WO2021180072A1 - Heterocyclic compounds for inhibiting tyk2 activities - Google Patents

Heterocyclic compounds for inhibiting tyk2 activities Download PDF

Info

Publication number
WO2021180072A1
WO2021180072A1 PCT/CN2021/079752 CN2021079752W WO2021180072A1 WO 2021180072 A1 WO2021180072 A1 WO 2021180072A1 CN 2021079752 W CN2021079752 W CN 2021079752W WO 2021180072 A1 WO2021180072 A1 WO 2021180072A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
compound
tyk2
methyl
methoxy
Prior art date
Application number
PCT/CN2021/079752
Other languages
French (fr)
Inventor
Xiangyang Chen
Yucheng PANG
Original Assignee
Beijing Innocare Pharma Tech Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Innocare Pharma Tech Co., Ltd. filed Critical Beijing Innocare Pharma Tech Co., Ltd.
Priority to AU2021234496A priority Critical patent/AU2021234496A1/en
Priority to KR1020227035138A priority patent/KR20220152303A/en
Priority to MX2022011297A priority patent/MX2022011297A/en
Priority to BR112022017440A priority patent/BR112022017440A2/en
Priority to CA3170773A priority patent/CA3170773A1/en
Priority to CN202180006278.8A priority patent/CN114650990B/en
Priority to EP21768449.7A priority patent/EP4038063B1/en
Priority to JP2022554545A priority patent/JP2023524361A/en
Publication of WO2021180072A1 publication Critical patent/WO2021180072A1/en
Priority to US17/736,866 priority patent/US11578058B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/501Pyridazines; Hydrogenated pyridazines not condensed and containing further heterocyclic rings

Definitions

  • the present invention relates to heterocyclic compounds useful in the modulation of TYK2 to cause signal transduction inhibition.
  • the compounds provide improved pharmacokinetic properties in animals.
  • Tyrosine kinase 2 is a non-receptor tyrosine protein kinase belonging to the Janus kinase (JAK) family and has been shown to be critical in regulating the signal transduction cascade downstream of receptors for IL-12, IL-23 and type I interferons.
  • JH1 is a canonical protein tyrosine kinase domain
  • JH2 is classified as a pseudokinase domain.
  • the structure of JAK family is shown in FIG. 1.
  • TYK2 and its other family members JAK1 and/or JAK2 that are bound to the intracellular regions is triggered, resulting in activation of signal transduction and transcriptional activation factors (STATs) by dimerization.
  • STATs signal transduction and transcriptional activation factors
  • the dimerized STATs then migrate inside the nucleus and regulate the expression and transcription of related genes to complete the transduction of signals from the cell membrane to the nucleus. Therefore, JAKs transduce cytokine-mediated signals through the JAK-STAT pathway and play an important role in many cellular functions, cytokine-dependent regulation of cell proliferation, differentiation, apoptosis, immune response, etc.
  • TYK2-deficient mice are resistant to experimental models of colitis, psoriasis and multiple sclerosis, demonstrating the importance of TYK2-mediated signaling in autoimmunity and related disorders.
  • TYK2 In humans, individuals expressing an inactive variant of TYK2 are protected from multiple sclerosis and possibly other autoimmune disorders. Genome-wide association studies have shown that other variants of TYK2 are associated with autoimmune disorders such as Crohn's disease, psoriasis, systemic lupus erythematosus, and rheumatoid arthritis, further demonstrating the importance of TYK2 in autoimmunity.
  • TYK2 knockout mice have normal red blood cell counts and they are able to survive. Lack of TYK2 expression is manifested in the weakened signaling of various pro-inflammatory cytokines and the severe imbalance of T helper cell differentiation. Evidence from genetic-related studies supports TYK2 as a shared susceptible autoimmune disease gene. TYK2-regulated pathways have been confirmed by antibody therapy for treating diseases. For example, ustekinumab targeting IL-12/IL-23 for treating psoriasis, and anifrolumab targeting type I interferon receptor for treating systemic lupus erythematosus (SLE) have demonstrated significant efficacies in clinical trials.
  • SLE systemic lupus erythematosus
  • TYK2 is associated with some cancers by the correlation between abnormal survival of acute lymphocytic leukemia (T-ALL) cells and the activation of TYK2.
  • T-ALL acute lymphocytic leukemia
  • 88%of T-ALL cell lines and 63%of patient-derived T-ALL cells were dependent on TYK2 via gene knockout experiments (Sanda et. al, Cancer Disc. 2013, 3, 564-77) .
  • TYK2 selective inhibitor NDI-031301 induced apoptosis to inhibit the growth of human T-ALL cell lines and showed good safety and efficacy in a mouse model with KOPT-K1 T-ALL tumor cells (Akahane et. al, British J. Haematol.
  • TYK2 is one of the hot targets for treating inflammatory diseases, autoimmune diseases and cancer (Alicea-Velazquez et. al, Curr. Drug Targets 2011, 12, 546-55) .
  • JH1 kinase domain 1
  • JH2 can bind ATP, but it does not have a catalytic function and instead it negatively regulates the kinase activity of JH1 (Staerk et. al, J. Biol. Chem. 2015, 280, 41893-99) .
  • JAK1 Due to high sequence similarity of the kinase domain JH1 among the JAK family (JAK1, JAK2, JAK3, and TYK2) , it is challenging to develop a selective inhibitor towards TYK2’s JH1 without inhibiting the JH1 of JAK1, JAK2, or JAK3.
  • Most JAK inhibitors that bind to the kinase domain of JAKs, including tofacitinib, ruxolitinib, baricitinib, upadacitinib, etc., are not very selective among the JAK family members and exhibit dose-dependent side effects clinically such as anemia.
  • the development of highly selective TYK2 inhibitors remains attractive among pharmaceutical companies.
  • BMS-986165 Based on the structural differences between the ATP binding pockets in TYK2’s JH1 and JH2, Bristol-Myers Squibb Company has developed a highly selective JH2 binder BMS-986165, which only inhibits the physiological functions mediated by TYK2 without binding to the kinase domains (JH1) of JAKs. BMS-986165 is now in the Phase III clinical trials for autoimmune diseases (Wrobleski et. al, J. Med. Chem. 2019, 62, 8973-95) .
  • BMS-986165 The structure of BMS-986165 is shown below (WO2014/074661) :
  • JH2 pseudokinase domain
  • FIG. 1 shows the common secondary structure of JAK family (JAK1, JAK2, JAK3, and TYK2) .
  • FIG. 2 shows in vivo efficacies in an anti-CD40 antibody induced IBD colitis animal model. Relative %changes of body weight of animals treated with vehicle, a reference compound, and Compound 3 at three different dosages are plotted against number of days after treatment.
  • the inventors have discovered selective TYK2 inhibitors not targeting on the catalytically active site of TYK2, but targeting on the TYK2 pseudokinase domain (JH2) .
  • the present invention is directed to Compounds 1-8, and their pharmaceutically acceptable salts or prodrugs thereof.
  • Compounds 1-8 are selective binders to JH2 of TYK2. By binding to the pseudokinase domain (JH2) , Compounds 1-8 inhibit the kinase catalytic activity of TYK2, inhibit protein phosphorylation, and exhibit significant inhibitory effects on the physiological function of TYK2.
  • Compounds 1-8 either bind weakly or do not bind to the kinase domain (JH1) of TYK2.
  • Compounds 1-8 selectively inhibits the kinase activity of TYK2 by binding to JH2 and have low inhibitory activity toward the kinase activity of other JAK family members.
  • the selectivity of Compounds 1-8 for inhibiting TYK2 over other JAK family members minimizes side effects such as anemia.
  • Compounds 1-8 are shown to have excellent in vivo pharmacokinetic properties in animals.
  • “Pharmaceutically acceptable salts” are salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects.
  • Pharmaceutically acceptable salt forms include various crystalline polymorphs as well as the amorphous form of the different salts.
  • the pharmaceutically acceptable salts of the present basic heterocyclic compounds can be formed with inorganic acids or organic acids.
  • Prodrug refers to a compound which, upon administration to a subject, undergoes chemical conversion by metabolic or chemical processes to yield the compound of Compounds 1-8, and/or a salt thereof. Any compound that will be converted in vivo to provide the bioactive agent of Compound 1-8 is a prodrug within the scope of the invention. Various forms of prodrugs are well known in the art.
  • Compound 1 has tri-deuterated methyl on the triazole ring and tri-deuterated methyl amide.
  • Compound 2 has tri-deuterated methyl on the triazole ring.
  • Compound 3 has tri-deuterated methoxy on the benzene ring.
  • Compound 4 has tri-deuterated methoxy on the benzene ring and tri-deuterated methyl amide.
  • Compound 5 has (S) -6- (2, 2-difluorocyclopropane-1-carboxamido) and tri-deuterated methyl amide.
  • Compound 6 has (S) -6- (2, 2-difluorocyclopropane-1-carboxamido) without any deuterium substitution.
  • Compound 7 has (R) -6- (2, 2-difluorocyclopropane-1-carboxamido) and tri-deuterated methyl amide.
  • Compound 8 has (R) -6- (2, 2-difluorocyclopropane-1-carboxamido) without any deuterium substitution.
  • Compounds 1-5 and 7 have several deuterium substitutions on methyl to improve pharmacokinetic (PK) properties.
  • Compounds 5-8 have difluoro on cyclopropane.
  • the compounds of the present invention have low binding activities toward JAKs’ kinase domains and have high inhibitory activities against TYK2’s cellular functions such as inhibiting the secretion of ⁇ -interferon and IL-23.
  • the compounds of the present invention provide good bioavailability when administered orally.
  • the compounds of the present invention are safe to use and are effective in treating inflammatory bowel disease (IBD) , as demonstrated in an anti-CD40 colitis (IBD) model in mice, which showed no significant body weight loss after treatment with Compounds 2, 3, and 5.
  • IBD inflammatory bowel disease
  • IBD anti-CD40 colitis
  • the present invention provides pharmaceutical compositions comprising one or more pharmaceutically acceptable carriers and an active compound of Compounds 1-8, or a pharmaceutically acceptable salt thereof.
  • the active compound or its pharmaceutically acceptable salt in the pharmaceutical compositions in general is in an amount of about 0.01-20%, or 0.05-20%, or 0.1-20%, or 0.2-15%, or 0.5-10%, or 1-5% (w/w) for a topical formulation; about 0.1-5%for an injectable formulation, 0.1-5%for a patch formulation, about 1-90%for a tablet formulation, and 1-100%for a capsule formulation.
  • the active compound is incorporated into any acceptable carrier, including creams, gels, lotions or other types of suspensions that can stabilize the active compound and deliver it to the affected area by topical applications.
  • the pharmaceutical composition can be in a dosage form such as tablets, capsules, granules, fine granules, powders, syrups, suppositories, injectable solutions, patches, or the like.
  • the above pharmaceutical composition can be prepared by conventional methods.
  • Pharmaceutically acceptable carriers which are inactive ingredients, can be selected by those skilled in the art using conventional criteria.
  • Pharmaceutically acceptable carriers include, but are not limited to, non-aqueous based solutions, suspensions, emulsions, microemulsions, micellar solutions, gels, and ointments.
  • the pharmaceutically acceptable carriers may also contain ingredients that include, but are not limited to, saline and aqueous electrolyte solutions; ionic and nonionic osmotic agents such as sodium chloride, potassium chloride, glycerol, and dextrose; pH adjusters and buffers such as salts of hydroxide, phosphate, citrate, acetate, borate; and trolamine; antioxidants such as salts, acids and/or bases of bisulfite, sulfite, metabisulfite, thiosulfite, ascorbic acid, acetyl cysteine, cysteine, glutathione, butylated hydroxyanisole, butylated hydroxytoluene, tocopherols, and ascorbyl palmitate; surfactants such as lecithin, phospholipids, including but not limited to phosphatidylcholine, phosphatidylethanolamine and phosphatidyl inositiol; poloxa
  • Such pharmaceutically acceptable carriers may be preserved against bacterial contamination using well-known preservatives, these include, but are not limited to, benzalkonium chloride, ethylenediaminetetraacetic acid and its salts, benzethonium chloride, chlorhexidine, chlorobutanol, methylparaben, thimerosal, and phenylethyl alcohol, or may be formulated as a non-preserved formulation for either single or multiple use.
  • preservatives include, but are not limited to, benzalkonium chloride, ethylenediaminetetraacetic acid and its salts, benzethonium chloride, chlorhexidine, chlorobutanol, methylparaben, thimerosal, and phenylethyl alcohol, or may be formulated as a non-preserved formulation for either single or multiple use.
  • a tablet formulation or a capsule formulation of the active compound may contain other excipients that have no bioactivity and no reaction with the active compound.
  • Excipients of a tablet or a capsule may include fillers, binders, lubricants and glidants, disintegrators, wetting agents, and release rate modifiers. Binders promote the adhesion of particles of the formulation and are important for a tablet formulation.
  • excipients of a tablet or a capsule include, but not limited to, carboxymethylcellulose, cellulose, ethylcellulose, hydroxypropylmethylcellulose, methylcellulose, karaya gum, starch, tragacanth gum, gelatin, magnesium stearate, titanium dioxide, poly (acrylic acid) , and polyvinylpyrrolidone.
  • a tablet formulation may contain inactive ingredients such as colloidal silicon dioxide, crospovidone, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, and/or titanium dioxide.
  • a capsule formulation may contain inactive ingredients such as gelatin, magnesium stearate, and/or titanium dioxide.
  • a patch formulation of the active compound may comprise some inactive ingredients such as 1, 3-butylene glycol, dihydroxyaluminum aminoacetate, disodium edetate, D-sorbitol, gelatin, kaolin, methylparaben, polysorbate 80, povidone, propylene glycol, propylparaben, sodium carboxymethylcellulose, sodium polyacrylate, tartaric acid, titanium dioxide, and purified water.
  • a patch formulation may also contain skin permeability enhancer such as lactate esters (e.g., lauryl lactate) or diethylene glycol monoethyl ether.
  • Topical formulations including the active compound can be in a form of gel, cream, lotion, liquid, emulsion, ointment, spray, solution, and suspension.
  • the inactive ingredients in the topical formulations for example include, but not limited to, diethylene glycol monoethyl ether (emollient/permeation enhancer) , DMSO (solubility enhancer) , silicone elastomer (rheology/texture modifier) , caprylic/capric triglyceride, (emollient) , octisalate, (emollient/UV filter) , silicone fluid (emollient/diluent) , squalene (emollient) , sunflower oil (emollient) , and silicone dioxide (thickening agent) .
  • diethylene glycol monoethyl ether emollient/permeation enhancer
  • DMSO solubility enhancer
  • silicone elastomer rheology/text
  • the inventor has demonstrated that the present compounds specifically bind to TYK2’s pseudokinase domain (JH2) and significantly inhibit the physiological function of TYK2 in NK92 cells.
  • JH2 pseudokinase domain
  • the compounds also show excellent pharmacokinetic properties in rats.
  • the present invention is directed to a method for preventing or treating TYK2-mediated diseases, including, but not limited to, autoimmune diseases, inflammatory diseases (including intestinal inflammation and bowel inflammation) , cancers, skin diseases, diabetes, eye diseases, neurodegenerative diseases, allergic reactions, asthma, other obstructive airway diseases and transplant rejection, etc.
  • the method is particularly useful for treating inflammatory bowel disease, psoriasis, and systemic lupus erythematosus (SLE) .
  • the method comprises administering to a patient in need thereof an effective amount of a compound of the present invention, or a prodrug thereof, a pharmaceutically acceptable salt thereof.
  • “An effective amount, ” as used herein, is the amount effective to treat a disease by ameliorating the pathological condition or reducing the symptoms of the disease.
  • the pharmaceutical composition of the present invention can be applied by local administration and systemic administration.
  • Local administration includes topical administration.
  • Systemic administration includes oral (including buccal or sublingual) , parenteral (such as intravenous, intramuscular, subcutaneous or rectal) , and other systemic routes of administration.
  • the active compound first reaches plasma and then distributes into target tissues.
  • Topical administration and oral administration are preferred routes of administration for the present invention.
  • Dosing of the composition can vary based on the extent of the injury and each patient’s individual response.
  • plasma concentrations of the active compound delivered can vary; but are generally 1x10 -10 -1x10 -4 moles/liter, and preferably 1x10 -8 -1x10 -5 moles/liter.
  • the composition is applied topically onto the affected area and rubbed into it.
  • the composition is topically applied at least 1 or 2 times a day, or 3 to 4 times per day, depending on the medical issue and the disease pathology being chronic or acute.
  • the topical composition comprises about 0.01-20%, or 0.05-20%, or 0.1-20%, or 0.2-15%, 0.5-10, or 1-5 % (w/w) of the active compound.
  • the active compound passes through skin and is delivered to the site of discomfort.
  • the pharmaceutical composition is administrated orally to the subject.
  • the dosage for oral administration is generally at least 0.1 mg/kg/day and less than 1000 mg/kg/day.
  • the dosage for oral administration is 0.5 mg to 1 g, preferably 1 mg to 700 mg, or 5 mg to 300 mg of a compound per day.
  • the present invention is useful in treating a mammal subject, such as humans, horses, and dogs.
  • the present invention is particularly useful in treating humans.
  • Examples 1-8 illustrate the synthesis of the present compounds.
  • the product in each step of the reaction is obtained by separation techniques known in the art including, but not limited to, extraction, filtration, distillation, crystallization, and chromatographic separation.
  • the starting materials and chemical reagents required for the synthesis can be conventionally synthesized according to the literature (available searching from SciFinder) or purchased.
  • the structure of a compound is determined by nuclear magnetic resonance (NMR) or mass spectrometry (MS) .
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • the NMR was measured using a Bruker ASCEND-400 NMR spectrometer.
  • the solvents were deuterated dimethylsulfoxide (DMSO-d 6 ) , deuterated chloroform (CDC1 3 ) , or deuterated methanol (CD 3 OD) .
  • the internal standard was tetramethylsilane (TMS) .
  • TMS tetramethylsilane
  • the chemical shift is provided in unit of 10 -6 (ppm) .
  • MS was measured using an Agilent SQD (ESI) mass spectrometer (manufacturer: Agilent, model: 6120) .
  • HPLC was measured using an Agilent 1260 DAD high pressure liquid chromatography (Poroshell120 EC-C18, 50 ⁇ 3.0 mm, 2.7 ⁇ m column) or Waters Arc high pressure liquid chromatography (Sunfire C18, 150 ⁇ 4.6 mm, 5 ⁇ m column) .
  • TLC Thin-layer chromatography
  • the known starting materials used in the present invention may be synthesized according to the methods known in the art, or may be purchased from ABCR GmbH &Co. KG, Acros Organics, Sigma-Aldrich Chemical Company, Accela ChemBio Inc., Beijing Ouhe chemicals, and other companies.
  • the hydrogenation reaction was usually run in a reactor that is evacuated, charged with hydrogen and repeatedly operated three times.
  • the microwave reaction was run using a CEM Discover-SP microwave reactor.
  • reaction temperature was room temperature from 20°C to 30°C.
  • the reaction progress was monitored by an Agilent LCMS instrument (1260/6120) . It might also be monitored by TLC.
  • the solvent system for TLC was A: a dichloromethane and methanol system; B: a petroleum ether and ethyl acetate system; C: a system shown in the examples. The volume ratio of the solvents was adjusted according to the polarity of the compound.
  • the eluent system for column chromatography and TLC used in the process of compound purification included A: a dichloromethane and methanol system; B: a petroleum ether and ethyl acetate system; C: a system shown in the examples.
  • the volume ratio of the solvents was adjusted according to the polarity of the compound, and a small amount of triethylamine and an acidic or basic reagent could be added for adjustment.
  • the purification of compound could also be carried out using a Waters' mass spectrometry-oriented automated preparation system (prep-HPLC with a mass detector of SQD2) .
  • pre-HPLC with a mass detector of SQD2
  • an appropriate acetonitrile/water (containing 0.1%trifluoroacetic acid or formic acid) or acetonitrile/water (containing 0.05%ammonium hydroxide) elution profile was used to wash a reversed phase high pressure column (XBridge-C18, 19 ⁇ 150 mm, 5 ⁇ m) at a flow rate of 20 mL/min.
  • Compound 2 was synthesized according to the methods for Example 1 except that methylamine hydrochloride (CH 3 NH 2 ⁇ HCl) was used in step 9 instead of deuterated methylamine hydrochloride (CD 3 NH 2 ⁇ HCl) .
  • the reaction was quenched with water (1.5 mL) and acetonitrile (4.5 mL) .
  • the resulting mixture was aged at 65°C for 1 hour and at 0°C for 3 hours, and then filtered.
  • the solid was sequentially washed with an acetonitrile aqueous solution (33%, 4.5 mL) and acetonitrile (4.5 mL) , and dried under vacuum at 65°C for 8 hours to give the target product 3 (811 mg, solid) with a yield of 56%.
  • Compound 4 was synthesized according to the methods for Example 3 except that deuterated methylamine hydrochloride (CD 3 NH 2 ⁇ HCl) was used in step 8 instead of methylamine hydrochloride (CH 3 NH 2 ⁇ HCl) .
  • the mixture was diluted with acetic acid (27 mL) and water (9 mL) , and the resulting solution was washed with petroleum ether (2 ⁇ 30 mL) . Water (50 mL) was then added and left for 3 hours. The mixture was filtered and the solid was dried under vacuum to give the target compound 5h (1.1 g, solid) with a yield of 62%.
  • the reaction mixture was heated to 65°C and stirred for 1 hour. After cooling to room temperature, the mixture was concentrated to dryness under reduced pressure and the residue was purified by reversed phase prep-HPLC to give the target compound 5 (420 mg, solid) with a yield of 37%.
  • Compound 8 was synthesized according to the procedures of Example 5 except (i) (S) -2, 2-difluorocyclopropane-1-carboxylic acid (5a) in step 1 was replaced by (R) -2, 2-difluorocyclopropane-1-carboxylic acid, and (ii) deuterated methylamine hydrochloride (CD 3 NH 2 ⁇ HCl) in step 8 was replaced by methylamine hydrochloride (CH 3 NH 2 ⁇ HCl) .
  • JH1 JAK2 kinase domain
  • an enzyme buffer (1 ⁇ ) , 5 mM MgCl 2 , 1 mM DTT and 0.01%Brij35 from the kit
  • test compound is dissolved to 1 mM in DMSO, followed by a serial 4-fold dilution with DMSO to a minimum concentration of 61 nM. Each concentration is further diluted 40-fold with the reaction buffer.
  • the ratio of absorbances at 665 nm and 620 nm is positively correlated with the degree of substrate phosphorylation, therefore the activity of JAK2 kinase is detected.
  • the group without JAK2 kinase protein is the 100%inhibition group, and the group with JAK2 kinase protein but not the test compound is the 0%inhibition group.
  • the percentage of inhibition on JAK2 kinase activity by the test compound is calculated using the following formula:
  • the IC 50 value of the test compound is calculated from 8 concentration points using the XLfit software (ID Business Solutions Ltd., UK) by the following formula:
  • Y is the percentage of inhibition
  • X is the logarithm of the concentration of the test compound
  • Bottom is the bottom plateau value of the S-shaped curve
  • Top is the top plateau value of the S-shaped curve
  • slope factor is the slope coefficient of the curve.
  • the effect of the compounds of the present invention on the enzymatic activity of recombinant TYK2 kinase domain (JH1) is assessed by detecting the substrate phosphorylation level in a kinase reaction using the HTRF kinase assay detection kit (Cisbio, Cat. No. 62TK0PEC) (Table 1) .
  • test compound is dissolved to 1 mM in DMSO, followed by a serial 4-fold dilution with DMSO to a minimum concentration of 61 nM. Each concentration is further diluted 40-fold with the reaction buffer.
  • the ratio of absorbances at 665 nm and 620 nm is positively correlated with the degree of substrate phosphorylation, therefore the activity of TYK2 kinase is detected.
  • the group without TYK2 kinase protein is the 100%inhibition group, and the group with TYK2 kinase protein but not the test compound is the 0%inhibition group.
  • the percentage of inhibition on TYK2 kinase activity by the test compound is calculated using the following formula:
  • the IC 50 value of the test compound is calculated from 8 concentration points using the XLfit software (ID Business Solutions Ltd., UK) by the following formula:
  • Y is the percentage of inhibition
  • X is the logarithm of the concentration of the test compound
  • Bottom is the bottom plateau value of the S-shaped curve
  • Top is the top plateau value of the S-shaped curve
  • slope factor is the slope coefficient of the curve.
  • the binding of the compounds of the present invention to TYK2 pseudokinase domain (JH2) is determined by using a time-resolved fluorescence energy transfer (TR-FRET) biochemical assay through competition with a commercial fluorescein-labeled probe (Alexa-Fluor 647-conjugated kinase tracer 178) (Table 1) .
  • TR-FRET time-resolved fluorescence energy transfer
  • a binding buffer contains 20 mM Hepes pH 7.5, 150 mM NaCl, 10 mM MgCl 2 , 0.015%Brij35, 2 mM DTT, 0.625 mM EGTA and 100 mM KF.
  • the JH2 domain of TYK2 (amino acids 556-871 within the full-length protein) is expressed and purified by at Tsinghua University protein purification and identification platform.
  • the test compound is dissolved to 0.1 mM in DMSO, followed by a serial 4-fold dilution with DMSO to a minimum concentration of 61 nM. Each concentration is further diluted 40-fold with the reaction buffer.
  • the HTRF signal ratio of fluorescence intensity at the emission wavelength of 615 nm and 665 nm for the fluorescein acceptor and the Europium donor, respectively
  • the percentage of inhibition is calculated by comparing to a positive control without the test compound and a negative control without protein according to the following formula:
  • %of inhibition 100-100* (signal compound -signal negative control ) / (signal positive control -signal negative control )
  • the IC 50 value of the test compound is calculated from 8 concentration points using the XLfit software (ID Business Solutions Ltd., UK) by the following formula:
  • Y is the percentage of inhibition
  • X is the logarithm of the concentration of the test compound
  • Bottom is the bottom plateau value of the S-shaped curve
  • Top is the top plateau value of the S-shaped curve
  • slope factor is the slope coefficient of the curve.
  • the compounds of the present invention have weak or low inhibiting activity toward the kinase domains of JAK2 or TYK2.
  • Table 1 shows that Compounds 2, 3, 4, 7, and 8 had IC 50 > 10 ⁇ M for direct inhibition of the kinase activity, whereas the Reference compound had a lower IC 50 of 2.9 ⁇ M.
  • the test compounds and the reference compounds all had strong binding toward TYK2 JH2 (IC 50 in the nM range)
  • IL-12 receptor is mainly expressed in activated T-cells, NK cells (NK92 is a NK cell line) , DC cells, and B-cells. When binding to IL-12, it activates JAK2/TYK2 signal transduction pathway within NK cells and T lymphocytes, thereby inducing secretion of IFN- ⁇ .
  • test compound is dissolved to 2.5 mM in DMSO, followed by a serial 4-fold dilution with DMSO to a minimum concentration of 0.31 ⁇ M. Each concentration is further diluted 50-fold with an FBS-free MEM ⁇ medium (Gibco, Cat. No. 12561-056) .
  • NK92 cells (Nanjing Cobioer, Cat. No. CBP60980) are cultured in a complete MEM ⁇ medium containing 12.5%FBS (Ausbian, Cat. No. VS500T) , 12.5%horse serum (Gibco, Cat. No. 16050-122) , 0.02 mM folic acid (Sigma, Cat No. F8758) , 0.2 mM inositol (Sigma, Cat No. 17850) , 0.55 mM ⁇ -mercaptoethanol (Gibco, Cat No. 21985-023) , 200 U/mL IL-2 (R&D Systems, Cat No.
  • ThermoFisher Cat No. 15140122
  • the cells are dispersed and plated on a 96-well plate (ThermoFisher, Cat No. 167425) with 100,000 cells per well (80 ⁇ L of the complete MEM ⁇ medium without IL-2) .
  • the 96-well plate is then incubated overnight in a 37°C/5%CO 2 incubator.
  • test compound 10 ⁇ L of the test compound and 10 ⁇ L of 50 ng/mL IL-12 (R &D Systems, Cat. No. 219-1L) are added to each well and mix gently, and the 96-well plate is incubated in the 37°C/5%CO 2 incubator for additional 24 hours.
  • the plate is centrifuged at 800 rpm for 10 minutes at room temperature and 50 ⁇ L of the supernatant from each well is transferred to another 96-well plate (Sigma, Cat No. CLS3695) coated with anti-IFN- ⁇ antibody.
  • the amount of IFN- ⁇ secretion is detected following the instruction from the Human IFN-gamma DuoSet ELISA kit (R &D Systems, Cat No. DY285B) .
  • the group with IL-12 and the test compound being replaced with the MEM ⁇ medium is the non-stimulated control group (100%inhibition)
  • the group with IL-12 and 0.2%DMSO is the stimulated group (0%inhibition) .
  • the percentage of inhibition on IL-12 induced IFN- ⁇ secretion in NK-92 cells by the test compound is calculated using the following formula:
  • Percentage of inhibition 100 -100 * (signal compound -signal non-stimulated control ) / (signal stimulated control -signal non-stimulated control )
  • the IC 50 value of the test compound is calculated from 8 concentration points using the XLfit software (ID Business Solutions Ltd., UK) by the following formula:
  • Y is the percentage of inhibition
  • X is the logarithm of the concentration of the test compound
  • Bottom is the bottom plateau value of the S-shaped curve
  • Top is the top plateau value of the S-shaped curve
  • slope factor is the slope coefficient of the curve.
  • the compounds of the present invention had significant inhibitory effect on the secretion of IFN- ⁇ induced by TYK2 in NK92 cells.
  • Compound 3 of the present invention has an OCD 3 on a benzene ring, whereas the reference compound has an CD 3 on an amide moiety.
  • Methyl group is typically labile in vivo, subject to hydrolysis by amidase in the case of methylamide and to oxidative demethylation by CYPs in the case of methoxy and methyltriazole. Substituting methyl with tri-deuterated methyl improves the bioavailability and in vivo exposure of the compound and provides a better efficacy of the compound under the same dose.
  • Compound 3 and the reference compound in a 0.5 mg/mL solution containing 5%N, N-dimethylacetamide + 20%solutol + 75%saline were orally administered to three male Sprague Dawley rats at a dose of 5 mg/kg.
  • Blood samples were collected at 0.25, 0.5, 1, 2, 4, 8 and 24 hours after administration.
  • the concentrations of the compound in the plasma were quantified by LC-MS/MS using an API-4500 mass spectrometer.
  • the limit of quantification (LOQ) of analysis was 1 ng/mL.
  • the pharmacokinetic (PK) parameters were calculated by the non-compartmental method using WinNonlin and are present in Table 3. The results show that Compound 3 of the present invention had better in vivo exposures than the reference compound.
  • colitis was induced in mice each with a single intraperitoneal injection of 100 ⁇ g of FGK4.5 anti-CD40 mAb (BioXCell, Cat. No. EB0016-2) in PBS.
  • mice in the treatment groups were orally dosed with 0, 1.5, 5, 15 mg/kg of Compound 3 or 5 mg/kg of BMS-986165 in the vehicle of DMSO/solutol/PEG-400 (10: 5: 30) twice daily, while mice in the vehicle group were orally dosed with the above-mentioned vehicle.
  • mice On a daily basis, mice were weighed and monitored for signs of colitis including body weight loss and the accompanying loose stools and diarrhea. On Day 8, all animals were euthanized. Spleen tissues were collected and weighed. The results show that Compound 3 at dosages 1.5mg/kg, 5 mg/kg, and 15 mg/kg and the reference compound at 5 mg/kg significantly protected mice from colitis in preventing body weight loss (FIG. 2, Table 4) and spleen enlargement (Table 4) as comparing to mice in the vehicle group.
  • RCBW body weight

Abstract

Provided are Compounds 1-8, and their pharmaceutically acceptable salts or prodrugs thereof. Compounds 1-8 are selective binders to TYK2's JH2 and they exhibit significant inhibitory effects on the physiological function of TYK2 and they have excellent in vivo pharmacokinetic properties. Compounds 1-5 and 7 have several deuterium substitutions on methyl to improve pharmacokinetic (PK) properties.

Description

HETEROCYCLIC COMPOUNDS FOR INHIBITING TYK2 ACTIVITIES FIELD OF THE INVENTION
The present invention relates to heterocyclic compounds useful in the modulation of TYK2 to cause signal transduction inhibition. The compounds provide improved pharmacokinetic properties in animals.
BACKGROUND OF THE INVENTION
Tyrosine kinase 2 (TYK2) is a non-receptor tyrosine protein kinase belonging to the Janus kinase (JAK) family and has been shown to be critical in regulating the signal transduction cascade downstream of receptors for IL-12, IL-23 and type I interferons.
The tandem kinase domains are the hallmark of JAKs. JH1 is a canonical protein tyrosine kinase domain, whereas JH2 is classified as a pseudokinase domain. The structure of JAK family is shown in FIG. 1.
Recent biochemical and structural data suggest that the pseudokinase domain of TYK2 has low levels of catalytic activity and negatively regulates the activity of the kinase domain.
When the cytokine receptors bind the cytokines, the phosphorylation of TYK2 and its other family members JAK1 and/or JAK2 that are bound to the intracellular regions is triggered, resulting in activation of signal transduction and transcriptional activation factors (STATs) by dimerization. The dimerized STATs then migrate inside the nucleus and regulate the expression and transcription of related genes to complete the transduction of signals from the cell membrane to the nucleus. Therefore, JAKs transduce cytokine-mediated signals through the JAK-STAT pathway and play an important role in many cellular functions, cytokine-dependent regulation of cell proliferation, differentiation, apoptosis, immune response, etc. TYK2-deficient mice are resistant to experimental models of colitis, psoriasis and multiple sclerosis, demonstrating the importance of TYK2-mediated signaling in autoimmunity and related disorders.
In humans, individuals expressing an inactive variant of TYK2 are protected from multiple sclerosis and possibly other autoimmune disorders. Genome-wide association studies have shown that other variants of TYK2 are associated with autoimmune disorders such as Crohn's disease, psoriasis, systemic lupus erythematosus, and rheumatoid arthritis, further demonstrating the importance of TYK2 in autoimmunity.
TYK2 knockout mice have normal red blood cell counts and they are able to survive. Lack of TYK2 expression is manifested in the weakened signaling of various pro-inflammatory cytokines and the severe imbalance of T helper cell differentiation. Evidence from genetic-related studies supports TYK2 as a shared susceptible autoimmune disease gene. TYK2-regulated pathways have been confirmed by antibody therapy for treating diseases. For example, ustekinumab targeting IL-12/IL-23 for treating psoriasis, and anifrolumab targeting type I interferon receptor for treating systemic lupus erythematosus (SLE) have demonstrated significant efficacies in clinical trials.
TYK2 is associated with some cancers by the correlation between abnormal survival of acute lymphocytic leukemia (T-ALL) cells and the activation of TYK2. As an oncogene of T-ALL, 88%of T-ALL cell lines and 63%of patient-derived T-ALL cells were dependent on TYK2 via gene knockout experiments (Sanda et. al, Cancer Disc. 2013, 3, 564-77) . TYK2 selective inhibitor NDI-031301 induced apoptosis to inhibit the growth of human T-ALL cell lines and showed good safety and efficacy in a mouse model with KOPT-K1 T-ALL tumor cells (Akahane et. al, British J. Haematol. 2017, 177, 271-82) , which demonstrates the prospect of selective inhibitors of TYK2 for treating T-ALL. Therefore, TYK2 is one of the hot targets for treating inflammatory diseases, autoimmune diseases and cancer (Alicea-Velazquez et. al, Curr. Drug Targets 2011, 12, 546-55) .
TYK2 and other members of the JAK family structurally have a kinase domain JH1 (JAK Homology 1) and an adjacent pseudokinase domain JH2 (JAK Homology 2) . JH2 can bind ATP, but it does not have a catalytic function and instead it negatively regulates the kinase activity of JH1 (Staerk et. al, J. Biol. Chem. 2015, 280, 41893-99) . Due to high sequence similarity of the kinase domain JH1 among the JAK family (JAK1, JAK2, JAK3, and TYK2) , it is challenging to develop a selective inhibitor towards TYK2’s JH1 without inhibiting the JH1 of JAK1, JAK2, or JAK3. Most JAK inhibitors that bind to the kinase domain of JAKs, including tofacitinib, ruxolitinib, baricitinib, upadacitinib, etc., are not very selective among the JAK family members and exhibit dose-dependent side effects clinically such as anemia. The development of highly selective TYK2 inhibitors remains attractive among pharmaceutical companies. Based on the structural differences between the ATP binding pockets in TYK2’s JH1 and JH2, Bristol-Myers Squibb Company has developed a highly selective JH2 binder BMS-986165, which only inhibits the physiological functions mediated by TYK2 without binding to the kinase domains (JH1) of JAKs. BMS-986165 is now in the Phase III clinical trials for autoimmune diseases (Wrobleski et. al, J. Med. Chem.  2019, 62, 8973-95) .
The structure of BMS-986165 is shown below (WO2014/074661) :
Figure PCTCN2021079752-appb-000001
There remains a need to develop new compounds that selectively binds to the pseudokinase domain (JH2) of TYK2, with minimal binding toward kinase domains of the JAK families, in particular JAK2.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows the common secondary structure of JAK family (JAK1, JAK2, JAK3, and TYK2) .
FIG. 2 shows in vivo efficacies in an anti-CD40 antibody induced IBD colitis animal model. Relative %changes of body weight of animals treated with vehicle, a reference compound, and Compound 3 at three different dosages are plotted against number of days after treatment.
DETAILED DESCRIPTION OF THE INVENTION
The inventors have discovered selective TYK2 inhibitors not targeting on the catalytically active site of TYK2, but targeting on the TYK2 pseudokinase domain (JH2) . The present invention is directed to Compounds 1-8, and their pharmaceutically acceptable salts or prodrugs thereof. Compounds 1-8 are selective binders to JH2 of TYK2. By binding to the pseudokinase domain (JH2) , Compounds 1-8 inhibit the kinase catalytic activity of TYK2, inhibit protein phosphorylation, and exhibit significant inhibitory effects on the physiological function of TYK2. Compounds 1-8 either bind weakly or do not bind to the kinase domain (JH1) of TYK2. Compounds 1-8 selectively inhibits the kinase activity of TYK2 by binding to JH2 and have low inhibitory activity toward the kinase activity of other JAK family members. The selectivity of Compounds 1-8 for inhibiting TYK2 over other JAK family members (JAK1, JAK2, and JAK3) minimizes side effects such as anemia. Compounds 1-8 are shown to have excellent in vivo pharmacokinetic properties in animals.
Figure PCTCN2021079752-appb-000002
Figure PCTCN2021079752-appb-000003
Figure PCTCN2021079752-appb-000004
“Pharmaceutically acceptable salts” , as used herein, are salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects. Pharmaceutically acceptable salt forms include various crystalline polymorphs as well as the amorphous form of the different salts. The pharmaceutically acceptable salts of the present basic heterocyclic compounds can be formed with inorganic acids or organic acids.
“Prodrug” , as used herein, refers to a compound which, upon administration to a subject, undergoes chemical conversion by metabolic or chemical processes to yield the compound of Compounds 1-8, and/or a salt thereof. Any compound that will be converted in vivo to provide the bioactive agent of Compound 1-8 is a prodrug within the scope of the invention. Various forms of prodrugs are well known in the art.
Compound 1 has tri-deuterated methyl on the triazole ring and tri-deuterated methyl amide.
Compound 2 has tri-deuterated methyl on the triazole ring.
Compound 3 has tri-deuterated methoxy on the benzene ring.
Compound 4 has tri-deuterated methoxy on the benzene ring and tri-deuterated methyl amide.
Compound 5 has (S) -6- (2, 2-difluorocyclopropane-1-carboxamido) and tri-deuterated methyl amide.
Compound 6 has (S) -6- (2, 2-difluorocyclopropane-1-carboxamido) without any deuterium substitution.
Compound 7 has (R) -6- (2, 2-difluorocyclopropane-1-carboxamido) and tri-deuterated methyl amide.
Compound 8 has (R) -6- (2, 2-difluorocyclopropane-1-carboxamido) without any deuterium substitution.
Compounds 1-5 and 7 have several deuterium substitutions on methyl to improve pharmacokinetic (PK) properties. Compounds 5-8 have difluoro on cyclopropane. The compounds of the present invention have low binding activities toward JAKs’ kinase domains and have high inhibitory activities against TYK2’s cellular functions such as inhibiting the secretion of γ-interferon and IL-23. The compounds of the present invention provide good bioavailability when administered orally. The compounds of the present invention are safe to use and are effective in treating inflammatory bowel disease (IBD) , as demonstrated in an anti-CD40 colitis (IBD) model in mice, which showed no significant body weight loss after treatment with  Compounds  2, 3, and 5.
Pharmaceutical Compositions
The present invention provides pharmaceutical compositions comprising one or more pharmaceutically acceptable carriers and an active compound of Compounds 1-8, or a pharmaceutically acceptable salt thereof. The active compound or its pharmaceutically acceptable salt in the pharmaceutical compositions in general is in an amount of about 0.01-20%, or 0.05-20%, or 0.1-20%, or 0.2-15%, or 0.5-10%, or 1-5% (w/w) for a topical formulation; about 0.1-5%for an injectable formulation, 0.1-5%for a patch formulation, about 1-90%for a tablet formulation, and 1-100%for a capsule formulation.
In one embodiment, the active compound is incorporated into any acceptable carrier, including creams, gels, lotions or other types of suspensions that can stabilize the active compound and deliver it to the affected area by topical applications. In another embodiment, the pharmaceutical composition can be in a dosage form such as tablets, capsules, granules, fine granules, powders, syrups, suppositories, injectable solutions, patches, or the like. The above pharmaceutical composition can be prepared by conventional methods.
Pharmaceutically acceptable carriers, which are inactive ingredients, can be selected by those skilled in the art using conventional criteria. Pharmaceutically acceptable carriers include, but are not limited to, non-aqueous based solutions, suspensions, emulsions, microemulsions, micellar solutions, gels, and ointments. The pharmaceutically acceptable carriers may also contain ingredients that include, but are not limited to, saline and aqueous electrolyte solutions; ionic and nonionic osmotic agents such as sodium chloride, potassium chloride, glycerol, and dextrose; pH adjusters and buffers such as salts of hydroxide,  phosphate, citrate, acetate, borate; and trolamine; antioxidants such as salts, acids and/or bases of bisulfite, sulfite, metabisulfite, thiosulfite, ascorbic acid, acetyl cysteine, cysteine, glutathione, butylated hydroxyanisole, butylated hydroxytoluene, tocopherols, and ascorbyl palmitate; surfactants such as lecithin, phospholipids, including but not limited to phosphatidylcholine, phosphatidylethanolamine and phosphatidyl inositiol; poloxamers and poloxamines, polysorbates such as polysorbate 80, polysorbate 60, and polysorbate 20, polyethers such as polyethylene glycols and polypropylene glycols; polyvinyls such as polyvinyl alcohol and povidone; cellulose derivatives such as methylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose and hydroxypropyl methylcellulose and their salts; petroleum derivatives such as mineral oil and white petrolatum; fats such as lanolin, peanut oil, palm oil, soybean oil; mono-, di-, and triglycerides; polymers of acrylic acid such as carboxypolymethylene gel, and hydrophobically modified cross-linked acrylate copolymer; polysaccharides such as dextrans and glycosaminoglycans such as sodium hyaluronate. Such pharmaceutically acceptable carriers may be preserved against bacterial contamination using well-known preservatives, these include, but are not limited to, benzalkonium chloride, ethylenediaminetetraacetic acid and its salts, benzethonium chloride, chlorhexidine, chlorobutanol, methylparaben, thimerosal, and phenylethyl alcohol, or may be formulated as a non-preserved formulation for either single or multiple use.
For example, a tablet formulation or a capsule formulation of the active compound may contain other excipients that have no bioactivity and no reaction with the active compound. Excipients of a tablet or a capsule may include fillers, binders, lubricants and glidants, disintegrators, wetting agents, and release rate modifiers. Binders promote the adhesion of particles of the formulation and are important for a tablet formulation. Examples of excipients of a tablet or a capsule include, but not limited to, carboxymethylcellulose, cellulose, ethylcellulose, hydroxypropylmethylcellulose, methylcellulose, karaya gum, starch, tragacanth gum, gelatin, magnesium stearate, titanium dioxide, poly (acrylic acid) , and polyvinylpyrrolidone. For example, a tablet formulation may contain inactive ingredients such as colloidal silicon dioxide, crospovidone, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, and/or titanium dioxide. A capsule formulation may contain inactive ingredients such as gelatin, magnesium stearate, and/or titanium dioxide.
For example, a patch formulation of the active compound may comprise some inactive ingredients such as 1, 3-butylene glycol, dihydroxyaluminum aminoacetate, disodium edetate, D-sorbitol, gelatin, kaolin, methylparaben, polysorbate 80, povidone, propylene glycol, propylparaben, sodium carboxymethylcellulose, sodium polyacrylate, tartaric acid, titanium dioxide, and purified water. A patch formulation may also contain skin permeability enhancer such as lactate esters (e.g., lauryl lactate) or diethylene glycol monoethyl ether.
Topical formulations including the active compound can be in a form of gel, cream, lotion, liquid, emulsion, ointment, spray, solution, and suspension. The inactive ingredients in the topical formulations for example include, but not limited to, diethylene glycol monoethyl ether (emollient/permeation enhancer) , DMSO (solubility enhancer) , silicone elastomer (rheology/texture modifier) , caprylic/capric triglyceride, (emollient) , octisalate, (emollient/UV filter) , silicone fluid (emollient/diluent) , squalene (emollient) , sunflower oil (emollient) , and silicone dioxide (thickening agent) .
Method of Use
The inventor has demonstrated that the present compounds specifically bind to TYK2’s pseudokinase domain (JH2) and significantly inhibit the physiological function of TYK2 in NK92 cells. The compounds also show excellent pharmacokinetic properties in rats.
The present invention is directed to a method for preventing or treating TYK2-mediated diseases, including, but not limited to, autoimmune diseases, inflammatory diseases (including intestinal inflammation and bowel inflammation) , cancers, skin diseases, diabetes, eye diseases, neurodegenerative diseases, allergic reactions, asthma, other obstructive airway diseases and transplant rejection, etc. The method is particularly useful for treating inflammatory bowel disease, psoriasis, and systemic lupus erythematosus (SLE) . The method comprises administering to a patient in need thereof an effective amount of a compound of the present invention, or a prodrug thereof, a pharmaceutically acceptable salt thereof. “An effective amount, ” as used herein, is the amount effective to treat a disease by ameliorating the pathological condition or reducing the symptoms of the disease.
The pharmaceutical composition of the present invention can be applied by local administration and systemic administration. Local administration includes topical administration. Systemic administration includes oral (including buccal or sublingual) , parenteral (such as intravenous, intramuscular, subcutaneous or rectal) , and other systemic routes of administration. In systemic administration, the active compound first reaches  plasma and then distributes into target tissues. Topical administration and oral administration are preferred routes of administration for the present invention.
Dosing of the composition can vary based on the extent of the injury and each patient’s individual response. For systemic administration, plasma concentrations of the active compound delivered can vary; but are generally 1x10 -10-1x10 -4 moles/liter, and preferably 1x10 -8-1x10 -5 moles/liter.
In one embodiment, the composition is applied topically onto the affected area and rubbed into it. The composition is topically applied at least 1 or 2 times a day, or 3 to 4 times per day, depending on the medical issue and the disease pathology being chronic or acute. In general, the topical composition comprises about 0.01-20%, or 0.05-20%, or 0.1-20%, or 0.2-15%, 0.5-10, or 1-5 % (w/w) of the active compound. The active compound passes through skin and is delivered to the site of discomfort.
In one embodiment, the pharmaceutical composition is administrated orally to the subject. The dosage for oral administration is generally at least 0.1 mg/kg/day and less than 1000 mg/kg/day. For example, the dosage for oral administration is 0.5 mg to 1 g, preferably 1 mg to 700 mg, or 5 mg to 300 mg of a compound per day.
Those of skill in the art will recognize that a wide variety of delivery mechanisms are also suitable for the present invention.
The present invention is useful in treating a mammal subject, such as humans, horses, and dogs. The present invention is particularly useful in treating humans.
The following examples further illustrate the present invention. These examples are intended merely to be illustrative of the present invention and are not to be construed as being limiting.
EXAMPLES
Examples 1-8 illustrate the synthesis of the present compounds. The product in each step of the reaction is obtained by separation techniques known in the art including, but not limited to, extraction, filtration, distillation, crystallization, and chromatographic separation. The starting materials and chemical reagents required for the synthesis can be conventionally synthesized according to the literature (available searching from SciFinder) or purchased.
The structure of a compound is determined by nuclear magnetic resonance (NMR) or mass spectrometry (MS) . The NMR was measured using a Bruker ASCEND-400 NMR  spectrometer. The solvents were deuterated dimethylsulfoxide (DMSO-d 6) , deuterated chloroform (CDC1 3) , or deuterated methanol (CD 3OD) . The internal standard was tetramethylsilane (TMS) . The chemical shift is provided in unit of 10 -6 (ppm) .
MS was measured using an Agilent SQD (ESI) mass spectrometer (manufacturer: Agilent, model: 6120) .
HPLC was measured using an Agilent 1260 DAD high pressure liquid chromatography (Poroshell120 EC-C18, 50 × 3.0 mm, 2.7 μm column) or Waters Arc high pressure liquid chromatography (Sunfire C18, 150 × 4.6 mm, 5 μm column) .
Thin-layer chromatography (TLC) was run using Qingdao Ocean GF254 silica gel plate. The specification of TLC for reaction monitoring and production separation/purification is 0.15 ~ 0.2 mm and 0.4 ~ 0.5 mm thick, respectively.
Column chromatography was run generally using Qingdao Ocean silica gel 200- (300 mesh) as the carrier.
The known starting materials used in the present invention may be synthesized according to the methods known in the art, or may be purchased from ABCR GmbH &Co. KG, Acros Organics, Sigma-Aldrich Chemical Company, Accela ChemBio Inc., Beijing Ouhe chemicals, and other companies.
In the examples below, unless otherwise specified, the reactions were all carried out under an argon atmosphere or a nitrogen atmosphere.
The hydrogenation reaction was usually run in a reactor that is evacuated, charged with hydrogen and repeatedly operated three times.
The microwave reaction was run using a CEM Discover-SP microwave reactor.
In the examples below, unless otherwise specified, the reaction temperature was room temperature from 20℃ to 30℃.
The reaction progress was monitored by an Agilent LCMS instrument (1260/6120) . It might also be monitored by TLC. The solvent system for TLC was A: a dichloromethane and methanol system; B: a petroleum ether and ethyl acetate system; C: a system shown in the examples. The volume ratio of the solvents was adjusted according to the polarity of the compound.
The eluent system for column chromatography and TLC used in the process of compound purification included A: a dichloromethane and methanol system; B: a petroleum ether and ethyl acetate system; C: a system shown in the examples. The volume ratio of the solvents was adjusted according to the polarity of the compound, and a small amount of  triethylamine and an acidic or basic reagent could be added for adjustment.
The purification of compound could also be carried out using a Waters' mass spectrometry-oriented automated preparation system (prep-HPLC with a mass detector of SQD2) . Depending on the polarity of the compound, an appropriate acetonitrile/water (containing 0.1%trifluoroacetic acid or formic acid) or acetonitrile/water (containing 0.05%ammonium hydroxide) elution profile was used to wash a reversed phase high pressure column (XBridge-C18, 19 × 150 mm, 5 μm) at a flow rate of 20 mL/min.
Example 1. 6- (cyclopropanecarboxamido) -4- ( (2-methoxy-3- (1- (methyl-d3) -1H-1, 2, 4-triazol-3-yl) phenyl) amino) -N- (methyl-d3) pyridazine-3-carboxamide (1)
Figure PCTCN2021079752-appb-000005
Step 1
Methyl 2-methoxy-3-nitrobenzoate (1b)
To a solution of methyl 2-fluoro-3-nitrobenzoate 1a (10 g, 50 mmol) in methanol (50 mL) at room temperature was added sodium methoxide (12.6 g, 70 mmol) . After stirring at room temperature for 4 hours, the solution was diluted with water (200 mL) , and then extracted with ethyl acetate (3 × 60 mL) . The organic phases were combined, washed with saturated brine (2 × 100 mL) , dried over anhydrous sodium sulfate and filtered. The filtrate  was concentrated to dryness under reduced pressure to obtain the target compound 1b (10 g, solid) with a yield of 98%.
MS m/z (ESI) : 212 [M+1]
Step 2
2-Methoxy-3-nitrobenzamide (1c)
To a solution of methyl 2-methoxy-3-nitrobenzoate 1b (10 g, 47 mmol) in methanol (40 mL) at room temperature was added ammonium hydroxide (20 mL) . After stirring at room temperature for 48 hours, the solvent was removed under reduced pressure to obtain the target compound 1c (crude, 10 g, solid) . The crude product was used in the next step without further purification.
MS m/z (ESI) : 197 [M+1]
Step 3
3- (2-Methoxy-3-nitrophenyl) -1H-1, 2, 4-triazole (1d)
A solution of 2-methoxy-3-nitrobenzamide 1c (10 g, 51 mmol) in N, N-dimethylformamide dimethyl acetal (50 mL) was heat to 95℃ and stirred for 2 hours. After cooling to room temperature, the solvent was removed under reduced pressure and the residue was dissolved in ethanol (30 mL) to obtain solution A. Hydrazine hydrate (25 mL) was slowly added to a mixture of acetic acid (35 mL) and ethanol (150 mL) at 0℃, followed by addition of solution A. After gradually warming to room temperature and stirring for 12 hours, the solvent was removed under reduced pressure. The residue was dispersed in water (400 mL) and filtered. The obtained solid was washed with water and dried to give the target compound 1d (6 g, solid) with a yield of 55%.
MS m/z (ESI) : 221 [M+1]
Step 4
3- (2-Methoxy-3-nitrophenyl) -1- (methyl-d3) -1H-1, 2, 4-triazole (1e)
To a mixture of 3- (2-methoxy-3-nitrophenyl) -1- (methyl-d3) -1H-1, 2, 4-triazole 1d (1.2 g, 5.3 mmol) , potassium carbonate (2.2 g, 16 mmol) and N, N-dimethylformamide (10 mL) was added deuterated iodomethane (1 g, 6.9 mmol) . After stirring at room temperature for 12 hours, the resulting solution was purified by reversed phase prep-HPLC to obtain the target compound 1e (530 mg, solid) with a yield of 42%.
MS m/z (ESI) : 238 [M+1]
Step 5
2-Methoxy-3- (1- (methyl-d3) -1H-1, 2, 4-triazol-3-yl) aniline (1f)
To a solution of 3- (2-methoxy-3-nitrophenyl) -1- (methyl-d3) -1H-1, 2, 4-triazole 1e (530 mg, 1.61 mmol) in methanol (10 mL) was added 10%palladium on carbon (50 mg) . The reaction mixture was stirred under a hydrogen atmosphere for 12 hours and then filtered. The filtrate was concentrated to dryness under reduced pressure to obtain the target product 1f (430 mg, solid) . The product was used in the next reaction without further purification.
MS m/z (ESI) : 208 [M+1]
Step 6
Lithium 4, 6-dichloropyridazine-3-carboxylate (1h)
To a mixture of methyl 4, 6-dichloropyridazine-3-carboxylate 1g (5 g, 24.15 mmol) , diisopropylethylamine (9.4 g, 72.5 mmol) , acetonitrile (13.5 mL) and water (3.25 mL) was added lithium bromide (6.3 g, 72.5 mmol) . The resulting mixture was stirred at room temperature for 12 hours and filtered. The resulting solid was washed with acetonitrile (8 mL) and dried under vacuum to give the target compound 1h (4.53 g, solid) with a yield of 90%.
MS m/z (ESI) : 193 [M+1]
Step 7
Zinc 6-chloro-4- ( (2-methoxy-3- (1- (methyl-d3) -1H-1, 2, 4-triazol-3-yl) phenyl) amino) pyridazine-3-carboxylate (1i)
To a mixture of lithium 4, 6-dichloropyridazine-3-carboxylate 1h (380 mg, 1.9 mmol) , 2-methoxy-3- (1- (methyl-d3) -1H-1, 2, 4-triazol-3-yl) aniline 1f (471 mg, 2.27 mmol) , isopropanol (0.5 mL) and water (5 mL) was added zinc acetate (350 mg, 1.9 mmol) at room temperature. The mixture was heated to 65℃ and stirred for 12 hours. After cooling to room temperature, the reaction mixture was diluted with water (30 mL) , stirred for 30 minutes and filtered. The solid was washed with water (2 × 30 mL) and tetrahydrofuran (2 × 30 mL) and dried under vacuum to give the target compound 1i (490 mg, solid) with a yield of 71%.
MS m/z (ESI) : 364 [M+1]
Step 8
Methyl 6- (cyclopropanecarboxamido) -4- ( (2-methoxy-3- (1- (methyl-d3) -1H-1, 2, 4-triazol-3-yl) phenyl) amino) pyridazine-3-carboxylate (1j)
To a mixture of zinc 6-chloro-4- ( (2-methoxy-3- (1- (methyl-d3) -1H-1, 2, 4-triazol-3-yl) phenyl) amino) pyridazine-3-carboxylate 1i (490 mg, 1.15 mmol) , cyclopropanecarboxamide (300 mg, 3.45 mmol) , (2R) -1- [ (1R) -1- [bis (1, 1-dimethylethyl) phosphino] ethyl] -2- (dicyclohexylphosphino) ferrocene (63 mg, 0.115 mmol) , palladium acetate (25 mg, 0.0575 mmol) , toluene (9 mL) and acetonitrile (5 mL ) were added potassium carbonate (320 mg, 7.8 mmol) and 1, 8-diazabicycloundec-7-ene (180 mg, 1.5 mmol) sequentially. The resulting mixture was stirred at 80℃ for 72 hours under nitrogen. After cooling to room temperature, the solvent was removed under reduced pressure and the residue was purified by reversed phase prep-HPLC to give the target compound 1j (560 mg, solid) with a yield of 99%.
MS m/z (ESI) : 413 [M+1]
Step 9
6- (Cyclopropanecarboxamido) -4- ( (2-methoxy-3- (1- (methyl-d3) -1H-1, 2, 4-triazol-3-yl) phenyl) amino) -N- (methyl-d3) pyridazine-3-carboxamide (1)
A mixture of methyl 6- (cyclopropanecarboxamido) -4- ( (2-methoxy-3- (1- (methyl-d3) -1H-1, 2, 4-triazol-3-yl) phenyl) amino) pyridazine-3-carboxylate 1j (280 mg, 0.68 mmol) , deuterated methylamine hydrochloride (60 mg, 0.81 mmol) , 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (181 mg, 0.95 mmol) , 1-hydroxybenzotriazole (53 mg, 0.34 mmol) , acetonitrile (3 mL) , N-methylpyrrolidone and N-methylimidazole (41 mg, 0.5 mmol) was heated to 65℃ and stirred for 1 hour. After cooling to room temperature, the solvent was removed under reduced pressure, and the residue was purified by reversed phase prep-HPLC to give the target compound 1 (44 mg, solid) with a yield of 15%.
MS m/z (ESI) : 429 [M+1]
1H NMR (400 MHz, DMSO-d 6) δ11.32 (s, 1H) , 10.97 (s, 1H) , 9.13 (s, 1H) , 8.56 (s, 1H) , 8.15 (s, 1H) , 7.65 (dd, J = 7.8, 1.5 Hz, 1H) , 7.54 –7.46 (m, 1H) , 7.32 –7.22 (m, 1H) , 3.72 (s, 3H) , 2.12 –2.03 (m, 1H) , 0.88 –0.73 (m, 4H) .
Example 2. 6- (cyclopropanecarboxamido) -4- ( (2-methoxy-3- (1- (methyl-d 3) -1H-1, 2, 4-triazol-3-yl) phenyl) amino) -N-methylpyridazine-3-carboxamide (2)
Compound 2 was synthesized according to the methods for Example 1 except that methylamine hydrochloride (CH 3NH 2·HCl) was used in step 9 instead of deuterated methylamine hydrochloride (CD 3NH 2·HCl) .
MS m/z (ESI) : 426 [M+1]
1H NMR (400 MHz, DMSO-d 6) δ 11.32 (s, 1H) , 10.97 (s, 1H) , 9.22 –9.11 (m, 1H) , 8.56 (s, 1H) , 8.15 (s, 1H) , 7.66 (dd, J = 7.8, 1.5 Hz, 1H) , 7.51 (dd, J = 8.0, 1.5 Hz, 1H) , 7.31 –7.22 (m, 1H) , 3.72 (s, 3H) , 2.86 (d, J = 4.8 Hz, 3H) , 2.15 –2.01 (m, 1H) , 0.87 –0.75 (m, 4H) .
Example 3. 6- (cyclopropanecarboxamido) -4- ( (2- (methoxy-d 3) -3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) -N-methylpyridazine-3-carboxamide (3)
Figure PCTCN2021079752-appb-000006
Step 1
N-methylformohydrazide
To a solution of methylhydrazine sulfate 3a (40 g, 277 mmol) in methanol (250 mL) at room temperature was added sodium methoxide (100 g, 554 mmol) . The resulting mixture was stirred for 24 hours and filtered. The filtrate was then added with methyl formate (17 g,  277 mmol) and stirred at room temperature for 18 hours. The solvent was removed under reduced pressure to give the target compound 5b (22 g, crude) . The crude product was directly used in the next step without further purification.
MS m/z (ESI) : 75 [M+1]
Step2
5-chloro-2- (methoxy-d3) benzonitrile (3d)
To a mixture of 5-chloro-2-hydroxybenzonitrile 3c (4 g, 26 mmol) , potassium carbonate (7.3 g, 53 mmol) and N, N-dimethylformamide (30 mL) was added deuterated methyl iodide at room temperature (10 g, 78 mmol) . The resulting mixture was heated to 70℃ and stirred for 12 hours. After cooling to room temperature, the reaction mixture was diluted with water (200 mL) and extracted with ethyl acetate (2 × 100 mL) . The combined organic phases were washed with saturated brine (2 x 100 mL) , dried over anhydrous sodium sulfate, filtered and concentrated to dryness under reduced pressure to give the target compound 3d (4.3 g, solid) with a yield of 97%.
MS m/z (ESI) : 171 [M+1]
Step 3
3- (5-chloro-2- (methoxy-d3) phenyl) -1-methyl-1H-1, 2, 4-triazole sulfate (3e)
To a solution of potassium tert-butoxide (11.3 g, 101 mmol) in tetrahydrofuran (30 mL) at 0℃ were added 5-chloro-2- (methoxy-d3) benzonitrile 3d (4.3 g, 25.3 mmol) and a solution of N-methylformylhydrazide (4.1 g, 58 mmol) in tetrahydrofuran (20 mL) sequentially. After stirring at room temperature for 12 hours, the mixture was added with water (50 mL) , heated to 40℃ and stirred for 40 minutes. After cooling to room temperature, the organic phase was separated, washed with saturated brine (40 mL) , dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The residue was dissolved in ethyl acetate (40 mL) . The resulting solution was slowly added with concentrated sulfuric acid (5 g) at room temperature and stirred for 12 hours. The mixture was then filtered and dried to give the target compound 3e (5.6 g, solid) with a yield of 83%.
MS m/z (ESI) : 227 [M+1]
Step 4
3- (5-Chloro-2- (methoxy-d 3) -3-nitrophenyl) -1-methyl-1H-1, 2, 4-triazole (3f)
To a solution of 3- (5-chloro-2- (methoxy-d3) phenyl) -1-methyl-1H-1, 2, 4-triazole sulfate 3e (5.6 g, 24.7 mmol) in sulfuric acid (25 g) was added nitric acid (2 g) at 0℃. The resulting solution was gradually warmed to room temperature, stirred for 12 hours, and then cooled to 0℃ again. Water (67 mL) and methanol (47 mL) were added to the solution at 0℃, then warmed to room temperature and stirred for 1 hour. The solution was heated to 40℃and to which ammonium hydroxide (42 mL) was added. The solution was cooled to 20℃, stirred for 2 hours, and then filtered. The solid was washed with water (2 × 30 mL) and dried under vacuum to give the target compound 3f (3.37 g, solid) with a yield of 50%.
MS m/z (ESI) : 272 [M+1]
Step 5
2- (Methoxy-d 3) -3- (1-methyl-1H-1, 2, 4-triazol-3-yl) aniline (3g)
To a solution of 3- (5-chloro-2- (methoxy-d 3) -3-nitrophenyl) -1-methyl-1H-1, 2, 4-triazole 3f (3.37 g, 12.25 mmol) in methanol (10 mL) were added 10%palladium on carbon (400 mg) and sodium bicarbonate (1.6 g, 25 mmol) . The resulting mixture was stirred under a hydrogen atmosphere for 12 hours and then filtered. The filtrate was concentrated to dryness under reduced pressure and the residue was dissolved in dichloromethane (25 mL) . The resulting mixture was filtered, and the filtrate was concentrated to dryness under reduced pressure to give the target compound 3g (2.35 g, solid) with a yield of 92%.
MS m/z (ESI) : 208 [M+1]
Step 6
Zinc 6-chloro-4- ( (2- (methoxy-d 3) -3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) pyridazine-3-carboxylate (3h)
To a mixture of lithium 4, 6-dichloropyridazine-3-carboxylate 1h (3 g, 15.1 mmol) , 2- (methoxy-d 3) -3- (1-methyl-1H-1, 2, 4-triazol-3-yl) aniline 3g (2.35 g, 11.3 mmol) , isopropanol (2.5 mL) and water (18 mL) at room temperature was added zinc acetate (2.5 g, 13.6 mmol) . The mixture was heated to 65℃ and stirred for 12 hours. After cooling to room temperature, the mixture was diluted with water (20 mL) , stirred for 30 minutes and filtered. The solid was washed with water (2 × 30 mL) and tetrahydrofuran (2 × 30 mL) and dried under vacuum to give the target compound 3h (4.3 g, solid) with a yield of 100%.
MS m/z (ESI) : 364 [M+1]
Step 7
Methyl 6- (cyclopropanecarboxamido) -4- ( (2- (methoxy-d 3) -3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) pyridazine-3-carboxylate (3i)
A mixture of zinc 6-chloro-4- ( (2- (methoxy-d 3) -3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) pyridazine-3-carboxylate 3h (4.3 g, 11 mmol) , cyclopropanecarboxamide (2.4 g, 27.56 mmol) , (2R) -1- [ (1R) -1- [bis (1, 1-dimethylethyl) phosphino] ethyl] -2- (dicyclohexylphosphino) ferrocene (600 mg, 1.1 mmol) , palladium acetate (125 mg, 0.55 mmol) , toluene (34 mL) , acetonitrile (17 mL) , potassium carbonate (3.1 g, 22 mmol) and 1, 8-diazabicycloundec-7-ene (1.7 g, 11 mmol) was heated to 80℃ under a nitrogen atmosphere and stirred for 12 hours. After cooling to room temperature, the mixture was added with aqueous acetic acid (50%, 17 mL) and glacial acetic acid (40 mL) sequentially. After stirring at room temperature for 1 hour, the resulting homogenous mixture was washed with petroleum ether (2 × 20 mL) . Water (50 mL) was added, and the mixture was aged at room temperature for 4 hours and then filtered. The solid was washed with an acetonitrile aqueous solution (50%, 20 mL) and acetonitrile (20 mL) sequentially, and then dried under vacuum at 65℃ for 30 minutes to give the target product 3i (3 g, solid) with a yield of 66%.
MS m/z (ESI) : 413 [M+1]
Step 8
6- (Cyclopropanecarboxamido) -4- ( (2- (methoxy-d 3) -3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) -N-methylpyridazine-3-carboxamide
A mixture of methyl 6- (cyclopropanecarboxamido) -4- ( (2- (methoxy-d 3) -3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) pyridazine-3-carboxylate 3i (1.5 g, 3.38 mmol) , methylamine hydrochloride (280 mg, 4.0 mmol) , 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (900 mg, 4.73 mmol) , 1-hydroxybenzotriazole (230 mg, 1.7 mmol) , acetonitrile (3 mL) , N-methylpyrrolidone (3 mL) and N-methylimidazole (200 mg, 2.4 mmol) was heated to 65℃ and stirred for 12 hours. After the reaction was completed, the reaction was quenched with water (1.5 mL) and acetonitrile (4.5 mL) . The resulting mixture was aged at 65℃ for 1 hour and at 0℃ for 3 hours, and then filtered. The solid was sequentially washed with an acetonitrile aqueous solution (33%, 4.5 mL) and acetonitrile (4.5 mL) , and dried under vacuum at 65℃ for 8 hours to give the target product 3 (811 mg, solid) with a yield of 56%.
MS m/z (ESI) : 426 [M+1]
1H NMR (400 MHz, DMSO-d 6) δ 11.32 (s, 1H) , 10.97 (s, 1H) , 9.24 –9.08 (m, 1H) , 8.57 (s, 1H) , 8.15 (s, 1H) , 7.66 (dd, J = 7.8, 1.5 Hz, 1H) , 7.52 (dd, J = 7.9, 1.5 Hz, 1H) , 7.33 –7.20 (m, 1H) , 3.96 (s, 3H) , 2.87 (d, J = 4.8 Hz, 3H) , 2.14 –2.01 (m, 1H) , 0.91 –0.73 (m, 4H) .
Compound 3 could be converted into an HCl salt via the following procedure:
To a reaction flask were added 3 (5.00 g, 11.752 mmol) and DMSO (27 mL) . The resulting mixture was heated to 50~55℃ while stirring until the solid was fully dissolved to a homogenous solution. The mixture was then added with concentrated hydrochloric acid (36%~38%, 1.18 g) , followed by water (3 mL) and crystal seed (25 mg) . The resulting mixture was stirred at 50~55℃ for 0.5 h, cooled to 35~40℃, added with isopropanol (60 mL) dropwise over 0.5~1.0 h, and stirred at 35~40℃ for 0.5 h. The mixture was slowly cooled to 20~25℃ over 1 h, stirred overnight, and then filtered. The filtered cake was washed with isopropanol (2 × 15 mL) and dried under reduced pressure at 65℃ overnight to give a mono-HCl salt of 3 (4.5 g, solid) with a yield of 83%.
MS m/z (ESI) : 426 [M+1]
1H NMR (400 MHz, DMSO-d 6) δ 13.72 (brs, 1H) , 12.13 (s, 1H) , 11.40 (s, 1H) , 9.22 (q, J = 4.5 Hz, 1H) , 8.87 (s, 1H) , 8.00 (s, 1H) , 7.78 (dd, J = 7.9, 1.5 Hz, 1H) , 7.61 (dd, J = 8.0, 1.4 Hz, 1H) , 7.35 (t, J = 7.9 Hz, 1H) , 4.01 (s, 3H) , 2.89 (d, J = 4.8 Hz, 3H) , 2.14 –2.00 (m, 1H) , 1.00 –0.84 (m, 4H) .
Example 4. 6- (cyclopropanecarboxamido) -4- ( (2- (methoxy-d 3) -3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) -N- (methyl-d 3) pyridazine-3-carboxamide (4)
Compound 4 was synthesized according to the methods for Example 3 except that deuterated methylamine hydrochloride (CD 3NH 2·HCl) was used in step 8 instead of methylamine hydrochloride (CH 3NH 2·HCl) .
MS m/z (ESI) : 429 [M+1]
1H NMR (400 MHz, DMSO-d 6) δ11.32 (s, 1H) , 10.98 (s, 1H) , 9.14 (s, 1H) , 8.57 (s, 1H) , 8.15 (s, 1H) , 7.66 (dd, J = 7.8, 1.6 Hz, 1H) , 7.52 (dd, J = 7.9, 1.5 Hz, 1H) , 7.32 –7.21 (m, 1H) , 3.96 (s, 3H) , 2.14 –2.03 (m, 1H) , 0.89 –0.75 (m, 4H) .
Example 5. (S) -6- (2, 2-difluorocyclopropane-1-carboxamido) -4- ( (2-methoxy-3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) -N- (methyl-d 3) pyridazine-3-carboxamide (5)
Figure PCTCN2021079752-appb-000007
Step 1
(S) -N- (2, 4-Dimethoxybenzyl) -2, 2-difluorocyclopropane-1-carboxamide (5b)
To a mixture of (S) -2, 2-difluorocyclopropane-1-carboxylic acid 5a (1.5 g, 12.3 mmol) , HATU (5.7 g, 15 mmol) , diisopropylethylamine (4.8 g, 37 mmol) and N, N-dimethylformamide (15 mL) was added 2, 4-dimethoxybenzylamine (4.0 g, 24.4 mmol) . After stirring at room temperature for 3 hours, the solvent was removed under reduced pressure, and the residue was purified by reversed phase prep-HPLC to give the target compound 5b (4.4 g, solid) .
MS m/z (ESI) : 272 [M+1]
Step 2
(S) -2, 2-Difluorocyclopropane-1-carboxamide (5c)
A solution of (S) -N- (2, 4-dimethoxybenzyl) -2, 2-difluorocyclopropane-1-carboxamide 5b in trifluoroacetic acid (10 mL) was heated to 70℃ and stirred for 1 hour. After cooling to room temperature, the mixture was concentrated to dryness and the residue was purified by silica gel column chromatography (dichloromethane/methanol from 100/0 to 9/1) to give the target compound 5d (1.4 g, solid) with a yield of 93%in two steps.
MS m/z (ESI) : 122 [M+1]
Step 3
3- (5-Chloro-2-methoxyphenyl) -1-methyl-1H-1, 2, 4-triazole (5d)
To a solution of potassium tert-butoxide (34 g, 290 mmol) in tetrahydrofuran (200 mL) at 0℃ were added 5-chloro-2-methoxy-benzonitrile (20 g, 120 mmol) and methylformyl hydrazide 3b (22 g, crude) sequentially. After stirring at room temperature for 72 hours, water (500 mL) was added, and the mixture was extracted with ethyl acetate (3 × 300 mL) . The organic phases are combined, washed with saturated brine (2 × 300 mL) , dried over anhydrous sodium sulfate, filtered and concentrated to dryness under reduced pressure to give the target compound 5d (17.1 g, solid) with a yield of 88%.
MS m/z (ESI) : 224 [M+1]
Step 4
3- (5-Chloro-2-methoxy-3-nitrophenyl) -1-methyl-1H-1, 2, 4-triazole (5e)
To a solution of 3- (5-chloro-2-methoxyphenyl) -1-methyl-1H-1, 2, 4-triazole 5d (16.13 g, 72 mmol) in concentrated sulfuric acid (72 g) was added concentrated nitric acid (8.5 g, 87 mmol) at 0℃. After stirring for 2 hours, the resulting solution was added to a mixture of water (250 g) and methanol (150 g) at 0℃. The mixture was then adjusted to pH> 7 with ammonium hydroxide and filtered. The solid was washed with water (2 x 100 mL) and purified by silica gel column chromatography (petroleum ether/ethyl acetate from 100/0 to 3/7) to give the target product 5e (17.1 g, solid) with a yield of 88%.
MS m/z (ESI) : 269 [M+1]
Step 5
2-Methoxy-3- (1-methyl-1H-1, 2, 4-triazol-3-yl) aniline (5f) 
To a solution of 3- (5-chloro-2-methoxyphenyl) -1-methyl-1H-1, 2, 4-triazole 5e (17 g, 63 mmol) in methanol were added 10%palladium on carbon (3 g) and sodium bicarbonate (10.5 g, 126 mmol) . The mixture was stirred under a hydrogen atmosphere for 5 hours and then filtered. The filtrate was concentrated to dryness under reduced pressure and the residue was purified by reversed phase prep-HPLC to give the target compound 5f (8.8 g, solid) with a yield of 68%.
MS m/z (ESI) : 205 [M+1]
Step 6
Zinc 6-chloro-4- ( (2-methoxy-3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) pyridazine-3-carboxylate (5g) 
To a mixture of lithium 4, 6-dichloropyridazine-3-carboxylate 1h (4.53 g, 22.87 mmol) , 2-methoxy-3- (1-methyl-1H-1, 2, 4-triazol-3-yl) aniline 5f (5.6 g, 27.44 mmol) , isopropanol (4.5 mL) and water (34 mL) was added zinc acetate (4.2 g, 22.87 mmol) . The resulting mixture was heated to 65℃ and stirred for 12 hours. After cooling to room temperature, the mixture was diluted with water (30 mL) , aged for 30 minutes and then filtered. The solid was washed with water (2 × 30 mL) and tetrahydrofuran (2 × 30 mL) and dried under vacuum to give the target compound 5g (7.6 g, solid) with a yield of 93%.
MS m/z (ESI) : 361 [M+1]
Step 7
Zinc (S) -6- (2, 2-difluorocyclopropane-1-carboxamido) -4- ( (2-methoxy-3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) pyridazine-3-carboxylate (5h)
A mixture of zinc 6-chloro-4- ( (2-methoxy-3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) pyridazine-3-carboxylate 5g (1.6 g, 3.93 mmol) , (S) -2, 2-difluorocyclopropane-1-carboxamide 5c (1.2 g, 9.8 mmol) , (2R) -1- [ (1R) -1- [bis (1, 1-dimethylethyl) phosphino] ethyl] -2- (dicyclohexylphosphino) ferrocene (220 mg, 0.393 mmol) , palladium acetate (44 mg, 0.196 mmol) , toluene (18 mL) , acetonitrile (11 mL) , potassium carbonate (1.1 g, 7.8 mmol) and 1, 8-diazabicycloundec-7-ene (600 mg, 3.93 mmol) was stirred at 80℃ for 72 hours under a nitrogen atmosphere. After cooling to room temperature, the mixture was diluted with acetic acid (27 mL) and water (9 mL) , and the resulting solution was washed with petroleum ether (2 × 30 mL) . Water (50 mL) was then added and left for 3 hours. The mixture was filtered and the solid was dried under vacuum to give the target compound 5h (1.1 g, solid) with a yield of 62%.
MS m/z (ESI) : 446 [M+1]
Step 8
(S) -6- (2, 2-difluorocyclopropane-1-carboxamido) -4- ( (2-methoxy-3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) -N- (methyl-d 3) pyridazine-3-carboxamide
To a mixture of zinc (S) -6- (2, 2-difluorocyclopropane-1-carboxamido) -4- ( (2-methoxy-3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) pyridazine-3-carboxylate 5h (1.1 g, 2.46  mmol) , deuterated methylamine hydrochloride (210 mg, 2.95 mmol) , 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (660 mg, 3.44 mmol) , 1-hydroxybenzotriazole (190 mg, 1.23 mmol) , acetonitrile (6 mL) and N-methylpyrrolidone (6 mL) was added N-methylimidazole (141 mg, 1.72 mmol) . The reaction mixture was heated to 65℃ and stirred for 1 hour. After cooling to room temperature, the mixture was concentrated to dryness under reduced pressure and the residue was purified by reversed phase prep-HPLC to give the target compound 5 (420 mg, solid) with a yield of 37%.
MS m/z (ESI) : 462 [M+1]
1H NMR (400 MHz, DMSO-d 6) δ 11.52 (s, 1H) , 11.01 (s, 1H) , 9.18 (s, 1H) , 8.58 (s, 1H) , 8.09 (s, 1H) , 7.67 (dd, J = 7.8, 1.6 Hz, 1H) , 7.53 (dd, J = 7.9, 1.5 Hz, 1H) , 7.33 –7.23 (m, 1H) , 3.95 (s, 3H) , 3.73 (s, 3H) , 3.13 –2.97 (m, 1H) , 2.10 –1.95 (m, 2H) .
Example 6. (S) -6- (2, 2-difluorocyclopropane-1-carboxamido) -4- ( (2-methoxy-3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) -N-methylpyridazine-3-carboxamide (6)
Compound 6 was synthesized according to the procedures of Example 5 except deuterated methylamine hydrochloride (CD 3NH 2·HCl) in step 8 was replaced by methylamine hydrochloride (CH 3NH 2·HCl) .
MS m/z (ESI) : 459 [M+1]
1H NMR (400 MHz, DMSO-d 6) δ 11.52 (s, 1H) , 11.01 (s, 1H) , 9.20 (d, J = 4.8 Hz, 1H) , 8.56 (s, 1H) , 8.09 (s, 1H) , 7.67 (dd, J = 7.8, 1.6 Hz, 1H) , 7.52 (dd, J = 8.0, 1.5 Hz, 1H) , 7.33 –7.23 (m, 1H) , 3.95 (s, 3H) , 3.73 (s, 3H) , 3.11 –2.98 (m, 1H) , 2.86 (d, J = 4.8 Hz, 3H) , 2.10 –1.94 (m, 2H) .
Example 7. (R) -6- (2, 2-difluorocyclopropane-1-carboxamido) -4- ( (2-methoxy-3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) -N- (methyl-d3) pyridazine-3-carboxamide (7)
Compound 7 was synthesized according to the procedures of Example 5 except (S) -2, 2-difluorocyclopropane-1-carboxylic acid (5a) in step 1 was replaced by (R) -2, 2-difluorocyclopropane-1-carboxylic acid.
MS m/z (ESI) : 462 [M+1]
1H NMR (400 MHz, DMSO-d 6) δ 11.52 (s, 1H) , 11.01 (s, 1H) , 9.18 (s, 1H) , 8.56 (s, 1H) , 8.09 (s, 1H) , 7.67 (dd, J = 7.8, 1.6 Hz, 1H) , 7.53 (dd, J = 7.9, 1.5 Hz, 1H) , 7.28 (m, 1H) , 3.95 (s, 2H) , 3.73 (s, 3H) , 3.11-2.99 (m, 1H) , 2.10 –1.95 (m, 2H) .
Example 8. (R) -6- (2, 2-difluorocyclopropane-1-carboxamido) -4- ( (2-methoxy-3- (1-methyl-1H-1, 2, 4-triazol-3-yl) phenyl) amino) -N-methylpyridazine-3-carboxamide (8) 
Compound 8 was synthesized according to the procedures of Example 5 except (i) (S) -2, 2-difluorocyclopropane-1-carboxylic acid (5a) in step 1 was replaced by (R) -2, 2-difluorocyclopropane-1-carboxylic acid, and (ii) deuterated methylamine hydrochloride (CD 3NH 2·HCl) in step 8 was replaced by methylamine hydrochloride (CH 3NH 2·HCl) .
MS m/z (ESI) : 459 [M+1]
1H NMR (400 MHz, DMSO-d 6) δ 11.52 (s, 1H) , 11.01 (s, 1H) , 9.27 –9.16 (m, 1H) , 8.56 (s, 1H) , 8.09 (s, 1H) , 7.67 (dd, J = 7.8, 1.6 Hz, 1H) , 7.52 (dd, J = 8.0, 1.5 Hz, 1H) , 7.33 –7.24 (m, 1H) , 3.95 (s, 2H) , 3.73 (s, 2H) , 3.11 –2.99 (m, 1H) , 2.86 (d, J = 4.8 Hz, 3H) , 2.08 –1.95 (m, 2H) .
Example 9. JAK2 Kinase Domain Enzymatic Activity Assay
The effect of the compounds of the present invention on the enzymatic activity of recombinant JAK2 kinase domain (JH1) is assessed by detecting the substrate phosphorylation level in a kinase reaction using the HTRF kinase assay detection kit (Cisbio, Cat. No. 62TK0PEC) (Table 1) .
The experimental method is generally described below:
A reaction buffer containing the following components: an enzyme buffer (1×) , 5 mM MgCl 2, 1 mM DTT and 0.01%Brij35 from the kit; a human recombinant JAK2 kinase domain protein (Carna Biosciences, Cat. No. 08-045) diluted to a solution of 0.15 ng/μL with the reaction buffer; a substrate reaction solution containing 2.5 μM ATP and a biotinylated tyrosine kinase substrate diluted to 0.25 μM with the reaction buffer; a detection solution containing 0.1 ng/μL Eu 3+ labeled cage antibody (Cisbio, Cat. No. 61T66KLB) and 12.5 nM streptavidin-labeled XL665 (Cisbio, Cat. No. 610SAXLB) in the reaction buffer.
The test compound is dissolved to 1 mM in DMSO, followed by a serial 4-fold dilution with DMSO to a minimum concentration of 61 nM. Each concentration is further diluted 40-fold with the reaction buffer.
To a 384-well assay plate (Corning, Cat. No. 3674) are added 4 μL of compound solution and 2 μL of JAK2 kinase solution. The mixture is incubated at room temperature for 15 minutes, and then added with 4 μL of the substrate reaction solution. After further incubation at room temperature for 30 minutes, the reaction mixture is added with an equal volume of 10 μL detection solution and allowed to stand at room temperature for 30 minutes.  An Envision plate reader (Perkin Elmer) is then used to measure the progress of the reaction at 620 nm and 665 nm. The ratio of absorbances at 665 nm and 620 nm is positively correlated with the degree of substrate phosphorylation, therefore the activity of JAK2 kinase is detected. In this experiment, the group without JAK2 kinase protein is the 100%inhibition group, and the group with JAK2 kinase protein but not the test compound is the 0%inhibition group. The percentage of inhibition on JAK2 kinase activity by the test compound is calculated using the following formula:
Percentage of inhibition = 100 -100 * (ratio compound -ratio 100%inhibition) / (ratio 0%inhibition -ratio 100%inhibition)
The IC 50 value of the test compound is calculated from 8 concentration points using the XLfit software (ID Business Solutions Ltd., UK) by the following formula:
Y = Bottom + (Top -Bottom) / (1+10^ ( (logIC 50 -X) × slope factor) )
Where Y is the percentage of inhibition, X is the logarithm of the concentration of the test compound, Bottom is the bottom plateau value of the S-shaped curve, Top is the top plateau value of the S-shaped curve, and slope factor is the slope coefficient of the curve.
Example 10. TYK2 Kinase Domain Enzymatic Activity Assay
The effect of the compounds of the present invention on the enzymatic activity of recombinant TYK2 kinase domain (JH1) is assessed by detecting the substrate phosphorylation level in a kinase reaction using the HTRF kinase assay detection kit (Cisbio, Cat. No. 62TK0PEC) (Table 1) .
The experimental method is generally described below:
A reaction buffer containing the following components: an enzyme buffer (1×) , 5 mM MgCl 2, 1 mM DTT, 10 nM SEB (Cisbio, Cat. No. 61SEBALB) , 0.625 mM EGTA and 0.01%Brij35 from the kit; a human recombinant TYK2 kinase (JH1) domain protein (Carna Biosciences, Cat. No. 08-147) diluted to a solution of 0.25 ng/μL with the reaction buffer; a substrate reaction solution containing 11.25 μM ATP and a biotinylated tyrosine kinase substrate diluted to 0.5 μM with the reaction buffer; a detection solution containing 0.1 ng/μL Eu 3+ labeled cage antibody (Cisbio, Cat. No. 61T66KLB) and 25 nM streptavidin-labeled XL665 (Cisbio, Cat. No. 610SAXLB) in the reaction buffer.
The test compound is dissolved to 1 mM in DMSO, followed by a serial 4-fold dilution with DMSO to a minimum concentration of 61 nM. Each concentration is further diluted 40-fold with the reaction buffer.
To a 384-well assay plate (Corning, Cat. No. 3674) are added 4 μL of compound solution and 2 μL of TYK2 kinase solution. The mixture is incubated at room temperature for 15 minutes, and then added with 4 μL of the substrate reaction solution. After further incubation at room temperature for 40 minutes, the reaction mixture is added with an equal volume of 10 μL detection solution and allowed to stand at room temperature for 30 minutes. An Envision plate reader (Perkin Elmer) is then used to measure the progress of the reaction at 620 nm and 665 nm. The ratio of absorbances at 665 nm and 620 nm is positively correlated with the degree of substrate phosphorylation, therefore the activity of TYK2 kinase is detected. In this experiment, the group without TYK2 kinase protein is the 100%inhibition group, and the group with TYK2 kinase protein but not the test compound is the 0%inhibition group. The percentage of inhibition on TYK2 kinase activity by the test compound is calculated using the following formula:
Percentage of inhibition = 100 -100 * (ratio compound -ratio 100%inhibition) / (ratio 0%inhibition -ratio 100%inhibition)
The IC 50 value of the test compound is calculated from 8 concentration points using the XLfit software (ID Business Solutions Ltd., UK) by the following formula:
Y = Bottom + (Top -Bottom) / (1+10^ ( (logIC 50 -X) × slope factor) )
Where Y is the percentage of inhibition, X is the logarithm of the concentration of the test compound, Bottom is the bottom plateau value of the S-shaped curve, Top is the top plateau value of the S-shaped curve, and slope factor is the slope coefficient of the curve.
Example 11. TYK2 Pseudokinase Domain Binding Assay
The binding of the compounds of the present invention to TYK2 pseudokinase domain (JH2) is determined by using a time-resolved fluorescence energy transfer (TR-FRET) biochemical assay through competition with a commercial fluorescein-labeled probe (Alexa-Fluor 647-conjugated kinase tracer 178) (Table 1) .
The experimental method is generally described below:
A binding buffer contains 20 mM Hepes pH 7.5, 150 mM NaCl, 10 mM MgCl 2, 0.015%Brij35, 2 mM DTT, 0.625 mM EGTA and 100 mM KF. The JH2 domain of TYK2 (amino acids 556-871 within the full-length protein) is expressed and purified by at Tsinghua University protein purification and identification platform. The test compound is dissolved to 0.1 mM in DMSO, followed by a serial 4-fold dilution with DMSO to a minimum concentration of 61 nM. Each concentration is further diluted 40-fold with the reaction buffer.
To a 384-well assay plate (Corning, Cat. No. 4512) are added 5 μL of compound solution and 5 μL of TYK2 JH2 domain solution (160 nM) . The mixture is incubated at room temperature for 30 minutes, and then added with 10 μL of a mixture of fluorescein-labeled probe (ThermoFisher, Cat. No. PV5593) (20 nM) and GST-Europium (Eu) -labeled antibody (Cisbio, Cat. No. 61GSTKLA) (40 ng/mL) . After further incubation at room temperature for 30 minutes, the HTRF signal (ratio of fluorescence intensity at the emission wavelength of 615 nm and 665 nm for the fluorescein acceptor and the Europium donor, respectively) is measured on an Envision plate reader (Perkin Elmer) . The percentage of inhibition is calculated by comparing to a positive control without the test compound and a negative control without protein according to the following formula:
%of inhibition = 100-100* (signal compound -signal negative control) / (signal positive control -signal negative control)
The IC 50 value of the test compound is calculated from 8 concentration points using the XLfit software (ID Business Solutions Ltd., UK) by the following formula:
Y = Bottom + (Top -Bottom) / (1+10^ ( (logIC 50 -X) × slope factor) )
Where Y is the percentage of inhibition, X is the logarithm of the concentration of the test compound, Bottom is the bottom plateau value of the S-shaped curve, Top is the top plateau value of the S-shaped curve, and slope factor is the slope coefficient of the curve.
Table 1
Figure PCTCN2021079752-appb-000008
The compounds of the present invention have weak or low inhibiting activity toward the kinase domains of JAK2 or TYK2. Table 1 shows that Compounds 2, 3, 4, 7, and 8 had IC 50 > 10 μM for direct inhibition of the kinase activity, whereas the Reference compound had a lower IC 50 of 2.9 μM. The test compounds and the reference compounds all had strong binding toward TYK2 JH2 (IC 50 in the nM range)
Example 12. Inhibition of IL-12-Induced IFN-γ Secretion in NK92 Cells
The effect of the compounds of the present invention on IFN-γ secretion induced by TYK2 in NK92 cells is evaluated by an enzyme-linked immunosorbent assay (ELISA) (Table 2) .
IL-12 receptor is mainly expressed in activated T-cells, NK cells (NK92 is a NK cell line) , DC cells, and B-cells. When binding to IL-12, it activates JAK2/TYK2 signal transduction pathway within NK cells and T lymphocytes, thereby inducing secretion of IFN-γ.
The experimental method is generally described below:
The test compound is dissolved to 2.5 mM in DMSO, followed by a serial 4-fold dilution with DMSO to a minimum concentration of 0.31 μM. Each concentration is further diluted 50-fold with an FBS-free MEMα medium (Gibco, Cat. No. 12561-056) .
NK92 cells (Nanjing Cobioer, Cat. No. CBP60980) are cultured in a complete MEMαmedium containing 12.5%FBS (Ausbian, Cat. No. VS500T) , 12.5%horse serum (Gibco, Cat. No. 16050-122) , 0.02 mM folic acid (Sigma, Cat No. F8758) , 0.2 mM inositol (Sigma, Cat No. 17850) , 0.55 mM β-mercaptoethanol (Gibco, Cat No. 21985-023) , 200 U/mL IL-2 (R&D Systems, Cat No. 202-1L) , and 100 U/mL penicillin (ThermoFisher, Cat No. 15140122) . When covering 80-90%of the culture container surface, the cells are dispersed and plated on a 96-well plate (ThermoFisher, Cat No. 167425) with 100,000 cells per well (80 μL of the complete MEMα medium without IL-2) . The 96-well plate is then incubated overnight in a 37℃/5%CO 2 incubator.
After overnight incubation, 10 μL of the test compound and 10 μL of 50 ng/mL IL-12 (R &D Systems, Cat. No. 219-1L) are added to each well and mix gently, and the 96-well plate is incubated in the 37℃/5%CO 2 incubator for additional 24 hours. The plate is centrifuged at 800 rpm for 10 minutes at room temperature and 50 μL of the supernatant from each well is transferred to another 96-well plate (Sigma, Cat No. CLS3695) coated with anti-IFN-γ antibody. The amount of IFN-γ secretion is detected following the instruction from the  Human IFN-gamma DuoSet ELISA kit (R &D Systems, Cat No. DY285B) . In the experiment, the group with IL-12 and the test compound being replaced with the MEMαmedium is the non-stimulated control group (100%inhibition) , and the group with IL-12 and 0.2%DMSO is the stimulated group (0%inhibition) . The percentage of inhibition on IL-12 induced IFN-γ secretion in NK-92 cells by the test compound is calculated using the following formula:
Percentage of inhibition = 100 -100 * (signal compound -signal non-stimulated control) / (signal stimulated control -signal non-stimulated control)
The IC 50 value of the test compound is calculated from 8 concentration points using the XLfit software (ID Business Solutions Ltd., UK) by the following formula:
Y = Bottom + (Top -Bottom) / (1+10^ ( (logIC 50 -X) × slope factor) )
Where Y is the percentage of inhibition, X is the logarithm of the concentration of the test compound, Bottom is the bottom plateau value of the S-shaped curve, Top is the top plateau value of the S-shaped curve, and slope factor is the slope coefficient of the curve.
Table 2
Figure PCTCN2021079752-appb-000009
The compounds of the present invention had significant inhibitory effect on the secretion of IFN-γ induced by TYK2 in NK92 cells.
Example 13. In vivo Rat PK Determination
The pharmacokinetics of Compound 3 of the present invention and the reference compound BMS-986165 were evaluated. Compound 3 has an OCD 3 on a benzene ring, whereas the reference compound has an CD 3 on an amide moiety. Methyl group is typically labile in vivo, subject to hydrolysis by amidase in the case of methylamide and to oxidative demethylation by CYPs in the case of methoxy and methyltriazole. Substituting methyl with tri-deuterated methyl improves the bioavailability and in vivo exposure of the compound and provides a better efficacy of the compound under the same dose.
Compound 3 and the reference compound in a 0.5 mg/mL solution containing 5%N, N-dimethylacetamide + 20%solutol + 75%saline were orally administered to three male Sprague Dawley rats at a dose of 5 mg/kg. Blood samples were collected at 0.25, 0.5, 1, 2, 4, 8 and 24 hours after administration. The concentrations of the compound in the plasma were quantified by LC-MS/MS using an API-4500 mass spectrometer. The limit of quantification (LOQ) of analysis was 1 ng/mL. The pharmacokinetic (PK) parameters were calculated by the non-compartmental method using WinNonlin and are present in Table 3. The results show that Compound 3 of the present invention had better in vivo exposures than the reference compound.
Table 3
Figure PCTCN2021079752-appb-000010
Example 14. In vivo Efficacy Evaluation in the Anti-CD40 Antibody-Induced Colitis Animal Model
The female CB17-Scid mice (8-10 weeks old, 18-20 g) from Beijing Vital River laboratory were randomly divided into 5 groups (n=8 per group) . On Day 0, colitis was induced in mice each with a single intraperitoneal injection of 100 μg of FGK4.5 anti-CD40 mAb (BioXCell, Cat. No. EB0016-2) in PBS. Starting from Day 0 through 7, mice in the treatment groups were orally dosed with 0, 1.5, 5, 15 mg/kg of  Compound  3 or 5 mg/kg of  BMS-986165 in the vehicle of DMSO/solutol/PEG-400 (10: 5: 30) twice daily, while mice in the vehicle group were orally dosed with the above-mentioned vehicle. On a daily basis, mice were weighed and monitored for signs of colitis including body weight loss and the accompanying loose stools and diarrhea. On Day 8, all animals were euthanized. Spleen tissues were collected and weighed. The results show that Compound 3 at dosages 1.5mg/kg, 5 mg/kg, and 15 mg/kg and the reference compound at 5 mg/kg significantly protected mice from colitis in preventing body weight loss (FIG. 2, Table 4) and spleen enlargement (Table 4) as comparing to mice in the vehicle group.
Table 4
Figure PCTCN2021079752-appb-000011
*The relative change in body weight (RCBW) is calculated according to the formula of RCBW (%) = (BWx –BW0) /BW0×100%, where BWx is the mean body weight on Day x and BW0 is the mean body weight on Day 0. SEM: standard error of the mean.
It is to be understood that the foregoing describes preferred embodiments of the present invention and that modifications may be made therein without departing from the scope of the present invention as set forth in the claims.

Claims (8)

  1. Compound 3 or a pharmaceutically acceptable salt thereof,
    Figure PCTCN2021079752-appb-100001
  2. Compound 2 or a pharmaceutically acceptable salt thereof,
    Figure PCTCN2021079752-appb-100002
  3. Compound 1 or a pharmaceutically acceptable salt thereof,
    Figure PCTCN2021079752-appb-100003
  4. Compound 4 or a pharmaceutically acceptable salt thereof,
    Figure PCTCN2021079752-appb-100004
    Figure PCTCN2021079752-appb-100005
  5. Compound 5 or a pharmaceutically acceptable salt thereof,
    Figure PCTCN2021079752-appb-100006
  6. Compound 6 or a pharmaceutically acceptable salt thereof,
    Figure PCTCN2021079752-appb-100007
  7. Compound 7 or a pharmaceutically acceptable salt thereof,
    Figure PCTCN2021079752-appb-100008
  8. Compound 8 or a pharmaceutically acceptable salt thereof,
    Figure PCTCN2021079752-appb-100009
PCT/CN2021/079752 2020-03-11 2021-03-09 Heterocyclic compounds for inhibiting tyk2 activities WO2021180072A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2021234496A AU2021234496A1 (en) 2020-03-11 2021-03-09 Heterocyclic compounds for inhibiting TYK2 activities
KR1020227035138A KR20220152303A (en) 2020-03-11 2021-03-09 Heterocyclic compounds for inhibiting TYK2 activity
MX2022011297A MX2022011297A (en) 2020-03-11 2021-03-09 Heterocyclic compounds for inhibiting tyk2 activities.
BR112022017440A BR112022017440A2 (en) 2020-03-11 2021-03-09 HETEROCYCLIC COMPOUNDS TO INHIBIT TYK2 ACTIVITIES
CA3170773A CA3170773A1 (en) 2020-03-11 2021-03-09 Heterocyclic compounds for inhibiting tyk2 activities
CN202180006278.8A CN114650990B (en) 2020-03-11 2021-03-09 Heterocyclic compounds for inhibiting TYK2 activity
EP21768449.7A EP4038063B1 (en) 2020-03-11 2021-03-09 Heterocyclic compounds for inhibiting tyk2 activities
JP2022554545A JP2023524361A (en) 2020-03-11 2021-03-09 Heterocyclic compounds that inhibit TYK2 activity
US17/736,866 US11578058B2 (en) 2020-03-11 2022-05-04 Heterocyclic compounds for inhibiting TYK2 activities

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062988317P 2020-03-11 2020-03-11
US62/988,317 2020-03-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/736,866 Continuation US11578058B2 (en) 2020-03-11 2022-05-04 Heterocyclic compounds for inhibiting TYK2 activities

Publications (1)

Publication Number Publication Date
WO2021180072A1 true WO2021180072A1 (en) 2021-09-16

Family

ID=77670450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079752 WO2021180072A1 (en) 2020-03-11 2021-03-09 Heterocyclic compounds for inhibiting tyk2 activities

Country Status (11)

Country Link
US (1) US11578058B2 (en)
EP (1) EP4038063B1 (en)
JP (1) JP2023524361A (en)
KR (1) KR20220152303A (en)
CN (1) CN114650990B (en)
AU (1) AU2021234496A1 (en)
BR (1) BR112022017440A2 (en)
CA (1) CA3170773A1 (en)
MX (1) MX2022011297A (en)
TW (1) TW202144335A (en)
WO (1) WO2021180072A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022233286A1 (en) * 2021-05-04 2022-11-10 上海喆邺生物科技有限公司 Nitrogen-containing heterocyclic pyridine compound
US11613548B2 (en) 2021-02-19 2023-03-28 Sudo Biosciences Limited Substituted pyridines, pyridazines, pyrimidines, and 1,2,4-triazines as TYK2 inhibitors
WO2023076161A1 (en) 2021-10-25 2023-05-04 Kymera Therapeutics, Inc. Tyk2 degraders and uses thereof
WO2023109954A1 (en) * 2021-12-16 2023-06-22 Lynk Pharmaceuticals Co. Ltd. Tyk2 inhibitors and compositions and methods thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014074661A1 (en) 2012-11-08 2014-05-15 Bristol-Myers Squibb Company AMIDE-SUBSTITUTED HETEROCYCLIC COMPOUNDS USEFUL AS MODULATORS OF IL-12, IL-23 AND/OR IFN ALPHα RESPONSES
CN106660960A (en) * 2013-11-07 2017-05-10 百时美施贵宝公司 Alkyl-amide-substituted pyridyl compounds useful as modulators of il-12, il-23 and/or ifnalpha responses
WO2020086616A1 (en) * 2018-10-22 2020-04-30 Fronthera U.S. Pharmaceuticals Llc Tyk2 inhibitors and uses thereof
CN111484480A (en) * 2019-01-29 2020-08-04 上海翰森生物医药科技有限公司 Polycyclic derivative inhibitor, preparation method and application thereof
WO2020156311A1 (en) * 2019-01-28 2020-08-06 江苏豪森药业集团有限公司 Pyridazine derivative inhibitor, and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106187910A (en) * 2016-07-07 2016-12-07 浙江大学 Pyridazine class derivant and its production and use
KR20200135425A (en) * 2018-03-22 2020-12-02 브리스톨-마이어스 스큅 컴퍼니 Heterocyclic compounds comprising pyridine useful as modulators of IL-12, IL-23 and/or IFN alpha reactions
CN110818641B (en) * 2018-08-07 2022-10-14 北京诺诚健华医药科技有限公司 Pyridazine-3-formamide compound, preparation method and application thereof in medicine and pharmacology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014074661A1 (en) 2012-11-08 2014-05-15 Bristol-Myers Squibb Company AMIDE-SUBSTITUTED HETEROCYCLIC COMPOUNDS USEFUL AS MODULATORS OF IL-12, IL-23 AND/OR IFN ALPHα RESPONSES
CN104884454A (en) * 2012-11-08 2015-09-02 百时美施贵宝公司 Amide-substituted heterocyclic compounds useful as modulators of IL-12, IL-23 and/or IFN alpha responses
CN106660960A (en) * 2013-11-07 2017-05-10 百时美施贵宝公司 Alkyl-amide-substituted pyridyl compounds useful as modulators of il-12, il-23 and/or ifnalpha responses
WO2020086616A1 (en) * 2018-10-22 2020-04-30 Fronthera U.S. Pharmaceuticals Llc Tyk2 inhibitors and uses thereof
WO2020156311A1 (en) * 2019-01-28 2020-08-06 江苏豪森药业集团有限公司 Pyridazine derivative inhibitor, and preparation method and application thereof
CN111484480A (en) * 2019-01-29 2020-08-04 上海翰森生物医药科技有限公司 Polycyclic derivative inhibitor, preparation method and application thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AKAHANE, BRITISH J. HAEMATOL., vol. 177, 2017, pages 271 - 82
ALICEA-VELAZQUEZ, CURR. DRUG TARGETS, vol. 12, 2011, pages 546 - 55
SANDA, CANCER DISC., vol. 3, 2013, pages 564 - 77
STAERK, J. BIOL. CHEM., vol. 280, 2015, pages 41893 - 99
STEPHEN T. WROBLESKI, RYAN MOSLIN, SHUQUN LIN, YANLEI ZHANG, STEVEN SPERGEL, JAMES KEMPSON, JOHN S. TOKARSKI, JOANN STRNAD, ADRIAN: "Highly Selective Inhibition of Tyrosine Kinase 2 (TYK2) for the Treatment of Autoimmune Diseases: Discovery of the Allosteric Inhibitor BMS-986165", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 62, no. 20, 24 October 2019 (2019-10-24), US, pages 1 - 23, XP055629848, ISSN: 0022-2623, DOI: 10.1021/acs.jmedchem.9b00444 *
WROBLESKI, J. MED. CHEM., vol. 62, 2019, pages 8973 - 95

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613548B2 (en) 2021-02-19 2023-03-28 Sudo Biosciences Limited Substituted pyridines, pyridazines, pyrimidines, and 1,2,4-triazines as TYK2 inhibitors
WO2022233286A1 (en) * 2021-05-04 2022-11-10 上海喆邺生物科技有限公司 Nitrogen-containing heterocyclic pyridine compound
WO2023076161A1 (en) 2021-10-25 2023-05-04 Kymera Therapeutics, Inc. Tyk2 degraders and uses thereof
WO2023109954A1 (en) * 2021-12-16 2023-06-22 Lynk Pharmaceuticals Co. Ltd. Tyk2 inhibitors and compositions and methods thereof

Also Published As

Publication number Publication date
AU2021234496A1 (en) 2022-10-20
EP4038063B1 (en) 2024-04-24
MX2022011297A (en) 2022-10-07
TW202144335A (en) 2021-12-01
CA3170773A1 (en) 2021-09-16
CN114650990B (en) 2023-02-03
US11578058B2 (en) 2023-02-14
EP4038063A1 (en) 2022-08-10
BR112022017440A2 (en) 2022-10-18
JP2023524361A (en) 2023-06-12
KR20220152303A (en) 2022-11-15
EP4038063A4 (en) 2022-11-23
US20220259184A1 (en) 2022-08-18
CN114650990A (en) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2021180072A1 (en) Heterocyclic compounds for inhibiting tyk2 activities
RU2493157C2 (en) PYRROLO[2,3-d]PYRIMIDINE DERIVATIVES
WO2017118277A1 (en) Crystalline form of btk kinase inhibitor and preparation method thereof
DK2020410T3 (en) Pyrido [2,3-d] pyrimidine derivatives, the preparation thereof and therapeutic use
JP6131272B2 (en) Benzhydrol-pyrazole derivatives having kinase inhibitory activity and uses thereof
WO2022037650A1 (en) Bridged bicyclic compounds as btk inhibitors
CN113825751A (en) Biphenyl derivative for blocking PD-1/PD-L1 interaction and preparation method and application thereof
WO2022111517A1 (en) Deuterium-modified thienopyridone compound
CN109280032B (en) Pyridazinone mother nucleus structure histone deacetylase inhibitor and preparation method and application thereof
EP2642987A1 (en) Diphenyl-amine derivatives: uses, process of synthesis and pharmaceutical compositions
WO2019223548A1 (en) 3-oxazolinone compound, preparation method therefor and pharmaceutical application thereof
CA3230542A1 (en) Novel ras inhibitors
CA3076276C (en) 2-substituted pyrazole amino-4-substituted amino-5-pyrimidine formamide compound, composition, and application thereof
JP2022516922A (en) Fluorine-containing substituted benzothiophene compounds and their pharmaceutical compositions and applications
EP3597639A1 (en) Deuterated benzimidazole compound and medicinal use thereof
CN114292243B (en) Triazole derivative or pharmaceutically acceptable salt thereof, and preparation method and application thereof
CN112209933B (en) BTK inhibitors containing 4-azacycloheptane
CN108904503B (en) Application of 6-chloro-5-nitro-2, 4-diaminopyrimidine in medicine for treating chronic granulocytic leukemia
WO2023173480A1 (en) Selective csf1r inhibitor and use thereof
US10472369B2 (en) Crystalline forms of (6-(1H-indazol-6-yl)-N-[4-(4-(4-morpholinyl)phenyl]imidazo[1,2-A]pyrazin-8-amine) methanesulfonate
WO2017088289A1 (en) 4,7-diamino-pyrido[2,3-d] pyrimidine derivative for use as jak inhibitor
WO2023030335A1 (en) Compound as tyk2/jak1 pseudokinase domain inhibitor, and synthesis and use methods
WO2019228442A1 (en) Jak3 selective inhibitor
WO2022233286A1 (en) Nitrogen-containing heterocyclic pyridine compound
JP2016132660A (en) Novel imidazopyrimidine and pharmaceutical application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021768449

Country of ref document: EP

Effective date: 20220506

ENP Entry into the national phase

Ref document number: 3170773

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022554545

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022017440

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227035138

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022017440

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220831

ENP Entry into the national phase

Ref document number: 2021234496

Country of ref document: AU

Date of ref document: 20210309

Kind code of ref document: A