WO2021199685A1 - アルミニウム合金ブレージングシート、及び、アルミニウム合金ブレージングシートのろう付方法 - Google Patents

アルミニウム合金ブレージングシート、及び、アルミニウム合金ブレージングシートのろう付方法 Download PDF

Info

Publication number
WO2021199685A1
WO2021199685A1 PCT/JP2021/004683 JP2021004683W WO2021199685A1 WO 2021199685 A1 WO2021199685 A1 WO 2021199685A1 JP 2021004683 W JP2021004683 W JP 2021004683W WO 2021199685 A1 WO2021199685 A1 WO 2021199685A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
mass
less
content
aluminum alloy
Prior art date
Application number
PCT/JP2021/004683
Other languages
English (en)
French (fr)
Inventor
友東 東
雄二 渋谷
鶴野 招弘
詔悟 山田
仁 宇都宮
篤 佐治
Original Assignee
株式会社神戸製鋼所
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, 株式会社デンソー filed Critical 株式会社神戸製鋼所
Priority to CN202180019889.6A priority Critical patent/CN115243829A/zh
Priority to US17/905,858 priority patent/US20230098425A1/en
Priority to EP21781372.4A priority patent/EP4098394A4/en
Publication of WO2021199685A1 publication Critical patent/WO2021199685A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • B23K35/288Al as the principal constituent with Sn or Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the present invention relates to an aluminum alloy brazing sheet and a brazing method thereof, and in particular, an aluminum alloy brazing sheet applied to a brazing method that does not use flux, so-called fluxless brazing (or flux-free brazing), and a brazing method thereof. Regarding brazing method.
  • vacuum brazing When brazing a member such as a heat exchanger made of an aluminum alloy, there is a method called vacuum brazing in which brazing is performed in vacuum without using flux. Compared with flux brazing using flux, this vacuum brazing has various merits such as no need for a process of applying flux and avoidance of problems caused by an improper application amount of flux.
  • vacuum brazing requires an expensive vacuum furnace that heats the inside of the furnace in a vacuum state at the time of brazing, which increases the work cost and makes it difficult to control the inside of the vacuum furnace. Therefore, the difficulty of work also increases.
  • Patent Document 1 an aluminum clad material in which an Al—Si brazing material containing 0.1 to 5.0% of Mg and 3 to 13% of Si in mass% is located on the outermost surface is used.
  • An aluminum material which is a brazing method and is characterized in that a contact contact portion with a brazing target member is joined with an Al—Si based brazing material at a heating temperature of 559 to 620 ° C. in a non-oxidizing atmosphere without decompression. Fluxless brazing method is disclosed.
  • Patent Document 1 is a technique relating to fluxless brazing in an atmosphere of an inert gas other than vacuum, and Patent Document 1 describes that it exerts a predetermined effect.
  • fluxless brazing it takes time to break the oxide film, so that the flow of molten brazing precedes the formation of fillets. Therefore, when brazing is performed in a state where the molten wax as shown in FIGS. 3B and 4B is easily affected by gravity, the molten wax flowing in the vertical direction increases, and the fillet size of the joint located on the upper side becomes large. In addition to being smaller, this molten brazing may cause erosion. Therefore, for aluminum alloy brazing sheets applied to fluxless brazing, it is necessary to suppress the fluidity of molten brazing.
  • the aluminum alloy brazing sheet according to the present invention includes a core material and a brazing material provided on at least one surface of the core material, and the brazing material is Si: 5.0% by mass or more and 9.0% by mass.
  • Mg 0.10% by mass or more and 0.90% by mass or less
  • Bi 0.05% by mass or more and 0.60% by mass or less
  • Mn 0.80% by mass or less
  • Ti 0.60% by mass
  • the balance is composed of Al and unavoidable impurities
  • the Mn content is [Mn] mass%
  • the Ti content is [Ti] mass%. Satisfy 0.55 ⁇ [Mn] + 0.31 ⁇ [Ti] ⁇ 0.055.
  • the brazing method of the aluminum alloy brazing sheet according to the present invention is a brazing method using an aluminum alloy brazing sheet including a core material and a brazing material provided on at least one surface of the core material.
  • the material contains Si: 5.0% by mass or more and 9.0% by mass or less, Mg: 0.10% by mass or more and 0.90% by mass or less, and Bi: 0.05% by mass or more and 0.60% by mass or less.
  • Mn 0.80% by mass or less
  • Ti 0.60% by mass or less, at least one of them is further contained, the balance is composed of Al and unavoidable impurities, and the content of Mn is [Mn] mass%.
  • the aluminum alloy brazing sheet according to the present invention is excellent in suppressing the flow of molten wax and filling gaps.
  • the brazing method for an aluminum alloy brazing sheet according to the present invention is excellent in suppressing the flow of molten brazing and filling gaps.
  • FIG. 1 is a cross-sectional view of an aluminum alloy brazing sheet according to the present embodiment.
  • FIG. 2A is a diagram for explaining a test method for evaluating brazing property, and is a perspective view of a state in which a lower material and an upper material are combined.
  • FIG. 2B is a diagram for explaining a test method for evaluating brazing property, and is a side view of a state in which a lower material and an upper material are combined.
  • FIG. 3A is a diagram for explaining a test method for evaluating the fluidity of molten wax, and is a perspective view of a state in which a joint portion is located on the lower side and a fillet is formed on the lower side.
  • FIG. 1 is a cross-sectional view of an aluminum alloy brazing sheet according to the present embodiment.
  • FIG. 2A is a diagram for explaining a test method for evaluating brazing property, and is a perspective view of a state in which a lower material and an upper material are combined.
  • FIG. 3B is a diagram for explaining a test method for evaluating the fluidity of molten wax, and is a perspective view of a state in which a joint portion is located on the upper side and a fillet is formed on the upper side.
  • FIG. 4A is a diagram for explaining a test method for evaluating the fluidity of molten wax, and is a cross-sectional view of a state in which a joint portion is located on the lower side and a fillet is formed on the lower side.
  • FIG. 4B is a diagram for explaining a test method for evaluating the fluidity of molten wax, and is a cross-sectional view of a state in which a joint portion is located on the upper side and a fillet is formed on the upper side.
  • FIG. 4A is a diagram for explaining a test method for evaluating the fluidity of molten wax, and is a cross-sectional view of a state in which a joint portion is located on the upper side and a fillet is formed
  • FIG. 5A is a graph showing the relationship between the Mn content of the brazing material and the top-bottom difference (an index of the fluidity of molten brazing).
  • FIG. 5B is a graph showing the relationship between the Ti content of the brazing material and the top-bottom difference (an index of the fluidity of molten brazing).
  • the structure of the aluminum alloy brazing sheet (hereinafter, appropriately referred to as “brazing sheet”) according to the present embodiment includes, for example, a core material 2, a brazing material 3 provided on one surface of the core material 2, and a brazing material 3 provided on one surface of the core material 2, as shown in FIG. To be equipped. Then, in the brazing sheet 1 according to the present embodiment, the content of each component of the brazing material 3 is appropriately specified.
  • the reason for numerically limiting each component of the brazing material of the brazing sheet according to the present embodiment will be described in detail.
  • the brazing material of the brazing sheet according to the present embodiment has Si: 5.0% by mass or more and 9.0% by mass or less, Mg: 0.10% by mass or more and 0.90% by mass or less, and Bi: 0.05% by mass or more. It contains 0.60% by mass or less, Mn: 0.80% by mass or less, Ti: at least one of 0.60% by mass or less, and the balance is composed of Al and unavoidable impurities.
  • the brazing material of the brazing sheet according to the present embodiment may contain Zn, or may contain one or more of Fe, Cr, Zr, and V.
  • the brazing material Si has the effect of improving the liquid phase ratio at the brazing heat addition temperature and ensuring a sufficient amount of molten brazing for the formation of fillets. If the Si content is less than 5.0% by mass, the amount of molten brazing cannot be secured, the fluidity of the molten wax is excessively lowered, and the brazing property (gap filling property) is lowered. On the other hand, if the Si content exceeds 9.0% by mass, the fluidity of the molten wax becomes too high, and erosion due to the molten wax may occur. Therefore, the Si content of the brazing material is 5.0% by mass or more and 9.0% by mass or less.
  • the content of Si is preferably 6.0% by mass or more, more preferably 6.2% by mass or more, and more preferably 6.5% by mass or more. Further, from the viewpoint of suppressing an increase in the fluidity of the molten wax, the Si content is preferably 8.0% by mass or less.
  • Mg of brazing material 0.10% by mass or more and 0.90% by mass or less
  • the Mg of the brazing material evaporates into the atmosphere at the brazing melting temperature at the time of brazing heat and reacts with oxygen in the atmosphere.
  • the oxide film formed on the surface of the brazing material is suitably destroyed when Mg is evaporated, and the oxygen concentration in the atmosphere is lowered to suppress the reoxidation of the molten wax (getter action), resulting in brazing. Improve sex. If the Mg content is less than 0.10% by mass, the getter action is insufficient and the brazing property is lowered.
  • the Mg content of the brazing filler metal is 0.10% by mass or more and 0.90% by mass or less.
  • the Mg content is preferably 0.30% by mass or more in order to make the effect based on Mg more reliable. Further, from the viewpoint of suppressing the growth of the MgO oxide film, the Mg content is preferably 0.80% by mass or less.
  • Bi of brazing material reacts with Mg to produce an Mg-Bi-based compound that hardly dissolves below the wax melting temperature.
  • the diffusion of Mg to the surface layer of the brazing material is suppressed, and the formation and growth of MgO on the surface of the brazing material is suppressed (Mg trapping action).
  • the Mg—Bi-based compound dissolves in the matrix (brazing material), so that the evaporation of Mg is promoted.
  • the oxide film formed on the surface of the brazing material is suitably destroyed when the Mg evaporates, and the Mg reacts with oxygen in the atmosphere to reduce the oxygen concentration in the atmosphere and suppress the reoxidation of the molten brazing.
  • the action (getter action) is improved and the brazing property is improved. If the Bi content is less than 0.05% by mass, the brazing property is lowered. On the other hand, when the Bi content exceeds 0.60% by mass, the effect is saturated. Therefore, the Bi content of the brazing material is 0.05% by mass or more and 0.60% by mass or less.
  • the Bi content is preferably 0.10% by mass or more in order to make the effect based on Bi more reliable.
  • the Bi content is preferably 0.50% by mass or less, more preferably 0.40% by mass or less.
  • Mn and Ti of brazing material 0.55 ⁇ [Mn] + 0.31 ⁇ [Ti]
  • Mn and Ti of the brazing material improve the viscosity of the molten brazing and suppress the flow of the molten brazing.
  • the value calculated by 0.55 ⁇ [Mn] + 0.31 ⁇ [Ti] is 0. If it is less than .055, the viscosity of the molten wax becomes insufficient, and when brazing is performed in the state shown in FIGS. 3B and 4B, the molten wax flowing in the vertical direction increases. Therefore, the value calculated by 0.55 ⁇ [Mn] +0.31 ⁇ [Ti] is 0.055 or more (0.55 ⁇ [Mn] +0.31 ⁇ [Ti] ⁇ 0.055).
  • the value calculated by 0.55 ⁇ [Mn] + 0.31 ⁇ [Ti] is preferably 0.070 or more, preferably 0.080 or more. More preferably 0.083 or more.
  • the formula of "0.55 x [Mn] + 0.31 x [Ti]" was derived as follows. Regarding the experimental results of the test materials 9, 11, 12, and 24, as shown in FIG. 5A, the horizontal axis "Mn content of the brazing material” and the vertical axis "top-bottom difference (index of fluidity of molten wax)". The approximate straight line was drawn by plotting on a graph, and the slope of the approximate straight line was calculated. Similarly, regarding the experimental results of the test materials 13, 14, 24, and 25, as shown in FIG. 5B, the horizontal axis "Ti content of the brazing material” and the vertical axis "top-bottom difference (index of fluidity of molten wax)”.
  • Mn of brazing material 0.80% by mass or less
  • Mn of the brazing material improves the viscosity of the molten brazing material and suppresses the flow of the molten brazing material.
  • Mn content exceeds 0.80% by mass, an Al—Mn ( ⁇ Fe—Si) compound having a large specific gravity is generated in the molten wax, and the molten wax flowing in the vertical direction increases. Therefore, the Mn content of the brazing filler metal is 0.80% by mass or less.
  • the Mn content is preferably 0.10% by mass or more, more preferably 0.20% by mass or more, in order to further ensure the effect of suppressing the flow of molten wax based on Mn. Further, from the viewpoint of not reducing the effect of suppressing the flow of molten wax, the Mn content is preferably 0.70% by mass or less, more preferably 0.65% by mass or less, and more preferably 0.60% by mass or less.
  • Ti of brazing material 0.60% by mass or less
  • Ti of the brazing material improves the viscosity of the molten wax and suppresses the flow of the molten wax.
  • the Ti content of the brazing material is 0.60% by mass or less.
  • the Ti content is preferably 0.15% by mass or more, preferably 0.20% by mass or more, in order to further ensure the effect of suppressing the flow of molten wax based on Ti. Further, the Ti content is preferably 0.50% by mass or less from the viewpoint of not reducing the effect of suppressing the flow of molten wax.
  • the brazing material contains at least one of Mn and Ti so as to have a content of not more than a predetermined value, and the above-mentioned formula (0). .55 ⁇ [Mn] +0.31 ⁇ [Ti] ⁇ 0.055) may be satisfied.
  • Zn of brazing material 5.0% by mass or less
  • the Zn of the brazing material can make the potential of the brazing material low, and by forming a potential difference with the core material, the corrosion resistance is improved by the sacrificial anticorrosion effect.
  • the Zn content exceeds 5.0% by mass, it may cause premature corrosion of the fillet. Therefore, when Zn is contained in the brazing material, the Zn content of the brazing material is 5.0% by mass or less.
  • the Zn content of the brazing material is preferably 0.5% by mass or more in order to further ensure the effect of improving the corrosion resistance obtained by containing Zn. Further, from the viewpoint of suppressing the occurrence of premature corrosion of the fillet, the Zn content of the brazing material is preferably 4.0% by mass or less.
  • Fe of the brazing material improves the corrosion resistance.
  • Al—Fe-based compounds are produced, the Fe-deficient layer around the compound becomes a low potential portion, and corrosion proceeds preferentially, resulting in corrosion. It is presumed that it will be dispersed and the corrosion resistance will be improved.
  • the Fe content exceeds 0.35% by mass, a coarse compound is formed in the molten brazing, and when brazing is performed in the state shown in FIGS. 3B and 4B, the melting flowing in the vertical direction There will be a lot of wax. Therefore, when the brazing material contains Fe, the Fe content of the brazing material is 0.35% by mass or less.
  • the Fe content of the brazing material is preferably 0.05% by mass or more in order to further ensure the effect of improving the corrosion resistance obtained by containing Fe. Further, from the viewpoint of not reducing the effect of suppressing the flow of molten brazing material, the Fe content of the brazing material is preferably 0.2% by mass or less.
  • Cr of brazing material improves the corrosion resistance.
  • Cr Cr of the brazing material improves the corrosion resistance.
  • Al—Cr and Al—Cr—Si compounds are produced, and the Cr and Si deficient layers around the compounds become low potential parts, which is preferential. It is presumed that the corrosion progresses, so that the corrosion is dispersed and the corrosion resistance is improved.
  • the Cr content exceeds 0.3% by mass, a coarse compound is formed in the molten brazing, and when brazing is performed in the state shown in FIGS. 3B and 4B, the melting flows in the vertical direction. There will be a lot of wax. Therefore, when Cr is contained in the brazing material, the Cr content of the brazing material is 0.3% by mass or less.
  • the Cr content of the brazing material is preferably 0.05% by mass or more in order to further ensure the effect of improving the corrosion resistance obtained by containing Cr. Further, the Cr content of the brazing material is preferably 0.2% by mass or less from the viewpoint of not reducing the effect of suppressing the flow of the molten brazing.
  • the brazing material Zr improves corrosion resistance. Although the detailed mechanism by which Zr improves corrosion resistance has not been elucidated, Al—Zr-based compounds are produced, the Zr-deficient layer around the compound becomes a low potential portion, and corrosion proceeds preferentially, resulting in corrosion. It is presumed that it will be dispersed and the corrosion resistance will be improved. However, if the Zr content exceeds 0.3% by mass, a coarse compound is formed in the molten brazing, and when brazing is performed in the state shown in FIGS. 3B and 4B, the melting flows in the vertical direction. There will be a lot of wax. Therefore, when the brazing material contains Zr, the Zr content of the brazing material is 0.3% by mass or less.
  • the Zr content of the brazing material is preferably 0.05% by mass or more in order to further ensure the effect of improving the corrosion resistance obtained by containing Zr. Further, from the viewpoint of not reducing the effect of suppressing the flow of molten brazing material, the Zr content of the brazing material is preferably 0.2% by mass or less.
  • V of brazing material 0.3% by mass or less
  • the V of the brazing material improves the corrosion resistance.
  • Al-V compounds are produced, the V-deficient layer around the compound becomes a low potential portion, and corrosion proceeds preferentially, resulting in corrosion. It is presumed that it will be dispersed and the corrosion resistance will be improved.
  • the V content exceeds 0.3% by mass, a coarse compound is formed in the molten brazing, and when brazing is performed in the state shown in FIGS. 3B and 4B, the melting flows in the vertical direction. There will be a lot of wax. Therefore, when the brazing material contains V, the V content of the brazing material is 0.3% by mass or less.
  • the V content of the brazing material is preferably 0.05% by mass or more in order to further ensure the effect of improving the corrosion resistance obtained by containing V. Further, from the viewpoint of not reducing the effect of suppressing the flow of molten brazing material, the V content of the brazing material is preferably 0.2% by mass or less.
  • the brazing material do not exceed the above-mentioned upper limit values, not only when the brazing material contains one or more types, that is, one type, but also when two or more types are contained. , Does not interfere with the effect of the present invention.
  • the rest of the brazing filler metal is Al and unavoidable impurities.
  • the unavoidable impurities of the brazing material Ca, Be, Sr, Na, Sb, a rare earth element, Li and the like may be contained within a range that does not interfere with the effect of the present invention. Specifically, it may be contained in the range of Ca: 0.05% by mass or less, Be: 0.01% by mass or less, and other elements: less than 0.01% by mass. As long as the content of these elements does not exceed the above-mentioned predetermined content, the effect of the present invention is not hindered not only when they are contained as unavoidable impurities but also when they are positively added.
  • the above-mentioned Zn, Fe, Cr, Zr, and V may also be contained as unavoidable impurities, and the content of each element in this case is, for example, 0.05% by mass or less individually, for a total of 0. It is 15% by mass or less.
  • the core material of the brazing sheet according to the present embodiment is made of, for example, an Al—Mn-based alloy having Mg: 1.00% by mass or less (including 0% by mass).
  • the Al—Mn-based alloy is an aluminum alloy that contains Mn indispensably.
  • the core material of the brazing sheet according to the present embodiment may appropriately contain Cu, Si, Fe, Ti, V, Ni, Cr and Zr in addition to Mn and Mg.
  • Mn of core material 2.5% by mass or less
  • Mn of the core material improves the strength. However, if the Mn content exceeds 2.5% by mass, the amount of Al—Mn-based compounds increases, and cracks may occur during the material manufacturing process. Therefore, when Mn is contained in the core material, the content of Mn is 2.5% by mass or less.
  • the Mn content of the core material is preferably 0.5% by mass or more in order to ensure the effect of improving the strength obtained by containing Mn.
  • the core material Mg improves the strength. Further, Mg in the core material diffuses into the brazing material during the heating process during brazing heat addition, evaporates into the atmosphere at the brazing melting temperature, and reacts with oxygen in the atmosphere. As a result, the oxide film formed on the surface of the brazing material is suitably destroyed when Mg is evaporated, and the oxygen concentration in the atmosphere is lowered to suppress the reoxidation of the molten wax (getter action), resulting in brazing. Improve sex. Since the Mg content of the brazing material also exerts a getter action, when the Mg content of the brazing material is high, the Mg content of the core material may be low, or may be 0% by mass.
  • the Mg content of the core material is 1.00% by mass or less (including 0% by mass).
  • Cu in the core material nourishes the potential of the core material and improves corrosion resistance.
  • the Cu content exceeds 3.00% by mass, the solidus temperature of the core material is lowered, so that the erosion resistance is lowered and the brazing fluidity is lowered, so that the brazing property is lowered. Therefore, when Cu is contained in the core material, the Cu content is 3.00% by mass or less.
  • the Cu content of the core material is preferably 0.05% by mass or more in order to ensure the effect of improving the corrosion resistance obtained by containing Cu.
  • Si of core material 1.2% by mass or less
  • Si of the core material improves the strength. However, when the Si content exceeds 1.2% by mass, the solidus temperature of the core material is lowered, so that the erosion resistance is lowered and the brazing fluidity is lowered, so that the brazing property is lowered. Therefore, when Si is contained in the core material, the Si content is 1.2% by mass or less.
  • the Si content of the core material is preferably 0.05% by mass or more in order to ensure the effect of improving the strength obtained by containing Si.
  • Fe of core material improves the strength by the solid solution strengthening action. However, if the Fe content exceeds 0.5% by mass, a coarse intermetallic compound may be formed, which may reduce the moldability. Therefore, when Fe is contained in the core material, the Fe content is 0.5% by mass or less.
  • the Fe content of the core material is preferably 0.05% by mass or more in order to ensure the effect of improving the strength obtained by containing Fe.
  • Ti of core material improves corrosion resistance. However, if the Ti content exceeds 0.3% by mass, coarse intermetallic compounds may be formed, which may reduce moldability. Therefore, when Ti is contained in the core material, the Ti content is 0.3% by mass or less.
  • the Ti content of the core material is preferably 0.01% by mass or more in order to ensure the effect of improving the corrosion resistance obtained by containing Ti.
  • V, Ni, Cr, Zr of core material 0.3% by mass or less
  • the core materials V, Ni, Cr, and Zr improve their strength by dispersing the precipitates. However, if the content of each of these elements exceeds 0.3% by mass, coarse intermetallic compounds may be formed, which may reduce moldability. Therefore, when V, Ni, Cr, and Zr are contained in the core material, the content of each element is 0.3% by mass or less.
  • the content of each element of the core material is preferably 0.05% by mass or more in order to ensure the effect of improving the strength obtained by containing each element of V, Ni, Cr, and Zr. ..
  • the rest of the core material is Al and unavoidable impurities.
  • the unavoidable impurities in the core material include Ca, Na, Sr, Li and the like, and the above-mentioned Mn, Mg, Cu, Si, Fe, Ti, V, Ni, Cr and Zr are also contained as unavoidable impurities. It may have been.
  • Fe and Si which are unavoidable impurities, may be contained in the range of Fe: 0.03% by mass or less and Si: 0.05% by mass or less.
  • the unavoidable impurities Ca, Na, Sr, Li, Mn, Mg, Cu, Ti, V, Ni, Cr and Zr are individually 0.05% by mass or less, and 0.15% by mass or less in total. All you need is.
  • Ca, Na, Sr, and Li as long as the above-mentioned predetermined contents are not exceeded, not only when they are contained as unavoidable impurities but also when they are positively added, according to the present invention. It is acceptable without interfering with the effect.
  • the thickness of the brazing sheet according to the present embodiment is not particularly limited, but when used for a tube material, it is preferably 0.5 mm or less, more preferably 0.4 mm or less, and 0.05 mm or more. Is preferable.
  • the thickness of the brazing sheet according to the present embodiment is preferably 2.0 mm or less, more preferably 1.5 mm or less, and 0.5 mm or more. Is preferable.
  • the thickness of the brazing sheet according to the present embodiment is preferably 0.2 mm or less, more preferably 0.15 mm or less, and 0.01 mm or more when used as a fin material. Is preferable.
  • the thickness of the brazing sheet according to the present embodiment is particularly preferably 0.5 mm or more from the viewpoint of ensuring an appropriate thickness of the brazing material without impairing basic characteristics such as strength after brazing.
  • the thickness of the brazing material of the brazing sheet according to the present embodiment is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, 60 ⁇ m or more, and 70 ⁇ m or more.
  • the thickness of the brazing material of the brazing sheet is preferably 170 ⁇ m or less, more preferably 150 ⁇ m or less.
  • the clad ratio of the brazing material of the brazing sheet according to the present embodiment is not particularly limited when applied to any plate material, but is preferably 40% or less, more preferably 30% or less. By setting the clad ratio of the brazing material to a predetermined value or less, it is possible to avoid or suppress deterioration of basic characteristics such as strength after brazing and productivity.
  • brazing sheet has been described by exemplifying the configuration of the two-layer structure shown in FIG. 1, but other configurations are not excluded.
  • the sacrificial material sacrifice
  • the core material 2 the side opposite to the side on which the brazing material 3 is provided
  • Ingredients, sacrifice material may be provided.
  • a brazing material may be further provided on the other side of the core material 2.
  • a sacrificial material or an intermediate material may be provided on the other side of the core material 2, and a brazing material may be further provided on the outside thereof.
  • the brazing sheet according to the present embodiment has a brazing material provided on both sides of the core material
  • the other brazing material of the present invention is used. It may be a brazing material that does not satisfy the items specified in the invention (for example, Al—Si alloy such as JIS 4045, 4047, 4343, Al—Si—Zn alloy, Al—Si—Mg alloy, etc.). Further, for a brazing material that does not satisfy the invention-specific items of the present invention, a flux may be applied to the surface of the brazing material and brazed.
  • any material having a known component composition capable of exhibiting sacrificial anticorrosion ability may be used, and for example, JIS 1000 series pure aluminum and JIS 7000 series Al—Zn based alloy can be used.
  • JIS 1000 series pure aluminum and JIS 7000 series Al—Zn based alloy can be used as the intermediate material.
  • various aluminum alloys can be used depending on the required characteristics. The alloy numbers shown in this specification are based on JIS H 4000: 2014 and JIS Z 3263: 2002.
  • the brazing method of the aluminum alloy brazing sheet according to the present embodiment is so-called fluxless brazing that does not use flux, and is a method of heating under predetermined heating conditions in an inert gas atmosphere.
  • Heating conditions heating rate
  • the rate of temperature rise from 350 ° C. to 560 ° C. is preferably 1 ° C./min or more and 500 ° C./min or less.
  • the heating rate from 350 ° C. to 560 ° C. is preferably 10 ° C./min or more. Further, in order to more reliably exert the getter action, the heating rate from 350 ° C. to 560 ° C. is preferably 300 ° C./min or less.
  • the temperature lowering rate from 560 ° C. is not particularly limited, and may be, for example, 5 ° C./min or more and 1000 ° C./min or less.
  • the heating rate from 560 ° C. to the actual heating temperature is not particularly limited, but the heating rate is within the same range as the heating rate from 350 ° C. to 560 ° C. do it. Further, although the temperature lowering rate from the actual heating temperature to 560 ° C. is not particularly limited, the rate may be set within the same range as the temperature lowering rate from 560 ° C.
  • the heating temperature (wax melting temperature) when heating the brazing sheet according to the present embodiment is 560 ° C. or higher and 620 ° C. or lower, preferably 580 ° C. or higher and 620 ° C. or lower, at which the brazing material melts appropriately. If the holding time in this temperature range is less than 10 seconds, the time required for the brazing phenomenon (destruction of the oxide film, decrease in oxygen concentration in the atmosphere, flow of molten brazing to the joint) occurs is insufficient. there's a possibility that. Therefore, the holding time in the temperature range of 560 ° C. or higher and 620 ° C. or lower (preferably the temperature range of 580 ° C. or higher and 620 ° C. or lower) is preferably 10 seconds or longer.
  • the holding time in the temperature range of 560 ° C. or higher and 620 ° C. or lower is preferably 30 seconds or longer, preferably 60 seconds or longer. More preferred.
  • the upper limit of the holding time is not particularly limited, but may be 1500 seconds or less.
  • the atmosphere when the brazing sheet according to the present embodiment is heated (waxed) is an inert gas atmosphere, for example, a nitrogen gas atmosphere, an argon gas atmosphere, a helium gas atmosphere, or a mixed gas atmosphere in which a plurality of these gases are mixed.
  • the inert gas atmosphere is preferably an atmosphere in which the oxygen concentration is as low as possible. Specifically, the oxygen concentration is preferably 50 ppm or less, and more preferably 10 ppm or less.
  • the brazing method of the aluminum alloy brazing sheet according to the present embodiment does not need to create a vacuum atmosphere, and can be performed at normal pressure (atmospheric pressure).
  • the member to be joined is assembled so as to be in contact with the brazing material of the brazing sheet (assembling step). .. Further, the brazing sheet may be molded into a desired shape and structure before the assembling step (molding step).
  • the brazing method of the brazing sheet according to the present embodiment (in other words, the manufacturing method of the structure in which the member to be joined is brazed to the brazing sheet) is as described above, but the conditions not specified are not specified. It goes without saying that conventionally known conditions may be used, and the conditions can be appropriately changed as long as the effects obtained by the above treatment are obtained.
  • the method for producing the brazing sheet according to the present embodiment is not particularly limited, and for example, it is produced by a known method for producing a clad material. An example thereof will be described below.
  • the aluminum alloys having the respective component compositions of the core material and the brazing material are melted and cast, and if necessary, surface grinding (surface smoothing treatment of the ingot) and homogenization treatment are performed to obtain each ingot. obtain.
  • the ingot of the brazing material is hot-rolled to a predetermined thickness, combined with the ingot of the core material, and hot-rolled to form a clad material according to a conventional method.
  • the clad material is cold-rolled, intermediate-annealed if necessary, and finally cold-rolled, and finally annealed if necessary.
  • the homogenization treatment is preferably carried out at 400 to 600 ° C. for 1 to 20 hours, and the intermediate annealing is preferably carried out at 300 to 450 ° C. for 1 to 20 hours.
  • the final annealing is preferably carried out at 150 to 450 ° C. for 1 to 20 hours.
  • the intermediate annealing can be omitted.
  • the tempering may be any of H1n, H2n, H3n and O (JIS H 0001: 1998).
  • the method for producing the aluminum alloy brazing sheet according to the present embodiment is as described above. However, for the conditions not specified in each of the steps, conventionally known conditions may be used, and the treatment in each of the steps may be used. Needless to say, the conditions can be changed as appropriate as long as the effect obtained by the above is achieved.
  • the aluminum alloy brazing sheet according to the present invention will be specifically described by comparing an example satisfying the requirements of the present invention with a comparative example not satisfying the requirements of the present invention.
  • the core material having the composition shown in Table 1 was cast, homogenized at 600 ° C. for 5 hours, and both sides were faced to a predetermined thickness. Further, the brazing filler metal having the composition shown in Table 1 was cast, homogenized at 500 ° C. for 5 hours, and hot-rolled to a predetermined thickness to prepare a hot-rolled plate. Then, a brazing material (brazing material-core material-brazing material) was combined and hot-rolled on both surfaces of the core material to obtain a clad material. Then, after cold rolling, finish rolling and finish annealing at 400 ° C.
  • brazing sheet O tempered material
  • the plate thickness and brazing material thickness (thickness of the brazing material on one side) of each test material are as shown in Table 1.
  • brazing property evaluation (gap filling property evaluation)
  • the brazing property was evaluated with reference to the evaluation method described on pages 132 to 136 of "Aluminum Brazing Handbook (Revised Edition)" (Light Metal Welding Structure Association, published in March 2003) by Tadashi Takemoto et al. Specifically, a test piece having a surface dimension of 25 mm ⁇ 60 mm was cut out from the test material before heating equivalent to brazing. Then, as shown in FIGS.
  • the lower plate 4 (test piece (vertical width 25 mm ⁇ horizontal width 60 mm)) placed horizontally and the upper plate 5 (3003Al) placed vertically with respect to the lower plate 4
  • a constant clearance was set by sandwiching a stainless steel spacer 6 having a diameter of 2 mm between the alloy plate and the O material (thickness 1.0 mm ⁇ vertical width 15 mm ⁇ horizontal width 55 mm). Then, brazing was performed under the above-mentioned heating conditions equivalent to brazing. After brazing joining, the length L (gap filling length L) in which the gap between the lower plate 4 and the upper plate 5 was filled was measured, and the brazing property was quantified.
  • this brazing property is a gap filling property, and is caused by the gap between the member joint surfaces that occurs when each member is assembled, and the occurrence of thermal deformation of the brazing sheet and the member to be joined during brazing. Brazing property considering the gap between the member joint surfaces that occurs.
  • brazing property evaluation those having a gap filling length L of 15.0 mm or more are " ⁇ "
  • those having a gap filling length L of 10.0 mm or more and less than 15.0 mm are “ ⁇ ”
  • those having a gap filling length of less than 10.0 mm. was evaluated as “x”, “ ⁇ ” and “ ⁇ ” were evaluated as passing, and "x” was evaluated as failing.
  • test piece having a surface dimension of 15 mm ⁇ 55 mm was cut out from the test material before heating equivalent to brazing. Then, as shown in FIG. 3A, the horizontal plate 7 (3003Al alloy plate-O material (thickness 1.0 mm ⁇ vertical width 25 mm ⁇ horizontal width 60 mm)) is vertically perpendicular to the upper side. A plate 8 (test piece (vertical width 15 mm ⁇ horizontal width 55 mm)) was arranged. Further, as shown in FIG. 3B, the horizontal plate 9 (3003Al alloy plate-O material (thickness 1.0 mm ⁇ vertical width 25 mm ⁇ horizontal width 60 mm)) is perpendicular to the lower side.
  • a vertical plate 10 (test piece (vertical width 15 mm ⁇ horizontal width 55 mm)) was arranged. Then, brazing was performed under the above-mentioned heating conditions equivalent to brazing. After brazing, the cross-sectional area of the fillet F1 shown in FIG. 4A, which is the cross section of FIG. 3A, and the cross-sectional area of the fillet F2 shown in FIG. 4B, which is the cross section of FIG. 3B, were measured. Then, "the total cross-sectional area of the two fillets F2 on both sides of the vertical plate ( ⁇ m 2 ) / the total cross-sectional area of the two fillets F1 on both sides of the vertical plate ( ⁇ m 2 )" was calculated.
  • the above-mentioned calculated value (indicated as “top-bottom difference” in the table and the figure) is “ ⁇ ” when it is 0.50 or more, and “ ⁇ ” when it is 0.45 or more and less than 0.50. Those with “ ⁇ ” and less than 0.45 were evaluated as “x”, “ ⁇ ” and “ ⁇ ” were evaluated as passing, and "x" was evaluated as failing.
  • Table 1 below shows the composition of the brazing material, the composition of the core material, the thickness of the plate material, the thickness of the brazing material, and the evaluation results. Then, the brazing material and the rest of the core material in Table 1 are Al and unavoidable impurities, and "-" in the table is not contained (below the detection limit).
  • test materials 1 to 19 satisfied the requirements specified in the present invention. Therefore, the test materials 1 to 19 passed the "gap filling property" and also passed the "fluidity of molten wax".
  • the gap filling property was rejected.
  • the Mn content of the brazing material exceeded a predetermined value in the test material 20
  • the Mn content of the brazing material exceeded a predetermined value
  • a compound having a large specific density was generated, and the molten brazing easily flowed.
  • the fluidity of the molten brazing was expected to be rejected.
  • the test material 21 the Mn content of the brazing material exceeded a predetermined value, so that the fluidity of the molten brazing material was unacceptable.
  • the Si content of the brazing material exceeded the predetermined value and the Mn content of the brazing material exceeded the predetermined value, so that the fluidity of the molten brazing was rejected. became.
  • the test material 24 neither Mn nor Ti was contained in the brazing material, and the value calculated by 0.55 ⁇ [Mn] + 0.31 ⁇ [Ti] was less than a predetermined value. The fluidity of the molten wax was rejected.
  • the test material 25 contained Ti in the brazing material, the value calculated by 0.55 ⁇ [Mn] + 0.31 ⁇ [Ti] was less than a predetermined value, so that the flow of the molten brazing metal was reduced. The sex was rejected. Since Bi of the test material 26 was less than a predetermined value, the gap filling property and the fluidity of the molten wax were rejected.
  • the aluminum alloy brazing sheet according to the present invention is excellent in suppressing the flow of molten brazing (fluidity of molten brazing) and filling gaps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

溶融ろうの流動抑制と間隙充填性とに優れるアルミニウム合金ブレージングシート、及び、アルミニウム合金ブレージングシートのろう付方法を提供する。アルミニウム合金ブレージングシート(1)は、心材(2)と、心材(2)の少なくとも一方の面に設けられるろう材(3)と、を備え、ろう材(3)は、Si:5.0質量%以上9.0質量%以下、Mg:0.10質量%以上0.90質量%以下、Bi:0.05質量%以上0.60質量%以下を含有し、Mn:0.80質量%以下、Ti:0.60質量%以下のうちの少なくとも1種以上をさらに含有し、残部がAl及び不可避的不純物からなり、Mnの含有量を[Mn]質量%、Tiの含有量を[Ti]質量%とした場合に、0.55×[Mn]+0.31×[Ti]≧0.055を満たす。

Description

アルミニウム合金ブレージングシート、及び、アルミニウム合金ブレージングシートのろう付方法
 本発明は、アルミニウム合金ブレージングシート、及び、そのろう付方法に関し、特に、フラックスを使用しないろう付方法、いわゆるフラックスレスろう付(またはフラックスフリーろう付)に適用するアルミニウム合金ブレージングシート、及び、そのろう付方法に関する。
 アルミニウム合金製の熱交換器等の部材をろう付するにあたり、真空中において、フラックスを使用せずにろう付を行う真空ろう付という方法が存在する。
 この真空ろう付は、フラックスを使用するフラックスろう付と比較すると、フラックスを塗布する処理が不要、フラックスの塗布量が適切でないことに伴った問題発生の回避等、様々なメリットがある。
 しかしながら、真空ろう付は、ろう付時の炉内を真空にした状態で加熱を施す高価な真空炉が必要となるため、作業コストが高くなってしまうとともに、真空にした炉内の制御が難しいことから、作業の困難性も高まってしまう。
 このような問題を解決するため、真空中ではない雰囲気下において、フラックスを使用しないフラックスレスろう付に関して研究が進められ、以下のような技術が提案されている。
 具体的には、特許文献1において、質量%で、Mgを0.1~5.0%、Siを3~13%含有するAl-Si系ろう材が最表面に位置するアルミニウムクラッド材を用いるろう付方法であって、減圧を伴わない非酸化性雰囲気で加熱温度559~620℃において、Al-Si系ろう材によりろう付対象部材との接触密着部を接合することを特徴とするアルミニウム材のフラックスレスろう付方法が開示されている。
日本国特開2010-247209号公報
 特許文献1に係る技術は、真空ではない不活性ガス雰囲気におけるフラックスレスろう付に関する技術であり、特許文献1では所定の効果を奏すると説明されている。
 しかしながら、このようなフラックスレスろう付を実施する場合、酸化皮膜の破壊に時間がかかるため、溶融ろうの流動がフィレットの形成よりも先行してしまう。そのため、図3B、図4Bに示すような溶融ろうが重力の影響を受け易い状態でろう付が実施される場合、鉛直方向に流れる溶融ろうが多くなり、上側に位置する接合部のフィレットサイズが小さくなるほか、この溶融ろうが原因でエロージョンが発生するおそれがある。
 よって、フラックスレスろう付に適用するアルミニウム合金ブレージングシートについては、溶融ろうの流動性を抑制する必要がある。
 一方、アルミニウム合金ブレージングシートが適用される製品には、ラジエータ、コンデンサ等、接合部に隙間を有する熱交換器が多く存在するため、間隙充填性についても一定のレベルを確保する必要がある。
 そこで、本発明は、溶融ろうの流動抑制と間隙充填性とに優れるアルミニウム合金ブレージングシート、及び、アルミニウム合金ブレージングシートのろう付方法を提供することを課題とする。
 すなわち、本発明に係るアルミニウム合金ブレージングシートは、心材と、前記心材の少なくとも一方の面に設けられるろう材と、を備え、前記ろう材は、Si:5.0質量%以上9.0質量%以下、Mg:0.10質量%以上0.90質量%以下、Bi:0.05質量%以上0.60質量%以下を含有し、Mn:0.80質量%以下、Ti:0.60質量%以下のうちの少なくとも1種以上をさらに含有し、残部がAl及び不可避的不純物からなり、Mnの含有量を[Mn]質量%、Tiの含有量を[Ti]質量%とした場合に、0.55×[Mn]+0.31×[Ti]≧0.055を満たす。
 また、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、心材と、前記心材の少なくとも一方の面に設けられるろう材と、を備えるアルミニウム合金ブレージングシートを用いたろう付方法であって、前記ろう材は、Si:5.0質量%以上9.0質量%以下、Mg:0.10質量%以上0.90質量%以下、Bi:0.05質量%以上0.60質量%以下を含有し、Mn:0.80質量%以下、Ti:0.60質量%以下のうちの少なくとも1種以上をさらに含有し、残部がAl及び不可避的不純物からなり、Mnの含有量を[Mn]質量%、Tiの含有量を[Ti]質量%とした場合に、0.55×[Mn]+0.31×[Ti]≧0.055を満たし、前記アルミニウム合金ブレージングシートを、フラックスを用いずに560℃以上620℃以下の加熱温度によってろう付する。
 本発明に係るアルミニウム合金ブレージングシートは、溶融ろうの流動抑制と間隙充填性とに優れる。
 本発明に係るアルミニウム合金ブレージングシートのろう付方法は、溶融ろうの流動抑制と間隙充填性とに優れる。
図1は、本実施形態に係るアルミニウム合金ブレージングシートの断面図である。 図2Aは、ろう付性評価の試験方法を説明するための図であり、下材と上材とを組み合わせた状態の斜視図である。 図2Bは、ろう付性評価の試験方法を説明するための図であり、下材と上材とを組み合わせた状態の側面図である。 図3Aは、溶融ろうの流動性評価の試験方法を説明するための図であり、接合部が下側に位置し、フィレットが下側に形成される状態の斜視図である。 図3Bは、溶融ろうの流動性評価の試験方法を説明するための図であり、接合部が上側に位置し、フィレットが上側に形成される状態の斜視図である。 図4Aは、溶融ろうの流動性評価の試験方法を説明するための図であり、接合部が下側に位置し、フィレットが下側に形成される状態の断面図である。 図4Bは、溶融ろうの流動性評価の試験方法を説明するための図であり、接合部が上側に位置し、フィレットが上側に形成される状態の断面図である。 図5Aは、ろう材のMnの含有量と天地差(溶融ろうの流動性の指標)との関係性を示すグラフである。 図5Bは、ろう材のTiの含有量と天地差(溶融ろうの流動性の指標)との関係性を示すグラフである。
 以下、適宜図面を参照して、本発明に係るアルミニウム合金ブレージングシートを実施するための形態(実施形態)について説明する。
[アルミニウム合金ブレージングシート]
 本実施形態に係るアルミニウム合金ブレージングシート(以下、適宜「ブレージングシート」という)の構成は、例えば、図1に示すように、心材2と、心材2の一方の面に設けられるろう材3と、を備える。
 そして、本実施形態に係るブレージングシート1は、ろう材3の各成分の含有量が適宜特定されている。
 以下、本実施形態に係るブレージングシートのろう材の各成分について数値限定した理由を詳細に説明する。
[ろう材]
 本実施形態に係るブレージングシートのろう材は、Si:5.0質量%以上9.0質量%以下、Mg:0.10質量%以上0.90質量%以下、Bi:0.05質量%以上0.60質量%以下を含有し、Mn:0.80質量%以下、Ti:0.60質量%以下のうちの少なくとも1種以上をさらに含有し、残部がAl及び不可避的不純物からなり、Mnの含有量を[Mn]質量%、Tiの含有量を[Ti]質量%とした場合に、0.55×[Mn]+0.31×[Ti]≧0.055を満たす。
 また、本実施形態に係るブレージングシートのろう材は、Znを含有してもよく、Fe、Cr、Zr、Vのうちの1種以上を含有してもよい。
(ろう材のSi:5.0質量%以上9.0質量%以下)
 ろう材のSiは、ろう付加熱温度での液相率を向上させて、フィレットの形成に十分な溶融ろうの量を確保する効果を発揮する。Siの含有量が5.0質量%未満であれば、溶融ろうの量を確保できないとともに、溶融ろうの流動性が低下し過ぎ、ろう付性(間隙充填性)が低下する。一方、Siの含有量が9.0質量%を超えると、溶融ろうの流動性が高くなり過ぎ、溶融ろうによるエロージョンが発生するおそれがある。
 したがって、ろう材のSiの含有量は、5.0質量%以上9.0質量%以下である。
 なお、Siに基づく効果をより確実なものとするため、Siの含有量は、6.0質量%以上が好ましく、6.2質量%以上、6.5質量%以上がより好ましい。また、溶融ろうの流動性の上昇を抑制する観点から、Siの含有量は、8.0質量%以下が好ましい。
(ろう材のMg:0.10質量%以上0.90質量%以下)
 ろう材のMgは、ろう付加熱時のろう溶融温度で雰囲気中に蒸発し、雰囲気中の酸素と反応する。その結果、ろう材表面に形成された酸化皮膜がMgの蒸発時に好適に破壊されるとともに、雰囲気中の酸素濃度が低下し溶融ろうの再酸化が抑制される(ゲッター作用)ことによって、ろう付性を向上させる。Mgの含有量が0.10質量%未満であれば、ゲッター作用が不十分となりろう付性が低下してしまう。一方、Mgの含有量が0.90質量%を超えると、ろう付の昇温時にMgO酸化皮膜の生成・成長が促進され、ろう付性が低下してしまう。
 したがって、ろう材のMgの含有量は、0.10質量%以上0.90質量%以下である。
 なお、Mgに基づく効果をより確実なものとするため、Mgの含有量は、0.30質量%以上が好ましい。また、MgO酸化皮膜の成長を抑制する観点から、Mgの含有量は、0.80質量%以下が好ましい。
(ろう材のBi:0.05質量%以上0.60質量%以下)
 ろう材のBiは、Mgと反応し、ろう溶融温度以下ではほとんど溶解しないMg-Bi系化合物を生成する。その結果、ろう付加熱時のろう溶融開始温度までの昇温過程において、Mgのろう材表層部への拡散を抑え、ろう材表面におけるMgOの生成・成長を抑制する(Mgのトラップ作用)。そして、ろう付加熱時のろう溶融温度では、Mg-Bi系化合物は母相(ろう材)に溶解するため、Mgの蒸発が促進される。その結果、ろう材表面に形成された酸化皮膜がMgの蒸発時に好適に破壊されるとともに、このMgが雰囲気中の酸素と反応することで雰囲気の酸素濃度が低下し溶融ろうの再酸化を抑制する作用(ゲッター作用)が向上し、ろう付性を向上させる。Biの含有量が0.05質量%未満であれば、ろう付性が低下してしまう。一方、Biの含有量が0.60質量%を超えると、効果が飽和する。
 したがって、ろう材のBiの含有量は、0.05質量%以上0.60質量%以下である。
 なお、Biに基づく効果をより確実なものとするため、Biの含有量は、0.10質量%以上が好ましい。また、Biの含有量は、0.50質量%以下が好ましく、0.40質量%以下がより好ましい。
 本発明者らは、ブレージングシートの「溶融ろうの流動抑制」と「間隙充填性」との両者を優れたレベルで両立させるために、種々の組成について検討を行った結果、特に、ろう材のMnとTiとが、これらの性能に大きな影響を及ぼすことを確認した。
 以下、ろう材のMnとTiについて説明する。
(ろう材のMnとTi:0.55×[Mn]+0.31×[Ti])
 ろう材のMnとTiは、溶融ろうの粘性を向上させ、溶融ろうの流動を抑制する。そして、Mnの含有量を[Mn]質量%とし、Tiの含有量を[Ti]質量%とした場合に、0.55×[Mn]+0.31×[Ti]で算出される値が0.055未満であると、溶融ろうの粘性が不十分となり、図3B、図4Bに示すような状態でろう付が実施される場合、鉛直方向に流れる溶融ろうが多くなってしまう。
 したがって、0.55×[Mn]+0.31×[Ti]で算出される値は、0.055以上(0.55×[Mn]+0.31×[Ti]≧0.055)である。
 なお、Mn、Tiに基づく効果をより確実なものとするため、0.55×[Mn]+0.31×[Ti]で算出される値は、0.070以上が好ましく、0.080以上、0.083以上がより好ましい。
 この「0.55×[Mn]+0.31×[Ti]」の数式は、以下のように導出した。
 供試材9、11、12、24の実験結果について、図5Aに示すように、横軸「ろう材のMnの含有量」と縦軸「天地差(溶融ろうの流動性の指標)」のグラフにプロットして近似直線を描き、近似直線の傾きを算出した。同様に、供試材13、14、24、25の実験結果について、図5Bに示すように、横軸「ろう材のTiの含有量」と縦軸「天地差(溶融ろうの流動性の指標)」のグラフにプロットして近似直線を描き、近似直線の傾きを算出した。算出した近似直線の傾きは、溶融ろう流動抑制の効果に及ぼす各元素の影響度を示していると判断できることから、各近似直線の傾きの値を各元素の含有量に係数として乗じることで、前記の数式を導いた。
(ろう材のMn:0.80質量%以下)
 ろう材のMnは、前記のとおり、溶融ろうの粘性を向上させ、溶融ろうの流動を抑制する。しかしながら、Mnの含有量が0.80質量%を超えると、溶融ろう中に比重の大きいAl-Mn(-Fe-Si)系化合物が生成し、鉛直方向に流れる溶融ろうが多くなってしまう。
 したがって、ろう材のMnの含有量は、0.80質量%以下である。
 なお、Mnに基づく溶融ろうの流動抑制の効果をより確実なものとするため、Mnの含有量は、0.10質量%以上が好ましく、0.20質量%以上がより好ましい。また、溶融ろうの流動抑制の効果を低下させないとの観点から、Mnの含有量は、0.70質量%以下が好ましく、0.65質量%以下、0.60質量%以下がより好ましい。
(ろう材のTi:0.60質量%以下)
 ろう材のTiは、前記のとおり、溶融ろうの粘性を向上させ、溶融ろうの流動を抑制する。しかしながら、Tiの含有量が0.60質量%を超えると、溶融ろう中に比重の大きいAl-Ti系化合物が生成し、鉛直方向に流れる溶融ろうが多くなってしまう。
 したがって、ろう材のTiの含有量は、0.60質量%以下である。
 なお、Tiに基づく溶融ろうの流動抑制の効果をより確実なものとするため、Tiの含有量は、0.15質量%以上が好ましく、0.20質量%以上が好ましい。また、溶融ろうの流動抑制の効果を低下させないという観点から、Tiの含有量は、0.50質量%以下が好ましい。
 前記したとおり、ろう材のMnとTiとは、略同じ役割を果たすことから、ろう材は、MnとTiの少なくとも一方を所定値以下の含有量となるように含有し、前記した数式(0.55×[Mn]+0.31×[Ti]≧0.055)を満たせばよい。
(ろう材のZn:5.0質量%以下)
 ろう材のZnは、ろう材の電位を卑にすることができ、心材との電位差を形成することで犠牲防食効果により耐食性を向上させる。ただし、Znの含有量が5.0質量%を超えると、フィレットの早期腐食を引き起こすおそれがある。
 したがって、ろう材にZnを含有させる場合、ろう材のZnの含有量は、5.0質量%以下である。
 なお、Znを含有させることによって得られる耐食性の向上という効果をより確実なものとするために、ろう材のZnの含有量は、0.5質量%以上が好ましい。また、フィレットの早期腐食の発生を抑制するという観点から、ろう材のZnの含有量は、4.0質量%以下が好ましい。
(ろう材のFe:0.35質量%以下)
 ろう材のFeは、耐食性を向上させる。Feが耐食性を向上させる詳細なメカニズムは解明できていないものの、Al-Fe系化合物が生成され、化合物周囲のFe欠乏層が電位の卑な部分となり、優先的に腐食が進行するため、腐食が分散され、耐食性が向上すると推測する。ただし、Feの含有量が0.35質量%を超えると、溶融ろう中に粗大化合物が生成し、図3B、図4Bに示すような状態でろう付が実施される場合、鉛直方向に流れる溶融ろうが多くなってしまう。
 したがって、ろう材にFeを含有させる場合、ろう材のFeの含有量は、0.35質量%以下である。
 なお、Feを含有させることによって得られる耐食性の向上という効果をより確実なものとするため、ろう材のFeの含有量は、0.05質量%以上が好ましい。また、溶融ろうの流動抑制の効果を低下させないという観点から、ろう材のFeの含有量は、0.2質量%以下が好ましい。
(ろう材のCr:0.3質量%以下)
 ろう材のCrは、耐食性を向上させる。Crが耐食性を向上させる詳細なメカニズムは解明できていないものの、Al-Cr系やAl-Cr-Si系化合物が生成され、化合物周囲のCr、Si欠乏層が電位の卑な部分となり、優先的に腐食が進行するため、腐食が分散され、耐食性が向上すると推測する。ただし、Crの含有量が0.3質量%を超えると、溶融ろう中に粗大化合物が生成し、図3B、図4Bに示すような状態でろう付が実施される場合、鉛直方向に流れる溶融ろうが多くなってしまう。
 したがって、ろう材にCrを含有させる場合、ろう材のCrの含有量は、0.3質量%以下である。
 なお、Crを含有させることによって得られる耐食性の向上という効果をより確実なものとするため、ろう材のCrの含有量は、0.05質量%以上が好ましい。また、溶融ろうの流動抑制の効果を低下させないという観点から、ろう材のCrの含有量は、0.2質量%以下が好ましい。
(ろう材のZr:0.3質量%以下)
 ろう材のZrは、耐食性を向上させる。Zrが耐食性を向上させる詳細なメカニズムは解明できていないものの、Al-Zr系化合物が生成され、化合物周囲のZr欠乏層が電位の卑な部分となり、優先的に腐食が進行するため、腐食が分散され、耐食性が向上すると推測する。ただし、Zrの含有量が0.3質量%を超えると、溶融ろう中に粗大化合物が生成し、図3B、図4Bに示すような状態でろう付が実施される場合、鉛直方向に流れる溶融ろうが多くなってしまう。
 したがって、ろう材にZrを含有させる場合、ろう材のZrの含有量は、0.3質量%以下である。
 なお、Zrを含有させることによって得られる耐食性の向上という効果をより確実なものとするため、ろう材のZrの含有量は、0.05質量%以上が好ましい。また、溶融ろうの流動抑制の効果を低下させないという観点から、ろう材のZrの含有量は、0.2質量%以下が好ましい。
(ろう材のV:0.3質量%以下)
 ろう材のVは、耐食性を向上させる。Vが耐食性を向上させる詳細なメカニズムは解明できていないものの、Al-V系化合物が生成され、化合物周囲のV欠乏層が電位の卑な部分となり、優先的に腐食が進行するため、腐食が分散され、耐食性が向上すると推測する。ただし、Vの含有量が0.3質量%を超えると、溶融ろう中に粗大化合物が生成し、図3B、図4Bに示すような状態でろう付が実施される場合、鉛直方向に流れる溶融ろうが多くなってしまう。
 したがって、ろう材にVを含有させる場合、ろう材のVの含有量は、0.3質量%以下である。
 なお、Vを含有させることによって得られる耐食性の向上という効果をより確実なものとするため、ろう材のVの含有量は、0.05質量%以上が好ましい。また、溶融ろうの流動抑制の効果を低下させないという観点から、ろう材のVの含有量は、0.2質量%以下が好ましい。
 前記したろう材のFe、Cr、Zr、Vは、前記した上限値を超えなければ、ろう材に1種以上、つまり1種が含まれる場合だけでなく、2種以上が含まれていても、本発明の効果を妨げない。
(ろう材の残部:Al及び不可避的不純物)
 ろう材の残部はAl及び不可避的不純物である。そして、ろう材の不可避的不純物としては、Ca、Be、Sr、Na、Sb、希土類元素、Li等が本発明の効果を妨げない範囲で含有されていてもよい。詳細には、Ca:0.05質量%以下、Be:0.01質量%以下、その他の元素:0.01質量%未満の範囲で含有されていてもよい。
 そして、これらの元素については、前記した所定の含有量を超えなければ、不可避的不純物として含有される場合だけではなく、積極的に添加される場合であっても、本発明の効果を妨げず許容される。
 また、前記したZn、Fe、Cr、Zr、Vも不可避的不純物として含有されていてもよく、この場合の各元素の含有量は、例えば、個々に0.05質量%以下、合計で0.15質量%以下である。
[心材]
 本実施形態に係るブレージングシートの心材は、例えば、Mg:1.00質量%以下(0質量%を含む)であるAl-Mn系合金からなる。なお、Al-Mn系合金とは、Mnを必須で含有しているアルミニウム合金である。
 また、本実施形態に係るブレージングシートの心材は、MnとMgの他にも、Cu、Si、Fe、Ti、V、Ni、Cr、Zrを適宜含有してもよい。
(心材のMn:2.5質量%以下)
 心材のMnは、強度を向上させる。ただし、Mnの含有量が2.5質量%を超えると、Al-Mn系化合物が多くなり、材料製造工程中に割れが生じるおそれがある。
 したがって、心材にMnを含有させる場合、Mnの含有量は、2.5質量%以下である。
 なお、Mnを含有させることによって得られる強度の向上という効果を確実なものとするため、心材のMnの含有量は、0.5質量%以上が好ましい。
(心材のMg:1.00質量%以下)
 心材のMgは、強度を向上させる。また、心材のMgは、ろう付加熱時の昇温過程にろう材へ拡散し、ろう溶融温度で雰囲気中に蒸発し、雰囲気中の酸素と反応する。その結果、ろう材表面に形成された酸化皮膜がMgの蒸発時に好適に破壊されるとともに、雰囲気中の酸素濃度が低下し溶融ろうの再酸化が抑制される(ゲッター作用)ことによって、ろう付性を向上させる。なお、ろう材のMgもゲッター作用を奏することから、ろう材のMgの含有量が多い場合は、心材のMgの含有量は少なくてもよく、0質量%であってもよい。
 一方、Mgの含有量が1.00質量%を超えると、ろう材のBiによってMgをトラップしきれず、ろう材表面でのMgOの生成が促進されてしまい、ろう付性が低下する。
 したがって、心材のMgの含有量は、1.00質量%以下(0質量%を含む)である。
(心材のCu:3.00質量%以下)
 心材のCuは、心材の電位を貴化させ耐食性を向上させる。ただし、Cuの含有量が3.00質量%を超えると、心材の固相線温度が低下するため、耐エロージョン性が低下するとともに、ろう流動性が低下するため、ろう付性が低下する。
 したがって、心材にCuを含有させる場合、Cuの含有量は3.00質量%以下である。
 なお、Cuを含有させることによって得られる耐食性の向上という効果を確実なものとするため、心材のCuの含有量は、0.05質量%以上が好ましい。
(心材のSi:1.2質量%以下)
 心材のSiは、強度を向上させる。ただし、Siの含有量が1.2質量%を超えると、心材の固相線温度が低下するため、耐エロージョン性が低下するとともに、ろう流動性が低下するため、ろう付性が低下する。
 したがって、心材にSiを含有させる場合、Siの含有量は1.2質量%以下である。
 なお、Siを含有させることによって得られる強度の向上という効果を確実なものとするため、心材のSiの含有量は、0.05質量%以上が好ましい。
(心材のFe:0.5質量%以下)
 心材のFeは、固溶強化作用により強度を向上させる。ただし、Feの含有量が0.5質量%を超えると、粗大な金属間化合物が形成されることによって、成形性を低下させるおそれがある。
 したがって、心材にFeを含有させる場合、Feの含有量は、0.5質量%以下である。
 なお、Feを含有させることによって得られる強度の向上という効果を確実なものとするため、心材のFeの含有量は、0.05質量%以上が好ましい。
(心材のTi:0.3質量%以下)
 心材のTiは、耐食性を向上させる。ただし、Tiの含有量が0.3質量%を超えると、粗大な金属間化合物が形成されることによって、成形性を低下させるおそれがある。
 したがって、心材にTiを含有させる場合、Tiの含有量は、0.3質量%以下である。
 なお、Tiを含有させることによって得られる耐食性の向上という効果を確実なものとするため、心材のTiの含有量は、0.01質量%以上が好ましい。
(心材のV、Ni、Cr、Zr:0.3質量%以下)
 心材のV、Ni、Cr、Zrは、析出物を分散させることによって強度を向上させる。ただし、これらの元素の含有量が、それぞれ0.3質量%を超えると、粗大な金属間化合物が形成されることによって、成形性を低下させるおそれがある。
 したがって、心材にV、Ni、Cr、Zrを含有させる場合、各元素の含有量は、それぞれ0.3質量%以下である。
 なお、V、Ni、Cr、Zrの各元素を含有させることによって得られる強度の向上という効果を確実なものとするため、心材の各元素の含有量は、それぞれ0.05質量%以上が好ましい。
(心材の残部:Al及び不可避的不純物)
 心材の残部はAl及び不可避的不純物である。そして、心材の不可避的不純物としては、Ca、Na、Sr、Li等が挙げられるとともに、前記したMn、Mg、Cu、Si、Fe、Ti、V、Ni、Cr、Zrも不可避的不純物として含有されていてもよい。詳細には、不可避的不純物であるFeとSiは、Fe:0.03質量%以下、Si:0.05質量%以下の範囲で含有していてもよい。また、不可避的不純物であるCa、Na、Sr、Li、Mn、Mg、Cu、Ti、V、Ni、Cr、Zrは、個々に0.05質量%以下、合計で0.15質量%以下であればよい。
 そして、Ca、Na、Sr、Liについては、前記した所定の含有量を超えなければ、不可避的不純物として含有される場合だけではなく、積極的に添加される場合であっても、本発明の効果を妨げず許容される。
[アルミニウム合金ブレージングシートの厚さ]
 本実施形態に係るブレージングシートの厚さは、特に限定されないが、チューブ材に用いる場合、0.5mm以下であるのが好ましく、0.4mm以下であるのがより好ましく、また、0.05mm以上であるのが好ましい。
 そして、本実施形態に係るブレージングシートの厚さは、サイドサポート材、ヘッダー材、タンク材に用いる場合、2.0mm以下が好ましく、1.5mm以下がより好ましく、また、0.5mm以上であるのが好ましい。
 また、本実施形態に係るブレージングシートの厚さは、フィン材に用いる場合、0.2mm以下であるのが好ましく、0.15mm以下であるのがより好ましく、また、0.01mm以上であるのが好ましい。
 なお、本実施形態に係るブレージングシートの厚さは、ろう付後強度等の基本特性を損なうことなく適正なろう材の厚さを確保するという観点に基づくと、0.5mm以上が特に好ましい。
 本実施形態に係るブレージングシートのろう材の厚さは、20μm以上が好ましく、30μm以上、40μm以上、50μm以上、60μm以上、70μm以上がより好ましい。ろう材の厚さが所定値以上であることによって、フィレットを形成するために十分なろう材の量を確保することができるとともに、間隙充填性の低下を抑制することができる。
 また、ブレージングシートのろう材の厚さは、170μm以下が好ましく、150μm以下がより好ましい。ろう材の厚さを所定値以下とすることによって、図3B、図4Bに示すような状態でろう付が実施される場合、鉛直方向に溶融ろうが流れ易くなってしまうのを抑制することができる。
 なお、ろう材の厚さとは、心材の両方の面にろう材を設ける場合は、片方の面におけるろうの厚さである。
 本実施形態に係るブレージングシートのろう材のクラッド率は、いずれの板材に適用する場合においても特に限定されないが、40%以下が好ましく、30%以下がより好ましい。ろう材のクラッド率を所定値以下とすることによって、ろう付後強度等の基本特性や生産性等の低下を回避・抑制することができる。
[アルミニウム合金ブレージングシートのその他の構成]
 本実施形態に係るブレージングシートについて、図1に示す2層構造の構成を例示して説明したが、その他の構成を除外するものではない。
 例えば、本実施形態に係るブレージングシートの構成は、使用者の要求に応じて、図1に示す心材2の他方側(ろう材3が設けられている側とは逆側)に犠牲材(犠牲防食材、犠材)や中間材を設けてもよい。また、心材2の他方側にろう材をさらに設けてもよい。また、心材2の他方側に犠牲材や中間材を設けるとともに、その外側に、ろう材をさらに設けてもよい。
 なお、本実施形態に係るブレージングシートの構成がろう材を心材の両側に備える構成の場合、いずれか一方のろう材が、本発明の発明特定事項を満たせば、他方のろう材は本発明の発明特定事項を満たさないろう材(例えば、JIS 4045、4047、4343等のAl-Si系合金、Al-Si-Zn系合金、Al-Si-Mg系合金等)であってもよい。また、本発明の発明特定事項を満たさないろう材に対しては、当該ろう材表面にフラックスを塗布してろう付してもよい。
 犠牲材としては、犠牲防食能を発揮できる公知の成分組成のものであればよく、例えば、JIS 1000系の純アルミニウム、JIS 7000系のAl-Zn系合金を用いることができる。また、中間材としては、要求特性によって、種々なアルミニウム合金を用いることができる。
 なお、本明細書に示す合金番号は、JIS H 4000:2014、JIS Z 3263:2002に基づくものである。
 次に、本実施形態に係るアルミニウム合金ブレージングシートのろう付方法について説明する。
[アルミニウム合金ブレージングシートのろう付方法]
 本実施形態に係るアルミニウム合金ブレージングシートのろう付方法は、フラックスを使用しない、いわゆるフラックスレスろう付であって、不活性ガス雰囲気において所定の加熱条件で加熱するという方法である。
(加熱条件:昇温速度)
 本実施形態に係るブレージングシートを加熱(ろう付)する際、350℃から560℃までの昇温速度が1℃/min未満であると、この昇温過程においてろう材のMgがろう材表層部に過剰に拡散し、ろう材表面においてMgOが生成される可能性が高くなり、ろう付性が低下するおそれがある。一方、350℃から560℃までの昇温速度が500℃/minを超えると、この昇温過程においてろう材のMgがろう材表層部に適切に拡散せず、ゲッター作用が不十分となる可能性が高くなり、ろう付性が低下するおそれがある。
 したがって、350℃から560℃までの昇温速度は、1℃/min以上500℃/min以下が好ましい。
 なお、ろう材表面におけるMgOが生成される可能性をより低くするため、350℃から560℃までの昇温速度は、10℃/min以上が好ましい。また、ゲッター作用をより確実に発揮させるため、350℃から560℃までの昇温速度は、300℃/min以下が好ましい。
 一方、560℃からの降温速度については特に限定されず、例えば、5℃/min以上1000℃/min以下であればよい。
 560℃から実際の加熱温度(後記する加熱温度の範囲内の所定の最高到達温度)までの昇温速度は特に限定されないものの、350℃から560℃までの昇温速度と同じ範囲内の速度とすればよい。また、実際の加熱温度から560℃までの降温速度についても特に限定されないものの、560℃からの降温速度と同じ範囲内の速度とすればよい。
(加熱条件:加熱温度、保持時間)
 本実施形態に係るブレージングシートを加熱する際の加熱温度(ろう溶融温度)は、ろう材が適切に溶融する560℃以上620℃以下であり、580℃以上620℃以下が好ましい。そして、この温度域における保持時間が10秒未満であると、ろう付現象(酸化皮膜の破壊、雰囲気の酸素濃度の低下、接合部への溶融ろうの流動)が生じるのに必要な時間が不足する可能性がある。
 したがって、560℃以上620℃以下の温度域(好ましくは580℃以上620℃以下の温度域)における保持時間は、10秒以上が好ましい。
 なお、ろう付現象をより確実に発生させるため、560℃以上620℃以下の温度域(好ましくは580℃以上620℃以下の温度域)における保持時間は、30秒以上が好ましく、60秒以上がより好ましい。一方、保持時間の上限については特に限定されないものの、1500秒以下であればよい。
(不活性ガス雰囲気)
 本実施形態に係るブレージングシートを加熱(ろう付)する際の雰囲気は、不活性ガス雰囲気であり、例えば、窒素ガス雰囲気、アルゴンガス雰囲気、ヘリウムガス雰囲気、これら複数のガスを混合した混合ガス雰囲気である。また、不活性ガス雰囲気は、酸素濃度が出来る限り低い雰囲気が好ましく、具体的には、酸素濃度は50ppm以下であるのが好ましく、10ppm以下であるのがより好ましい。
 そして、本実施形態に係るアルミニウム合金ブレージングシートのろう付方法は、雰囲気を真空にする必要はなく、常圧(大気圧)で行うことができる。
 なお、通常、本実施形態に係るブレージングシートに対して前記の加熱を施す前(ろう付工程の前)に、被接合部材をブレージングシートのろう材に接するように組み付けることとなる(組み付け工程)。また、組み付け工程の前に、ブレージングシートを所望の形状・構造に成形してもよい(成形工程)。
 本実施形態に係るブレージングシートのろう付方法(言い換えると、ブレージングシートに被接合部材がろう付された構造体の製造方法)は、以上説明したとおりであるが、明示していない条件については、従来公知の条件を用いればよく、前記処理によって得られる効果を奏する限りにおいて、その条件を適宜変更できることは言うまでもない。
 次に、本実施形態に係るアルミニウム合金ブレージングシートの製造方法について説明する。
[アルミニウム合金ブレージングシートの製造方法]
 本実施形態に係るブレージングシートの製造方法は特に限定されず、例えば公知のクラッド材の製造方法により製造される。以下にその一例を説明する。
 まず、心材、ろう材のそれぞれの成分組成のアルミニウム合金を、溶解、鋳造し、さらに必要に応じて面削(鋳塊の表面平滑化処理)、均質化処理を施して、それぞれの鋳塊を得る。そして、ろう材の鋳塊については、所定厚さまで熱間圧延を施し、心材の鋳塊と組み合わせて、常法にしたがって、熱間圧延によりクラッド材とする。その後、このクラッド材に対して、冷間圧延、必要に応じて中間焼鈍、さらに、最終冷間圧延を施し、必要に応じて最終焼鈍を施す。
 なお、均質化処理は400~600℃で1~20時間、中間焼鈍は300~450℃で1~20時間実施するのが好ましい。また、最終焼鈍は150~450℃で1~20時間実施するのが好ましい。そして、最終焼鈍を実施する場合、中間焼鈍を省略することが可能である。また、調質は、H1n、H2n、H3n、O(JIS H 0001:1998)のいずれでもよい。
 本実施形態に係るアルミニウム合金ブレージングシートの製造方法は、以上説明したとおりであるが、前記各工程において、明示していない条件については、従来公知の条件を用いればよく、前記各工程での処理によって得られる効果を奏する限りにおいて、その条件を適宜変更できることは言うまでもない。
 次に、本発明に係るアルミニウム合金ブレージングシートについて、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを比較して具体的に説明する。
[供試材作製]
 表1に示す組成の心材を鋳造し、600℃×5時間の均質化処理を施し、所定の厚さまで両面を面削した。また、表1に示す組成のろう材を鋳造し、500℃×5時間の均質化処理を施し、所定の厚さまで熱間圧延を施し、熱間圧延板を作製した。そして、心材の両方の面にろう材(ろう材-心材-ろう材)を組み合わせて熱間圧延を施し、クラッド材を得た。その後、冷間圧延を施した後、仕上げ圧延、400℃×5時間の仕上げ焼鈍を施し、3層構造のブレージングシート(O調質材)を作製し、供試材とした。
 なお、各供試材の板厚、ろう材厚(片側のろう材の厚さ)については、表1に示すとおりである。
 次に、ろう付相当加熱の条件、並びに、ろう付性評価(間隙充填性評価)、溶融ろうの流動性評価の方法及び評価基準を示す。
[ろう付相当加熱]
 ろう付相当加熱は、酸素濃度5ppmの窒素雰囲気において、400~560℃までの昇温速度50℃/min、575℃以上での保持時間180秒、という条件で実施した。
 なお、560℃から最高到達温度までの昇温速度は15℃/minであり、降温速度は100℃/minであった。
[ろう付性評価(間隙充填性評価)]
 ろう付性は、竹本正ら著、「アルミニウムブレージングハンドブック(改訂版)」(軽金属溶接構造協会、2003年3月発行)の132~136頁に記載されている評価方法を参考にして評価した。
 詳細には、ろう付相当加熱前の供試材から面寸法が25mm×60mmの試験片を切り出した。そして、図2A、Bに示すように、水平に置いた下板4(試験片(縦幅25mm×横幅60mm))と、この下板4に対して垂直に立てて配置した上板5(3003Al合金板-O材(厚さ1.0mm×縦幅15mm×横幅55mm))との間に、φ2mmのステンレス製スペーサ6を挟んで、一定のクリアランスを設定した。
 そして、前記したろう付相当加熱の条件でろう付接合した。ろう付接合後、下板4と上板5の間隙が充填された長さL(間隙充填長さL)を測定してろう付性を数値化した。
 なお、このろう付性は、厳密には間隙充填性のことであり、各部材を組み付けたときに生じる部材接合面間の隙間、ろう付時におけるブレージングシートや被接合部材の熱変形の発生により生じる部材接合面間の隙間、を考慮したろう付性である。
 ろう付性評価(間隙充填性評価)として、間隙充填長Lさが15.0mm以上のものを「◎」、10.0mm以上15.0mm未満のものを「○」、10.0mm未満のものを「×」と評価し、「◎」、「○」を合格、「×」を不合格と評価した。
[溶融ろうの流動性評価]
 ろう付相当加熱前の供試材から面寸法が15mm×55mmの試験片を切り出した。そして、図3Aに示すように、水平の状態とした横板7(3003Al合金板-O材(厚さ1.0mm×縦幅25mm×横幅60mm))に対して上側に垂直となる状態で縦板8(試験片(縦幅15mm×横幅55mm))を配置した。また、図3Bに示すように、水平の状態とした横板9(3003Al合金板-O材(厚さ1.0mm×縦幅25mm×横幅60mm))に対して下側に垂直となる状態で縦板10(試験片(縦幅15mm×横幅55mm))を配置した。
 そして、前記したろう付相当加熱の条件でろう付接合した。ろう付接合後、図3Aの断面である図4Aに示すフィレットF1の断面積と、図3Bの断面である図4Bに示すフィレットF2の断面積と、を測定した。そして、「縦板両側の2つのフィレットF2の合計断面積(μm)/縦板両側の2つのフィレットF1の合計断面積(μm)」を算出した。
 溶融ろうの流動性評価として、前記した算出値(表、及び、図では「天地差」と示す)が0.50以上のものを「◎」、0.45以上0.50未満のものを「○」、0.45未満のものを「×」と評価し、「◎」、「○」を合格、「×」を不合格と評価した。
 以下、表1には、ろう材の組成、心材の組成、板材の厚さ、ろう材の厚さ、及び、評価結果を示す。そして、表1のろう材、及び、心材の残部は、Al及び不可避的不純物であり、表中の「-」は、含有していない(検出限界以下である)ことを示す。
Figure JPOXMLDOC01-appb-T000001
[結果の検討]
 供試材1~19については、本発明の規定する要件を満たしていた。よって、供試材1~19は「間隙充填性」が合格という結果となるとともに、「溶融ろうの流動性」も合格という結果となった。
 一方、供試材20~26については、本発明の規定する要件を満足しないことから、間隙充填性、及び、溶融ろうの流動性の少なくとも1つが不合格という結果となった。詳細には、以下のとおりである。
 供試材20は、ろう材のMnの含有量が所定値を超えていたことから、間隙充填性が不合格となった。なお、供試材20は、ろう材のMnの含有量が所定値を超えていたため、比重の大きい化合物が生成し、溶融ろうが流れ易くなる結果、溶融ろうの流動性が不合格となると予想していた。しかしながら、ろう材のSiの含有量が比較的少なめであったことに起因し、溶融ろうが少々流れ難くなったため、溶融ろうの流動性はかろうじて合格となった。
 供試材21は、ろう材のMnの含有量が所定値を超えていたことから、溶融ろうの流動性が不合格となった。
 供試材22、23は、ろう材のSiの含有量が所定値を超えているとともに、ろう材のMnの含有量が所定値を超えていたことから、溶融ろうの流動性が不合格となった。
 供試材24は、ろう材にMnとTiのいずれも含有しておらず、0.55×[Mn]+0.31×[Ti]で算出される値が所定値未満であったことから、溶融ろうの流動性が不合格となった。
 供試材25は、ろう材にTiを含有していたものの、0.55×[Mn]+0.31×[Ti]で算出される値が所定値未満であったことから、溶融ろうの流動性が不合格となった。
 供試材26は、Biが所定値未満であったことから、間隙充填性、及び、溶融ろうの流動性が不合格となった。
 以上の結果より、本発明に係るアルミニウム合金ブレージングシートは、溶融ろうの流動抑制(溶融ろうの流動性)と間隙充填性とに優れることが確認できた。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2020年3月31日出願の日本特許出願(特願2020-064320)に基づくものであり、その内容は本出願の中に参照として援用される。
 1  アルミニウム合金ブレージングシート(ブレージングシート)
 2  心材
 3  ろう材

Claims (8)

  1.  心材と、前記心材の少なくとも一方の面に設けられるろう材と、を備え、
     前記ろう材は、Si:5.0質量%以上9.0質量%以下、Mg:0.10質量%以上0.90質量%以下、Bi:0.05質量%以上0.60質量%以下を含有し、Mn:0.80質量%以下、Ti:0.60質量%以下のうちの少なくとも1種以上をさらに含有し、残部がAl及び不可避的不純物からなり、
     Mnの含有量を[Mn]質量%、Tiの含有量を[Ti]質量%とした場合に、0.55×[Mn]+0.31×[Ti]≧0.055を満たすことを特徴とするアルミニウム合金ブレージングシート。
  2.  前記ろう材は、Zn:5.0質量%以下をさらに含有することを特徴とする請求項1に記載のアルミニウム合金ブレージングシート。
  3.  前記ろう材は、Fe:0.35質量%以下、Cr:0.3質量%以下、Zr:0.3質量%以下、V:0.3質量%以下、のうちの1種以上をさらに含有することを特徴とする請求項1又は請求項2に記載のアルミニウム合金ブレージングシート。
  4.  前記ろう材は、厚さが20μm以上であることを特徴とする請求項1又は請求項2に記載のアルミニウム合金ブレージングシート。
  5.  前記ろう材は、厚さが20μm以上であることを特徴とする請求項3に記載のアルミニウム合金ブレージングシート。
  6.  前記心材は、Mg:1.00質量%以下であるAl-Mn系合金からなることを特徴とする請求項1又は請求項2に記載のアルミニウム合金ブレージングシート。
  7.  前記心材は、Mg:1.00質量%以下であるAl-Mn系合金からなることを特徴とする請求項3に記載のアルミニウム合金ブレージングシート。
  8.  心材と、前記心材の少なくとも一方の面に設けられるろう材と、を備えるアルミニウム合金ブレージングシートを用いたろう付方法であって、
     前記ろう材は、Si:5.0質量%以上9.0質量%以下、Mg:0.10質量%以上0.90質量%以下、Bi:0.05質量%以上0.60質量%以下を含有し、Mn:0.80質量%以下、Ti:0.60質量%以下のうちの少なくとも1種以上をさらに含有し、残部がAl及び不可避的不純物からなり、
     Mnの含有量を[Mn]質量%、Tiの含有量を[Ti]質量%とした場合に、0.55×[Mn]+0.31×[Ti]≧0.055を満たし、
     前記アルミニウム合金ブレージングシートを、フラックスを用いずに560℃以上620℃以下の加熱温度によってろう付することを特徴とするアルミニウム合金ブレージングシートのろう付方法。
PCT/JP2021/004683 2020-03-31 2021-02-08 アルミニウム合金ブレージングシート、及び、アルミニウム合金ブレージングシートのろう付方法 WO2021199685A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180019889.6A CN115243829A (zh) 2020-03-31 2021-02-08 铝合金钎焊板、和铝合金钎焊板的钎焊方法
US17/905,858 US20230098425A1 (en) 2020-03-31 2021-02-08 Aluminum alloy brazing sheet and brazing method for aluminum alloy brazing sheet
EP21781372.4A EP4098394A4 (en) 2020-03-31 2021-02-08 ALUMINUM ALLOY BRAZING SHEET AND METHOD OF BRAZING ALUMINUM ALLOY BRAZING SHEET

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-064320 2020-03-31
JP2020064320A JP7364522B2 (ja) 2020-03-31 2020-03-31 アルミニウム合金ブレージングシート、及び、アルミニウム合金ブレージングシートのろう付方法

Publications (1)

Publication Number Publication Date
WO2021199685A1 true WO2021199685A1 (ja) 2021-10-07

Family

ID=77928064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004683 WO2021199685A1 (ja) 2020-03-31 2021-02-08 アルミニウム合金ブレージングシート、及び、アルミニウム合金ブレージングシートのろう付方法

Country Status (5)

Country Link
US (1) US20230098425A1 (ja)
EP (1) EP4098394A4 (ja)
JP (1) JP7364522B2 (ja)
CN (1) CN115243829A (ja)
WO (1) WO2021199685A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074289A1 (ja) * 2021-10-29 2023-05-04 株式会社Uacj アルミニウム合金ブレージングシート及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247209A (ja) 2009-04-17 2010-11-04 Mitsubishi Alum Co Ltd アルミニウム材のフラックスレスろう付け方法およびフラックスレスろう付け用アルミニウムクラッド材
JP2014155955A (ja) * 2013-02-18 2014-08-28 Uacj Corp 無フラックスろう付け用ブレージングシート
WO2017216773A1 (en) * 2016-06-17 2017-12-21 Lee Alice Cricket Systems and methods for improved apparel fit and apparel distribution
WO2018100793A1 (ja) * 2016-11-29 2018-06-07 株式会社Uacj ブレージングシート及びその製造方法
JP2020064320A (ja) 2014-06-03 2020-04-23 オプトチューン アクチェンゲゼルシャフト 特に光フィードバックによって装置のレンズの焦点距離を調整するための光学装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853547A (en) * 1973-05-25 1974-12-10 Reynolds Metals Co Brazing materials
US7255932B1 (en) * 2002-04-18 2007-08-14 Alcoa Inc. Ultra-longlife, high formability brazing sheet
US20110198392A1 (en) * 2008-11-10 2011-08-18 Aleris Aluminum Koblenz Gmbh Process for Fluxless Brazing of Aluminium and Brazing Sheet for Use Therein
JP6228500B2 (ja) * 2014-03-28 2017-11-08 株式会社神戸製鋼所 アルミニウム合金製ブレージングシート
JP6300747B2 (ja) * 2015-03-17 2018-03-28 株式会社神戸製鋼所 アルミニウム合金製ブレージングシート
US20180169798A1 (en) * 2016-12-16 2018-06-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Brazing method for aluminum alloy brazing sheet
US20180169797A1 (en) * 2016-12-16 2018-06-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy brazing sheet
JP6990528B2 (ja) * 2017-05-24 2022-01-12 株式会社神戸製鋼所 アルミニウム合金ブレージングシートのろう付方法、及び、熱交換器の製造方法
JP2018196896A (ja) 2017-05-24 2018-12-13 株式会社神戸製鋼所 アルミニウム合金ブレージングシート

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247209A (ja) 2009-04-17 2010-11-04 Mitsubishi Alum Co Ltd アルミニウム材のフラックスレスろう付け方法およびフラックスレスろう付け用アルミニウムクラッド材
JP2014155955A (ja) * 2013-02-18 2014-08-28 Uacj Corp 無フラックスろう付け用ブレージングシート
JP2020064320A (ja) 2014-06-03 2020-04-23 オプトチューン アクチェンゲゼルシャフト 特に光フィードバックによって装置のレンズの焦点距離を調整するための光学装置
WO2017216773A1 (en) * 2016-06-17 2017-12-21 Lee Alice Cricket Systems and methods for improved apparel fit and apparel distribution
WO2018100793A1 (ja) * 2016-11-29 2018-06-07 株式会社Uacj ブレージングシート及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKEMOTO TADASHI ET AL.: "Aluminum Brazing Handboo", March 2003, JAPAN LIGHT METAL WELDING ASSOCIATION, pages: 132 - 136

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074289A1 (ja) * 2021-10-29 2023-05-04 株式会社Uacj アルミニウム合金ブレージングシート及びその製造方法

Also Published As

Publication number Publication date
US20230098425A1 (en) 2023-03-30
JP7364522B2 (ja) 2023-10-18
EP4098394A1 (en) 2022-12-07
EP4098394A4 (en) 2023-07-05
JP2021159950A (ja) 2021-10-11
CN115243829A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
JP6312968B1 (ja) ブレージングシート及びその製造方法
JP4547032B1 (ja) アルミニウム材のフラックスレスろう付け方法およびフラックスレスろう付け用アルミニウムクラッド材
CN110678292A (zh) 铝合金钎焊板
JP6942449B2 (ja) アルミニウム合金ブレージングシート
JP6990528B2 (ja) アルミニウム合金ブレージングシートのろう付方法、及び、熱交換器の製造方法
JP6286335B2 (ja) アルミニウム合金製ブレージングシート
JP2012050993A (ja) アルミニウム材のフラックスレスろう付け方法およびフラックスレスろう付け用アルミニウムクラッド材
JP2005232506A (ja) 熱交換器用アルミニウム合金クラッド材
CN112672845B (zh) 硬钎焊片材及其制造方法
WO2017169633A1 (ja) アルミニウム合金製ブレージングシート
JP2012024827A (ja) アルミニウム材のフラックスレスろう付方法およびフラックスレスろう付用アルミニウム合金ブレージングシート
WO2021199685A1 (ja) アルミニウム合金ブレージングシート、及び、アルミニウム合金ブレージングシートのろう付方法
JP4220411B2 (ja) 熱交換器用アルミニウム合金クラッド材
CN115038805A (zh) 铝合金钎焊板
JP7328194B2 (ja) アルミニウム合金ブレージングシート
JP5687849B2 (ja) アルミニウム合金製ブレージングシート
JP2013086103A (ja) アルミニウム合金ブレージングシート
JP2012030244A (ja) アルミニウム材のフラックスレスろう付方法
WO2017169492A1 (ja) アルミニウム合金製ブレージングシート
JP7164498B2 (ja) アルミニウム合金材、フラックスレスろう付構造体、および、フラックスレスろう付方法
JP2018099725A (ja) アルミニウム合金ブレージングシート
WO2023047823A1 (ja) アルミニウム合金ブレージングシートおよびその製造方法
JP7290605B2 (ja) アルミニウム合金ブレージングシート、及び、アルミニウム合金ろう付体
WO2021020037A1 (ja) アルミニウム合金ブレージングシート及びその製造方法
JP5917832B2 (ja) アルミニウム材のフラックスレスろう付方法およびフラックスレスろう付用Al−Si系ろう材ならびにフラックスレスろう付用アルミニウムクラッド材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021781372

Country of ref document: EP

Effective date: 20220902

NENP Non-entry into the national phase

Ref country code: DE