintaining a flight squadron together with a plurality of auxiliary drones 110 .
  • the controller 240 collects the images captured by the plurality of auxiliary drones 110 through the short-range communication module 220 and transmits them to the ground control server 130 through the long-distance communication module 210, thereby providing a predetermined area. carry out monitoring for
  • control unit 240 determines the X coordinate values of the plurality of auxiliary drones 110 according to the shape of the flight squadron, and the plurality of auxiliary drones 110 according to the performance of the camera mounted on each auxiliary drone 110 . It is possible to set the Y coordinate value of , and set the Z coordinate value of the plurality of auxiliary drones 110 using a scanning area determined by the angle of view of the camera of each auxiliary drone 110 and a preset scanning area allowable value.
  • controller 240 may control the flight of the plurality of auxiliary drones 110 so that the scanning area determined by the angle of view of the camera of each auxiliary drone 110 does not overlap by more than a preset scanning area allowable value.
  • the controller 240 may reconfigure the flight squadron except for the at least one auxiliary drone.
  • the controller 240 may determine that an abnormality has occurred in the auxiliary drone 110 .
  • the controller 240 may delegate its authority to at least one auxiliary drone among the plurality of auxiliary drones 110 .
  • at least one auxiliary drone among the plurality of auxiliary drones 110 may include a long-range communication module.
  • the controller 240 may control the flight of the auxiliary drone with respect to the auxiliary drone separated from itself by a predetermined distance or more by using a mesh communication technique. That is, the control unit 240 does not directly control the flight of an auxiliary drone that is more than a preset distance from itself, but uses an auxiliary drone located between itself and the auxiliary drone as a medium to control the flight of the auxiliary drone. have.
  • control unit 240 may change the flight squadron according to the size of the determined area or the purpose of monitoring.
  • FIG. 3 is a diagram for explaining a positional relationship between a main drone and an auxiliary drone according to an embodiment of the present invention.
  • the coordinates of the main drone 120 that is, the mother ship, are (X p , Y p , Z p ) on the WGS84 coordinate system.
  • the main drone 120 uses the mother ship coordinate system, not the WGS84 coordinate system, in group control of the plurality of auxiliary drones 110 , that is, own ships. Accordingly, the coordinates of the main drone 120 in the mothership coordinate system become (0, 0, 0). That is, in the coordinate system within the cluster, when the mother ship controls its own ship, the mother ship uses the mother ship coordinate system with the location of the mother ship as the origin.
  • FIG. 4 is a diagram for explaining a position evaluation index between a main drone and an auxiliary drone according to an embodiment of the present invention.
  • the evaluation index for the optimal location is the overlapping scanning area (OV) between drones.
  • FIG. 5 is a diagram for explaining a method of calculating positions of drones according to an embodiment of the present invention.
  • the X coordinate value of the own ships (X' c ), the altitude of the mother ship and the own ships (Z' c ), and the tolerance of the overlapping scanning area between the aircraft (OV tolerance ) should be defined
  • the X coordinate value (X' c ) of the own ships is determined by the cluster type (eg, the ruler shape and the Hakikjin shape, etc.)
  • the altitude (Z' c ) of the mother ship and the own ships is a sensor or camera mounted on the drone. It is determined according to the specifications of the aircraft, and the OV tolerance of the overlapping scanning area between the aircraft is determined by the accuracy of the aircraft control and the purpose of the scanning.
  • (X' c , Y' c , Z' c ) represents the position of the own ship 110 on the mother ship coordinate system.
  • (X m , Y m , Z m ) represents the position of the bus 120 on the WGS84 coordinate system.
  • a c represents the angle of view of the sensor/camera installed in the own ship 110 .
  • a m represents the angle of view of the sensor/camera installed on the bus line 120 .
  • OV represents an overlap index of the sensing region between the own ship 110 and the mother ship 120 .
  • the optimal position coordinates of the own ship 110 become (X' c , Y' c , Z' c ).
  • X' c is determined according to the form of the formation flight, and does not affect the optimal position.
  • Z' c is the altitude of the own ship 110, and an appropriate altitude value is selected according to the performance of the attached sensor/camera.
  • the position between the mother ship and the own ship or between the ships is calculated in the same way.
  • 6 is a view showing the reconstruction of the squadron configuration when any one of the own ships in the squadron has landed or crashed for some reason.
  • the mother ship 120 may, for example, reorganize the zigzag squadron into a straight squadron.
  • FIG. 7 is a view showing the reconstruction of the squadron configuration when the mothership in the squadron has landed or crashed for some reason.
  • the mother ship 120 may set up one own ship including a long-distance communication module among a plurality of own ships 110 as a mother ship. .
  • the own ship entrusted with the authority of the mother ship sets the mother ship coordinate system with its own position as the origin, and controls the flight of a plurality of own ships 110 through short-distance communication based on the set mother ship coordinate system to form a flight squadron. It performs the role of a flight control server, and performs monitoring using a camera while flying while maintaining a flight squadron with a plurality of own ships 110 .
  • FIG. 8 is a flowchart illustrating a monitoring method using a plurality of drones according to an embodiment of the present invention.
  • the main drone 120 sets a mother ship coordinate system having its own position as the origin ( S810 ).
  • the main drone 120 controls the flight of the plurality of auxiliary drones 110 through short-distance communication based on the set mothership coordinate system to configure a flight squadron (S820).
  • the main drone 120 may control the flight of the plurality of auxiliary drones 110 so that the scanning area determined by the angle of view of the camera of each auxiliary drone 110 does not overlap by more than a preset scanning area tolerance.
  • the ground control server 130 controls the flight of the main drone 120, thereby causing the main drone 120 to maintain a flight squadron together with the plurality of auxiliary drones 110 and use a camera to monitor a predetermined area. control to be performed (S830).
  • the main drone 120 determines whether an abnormality has occurred in at least one auxiliary drone among the plurality of auxiliary drones 110 or in itself (S840). At this time, when communication with the auxiliary drone 110 is interrupted or the operation of the auxiliary drone 110 is out of a normal range, the main drone 120 may determine that an abnormality has occurred in the auxiliary drone 110, When the movement of the user is out of the normal range, it can be determined that an abnormality has occurred.
  • the main drone 120 reconfigures the flight squadron except for the at least one auxiliary drone ( S842 ).
  • the main drone 120 delegates its authority to any one auxiliary drone among at least one auxiliary drone including a long-range communication module among the plurality of auxiliary drones 110 (S850). ).
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). , FPGAs (Field Programmable Gate Arrays), processors, controllers, microcontrollers and microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • processors controllers
  • the method according to the embodiments of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • the software code may be stored in the memory unit and driven by the processor.
  • the memory unit may be located inside or outside the processor, and may transmit and receive data to and from the processor by various known means.
  • monitoring and surveying time can be shortened, and multiple drones can be controlled simultaneously with simple control equipment.

Landscapes

  • Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention relates to a monitoring method and system using a plurality of drones, wherein the system comprises: a plurality of auxiliary drones that perform monitoring by using cameras; a main drone that sets a bus coordinate system with the main drone's own location as an original point, configures a flight formation by controlling flight of the plurality of auxiliary drones through short-distance communication on the basis of the set bus coordinate system, and performs monitoring by using a camera while maintaining the flight formation with the plurality of auxiliary drones; and a ground control server that controls flight of the main drone to monitor a designated area.

Description

복수의 드론을 이용한 감시 방법 및 시스템Monitoring method and system using multiple drones
본 발명은 감시 시스템에 관한 것으로, 더욱 상세하게는 복수의 드론을 이용한 감시 방법 및 시스템에 관한 것이다.The present invention relates to a monitoring system, and more particularly, to a monitoring method and system using a plurality of drones.
무인 로봇인 드론은 최초에 군사용으로 개발되었으나, 운반 및 보관이 편리하며 조작이 용이한 이점을 가지고 있어 근래에는 텔레비전 방송 등을 위한 촬영 용도로 널리 활용되고 있다. 최근에는 드론을 이용하여 무인 배달 서비스 시스템을 구축함으로써, 사람의 간섭을 최소화하여 물건 배송이 가능하며, 송수신자와 드론간의 상호인증을 통해 안전한 무인배달 서비스를 제공하는 기술도 등장하였다.Drones, which are unmanned robots, were initially developed for military use, but have the advantages of convenient transport and storage, and easy operation, so they are widely used for filming for TV broadcasts and the like. Recently, by building an unmanned delivery service system using a drone, goods can be delivered by minimizing human interference, and a technology that provides a safe unmanned delivery service through mutual authentication between the sender and the drone has also emerged.
드론은 공중으로 이동하므로 이동성이 뛰어나기 때문에, 심각한 교통 체증, 험난한 도로 사정에도 공중을 통해 신속하게 이동할 수 있다. 이 같은 드론의 특성을 이용하여 드론은 사람의 접근이 어려운 특정 지역을 관리, 감시하기 위한 용도로도 사용되고 있다. 즉, 드론은 탑재된 카메라나 센서를 통해 특정 지역에 대한 원격 감시를 진행할 수 있다. 예를 들면, 드론은 조난자 수색, 산불 감시, 교통 위반 단속, 우범 지역 및 국경 지역 감시 등과 같은 공공 목적으로 활용될 수 있다.Since drones are highly mobile because they move in the air, they can move quickly through the air even in severe traffic jams and rough road conditions. Using these characteristics of drones, drones are also being used to manage and monitor specific areas that are difficult for humans to access. That is, the drone can perform remote monitoring of a specific area through the mounted camera or sensor. For example, drones can be used for public purposes, such as searching for survivors, monitoring wildfires, cracking down on traffic violations, and monitoring crime zones and border areas.
그러나, 종래의 드론을 이용한 감시 시스템에서는, 드론이 보통 지그재그 형태로 비행하기 때문에, 전체 스캐닝 시간이 길고, 또한 스캐닝 간격이 길어서 보안에 취약하다는 문제점이 있었다.However, in the conventional surveillance system using a drone, since the drone usually flies in a zigzag shape, there is a problem in that the overall scanning time is long and the scanning interval is long, so that security is vulnerable.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 국내등록특허 제10-1851539호(Patent Document 1) Domestic Registered Patent No. 10-1851539
(특허문헌 2) 국내특허공개공보 제10-2017-0070713호(Patent Document 2) Domestic Patent Publication No. 10-2017-0070713
본 명세서는 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 군집 비행을 통해 감시 및 측량 영역을 늘릴 수 있는 복수의 드론을 이용한 감시 방법 및 시스템을 제공하는 데 그 목적이 있다.The present specification has been devised to solve the above problems, and an object of the present specification is to provide a monitoring method and system using a plurality of drones capable of increasing the monitoring and surveying area through swarm flight.
본 발명의 다른 목적은 지상 관제 서버에서 여러 대의 드론을 동시에 통제할 수 있는 복수의 드론을 이용한 감시 방법 및 시스템를 제공한다.Another object of the present invention is to provide a monitoring method and system using a plurality of drones capable of simultaneously controlling several drones in a ground control server.
이와 같은 목적을 달성하기 위한, 본 명세서의 실시예에 따르면, 본 명세서에 따른 복수의 드론을 이용한 감시 시스템은, 카메라를 이용하여 감시를 수행하는 복수의 보조 드론; 자신의 위치를 원점으로 하는 모선 좌표계를 설정하고, 설정된 모선 좌표계를 기준으로 근거리 통신을 통해 상기 복수의 보조 드론의 비행을 제어하여 비행 편대를 구성하며, 상기 복수의 보조 드론과 함께 비행 편대를 유지하면서 카메라를 이용하여 감시를 수행하는 주 드론; 및 정해진 지역을 감시하도록 상기 주 드론의 비행을 제어하는 지상 관제 서버를 포함한다.According to an embodiment of the present specification, for achieving the above object, a monitoring system using a plurality of drones according to the present specification includes a plurality of auxiliary drones performing monitoring using a camera; Sets a mothership coordinate system with its own position as the origin, controls the flight of the plurality of auxiliary drones through short-distance communication based on the set mothership coordinate system to form a flight squadron, and maintains the flight squadron together with the plurality of auxiliary drones a main drone that performs surveillance using a camera; and a ground control server that controls the flight of the main drone to monitor a predetermined area.
바람직하게는, 상기 주 드론은 비행 편대의 형태에 따라 상기 복수의 보조 드론의 X 좌표값을 결정하고, 각각의 보조 드론에 장착된 카메라의 성능에 따라 상기 복수의 보조 드론의 Y 좌표값을 설정하며, 각각의 보조 드론의 카메라의 화각에 의해 정해지는 스캐닝 영역 및 기설정된 스캐닝 영역 허용치를 이용하여 상기 복수의 보조 드론의 Z 좌표값을 설정하는 것을 특징으로 한다.Preferably, the main drone determines the X coordinate values of the plurality of auxiliary drones according to the shape of the flight squadron, and sets the Y coordinate values of the plurality of auxiliary drones according to the performance of a camera mounted on each auxiliary drone. and setting the Z coordinate values of the plurality of auxiliary drones using a scanning area determined by the angle of view of the camera of each auxiliary drone and a preset scanning area tolerance.
바람직하게는, 상기 주 드론은 각각의 보조 드론의 카메라의 화각에 의해 정해지는 스캐닝 영역이 기설정된 스캐닝 영역 허용치 이상 겹치지 않도록 상기 복수의 보조 드론의 비행을 제어하는 것을 특징으로 한다.Preferably, the main drone controls the flight of the plurality of auxiliary drones so that the scanning area determined by the angle of view of the camera of each auxiliary drone does not overlap by more than a preset scanning area tolerance.
바람직하게는, 상기 주 드론은 상기 복수의 보조 드론 중에 적어도 하나의 보조 드론에 이상이 발생한 경우, 상기 적어도 하나의 보조 드론을 제외하고 비행 편대를 재구성하는 것을 특징으로 한다.Preferably, the main drone is characterized in that when an abnormality occurs in at least one auxiliary drone among the plurality of auxiliary drones, the flight squadron is reconfigured except for the at least one auxiliary drone.
바람직하게는, 상기 복수의 보조 드론 중에 적어도 하나의 보조 드론은 장거리 통신 모듈을 포함하고, 상기 주 드론은 자신에게 이상이 발생한 경우, 상기 적어도 하나의 보조 드론 중에 어느 하나의 보조 드론에게 자신의 권한을 위임하는 것을 특징으로 한다.Preferably, at least one auxiliary drone among the plurality of auxiliary drones includes a long-distance communication module, and when an abnormality occurs in the main drone, it gives its authority to any one auxiliary drone among the at least one auxiliary drones. It is characterized by delegating
바람직하게는, 상기 주 드론은 자신과 기설정된 거리 이상 떨어진 보조 드론에 대해 메쉬 통신 기법을 이용하여 상기 보조 드론의 비행을 제어하는 것을 특징으로 한다.Preferably, the main drone is characterized in that it controls the flight of the auxiliary drone by using a mesh communication technique with respect to the auxiliary drone separated from itself by a predetermined distance or more.
바람직하게는, 상기 주 드론은 상기 정해진 지역의 크기에 따라 상기 비행 편대를 변경하는 것을 특징으로 한다.Preferably, the main drone is characterized in that it changes the flight squadron according to the size of the determined area.
바람직하게는, 상기 주 드론은 감시 목적에 따라 상기 비행 편대를 변경하는 것을 특징으로 한다.Preferably, the main drone is characterized in that the flight squadron is changed according to the monitoring purpose.
본 명세서의 다른 실시예에 따르면, 본 명세서에 따른 복수의 드론을 이용한 감시 방법은, 주 드론이, 자신의 위치를 원점으로 하는 모선 좌표계를 설정하는 단계; 상기 주 드론이, 설정된 모선 좌표계를 기준으로 근거리 통신을 통해 복수의 보조 드론의 비행을 제어하여 비행 편대를 구성하는 단계; 및 지상 관제 서버가, 상기 주 드론의 비행을 제어함으로써, 상기 주 드론으로 하여금 상기 복수의 보조 드론과 함께 비행 편대를 유지하면서 카메라를 이용하여 정해진 지역의 감시를 수행하도록 제어하는 단계를 포함한다.According to another embodiment of the present specification, a monitoring method using a plurality of drones according to the present specification includes: setting, by a main drone, a mother ship coordinate system having its own position as an origin; configuring, by the main drone, a flight squadron by controlling the flight of a plurality of auxiliary drones through short-distance communication based on a set mothership coordinate system; and controlling, by the ground control server, the flight of the main drone to perform monitoring of a predetermined area using a camera while maintaining a flight squadron together with the plurality of auxiliary drones.
바람직하게는, 상기 비행 편대를 구성하는 단계에서, 상기 주 드론은 각각의 보조 드론의 카메라의 화각에 의해 정해지는 스캐닝 영역이 기설정된 스캐닝 영역 허용치 이상 겹치지 않도록 상기 복수의 보조 드론의 비행을 제어하는 것을 특징으로 한다.Preferably, in the step of configuring the flight squadron, the main drone controls the flight of the plurality of auxiliary drones so that the scanning area determined by the angle of view of the camera of each auxiliary drone does not overlap by more than a preset scanning area tolerance. characterized in that
바람직하게는, 상기 주 드론이, 상기 복수의 보조 드론 중에 적어도 하나의 보조 드론에 이상이 발생한지 여부를 판단하는 단계; 및 상기 주 드론이, 상기 복수의 드론 중에 적어도 하나의 보조 드론에 이상이 발생하였다고 판단한 경우, 상기 적어도 하나의 보조 드론을 제외하고 비행 편대를 재구성하는 단계를 더 포함하는 것을 특징으로 한다.Preferably, the method comprising: determining, by the main drone, whether an abnormality has occurred in at least one auxiliary drone among the plurality of auxiliary drones; and when the main drone determines that an abnormality has occurred in at least one auxiliary drone among the plurality of drones, reconfiguring a flight squadron except for the at least one auxiliary drone.
바람직하게는, 상기 주 드론이, 자신에게 이상이 발생한지 여부를 판단하는 단계; 및 상기 주 드론이, 자신에게 이상이 발생하였다고 판단한 경우, 상기 복수의 보조 드론 중에 장거리 통신 모듈을 포함하는 적어도 하나의 보조 드론 중 어느 하나의 보조 드론에게 자신의 권한을 위임하는 단계를 더 포함하는 것을 특징으로 한다.Preferably, the method comprising: determining, by the main drone, whether an abnormality has occurred in itself; and when the main drone determines that an abnormality has occurred in itself, delegating its authority to any one auxiliary drone among at least one auxiliary drone including a long-range communication module among the plurality of auxiliary drones characterized in that
이상에서 설명한 바와 같이 본 명세서에 의하면, 주 드론이 근거리 통신을 통해 복수의 보조 드론의 비행을 제어하여 비행 편대를 구성하고, 지상 관제 서버가 비행 편대를 하나의 가상 드론으로 인식하여 통제하는 복수의 드론을 이용한 감시 방법 및 시스템을 제공함으로써, 감시 및 측량 시간을 단축할 수 있고, 단순한 관제 장비로 여러 대의 드론을 동시에 통제할 수 있다.As described above, according to the present specification, the main drone controls the flight of a plurality of auxiliary drones through short-range communication to configure a flight squadron, and the ground control server recognizes the flight squadron as a single virtual drone and controls the plurality of By providing a monitoring method and system using drones, monitoring and surveying time can be shortened, and multiple drones can be controlled simultaneously with simple control equipment.
도 1은 본 발명의 실시예에 따른 복수의 드론을 이용한 감시 시스템의 개략적인 구성을 나타낸 도면,1 is a view showing a schematic configuration of a monitoring system using a plurality of drones according to an embodiment of the present invention;
도 2는 본 발명의 실시예에 따른 주 드론 내부의 개략적인 구성을 나타낸 블럭 구성도,2 is a block diagram showing a schematic configuration of the inside of the main drone according to an embodiment of the present invention;
도 3은 본 발명의 실시예에 따른 주 드론과 보조 드론 간의 위치 관계를 설명하기 위한 도면,3 is a view for explaining a positional relationship between a main drone and an auxiliary drone according to an embodiment of the present invention;
도 4는 본 발명의 실시예에 따른 주 드론과 보조 드론 간의 위치 평가 지표를 설명하기 위한 도면,4 is a view for explaining a position evaluation index between a main drone and an auxiliary drone according to an embodiment of the present invention;
도 5는 본 발명의 실시에에 따른 드론들의 위치 계산 방법을 설명하기 위한 도면,5 is a view for explaining a method for calculating positions of drones according to an embodiment of the present invention;
도 6은 편대 내 자선 중의 어느 하나가 어떤 이유로 착륙 또는 추락했을 경우, 편대 구성을 재구성하는 것을 보여주는 도면,6 is a view showing the reconstruction of the squadron configuration when any one of the own ships in the squadron has landed or crashed for some reason;
도 7은 편대 내 모선이 어떤 이유로 착륙 또는 추락했을 경우, 편대 구성을 재구성하는 것을 보여주는 도면, 및7 is a diagram showing the reconstruction of the squadron configuration if the mothership in the squadron has landed or crashed for some reason; and
도 8은 본 발명의 실시예에 따른 복수의 드론을 이용한 감시 방법을 나타낸 흐름도이다.8 is a flowchart illustrating a monitoring method using a plurality of drones according to an embodiment of the present invention.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.It should be noted that the technical terms used herein are used only to describe specific embodiments, and are not intended to limit the present invention. In addition, the technical terms used in this specification should be interpreted in the meaning generally understood by those of ordinary skill in the art to which the present invention belongs, unless otherwise defined in this specification, and excessively inclusive. It should not be construed in the meaning of a human being or in an excessively reduced meaning. In addition, when the technical terms used in the present specification are incorrect technical terms that do not accurately express the spirit of the present invention, they should be understood by being replaced with technical terms that those skilled in the art can correctly understand. In addition, general terms used in the present invention should be interpreted as defined in advance or according to the context before and after, and should not be interpreted in an excessively reduced meaning.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.Also, as used herein, the singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as "consisting of" or "comprising" should not be construed as necessarily including all of the various components or various steps described in the specification, some of which components or some steps are It should be construed that it may not include, or may further include additional components or steps.
또한, 본 명세서에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.In addition, the suffixes "module" and "part" for the components used in this specification are given or mixed in consideration of the ease of writing the specification, and do not have distinct meanings or roles by themselves.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는 데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.Also, terms including an ordinal number such as first, second, etc. used herein may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
본 명세서에서 감시 임무란, 드론이 정해진 지역 내에서 발생하는 상황에 대처하기 위하여 수행하도록 프로그래밍된 임의의 동작 또는 동작들의 조합을 지칭한다. 감시 임무를 수행하기 위한 프로그래밍 명령이 드론에 전송되거나 사전에 드론에 저장될 수 있으며, 드론이 해당 프로그래밍 명령에 따라 드론의 하나 이상의 부분을 구동함으로써 감시 임무를 수행한다. 또한, 감시 임무의 수행이란 사전에 프로그래밍된 명령에 따라 드론에 의해 자율적으로 이루어지는 것일 수도 있으며, 또는 하나 이상의 단계에서 사용자의 개입에 의하여 이루어지는 것일 수도 있다. 예를 들어, 본 명세서에 기재된 감시 임무의 수행이란, 드론의 특정 형태의 이동, 드론의 일 부분의 이동이나 회전, 및 드론에 의한 정보의 검출, 영상 및/또는 소리의 출력, 다른 객체 또는 서버와의 통신, 특정 번호로의 전화 또는 영상통화연결 등과 같은 개별 구동들의 하나 이상의 조합을 지칭한다.As used herein, a surveillance mission refers to an arbitrary operation or combination of operations programmed to be performed by a drone in order to cope with a situation occurring within a predetermined area. Programming commands for performing the surveillance mission may be sent to the drone or stored in the drone in advance, and the drone performs the surveillance mission by driving one or more parts of the drone according to the programming commands. In addition, the monitoring mission may be autonomously performed by the drone according to a pre-programmed command, or may be performed by user intervention in one or more steps. For example, the performance of the surveillance mission described in the present specification refers to movement of a specific type of drone, movement or rotation of a part of the drone, and detection of information by the drone, output of images and/or sounds, other objects or servers It refers to one or more combinations of individual operations, such as communication with a specific number, or a call or video call connection to a specific number.
또한, 본 명세서에서는 설명의 편의상, 드론의 감시 수단으로서 카메라를 예로 들고 있지만 이에 한정되는 것은 아니며, 드론은 적외선 카메라, RGB 카메라, 마이크를 포함하는 음성 인식 센서, 음파 등을 이용한 레이더(radar), 거리 감지 및 충돌 방지 센서, 고도 감지 및 조절 센서 등을 포함하고, 영상 및 주변 정보를 획득하여 사람이나 동물 등을 감시하고, 사람이나 동물로부터 기준치 이상의 크기나 주파수를 가진 소리를 인식하여 위기 상황을 검출할 수 있다.In addition, in the present specification, for convenience of explanation, a camera is exemplified as a monitoring means of a drone, but is not limited thereto, and the drone includes an infrared camera, an RGB camera, a voice recognition sensor including a microphone, a radar using sound waves, etc. It includes distance detection and collision avoidance sensors, altitude detection and control sensors, etc., acquires images and surrounding information to monitor people or animals, and recognizes sounds with a size or frequency higher than the standard value from people or animals to detect a crisis situation can be detected.
[부호의 설명][Explanation of code]
110: 복수의 보조 드론 120: 주 드론110: multiple auxiliary drones 120: main drone
130: 지상 관제 서버 210: 장거리 통신 모듈130: ground control server 210: long-distance communication module
220: 근거리 통신 모듈 230: 카메라 모듈220: short-distance communication module 230: camera module
240: 제어부240: control unit
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, a preferred embodiment according to the present invention will be described in detail with reference to the accompanying drawings, but the same or similar components are assigned the same reference numerals regardless of reference numerals, and redundant description thereof will be omitted.
또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다.In addition, in the description of the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, it should be noted that the accompanying drawings are only for easy understanding of the spirit of the present invention, and should not be construed as limiting the spirit of the present invention by the accompanying drawings.
도 1은 본 발명의 실시예에 따른 복수의 드론을 이용한 감시 시스템의 개략적인 구성을 나타낸 도면이다.1 is a view showing a schematic configuration of a monitoring system using a plurality of drones according to an embodiment of the present invention.
도 1을 참조하면, 본 발명에 따른 복수의 드론을 이용한 감시 시스템은 복수의 보조 드론(110), 주 드론(120), 및 지상 관제 서버(130)를 포함할 수 있다.Referring to FIG. 1 , a monitoring system using a plurality of drones according to the present invention may include a plurality of auxiliary drones 110 , a main drone 120 , and a ground control server 130 .
복수의 보조 드론(110)은 주 드론(120)의 제어에 의해 주 드론(120)과 함께 비행 편대를 구성하여 정해진 지역을 비행하면서 정해진 지역의 상세 영상을 촬영하여 근거리 통신을 통해 주 드론(120)으로 전송하는 드론이다. 이를 위해, 복수의 보조 드론(110)은 카메라 및 근거리 통신 모듈을 포함할 수 있다.The plurality of auxiliary drones 110 form a flight squadron together with the main drone 120 under the control of the main drone 120 and shoot detailed images of the predetermined area while flying in the predetermined area to capture the detailed image of the main drone 120 through short-distance communication. ) is a drone that transmits To this end, the plurality of auxiliary drones 110 may include a camera and a short-range communication module.
주 드론(120)은 자신의 위치를 원점으로 하는 모선 좌표계를 설정하고, 설정된 모선 좌표계를 기준으로 근거리 통신을 통해 복수의 보조 드론(110)의 비행을 제어하여 비행 편대를 구성하는 비행 관제 서버의 역할을 수행하며, 복수의 보조 드론(110)과 함께 비행 편대를 유지하며 비행하면서 카메라를 이용하여 감시를 수행한다. 즉, 주 드론(120)은 복수의 보조 드론(110)에 의해 촬영된 영상을 취합하여 장거리 통신을 통해 지상 관제 서버(130)로 전송함으로써, 정해진 지역에 대한 감시를 수행할 수 있다.The main drone 120 sets a mother ship coordinate system with its own position as the origin, and controls the flight of a plurality of auxiliary drones 110 through short-distance communication based on the set mother ship coordinate system to form a flight control server of a flight control server. It performs a role and performs monitoring using a camera while flying while maintaining a flight squadron together with a plurality of auxiliary drones 110 . That is, the main drone 120 collects images captured by the plurality of auxiliary drones 110 and transmits them to the ground control server 130 through long-distance communication, thereby monitoring a predetermined area.
또한, 주 드론(120)은 영상 및/또는 음성의 출력 장치를 포함하여, 위기 상황을 검출하였을 경우 해당 정보를 영상 및/또는 음성으로 출력하여 지역 내의 사람에게 알릴 수 있다. 예를 들어, 주 드론(120)은 사용자 주변의 인체나 사물의 급격한 움직임 방향 등을 계산하고 이로 인한 위기 상황을 미리 예측하여, 예측된 정보를 영상 및/또는 음성으로 출력하여 지역 내에 위치한 사람의 사전 대비가 가능하게 할 수 있다.In addition, the main drone 120 may include a video and/or audio output device, and when detecting a crisis situation, output the corresponding information in video and/or audio to inform people in the area. For example, the main drone 120 calculates the direction of a sudden movement of a human body or an object around the user, predicts a crisis situation resulting therefrom, and outputs the predicted information as an image and/or voice to the It can be possible to prepare in advance.
또한, 주 드론(120)은 위기 상황에 대한 정보에 기초하여 하나 이상의 사용자 장치를 제어할 수도 있다. 예를 들어, 주 드론(120)은 위기 상황이 검출될 경우 사전에 지정된 하나 이상의 사용자의 스마트폰에 경보 메시지를 전송하거나, 사용자의 자동차를 제어하여 이동시킬 수 있다. 또한, 주 드론(120)은 위기 상황이 아닌 경우에도 사용자로부터의 명령에 따라 사용자 장치를 제어할 수 있다. 예컨대, 주 드론(120)은 사용자가 지정한 시간 및/또는 장소에 사용자의 차량을 대기시키거나, 사용자가 차량으로부터 하차한 후 차량을 미리 설정된 장소에 주차하는 등의 동작을 수행할 수도 있다.Also, the main drone 120 may control one or more user devices based on the information on the crisis situation. For example, when a crisis situation is detected, the main drone 120 may transmit an alert message to one or more users' smartphones designated in advance, or may control and move the user's vehicle. In addition, the main drone 120 may control the user device according to a command from the user even in a non-crisis situation. For example, the main drone 120 may perform an operation such as waiting the user's vehicle at a time and/or place designated by the user, or parking the vehicle in a preset place after the user gets off the vehicle.
또한, 주 드론(120)은 영상 및 주변 정보로부터 위기 상황을 검출하였을 경우, 하나 이상의 관계기관 서버와 통신함으로써 위기 상황에 따른 조치를 취할 수도 있다. 예를 들어, 주 드론(120)은 장거리 통신을 통하여 관계기관 서버에 신고나 도움 요청 신호 등을 전송할 수 있다. 관계기관 서버는 복수의 기관에서 운영하는 복수의 서버를 통칭하는 것일 수도 있다. 예를 들어, 관계기관 서버는 경찰이나 병원 등에서 운영하는 서버일 수 있으나, 이에 한정되는 것은 아니다. 관계기관 서버와의 통신은 위기 상황을 감지한 후 주 드론(120)에서 자동적으로 이루어질 수도 있으며, 또는 사용자에게 위기 상황을 통지한 후 사용자 또는 사용자 장치로부터 특정 입력이 수신되는 것에 대한 응답으로 이루어질 수도 있다.In addition, when the main drone 120 detects a crisis situation from the image and surrounding information, it may take measures according to the crisis situation by communicating with one or more related agency servers. For example, the main drone 120 may transmit a report or a help request signal to a server of a related institution through long-distance communication. The related institution server may collectively refer to a plurality of servers operated by a plurality of institutions. For example, the related institution server may be a server operated by the police or a hospital, but is not limited thereto. Communication with the related agency server may be automatically performed by the main drone 120 after detecting a crisis situation, or may be made in response to receiving a specific input from the user or user device after notifying the user of the crisis situation have.
추가로, 주 드론(120)은 하나 이상의 빅 데이터(Big Data) 서버로부터 정보를 수집하고, 수집한 정보를 사용자에게 제시하거나 또는 사용자 장치에 전송할 수도 있다. 예를 들어, 주 드론(120)은 빅 데이터 서버로부터 현재 사용자가 위치한 지역에 대한 지리학적 정보, 예컨대, 주소, 지도, 인근 공공기관 정보 등을 획득하고 이를 사용자에게 제시함으로써 사용자의 생활 편의를 도모할 수 있다. 한편, 주 드론(120)의 자세한 구성에 대해서는 도 2에서 설명하기로 한다.Additionally, the main drone 120 may collect information from one or more Big Data servers, and present the collected information to a user or transmit it to a user device. For example, the main drone 120 obtains geographic information about the area where the user is currently located, for example, an address, a map, information about a nearby public institution, etc. can do. Meanwhile, a detailed configuration of the main drone 120 will be described with reference to FIG. 2 .
지상 관제 서버(130)는 장거리 통신을 통하여 주 드론(120)과 데이터를 송수신하면서, WGS84 좌표계에 기준하여 주 드론(120)을 제어하기 위한 명령을 전송하거나, 주 드론(120)에 의해 복수의 보조 드론(110)으로부터 수집된 영상 정보를 수신할 수 있다. 또한, 지상 관제 서버(130)는 주 드론(120)이 위기 상황을 검출하였을 경우 해당 정보를 주 드론(120)으로부터 수신할 수도 있다. 이를 위해, 지상 관제 서버(130)는 사용자가 보유한 컴퓨팅 장치, 예컨대, 스마트폰(smartphone), 태블릿(tablet) 컴퓨터, 노트북 컴퓨터(notebook), 데스크탑 컴퓨터(desktop computer)의 형태로 구현될 수도 있다. 또는, 지상 관제 서버(130)는 감시 서비스를 제공하는 사업자가 운영하는 서버의 형태로 구현될 수 있다.The ground control server 130 transmits/receives data to and from the main drone 120 through long-distance communication, and transmits a command for controlling the main drone 120 based on the WGS84 coordinate system, or receives a plurality of The image information collected from the auxiliary drone 110 may be received. Also, when the main drone 120 detects a crisis situation, the ground control server 130 may receive the corresponding information from the main drone 120 . To this end, the ground control server 130 may be implemented in the form of a computing device possessed by the user, for example, a smartphone, a tablet computer, a notebook computer, or a desktop computer. Alternatively, the ground control server 130 may be implemented in the form of a server operated by an operator providing a monitoring service.
지상 관제 서버(130)와 주 드론(120)은 위성 통신으로 통신을 수행할 수도 있으나, 이에 한정되는 것은 아니며, LAN, MAN(Metropolitan Area Network), GSM(Global System for Mobile Network), EDGE(Enhanced Data GSM Environment), HSDPA(High Speed Downlink Packet Access), W-CDMA(Wideband Code Division Multiple Access), CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), 블루투스(Bluetooth), 지그비(Zigbee), VoIP(Voice over Internet Protocol), LTE Advanced, IEEE802.16m, WirelessMAN-Advanced, HSPA+, 3GPP Long Term Evolution (LTE), Mobile WiMAX (IEEE 802.16e), UMB (formerly EV-DO Rev. C), Flash-OFDM, iBurst and MBWA (IEEE 802.20) systems, HIPERMAN, Beam-Division Multiple Access (BDMA), Wi-MAX(World Interoperability for Microwave Access) 및 초음파 활용 통신으로 이루어진 군으로부터 선택되는 임의의 통신 방법으로 통신을 수행하도록 구성될 수 있다.The ground control server 130 and the main drone 120 may perform communication through satellite communication, but is not limited thereto, and is not limited thereto, and includes a LAN, a Metropolitan Area Network (MAN), a Global System for Mobile Network (GSM), and an Enhanced EDGE (EDGE). Data GSM Environment), High Speed Downlink Packet Access (HSDPA), Wideband Code Division Multiple Access (W-CDMA), Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Bluetooth, Zigbee , Voice over Internet Protocol (VoIP), LTE Advanced, IEEE802.16m, WirelessMAN-Advanced, HSPA+, 3GPP Long Term Evolution (LTE), Mobile WiMAX (IEEE 802.16e), UMB (formerly EV-DO Rev. C), Flash - Communication is performed by any communication method selected from the group consisting of OFDM, iBurst and MBWA (IEEE 802.20) systems, HIPERMAN, Beam-Division Multiple Access (BDMA), Wi-MAX (World Interoperability for Microwave Access), and ultrasound-based communication. can be configured to perform.
도 2는 본 발명의 실시예에 따른 주 드론 내부의 개략적인 구성을 나타낸 블럭 구성도이다.2 is a block diagram showing a schematic configuration of the inside of the main drone according to an embodiment of the present invention.
도 2를 참조하면, 본 발명에 따른 주 드론(120)은 장거리 통신 모듈(210), 근거리 통신 모듈(220), 카메라 모듈(230), 및 제어부(240)를 포함할 수 있다. 여기서, 주 드론(120)은 배터리로 구동되고, 날개, 엔진 등과 같은 일반적인 비행체의 구성을 가짐으로써, 이륙, 착륙 및 비행 가능하다.Referring to FIG. 2 , the main drone 120 according to the present invention may include a long-distance communication module 210 , a short-range communication module 220 , a camera module 230 , and a controller 240 . Here, the main drone 120 is powered by a battery and has the configuration of a general aircraft such as wings and an engine, so that it can take off, land, and fly.
장거리 통신 모듈(210)은 장거리 통신을 통해 지상 관제 서버(130)와 통신을 수행한다. 구체적으로는, 장거리 통신 모듈(210)은 지상 관제 서버(130)로부터 주 드론(120)의 비행 제어를 위한 명령을 수신할 수 있으며, 지상 관제 서버(130)로 자신의 위치 정보 및 복수의 보조 드론(110)의 위치 정보를 전송할 수 있다. 또한, 장거리 통신 모듈(210)은 복수의 보조 드론(110)으로부터 수신한 영상 정보를 지상 관제 서버(130)로 전송할 수 있다.The long-distance communication module 210 communicates with the ground control server 130 through long-distance communication. Specifically, the long-distance communication module 210 may receive a command for flight control of the main drone 120 from the ground control server 130 , and provide its own location information and a plurality of assistants to the ground control server 130 . Location information of the drone 110 may be transmitted. Also, the long-distance communication module 210 may transmit image information received from the plurality of auxiliary drones 110 to the ground control server 130 .
이를 위해, 장거리 통신 모듈(210)의 무선 인터넷 기술은, 무선랜(Wireless LAN : WLAN), 와이 파이(Wi-Fi), 와이브로(Wireless Broadband : Wibro), 와이맥스(World Interoperability for Microwave Access : Wimax), 고속 하향 패킷 접속(High Speed Downlink Packet Access : HSDPA), IEEE 802.16, 롱 텀 에볼루션(Long Term Evolution : LTE), 광대역 무선 이동 통신 서비스(Wireless Mobile Broadband Service : WMBS) 등을 포함할 수 있다.To this end, the wireless Internet technology of the long-distance communication module 210 is a wireless LAN (WLAN), Wi-Fi (Wi-Fi), Wi-Bro (Wireless Broadband: Wibro), Wimax (World Interoperability for Microwave Access: Wimax) , High Speed Downlink Packet Access (HSDPA), IEEE 802.16, Long Term Evolution (LTE), Broadband Wireless Mobile Broadband Service (WMBS), and the like.
근거리 통신 모듈(220)은 근거리 통신을 통해 복수의 보조 드론(110)과 통신을 수행한다. 구체적으로는, 근거리 통신 모듈(220)은 복수의 보조 드론(110)의 비행 제어를 위한 명령을 전송할 수 있으며, 복수의 보조 드론(110)으로부터 복수의 보조 드론(110)의 위치 정보 및 복수의 보조 드론(110)에 의해 촬영된 영상 정보를 수신할 수 있다.The short-range communication module 220 communicates with the plurality of auxiliary drones 110 through short-range communication. Specifically, the short-range communication module 220 may transmit a command for controlling the flight of the plurality of auxiliary drones 110 , and the location information of the plurality of auxiliary drones 110 and the plurality of auxiliary drones 110 from the plurality of auxiliary drones 110 . Image information captured by the auxiliary drone 110 may be received.
이를 위해, 근거리 통신 모듈(220)의 근거리 통신 기술은, 루투스(Bluetooth), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association : IrDA), 초광대역 무선(Ultra Wideband : UWB), 지그비(ZigBee) 등을 포함할 수 있다.To this end, the short-distance communication technology of the short-range communication module 220, Bluetooth (Bluetooth), RFID (Radio Frequency Identification), infrared communication (Infrared Data Association: IrDA), ultra-wideband radio (Ultra Wideband: UWB), Zigbee ( ZigBee) and the like.
카메라 모듈(230)은 정해진 화각에 의해 일정 영역의 영상을 촬영한다. 또한, 카메라 모듈(230)은 일정 영역의 정지 영상뿐만 아니라 동영상을 촬영할 수 있다. 또한, 카메라 모듈(230)은 주 드론(120)의 본체에 부착되어 틸팅(tilting)될 수도 있다.The camera module 230 captures an image of a predetermined area by a predetermined angle of view. In addition, the camera module 230 may capture a moving image as well as a still image of a predetermined area. In addition, the camera module 230 may be attached to the main body of the drone 120 and tilted.
제어부(240)는 장거리 통신 모듈(210), 근거리 통신 모듈(220), 및 카메라 모듈(230) 등을 제어한다.The controller 240 controls the long-distance communication module 210 , the short-range communication module 220 , and the camera module 230 .
제어부(240)는 자신의 위치를 원점으로 하는 모선 좌표계를 설정하고, 설정된 모선 좌표계를 기준으로 근거리 통신 모듈(220)을 통해 복수의 보조 드론(110)의 비행을 제어하여 비행 편대를 구성하며, 복수의 보조 드론(110)과 함께 비행 편대를 유지하며 비행하면서 카메라 모듈(230)을 이용하여 감시를 수행한다. 또한, 제어부(240)는 근거리 통신 모듈(220)을 통해 복수의 보조 드론(110)에 의해 촬영된 영상을 취합하여 장거리 통신 모듈(210)을 통해 지상 관제 서버(130)로 전송함으로써, 정해진 지역에 대한 감시를 수행한다.The control unit 240 sets the mothership coordinate system with its own position as the origin, and controls the flight of the plurality of auxiliary drones 110 through the short-distance communication module 220 based on the set mothership coordinate system to configure the flight squadron, Monitoring is performed using the camera module 230 while flying while maintaining a flight squadron together with a plurality of auxiliary drones 110 . In addition, the controller 240 collects the images captured by the plurality of auxiliary drones 110 through the short-range communication module 220 and transmits them to the ground control server 130 through the long-distance communication module 210, thereby providing a predetermined area. carry out monitoring for
또한, 제어부(240)는 비행 편대의 형태에 따라 복수의 보조 드론(110)의 X 좌표값을 결정하고, 각각의 보조 드론(110)에 장착된 카메라의 성능에 따라 복수의 보조 드론(110)의 Y 좌표값을 설정하며, 각각의 보조 드론(110)의 카메라의 화각에 의해 정해지는 스캐닝 영역 및 기설정된 스캐닝 영역 허용치를 이용하여 복수의 보조 드론(110)의 Z 좌표값을 설정할 수 있다.In addition, the control unit 240 determines the X coordinate values of the plurality of auxiliary drones 110 according to the shape of the flight squadron, and the plurality of auxiliary drones 110 according to the performance of the camera mounted on each auxiliary drone 110 . It is possible to set the Y coordinate value of , and set the Z coordinate value of the plurality of auxiliary drones 110 using a scanning area determined by the angle of view of the camera of each auxiliary drone 110 and a preset scanning area allowable value.
또한, 제어부(240)는 각각의 보조 드론(110)의 카메라의 화각에 의해 정해지는 스캐닝 영역이 기설정된 스캐닝 영역 허용치 이상 겹치지 않도록 복수의 보조 드론(110)의 비행을 제어할 수 있다.Also, the controller 240 may control the flight of the plurality of auxiliary drones 110 so that the scanning area determined by the angle of view of the camera of each auxiliary drone 110 does not overlap by more than a preset scanning area allowable value.
또한, 제어부(240)는 복수의 보조 드론(110) 중에 적어도 하나의 보조 드론에 이상이 발생한 경우, 적어도 하나의 보조 드론을 제외하고 비행 편대를 재구성할 수 있다. 제어부(240)는 보조 드론(110)과의 통신이 두절되거나 보조 드론(110)의 동작이 정상적인 범위를 벗어났을 때, 보조 드론(110)에 이상이 발생한 것으로 판단할 수 있다.Also, when an abnormality occurs in at least one auxiliary drone among the plurality of auxiliary drones 110 , the controller 240 may reconfigure the flight squadron except for the at least one auxiliary drone. When communication with the auxiliary drone 110 is interrupted or the operation of the auxiliary drone 110 is out of a normal range, the controller 240 may determine that an abnormality has occurred in the auxiliary drone 110 .
또한, 제어부(240)는 자신에게 이상이 발생한 경우, 복수의 보조 드론(110) 중에 적어도 하나의 보조 드론에게 자신의 권한을 위임할 수 있다. 이를 위해, 복수의 보조 드론(110) 중에 적어도 하나의 보조 드론은 장거리 통신 모듈을 포함할 수 있다.Also, when an abnormality occurs in itself, the controller 240 may delegate its authority to at least one auxiliary drone among the plurality of auxiliary drones 110 . To this end, at least one auxiliary drone among the plurality of auxiliary drones 110 may include a long-range communication module.
또한, 제어부(240)는 자신과 기설정된 거리 이상 떨어진 보조 드론에 대해 메쉬 통신 기법을 이용하여 해당 보조 드론의 비행을 제어할 수 있다. 즉, 제어부(240)는 자신과 기설정된 거리 이상 떨어진 보조 드론에 대해서는 직접적으로 비행을 제어하는 것이 아니라 자신과 해당 보조 드론 사이에 위치하는 보조 드론을 매개체로 하여 해당 보조 드론의 비행을 제어할 수 있다.Also, the controller 240 may control the flight of the auxiliary drone with respect to the auxiliary drone separated from itself by a predetermined distance or more by using a mesh communication technique. That is, the control unit 240 does not directly control the flight of an auxiliary drone that is more than a preset distance from itself, but uses an auxiliary drone located between itself and the auxiliary drone as a medium to control the flight of the auxiliary drone. have.
추가로, 제어부(240)는 정해진 지역의 크기 또는 감시 목적에 따라 비행 편대를 변경할 수도 있다.In addition, the control unit 240 may change the flight squadron according to the size of the determined area or the purpose of monitoring.
도 3은 본 발명의 실시예에 따른 주 드론과 보조 드론 간의 위치 관계를 설명하기 위한 도면이다.3 is a diagram for explaining a positional relationship between a main drone and an auxiliary drone according to an embodiment of the present invention.
도 3을 참조하면, WGS84 좌표계 상에서 주 드론(120), 즉, 모선의 좌표는 (Xp, Yp, Zp)이다.Referring to FIG. 3 , the coordinates of the main drone 120 , that is, the mother ship, are (X p , Y p , Z p ) on the WGS84 coordinate system.
주 드론(120)은 복수의 보조 드론(110), 즉, 자선의 군집 제어에 있어서 WGS84 좌표계가 아닌 모선 좌표계를 이용한다. 따라서, 모선 좌표계에서 주 드론(120)의 좌표는 (0, 0, 0)이 된다. 즉, 군집 내 좌표계에서, 모선은 자선을 제어할 때, 모선의 위치를 원점으로 하는 모선 좌표계를 이용한다.The main drone 120 uses the mother ship coordinate system, not the WGS84 coordinate system, in group control of the plurality of auxiliary drones 110 , that is, own ships. Accordingly, the coordinates of the main drone 120 in the mothership coordinate system become (0, 0, 0). That is, in the coordinate system within the cluster, when the mother ship controls its own ship, the mother ship uses the mother ship coordinate system with the location of the mother ship as the origin.
도 4는 본 발명의 실시예에 따른 주 드론과 보조 드론 간의 위치 평가 지표를 설명하기 위한 도면이다.4 is a diagram for explaining a position evaluation index between a main drone and an auxiliary drone according to an embodiment of the present invention.
우선, 최적의 위치에 대한 평가 지표는 드론 간 겹쳐지는 스캐닝 영역(OV)이다.First, the evaluation index for the optimal location is the overlapping scanning area (OV) between drones.
도 4를 참조하면, 모선(120)과 자선(110)의 위치 배치는 OV12, OV23, OV3P, OVP4, OV45, 및 OV56이 모두 0이 되게 하는 것이 가장 효율적이다. 하지만, 현실적으로는, 드론의 위치 제어시 오차가 수반되기 때문에 어느 정도의 오버랩(overlap)은 유지되어야 한다.Referring to FIG. 4 , it is most efficient to set the positions of the mother ship 120 and the own ship 110 so that OV 12 , OV 23 , OV 3P , OV P4 , OV 45 , and OV 56 are all zero. However, in reality, since an error is involved in controlling the position of the drone, a certain amount of overlap must be maintained.
도 5는 본 발명의 실시에에 따른 드론들의 위치 계산 방법을 설명하기 위한 도면이다.5 is a diagram for explaining a method of calculating positions of drones according to an embodiment of the present invention.
우선, 모선 좌표계에서 자선(110)의 위치를 정하기 전에 자선들의 X 좌표값(X'c), 모선 및 자선들의 고도(Z'c), 및 기체 간의 겹쳐지는 스캐닝 영역의 허용치(OVtolerance)가 정의되어야 한다. 여기서, 자선들의 X 좌표값(X'c)은 군집 형태(예를 들면, 자 형태 및 학익진 형태 등)에 의해 정해지고, 모선 및 자선들의 고도(Z'c)는 드론에 장착된 센서나 카메라의 사양에 따라 정해지며, 기체 간의 겹쳐지는 스캐닝 영역의 허용치(OVtolerance)는 기체 제어의 정확도 및 스캐닝 목적 등에 의해 정해진다.First, before positioning the own ship 110 in the mother ship coordinate system, the X coordinate value of the own ships (X' c ), the altitude of the mother ship and the own ships (Z' c ), and the tolerance of the overlapping scanning area between the aircraft (OV tolerance ) should be defined Here, the X coordinate value (X' c ) of the own ships is determined by the cluster type (eg, the ruler shape and the Hakikjin shape, etc.), and the altitude (Z' c ) of the mother ship and the own ships is a sensor or camera mounted on the drone. It is determined according to the specifications of the aircraft, and the OV tolerance of the overlapping scanning area between the aircraft is determined by the accuracy of the aircraft control and the purpose of the scanning.
도 5를 참조하면, (X'c, Y'c, Z'c)는 모선 좌표계 상에서 자선(110)의 위치를 나타낸다. (Xm, Ym, Zm)은 WGS84 좌표계 상에서 모선(120)의 위치를 나타낸다. Ac는 자선(110)에 설치된 센서/카메라의 화각을 나타낸다. Am은 모선(120)에 설치된 센서/카메라의 화각을 나타낸다. OV는 자선(110)과 모선(120) 간 센싱 영역의 오버랩 지수를 나타낸다.Referring to FIG. 5 , (X' c , Y' c , Z' c ) represents the position of the own ship 110 on the mother ship coordinate system. (X m , Y m , Z m ) represents the position of the bus 120 on the WGS84 coordinate system. A c represents the angle of view of the sensor/camera installed in the own ship 110 . A m represents the angle of view of the sensor/camera installed on the bus line 120 . OV represents an overlap index of the sensing region between the own ship 110 and the mother ship 120 .
그리고, 자선(110)의 스캐닝 영역(Dc)은 수학식 (Dc = tan(Ac) x Z'c)에 의해 계산된다. 모선(120)의 스캐닝 영역(Dm)은 수학식 (Dm = tan(Am) x Zm)에 의해 계산된다. 오버랩 지수(OV)는 수학식 (OV = Dc + Dm) - Y'c)에 의해 계산된다.And, the scanning area D c of the own ship 110 is calculated by the equation (D c = tan(A c ) x Z' c ). The scanning area D m of the bus bar 120 is calculated by the equation (D m = tan(A m ) x Z m ). The overlap index (OV) is calculated by the equation (OV = D c + D m ) - Y' c ).
결과적으로, 자선(110)의 최적의 위치 좌표는 (X'c, Y'c, Z'c)가 된다. 여기서, X'c는 편대 비행의 형태에 따라 결정되며, 최적의 위치에는 영향을 미치지 않는다. Z'c는 자선(110)의 고도로서, 부착된 센서/카메라의 성능에 따라 적합한 고도값이 선정된다. Y'c는 수학식 (Y'c = (Dc + Dm) - OVtolerance)에 의해 결정된다.As a result, the optimal position coordinates of the own ship 110 become (X' c , Y' c , Z' c ). Here, X' c is determined according to the form of the formation flight, and does not affect the optimal position. Z' c is the altitude of the own ship 110, and an appropriate altitude value is selected according to the performance of the attached sensor/camera. Y' c is determined by the equation (Y' c = (D c + D m ) - OV tolerance ).
이와 같이, 모선과 자선 또는 자선들 간의 위치는 동일한 방식으로 계산된다.As such, the position between the mother ship and the own ship or between the ships is calculated in the same way.
도 6은 편대 내 자선 중의 어느 하나가 어떤 이유로 착륙 또는 추락했을 경우, 편대 구성을 재구성하는 것을 보여주는 도면이다.6 is a view showing the reconstruction of the squadron configuration when any one of the own ships in the squadron has landed or crashed for some reason.
도 6에 도시된 바와 같이, 편대 내 자선(110) 중의 어느 하나가 어떤 이유로 착륙 또는 추락했을 경우, 모선(120)은 예를 들면, 지그재그 편대를 일자 편대로 재편할 수 있다.As shown in Figure 6, when any one of the own ships 110 in the squadron has landed or crashed for some reason, the mother ship 120 may, for example, reorganize the zigzag squadron into a straight squadron.
도 7은 편대 내 모선이 어떤 이유로 착륙 또는 추락했을 경우, 편대 구성을 재구성하는 것을 보여주는 도면이다.7 is a view showing the reconstruction of the squadron configuration when the mothership in the squadron has landed or crashed for some reason.
도 7에 도시된 바와 같이, 편대 내 모선(120)이 어떤 이유로 착륙 또는 추락했을 경우, 모선(120)은 복수의 자선(110) 중에 장거리 통신 모듈을 포함하는 하나의 자선을 모선으로 세울 수 있다.As shown in FIG. 7 , when the mother ship 120 in the squadron lands or crashes for some reason, the mother ship 120 may set up one own ship including a long-distance communication module among a plurality of own ships 110 as a mother ship. .
이에 따라, 모선의 권한을 위임받은 자선은 자신의 위치를 원점으로 하는 모선 좌표계를 설정하고, 설정된 모선 좌표계를 기준으로 근거리 통신을 통해 복수의 자선(110)의 비행을 제어하여 비행 편대를 구성하는 비행 관제 서버의 역할을 수행하며, 복수의 자선(110)과 함께 비행 편대를 유지하며 비행하면서 카메라를 이용하여 감시를 수행한다. Accordingly, the own ship entrusted with the authority of the mother ship sets the mother ship coordinate system with its own position as the origin, and controls the flight of a plurality of own ships 110 through short-distance communication based on the set mother ship coordinate system to form a flight squadron. It performs the role of a flight control server, and performs monitoring using a camera while flying while maintaining a flight squadron with a plurality of own ships 110 .
도 8은 본 발명의 실시예에 따른 복수의 드론을 이용한 감시 방법을 나타낸 흐름도이다.8 is a flowchart illustrating a monitoring method using a plurality of drones according to an embodiment of the present invention.
도 8을 참조하면, 주 드론(120)은, 자신의 위치를 원점으로 하는 모선 좌표계를 설정한다(S810).Referring to FIG. 8 , the main drone 120 sets a mother ship coordinate system having its own position as the origin ( S810 ).
주 드론(120)은, 설정된 모선 좌표계를 기준으로 근거리 통신을 통해 복수의 보조 드론(110)의 비행을 제어하여 비행 편대를 구성한다(S820). 이때, 주 드론(120)은 각각의 보조 드론(110)의 카메라의 화각에 의해 정해지는 스캐닝 영역이 기설정된 스캐닝 영역 허용치 이상 겹치지 않도록 복수의 보조 드론(110)의 비행을 제어할 수 있다.The main drone 120 controls the flight of the plurality of auxiliary drones 110 through short-distance communication based on the set mothership coordinate system to configure a flight squadron (S820). In this case, the main drone 120 may control the flight of the plurality of auxiliary drones 110 so that the scanning area determined by the angle of view of the camera of each auxiliary drone 110 does not overlap by more than a preset scanning area tolerance.
이어서, 지상 관제 서버(130)는, 주 드론(120)의 비행을 제어함으로써, 주 드론(120)으로 하여금 복수의 보조 드론(110)과 함께 비행 편대를 유지하면서 카메라를 이용하여 정해진 지역의 감시를 수행하도록 제어한다(S830).Then, the ground control server 130 controls the flight of the main drone 120, thereby causing the main drone 120 to maintain a flight squadron together with the plurality of auxiliary drones 110 and use a camera to monitor a predetermined area. control to be performed (S830).
한편, 주 드론(120)은, 복수의 보조 드론(110) 중에 적어도 하나의 보조 드론 또는 자신에게 이상이 발생한지 여부를 판단한다(S840). 이때, 주 드론(120)은 보조 드론(110)과의 통신이 두절되거나 보조 드론(110)의 동작이 정상적인 범위를 벗어났을 때, 보조 드론(110)에 이상이 발생한 것으로 판단할 수 있고, 자신의 동작이 정상적인 범위를 벗어났을 때, 자신에게 이상이 발생한 것으로 판단할 수 있다.Meanwhile, the main drone 120 determines whether an abnormality has occurred in at least one auxiliary drone among the plurality of auxiliary drones 110 or in itself (S840). At this time, when communication with the auxiliary drone 110 is interrupted or the operation of the auxiliary drone 110 is out of a normal range, the main drone 120 may determine that an abnormality has occurred in the auxiliary drone 110, When the movement of the user is out of the normal range, it can be determined that an abnormality has occurred.
주 드론(120)은, 복수의 드론(110) 중에 적어도 하나의 보조 드론에 이상이 발생하였다고 판단한 경우, 적어도 하나의 보조 드론을 제외하고 비행 편대를 재구성한다(S842).When it is determined that an abnormality has occurred in at least one auxiliary drone among the plurality of drones 110 , the main drone 120 reconfigures the flight squadron except for the at least one auxiliary drone ( S842 ).
주 드론(120)은, 자신에게 이상이 발생하였다고 판단한 경우, 복수의 보조 드론(110) 중에 장거리 통신 모듈을 포함하는 적어도 하나의 보조 드론 중 어느 하나의 보조 드론에게 자신의 권한을 위임한다(S850).When it is determined that an abnormality has occurred in itself, the main drone 120 delegates its authority to any one auxiliary drone among at least one auxiliary drone including a long-range communication module among the plurality of auxiliary drones 110 (S850). ).
전술한 방법은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(Firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.The above-described method may be implemented through various means. For example, embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로컨트롤러 및 마이크로프로세서 등에 의해 구현될 수 있다.In case of implementation by hardware, the method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). , FPGAs (Field Programmable Gate Arrays), processors, controllers, microcontrollers and microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of implementation by firmware or software, the method according to the embodiments of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above. The software code may be stored in the memory unit and driven by the processor. The memory unit may be located inside or outside the processor, and may transmit and receive data to and from the processor by various known means.
이상에서 본 명세서에 개시된 실시예들을 첨부된 도면들을 참조로 설명하였다. 이와 같이 각 도면에 도시된 실시예들은 한정적으로 해석되면 아니되며, 본 명세서의 내용을 숙지한 당업자에 의해 서로 조합될 수 있고, 조합될 경우 일부 구성 요소들은 생략될 수도 있는 것으로 해석될 수 있다.The embodiments disclosed herein have been described above with reference to the accompanying drawings. As such, the embodiments shown in each drawing should not be construed as being limited, and may be combined with each other by those skilled in the art having read the contents of the present specification, and when combined, it may be construed that some components may be omitted.
여기서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 본 명세서에 개시된 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Here, the terms or words used in the present specification and claims should not be construed as being limited to conventional or dictionary meanings, but should be interpreted as meanings and concepts consistent with the technical ideas disclosed in the present specification.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 명세서에 개시된 실시예에 불과할 뿐이고, 본 명세서에 개시된 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the present specification and the configurations shown in the drawings are only the embodiments disclosed in the present specification, and do not represent all the technical ideas disclosed in the present specification, so various equivalents that can replace them at the time of the present application It should be understood that there may be water and variations.
본 발명을 통하여, 감시 및 측량 시간을 단축할 수 있고, 단순한 관제 장비로 여러 대의 드론을 동시에 통제할 수 있다.Through the present invention, monitoring and surveying time can be shortened, and multiple drones can be controlled simultaneously with simple control equipment.

Claims (12)

  1. 카메라를 이용하여 감시를 수행하는 복수의 보조 드론;A plurality of auxiliary drones performing surveillance using a camera;
    자신의 위치를 원점으로 하는 모선 좌표계를 설정하고, 설정된 모선 좌표계를 기준으로 근거리 통신을 통해 상기 복수의 보조 드론의 비행을 제어하여 비행 편대를 구성하며, 상기 복수의 보조 드론과 함께 비행 편대를 유지하면서 카메라를 이용하여 감시를 수행하는 주 드론; 및Sets a mothership coordinate system with its own position as the origin, controls the flight of the plurality of auxiliary drones through short-distance communication based on the set mothership coordinate system to form a flight squadron, and maintains the flight squadron together with the plurality of auxiliary drones a main drone that performs surveillance using a camera; and
    정해진 지역을 감시하도록 상기 주 드론의 비행을 제어하는 지상 관제 서버;a ground control server that controls the flight of the main drone to monitor a predetermined area;
    를 포함하는 복수의 드론을 이용한 감시 시스템.A monitoring system using a plurality of drones comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 주 드론은 비행 편대의 형태에 따라 상기 복수의 보조 드론의 X 좌표값을 결정하고, 각각의 보조 드론에 장착된 카메라의 성능에 따라 상기 복수의 보조 드론의 Y 좌표값을 설정하며, 각각의 보조 드론의 카메라의 화각에 의해 정해지는 스캐닝 영역 및 기설정된 스캐닝 영역 허용치를 이용하여 상기 복수의 보조 드론의 Z 좌표값을 설정하는 것을 특징으로 하는 복수의 드론을 이용한 감시 시스템.The main drone determines the X coordinate values of the plurality of auxiliary drones according to the shape of the flight squadron, sets the Y coordinate values of the plurality of auxiliary drones according to the performance of the camera mounted on each auxiliary drone, and each A monitoring system using a plurality of drones, characterized in that the Z coordinate values of the plurality of auxiliary drones are set using a scanning area determined by the angle of view of the auxiliary drone's camera and a preset scanning area allowable value.
  3. 제1항에 있어서,According to claim 1,
    상기 주 드론은 각각의 보조 드론의 카메라의 화각에 의해 정해지는 스캐닝 영역이 기설정된 스캐닝 영역 허용치 이상 겹치지 않도록 상기 복수의 보조 드론의 비행을 제어하는 것을 특징으로 하는 복수의 드론을 이용한 감시 시스템.The monitoring system using a plurality of drones, characterized in that the main drone controls the flight of the plurality of auxiliary drones so that the scanning area determined by the angle of view of the camera of each auxiliary drone does not overlap by more than a preset scanning area tolerance.
  4. 제1항에 있어서,According to claim 1,
    상기 주 드론은 상기 복수의 보조 드론 중에 적어도 하나의 보조 드론에 이상이 발생한 경우, 상기 적어도 하나의 보조 드론을 제외하고 비행 편대를 재구성하는 것을 특징으로 하는 복수의 드론을 이용한 감시 시스템.The main drone is a surveillance system using a plurality of drones, characterized in that when an abnormality occurs in at least one auxiliary drone among the plurality of auxiliary drones, a flight squadron is reconfigured except for the at least one auxiliary drone.
  5. 제1항에 있어서,According to claim 1,
    상기 복수의 보조 드론 중에 적어도 하나의 보조 드론은 장거리 통신 모듈을 포함하고,At least one auxiliary drone among the plurality of auxiliary drones includes a long-range communication module,
    상기 주 드론은 자신에게 이상이 발생한 경우, 상기 적어도 하나의 보조 드론 중에 어느 하나의 보조 드론에게 자신의 권한을 위임하는 것을 특징으로 하는 복수의 드론을 이용한 감시 시스템.The monitoring system using a plurality of drones, wherein the main drone delegates its authority to any one auxiliary drone among the at least one auxiliary drone when an abnormality occurs in itself.
  6. 제1항에 있어서,According to claim 1,
    상기 주 드론은 자신과 기설정된 거리 이상 떨어진 보조 드론에 대해 메쉬 통신 기법을 이용하여 상기 보조 드론의 비행을 제어하는 것을 특징으로 하는 복수의 드론을 이용한 감시 시스템.The main drone is a monitoring system using a plurality of drones, characterized in that for controlling the flight of the auxiliary drone by using a mesh communication technique with respect to the auxiliary drone separated from itself by a predetermined distance or more.
  7. 제1항에 있어서,According to claim 1,
    상기 주 드론은 상기 정해진 지역의 크기에 따라 상기 비행 편대를 변경하는 것을 특징으로 하는 복수의 드론을 이용한 감시 시스템.The main drone is a monitoring system using a plurality of drones, characterized in that the flight squadron is changed according to the size of the determined area.
  8. 제1항에 있어서,According to claim 1,
    상기 주 드론은 감시 목적에 따라 상기 비행 편대를 변경하는 것을 특징으로 하는 복수의 드론을 이용한 감시 시스템.The main drone is a monitoring system using a plurality of drones, characterized in that the flight squadron is changed according to the monitoring purpose.
  9. 주 드론이, 자신의 위치를 원점으로 하는 모선 좌표계를 설정하는 단계;setting, by the main drone, a mother ship coordinate system having its own position as an origin;
    상기 주 드론이, 설정된 모선 좌표계를 기준으로 근거리 통신을 통해 복수의 보조 드론의 비행을 제어하여 비행 편대를 구성하는 단계; 및configuring, by the main drone, a flight squadron by controlling the flight of a plurality of auxiliary drones through short-distance communication based on a set mothership coordinate system; and
    지상 관제 서버가, 상기 주 드론의 비행을 제어함으로써, 상기 주 드론으로 하여금 상기 복수의 보조 드론과 함께 비행 편대를 유지하면서 카메라를 이용하여 정해진 지역의 감시를 수행하도록 제어하는 단계;controlling, by the ground control server, the flight of the main drone to perform monitoring of a predetermined area using a camera while maintaining a flight squadron together with the plurality of auxiliary drones;
    를 포함하는 복수의 드론을 이용한 감시 방법.A monitoring method using a plurality of drones comprising a.
  10. 주 드론이, 자신의 위치를 원점으로 하는 모선 좌표계를 설정하는 단계;setting, by the main drone, a mother ship coordinate system having its own position as an origin;
    상기 주 드론이, 설정된 모선 좌표계를 기준으로 근거리 통신을 통해 복수의 보조 드론의 비행을 제어하여 비행 편대를 구성하는 단계; 및configuring, by the main drone, a flight squadron by controlling the flight of a plurality of auxiliary drones through short-distance communication based on a set mothership coordinate system; and
    지상 관제 서버가, 상기 주 드론의 비행을 제어함으로써, 상기 주 드론으로 하여금 상기 복수의 보조 드론과 함께 비행 편대를 유지하면서 카메라를 이용하여 정해진 지역의 감시를 수행하도록 제어하는 단계;controlling, by the ground control server, the flight of the main drone to perform monitoring of a predetermined area using a camera while maintaining a flight squadron together with the plurality of auxiliary drones;
    를 포함하는 복수의 드론을 이용한 감시 방법.A monitoring method using a plurality of drones comprising a.
  11. 제9항에 있어서,10. The method of claim 9,
    상기 주 드론이, 상기 복수의 보조 드론 중에 적어도 하나의 보조 드론에 이상이 발생한지 여부를 판단하는 단계; 및determining, by the main drone, whether an abnormality has occurred in at least one auxiliary drone among the plurality of auxiliary drones; and
    상기 주 드론이, 상기 복수의 드론 중에 적어도 하나의 보조 드론에 이상이 발생하였다고 판단한 경우, 상기 적어도 하나의 보조 드론을 제외하고 비행 편대를 재구성하는 단계;when the main drone determines that an abnormality has occurred in at least one auxiliary drone among the plurality of drones, reconfiguring a flight squadron except for the at least one auxiliary drone;
    를 더 포함하는 것을 특징으로 하는 복수의 드론을 이용한 감시 방법.Monitoring method using a plurality of drones, characterized in that it further comprises.
  12. 제9항에 있어서,10. The method of claim 9,
    상기 주 드론이, 자신에게 이상이 발생한지 여부를 판단하는 단계; 및determining, by the main drone, whether an abnormality has occurred in itself; and
    상기 주 드론이, 자신에게 이상이 발생하였다고 판단한 경우, 상기 복수의 보조 드론 중에 장거리 통신 모듈을 포함하는 적어도 하나의 보조 드론 중 어느 하나의 보조 드론에게 자신의 권한을 위임하는 단계;delegating, by the main drone, its authority to any one auxiliary drone among at least one auxiliary drone including a long-range communication module among the plurality of auxiliary drones when it is determined that an abnormality has occurred;
    를 더 포함하는 것을 특징으로 하는 복수의 드론을 이용한 감시 방법.Monitoring method using a plurality of drones, characterized in that it further comprises.
PCT/KR2020/004935 2020-04-10 2020-04-10 Monitoring method and system using plurality of drones WO2021206204A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/004935 WO2021206204A1 (en) 2020-04-10 2020-04-10 Monitoring method and system using plurality of drones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/004935 WO2021206204A1 (en) 2020-04-10 2020-04-10 Monitoring method and system using plurality of drones

Publications (1)

Publication Number Publication Date
WO2021206204A1 true WO2021206204A1 (en) 2021-10-14

Family

ID=78023234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004935 WO2021206204A1 (en) 2020-04-10 2020-04-10 Monitoring method and system using plurality of drones

Country Status (1)

Country Link
WO (1) WO2021206204A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160070375A (en) * 2014-12-10 2016-06-20 한국항공우주연구원 Apparatus and method for matching aviation image using swarm filght of unmanned vehicle
JP2017056899A (en) * 2015-09-18 2017-03-23 株式会社日立システムズ Autonomous flight control system
KR101919083B1 (en) * 2017-07-21 2018-11-21 주식회사 모뎀게이트 Person in distress Search Method Utilizing an Aerial Vehicle
KR101963826B1 (en) * 2018-06-22 2019-03-29 전북대학교 산학협력단 System for flying safety and fault recovery in swarm flight of unmanned aerial vehicles and method thereof
KR20200097070A (en) * 2019-02-07 2020-08-18 주식회사 아르고스다인 Method and system for monitoring using a plurality of drones

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160070375A (en) * 2014-12-10 2016-06-20 한국항공우주연구원 Apparatus and method for matching aviation image using swarm filght of unmanned vehicle
JP2017056899A (en) * 2015-09-18 2017-03-23 株式会社日立システムズ Autonomous flight control system
KR101919083B1 (en) * 2017-07-21 2018-11-21 주식회사 모뎀게이트 Person in distress Search Method Utilizing an Aerial Vehicle
KR101963826B1 (en) * 2018-06-22 2019-03-29 전북대학교 산학협력단 System for flying safety and fault recovery in swarm flight of unmanned aerial vehicles and method thereof
KR20200097070A (en) * 2019-02-07 2020-08-18 주식회사 아르고스다인 Method and system for monitoring using a plurality of drones

Similar Documents

Publication Publication Date Title
CN107817814B (en) Unmanned aerial vehicle group, switching method and device of unmanned aerial vehicle group
US11561538B2 (en) Management of deployed drones
EP3188477A1 (en) Facilitating communication with a vehicle via a uav
JP6652682B1 (en) In-vehicle gateway device and in-vehicle gateway system
WO2020105898A1 (en) Big data-based autonomous flight drone system and autonomous flight method therefor
WO2017065594A1 (en) Surveillance system and method using drones
WO2018066744A1 (en) System and method for controlling multidrone
US10594983B2 (en) Integrated camera awareness and wireless sensor system
US10075228B2 (en) Aircraft flight data monitoring and reporting system and use thereof
WO2017114503A1 (en) Facilitating communication with a vehicle via a uav
KR102179689B1 (en) Method and system for monitoring using a plurality of drones
JP2017114270A (en) Unmanned flying body having specific beacon tracking function, and tracking beacon transmission unit
EP3796571B1 (en) Method and device for controlling unmanned aerial vehicle to access network
WO2019198868A1 (en) Mutual recognition method between unmanned aerial vehicle and wireless terminal
US20190182623A1 (en) System and method for managing movable object communications
WO2021206204A1 (en) Monitoring method and system using plurality of drones
WO2018177269A1 (en) Device and method for performing long-distance information interaction with unmanned aerial vehicle by means of mobile network
WO2018161321A1 (en) Multi-function port control method and device
WO2023113058A1 (en) Drone control method for precise landing
WO2022124819A1 (en) Method for configuring uav network by utilizing multimodal sensor information
WO2022088208A1 (en) Unmanned aerial vehicle remote control system
WO2023177117A1 (en) Anti-drone detection method for privacy protection
US10955838B2 (en) System and method for movable object control
EP4345565A2 (en) Universal control architecture for control of unmanned systems
WO2020172873A1 (en) Communication method for unmanned aerial vehicle, and unmanned aerial vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20930319

Country of ref document: EP

Kind code of ref document: A1