WO2021197508A1 - 一种复合型能量转换装置 - Google Patents

一种复合型能量转换装置 Download PDF

Info

Publication number
WO2021197508A1
WO2021197508A1 PCT/CN2021/095372 CN2021095372W WO2021197508A1 WO 2021197508 A1 WO2021197508 A1 WO 2021197508A1 CN 2021095372 W CN2021095372 W CN 2021095372W WO 2021197508 A1 WO2021197508 A1 WO 2021197508A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
energy conversion
conversion device
piezoelectric ceramic
composite energy
Prior art date
Application number
PCT/CN2021/095372
Other languages
English (en)
French (fr)
Inventor
林敏�
王沐
杨润根
李鹏飞
Original Assignee
珠海市司迈科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市司迈科技有限公司 filed Critical 珠海市司迈科技有限公司
Publication of WO2021197508A1 publication Critical patent/WO2021197508A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/0075Electrical details, e.g. drive or control circuits or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320082Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for incising tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation

Definitions

  • the present invention relates to the technical field of medical equipment, in particular to a composite energy conversion device.
  • ultrasonic surgical instruments have been increasingly used in surgical operations due to their unique performance characteristics.
  • Ultrasonic surgical instruments can be configured for open surgical purposes, laparoscopic or endoscopic surgical procedures. According to the specific instrument configuration and operating parameters, ultrasonic surgical instruments can cut tissue and stop bleeding, thereby helping to minimize patient trauma change. Surgeons usually use ultrasonic surgical instruments to cut tissues and coagulate the tissues.
  • Existing surgical operations for tissue stripping and hemostasis require the use of different energy instruments.
  • the use of various energy instruments in turn makes the operation of medical staff very cumbersome. It seriously affects the safety of surgical operations and even leads to failure of surgical operations. Therefore, it is particularly important to design an energy conversion device that can be used in ultrasonic surgical instruments.
  • the purpose of the present invention is to provide a composite energy conversion device to solve the above-mentioned problems in the prior art.
  • the composite energy conversion device is installed on the execution instrument when in use, and realizes the composite energy (such as High-frequency energy and ultrasonic energy) are converted and transmitted on the same execution device, so that the medical staff can quickly select the corresponding tissue treatment (such as blood coagulation or cutting) when using the execution device, which effectively improves the efficiency and success rate of the operation, and benefits patients.
  • a composite energy conversion device comprising a transducing PCB board and a vibrator, wherein the transducing PCB board is provided with a signal receiving part and a signal output part, and the signal receiving part is used for receiving
  • the switch signal of the actuator, the signal output part can be connected with the first actuator of the actuator;
  • the vibrator is provided with a piezoelectric ceramic part and a horn part, and the piezoelectric ceramic part is arranged on the One end of the horn, and the other end of the horn can be connected to the second execution part of the actuator; the signal receiving part, the signal output part, and the two electrodes of the piezoelectric ceramic part
  • the ultrasonic generator is connected to the ultrasonic generator through the adapter part, and the ultrasonic generator controls the output switching of energy according to the switch signal, wherein the ultrasonic generator is connected to the two electrodes of the piezoelectric ceramic part to output to the actuator
  • the first energy, the ultrasonic generator is connected to an electrode of the piezoelectric ceramic part
  • the signal receiving part is arranged on the outer side of the transducing PCB board, and the signal receiving part is arranged as a plurality of elastic posts; the signal output part is arranged as a conductive sleeve, and the conductive sleeve penetrates through the transducer.
  • the first actuator can be connected to the conductive sheet; the inner side of the transducing PCB is provided with a plurality of connecting ends, and the adapter part is connected to the The elastic column is connected with the conductive sleeve.
  • the composite energy conversion device further includes a housing body that includes a first housing, a second housing, and a third housing that are connected in sequence, wherein the transducing PCB board is fixed to the third housing At the outer end, the vibrator is penetrated and fixed to the third housing, and the piezoelectric ceramic part is accommodated in the second housing, and a gap is provided between the piezoelectric ceramic part and the inner wall of the second housing.
  • the composite energy conversion device further includes a cable fixing part, the cable fixing part comprising a cable sheath and a cable fixing block, wherein the cable fixing block is connected to the inner cavity of the first housing to connect the The cable sheath is fixed at one end of the first housing, the cable sheath is provided with a first central hole, and the cable fixing block is provided with a second central hole coaxial with the first central hole.
  • the cable fixing block is further provided with a side hole on the peripheral surface, and the side hole is communicated with the second central hole.
  • the cable fixing block is further provided with a fixing hole and a groove at its inner end, and the fixing hole, the groove and the second central hole are arranged coaxially.
  • the first housing includes a first coupling end, a first annular groove is formed on the outer peripheral surface of the first coupling end, and a first rubber ring is installed in the first annular groove;
  • the outer peripheral surface of the end is provided with a second annular groove, and a second rubber ring is installed in the second annular groove;
  • One end of the third shell is connected to the first end and abuts against the second rubber ring.
  • the composite energy conversion device further includes a pair of Huff blocks, each of the Huff blocks is provided with a protrusion at one end, and the protrusion is snap-connected to the notch provided at the first end, and There is a gap between the two said Huff blocks.
  • the vibrator further includes a flange, the flange is arranged on the outer peripheral surface of the other end of the horn, and the horn is penetrated between the pair of Huff blocks.
  • the flange is sandwiched between the Huff block and the inner wall of the third housing, a third rubber ring is provided between the flange and the Huff block, and the flange A fourth rubber ring is arranged between the disc and the inner wall of the third housing.
  • the outer peripheral surface of the first end is further provided with an adjacent first annular matching surface and a first step portion
  • one end of the third housing is provided with an adjacent second annular matching surface and a second step portion
  • the first annular matching surface can be transitionally fitted with the second annular matching surface, and the first stepped portion abuts against the second stepped portion.
  • the composite energy conversion device provided by the present invention includes a transducer PCB board and a vibrator.
  • the transducer PCB board is provided with a signal receiving part and a signal output part.
  • the part can be connected with the first execution part of the actuator;
  • the vibrator is provided with a piezoelectric ceramic part and a horn part, the piezoelectric ceramic part is arranged at one end of the horn, and the other end of the horn part can be connected with the actuator
  • the second execution part is connected; the two electrodes of the signal receiving part, the signal output part, and the piezoelectric ceramic part are connected to the ultrasonic generator through the adapter part, and the ultrasonic generator controls the energy output switching according to the switch signal, wherein the ultrasonic generator is connected
  • the two electrodes of the piezoelectric ceramic part output the first energy to the actuator, and the ultrasonic generator is connected to one electrode of the piezoelectric ceramic part and the signal output part, and outputs the second energy to the actuator.
  • the composite energy conversion device provided by the present invention is installed on the execution instrument when in use, for example, during a surgical operation, when the signal receiving part of the transducer PCB board receives the ultrasonic switch signal of the execution instrument, and Transmitted to the ultrasonic generator, the ultrasonic generator applies high-frequency electrical signals to the two electrodes of the piezoelectric ceramic part through the input cable, excites the piezoelectric ceramic part to generate ultrasonic vibration, and transmits it to the second execution through the horn of the vibrator Department to achieve cutting tissue.
  • the ultrasonic generator transmits a high-frequency current to the second actuator through one electrode of the vibrator, and at the same time A high-frequency current is transmitted to the first execution part through the signal output part on the transducer PCB board, and the tissue coagulation is realized through the high-frequency discharge between the first execution part and the second execution part.
  • the composite energy conversion device provided by the present invention is installed on the execution instrument when in use, and realizes the conversion and transmission of composite energy (such as high-frequency energy and ultrasonic energy) on the same execution instrument during the operation.
  • composite energy such as high-frequency energy and ultrasonic energy
  • FIG. 1 is a schematic structural diagram of a composite energy conversion device provided by an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of a composite energy conversion device provided by an embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional view of the first housing in the embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of a second housing in an embodiment of the present invention.
  • Figure 5 is a schematic diagram of the structure of a pair of Huff blocks in an embodiment of the present invention.
  • Figure 6 is a schematic structural diagram of a third housing in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the structure of the energy conversion PCB board in the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another view of the structure of the power conversion PCB board in the embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the inside of the power conversion PCB board in the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the structure of a vibrator in an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the structure of the flat rubber ring in the embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the structure of a special-shaped rubber ring in an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the structure of an O-ring in an embodiment of the present invention.
  • 15 is a schematic diagram of the structure of the cable fixing block in the embodiment of the present invention.
  • 16 is a schematic cross-sectional view of the cable fixing block in the embodiment of the present invention.
  • Fig. 17 is an enlarged view of the part A of Fig. 2 in the embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a composite energy conversion device provided by an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of a composite energy conversion device provided by an embodiment of the present invention
  • FIG. 3 is an embodiment of the present invention
  • Fig. 4 is a schematic diagram of the structure of the second housing in the embodiment of the present invention
  • Fig. 5 is a schematic diagram of the structure of the Huff block in the embodiment of the present invention
  • Fig. 6 is a schematic diagram of the third housing in the embodiment of the present invention Schematic diagram of the structure
  • FIG. 7 is a schematic diagram of the structure of the transducer PCB board in the embodiment of the present invention
  • FIG. 7 is a schematic diagram of the structure of the transducer PCB board in the embodiment of the present invention
  • FIG. 8 is a schematic diagram of the structure of the transducer PCB board in the embodiment of the present invention from another angle
  • FIG. 9 is a schematic diagram of the transducer PCB board in the embodiment of the present invention
  • Fig. 10 is a schematic structural diagram of a vibrator in an embodiment of the present invention
  • Fig. 11 is a schematic structural diagram of a flat apron in an embodiment of the present invention
  • Fig. 12 is a schematic structural diagram of a special-shaped apron in an embodiment of the present invention
  • Fig. 13 Fig. 14 is a schematic structural diagram of a cable plug assembly in an embodiment of the present invention
  • Fig. 15 is a schematic structural diagram of a cable fixing block in an embodiment of the present invention.
  • Fig. 16 is an embodiment of the present invention.
  • FIG. 17 is a schematic cross-sectional view of the cable fixing block in an embodiment of the present invention.
  • This embodiment provides a composite energy conversion device, which belongs to the field of medical equipment, and the most common is an electro-acoustic conversion device used for ultrasonic scalpels in the field of medical and surgical treatment.
  • the composite energy conversion device is installed on the execution device when in use.
  • the composite energy (such as high frequency energy and ultrasonic energy) can be converted and transmitted on the same execution device, which is convenient for medical staff to use the execution device.
  • tissue treatments for example, blood coagulation or cutting
  • the composite energy conversion device includes an ultrasonic vibrator 6 based on piezoelectric ceramic 62, an apron for fixing the ultrasonic vibrator 6 and a housing body, and a conversion for realizing switch signal transfer.
  • the composite energy conversion device (high frequency and ultrasonic composite) is screwed on the ultrasonic actuator through a screw 64 to achieve the output of high frequency and ultrasonic composite energy; the composite energy conversion device
  • the signal receiving part of the transducing PCB board 5 realizes the reception of three-way switch signals from the actuator, and then realizes the transmission of the three-way switch signal from the ultrasonic actuator to the ultrasonic generator through the cable plug assembly 103 and the six-core input cable;
  • the generator transmits its three high-frequency electrical signals to the ultrasonic actuator through the cable plug assembly 103 and the six-core input cable.
  • the transducer PCB board 5 is provided with six elastic columns 53 (signal receiving part) symmetrically (to ensure reliable electrical connection) on the front of the PCB board body 51. Realize to receive the three-way switch signal from the actuator (for example, connect a three-wire switch), and pass through the wire 52 welded at the wire welding point 56-1/56-2/56-3 on the back of the transducing PCB board 5.
  • the wire 52 is connected to the other input cable of the six-core input cable.
  • the copper sleeve 55 can be connected to the actuator by connecting the conductive sheet, so as to receive the high-frequency electrical signal from the ultrasonic generator and transmit it to the actuator ( Ultrasonic actuator).
  • the vibrator 6 is fixed to one end of the housing body through a hole.
  • the vibrator 6 includes a piezoelectric ceramic 62 and an horn 63.
  • the piezoelectric ceramic 62 is supported by a ceramic fixing block 61 and coaxially fixed to
  • the two electrodes of the piezoelectric ceramic 62 are respectively connected to the remaining two input cables of the six-core input cable, and the piezoelectric ceramic 62 is accommodated in the housing body and opened between the inner wall surface of the housing body The gap is large enough to facilitate the connection of the input cable and the installation of the vibrator 6.
  • One end of the horn 63 is connected to the knife shaft of the actuator through the screw 64.
  • the ultrasonic generator controls the energy output switching according to the switch signal, wherein the ultrasonic generator is connected to two electrodes of the piezoelectric ceramic 62 and outputs the first energy to the actuator, and the ultrasonic generator is connected to one electrode of the piezoelectric ceramic 62 and the signal.
  • the output part outputs the second energy to the actuator.
  • the conversion PCB board 5 is provided with an elastic column 53 to receive the ultrasonic switching signal from the actuator, and transmits the switching signal to the ultrasonic generator through the wire 52 and the input cable.
  • the ultrasonic generator (including the controller) applies high-frequency electrical signals to the two electrodes of the piezoelectric ceramic 62 through the cable plug assembly 103 and the input cable, excites the piezoelectric ceramic 62 to generate ultrasonic vibration, and through the change of the vibrator 6
  • the amplitude rod 63 is transmitted to the knife bar (the second executing part) of the execution instrument, so that the knife bar realizes the tissue cutting function along with the ultrasonic vibration.
  • the transducing PCB board 5 is provided with an elastic column 53 to receive the high-frequency switch signal from the actuator, and transmit the switch signal to the ultrasonic generator through the wire 52 and the input cable.
  • the ultrasonic generator transmits a high-frequency current through the vibrator 6
  • One of the electrodes is transmitted to the blade of the actuator, and at the same time, a high-frequency current is transmitted to the outer sheath of the actuator and the clamp head (the first actuator) through the copper sleeve 55 (signal output part) on the transducing PCB board 5.
  • High-frequency energy acts on the knife shaft and the clamp head respectively to form a high-frequency current between the two poles, through the high-frequency discharge between the knife head and the clamp head to achieve tissue coagulation function.
  • the housing body includes a first housing 1, a second housing 2, and a third housing 4.
  • the first housing 1 and the second housing The joint part of 2 is provided with a groove, and an O-ring 9 is installed inside.
  • the joint part of the second housing 2 and the third housing 4 is also provided with a groove, and the O-ring 9 is installed inside.
  • the function of the O-ring 9 is to waterproof and increase friction.
  • the first housing 1 is provided with a sheath hole 11, an annular groove 12, and a threaded hole 13 in sequence along the center line.
  • the sheath hole 11 and the annular groove 12 are used to pass through the cable sheath 101, The head of the cable sheath 101 is inserted into the annular groove 12, and then the cable fixing block 102 is screwed into the threaded hole 13 to prevent its axial movement.
  • the cable fixing block 102 is screwed into the tail end of the first housing 1 through an external thread 1021, the cable fixing block 102 is provided with a central hole 1022, and the side front end is provided with a side hole 1023.
  • the front end has a plastic nail hole 1024 and a slot 1025 or a cross groove or a quincunx groove or other grooves.
  • the composite energy conversion device is connected to the ultrasonic generator through the cable plug assembly 103, the input cable wire passes through the cable sheath 101 and then penetrates through the central hole 1022, bends out through the side hole 1023, and exits from the side hole 1023 after being bent.
  • the gap between the cable fixing block 102 and the inner wall of the first housing 1 extends forward to form a second bend of the input cable.
  • the above structural design makes the input cable not easy to loosen and twist in the housing; the role of the glue nail hole 1024 is to be able to Screw in a plastic nail to further fix the input cable to prevent loosening of the input cable; the function of the slot 1025 is to use a slotted screwdriver to turn the cable fixing block 102 so as to be screwed into the end of the first housing 1 , The end face of the cable sheath 101 can be pressed tightly to prevent the cable sheath 101 from loosening.
  • a pair of Huff blocks 3 is inserted into the end of the second housing 2, the stepped surface of the back end of the Huff block 3 is in contact with the front face of the second housing 2, and the front end of the Huff block 3 is also provided with a accommodating special-shaped glue
  • the surrounding structure of the ring 8 specifically, a protrusion 31 is provided in the middle of the half block 3, and the protrusion 31 of the half block 3 is clamped into the gap 23 of the second housing 2 during assembly, which can limit the winding of the half block 3.
  • the shaft rotates.
  • a certain gap 32 is left between the pair of Huff blocks 3 to facilitate the passage of the wire 52.
  • the vibrator 6 is provided with a flange 65 at one end close to the screw 64. Groove) contact, the rear end of the flange 65 is in contact with the Huff block 3 through the special-shaped rubber ring 8.
  • the third housing 4 and the Huff block 3 squeeze the flat rubber ring 7 and the special-shaped rubber ring 8 to ensure the vibrator 6
  • the axial position is fixed, and the piezoelectric ceramic 62 of the vibrator 6 is contained in the second housing and there is a sufficiently large gap with the inner wall surface of the second housing to facilitate the connection of the input cable and the installation of the vibrator 6.
  • the input cable is first connected to the two electrodes of the piezoelectric ceramic 62, and then the second housing 2 is connected to the first housing 1. That is, the vibrator 6 can be inserted from the left end of the second housing. Then snap a pair of Huff blocks 3 into the second housing 2, then install the special-shaped rubber ring 8, and finally connect the third housing 4 with the flat rubber ring 7 to the second housing 2; in addition, because the flat rubber ring 7 and The end face friction force generated by the pressing force of the special-shaped rubber ring 8 is sufficient to ensure that the vibrator 6 does not rotate around the axis.
  • the flange 65 on the vibrator 6 is provided with a number of grooves at one end, and the special-shaped rubber ring 8 is correspondingly provided with a number of protrusions that are matched and connected with the above-mentioned grooves.
  • the grooves and the protrusions can be matched and connected The vibrator 6 and the special-shaped rubber ring 8 are prevented from rotating relative to the axis.
  • the front end of the third housing 4 is provided with two internally threaded posts 42 for fixing the transducing PCB board 5 in combination with the fixing holes 54 and threaded parts such as screws.
  • the third housing A wire hole 41 is also provided at the front end of 4 to facilitate the wire 52 to pass through.
  • the outer peripheral surface of the front end of the second housing 2 is provided with an adjacent first annular mating surface 21 and a first step portion 201
  • the inner wall surface of the front end of the third housing 4 is provided with an annular groove to accommodate the flat rubber ring 7
  • the rear end of the inner peripheral surface of the third housing 4 is provided with an adjacent second annular mating surface 43 and a second step portion 403, the second annular mating surface 43 can be transitionally fitted with the first annular mating surface 21, see Figure 17, during assembly, press the third housing 4 into the second housing 2 according to the fit of the first annular mating surface 21 and the second annular mating surface 43, and the two mating surfaces are smoothly pressed in under pressure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Dentistry (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)

Abstract

一种复合型能量转换装置,其换能PCB板设有接收执行器械的开关信号的信号接收部,与执行器械连接的信号输出部;振动子设有压电陶瓷部和与执行器械连接的变幅杆部;信号接收部、信号输出部、压电陶瓷部的两电极与超声发生器连接,超声发生器根据开关信号控制能量的输出切换,其中,超声发生器连接压电陶瓷部的两电极,对执行器械输出第一能量,超声发生器连接压电陶瓷部的一电极和信号输出部,对执行器械输出第二能量。本发明提供的复合型能量转换装置,使用时安装在执行器械上,在手术过程中,实现了复合型能量在同一个执行器械上转换传输,便于医护人员在使用执行器械时迅速地选择进行相应的组织处理,有效提升手术效率和成功率,造福患者。

Description

一种复合型能量转换装置 技术领域
本发明涉及医疗器械的技术领域,特别是涉及一种复合型能量转换装置。
背景技术
一直以来,超声外科器械凭借其独特的性能特征而在外科手术中得到日益广泛的应用。超声外科器械可被配置用于开放性外科用途、腹腔镜式或内窥镜式外科手术,根据具体器械构型和操作参数,超声外科器械能够进行组织切割和止血,从而有利于使患者创伤最小化。外科医生通常使用超声外科器械切割组织、使组织凝血,而现有的外科手术中的组织剥离和止血操作都分别需要使用不同的能量器械,各种能量器械轮番使用导致医务人员的操作非常繁琐,严重影响了外科手术的安全性,甚至导致外科手术的失败,因此设计一种能使用在超声外科器械的能量转换装置尤为重要。
发明内容
本发明的目的在于提供一种复合型能量转换装置,解决上述现有技术存在的问题,该复合型能量转换装置,使用时安装在执行器械上,在手术过程中,实现了复合型能量(例如高频能量和超声能量)在同一个执行器械上转换传输,便于医护人员在使用执行器械时迅速地选择进行相应的组织处理(例如凝血或者切割),有效提升手术效率和成功率,造福患者。
为了实现上述目的,本发明提供如下技术方案:
一种复合型能量转换装置,所述复合型能量转换装置包括换能PCB板和振动子,其中,所述换能PCB板设有信号接收部和信号输出部,所述信号接收部用于接收执行器械的开关信号,所述信号输出部可与所述执行器械的第一执行部连接;所述振动子设有压电陶瓷部和变幅杆部,所述压电陶瓷部设在所述变幅杆一端部,所述变幅杆部的另一端部可与所述执行器械的第二执行部连接;所述信号接收部、所述信号输出部、所述压电陶瓷部的两电极通过转接部与超声发生器连接,所述超声发生器根据所述开关信号控制能量的输出切换,其中,所述超声发生器连接所述压电陶瓷部的两电极,对所述执行器械输出第一能量, 所述超声发生器连接所述压电陶瓷部的一电极和所述信号输出部,对所述执行器械输出第二能量。
进一步,所述换能PCB板的外侧设有所述信号接收部,所述信号接收部设置为多个弹性柱;所述信号输出部设置为导电套,所述导电套穿设于所述换能PCB板,并可通过连接导电片以连接所述第一执行部;所述换能PCB板的内侧设有多个连接端,所述转接部通过所述多个连接端分别与所述弹性柱和所述导电套连接。
进一步,所述复合型能量转换装置还包括外壳本体,所述外壳本体包括依次连接的第一外壳、第二外壳和第三外壳,其中,所述换能PCB板固定在所述第三外壳的外端,所述振动子穿设固定于所述第三外壳,所述压电陶瓷部容纳在所述第二外壳中,且与所述第二外壳的内壁之间设有间隙。
进一步,所述复合型能量转换装置还包括电缆固定部,所述电缆固定部包括电缆护套和电缆固定块,其中,所述电缆固定块连接于所述第一外壳的内腔,以将所述电缆护套固定在所述第一外壳的一端,所述电缆护套开设有第一中心孔,所述电缆固定块开设有与所述第一中心孔同轴的第二中心孔。
进一步,所述电缆固定块还在周面开设有侧孔,所述侧孔与所述第二中心孔连通。
进一步,所述电缆固定块还在内端部开设有固定孔和槽部,所述固定孔、所述槽部和所述第二中心孔同轴设置。
进一步,所述第一外壳包括第一结合端,所述第一结合端的外周面开设有第一环形槽,所述第一环形槽内安装有第一胶圈;所述第二外壳的第一端的外周面开设有第二环形槽,所述第二环形槽内安装有第二胶圈;所述第二外壳的第二端与所述第一结合端连接并抵接所述第一胶圈,所述第三外壳的一端与所述第一端连接并抵接所述第二胶圈。
进一步,所述复合型能量转换装置还包括一对哈夫块,每个所述哈夫块一端设有凸起,所述凸起与所述第一端所设的缺口卡合连接,且所述哈夫块两者之间设有间隙。
进一步,所述振动子还包括法兰盘,所述法兰盘设置在所述变幅杆部的另一端部的外周面,所述变幅杆部穿设于所述一对哈夫块之间,所述法兰盘夹设在所述哈夫块与所述第三外壳的内壁之间,所述法兰盘与所述哈夫块之间设有第三胶圈,所述法兰盘与所述第三外壳的内壁之间设有第四胶圈。
进一步,所述第一端的外周面还开设有相邻的第一环形配合面和第一台阶部,所述第三外壳的一端设有相邻的第二环形配合面和第二台阶部,所述第一环形配合面可与所述第二环形配合面过渡配合,所述第一台阶部与所述第二台阶部相抵接。
本发明的有益效果:
本发明提供的复合型能量转换装置,其包括换能PCB板和振动子,其中,换能PCB板设有信号接收部和信号输出部,信号接收部用于接收执行器械的开关信号,信号输出部可与执行器械的第一执行部连接;振动子设有压电陶瓷部和变幅杆部,压电陶瓷部设在变幅杆一端部,变幅杆部的另一端部可与执行器械的第二执行部连接;信号接收部、信号输出部、压电陶瓷部的两电极通过转接部与超声发生器连接,超声发生器根据开关信号控制能量的输出切换,其中,超声发生器连接压电陶瓷部的两电极,对执行器械输出第一能量,超声发生器连接压电陶瓷部的一电极和信号输出部,对执行器械输出第二能量。
具体地,本发明提供的复合型能量转换装置,使用时将其安装在执行器械上,比如在外科手术过程中,当换能PCB板的信号接收部接收到执行器械的超声开关信号时,并传送至超声发生器,超声发生器将高频电信号通过输入电缆线施加到压电陶瓷部的两电极,激励压电陶瓷部产生超声振动,并通过振动子的变幅杆传送给第二执行部,以实现切割组织。当换能PCB板的信号接收部接收到执行器械的高频开关信号时,并传送至超声发生器,超声发生器将一路高频电流经振动子其一电极传递给第二执行部,同时将一路高频电流经换能PCB板上的信号输出部传递给第一执行部,通过第一执行部与第二执行部之间的高频放电以实现组织凝血。
综上所述,本发明提供的复合型能量转换装置,使用时安装在执行器械上,在手术过程中,实现了复合型能量(例如高频能量和超声能量)在同一个执行器械上转换传输,便于医护人员在使用执行器械时迅速地选择进行相应的组织处理(例如凝血或者切割),有效提升手术效率和成功率,造福患者。
附图说明
图1为本发明实施例提供的复合型能量转换装置的结构示意图;
图2为本发明实施例提供的复合型能量转换装置的剖面示意图;
图3为本发明实施例中第一外壳的剖面示意图;
图4为本发明实施例中第二外壳的结构示意图;
图5为本发明实施例中一对哈夫块的结构示意图;
图6为本发明实施例中第三外壳的结构示意图;
图7为本发明实施例中换能PCB板的结构示意图;
图8为本发明实施例中换能PCB板另一角度的结构示意图;
图9为本发明实施例中换能PCB板的内侧示意图;
图10为本发明实施例中振动子的结构示意图;
图11为本发明实施例中平胶圈的结构示意图;
图12为本发明实施例中异型胶圈的结构示意图;
图13为本发明实施例中O型圈的结构示意图;
图14为本发明实施例中电缆插头组件的结构示意图;
图15为本发明实施例中电缆固定块的结构示意图;
图16为本发明实施例中电缆固定块的剖面示意图;
图17为本发明实施例中图2的A处放大图。
图中,1—第一外壳、11—护套孔、12—环形槽、13—螺纹孔、2—第二外壳、21—第一环形配合面、201—第一台阶部、22—凹槽、23—缺口、3—哈夫块、31—凸起、32—间隙、4—第三外壳、41—过线孔、42—内螺纹柱、43—第二环形配合面、403—第二台阶部、5—换能PCB板、51—PCB板体、52—导线、52-1/52-2/52-3/52-4—连接端、53—弹性柱、54—固定孔、55—铜套、56-1/56-2/56-3/56-4—导线焊接点、6—振动子、61—陶瓷固定块、62—压电陶瓷、63—变幅杆、64—螺杆、65—法兰盘、7—平胶圈、8—异型胶圈、81—凸起、9—O型圈、101—电缆护套、102—电缆固定块、1021—外螺纹、1022—中心孔、1023—侧孔、1024—胶钉孔、1025—一字槽、103—电缆插头组件
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1-图16,图1为本发明实施例提供的复合型能量转换装置的结构示意图,图2为本发明实施例提供的复合型能量转换装置的剖面示意图,图3为本发明实施例中第一外壳的剖面示意图,图4为本发明实施例中第二外壳的结构示意图,图5为本发明实施例中哈夫块的结构示意图,图6为本发明实施例中第三外壳的结构示意图,图7为本发明实施例中换能PCB板的结构示意图,图8为本发明实施例中换能PCB板另一角度的结构示意图,图9为本发明实施例中换能PCB板的内侧示意图,图10为本发明实施例中振动子的结构 示意图,图11为本发明实施例中平胶圈的结构示意图,图12为本发明实施例中异型胶圈的结构示意图,图13为本发明实施例中O型圈的结构示意图,图14为本发明实施例中电缆插头组件的结构示意图,图15为本发明实施例中电缆固定块的结构示意图,图16为本发明实施例中电缆固定块的剖面示意图,图17为本发明实施例中电缆固定块的剖面示意图。
本实施例提供一种复合型能量转换装置,属于医疗器械领域,最常见是用于医疗外科治疗领域超声手术刀的电声转换装置。该复合型能量转换装置,使用时安装在执行器械上,在手术过程中,实现了复合型能量(例如高频能量和超声能量)在同一个执行器械上转换传输,便于医护人员在使用执行器械时迅速地选择进行相应的组织处理(例如凝血或者切割),有效提升手术效率和成功率,造福患者。
具体参见图1-图17,该复合型能量转换装置,包括基于压电陶瓷62的超声振动子6、用于固定超声振动子6的胶圈及外壳本体、用于实现开关信号转接的换能PCB板5和电缆固定部。
本实施例中,具体参见图1,该复合型能量转换装置(高频及超声复合)通过螺杆64旋于超声执行器械上,以实现高频及超声复合能量的输出;该复合型能量转换装置通过换能PCB板5的信号接收部实现接收来自执行器械的三路开关信号,再通过电缆插头组件103和六芯输入电缆线实现三路开关信号从超声执行器械到超声发生器的传输;超声发生器再通过电缆插头组件103和六芯输入电缆线来将其三路高频电信号输送至超声执行器械。
具体参见图2、图7、图8和图9,换能PCB板5通过在PCB板体51的正面设置两两对称(保证可靠的电性连接)的六个弹性柱53(信号接收部)实现接收来自执行器械的三路开关信号(比如连接三线式开关),并通过在换能PCB板5的背面所设的导线焊接点56-1/56-2/56-3焊接的导线52中的三根(连接端52-1/52-2/52-3)以及六芯输入电缆线中的三根输入电缆线将开关信号传送给超声发生器;换能PCB板5的中心圆孔部分焊接有铜套55(信号输出部),该铜套55与换能PCB板5背面所设的焊盘和导线焊接点56-4焊接的另一根导线52(连接端52-4)相连接,该根导线52与六芯输入电缆线中的另一根输入电缆线连接,该铜套55可通过连接导电片以连接执行器械,实现接收来自超声发生器的高频电信号并传送给执行器械(超声执行器械)。
具体参见图2和图10,振动子6穿设固定于外壳本体的一端,该振动子6包括压电陶瓷62和变幅杆63,压电陶瓷62由陶瓷固定块61支撑并同轴固定于变幅杆63上,压电陶瓷62的两电极分别与六芯输入电缆线中的剩余两根输入电缆线连接,且压电陶瓷62容纳 在外壳本体内且与外壳本体的内壁面之间开设足够大的间隙,便于输入电缆线的连接和便于振动子6的安装,变幅杆63的一端通过螺杆64与执行器械的刀杆连接。
具体地,超声发生器根据开关信号控制能量的输出切换,其中,超声发生器连接压电陶瓷62的两电极,对执行器械输出第一能量,超声发生器连接压电陶瓷62的一电极和信号输出部,对执行器械输出第二能量。
具体地,以高频及超声复合能量的换能作为例子说明,换能PCB板5设置弹性柱53接收来自执行器械的超声开关信号,并通过导线52和输入电缆线将开关信号传送给超声发生器,超声发生器(含控制器)将高频电信号通过电缆插头组件103和输入电缆线施加到压电陶瓷62的两电极,激励压电陶瓷62产生超声振动,并通过振动子6的变幅杆63传送给执行器械的刀杆(第二执行部),以使刀杆随着超声振动实现组织切割功能。
进一步地,换能PCB板5设置弹性柱53接收来自执行器械的高频开关信号,并通过导线52和输入电缆线将开关信号传送给超声发生器,超声发生器将一路高频电流经振动子6其一电极传递给执行器械的刀杆,同时将一路高频电流经换能PCB板5上的铜套55(信号输出部)传递给执行器械的外鞘和钳头(第一执行部),高频能量分别作用于刀杆和钳头,形成两极间的高频电流,通过刀头与钳头之间的高频放电以实现组织凝血功能。
另外,本实施例中,具体参见图2、图3、图4和图6,外壳本体包括第一外壳1、第二外壳2和第三外壳4,具体地,第一外壳1与第二外壳2的结合部设有一凹槽,内装O形圈9,第二外壳2与第三外壳4的结合部也设有一凹槽,内装O形圈9,O形圈9的作用是防水和增加摩擦,保证第一外壳1与第二外壳2、第二外壳2与第三外壳4之间的连接稳定性。
本实施例中,具体参见图3,第一外壳1沿中心线依次设有护套孔11、环形槽12和螺纹孔13,护套孔11和环形槽12用于穿过电缆护套101,电缆护套101的头部装入环形槽12中,再将电缆固定块102旋入与螺纹孔13螺纹连接,以防止其轴向窜动。
本实施例中,具体参见图15和图16,电缆固定块102通过外螺纹1021旋接于第一外壳1的尾端内,电缆固定块102设有中心孔1022,侧前端设有侧孔1023,前端有胶钉孔1024和一字槽1025或十字槽或梅花槽或其他槽。具体地,该复合型能量转换装置通过电缆插头组件103与超声发生器连接,输入电缆线穿过电缆护套101后经中心孔1022穿入,折弯从侧孔1023穿出,穿出后从电缆固定块102和第一外壳1的内壁间隙往前伸,形成了输入电缆线的二次弯折,以上结构设计使得输入电缆线不易松动和在外壳内扭转;胶钉孔1024的作用在于可以拧入一颗胶钉以进一步固定输入电缆线,防止输入电缆线产生松 动;一字槽1025的作用在于用一字螺丝刀旋动电缆固定块102以便于旋接于第一外壳1的尾端内,实现压紧电缆护套101的端面,防止电缆护套101产生松动。
本实施例中,一对哈夫块3插入第二外壳2的端部,哈夫块3后端台阶面与第二外壳2前端面接触连接,哈夫块3的前端还设有容纳异形胶圈8的包围结构,具体地,哈夫块3的中部设有一凸起31,装配时哈夫块3的凸起31卡入第二外壳2的缺口23内,可限制哈夫块3的绕轴转动,此外,一对哈夫块3之间留有一定的间隙32,方便导线52穿过。
本实施例中,具体参见图2与图10,振动子6在靠近螺杆64的一端设有法兰盘65,法兰盘65的前端面通过平胶圈7与第三外壳4(设有凹槽)接触,法兰盘65的后端面通过异形胶圈8与哈夫块3接触,第三外壳4和哈夫块3通过挤压平胶圈7和异形胶圈8以保证振动子6的轴向位置固定,且使得振动子6的压电陶瓷62容纳在第二外壳内且与第二外壳的内壁面之间有足够大的间隙,便于输入电缆线的连接和振动子6安装,具体地,振动子6在安装时,输入电缆线先连接压电陶瓷62两电极,再将第二外壳2连接到第一外壳1,即是振动子6可以从第二外壳的左端部穿入,再将一对哈夫块3卡入第二外壳2,再安装异形胶圈8,最后将装好平胶圈7的第三外壳4连接到第二外壳2;另外,因平胶圈7和异形胶圈8所受到的压紧力而产生的端面摩擦力足以保证振动子6不会发生绕轴旋转运动。进一步地,振动子6上的法兰盘65一端设有若干个凹槽,异形胶圈8对应设有若干个与上述凹槽匹配连接的凸起,装配时,凹槽与凸起配合连接可阻止振动子6与异形胶圈8绕轴相对旋转。
具体地,参见图2、图6和图7,第三外壳4的前端部设有两个内螺纹柱42,用于结合固定孔54和螺钉等螺纹件固定换能PCB板5,第三外壳4的前端部还设有一过线孔41,以方便导线52穿过。此外,在第二外壳2的前端外周面上设有相邻的第一环形配合面21和第一台阶部201,第三外壳4的前端部的内壁面设有一环形槽以容纳平胶圈7,第三外壳4的内周面的后端部设有相邻的第二环形配合面43和第二台阶部403,第二环形配合面43可与第一环形配合面21过渡配合,具体参见图17,装配时,按照第一环形配合面21与第二环形配合面43的配合将第三外壳4压入第二外壳2,两配合面在压力作用下顺利压入,当第三外壳4的的第二环形配合面43刚好越过第二外壳2的第一环形配合面21时,即是装配到位,此时,胶圈已被压紧,第一台阶部201抵接第二台阶部43,可有效防止第二外壳2与第三外壳4之间产生轴向移动,保证第二外壳2与第三外壳4之间的稳定连接和振动子6的安装稳定性。
以上实施例仅用以说明本发明的技术方案而非限制,参照较佳实施例对本发明进行了 详细说明,本领域技术人员应当理解,对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围的方案,均应涵盖在本发明的权利要求范围内。

Claims (10)

  1. 一种复合型能量转换装置,其特征在于:
    所述复合型能量转换装置包括换能PCB板和振动子,其中,
    所述换能PCB板设有信号接收部和信号输出部,所述信号接收部用于接收执行器械的开关信号,所述信号输出部可与所述执行器械的第一执行部连接;
    所述振动子设有压电陶瓷部和变幅杆部,所述压电陶瓷部设在所述变幅杆部一端部,所述变幅杆部的另一端部可与所述执行器械的第二执行部连接;
    所述信号接收部、所述信号输出部、所述压电陶瓷部的两电极通过转接部与超声发生器连接,所述超声发生器根据所述开关信号控制能量的输出切换,其中,所述超声发生器连接所述压电陶瓷部的两电极,对所述执行器械输出第一能量,所述超声发生器连接所述压电陶瓷部的一电极和所述信号输出部,对所述执行器械输出第二能量。
  2. 根据权利要求1所述的复合型能量转换装置,其特征在于:
    所述换能PCB板的外侧设有所述信号接收部,所述信号接收部设置为多个弹性柱;
    所述信号输出部设置为导电套,所述导电套穿设于所述换能PCB板,并可通过连接导电片以连接所述第一执行部;
    所述换能PCB板的内侧设有多个连接端,所述转接部通过所述多个连接端分别与所述弹性柱和所述导电套连接。
  3. 根据权利要求1所述的复合型能量转换装置,其特征在于:
    所述复合型能量转换装置还包括外壳本体,
    所述外壳本体包括依次连接的第一外壳、第二外壳和第三外壳,其中,所述换能PCB板固定在所述第三外壳的外端,所述振动子穿设固定于所述第三外壳,所述压电陶瓷部容纳在所述第二外壳中,且与所述第二外壳的内壁之间设有间隙。
  4. 根据权利要求3所述的复合型能量转换装置,其特征在于:
    所述复合型能量转换装置还包括电缆固定部,
    所述电缆固定部包括电缆护套和电缆固定块,其中,所述电缆固定块连接于所述第一外壳的内腔,以将所述电缆护套固定在所述第一外壳的一端,所述电缆护套开设有第一中心孔,所述电缆固定块开设有与所述第一中心孔同轴的第二中心孔。
  5. 根据权利要求4所述的复合型能量转换装置,其特征在于:所述电缆固定块还在周面开设有侧孔,所述侧孔与所述第二中心孔连通。
  6. 根据权利要求5所述的复合型能量转换装置,其特征在于:所述电缆固定块还在内端部开设有固定孔和槽部,所述固定孔、所述槽部和所述第二中心孔同轴设置。
  7. 根据权利要求3所述的复合型能量转换装置,其特征在于:所述第一外壳包括第一结合端,所述第一结合端的外周面开设有第一环形槽,所述第一环形槽内安装有第一胶圈;所述第二外壳的第一端的外周面开设有第二环形槽,所述第二环形槽内安装有第二胶圈;所述第二外壳的第二端与所述第一结合端连接并抵接所述第一胶圈,所述第三外壳的一端与所述第一端连接并抵接所述第二胶圈。
  8. 根据权利要求7所述的复合型能量转换装置,其特征在于:所述复合型能量转换装置还包括一对哈夫块,每个所述哈夫块一端设有凸起,所述凸起与所述第一端所设的缺口卡合连接,且所述哈夫块两者之间设有间隙。
  9. 根据权利要求8所述的复合型能量转换装置,其特征在于:所述振动子还包括法兰盘,所述法兰盘设置在所述变幅杆部的另一端部的外周面,所述变幅杆部穿设于所述一对哈夫块之间,所述法兰盘夹设在所述哈夫块与所述第三外壳的内壁之间,所述法兰盘与所述哈夫块之间设有第三胶圈,所述法兰盘与所述第三外壳的内壁之间设有第四胶圈。
  10. 根据权利要求9所述的复合型能量转换装置,其特征在于:所述第一端的外周面还开设有相邻的第一环形配合面和第一台阶部,所述第三外壳的一端设有相邻的第二环形配合面和第二台阶部,所述第一环形配合面可与所述第二环形配合面过渡配合,所述第一台阶部与所述第二台阶部相抵接。
PCT/CN2021/095372 2020-04-02 2021-05-24 一种复合型能量转换装置 WO2021197508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010255412.5 2020-04-02
CN202010255412.5A CN111313750A (zh) 2020-04-02 2020-04-02 一种复合型能量转换装置

Publications (1)

Publication Number Publication Date
WO2021197508A1 true WO2021197508A1 (zh) 2021-10-07

Family

ID=71150027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095372 WO2021197508A1 (zh) 2020-04-02 2021-05-24 一种复合型能量转换装置

Country Status (2)

Country Link
CN (1) CN111313750A (zh)
WO (1) WO2021197508A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114052838A (zh) * 2021-11-01 2022-02-18 无锡贝恩外科器械有限公司 刀杆结构及超声刀

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313750A (zh) * 2020-04-02 2020-06-19 珠海市司迈科技有限公司 一种复合型能量转换装置
CN116116689A (zh) * 2022-12-29 2023-05-16 青岛迈博思医疗科技有限公司 适用于超电混合能量平台的换能器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937576A (ja) * 1995-07-20 1997-02-07 Olympus Optical Co Ltd 超音波モータおよびその駆動方法
CN106491201A (zh) * 2016-12-06 2017-03-15 北京航空航天大学 一种纵向激励式超声振动辅助高频电刀系统
CN107983974A (zh) * 2017-11-27 2018-05-04 大连理工大学 一种使用常规刀柄的自动换刀超声波电主轴
CN111313750A (zh) * 2020-04-02 2020-06-19 珠海市司迈科技有限公司 一种复合型能量转换装置
CN211630098U (zh) * 2020-04-02 2020-10-02 珠海市司迈科技有限公司 一种复合型能量转换装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937576A (ja) * 1995-07-20 1997-02-07 Olympus Optical Co Ltd 超音波モータおよびその駆動方法
CN106491201A (zh) * 2016-12-06 2017-03-15 北京航空航天大学 一种纵向激励式超声振动辅助高频电刀系统
CN107983974A (zh) * 2017-11-27 2018-05-04 大连理工大学 一种使用常规刀柄的自动换刀超声波电主轴
CN111313750A (zh) * 2020-04-02 2020-06-19 珠海市司迈科技有限公司 一种复合型能量转换装置
CN211630098U (zh) * 2020-04-02 2020-10-02 珠海市司迈科技有限公司 一种复合型能量转换装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114052838A (zh) * 2021-11-01 2022-02-18 无锡贝恩外科器械有限公司 刀杆结构及超声刀

Also Published As

Publication number Publication date
CN111313750A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2021197508A1 (zh) 一种复合型能量转换装置
JP6965251B2 (ja) デュアルモードエンドエフェクタと、横から装着されるクランプアームアセンブリとを備えた外科用器具
US20180325591A1 (en) Connector assembly for an electrosurgical system
US9113891B2 (en) Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
JP2022087188A (ja) 圧電中央管腔トランスデューサを備えた超音波外科用器具
JP5148299B2 (ja) 超音波処置装置
WO2021197509A1 (zh) 一种手术执行器械
EP3607900A1 (en) Ultrasonic surgical integrated knife
JPWO2010076873A1 (ja) 外科手術装置
JP2009240772A (ja) 外科手術装置
CN109674527B (zh) 一种可拆卸的外科手术器械
WO2024159842A1 (zh) 外科器械、外套管、套管组件及超电混合能量平台
WO2024159840A1 (zh) 适用于超电混合能量平台的换能器
US20190239914A1 (en) Ultrasonic horn, ultrasonic transducer assembly, and ultrasonic surgical instrument including the same
CN113397657B (zh) 高频电及超声双输出多用剪
WO2022095727A1 (zh) 超声手术刀手柄
CN211630098U (zh) 一种复合型能量转换装置
WO2024169258A1 (zh) 适用于超电混合能量平台的外科器械
CN111001098B (zh) 超声治疗装置
WO2024159845A1 (zh) 外科器械、套管组件以及超电混合能量平台
CN219334853U (zh) 适用于超电混合能量平台的换能器内芯固定组件
US20240156512A1 (en) Surgical instruments, systems, and methods incorporating ultrasonic and electrosurgical functionality
CN212261462U (zh) 一种新型的超声外科手术器械
CN212382706U (zh) 一种手术执行器械
CN112515738A (zh) 一种可稳定重复使用的超声波手术刀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779133

Country of ref document: EP

Kind code of ref document: A1