WO2021182060A1 - 医療用織物、その製造方法、人工器官およびステントグラフト - Google Patents

医療用織物、その製造方法、人工器官およびステントグラフト Download PDF

Info

Publication number
WO2021182060A1
WO2021182060A1 PCT/JP2021/006134 JP2021006134W WO2021182060A1 WO 2021182060 A1 WO2021182060 A1 WO 2021182060A1 JP 2021006134 W JP2021006134 W JP 2021006134W WO 2021182060 A1 WO2021182060 A1 WO 2021182060A1
Authority
WO
WIPO (PCT)
Prior art keywords
woven fabric
weaving
yarn
medical
warp
Prior art date
Application number
PCT/JP2021/006134
Other languages
English (en)
French (fr)
Inventor
山田諭
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021513351A priority Critical patent/JPWO2021182060A1/ja
Publication of WO2021182060A1 publication Critical patent/WO2021182060A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles

Definitions

  • the present invention relates to medical fabrics, manufacturing methods thereof, artificial organs and stent grafts.
  • Aortic aneurysm is a condition in which the aortic wall is abnormally dilated, and the main ones are abdominal aortic aneurysm and thoracic aortic aneurysm. If left untreated, the aortic aneurysm may eventually rupture, causing fatal major bleeding.
  • Stent grafts generally make an incision in an artery distant from the affected area (for example, the brachial artery), and the stent graft is placed in a predetermined position via a catheter inserted from there to the affected area for treatment.
  • Fr French
  • patients with thin blood vessels are out of scope due to the difficulty of inserting a stent graft and cannot take advantage of this treatment. Therefore, there is a need for the design of stent grafts that can be housed in smaller diameter catheters.
  • Patent Document 1 a base fabric that solves the problems of low water permeability and tear strength by adjusting the twist coefficient of the warp and / or the weft is disclosed. Further, a plain woven fabric in which the weaving yarns arranged in the same direction have different crimp ratios and is excellent in low water permeability, mechanical properties and catheter storability is also disclosed (Patent Document 2).
  • Patent Document 1 the medical fabric described in Patent Document 1 is not satisfactory because the adjustment of the twist coefficient of the warp and / or the weft is not sufficient to obtain a sufficient level of low water permeability.
  • the present invention improves the problems of the prior art and is thin enough to allow storage in a small-diameter catheter, yet has durability and low water permeability when stored in a delivery catheter and when a stent is deployed to an affected area. It is an object of the present invention to provide a medical woven fabric which is also excellent in mechanical properties and can be applied to artificial organs such as stent grafts having properties which were not possible by the prior art.
  • the present invention has the following configuration in order to solve such a problem.
  • the tear strength (Fx) in the warp direction and the tear strength (Fy) in the weft direction are both 6N or more, and the ratio of the tear strength (Fx) in the warp direction to the tear strength (Fy) in the weft direction (Fx / The medical woven fabric according to (1), wherein Fy) is 0.8 to 1.25.
  • the maximum difference in height between the concave portion and the convex portion on at least one side of the woven fabric surface is 0 to 20 ⁇ m, (1) or (2).
  • the weaving density (Dx) in the warp direction and the weaving density (Dy) in the weft direction are both 150 threads / 2.54 cm or more, and the weaving density (Dx) in the warp direction is the weaving density in the weft direction (Dy).
  • the medical woven fabric according to any one of (1) to (4), wherein the ratio (Dx / Dy) to) is 0.8 to 1.25.
  • the present invention although it is thin enough to be stored in a small-diameter catheter, it is also excellent in durability, mechanical properties, and low water permeability when it is stored in a delivery catheter and when a stent is deployed to an affected area. It is possible to provide medical fabrics that can be applied to artificial organs such as stent grafts having properties that were not possible with technology.
  • a plain weave that is strong and has excellent abrasion resistance is preferable.
  • a bag-shaped woven fabric may be used in addition to the general flat woven fabric.
  • the medical woven fabric according to the present invention includes yarns in which either the warp yarn or the weft yarn has a different crimp ratio KA, KB (where KA> KB), and the other is a yarn having a crimp ratio (KC). It is characterized by satisfying the equations (1) and (2). 4KC ⁇ KA ⁇ 100 KC (1) 0.5KC ⁇ KB ⁇ 2KC (2)
  • the above-mentioned "including yarns in which either one of the warp yarns or the weft yarns has different crimp ratios KA and KB (where KA> KB)" means a certain weaving yarn arranged in the warp yarn direction and / or the weft yarn direction. However, when it has a certain crimp ratio, it means that weaving yarns having a crimping ratio different from the crimping ratio are arranged and present in the same direction as the weaving yarn.
  • the maximum one is referred to as “crimp rate KA”
  • the minimum one is referred to as “crimp rate KB”
  • the weaving yarn having KA is “weaving yarn A”
  • the weaving yarn having KB is “weaving yarn B”.
  • KC is used.
  • the weaving yarn to have is referred to as "weaving yarn C”.
  • the relationship between the crimp rates KA and KC in the present invention is "4KC ⁇ KA ⁇ 100 KC".
  • the lower limit of the crimp ratio KA in the above formula is "4KC ⁇ KA”, but by setting it preferably “7KC ⁇ KA” and more preferably "10KC ⁇ KA", the yarn having a large crimp ratio can be a warp yarn or a weft yarn.
  • a woven fabric having low water permeability can be obtained by arranging it in any of the fabrics, spreading the yarn bundle, and efficiently covering the woven fabric intersection points.
  • the upper limit of the crimp rate KA is "KA ⁇ 100 KC", but preferably "KA ⁇ 75 KC", more preferably "KA ⁇ 50 KC", so that the yarn having a large crimp ratio can be a warp yarn or a weft yarn.
  • the multifilaments constituting the yarn bundle are lined up linearly in the length direction by efficiently spreading the yarn bundles arranged in one of them and adjacent to each other without interfering with each other. It is possible to cover the woven intersection points. Therefore, it is possible to obtain a woven fabric having low water permeability while maintaining the desired thinness. In addition, it does not get caught when stored and deployed in a small-diameter delivery catheter, and can be suitably used as a medical woven fabric.
  • the relationship between the crimp rates KB and KC is "0.5 KC ⁇ KB ⁇ 2 KC".
  • the lower limit of the crimp rate KB is "0.5 KC ⁇ KB", preferably "0.6 KC ⁇ KB", and more preferably "0.7 KC ⁇ KB”.
  • the crimp ratio KB does not become too lower than the KC, and the KB and KC are maintained evenly, so that even if the weaving yarn C intersects with the weaving yarn A having a high crimp ratio and comes into contact with the weaving yarn A.
  • the weaving yarns A which are multifilaments constituting the yarn bundle, are arranged linearly in the length direction without interfering with the spread weaving yarns A, and it is possible to efficiently cover the woven fabric intersection points.
  • the upper limit of the crimp rate KB is "KB ⁇ 2 KC", preferably "KB ⁇ 1.7 KC", and more preferably "KB ⁇ 1.5 KC".
  • the crimp ratio KB does not become too high as KC, and KB and KC are maintained evenly, so that the weaving yarn B is spread out when the adjacent weaving yarn A having a high crimp ratio is spread.
  • the multifilaments constituting the yarn bundle are arranged linearly in the length direction without interfering with each other, and it is possible to efficiently cover the woven fabric intersection points.
  • the weaving yarn A having a crimp ratio KA and the weaving yarn B having a crimp ratio KB are arranged at a ratio of 1: 1.
  • the "ratio" of the weaving yarn having the crimp ratio KA and the weaving yarn having the crimp ratio KB means the ratio of the number of weaving yarns.
  • the number of weaving yarns is calculated as one unit in which the warp or weft yarn intersects with the weft or warp yarn, and is counted as one when a plurality of weft yarns are inserted in the same mouth.
  • the weaving yarn having a crimp ratio KA and the weaving yarn having a crimp ratio KB are preferably arranged at regular intervals, and more preferably one yarn is alternately arranged or two yarns are alternately arranged.
  • threads with a large crimp ratio are arranged at regular intervals, making it easier to obtain a woven fabric with low water permeability in a thin fabric, improving the balance of mechanical properties, and being durable and excellent in dimensional stability. It can be a woven fabric.
  • the tear strength (Fx) in the warp direction and the tear strength (Fy) in the weft direction are preferably 6N or more, more preferably 6.5N or more, and even more preferably both.
  • it is 7N or more, especially when it is used for a stent graft, it becomes difficult to tear from the sutured part with the stent, and it can be preferably used. If the tear strength is too high, it will not be cut to the desired length and the productivity will decrease, so it is preferably 20 N or less.
  • the ratio (Fx / Fy) of the tear strength (Fx) in the warp direction to the tear strength (Fy) in the weft direction is preferably 0.8 to 1.25, more preferably 0.85 to 1.20. More preferably, when it is set to 0.9 to 1.15, either the warp or weft direction is not easily torn, and the arrangement can be freely set at the time of product design such as the suture site with the stent.
  • the maximum difference in height between the concave portion and the convex portion on at least one side of the woven fabric surface is preferably 0 to 20 ⁇ m, and 0 to 20 ⁇ m. It is more preferably 10 ⁇ m, and even more preferably 0 to 5 ⁇ m.
  • a device such as a stent graft to which the medical fabric of the present invention is attached is housed in the delivery catheter, or when the delivery catheter reaches the affected area and the device is deployed, between the inner wall of the delivery catheter and the device.
  • the existing medical woven fabric of the present invention has excellent storability, durability, and practicality, such as better sliding with both contact surfaces, prevention of tearing of the woven fabric due to friction, and deformation of the delivery catheter and device. It will be a catheter.
  • the fibers constituting the medical woven fabric of the present invention for example, polyamide fibers, polyester fibers, aramid fibers, rayon fibers, polysulphon fibers, ultrahigh molecular weight polyethylene fibers, polyolefin fibers and the like can be used. .. Among them, polyamide fibers and polyester fibers having excellent mass productivity and economy are preferable, and polyester fibers are more preferable because they have excellent biocompatibility.
  • polyamide fiber examples include nylon 6, nylon 66, nylon 12, nylon 46, a copolymerized polyamide of nylon 6 and nylon 66, and a copolymerization of nylon 6 with polyalkylene glycol, dicarboxylic acid, amine, and the like.
  • examples thereof include fibers made of polyamide and the like.
  • Nylon 6 fiber and nylon 66 fiber are particularly excellent in impact resistance and are preferable.
  • polyester fibers include fibers made of polyethylene terephthalate, polybutylene terephthalate, and the like.
  • the fiber may be a copolymerized polyester obtained by copolymerizing polyethylene terephthalate or polybutylene terephthalate with an aliphatic dicarboxylic acid such as isophthalic acid, 5-sodium sulfoisophthalic acid, or adipic acid as an acid component.
  • the fiber is preferably a multifilament yarn because it easily exhibits flexibility and low water permeability, but fibers of other modes can also be used as appropriate.
  • the materials of the warp and weft that make up the medical woven fabric of the present invention may be the same or different, but it is preferable to use the same material in consideration of post-processing and dyeing.
  • both the warp and the weft that make up the medical woven fabric are polyester fibers.
  • the fiber preferably used in the medical woven fabric of the present invention has a total fineness of preferably 10 dtex or more, more preferably 22 dtex or more, still more preferably 33 dtex or more, and as a medical woven fabric, tear strength, breaking strength, and breaking elongation. Sufficient strength can be obtained in terms of mechanical properties such as degree.
  • the total fineness to 220 dtex or less, more preferably 167 dtex or less, and further preferably 110 dtex or less, a medical woven fabric having sufficient thinness and lightness can be obtained.
  • the single fiber fineness is preferably 0.01 dtex to 10 dtex, more preferably 0.1 dtex to 5 dtex, and 0.5 dtex to 2. 5dtex is more preferred.
  • the multifilament yarn constituting the plain woven fabric may be a multifilament yarn obtained by direct spinning, or a so-called ultrafine fiber obtained by desealing the sea-island composite fiber.
  • the weaving density (Dx) in the warp direction and the weaving density (Dy) in the weft direction are preferably 150 threads / 2.54 cm or more, and more preferably 160 threads / 2.54 cm.
  • the weaving density (Dx) in the warp direction and the weaving density (Dy) in the weft direction are preferably 150 threads / 2.54 cm or more, and more preferably 160 threads / 2.54 cm.
  • the number is preferably 240 / 2.54 cm or less.
  • the ratio (Dx / Dy) of the weaving density (Dx) in the warp direction to the weaving density (Dy) in the weft direction is preferably 0.8 to 1.25, more preferably 0.85 to 1.20, and further. By preferably 0.9 to 1.15, there is no difference in mechanical properties in either the warp or weft direction, and the arrangement can be freely set at the time of product design such as the suture site with the stent.
  • the thickness of the plain woven fabric is preferably 90 ⁇ m or less, more preferably 80 ⁇ m or less, still more preferably 70 ⁇ m or less, so that the plain woven fabric can be stored in a small-diameter delivery catheter.
  • the lower limit is preferably about 0.03 ⁇ m, more preferably 1 ⁇ m or more, from the viewpoint of strength and low water permeability.
  • the cover factor of the medical woven fabric of the present invention is preferably 1600 to 4000, more preferably 1800 to 3800, and even more preferably 2000 to 3600. Further, it is particularly preferably 2000 to 2300.
  • the thickness becomes sufficiently thin to be stored in the catheter, and low water permeability can be satisfied, and blood leakage can be prevented.
  • By weaving fine fibers at high density it becomes a woven fabric member that is thin but has excellent mechanical properties and blood leakage resistance.
  • the cover factor of the woven fabric is smaller than 1600, a thin and light woven fabric can be obtained, but it is difficult to obtain low water permeability and it is difficult to satisfy the blood leakage property. Further, when it exceeds 4000, although low water permeability is satisfied, the thickness tends to be thick.
  • the cover factor (Cf) is calculated by the following formula.
  • Cf Dx ⁇ (Nx) 1/2 + Dy ⁇ (Ny) 1/2
  • Dx Warp weaving density (book / 2.54 cm)
  • Dy Weft weaving density (book / 2.54 cm)
  • Nx Total warp fineness (dtex)
  • Ny Total weft fineness (dtex)
  • the water permeability is preferably 70 mL / min / cm 2 or less, more preferably 60 mL / min / cm 2 or less, still more preferably 50 mL / min / cm 2 or less, and is sufficiently low. Water permeability can be obtained, and blood leakage can be prevented when used in a living body, particularly in a blood vessel. The lower limit is actually about 0.01 mL / min / cm 2.
  • the medical woven fabric of the present invention can be produced, for example, as follows.
  • a water jet room, a rapier room, an air jet room, a shuttle room and the like can be appropriately used depending on the application. From the viewpoint of productivity, a water jet room, a rapier room, and an air jet room can be preferably used.
  • the weaving structure is a plain woven fabric, which is woven by interlacing warp threads and weft threads alternately, and is woven by interlacing warp threads and weft threads one by one.
  • a vertical expansion structure in which several weft threads are inserted at the same mouth, a horizontal expansion structure in which several adjacent warp threads are opened at the same opening, or a woven fabric in which several vertical and horizontal threads are arranged side by side like a basket weave may be used.
  • a bag-shaped woven fabric may be used.
  • the tensions of the weaving yarns A and B used for the warp yarns (weft yarns) and the tensions of the weaving yarns C used for the weft yarns (warp yarns) in the direction orthogonal to the weft yarns A and B are respectively.
  • WA, WB, and WC it is preferable to carry out the weaving process under the following conditions. 2WA ⁇ WB (3) 0.7WC ⁇ WB ⁇ 1.5WC (4)
  • the weft (warp) C becomes a fulcrum at the time of weaving, and the warp (weft) B is used as a fulcrum. Since the warp (weft) A is struck in a loose state while being restrained by the (weft) A, the warp (weft) A is folded to express a crimp. In addition, bumping (backlash of weft threads) is suppressed, and an extremely high-density woven fabric can be obtained.
  • WA is preferably 0.05 to 0.6 cN / dtex, and more preferably 0.05 to 0.3 cN / dtex from the viewpoint of forming an appropriate crimp ratio.
  • the lower limit is more preferably 0.06 cN / dtex or more, and particularly preferably 0.07 cN / dtex or more.
  • the WB is preferably 0.5 to 1.5 cN / dtex.
  • the WC is preferably 0.5 to 1.5 cN / dtex.
  • the weaving yarns A and B are warp yarns
  • a method of adjusting the warp yarn feeding speed of the loom and a method of adjusting the weft yarn driving speed can be mentioned.
  • Whether or not the warp tension is actually within the above range during weaving can be confirmed by measuring the tension applied to each warp, for example, between the warp beam and the back roller during operation of the loom with a tension measuring instrument. Can be done.
  • the warp yarn tension of the weaving yarn A may be reduced with respect to the tension of the weaving yarn B, and the desired crimp ratios KA and KB may be appropriately adjusted.
  • the tension when the weft yarns are inserted between the warp yarn openings may be adjusted.
  • the woven fabric may be refined, relaxed, preset, dyed, and finished using a general processing machine.
  • the sea component of the sea island composite fiber which is a composite of the easily soluble sea component and the island component, is acid-treated to embrittle the sea component of the sea island composite fiber.
  • the acid include maleic acid.
  • the treatment conditions are preferably a concentration of 0.1 to 1% by mass, a temperature of 100 to 150 ° C., and a time of 10 to 50 min.
  • the sea component of the sea-island composite fiber embrittled by the acid treatment is eluted by the alkali treatment.
  • the alkali include sodium hydroxide.
  • the treatment conditions are preferably a concentration of 0.5 to 2% by mass, a temperature of 70 to 98 ° C., and a time of 60 to 100 min.
  • At least one side of the woven fabric is subjected to calendar processing in that low water permeability can be achieved or a thin medical woven fabric can be obtained.
  • the calendar processing may be applied to only one side of the woven fabric or both sides. Further, the number of times of calendar processing is not particularly limited, and as long as the unevenness can be sufficiently compressed, it may be performed only once or a plurality of times.
  • the calendar processing temperature is not particularly limited, but is preferably 80 ° C. or higher than the glass transition temperature of the material used, more preferably 120 ° C. or higher, 20 ° C. or higher than the melting point of the material used, and 30 ° C. or higher. It is more preferable that it is low.
  • the calendering temperature is the glass transition temperature of the material used + 80 ° C. or higher, an appropriate degree of compression can be obtained, and a woven fabric having a low air permeability can be easily obtained.
  • the melting point of the material used is as low as ⁇ 20 ° C. or higher, an appropriate degree of compression can be obtained, and the tearing strength of the woven fabric is excellent.
  • the calendar processing temperature is preferably 120 ° C to 200 ° C, more preferably 130 ° C to 190 ° C.
  • the calendar processing temperature is preferably 160 ° C. to 240 ° C.
  • the calendar processing pressure is preferably 0.98 MPa (10 kgf / cm 2 ) or more, more preferably 1.96 MPa (20 kgf / cm 2 ) or more, so that an appropriate degree of compression can be obtained and excellent low water permeability can be obtained.
  • a woven fabric having the above is obtained.
  • it is preferably 5.88 MPa (60 kgf / cm 2 ) or less, more preferably 4.90 MPa (50 kgf / cm 2 ) or less, it is appropriately compressed and the tear strength of the woven fabric becomes excellent.
  • the material of the calendar roll is not particularly limited, but it is preferable that one of the rolls is made of metal.
  • the metal roll can regulate its own temperature and can evenly compress the dough surface.
  • the other roll is not particularly limited, but is preferably made of metal or resin, and in the case of resin, it is preferably made of nylon.
  • the medical woven fabric thus obtained becomes a medical woven fabric having low water permeability and excellent mechanical properties, and can be used as a member of an artificial organ such as a stent graft, an artificial valve, an artificial blood vessel, a dialysis shunt, an artificial dura mater, or an artificial skin. It is preferably used as a graft base material for patch repair materials and the like.
  • the medical woven fabric of the present invention is preferably used for a stent graft, an artificial valve, etc. that is housed and transported in a catheter and placed in an affected area, and is particularly preferably used in a stent graft.
  • the stent graft is placed in the aorta or the like to prevent the aneurysm from rupturing, but if blood leaks from the graft portion made of a woven fabric, blood flow may flow into the aneurysm even after the placement, which may lead to rupture.
  • the medical woven fabric of the present invention which is thin but has low water permeability and mechanical properties that can adapt to the movement of a living body, is most effective when used for a stent graft, especially when used as a graft base material for the stent graft.
  • the medical woven fabric of the present invention When the medical woven fabric of the present invention is used by being placed in a blood vessel such as a stent graft or an artificial valve and in contact with blood, heparin, a heparin derivative or a low molecular weight heparin is supported on the surface of the base material made of the woven fabric. It is preferable that it is.
  • the ratio of sulfur atoms to the abundance of all atoms on the surface of the graft substrate is preferably 3.0% or more and 6.0% or less.
  • the abundance ratio of sulfur atoms to the abundance of all atoms on the surface of the graft substrate can be quantified by performing X-ray electron spectroscopy (XPS) using, for example, "ESCALAB220iXL” manufactured by VG Scientific.
  • XPS X-ray electron spectroscopy
  • the surface of the graft base material referred to here is up to a depth of 10 nm from the measurement surface, which is detected when the X electron escape angle under the XPS measurement conditions, that is, the inclination of the detector with respect to the surface of the graft base material is 90 °. Refers to.
  • Atomic information on the surface of the graft substrate can be obtained from the binding energy values of bound electrons in the substance obtained by irradiating the surface of the graft substrate with X-rays and measuring the energy of the generated photoelectrons, and of each binding energy value.
  • Information on the valence and binding state can be obtained from the peak energy shift. Furthermore, the area ratio of each peak can be used for quantification, that is, the abundance ratio of each atom, valence, and bond state can be calculated.
  • the S2p peak indicating the presence of a sulfur atom is observed in the vicinity of the binding energy value of 161 eV to 170 eV.
  • the area ratio of the S2p peak to the total peak is defined as the abundance ratio (%) of sulfur atoms.
  • the abundance ratio (%) of sulfur atoms to the abundance of all atoms shall be a value calculated by rounding off the second decimal place.
  • heparin heparin derivative or low molecular weight heparin, clinically used leviparin, enoxaparin, parnapalin, sertopalin, dalteparin and tinzaparin can be preferably used.
  • the method of supporting heparin, a heparin derivative or a low molecular weight heparin on the surface of the knitted fabric is not particularly limited, and a method of immobilizing the heparin by covalently bonding with a functional group introduced into the surface of the base material (Patent No. 4152075, Patent). No. 3497612, Japanese Patent Publication No. 10-513074) and a method of immobilization by ionic bonding with a positively charged cationic compound introduced into the surface of a base material (Japanese Patent Publication No. 60-041947, Japanese Patent Publication No. 60-041947).
  • Known methods such as Kosho 60-047287, Patent No. 4273965, and Japanese Patent Application Laid-Open No.
  • a sustained-release type surface support in which heparin is bound by an ionic bond is preferable in that it exhibits antithrombotic properties in the period until it is covered by the new intima and does not inhibit the coating by the new intima.
  • the method described in 2015/080177 is particularly preferably used.
  • the number of filaments was measured in accordance with "8.4 Number of filaments" of JIS L 1013: 2010 "Chemical fiber filament yarn test method".
  • Crimp rate was measured in accordance with "8.7 Thread Weaving Shrinkage Rate B Method" of JIS L 1096: 2010 "Fabric Test Method for Woven Fabrics and Knitted Fabrics".
  • the sample was placed on a flat table, and the threads A1 and B1 having different crimp rates were placed adjacent to each other, excluding unnatural wrinkles and tension, and marked at a distance of 200 mm at three different points.
  • the thread inside the mark is unwound to make a disassembled thread, and the length stretched straight under the initial load specified in 5.1 of JIS L 1013: 2010 is measured, the average value is calculated, and the change length is calculated. bottom.
  • the change length was calculated by measuring the thread C orthogonal to the threads A1 and B1 in the same manner.
  • Cutting the woven fabric in the warp direction and the weft direction in the thickness direction means cutting at the center of the weaving thread A or the center of the weaving thread C.
  • the same measurement was performed on the surface on the opposite side of the woven fabric, and the value of the surface on which the maximum difference in the height of the uneven portion was smaller was taken as the maximum difference in the height of the uneven portion on the surface of the woven fabric.
  • a 1 cm square sample fragment was prepared by cutting a medical fabric.
  • a 1 cm square plain woven sample was sandwiched between two punched donut-shaped packings having a diameter of 0.5 cm and having a diameter of 3 cm so that liquid would not pass through other than the punched portion, and this was stored in a housing for a circular filtration filter.
  • Reverse osmosis membrane filtered water at a temperature of 25 ° C. was passed through this circular filtration filter for 2 min or more until the sample fragment was sufficiently hydrated. Under the conditions of a temperature of 25 ° C.
  • total external pressure filtration of the reverse osmosis membrane filtered water was performed for 30 seconds, and the permeation amount (mL) of water permeating the portion having a diameter of 1 cm was measured.
  • the permeation amount is obtained by rounding off the first decimal place, and the permeation amount (mL) is converted into the value per unit time (min) and the effective area (cm 2 ) of the sample fragment, and the water permeation at a pressure of 120 mmHg (16 kPa) is obtained. Performance was measured. The two samples were measured and the average value was calculated.
  • the weaving tension of the warp was measured by a tension measuring device between the warp beam and the back roller, and the tension applied to each warp was measured. During the weaving operation, measurements are taken for 30 seconds at two locations (both ears) 5 cm from the ears to the center of the fabric and one location at the center of the fabric, and the average of the maximum values at each location is averaged. The weaving tension was set to. As for the weaving tension of the weft, the tension of the weft at the time of weaving into the woven fabric was measured with a tension measuring device. The maximum value of 20 picks measured during the weaving operation was taken as the weaving tension of the weft.
  • Example 1 33dtex, 24-filament polyethylene terephthalate fiber as the raw yarn of the crimp ratio KA weaving yarn (WA), and 33dtex, 24-filament polyethylene terephthalate fiber as the raw yarn of the crimp ratio KB weaving yarn (WB) are used as the warp yarn.
  • the raw yarn of the weaving yarn (WC) having a crimp ratio of KC a polyethylene terephthalate fiber having 33 dtex and 24 filaments was used as the weft.
  • the tension of the weaving yarn WA is 0.2 cN / dtex
  • the tension of the weaving yarn WB is 1.0 cN / dtex
  • the tension of the weaving yarn WC is 1.0 cN / dtex.
  • a plain weave was obtained by weaving with a plain weave structure that was interlaced. After that, it is refined using an open soaper and heat-set at 185 ° C. ⁇ 30 sec using a pin tenter. Got The thickness, maximum difference in unevenness, tear strength, and water permeability of the obtained plain woven fabric were evaluated by the above method.
  • Table 1 shows the characteristics of the obtained plain woven fabric. Since it can be stored and deployed in a small-diameter delivery catheter and has an excellent low water permeability, it is considered that it can be a good medical device with almost no blood leakage even after transplantation.
  • Example 2 33dtex, 24-filament polyethylene terephthalate fiber as the raw yarn of the crimp ratio KA weaving yarn (WA), and 33dtex, 24-filament polyethylene terephthalate fiber as the raw yarn of the crimp ratio KB weaving yarn (WB) are used as the warp yarn.
  • a polyethylene terephthalate fiber having 33 dtex and 24 filaments was used as the weft.
  • the tension of the weaving yarn WA is 0.2 cN / dtex
  • the tension of the weaving yarn WB is 1.0 cN / dtex
  • the tension of the weaving yarn WC is 1.0 cN / dtex.
  • a plain weave was obtained by weaving with a plain weave structure that was interlaced. After that, it is refined using an open soaper and heat-set at 185 ° C. ⁇ 30 sec using a pin tenter. Got The thickness, maximum difference in unevenness, tear strength, and water permeability of the obtained plain woven fabric were evaluated by the above method.
  • Table 1 shows the characteristics of the obtained plain woven fabric.
  • the plain fabric is slightly inferior in workability when sutured to a stent, it can be stored and deployed in a small-diameter delivery catheter, and has a good low water permeability. Therefore, even if it is transplanted. It is considered that a good medical device with almost no blood leakage can be obtained.
  • Example 3 33dtex, 24-filament polyethylene terephthalate fiber as the raw yarn of the crimp ratio KA weaving yarn (WA), and 33dtex, 24-filament polyethylene terephthalate fiber as the raw yarn of the crimp ratio KB weaving yarn (WB) are used as the warp yarn.
  • a polyethylene terephthalate fiber having 33 dtex and 24 filaments was used as the weft.
  • the tension of the weaving yarn WA is 0.2 cN / dtex
  • the tension of the weaving yarn WB is 1.0 cN / dtex
  • the tension of the weaving yarn WC is 0.7 cN / dtex.
  • a plain weave was obtained by weaving with a plain weave structure that was interlaced. After that, it is refined using an open soaper and heat-set at 185 ° C. ⁇ 30 sec using a pin tenter. Got The thickness, maximum difference in unevenness, tear strength, and water permeability of the obtained plain woven fabric were evaluated by the above method.
  • Table 1 shows the characteristics of the obtained plain woven fabric.
  • the plain woven fabric has a slight resistance to storage and deployability in a small-diameter delivery catheter, but it is ⁇ , and since sufficient low water permeability is obtained, there is almost no blood leakage even after transplantation. Medical devices are expected to be obtained.
  • Example 4 33dtex, 24-filament polyethylene terephthalate fiber as the raw yarn of the crimp ratio KA weaving yarn (WA), and 33dtex, 24-filament polyethylene terephthalate fiber as the raw yarn of the crimp ratio KB weaving yarn (WB) are used as the warp yarn.
  • a polyethylene terephthalate fiber having 33 dtex and 24 filaments was used as the weft.
  • the tension of the weaving yarn WA is 0.2 cN / dtex
  • the tension of the weaving yarn WB is 1.0 cN / dtex
  • the tension of the weaving yarn WC is 1.0 cN / dtex.
  • a plain weave was obtained by weaving with a plain weave structure that was interlaced. After that, it is refined using an open soaper and heat-set at 185 ° C. ⁇ 30 sec using a pin tenter. Got The thickness, maximum difference in unevenness, tear strength, and water permeability of the obtained plain woven fabric were evaluated by the above method.
  • Table 1 shows the characteristics of the obtained plain woven fabric.
  • the plain fabric is slightly inferior in workability when sutured to a stent, it can be stored and deployed in a small-diameter delivery catheter, and has a good low water permeability. Therefore, even if it is transplanted. It is considered that a good medical device with almost no blood leakage can be obtained.
  • Example 5 33dtex, 24-filament polyethylene terephthalate fiber as the raw yarn of the crimp ratio KA weaving yarn (WA), and 33dtex, 24-filament polyethylene terephthalate fiber as the raw yarn of the crimp ratio KB weaving yarn (WB) are used as the warp yarn.
  • a polyethylene terephthalate fiber having 33 dtex and 24 filaments was used as the weft.
  • the tension of the weaving yarn WA is 0.5 cN / dtex
  • the tension of the weaving yarn WB is 1.0 cN / dtex
  • the tension of the weaving yarn WC is 1.0 cN / dtex.
  • a plain weave was obtained by weaving with a plain weave structure that was interlaced. After that, it is refined using an open soaper and heat-set at 185 ° C. ⁇ 30 sec using a pin tenter. Got The thickness, maximum difference in unevenness, tear strength, and water permeability of the obtained plain woven fabric were evaluated by the above method.
  • Table 1 shows the characteristics of the obtained plain woven fabric. Since the storage and deployability in a small-diameter delivery catheter is ⁇ and sufficient low water permeability is obtained, it is possible to obtain a medical device that does not cause blood leakage, which is a problem even at the time of transplantation. Conceivable.
  • Example 6 The plain woven fabric of Example 1 was subjected to calendar processing (processing conditions: cylinder processing, temperature 170 ° C., pressure 2.45 MPa (25 kgf / cm 2 , speed 20 m / min) twice on one side of the woven fabric, and the warp density was 185. A plain woven fabric having a weft density of 185 threads / 2.54 cm and a cover factor of 2125 was obtained. Evaluated by method.
  • Table 1 shows the characteristics of the obtained plain woven fabric.
  • the plain woven fabric has excellent storage and deployability in a small-diameter delivery catheter, and has a particularly excellent low water permeability. Therefore, a particularly good medical device that does not cause blood leakage even when transplanted is available. It is thought that it will be obtained.
  • the tension of the weaving yarn WA is 0.05 cN / dtex
  • the tension of the weaving yarn WB is 1.0 cN / dtex
  • the tension of the weaving yarn WC is 1.0 cN / dtex.
  • a plain weave was obtained by weaving with a plain weave structure that was interlaced. After that, it is refined using an open soaper and heat-set at 185 ° C. ⁇ 30 sec using a pin tenter. Got The thickness, maximum difference in unevenness, tear strength, and water permeability of the obtained plain woven fabric were evaluated by the above method.
  • Table 2 shows the characteristics of the obtained plain woven fabric.
  • the plain woven fabric had sufficient tear strength and water permeability, but because it was thick, it was difficult to fold, and it interfered greatly with the inside of the small-diameter delivery catheter, so it could be stored and deployed in the small-diameter delivery catheter. It was difficult ⁇ , and it was insufficient as a medical fabric.
  • the tension of the weaving yarn WA is 0.2 cN / dtex
  • the tension of the weaving yarn WB is 1.0 cN / dtex
  • the tension of the weaving yarn WC is 0.4 cN / dtex.
  • a plain weave was obtained by weaving with a plain weave structure that was interlaced. After that, it is refined using an open soaper and heat-set at 185 ° C. ⁇ 30 sec using a pin tenter. Got The thickness, maximum difference in unevenness, tear strength, and water permeability of the obtained plain woven fabric were evaluated by the above method.
  • Table 2 shows the characteristics of the obtained plain woven fabric.
  • the plain woven fabric had sufficient tear strength and water permeability, but because it was thick, it was difficult to fold, and it interfered greatly with the inside of the small-diameter delivery catheter, so it could be stored and deployed in the small-diameter delivery catheter. It was difficult (x) and was insufficient as a medical fabric.
  • the tension of the weaving yarn WA is 0.1 cN / dtex
  • the tension of the weaving yarn WB is 1.0 cN / dtex
  • the tension of the weaving yarn WC is 0.3 cN / dtex.
  • a plain weave was obtained by weaving with a plain weave structure that was interlaced. Then, it was smelted using an open soaper and desealed. Maleic acid was used as the acid, and the treatment conditions were a concentration of 0.2% by mass, a temperature of 130 ° C., and a time of 30 min. Sodium hydroxide was used as the alkali, and the treatment conditions were a concentration of 1% by mass, a temperature of 80 ° C., and a time of 40 min.
  • the weaving fineness after the desealing treatment was calculated to be 35.2 dtex and 630 filaments on the assumption that the sea was completely desealed. Then, the heat was set at 185 ° C. ⁇ 30 sec using a pin tenter to obtain a plain woven fabric having a warp density of 238 threads / 2.54 cm, a weft density of 230 threads / 2.54 cm, and a cover factor of 2777. The thickness, maximum difference in unevenness, tear strength, and water permeability of the obtained plain woven fabric were evaluated by the above method.
  • Table 2 shows the characteristics of the obtained plain woven fabric.
  • the plain woven fabric has sufficient tear strength, sufficient water permeability, and a thin thickness, but it is difficult (x) to be stored and deployed in a small-diameter delivery catheter due to a large resistance to being caught, and as a medical woven fabric. It was inadequate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Pulmonology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cardiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Textile Engineering (AREA)
  • Woven Fabrics (AREA)
  • Prostheses (AREA)

Abstract

低透水性と機械特性に優れた医療用織物を提供するため、 本発明は、平織物からなる医療用織物であって、経糸または緯糸のどちらか一方が異なるクリンプ率KA、KB(ただしKA>KBとする)を有する糸を含み、他方がクリンプ率(KC)の糸からなり、以下の式(1)および(2)を満たす、医療用織物であり、細径カテーテルへの収納を可能にするほど十分に薄手ながら、デリバリーカテーテルへの収納時、患部へのステント展開時における耐久性、低透水性、機械特性、にも優れ、従来技術では不可能であった特性を有するステントグラフトなどの人工器官に好ましく用いられる。 4KC≦KA≦100KC (1) 0.5KC≦KB≦2KC (2)

Description

医療用織物、その製造方法、人工器官およびステントグラフト
 本発明は、医療用織物、その製造方法、人工器官およびステントグラフトに関する。
 最近の医療において、QOL(quality of life)という言葉が重要視されており、手術治療においても出来る限り体に対する負担を減らした低侵襲治療が主流である。具体例として、大動脈瘤の治療が挙げられる。大動脈瘤は大動脈壁が異常拡張する病状であり、主なものに腹部大動脈瘤や胸部大動脈瘤がある。いずれも治療せずに放置しておくといずれ大動脈瘤は破裂し、致命的な大出血を引き起こす危険性がある。
 従来、大動脈瘤の治療は人工血管を用いた人工血管置換術が一般的であったが、開胸、開腹等の大きな切開手術を伴うため回復期間が長くなる問題、グラフトを大動脈に縫合することが困難である問題、体力の負担が大きいこと等、様々な問題が付随する。また、大動脈瘤のある患者の多くは高齢であり、他の慢性病、例えば、心臓病、肺病、肝臓病、腎臓病等を併発しているケースが多いため、さらにリスクが大きいものになる。
 一方、近年、カテーテルを用いたより低侵襲である血管内治療に関心が向けられ、多大な研究がなされている。これは、ステントグラフトの開発によって容易になり、病院およびICUにいる期間が短いことに加えて、手術による罹病率及び死亡率が低いことが大きな利点として挙げられる。
 ステントグラフトは一般的に、患部から見て遠隔の動脈(例えば上腕動脈)の切開を行い、そこから患部まで挿入されたカテーテルを介して、ステントグラフトが所定の位置に配置され、治療が行われる。
 上述のカテーテルの直径は代表的なもので20フレンチ(Fr)(3Fr=1mm)程度と大きく、現状では低侵襲であるものの、動脈切開部の閉鎖には外科手術による再建が必要である。また、血管が細い患者はステントグラフトの挿入が困難であるため適用範囲からは外れ、この治療の恩恵に預かることができない。従って、より直径が小さいカテーテルに収納可能なステントグラフトの設計が必要とされている。具体的には、血管等への挿入時に、可能な限り細い血管からでも挿入できるよう、ステントおよび基布が折り畳まれたときに細くコンパクトになるような工夫、加えて柔軟性を持たせるような工夫が、ステントグラフトに要求される。
 ステントグラフトに用いるグラフト基布における改良としては、従来の布をより薄くすることが考えられるが、単純に薄くすると布の強力低下や透水性が増加する問題がある。
 そこで、経糸及び/又は緯糸の撚係数を調整することで、低透水性と引裂強力の問題を解決する基布が開示されている(特許文献1)。また、同方向に配列された織糸が、それぞれ異なるクリンプ率を有し、低透水性、機械特性およびカテーテル収納性に優れた平織物も開示されている(特許文献2)。
国際公開第2017/126009号 国際公開第2019/150937号
 しかしながら、上記特許文献1記載の医療用布帛は、十分なレベルの低透水性を得るには、経糸及び/又は緯糸の撚係数の調整では十分とはいえず、満足できるものではなかった。
 また、特許文献2に記載のように、同方向に配列された織糸が、それぞれ異なるクリンプ率を有する平織物を用いることで、低通気性と低透水性は得られるが、細径カテーテルへの収納性と展開性は十分とはいえず、満足できるものではなかった。
 本発明は、かかる従来技術の問題点を改善し、細径カテーテルへの収納を可能にするほど十分に薄手ながら、デリバリーカテーテルへの収納時、患部へのステント展開時における耐久性、低透水性、機械特性、にも優れ、従来技術では不可能であった特性を有するステントグラフトなどの人工器官にも適用できる医療用織物を提供することを目的とする。
 かかる課題を解決するため本発明は、次の構成を有する。
 (1)平織物からなる医療用織物であって、経糸または緯糸のどちらか一方が異なるクリンプ率KA、KB(ただしKA>KBとする)を有する糸を含み、他方がクリンプ率(KC)の糸からなり、以下の式(1)および(2)を満たす、医療用織物。
   4KC≦KA≦100KC   (1)
   0.5KC≦KB≦2KC   (2)
 (2)経糸方向の引裂強力(Fx)および緯糸方向の引裂強力(Fy)がいずれも6N以上であり、経糸方向の引裂強力(Fx)の緯糸方向の引裂強力(Fy)に対する比(Fx/Fy)が、0.8~1.25である、(1)に記載の医療用織物。
 (3)前記医療用織物の厚さ方向の断面を観察したとき、織物表面の少なくとも一方の側の凹部と凸部の高さの最大差が0~20μmである、(1)または(2)に記載の医療用織物。
 (4)前記医療用織物を構成する経糸、緯糸が共にポリエステル繊維である、(1)~(3)のいずれかに記載の医療用織物。
 (5)経糸方向の織り密度(Dx)および緯糸方向の織り密度(Dy)が、いずれも150本/2.54cm以上であり、経糸方向の織り密度(Dx)の緯糸方向の織り密度(Dy)に対する比(Dx/Dy)が、0.8~1.25である、(1)~(4)のいずれかに記載の医療用織物。
 (6)厚みが90μm以下である、(1)~(5)のいずれかに記載の医療用織物。
 (7)カバーファクターが1600~4000である、(1)~(6)のいずれかに記載の医療用織物。
 (8)透水率が70mL/min/cm以下である(1)~(7)のいずれかに記載の医療用織物。
 (9)一方に織糸Aおよび織糸Bを、織糸AおよびBと直交する方向に織糸Cを配置して製織工程を行う、(1)~(8)のいずれかに記載の医療用織物の製造方法であって、各織糸にかかる張力をそれぞれWA、WB、WCとするとき、以下の条件で製織工程を行う、医療用織物の製造方法。
   2WA≦WB   (3)
   0.7WC≦WB≦1.5WC   (4)
 (10)前記製織工程の後に、少なくとも片面にカレンダー加工を施す、(9)に記載の医療用織物の製造方法。
 (11)(1)~(8)のいずれかに記載の医療用織物を用いてなる人工器官。
 (12)(1)~(8)のいずれかに記載の医療用織物をグラフト基材として含むステントグラフト。
 本発明によれば、細径カテーテルへの収納を可能にするほど十分に薄手ながら、デリバリーカテーテルへの収納時、患部へのステント展開時における耐久性、機械特性、低透水性にも優れ、従来技術では不可能であった特性を有するステントグラフトなどの人工器官にも適用できる医療用織物を提供することができる。
 以下、本発明を詳細に説明する。
 本発明による医療用織物の織組織としては、丈夫で耐摩耗性に優れた平組織が好ましい。また、布帛の形態について制約はなく、一般的な平面上の織物以外に袋状に織り上げた形態でも構わない。
 本発明による医療用織物は、経糸または緯糸のどちらか一方が異なるクリンプ率KA、KB(ただしKA>KBとする)を有する糸を含み、他方がクリンプ率(KC)の糸からなり、以下の式(1)および(2)を満たすことを特徴とする。
   4KC≦KA≦100KC   (1)
   0.5KC≦KB≦2KC   (2)
 なお、上記「経糸または緯糸のどちらか一方が異なるクリンプ率KA、KB(ただしKA>KBとする)を有する糸を含み」とは、経糸方向および/または緯糸方向に、配列されたある織糸が、あるクリンプ率を有するとき、前記クリンプ率とは異なるクリンプ率を有する織糸が、前記織糸と同方向に配列されて存在することを意味する。前記のクリンプ率のうち、最大のものを「クリンプ率KA」、最小のものを「クリンプ率KB」とし、KAを有する織糸を「織糸A」、KBを有する織糸を「織糸B」とする。そして、KA、KBで配置される糸とは異なる方向、すなわちKA、KBで配置される糸が経糸(緯糸)の場合、緯糸(経糸)方向の糸のクリンプ率をKCとするとき、KCを有する織糸を「織糸C」とする。
 本発明におけるクリンプ率KA、KCの関係は「4KC≦KA≦100KC」である。前記式におけるクリンプ率KAの下限は「4KC≦KA」であるが、好ましくは「7KC≦KA」、更に好ましくは「10KC≦KA」とすることにより、クリンプ率の大きい糸が、経糸、緯糸のいずれかに配置され、その糸束が押し広げられ、効率的に織物交錯点を覆うことで、低透水性の織物を得ることができる。
 一方、クリンプ率KAの上限は、「KA≦100KC」であるが、好ましくは「KA≦75KC」、更に好ましくは「KA≦50KC」とすることにより、クリンプ率の大きい糸が、経糸、緯糸のいずれかに配置され、かつ、隣接する前記の糸が、互いを干渉せずに糸束が押し広げられることで、糸束を構成するマルチフィラメントが長さ方向に直線的に並び、効率的に織物交錯点を覆うことが可能となる。そのため、所望の薄さを維持しながら、低透水性の織物を得ることができる。また、細径のデリバリーカテーテルに収納、展開する際に引っ掛かりがなく、医療用織物として、好適に利用することができる。
 クリンプ率KB、KCの関係は「0.5KC≦KB≦2KC」である。クリンプ率KBの下限は「0.5KC≦KB」であるが、好ましくは「0.6KC≦KB」、更に好ましくは「0.7KC≦KB」である。これにより、クリンプ率KBがKCより低くなり過ぎず、KBとKCが均等に維持されることで、織糸Cが、クリンプ率が高い織糸Aと交差して織糸Aと接しても、押し広げられた織糸Aを干渉することなく、糸束を構成するマルチフィラメントである織糸Aがその長さ方向に直線的に並び、効率的に織物交錯点を覆うことが可能となる。
 一方、クリンプ率KBの上限は「KB≦2KC」であるが、好ましくは「KB≦1.7KC」、更に好ましくは「KB≦1.5KC」である。これにより、クリンプ率KBがKCより高くなり過ぎず、KBとKCが均等に維持されることで、織糸Bが、隣接するクリンプ率が高い織糸Aが押し広げられる際に、織糸Aを干渉せず、糸束を構成するマルチフィラメントが長さ方向に直線的に並び、効率的に織物交錯点を覆うことが可能となる。
 前記織物は、クリンプ率KAの織糸Aとクリンプ率KBの織糸Bが、1:1の割合で配置されていることが好ましい。
 なお、上記クリンプ率KAの織糸とクリンプ率KBの織糸の「割合」とは、織糸の本数比を意味する。織糸の本数は、経糸または緯糸が緯糸又は経糸と交錯する単位を1本として計算し、同口で複数本入れる場合には、1本と数える。
 なかでもクリンプ率KAの織糸とクリンプ率KBの織糸は、一定間隔で配置されることが好ましく、1本交互、もしくは2本交互に配列することがより好ましい。
 上記の構成とすることで、クリンプ率の大きい糸が一定の間隔で配置され、薄地で低透水性の織物を得られやすくなり、機械特性のバランスが良化し、丈夫で寸法安定性に優れた織物とすることができる。
 本発明の好ましい態様として、経糸方向の引裂強力(Fx)および緯糸方向の引裂強力(Fy)を好ましくは、いずれも6N以上、より好ましくは、いずれも6.5N以上、更に好ましくは、いずれも7N以上とすることで、特にステントグラフトに用いた場合、ステントとの縫合部位から裂けにくくなり、好適に使用できる。引裂強力は高すぎると、所望の長さに裁断しくく生産性が低下するため、20N以下であることが好ましい。
 また、経糸方向の引裂強力(Fx)の緯糸方向の引裂強力(Fy)に対する比(Fx/Fy)を、好ましくは、0.8~1.25、より好ましくは、0.85~1.20、更に好ましくは、0.9~1.15とすることで、経糸、緯糸方向のいずれかが裂けやすいということがなく、ステントとの縫合部位等の製品設計時に配置を自由に設定できる。
 本発明の好ましい態様として、織物の厚さ方向の断面を観察したとき、織物表面の少なくとも一方の側の凹部と凸部の高さの最大差を、0~20μmとすることが好ましく、0~10μmとすることがより好ましく、0~5μmとすることが更に好ましい。これにより例えば本発明の医療用織物を取り付けたステントグラフト等のデバイスをデリバリーカテーテルへ収納する際、もしくはデリバリーカテーテルが患部に到達し、前記デバイスを展開する際に、前記デリバリーカテーテル内壁とデバイスの間に存在する本発明の医療用織物が、両接触面との滑りが良くなり、摩擦による織物の破れや、デリバリーカテーテルやデバイスの変形を防ぐことができるなど収納性、耐久性、実用性に特に優れたものとなる。
 本発明の医療用織物を構成する繊維としては例えば、ポリアミド系繊維、ポリエステル系繊維、アラミド系繊維、レーヨン系繊維、ポリサルホン系繊維、超高分子量ポリエチレン系繊維、ポリオレフィン系繊維等を用いることができる。なかでも、大量生産性や経済性に優れたポリアミド系繊維やポリエステル系繊維が好ましく、特にポリエステル系繊維は生体親和性に優れているため、より好ましい。
 ポリアミド系繊維としては例えば、ナイロン6、ナイロン66、ナイロン12、ナイロン46や、ナイロン6とナイロン66との共重合ポリアミド、ナイロン6にポリアルキレングリコール、ジカルボン酸、アミン等を共重合させた共重合ポリアミド等からなる繊維を挙げることができる。ナイロン6繊維、ナイロン66繊維は耐衝撃性に特に優れており、好ましい。
 また、ポリエステル系繊維としては例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等からなる繊維を挙げることができる。ポリエチレンテレフタレートやポリブチレンテレフタレートに酸成分としてイソフタル酸、5-ナトリウムスルホイソフタル酸や、アジピン酸等の脂肪族ジカルボン酸を共重合させた共重合ポリエステルからなる繊維であってもよい。
 上記繊維は、柔軟性や低透水性を発現し易い点で、マルチフィラメント糸であることが好ましいが、他の様態の繊維も適宜利用することができる。
 なお、本発明の医療用織物を構成する経糸と緯糸の材質は、同じであっても、異なっていてもよいが、後加工や染色を考慮すると同じ材質とすることが好ましい。
 よって、医療用織物を構成する経糸、緯糸が共にポリエステル繊維であることが特に好ましい。
 本発明の医療用織物に好ましく用いられる繊維は、総繊度を好ましくは10dtex以上、より好ましくは22dtex以上、更に好ましくは33dtex以上とすることで、医療用織物として、引裂強度、破断強度、破断伸度等の機械特性において、十分な強度を得ることができる。
 一方、総繊度を好ましくは220dtex以下、より好ましくは167dtex以下、更に好ましくは110dtex以下とすることで、十分な薄さと軽さを持つ医療用織物を得ることができる。
 マルチフィラメント糸を用いる場合の単繊維繊度は、柔軟性と機械特性の点から、0.01dtex~10dtexであることが好ましく、0.1dtex~5dtexであることがより好ましく、0.5dtex~2.5dtexが更に好ましい。また、平織物を構成するマルチフィラメント糸は直接紡糸により得られたマルチフィラメント糸であっても、海島複合繊維を脱海処理した、いわゆる極細繊維であってもよい。
 本発明の好ましい態様として、経糸方向の織り密度(Dx)および緯糸方向の織り密度(Dy)を好ましくは、いずれも150本/2.54cm以上、より好ましくは、いずれも160本/2.54cm以上、更に好ましくは、いずれも170本/2.54cm以上とすることで、医療用織物として、引裂強度、破断強度、破断伸度等の機械特性において、十分な強度を得ることができ、低透水性も得られやすい。織密度が高すぎると縫合する際に針が通りくくなり、また引裂強力の低下にもつながるため、240本/2.54cm以下であることが好ましい。
 また、経糸方向の織り密度(Dx)の緯糸方向の織り密度(Dy)に対する比(Dx/Dy)を、好ましくは0.8~1.25、より好ましくは0.85~1.20、更に好ましくは0.9~1.15とすることで、経糸、緯糸方向のいずれかで、機械特性の差が生じることがなく、ステントとの縫合部位等の製品設計時に配置を自由に設定できる。
 本発明の好ましい態様として、平織物の厚みを、好ましくは90μm以下、より好ましくは80μm以下、更に好ましくは70μm以下とすることで、細径のデリバリーカテーテルに収納可能となる。下限としては、強度や低透水性の点から0.03μm程度であることが好ましく、1μm以上であることがより好ましい。
 本発明の医療用織物のカバーファクターは、1600~4000であることが好ましく、1800~3800であることがより好ましく、2000~3600であることがさらに好ましい。さらには2000~2300であることが特に好ましい。これによりカテーテルに収納するに十分薄い厚さとなり、なお且つ低透水性を満足し、漏血も防止できる。細い繊維を高密度で織ることによって薄手ながら機械特性や耐漏血性に優れた織物部材となる。織物のカバーファクターが1600より小さいと、薄く軽い織物が得られるが、低透水性が得られにくく、漏血性が満足するものになりにくい。また、4000を超えると、低透水性を満足するものの、厚みが分厚くなりやすい。
 なお、上記カバーファクター(Cf)は、以下の式により求められる。
  Cf=Dx×(Nx)1/2+Dy×(Ny)1/2
   Dx:経糸織密度(本/2.54cm)
   Dy:緯糸織密度(本/2.54cm)
   Nx:経糸総繊度(dtex)
   Ny:緯糸総繊度(dtex)
 本発明の好ましい態様として、透水率が、好ましくは70mL/min/cm以下、より好ましくは60mL/min/cm以下、更に好ましくは50mL/min/cm以下とすることで、十分な低透水性が得られ、生体内、特に血管内で用いた場合に、漏血を防ぐことができる。下限としては、現実的には0.01mL/min/cm程度である。
 本発明の医療用織物は、例えば、下記のようにして製造することができる。
 経糸、緯糸に用いる糸を準備し、経糸は整経、糊付などの準備工程を適宜行い、経糸ビームを作成する。
 次に経糸ビーム、緯糸を織機に設置し、製織する。採用される織機としては、ウォータージェットルーム、レピアルーム、エアージェットルーム、シャトルルーム等を用途に応じて適宜用いることができる。生産性の観点からはウォータージェットルーム、レピアルーム、エアージェットルームを好ましく用いることができる。
 織組織は、平織物であり、経糸と緯糸を交互に浮き沈みさせることにより、交錯させて製織されるものであり、経糸と緯糸を1本ずつ交錯させて製織される平織物の他、応用組織として緯糸を同口で数本入れるタテ拡大組織、隣り合う経糸数本を同開口にしたヨコ拡大組織でも良く、バスケット織のようにタテヨコ共に数本ずつ並べて組織する織物でも良い。また、一般的な平面上の織物以外に袋状に織り上げた形態でも構わない。
 製織工程において、経糸(緯糸)に使用される織糸AおよびBと、織糸AおよびBと直交する方向である、緯糸(経糸)に使用される織糸Cの各織糸の張力をそれぞれWA、WB、WCとするとき、以下の条件で製織工程を行うことが好ましい。
   2WA≦WB   (3)
   0.7WC≦WB≦1.5WC   (4)
 (3)式においては、好ましくは2WA≦WB、より好ましくは5WA≦WB、更に好ましくは7WA≦WBとすることで、製織時に緯糸(経糸)Cが、経糸(緯糸)Bを支点にして経糸(緯糸)Aで拘束されつつも弛んだ状態で筬打ちされるので、経糸(緯糸)Aが折り畳まれてクリンプを発現する。また、バンピング(緯糸打戻)も抑えられ、極めて高密度の織物とすることができる。
 また、(4)式においては、0.7WC≦WB≦1.5WCであることが好ましく、より好ましくは0.8WC≦WB≦1.2WC、更に好ましくは0.9WC≦WB≦1.1WCである。これにより織糸B、Cが交錯点を形成する際、BとCのどちらか一方が、他方の糸に対し、過度に緩み、過度に大きなクリンプを発現しない。そのため、クリンプ率の大きい糸が、経糸、緯糸のいずれかに配置されることにより、好ましくはさらにそれが一定の間隔で配置されることにより、よりいっそう糸束が押し広げやすくなり、効率的に織物交錯点を覆い、薄地で低透水性の織物を得ることができる。
 例えば、WAは0.05~0.6cN/dtexとすることが好ましく、0.05~0.3cN/dtexとすることが適切なクリンプ率の形成の点からより好ましい。製織性の観点から、下限としては0.06cN/dtex以上であることが更に好ましく、0.07cN/dtex以上であることが特に好ましい。WBは0.5~1.5cN/dtexとすることが好ましい。WCは0.5~1.5cN/dtexとすることが好ましい。
 織糸A、Bが経糸の場合、張力を上記範囲内に調整する具体的方法としては、織機の経糸送り出し速度を調整する他、緯糸の打ち込み速度を調整する方法が上げられる。経糸張力が製織中に実際に上記範囲になっているかどうかは、例えば織機稼働中に経糸ビームとバックローラーとの中間において、経糸一本当たりに加わる張力を張力測定器で測ることで確認することができる。織糸Aのクリンプ率KAを大きくしたい場合には織糸Bの張力に対し、織糸Aの経糸張力を小さくすればよく、所望のクリンプ率KA、KBが得られるよう適宜調整される。
 また、織糸A、Bが緯糸である場合、緯糸を経糸開口間に挿入するときの張力を調整すればよい。
 製織した織物は、一般的な加工機械を使って、精練、リラックス、プレセット、染色、仕上げ加工してもよい。
 また、海島複合繊維を使用する場合は、下記工程で脱海処理を行うことが好ましい。
 易溶性の海成分と島成分を複合した海島複合繊維を酸処理して、海島複合繊維の海成分を脆化させる。酸としては、マレイン酸を挙げることができる。処理条件は、濃度0.1~1質量%、温度100~150℃、時間10~50minが好ましい。
 その後、アルカリ処理により、酸処理で脆化した海島複合繊維の海成分を溶出させる。アルカリとしては、水酸化ナトリウムを挙げることができる。処理条件は、濃度0.5~2質量%、温度70~98℃、時間60~100minが好ましい。
 前記織物は、少なくとも片面にはカレンダー加工が施されていることが低透水性を達成し得る点、あるいは、薄地の医療用織物が得られる点で好ましい。カレンダー加工は織物の片面のみ、あるいは両面に施されても良い。また、カレンダー加工の回数は特に限定されず、凹凸が十分に圧縮できれば、1回のみでも複数回行ってもかまわない。
 カレンダー加工の温度は特に限定されないが、使用素材のガラス転移温度より80℃以上高いことが好ましく、120℃以上高いことがより好ましく、使用素材の融点より20℃以上低いことが好ましく、30℃以上低いことがより好ましい。カレンダー加工の温度を前記範囲にすることにより、低透水性と高引裂き強力を両方維持できる織物が得られる。一方、前記カレンダー加工の温度が使用素材のガラス転移温度+80℃以上であることで、適度な圧縮度合が得られ、低通気度を有する織物を容易に得ることができる。また、使用素材の融点-20℃以上低いことで、適度な圧縮度合が得られ、織物の引裂き強力に優れる。
 例えば、ポリアミドを素材とする場合、カレンダー加工の温度は、120℃~200℃であることが好ましく、130℃~190℃であることがより好ましい。また、ポリエステルを素材とする場合、カレンダー加工の温度は160℃~240℃であることが好ましい。
 カレンダー加工の圧力は、好ましくは0.98MPa(10kgf/cm)以上、より好ましくは1.96MPa(20kgf/cm)以上であることで、適度な圧縮度合が得られ、優れた低透水性を有する織物が得られる。一方、好ましくは5.88MPa(60kgf/cm)以下、より好ましくは4.90MPa(50kgf/cm)以下であることで、適度に圧縮されて、織物の引裂き強力が優れるものとなる。
 また、カレンダーロールの材質は特に限定されないが、片方のロールは金属製であることが好ましい。金属ロールはそれ自身の温度を調節することができ、かつ生地表面を均一に圧縮することができる。もう一方のロールは特に限定されないが、金属製または樹脂製が好ましく、樹脂製の場合はナイロン製が好ましい。
 このようにして得られた医療用織物は、低透水性、機械特性に優れた医療用織物となり、ステントグラフト、人工弁、人工血管、透析シャント、人工硬膜、人工皮膚などの人工器官の部材やパッチ修復材等のグラフト基材として好ましく用いられる。
 本発明の医療用織物は上記人工器官の中でも、カテーテルに収納して搬送され、患部に留置されるステントグラフト、人工弁等に好ましく用いられ、とりわけ、ステントグラフトにおいては特に好ましく用いられる。ステントグラフトは動脈瘤の破裂を防止するために大動脈等に留置されるが、織物からなるグラフト部分から血液が漏出すると、留置後も動脈瘤に血流が流れ込み、破裂に繋がりかねない。薄手でありながら、低透水性、生体の動きに順応できる機械特性を有する本発明の医療用織物はステントグラフトに使用すると、特にステントグラフトのグラフト基材として使用する場合に最も効果が発揮できる。
 本発明の医療用織物は、ステントグラフト、人工弁等の、血管内に留置され血液と接触して使用する場合は、前記織物からなる基材の表面に、ヘパリン、ヘパリン誘導体または低分子量ヘパリンが担持されていることが好ましい。
 ヘパリン、ヘパリン誘導体または低分子量ヘパリンを担持する場合は、グラフト基材表面における全原子の存在量に対する硫黄原子の存在比率が3.0%以上6.0%以下であることが好ましい。ヘパリンに由来する硫黄原子の存在比率を3.0%以上とすることで、生体内に配置した際に血栓を生じにくくし、6.0%以下とすることで、細胞への接着を容易なものとすることができる。
 このグラフト基材表面における全原子の存在量に対する硫黄原子の存在比率は、例えばVG Scientific社製「ESCALAB220iXL」などを用いてX線電子分光法(XPS)を行うことによって定量することができる。ここでいうグラフト基材表面とは、XPSの測定条件におけるX電子脱出角度、すなわちグラフト基材表面に対する検出器の傾きを90°として測定した場合に検出される、測定表面からの深さ10nmまでのことを指す。グラフト基材表面にX線を照射し、生じる光電子のエネルギーを測定することで得られる物質中の束縛電子の結合エネルギー値から、グラフト基材表面の原子情報が得られ、また各結合エネルギー値のピークのエネルギーシフトから価数や結合状態に関する情報が得られる。さらに、各ピークの面積比を用いて定量、すなわち各原子や価数、結合状態の存在比率を算出することができる。
 具体的には、硫黄原子の存在を示すS2pピークは結合エネルギー値が161eV~170eV付近に見られる。本発明においては、全ピークに対するS2pピークの面積比を硫黄原子の存在比率(%)とする。全原子の存在量に対する硫黄原子の存在比率(%)は、小数点第2位を四捨五入して算出される値とする。
 ヘパリン、ヘパリン誘導体または低分子量ヘパリンとしては、臨床で使用されている、レビパリン、エノキサパリン、パルナパリン、セルトパリン、ダルテパリン、チンザパリンを好ましく用いることができる。
 ヘパリン、ヘパリン誘導体または低分子量ヘパリンを編地表面に担持する方法は特に限定されず、基材の表面に導入された官能基と共有結合させることにより固定化する方法(特許第4152075号公報、特許第3497612号公報、特表平10-513074号公報)や、基材の表面に導入された正電荷を帯びたカチオン性化合物とイオン結合により固定化する方法(特公昭60-041947号公報、特公昭60-047287号公報、特許第4273965号公報、特開平10-151192号公報)など、公知の方法を用いることができる。新生内膜によって被覆されるまでの期間において抗血栓性を発揮し、新生内膜による被覆を阻害しないという点で、ヘパリンをイオン結合で結合した徐放性タイプの表面担持が好ましく、国際公開第2015/080177号記載の方法が特に好ましく用いられる。
 以下、本発明の実施例を比較例と共に説明する。
 なお、本実施例で用いる各種特性の測定方法は、以下のとおりである。
 (1)総繊度、フィラメント数
 本発明における総繊度は、JIS L 1013:2010「化学繊維フィラメント糸試験方法」の「8.3 繊度」の「8.3.1 正量繊度 A法」に準拠して、測定した。
 フィラメント数は、JIS L 1013:2010「化学繊維フィラメント糸試験方法」の「8.4 フィラメント数」に準拠して、測定した。
 (2)織密度
 織密度は、JIS L 1096:2010「織物及び編物の生地試験方法」の「8.6 密度」の「8.6.1 織物の密度 A法」に準拠して、測定した。
 試料を平らな台上に置き、不自然なしわや張力を除いて、異なる5カ所について0.5cm間のタテ糸およびヨコ糸の本数を数え、それぞれの平均値を算出し、2.54cm当たりの本数に換算した。
 (3)クリンプ率
 クリンプ率は、JIS L 1096:2010「織物及び編物の生地試験方法」の「8.7 糸の織縮み率 B法」に準拠して、測定した。
 試料を平らな台上に置き、不自然なしわや張力を除いて、クリンプ率の異なる糸A1、糸B1が隣り合う位置に配置された、異なる3カ所について200mmの距離に印をつけ、この印内の糸を解いて分解糸とし、JIS L 1013:2010の5.1に規定された初荷重の下で真っすぐに張った長さをそれぞれ測定して平均値を算出し、変化長を計算した。糸A1、B1に直交する糸Cについても同様に測定し、変化長を計算した。
 (4)カバーファクター
 カバーファクター(Cf)は、以下の式により求めた。
 Cf=Dx×(Nx)1/2+Dy×(Ny)1/2
   Dx:経糸織密度(本/2.54cm)
   Dy:緯糸織密度(本/2.54cm)
   Nx:経糸総繊度(dtex)
   Ny:緯糸総繊度(dtex)
 (5)織物厚さ
 JIS L 1096:2010「織物及び編物の生地試験方法」の「8.4 厚さ A法)に則り、試料である医療用織物の異なる5カ所の壁層について厚さ測定機を用いて、23.5kPaの加圧下、厚さを落ち着かせるために10秒間待った後に厚さを測定し、平均値を算出した。
 (6)織物表面の凹凸部高さ
 織物を厚さ方向に経糸方向、緯糸方向に切断し、織物断面をキーエンス製マイクロスコープVHX-2000にて200倍に拡大して撮影した写真をもとに、織物表面側の凹部と凸部の高さの最大差をμm単位で測定した。最大差は、織物の厚み方向の中心点を結んだ線である「織物の厚みの中心線」を基準に、その平行線を最も低い凹部の底部分と、最も高い凸部の頂部分にそれぞれ引き、その間の距離と定義し、経糸方向、緯糸方向それぞれにおいて、試料を変えて5回測定を行い、計10回の測定平均値で評価した。なお、織物を厚さ方向に経糸方向、緯糸方向に切断するとは、織糸Aの中央、または織糸Cの中央で切断することをいう。織物の反対側の面でも同様に計測し、凹凸部高さの最大差が小さい方の面の値を織物表面の凹凸部の高さの最大差とした。
 (7)引裂強力
 JIS L1096:2010「織物及び編物の生地試験方法」の「8.17 引裂強度」の「8.18.4 D法(ベンジュラム法)」により、エレメンドルフ型引裂試験機を用いて、6.3cm×10cmのサンプルを経方向、緯方向にそれぞれ5枚採取し、試験片の両つかみの中央で直角に2cmの切れ目を入れ、残りの4.3cmを引き裂いたときに示す荷重強さ(N)を測定し、その相加平均値を小数点第1位まで求めた。
 (8)透水率
 医療用織物を切って1cm角のサンプル断片を作成した。直径0.5cmの打ち抜きをした直径3cmのドーナッツ状パッキン2枚で、打ち抜き部分以外に通液のないよう、1cm角の平織物試料を挟み、これを円形ろ過フィルター用ハウジングに収納した。この円形ろ過フィルターに温度25℃の逆浸透膜ろ過水をサンプル断片が十分含水するまで2min以上通液した。温度25℃、ろ過差圧120mmHg(16kPa)の条件下で、逆浸透膜ろ過水の外圧全ろ過を30秒間行い、直径1cmの部分を透過する水の透過量(mL)を測定した。透過量は小数第1位を四捨五入して求め、その透過量(mL)を単位時間(min)及びサンプル断片の有効面積(cm)あたりの値に換算して、圧力120mmHg(16kPa)における透水性能を測定した。2つのサンプルについて測定し平均値を求めた。
 (9)細径デリバリーカテーテルへの収納・展開性
 医療用織物で作製したステントグラフトを折り畳み、18Fr(6mm径)のデリバリーカテーテルへの挿入と展開を5回繰り返し、評価した。評価は官能評価で実施し、◎、〇、×の3段階とした。
◎(優):問題なく挿入・展開が為され、展開後にステントグラフトの形態に不具合がない。
〇(良):挿入・展開時に抵抗はあるが問題ない水準であり、展開後にステントグラフトの形態に不具合がない。
×(NG):挿入不可能または、展開後、ステントグラフトの形態に不具合を生じる。
 (10)製織張力
 経糸の製織張力は、経糸ビームとバックローラーの中間で、経糸1本当たりに加わる張力を張力測定器で計測した。製織稼働中に、耳部から生地の中央へ5cmの2か所(両耳)および生地の中央部1か所の合計3か所で30秒間計測し、各か所の最大値の平均を経糸の製織張力とした。緯糸の製織張力は、織物への緯入れ時の緯糸の張力を張力測定器で計測した。製織稼働中に20ピックを計測した中の最大値を緯糸の製織張力とした。
 [実施例1]
 クリンプ率KAの織糸(WA)の原糸として、33dtex、24フィラメントのポリエチレンテレフタレート繊維と、クリンプ率KBの織糸(WB)の原糸として、33dtex、24フィラメントのポリエチレンテレフタレート繊維とを経糸に用いた。また、クリンプ率KCの織糸(WC)の原糸として33dtex、24フィラメントのポリエチレンテレフタレート繊維を緯糸に用いた。
 そして、製織時において、織糸WAの張力を0.2cN/dtex、織糸WBの張力を1.0cN/dtex、織糸WCの張力を1.0cN/dtexとして、経糸、緯糸とも1本ずつ交錯させた平織組織にて製織して、平織物を得た。その後、オープンソーパーを用いて精練、ピンテンターを用いて185℃×30secで熱セットし、経糸密度が185本/2.54cm、緯糸密度が185本/2.54cm、カバーファクターが2125である平織物を得た。得られた平織物について、厚さ、凹凸部の最大差、引裂強力、および透水率を前記方法で評価した。
 得られた平織物の特性を表1に示す。細径デリバリーカテーテルへの収納・展開性は〇であり、優れた低透水率が得られていることから移植しても漏血がほとんどない良好な医療用デバイスとすることができると考えられる。
 [実施例2]
 クリンプ率KAの織糸(WA)の原糸として、33dtex、24フィラメントのポリエチレンテレフタレート繊維と、クリンプ率KBの織糸(WB)の原糸として、33dtex、24フィラメントのポリエチレンテレフタレート繊維とを経糸に用いた。また、クリンプ率KCの織糸(WC)の原糸として33dtex、24フィラメントのポリエチレンテレフタレート繊維を緯糸に用いた。
 そして、製織時において、織糸WAの張力を0.2cN/dtex、織糸WBの張力を1.0cN/dtex、織糸WCの張力を1.0cN/dtexとして、経糸、緯糸とも1本ずつ交錯させた平織組織にて製織して、平織物を得た。その後、オープンソーパーを用いて精練、ピンテンターを用いて185℃×30secで熱セットし、経糸密度が200本/2.54cm、緯糸密度が160本/2.54cm、カバーファクターが2068である平織物を得た。得られた平織物について、厚さ、凹凸部の最大差、引裂強力、および透水率を前記方法で評価した。
 得られた平織物の特性を表1に示す。前記平織物は、ステントへの縫合時の作業性が若干劣るものの、細径デリバリーカテーテルへの収納・展開性は〇であり、良好な低透水率が得られていることから、移植しても漏血がほとんどない良好な医療用デバイスが得られると考えられる。
 [実施例3]
 クリンプ率KAの織糸(WA)の原糸として、33dtex、24フィラメントのポリエチレンテレフタレート繊維と、クリンプ率KBの織糸(WB)の原糸として、33dtex、24フィラメントのポリエチレンテレフタレート繊維とを経糸に用いた。また、クリンプ率KCの織糸(WC)の原糸として33dtex、24フィラメントのポリエチレンテレフタレート繊維を緯糸に用いた。
 そして、製織時において、織糸WAの張力を0.2cN/dtex、織糸WBの張力を1.0cN/dtex、織糸WCの張力を0.7cN/dtexとして、経糸、緯糸とも1本ずつ交錯させた平織組織にて製織して、平織物を得た。その後、オープンソーパーを用いて精練、ピンテンターを用いて185℃×30secで熱セットし、経糸密度が200本/2.54cm、緯糸密度が185本/2.54cm、カバーファクターが2212である平織物を得た。得られた平織物について、厚さ、凹凸部の最大差、引裂強力、および透水率を前記方法で評価した。
 得られた平織物の特性を表1に示す。前記平織物は、細径デリバリーカテーテルへの収納・展開性は、若干抵抗が強いものの、〇であり、十分な低透水性が得られていることから、移植しても漏血がほとんどない良好な医療用デバイスが得られると考えられる。
 [実施例4]
 クリンプ率KAの織糸(WA)の原糸として、33dtex、24フィラメントのポリエチレンテレフタレート繊維と、クリンプ率KBの織糸(WB)の原糸として、33dtex、24フィラメントのポリエチレンテレフタレート繊維とを経糸に用いた。また、クリンプ率KCの織糸(WC)の原糸として33dtex、24フィラメントのポリエチレンテレフタレート繊維を緯糸に用いた。
 そして、製織時において、織糸WAの張力を0.2cN/dtex、織糸WBの張力を1.0cN/dtex、織糸WCの張力を1.0cN/dtexとして、経糸、緯糸とも1本ずつ交錯させた平織組織にて製織して、平織物を得た。その後、オープンソーパーを用いて精練、ピンテンターを用いて185℃×30secで熱セットし、経糸密度が210本/2.54cm、緯糸密度が150本/2.54cm、カバーファクターが2068である平織物を得た。得られた平織物について、厚さ、凹凸部の最大差、引裂強力、および透水率を前記方法で評価した。
 得られた平織物の特性を表1に示す。前記平織物は、ステントへの縫合時の作業性が若干劣るものの、細径デリバリーカテーテルへの収納・展開性は〇であり、良好な低透水率が得られていることから、移植しても漏血がほとんどない良好な医療用デバイスが得られると考えられる。
 [実施例5]
 クリンプ率KAの織糸(WA)の原糸として、33dtex、24フィラメントのポリエチレンテレフタレート繊維と、クリンプ率KBの織糸(WB)の原糸として、33dtex、24フィラメントのポリエチレンテレフタレート繊維とを経糸に用いた。また、クリンプ率KCの織糸(WC)の原糸として33dtex、24フィラメントのポリエチレンテレフタレート繊維を緯糸に用いた。
 そして、製織時において、織糸WAの張力を0.5cN/dtex、織糸WBの張力を1.0cN/dtex、織糸WCの張力を1.0cN/dtexとして、経糸、緯糸とも1本ずつ交錯させた平織組織にて製織して、平織物を得た。その後、オープンソーパーを用いて精練、ピンテンターを用いて185℃×30secで熱セットし、経糸密度が185本/2.54cm、緯糸密度が185本/2.54cm、カバーファクターが2125である平織物を得た。得られた平織物について、厚さ、凹凸部の最大差、引裂強力、および透水率を前記方法で評価した。
 得られた平織物の特性を表1に示す。細径デリバリーカテーテルへの収納・展開性は〇であり、十分な低透水性が得られていることから、移植時しても問題となるような漏血は生じない医療用デバイスが得られると考えられる。
 [実施例6]
 実施例1の平織物にカレンダー加工(加工条件:シリンダー加工、温度170℃、圧力2.45MPa(25kgf/cm、速度20m/min)を織物の片面に2回施して、経糸密度が185本/2.54cm、緯糸密度が185本/2.54cm、カバーファクターが2125の平織物を得た。得られた平織物について、厚さ、凹凸部の最大差、引裂強力、および透水率を前記方法で評価した。
 得られた平織物の特性を表1に示す。前記平織物は、細径デリバリーカテーテルへの収納・展開性は◎であり、特に優れた低透水率が得られていることから、移植しても漏血が生じない特に良好な医療用デバイスが得られると考えられる。
 [比較例1]
 クリンプ率KAの織糸(WA)の原糸として、33dtex、24フィラメントのポリエチレンテレフタレート繊維と、クリンプ率KBの織糸(WB)の原糸として、33dtex、24フィラメントのポリエチレンテレフタレート繊維とを経糸に用いた。また、クリンプ率KCの織糸(WC)の原糸として33dtex、24フィラメントのポリエチレンテレフタレート繊維を緯糸に用いた。
 そして、製織時において、織糸WAの張力を0.05cN/dtex、織糸WBの張力を1.0cN/dtex、織糸WCの張力を1.0cN/dtexとして、経糸、緯糸とも1本ずつ交錯させた平織組織にて製織して、平織物を得た。その後、オープンソーパーを用いて精練、ピンテンターを用いて185℃×30secで熱セットし、経糸密度が190本/2.54cm、緯糸密度が220本/2.54cm、カバーファクターが2355である平織物を得た。得られた平織物について、厚さ、凹凸部の最大差、引裂強力、および透水率を前記方法で評価した。
 得られた平織物の特性を表2に示す。前記平織物は、引裂強力、透水性は十分であったが、厚みが厚いため、折り畳み難いことに加えて、細径デリバリーカテーテル内部との干渉が大きく、細径デリバリーカテーテルへの収納、展開が困難×であり、医療用織物として不十分であった。
 [比較例2]
 クリンプ率KAの織糸(WA)の原糸として、33dtex、24フィラメントのポリエチレンテレフタレート繊維と、クリンプ率KBの織糸(WB)の原糸として、33dtex、24フィラメントのポリエチレンテレフタレート繊維とを経糸に用いた。また、クリンプ率KCの織糸(WC)の原糸として33dtex、24フィラメントのポリエチレンテレフタレート繊維を緯糸に用いた。
 そして、製織時において、織糸WAの張力を0.2cN/dtex、織糸WBの張力を1.0cN/dtex、織糸WCの張力を0.4cN/dtexとして、経糸、緯糸とも1本ずつ交錯させた平織組織にて製織して、平織物を得た。その後、オープンソーパーを用いて精練、ピンテンターを用いて185℃×30secで熱セットし、経糸密度が230本/2.54cm、緯糸密度が160本/2.54cm、カバーファクターが2240である平織物を得た。得られた平織物について、厚さ、凹凸部の最大差、引裂強力、および透水率を前記方法で評価した。
 得られた平織物の特性を表2に示す。前記平織物は、引裂強力、透水性は十分であったが、厚みが厚いため、折り畳み難いことに加えて、細径デリバリーカテーテル内部との干渉が大きく、細径デリバリーカテーテルへの収納、展開が困難(×)であり、医療用織物として不十分であった。
 [比較例3]
 クリンプ率KAの織糸(WA)の原糸として、44dtex、9フィラメントのポリエチレンテレフタレート繊維(海島複合繊維)と、クリンプ率KBの織糸(WB)の原糸として、44dtex、9フィラメントのポリエチレンテレフタレート繊維(海島複合繊維)とを経糸に用いた。また、クリンプ率KCの織糸(WC)の原糸として海島比率が、海2:島8、島数が70島の44dtex、9フィラメントのポリエチレンテレフタレート繊維(海島複合繊維)を緯糸に用いた。
 そして、製織時において、織糸WAの張力を0.1cN/dtex、織糸WBの張力を1.0cN/dtex、織糸WCの張力を0.3cN/dtexとして、経糸、緯糸とも1本ずつ交錯させた平織組織にて製織して、平織物を得た。その後、オープンソーパーを用いて精練し、脱海処理を行った。酸としては、マレイン酸を使用し、処理条件は、濃度0.2質量%、温度130℃、時間30minで行った。アルカリとしては、水酸化ナトリウムを使用し、処理条件は、濃度1質量%、温度80℃、時間40minで行った。脱海処理後の織糸繊度は、完全に脱海したと想定して、35.2dtex、630フィラメントと算出した。その後、ピンテンターを用いて185℃×30secで熱セットし、経糸密度が238本/2.54cm、緯糸密度が230本/2.54cm、カバーファクターが2777である平織物を得た。得られた平織物について、厚さ、凹凸部の最大差、引裂強力、および透水率を前記方法で評価した。
 得られた平織物の特性を表2に示す。前記平織物は、引裂強力、透水性は十分であり、厚みも薄かったが、細径デリバリーカテーテルへの収納、展開が、引っ掛かるような抵抗が大きく、困難(×)であり、医療用織物として不十分であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (12)

  1.  平織物からなる医療用織物であって、経糸または緯糸のどちらか一方が異なるクリンプ率KA、KB(ただしKA>KBとする)を有する糸を含み、他方がクリンプ率(KC)の糸からなり、以下の式(1)および(2)を満たす、医療用織物。
       4KC≦KA≦100KC   (1)
       0.5KC≦KB≦2KC   (2)
  2.  経糸方向の引裂強力(Fx)および緯糸方向の引裂強力(Fy)がいずれも6N以上であり、経糸方向の引裂強力(Fx)の緯糸方向の引裂強力(Fy)に対する比(Fx/Fy)が、0.8~1.25である、請求項1に記載の医療用織物。
  3.  前記医療用織物の厚さ方向の断面を観察したとき、織物表面の少なくとも一方の側の凹部と凸部の高さの最大差が0~20μmである、請求項1または2に記載の医療用織物。
  4.  前記医療用織物を構成する経糸、緯糸が共にポリエステル繊維である、請求項1~3のいずれかに記載の医療用織物。
  5. 経糸方向の織り密度(Dx)および緯糸方向の織り密度(Dy)が、いずれも150本/2.54cm以上であり、経糸方向の織り密度(Dx)の緯糸方向の織り密度(Dy)に対する比(Dx/Dy)が、0.8~1.25である、請求項1~4のいずれかに記載の医療用織物。
  6.  厚みが90μm以下である、請求項1~5のいずれかに記載の医療用織物。
  7.  カバーファクターが1600~4000である、請求項1~6のいずれかに記載の医療用織物。
  8.  透水率が70mL/min/cm以下である請求項1~7のいずれかに記載の医療用織物。
  9.  一方に織糸Aおよび織糸Bを、織物AおよびBと直交する方向に織糸Cを配置して製織工程を行う、請求項1~8のいずれかに記載の医療用織物の製造方法であって、各織糸にかかる張力をそれぞれWA、WB、WCとするとき、以下の条件で製織工程を行う、医療用織物の製造方法。
       2WA≦WB   (3)
       0.7WC≦WB≦1.5WC   (4)
  10.  前記製織工程の後に、少なくとも片面にカレンダー加工を施す、請求項9に記載の医療用織物の製造方法。
  11.  請求項1~8のいずれかに記載の医療用織物を用いてなる人工器官。
  12.  請求項1~8のいずれかに記載の医療用織物をグラフト基材として含むステントグラフト。
PCT/JP2021/006134 2020-03-09 2021-02-18 医療用織物、その製造方法、人工器官およびステントグラフト WO2021182060A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021513351A JPWO2021182060A1 (ja) 2020-03-09 2021-02-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020039495 2020-03-09
JP2020-039495 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021182060A1 true WO2021182060A1 (ja) 2021-09-16

Family

ID=77671403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006134 WO2021182060A1 (ja) 2020-03-09 2021-02-18 医療用織物、その製造方法、人工器官およびステントグラフト

Country Status (2)

Country Link
JP (1) JPWO2021182060A1 (ja)
WO (1) WO2021182060A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237140A (ja) * 1991-02-27 1993-09-17 Seiren Co Ltd 人工血管およびその製造方法
WO2017126009A1 (ja) * 2016-01-18 2017-07-27 旭化成株式会社 医療用布帛
WO2019150937A1 (ja) * 2018-01-30 2019-08-08 東レ株式会社 平織物、その製造方法およびステントグラフト
WO2019208262A1 (ja) * 2018-04-26 2019-10-31 東レ株式会社 筒状織物およびこれを用いた医療用基材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237140A (ja) * 1991-02-27 1993-09-17 Seiren Co Ltd 人工血管およびその製造方法
WO2017126009A1 (ja) * 2016-01-18 2017-07-27 旭化成株式会社 医療用布帛
WO2019150937A1 (ja) * 2018-01-30 2019-08-08 東レ株式会社 平織物、その製造方法およびステントグラフト
WO2019208262A1 (ja) * 2018-04-26 2019-10-31 東レ株式会社 筒状織物およびこれを用いた医療用基材

Also Published As

Publication number Publication date
JPWO2021182060A1 (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
WO2019093387A1 (ja) 医療用織物
US20210054545A1 (en) Medical Fabric
CN108472122B (zh) 医疗用布帛
US9260805B2 (en) Base fabric for stent graft, and stent graft
AU2014355478B2 (en) Vascular prosthesis
JP6091618B2 (ja) 生体管腔グラフト基材および生体管腔グラフト基材の製造方法ならびに当該生体管腔グラフト基材を用いてなる生体管腔グラフト
JP7180567B2 (ja) 平織物、その製造方法およびステントグラフト
JP6518066B2 (ja) 医療用高密度織物
JP2011245282A (ja) ステントグラフト用基布およびステントグラフト
JP5729111B2 (ja) ステントグラフト用基布およびステントグラフト
EP3085335A1 (en) Artificial blood vessel
WO2021182060A1 (ja) 医療用織物、その製造方法、人工器官およびステントグラフト
WO2021117894A1 (ja) 胸部疾患医療機器用織物及び胸部疾患医療機器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021513351

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21766988

Country of ref document: EP

Kind code of ref document: A1