WO2021190533A1 - 一种大曲率曲面激光加工成型方法 - Google Patents

一种大曲率曲面激光加工成型方法 Download PDF

Info

Publication number
WO2021190533A1
WO2021190533A1 PCT/CN2021/082566 CN2021082566W WO2021190533A1 WO 2021190533 A1 WO2021190533 A1 WO 2021190533A1 CN 2021082566 W CN2021082566 W CN 2021082566W WO 2021190533 A1 WO2021190533 A1 WO 2021190533A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
tool
laser processing
laser
curved surface
Prior art date
Application number
PCT/CN2021/082566
Other languages
English (en)
French (fr)
Inventor
王成勇
林海生
胡小月
郑李娟
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2021190533A1 publication Critical patent/WO2021190533A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material

Definitions

  • the invention belongs to the technical field of laser processing, and specifically relates to a laser processing and shaping method for a large curvature curved surface.
  • laser processing has the characteristics of non-contact, flexible processing, and no material selectivity, it has great potential in manufacturing complex surface tools.
  • domestic and foreign laser processing machine tools can only achieve one-time laser processing and shaping of two-dimensional large curvature curves, while three-dimensional large curvature lines can only be processed by laser forming methods of small curvature curves, resulting in large curvature curved surfaces laser processing.
  • the processing path is complicated, the processing efficiency is low, and the processing accuracy is poor.
  • the present invention provides a large-curvature curved surface laser processing and shaping method, which is used for high-efficiency and high-precision laser processing of large-curvature curved surfaces with complex profile tools.
  • the method realizes the one-time laser processing and shaping of the large curvature curve through the five-axis linkage of the optical axis of the three-dimensional galvanometer and the mechanical motion axis.
  • a method for laser processing and shaping a large curvature curved surface which is characterized in that it comprises the following steps:
  • step S4 According to the laser processing path in the laser processing program in step S1, repeat step S3 to perform laser processing of the tool's large curvature curved surface with a surface roughness of Ra0.02-0.5 ⁇ m and a processing accuracy of 1-15 ⁇ m;
  • the laser in S1 is any one of nanosecond laser, picosecond laser or femtosecond laser.
  • the cutting tool material in S1 includes any one of cemented carbide cutting tools, ceramic cutting tools, coated cutting tools and superhard material cutting tools, but is not limited thereto.
  • the laser machine tool described in S2 has five mechanical motion axes, including X, Y and Z linear axes, and the A rotation axis and C rotation axis of the central turntable.
  • the movement ranges of the X, Y and Z linear axes are respectively 800, 500 and 600mm
  • the rotation angle range of the A rotation axis is ⁇ 140°
  • the rotation angle range of the A rotation axis is 0-360°.
  • the galvanometer module in S3 has three-dimensional linear optical axes U, V, and W, and the moving ranges are 50, 50, and 15 mm, respectively.
  • the five-axis in the five-axis linkage described in S3 is composed of any 2-3 of the optical axes U, V, and W and any 2- of the mechanical motion axes X, Y, Z, A, and C axes. A combination of 3 axes.
  • the five-axis linkage described in S3 needs to control the optical axis linkage and the mechanical axis linkage separately, and perform the control switch of the optical axis and the mechanical axis through the path preset assistance.
  • the five-axis linkage described in S3 needs to calculate the cumulative error through the superposition of the spatial coordinate matrix, and control the optical axis and the mechanical axis coordinate system to be at the same reference datum.
  • the main innovations of the present invention are:
  • the five-axis linkage between the optical axis of the laser galvanometer module and the mechanical motion axis of the machine tool is used to form a three-dimensional large curvature curve at one time.
  • the five axes are any 2-3 of the three-dimensional optical axes U, V, and W.
  • the axis is formed by combining any 2-3 axis among the X, Y, Z, A, and C axes of mechanical motion.
  • the five-axis linkage between the optical axis of the laser galvanometer module and the mechanical motion axis of the machine tool can be realized. It is necessary to switch the control of the optical axis and the mechanical axis, and control the optical axis and the mechanical axis coordinate system to be at the same reference datum.
  • the present invention provides a large-curvature curved surface laser processing and shaping method.
  • the laser processing and shaping of the three-dimensional large curvature curve is realized at one time, and the curved surface laser processing is performed according to the curved surface processing design path.
  • a high-precision and large-curvature curved surface with a complex profile tool is obtained.
  • the method provided by the present invention can realize the one-time processing and shaping of the large curvature curved surface, avoids the splicing processing and shaping of the traditional processing method, greatly simplifies the laser processing track of the large curvature curved surface, and can significantly improve the processing efficiency and processing accuracy.
  • Figure 1 is a process flow chart of the present invention.
  • a method for laser processing and shaping a large curvature curved surface which is characterized in that it comprises the following steps:
  • step S4 Repeat step S3 according to the laser processing path in the laser processing program in step S1 to perform laser processing of the tool's large curvature curved surface with a surface roughness of Ra0.4 ⁇ m and a processing accuracy of 13 ⁇ m;
  • the laser in S1 is a picosecond laser.
  • the tool material in S1 is a superhard material tool.
  • the laser machine tool described in S2 has five mechanical motion axes, including X, Y and Z linear axes, and the A rotation axis and C rotation axis of the central turntable.
  • the movement ranges of the X, Y and Z linear axes are respectively 800, 500 and 600mm
  • the rotation angle range of the A rotation axis is ⁇ 140°
  • the rotation angle range of the A rotation axis is 0-360°.
  • the galvanometer module in S3 has three-dimensional linear optical axes U, V, and W, and the moving ranges are 50, 50, and 15 mm, respectively.
  • the five-axis in the five-axis linkage described in S3 is formed by the combination of the optical axis U, V axis and the mechanical motion axis Z, A, and C axis.
  • the five-axis linkage described in S3 needs to control the optical axis linkage and the mechanical axis linkage separately, and perform the control switch of the optical axis and the mechanical axis through the path preset assistance.
  • the five-axis linkage described in S3 needs to calculate the cumulative error through the superposition of the spatial coordinate matrix, and control the optical axis and the mechanical axis coordinate system to be at the same reference datum.
  • the method provided by the present invention can realize the one-time processing and shaping of the large curvature curved surface, avoids the splicing processing and shaping of the traditional processing method, greatly simplifies the laser processing track of the large curvature curved surface, and can significantly improve the processing efficiency and processing accuracy.
  • a method for laser processing and shaping a large curvature curved surface which is characterized in that it comprises the following steps:
  • step S4 Repeat step S3 according to the laser processing path in the laser processing program in step S1 to perform laser processing of the tool's large curvature curved surface with a surface roughness of Ra0.08 ⁇ m and a processing accuracy of 5 ⁇ m;
  • the laser in S1 is a femtosecond laser.
  • the tool material in S1 is a coated tool.
  • the laser machine tool described in S2 has five mechanical motion axes, including X, Y and Z linear axes, and the A rotation axis and C rotation axis of the central turntable.
  • the movement ranges of the X, Y and Z linear axes are respectively 800, 500 and 600mm
  • the rotation angle range of the A rotation axis is ⁇ 140°
  • the rotation angle range of the A rotation axis is 0-360°.
  • the galvanometer module in S3 has three-dimensional linear optical axes U, V, and W, and the moving ranges are 50, 50, and 15 mm, respectively.
  • the five-axis in the five-axis linkage described in S3 is formed by the combination of the optical axis U, V, and W axis and the mechanical motion axis A and C axis.
  • the five-axis linkage described in S3 needs to control the optical axis linkage and the mechanical axis linkage separately, and perform the control switch of the optical axis and the mechanical axis through the path preset assistance.
  • the five-axis linkage described in S3 needs to calculate the cumulative error through the superposition of the spatial coordinate matrix, and control the optical axis and the mechanical axis coordinate system to be at the same reference datum.
  • the method provided by the present invention can realize the one-time processing and shaping of the large curvature curved surface, avoids the splicing processing and shaping of the traditional processing method, greatly simplifies the laser processing track of the large curvature curved surface, and can significantly improve the processing efficiency and processing accuracy.
  • a method for laser processing and shaping a large curvature curved surface which is characterized in that it comprises the following steps:
  • step S4 According to the laser processing path in the laser processing program in step S1, repeat step S3 to perform laser processing of the tool's large curvature curved surface with a surface roughness of Ra0.4 ⁇ m and a processing accuracy of 15 ⁇ m;
  • the laser in S1 is a nanosecond laser.
  • the tool material in S1 is a cemented carbide tool.
  • the laser machine tool described in S2 has five mechanical motion axes, including X, Y and Z linear axes, and the A rotation axis and C rotation axis of the central turntable.
  • the movement ranges of the X, Y and Z linear axes are respectively 800, 500 and 600mm
  • the rotation angle range of the A rotation axis is ⁇ 140°
  • the rotation angle range of the A rotation axis is 0-360°.
  • the galvanometer module in S3 has three-dimensional linear optical axes U, V, and W, and the moving ranges are 50, 50, and 15 mm, respectively.
  • the five-axis in the five-axis linkage described in S3 is formed by the combination of the optical axis U, V axis and the mechanical motion axis X, A, and C axis.
  • the five-axis linkage described in S3 needs to control the optical axis linkage and the mechanical axis linkage separately, and perform the control switch of the optical axis and the mechanical axis through the path preset assistance.
  • the five-axis linkage described in S3 needs to calculate the cumulative error through the superposition of the spatial coordinate matrix, and control the optical axis and the mechanical axis coordinate system to be at the same reference datum.
  • the method provided by the present invention can realize the one-time processing and shaping of the large curvature curved surface, avoids the splicing processing and shaping of the traditional processing method, greatly simplifies the laser processing track of the large curvature curved surface, and can significantly improve the processing efficiency and processing accuracy.
  • a method for laser processing and shaping a large curvature curved surface which is characterized in that it comprises the following steps:
  • step S4 According to the laser processing path in the laser processing program in step S1, repeat step S3 to perform laser processing of the tool's large curvature curved surface with a surface roughness of Ra0.1 ⁇ m and a processing accuracy of 10 ⁇ m;
  • the laser in S1 is a picosecond laser.
  • the tool material in S1 is a ceramic tool.
  • the laser machine tool described in S2 has five mechanical motion axes, including X, Y and Z linear axes, and the A rotation axis and C rotation axis of the central turntable.
  • the movement ranges of the X, Y and Z linear axes are respectively 800, 500 and 600mm
  • the rotation angle range of the A rotation axis is ⁇ 140°
  • the rotation angle range of the A rotation axis is 0-360°.
  • the galvanometer module in S3 has three-dimensional linear optical axes U, V, and W, and the moving ranges are 50, 50, and 15 mm, respectively.
  • the five-axis in the five-axis linkage described in S3 is formed by the combination of the optical axis U, V axis and the mechanical motion axis Z, A, and C axis.
  • the five-axis linkage described in S3 needs to control the optical axis linkage and the mechanical axis linkage separately, and perform the control switch of the optical axis and the mechanical axis through the path preset assistance.
  • the five-axis linkage described in S3 needs to calculate the cumulative error through the superposition of the spatial coordinate matrix, and control the optical axis and the mechanical axis coordinate system to be at the same reference datum.
  • the method provided by the present invention can realize the one-time processing and shaping of the large curvature curved surface, avoids the splicing processing and shaping of the traditional processing method, greatly simplifies the laser processing track of the large curvature curved surface, and can significantly improve the processing efficiency and processing accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种大曲率曲面激光加工成型方法,包括以下步骤:根据待加工刀具形状尺寸以及最终刀具形貌和精度需求,编写激光加工程序,对激光加工路径进行模拟;将待加工刀具装夹到激光机床上的中心转台,并采用探针对待加工刀具进行定位;启动激光加工程序,通过激光振镜模块光学轴与机床机械运动轴间五轴联动的方式,进行刀具三维大曲率曲线一次激光加工成型。

Description

一种大曲率曲面激光加工成型方法 技术领域
本发明属于激光加工技术领域,具体涉及一种大曲率曲面激光加工成型方法。
背景技术
为满足航空航天、3C电子等关键领域对所用难加工材料的高效高质量加工需求,刀具型面趋于复杂,同时对刀具精度和质量的要求也越来越高。采用磨削、电火花加工等传统方法制造高性能刀具工艺及其复杂、加工效率低、制造成本大大提高,已经很难满足高性能刀具的制造需求。
由于激光加工具有无接触、加工灵活、无材料选择性等特点,在制造复杂型面刀具具有极大的潜力。然而,目前国内外激光加工机床只能实现二维大曲率曲线的一次激光加工成型,而对于三维大曲率线只能通过小曲率曲线拼接激光成型的方法进行加工,造成了大曲率曲面激光加工的加工轨迹复杂、加工效率低且加工精度差的问题。
发明内容
为克服现有技术的不足导致的上述问题,本发明提供了一种大曲率曲面激光加工成型方法,用于复杂型面刀具大曲率曲面的高效高精度激光成型加工。该方法通过三维振镜光学轴和机械运动轴的五轴联动,实现大曲率曲线一次激光加工成型。
本发明的技术方案为:
一种大曲率曲面激光加工成型方法,其特征在于,包括以下步骤:
S1.根据待加工刀具形状尺寸以及最终刀具形貌和精度需求,编写激光加工程序,对激光加工路径进行模拟;
S2.将待加工刀具装夹到激光机床上的中心转台,并采用探针对待加工刀具进行定位;
S3.启动激光加工程序,通过激光振镜模块光学轴与机床机械运动轴间五轴联动的方式,进行刀具三维大曲率曲线一次激光加工成型;
S4.根据步骤S1中的激光加工程序中的激光加工路径,重复步骤S3,进行刀具大曲率曲面激光加工,表面粗糙度Ra0.02-0.5μm,加工精度1-15μm;
S5.根据刀具形状设计,重复步骤S3和S4,对刀具不同部位的大曲率曲面进行激光加工。
进一步的,S1中所述激光为纳秒激光、皮秒激光或者飞秒激光中的任一种。
进一步的,S1中所述刀具材料包括硬质合金刀具、陶瓷刀具、涂层刀具和超硬材料刀具中的任一种,但不限于此。
进一步的,S2中所述激光机床具有五个机械运动轴,包括具有X、Y和Z直线轴,以及中心转台的A旋转轴和C旋转轴,X、Y和Z直线轴的移动范围分别为800,500和600mm,所述A旋转轴旋转角度范围为±140°,所述A旋转轴旋转角度范围为0-360°。
进一步的,S3中所述振镜模块具有三维直线光学轴U、V、W,移动范围分别为50,50和15mm。
进一步的,S3中所述的五轴联动中的五轴是由光学轴U、V、W中的任意2-3轴与机械运动轴X、Y、Z、A和C轴中的任意2-3轴组合形成的。
进一步的,S3中所述的五轴联动需分别对光学轴联动和机械轴联动进行控制,并通过路径预设辅助,进行光学轴和机械轴的控制切换。
进一步的,S3中所述的五轴联动需通过空间坐标矩阵迭加计算累积误差,控制光学轴与机械轴坐标系位于同一参考基准。
本发明的主要创新点在于:
1.采用激光振镜模块光学轴与机床机械运动轴间五轴联动的方式进行三维大曲率曲线的一次激光加工成型,其中五轴是由三维光学轴U、V、W中的任意2-3轴与机械运动轴X、Y、Z、A和C轴中的任意2-3轴组合形成的。
2.可以实现激光振镜模块光学轴与机床机械运动轴间五轴联动,需要进行光学轴和机械轴的控制切换,并控制光学轴与机械轴坐标系位于同一参考基准。
本发明的有益效果在于:
本发明提供一种大曲率曲面激光加工成型方法,通过振镜光学轴和机械轴五轴联动控制的方式,实现三维大曲率曲线的一次激光加工成型,并按照曲面加工设计路径进行曲面激光加工,最终获得复杂型面刀具高精度大曲率曲面。本发明提供的方法能够实现大曲率曲面的一次加工成型,避免了传统加工方式的拼接加工成型,极大简化大曲率曲面激光加工轨迹,能显著提高加工效率和加工精度。
附图说明
图1为本发明的加工流程图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施方式,对本发明进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本发明,并不限定本发明的保护范围。
实施例1
一种大曲率曲面激光加工成型方法,其特征在于,包括以下步骤:
S1.根据待加工刀具形状尺寸以及最终刀具形貌和精度需求,编写激光加工程序,对激光加工路径进行模拟;
S2.将待加工刀具装夹到激光机床上的中心转台,并采用探针对待加工刀具进行定位;
S3.启动激光加工程序,通过激光振镜模块光学轴与机床机械运动轴间五轴联动的方式,进行刀具三维大曲率曲线一次激光加工成型;
S4.根据步骤S1中的激光加工程序中的激光加工路径,重复步骤S3,进行刀具大曲率曲面激光加工,表面粗糙度Ra0.4μm,加工精度13μm;
S5.根据刀具形状设计,重复步骤S3和S4,对刀具不同部位的大曲率曲面进行激光加工。
进一步的,S1中所述激光为皮秒激光。
进一步的,S1中所述刀具材料为超硬材料刀具。
进一步的,S2中所述激光机床具有五个机械运动轴,包括具有X、Y和Z直线轴,以及中心转台的A旋转轴和C旋转轴,X、Y和Z直线轴的移动范围分别为800,500和600mm,所述A旋转轴旋转角度范围为±140°,所述A旋转轴旋转角度范围为0-360°。
进一步的,S3中所述振镜模块具有三维直线光学轴U、V、W,移动范围分别为50,50和15mm。
进一步的,S3中所述的五轴联动中的五轴是由光学轴U、V轴与机械运动轴Z、A和C轴组合形成的。
进一步的,S3中所述的五轴联动需分别对光学轴联动和机械轴联动进行控制,并通过路径预设辅助,进行光学轴和机械轴的控制切换。
进一步的,S3中所述的五轴联动需通过空间坐标矩阵迭加计算累积误差,控制光学轴与机械轴坐标系位于同一参考基准。
本发明提供的方法能够实现大曲率曲面的一次加工成型,避免了传统加工方式的拼接加工成型,极大简化大曲率曲面激光加工轨迹,能显著提高加工效率和加工精度。
实施例2
一种大曲率曲面激光加工成型方法,其特征在于,包括以下步骤:
S1.根据待加工刀具形状尺寸以及最终刀具形貌和精度需求,编写激光加工程序,对激光加工路径进行模拟;
S2.将待加工刀具装夹到激光机床上的中心转台,并采用探针对待加工刀具进行定位;
S3.启动激光加工程序,通过激光振镜模块光学轴与机床机械运动轴间五轴联动的方式,进行 刀具三维大曲率曲线一次激光加工成型;
S4.根据步骤S1中的激光加工程序中的激光加工路径,重复步骤S3,进行刀具大曲率曲面激光加工,表面粗糙度Ra0.08μm,加工精度5μm;
S5.根据刀具形状设计,重复步骤S3和S4,对刀具不同部位的大曲率曲面进行激光加工。
进一步的,S1中所述激光为飞秒激光。
进一步的,S1中所述刀具材料为涂层刀具。
进一步的,S2中所述激光机床具有五个机械运动轴,包括具有X、Y和Z直线轴,以及中心转台的A旋转轴和C旋转轴,X、Y和Z直线轴的移动范围分别为800,500和600mm,所述A旋转轴旋转角度范围为±140°,所述A旋转轴旋转角度范围为0-360°。
进一步的,S3中所述振镜模块具有三维直线光学轴U、V、W,移动范围分别为50,50和15mm。
进一步的,S3中所述的五轴联动中的五轴是由光学轴U、V、W轴与机械运动轴A和C轴组合形成的。
进一步的,S3中所述的五轴联动需分别对光学轴联动和机械轴联动进行控制,并通过路径预设辅助,进行光学轴和机械轴的控制切换。
进一步的,S3中所述的五轴联动需通过空间坐标矩阵迭加计算累积误差,控制光学轴与机械轴坐标系位于同一参考基准。
本发明提供的方法能够实现大曲率曲面的一次加工成型,避免了传统加工方式的拼接加工成型,极大简化大曲率曲面激光加工轨迹,能显著提高加工效率和加工精度。
实施例3
一种大曲率曲面激光加工成型方法,其特征在于,包括以下步骤:
S1.根据待加工刀具形状尺寸以及最终刀具形貌和精度需求,编写激光加工程序,对激光加工路径进行模拟;
S2.将待加工刀具装夹到激光机床上的中心转台,并采用探针对待加工刀具进行定位;
S3.启动激光加工程序,通过激光振镜模块光学轴与机床机械运动轴间五轴联动的方式,进行刀具三维大曲率曲线一次激光加工成型;
S4.根据步骤S1中的激光加工程序中的激光加工路径,重复步骤S3,进行刀具大曲率曲面激光加工,表面粗糙度Ra0.4μm,加工精度15μm;
S5.根据刀具形状设计,重复步骤S3和S4,对刀具不同部位的大曲率曲面进行激光加工。
进一步的,S1中所述激光为纳秒激光。
进一步的,S1中所述刀具材料为硬质合金刀具。
进一步的,S2中所述激光机床具有五个机械运动轴,包括具有X、Y和Z直线轴,以及中心转台的A旋转轴和C旋转轴,X、Y和Z直线轴的移动范围分别为800,500和600mm,所述A旋转轴旋转角度范围为±140°,所述A旋转轴旋转角度范围为0-360°。
进一步的,S3中所述振镜模块具有三维直线光学轴U、V、W,移动范围分别为50,50和15mm。
进一步的,S3中所述的五轴联动中的五轴是由光学轴U、V轴与机械运动轴X、A和C轴组合形成的。
进一步的,S3中所述的五轴联动需分别对光学轴联动和机械轴联动进行控制,并通过路径预设辅助,进行光学轴和机械轴的控制切换。
进一步的,S3中所述的五轴联动需通过空间坐标矩阵迭加计算累积误差,控制光学轴与机械轴坐标系位于同一参考基准。
本发明提供的方法能够实现大曲率曲面的一次加工成型,避免了传统加工方式的拼接加工成型,极大简化大曲率曲面激光加工轨迹,能显著提高加工效率和加工精度。
实施例4
一种大曲率曲面激光加工成型方法,其特征在于,包括以下步骤:
S1.根据待加工刀具形状尺寸以及最终刀具形貌和精度需求,编写激光加工程序,对激光加工路径进行模拟;
S2.将待加工刀具装夹到激光机床上的中心转台,并采用探针对待加工刀具进行定位;
S3.启动激光加工程序,通过激光振镜模块光学轴与机床机械运动轴间五轴联动的方式,进行刀具三维大曲率曲线一次激光加工成型;
S4.根据步骤S1中的激光加工程序中的激光加工路径,重复步骤S3,进行刀具大曲率曲面激光加工,表面粗糙度Ra0.1μm,加工精度10μm;
S5.根据刀具形状设计,重复步骤S3和S4,对刀具不同部位的大曲率曲面进行激光加工。
进一步的,S1中所述激光为皮秒激光。
进一步的,S1中所述刀具材料为陶瓷刀具。
进一步的,S2中所述激光机床具有五个机械运动轴,包括具有X、Y和Z直线轴,以及中心转台的A旋转轴和C旋转轴,X、Y和Z直线轴的移动范围分别为800,500和600mm,所述A旋转轴旋转角度范围为±140°,所述A旋转轴旋转角度范围为0-360°。
进一步的,S3中所述振镜模块具有三维直线光学轴U、V、W,移动范围分别为50, 50和15mm。
进一步的,S3中所述的五轴联动中的五轴是由光学轴U、V轴与机械运动轴Z、A和C轴组合形成的。
进一步的,S3中所述的五轴联动需分别对光学轴联动和机械轴联动进行控制,并通过路径预设辅助,进行光学轴和机械轴的控制切换。
进一步的,S3中所述的五轴联动需通过空间坐标矩阵迭加计算累积误差,控制光学轴与机械轴坐标系位于同一参考基准。
本发明提供的方法能够实现大曲率曲面的一次加工成型,避免了传统加工方式的拼接加工成型,极大简化大曲率曲面激光加工轨迹,能显著提高加工效率和加工精度。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。需注意的是,本发明中所未详细描述的技术特征,均可以通过本领域任一现有技术实现。

Claims (8)

  1. 一种大曲率曲面激光加工成型方法,其特征在于,包括以下步骤:
    S1.根据待加工刀具形状尺寸以及最终刀具形貌和精度需求,编写激光加工程序,对激光加工路径进行模拟;
    S2.将待加工刀具装夹到激光机床上的中心转台,并采用探针对待加工刀具进行定位;
    S3.启动激光加工程序,通过激光振镜模块光学轴与机床机械运动轴间五轴联动的方式,进行刀具三维大曲率曲线一次激光加工成型;
    S4.根据步骤S1中的激光加工程序中的激光加工路径,重复步骤S3,进行刀具大曲率曲面激光加工,表面粗糙度Ra0.02-0.5μm,加工精度1-15μm;
    S5.根据刀具形状设计,重复步骤S3和S4,对刀具不同部位的大曲率曲面进行激光加工。
  2. 根据权利要求1所述的大曲率曲面激光加工成型方法,其特征在于,S1中所述激光为纳秒激光、皮秒激光或者飞秒激光中的任一种。
  3. 根据权利要求1所述的大曲率曲面激光加工成型方法,其特征在于,S1中所述刀具材料包括硬质合金刀具、陶瓷刀具、涂层刀具和超硬材料刀具中的任一种。
  4. 根据权利要求1所述的大曲率曲面激光加工成型方法,其特征在于,S2中所述激光机床具有五个机械运动轴,包括具有X、Y和Z直线轴,以及中心转台的A旋转轴和C旋转轴,X、Y和Z直线轴的移动范围分别为800,500和600mm,所述A旋转轴旋转角度范围为±140°,所述A旋转轴旋转角度范围为0-360°。
  5. 根据权利要求1所述的大曲率曲面激光加工成型方法,其特征在于,S3中所述振镜模块具有三维直线光学轴U、V、W,移动范围分别为50,50和15mm。
  6. 根据权利要求5所述的大曲率曲面激光加工成型方法,其特征在于,S3中所述的五轴联动中的五轴是由光学轴U、V、W中的任意2-3轴与机械运动轴X、Y、Z、A和C轴中的任意2-3轴组合形成的。
  7. 根据权利要求5所述的大曲率曲面激光加工成型方法,其特征在于,S3中所述的五轴联动需分别对光学轴联动和机械轴联动进行控制,并通过路径预设辅助,进行光学轴和机械轴的控制切换。
  8. 根据权利要求7所述的大曲率曲面激光加工成型方法,其特征在于,S3中所述的五轴联动需通过空间坐标矩阵迭加计算累积误差,控制光学轴与机械轴坐标系位于同一参考基准。
PCT/CN2021/082566 2020-03-25 2021-03-24 一种大曲率曲面激光加工成型方法 WO2021190533A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010219013.3 2020-03-25
CN202010219013.3A CN111375899A (zh) 2020-03-25 2020-03-25 一种大曲率曲面激光加工成型方法

Publications (1)

Publication Number Publication Date
WO2021190533A1 true WO2021190533A1 (zh) 2021-09-30

Family

ID=71215605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082566 WO2021190533A1 (zh) 2020-03-25 2021-03-24 一种大曲率曲面激光加工成型方法

Country Status (2)

Country Link
CN (1) CN111375899A (zh)
WO (1) WO2021190533A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111375899A (zh) * 2020-03-25 2020-07-07 广东工业大学 一种大曲率曲面激光加工成型方法
CN112207430A (zh) * 2020-10-28 2021-01-12 汇专科技集团股份有限公司 一种五轴激光铣削加工机床

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133242A (ja) * 2013-01-09 2014-07-24 Lps Works Co Ltd レーザ加工方法及びレーザ加工装置
CN204321413U (zh) * 2014-11-25 2015-05-13 深圳信息职业技术学院 一种三维激光加工设备
CN107127459A (zh) * 2017-06-01 2017-09-05 深圳光韵达激光应用技术有限公司 一种金刚石刀具的激光精确加工方法
CN107443075A (zh) * 2016-05-31 2017-12-08 中国科学院福建物质结构研究所 一种复合激光加工的五轴超振声数控机床
CN208391288U (zh) * 2018-06-29 2019-01-18 华中科技大学 一种大型复杂曲面动态聚焦激光加工系统
CN109676258A (zh) * 2019-01-21 2019-04-26 南京航空航天大学 一种基于激光与精密刃磨的cvd金刚石微铣刀制备方法
CN111375899A (zh) * 2020-03-25 2020-07-07 广东工业大学 一种大曲率曲面激光加工成型方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133242A (ja) * 2013-01-09 2014-07-24 Lps Works Co Ltd レーザ加工方法及びレーザ加工装置
CN204321413U (zh) * 2014-11-25 2015-05-13 深圳信息职业技术学院 一种三维激光加工设备
CN107443075A (zh) * 2016-05-31 2017-12-08 中国科学院福建物质结构研究所 一种复合激光加工的五轴超振声数控机床
CN107127459A (zh) * 2017-06-01 2017-09-05 深圳光韵达激光应用技术有限公司 一种金刚石刀具的激光精确加工方法
CN208391288U (zh) * 2018-06-29 2019-01-18 华中科技大学 一种大型复杂曲面动态聚焦激光加工系统
CN109676258A (zh) * 2019-01-21 2019-04-26 南京航空航天大学 一种基于激光与精密刃磨的cvd金刚石微铣刀制备方法
CN111375899A (zh) * 2020-03-25 2020-07-07 广东工业大学 一种大曲率曲面激光加工成型方法

Also Published As

Publication number Publication date
CN111375899A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2021190534A1 (zh) 一种基于三维整形焦斑的复杂型面刀具激光加工方法
WO2021190533A1 (zh) 一种大曲率曲面激光加工成型方法
Uhlmann et al. Process chains for high-precision components with micro-scale features
CN106624632B (zh) 钛合金薄型多面体舵骨架及其加工方法
WO2021190532A1 (zh) 一种激光车铣复合加工刀具的方法
CN102059529B (zh) 玻璃模具毛坯外圆加工方法
CN108747609B (zh) 一种非球面阵列结构的精密磨削加工方法
CN103252543B (zh) 超薄工件的电解加工方法及装置
US20100280650A1 (en) Machining apparatus and machining method
CN109129031B (zh) 慢速伺服磨削自由曲面的砂轮路径生成方法
CN107775457A (zh) 一种电流变辅助超声循迹去毛刺装置
CN109014464A (zh) 一种三维钣金零件的线切割方法
CN102744424B (zh) 可用于薄板类光学零件的单点金刚石补偿式切削加工方法
Wang et al. Micro-milling/micro-EDM combined processing technology for complex microarray cavity fabrication
CN105538085A (zh) 一种基于cam的异形透镜加工方法
CN112975400A (zh) 可变轴多激光车削-多轴cnc铣削复合加工方法及系统
CN104057247A (zh) 精密液压伺服阀阀芯的制作方法
CN109807720B (zh) 一种微透镜阵列光学元件的范成式加工方法
CN103934629B (zh) 一种基于软胎贴合装夹的薄壁膜盘加工方法
CN108237436B (zh) 一种全自由曲面离轴三反系统的制造方法
CN114227339B (zh) 一种基于试切圆槽的超精密车削精对刀方法
Wu et al. Fabrication of microstructured surfaces by five-axis ultra precision machine tool
CN112975408B (zh) 多激光多轴车削-cnc铣削复合加工方法及系统
CN112059815B (zh) 一种固定式磨头结构及其无边缘误差加工方法
CN110421077A (zh) 具有大角度薄壁扭曲窄深腔特征的构件的复合成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776793

Country of ref document: EP

Kind code of ref document: A1