WO2021170057A1 - 天线系统和接入网设备 - Google Patents
天线系统和接入网设备 Download PDFInfo
- Publication number
- WO2021170057A1 WO2021170057A1 PCT/CN2021/078009 CN2021078009W WO2021170057A1 WO 2021170057 A1 WO2021170057 A1 WO 2021170057A1 CN 2021078009 W CN2021078009 W CN 2021078009W WO 2021170057 A1 WO2021170057 A1 WO 2021170057A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bridge
- port
- module
- bridge module
- modules
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/521—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
- H01Q1/523—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
- H01Q3/40—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/54—Circuits using the same frequency for two directions of communication
- H04B1/58—Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
- H04B1/583—Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa using a bridge network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/0842—Weighted combining
- H04B7/086—Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/20—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
- H01Q21/205—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
Definitions
- the embodiments of the present application relate to the field of communication technologies, and in particular, to an antenna system and an access network device.
- base station antennas are selected reasonably according to actual conditions such as network coverage requirements, traffic distribution, anti-interference requirements, and network service quality.
- the power of the analog signal is first aggregated through the bridge network.
- the bridge network is mainly composed of four same-frequency combiners or 4M same-frequency combiners, and M is a positive integer.
- the first electric bridge sub-network includes two same-frequency combiners.
- the two same-frequency combiners in the first electric bridge sub-network respectively Connect the corresponding four or four groups of antennas, so that four input analog signals are input to the four input terminals of the two on-frequency combiners of the second electric bridge sub-network, then the input analog signals in the first electric bridge sub-network
- the four output terminals corresponding to the two same-frequency combiners can output four output analog signals corresponding to the four input analog signals to realize a four-input four-output antenna transmission system.
- a 4M input 4M output antenna transmission system is realized.
- the embodiments of the present application provide an antenna system and access network equipment, which are used to achieve antenna signal transmission requirements such as three inputs and three outputs, four inputs and four outputs, and five inputs and five outputs, thereby improving the practicability of the antenna system in practical applications. .
- the first aspect of the embodiments of the present application provides an antenna system.
- the antenna system includes a bridge network and an antenna module.
- the antenna module includes n antennas.
- the bridge network includes n bridge modules.
- the third port of the first bridge module is connected to the second port of the nth bridge module in the n bridge modules, and the third port of the ith bridge module in the n bridge modules is The port is connected to the second port of the i-1th bridge module among the n bridge modules, and the fourth port of the n bridge modules is respectively connected to the n antennas, and i is greater than or equal to 2 and less than or equal to An integer of n, n is an integer greater than or equal to 2;
- the first bridge module in the n bridge modules compares the first analog signal input at the first port of the first bridge module and the first
- the second analog signal input from the second port of the electric bridge module is subjected to the first weighting process to obtain the first component and the second component;
- the first electric bridge module outputs the
- the second analog signal of the second port of a bridge module The second analog signal of the second port of a bridge module; the first analog signal input by the kth bridge module of the n bridge modules to the first port of the kth bridge module and the kth bridge module
- the second analog signal input from the second port of each bridge module is subjected to the first weighting process to obtain the first component and the second component;
- the k-th bridge module outputs the The first component, input the second component at the third port of the k-th bridge module to the second port of the k-1th bridge module among the n bridge modules, and use the second component as the
- k is an integer greater than 1 and less than or equal to n.
- different bridge modules in the bridge network are connected by a ring connection, and the first analog signal input from the first port of each bridge module included in the bridge network has a corresponding first analog signal in each bridge module.
- the output signal output by the fourth port of the bridge module meets the antenna signal transmission requirements of three inputs and three outputs, four inputs and four outputs, and five inputs and five outputs.
- the antenna system of this embodiment realizes the power sharing of the antenna signals of the three sectors included in the base station, and the antenna signals of the three sectors are respectively input to the first ports of the three bridge modules, then the three The fourth ports of each bridge module respectively output the output signals corresponding to the antenna signals of the three sectors to achieve three inputs and three outputs, thereby improving the practicability of the antenna system in practical applications.
- S is a matrix of n*n
- D is a matrix of n*n
- e- i(x) is a complex exponential function based on the natural number e
- ⁇ 0 is the second port of the first bridge module of the bridge network and the first bridge
- ⁇ 1 is the second port of the second bridge module of the bridge network and the second port
- ⁇ n-1 is the second port of the nth bridge module of the bridge network and The wavelength range corresponding to the line length of the connection line of the third port of the bridge module connected to the second port of the nth bridge module, It is a matrix composed of the first analog signal of the first port of each of the n
- the relationship between the input signal of the first port of the bridge module and the output signal of the fourth port of the bridge module is provided.
- the antenna system further includes a control module; the control module is used to set the length of the connection line between the n bridge modules, and the length of the connection line between the n bridge modules The line length is used to control the proportional value of the output signal at the first port of the n bridge modules.
- the length of the connection line between the control module and the bridge module is used to realize the power distribution and sharing of the antenna signal.
- the antenna system further includes a digital signal processing module and a digital-to-analog conversion module, the digital signal processing module is connected to the first end of the digital-to-analog conversion module, and the second end of the digital-to-analog conversion module is connected to the Bridge network connection; the digital signal processing module is used to perform a second weighting process on the first multi-channel digital signal received by the digital signal processing module to obtain the second multi-channel digital signal, and the second weighting process is through the second weighting Realized by a matrix, the second weighting matrix is an n*m matrix, n is the number of bridge modules included in the antenna system, m is the number of signals included in the first multi-channel digital signal, and m is greater than 0 and An integer less than or equal to n; the second weighting matrix satisfies any of the following conditions: each column vector of the second weighting matrix is orthogonal; or, each column vector of the second weighting matrix and one or more of the first weighting matrix The row vectors are orthogonal; or,
- the digital signal processing module is used to perform the second weighting processing on the digital domain signal, and the signal power can be shared and allocated in the digital domain.
- the first multi-channel digital signal includes m-layer MIMO transmission signals; or, signals transmitted by m users; or, signals transmitted by m cells; or, signals transmitted in m beam directions .
- multiple types of digital signals are provided to realize power distribution and sharing of the multiple types of digital signals.
- each bridge module is an in-frequency combiner.
- a second aspect of the embodiments of the present application provides an antenna system.
- the antenna system includes a bridge network and an antenna module.
- the antenna module includes n antennas.
- the bridge network includes n bridge modules.
- the third port of the first bridge module is connected to the second port of the nth bridge module in the n bridge modules, and the third port of the ith bridge module in the n bridge modules is The port is connected to the second port of the i-1th bridge module among the n bridge modules, and the fourth port of the n bridge modules is respectively connected to the n antennas, and i is greater than or equal to 2 and less than or equal to an integer of n, n is an integer greater than or equal to 2; the third analog signal input by the nth bridge module of the n bridge modules to the third port of the nth bridge module and the n antennas
- the nth antenna performs the third weighting process on the fourth analog signal input from the fourth port of the nth bridge module to obtain the third component and the fourth component; the
- the first port of the bridge module outputs the third component
- the fourth component is input to the third port of the j+1th bridge module at the second port of the jth bridge module, and the fourth component is taken as the For the third analog signal of the third port of the j+1th bridge module, j is an integer greater than or equal to 1 and less than n.
- the different bridge modules in the bridge network are connected by a ring connection.
- the fourth port of each bridge module included in the bridge network receives the fourth analog signal.
- the output signal output by the first port of the electric bridge module realizes the power sharing and distribution of the antenna signal, and improves the practicability of the antenna system in practical applications.
- Umatrix H is the conjugate transpose of Umatrix
- S is a matrix of n*n
- D is a matrix of n*n
- e- i(x) is a complex exponential function based on the natural number e
- ⁇ 0 is the second port of the first bridge module of the bridge network and the first bridge
- ⁇ 0 is the second port of the first bridge module of the bridge network and the first bridge
- ⁇ 0 is the second port of the first bridge module of the bridge network and the first bridge
- ⁇ 0 is the second port of the first bridge module of the bridge network and the first bridge
- ⁇ 0 is the second port of the first bridge module of the bridge network and the first bridge
- ⁇ 0 is the second port of the first bridge module of the bridge network and the first bridge
- ⁇ 0 is the second port of the first bridge module of the bridge network and the first bridge
- the relationship between the analog signal received by the fourth port of the bridge module and the analog signal output by the first port of the bridge module is provided.
- the antenna system further includes a control module; the control module is used to set the length of the connection line between the n bridge modules, and the length of the connection line between the n bridge modules The line length is used to control the proportional value of the output signal at the first port of the n bridge modules.
- the length of the connection line between the control module and the bridge module is used to realize the power distribution and sharing of the antenna signal.
- the antenna system further includes a digital signal processing module and a digital-to-analog conversion module, the digital signal processing module is connected to the first end of the digital-to-analog conversion module, and the second end of the digital-to-analog conversion module Connected to the bridge network; the digital-to-analog conversion module for receiving the second multiplexed analog signal sent by the bridge network; performing digital-to-analog conversion on the second multiplexed analog signal to obtain a third multiplexed digital signal; The digital signal processing module is configured to perform fourth weighting processing on the third multiplexed digital signal to obtain a fourth multiplexed digital signal.
- the fourth weighting processing is implemented by a fourth weighting matrix, and the fourth weighting matrix is m*n matrix, m is the number of signals included in the third multi-channel digital signal, m is an integer greater than 0 and less than or equal to n; the fourth weighting matrix satisfies any of the following conditions: Each row vector is orthogonal; or, each row vector of the fourth weighting matrix is orthogonal to one or more column vectors of the third weighting matrix; or, the fourth weighting matrix is the third weighting matrix Conjugate transpose.
- the fourth weighting process is performed on the digital domain signal by the digital signal processing module, and the signal power can be shared and allocated in the digital domain.
- the third multi-channel digital signal includes m-layer MIMO received signals; or, signals received by m users; or, signals received by m cells; or, signals received in m beam directions .
- multiple types of digital signals are provided to realize power distribution and sharing of the multiple types of digital signals.
- each bridge module is an in-frequency combiner.
- a third aspect of the embodiments of the present application provides an access network device, and the access network device includes the antenna system according to the first aspect and/or the antenna system according to the second aspect.
- the different bridge modules in the bridge network provided by the embodiments of the present application are connected by a ring connection, and the first analog input of the first port of each bridge module included in the bridge network is The signal has a corresponding output signal output at the fourth port of each bridge module. Therefore, the antenna system of the embodiment of the present application can meet the antenna signal transmission requirements of three inputs and three outputs, four inputs and four outputs, and five inputs and five outputs. .
- the antenna system of the embodiment of the present application realizes power sharing of the antenna signals of the three sectors included in the base station.
- FIG. 1A is a schematic diagram of the structure of a bridge network in the prior art
- FIG. 1B is a schematic structural diagram of an antenna system according to an embodiment of the application.
- FIG. 1C is a schematic structural diagram of an electric bridge network and an antenna module according to an embodiment of the application.
- FIG. 1D is another schematic structural diagram of an antenna system according to an embodiment of the application.
- FIG. 1E is a schematic diagram of a scenario in which an analog signal is transmitted through the antenna system of an embodiment of the present application
- FIG. 1F is a schematic diagram of a scene of receiving analog signals through the antenna system of an embodiment of the present application.
- FIG. 1G is a schematic diagram of a scene of a bridge network according to an embodiment of this application.
- FIG. 2A is a schematic diagram of another scenario where an analog signal is transmitted through the antenna system of an embodiment of the present application
- FIG. 2B is a schematic diagram of another scenario in which an analog signal is received through the antenna system of an embodiment of the present application;
- FIG. 3 is another schematic diagram of the structure of the electric bridge network according to an embodiment of the application.
- FIG. 4 is another schematic diagram of the structure of the bridge network according to the embodiment of the application.
- GSM global system for mobile communications
- CDMA code division multiple access
- GSM broadband code division multiple access
- WCDMA wideband code division multiple access
- GPRS general packet radio service
- LTE long term evolution
- FDD frequency division duplex
- UMTS universal mobile telecommunication system
- WIMAX worldwide interoperability for microwave access
- 5G fifth generation
- NR new radio
- FIG. 1B is a schematic structural diagram of an antenna system according to an embodiment of the application.
- the antenna system includes a bridge network 110 and an antenna module 120.
- the antenna system includes a control module 130, a digital signal processing module 140, and a digital-to-analog conversion module 150.
- the antenna module 120 is connected to the first end of the bridge network 110, the second end of the bridge network 110 is connected to the control module 130, and the third end of the bridge network 110 is connected to one end of the digital-to-analog conversion module 150.
- the antenna module 120 is used to receive and transmit analog signals.
- the antenna module includes multiple antennas.
- the bridge network 110 is used to receive the analog signal sent by the digital-to-analog conversion module 150, perform first weighting processing on the analog signal, and transmit the processed analog signal through the antenna module 120; or, for receiving the analog signal sent by the antenna module 120 And perform a third weighting process on the analog signal, and then output the processed analog signal.
- the bridge network 110 includes n bridge modules, and n is an integer greater than or equal to 2.
- FIG. 1C is a schematic diagram of the structure of the bridge network and the antenna module according to an embodiment of the application.
- the electrical bridge network 110 includes a first electrical bridge module and a second electrical bridge module.
- the antenna module 120 includes a first antenna and a second antenna.
- the fourth port of the first electrical bridge module is connected to the first antenna, and the second electrical bridge
- the fourth port of the module is connected to the second antenna.
- the third port of the first electric bridge module is connected to the second port of the second electric bridge module through the first line length, and the third port of the second electric bridge module is connected to the second port of the first electric bridge module through the second line length .
- the port naming rules of the bridge module are as follows: the first port of the bridge module is used to receive the analog signal sent by the digital-to-analog conversion module 150 or send the analog signal sent by the digital-to-analog conversion module 150.
- the second port of the electric bridge module is used to connect to the third port of the electric bridge module connected to the second port of each electric bridge module.
- the third port of the electric bridge module is used to connect to the second port of the electric bridge module connected to the third port of each electric bridge module.
- the fourth port of the electric bridge module is used to receive an analog signal sent by an antenna connected to the fourth port of the electric bridge module or an analog signal sent to an antenna connected to the fourth port of the electric bridge module.
- the control module 130 is used to set the line length of the connection line between the n bridge modules included in the bridge network 110 to control the ratio of the output signal of the first port of the n bridge modules. For example, as shown in FIG. 1C, the control module 130 controls the ratio of the output signal of the fourth port of the first bridge module to the output signal of the fourth port of the second bridge module by controlling the first line length and the second line length. value.
- the digital signal processing module 140 is used to receive a digital signal; perform second weighting processing on the digital signal to obtain a processed digital signal; convert the processed digital signal into an analog signal, and then send it to the bridge network 110; or, for The analog signal sent by the digital-to-analog conversion module 150 is received, the analog signal is converted into a digital signal, a fourth weighting process is performed on the digital signal, and the processed digital signal is output.
- the access device may include: evolved Node B (eNB), radio network controller (RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (WIFI) system
- eNB evolved Node B
- RNC radio network controller
- Node B Node B
- BSC base station controller
- BTS base transceiver station
- home base station for example, home evolved NodeB, or home Node B, HNB
- BBU baseband unit
- WIFI wireless fidelity
- the access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc. can also be 5G, such as NR, in the system GNB, or transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of the base station in the
- the gNB may include a centralized unit (CU) and a DU.
- the gNB may also include a radio unit (RU).
- CU implements some functions of gNB
- DU implements some functions of gNB.
- CU implements radio resource control (RRC), packet data convergence protocol (PDCP) layer functions
- RRC radio resource control
- PDCP packet data convergence protocol
- DU implements wireless link.
- RLC radio link control
- media access control media access control
- MAC physical (physical, PHY) layer functions. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used.
- the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
- the CU can be divided into network equipment in the access network RAN, and the CU can also be divided into network equipment in the core network CN, which is not limited here.
- the access network equipment in the wired communication system may include: passive optical network PON (Passive Optical Network), high-speed digital subscriber line HDSL (High Speed Digital Subscriber Line), asymmetric digital subscriber line ADSL (Asymmetrical Digital Subscriber Line) and Integrated digital subscriber loop of V5 interface and so on.
- the antenna system includes a bridge network 110, an antenna module 120, a control module 130, a remote radio unit 160, and a baseband processing unit 170.
- the digital signal processing module 140 shown in FIG. 1B is integrated in the baseband processing unit 170, and the digital-to-analog conversion function of the digital-to-analog conversion module 150 shown in FIG. 1B is provided by the remote radio unit 160.
- the first end of the bridge network 110 is connected to the antenna module 120, the second end of the bridge network 110 is connected to the control module 130, and the third end of the bridge network 110 is connected to the first end of the remote radio unit 160.
- the first end of the baseband processing unit 170 is connected to the second end of the remote radio unit 160.
- the antenna module 120 is used to receive and transmit analog signals.
- the antenna module includes multiple antennas.
- the bridge network 110 is used to receive the analog signal sent by the remote radio unit 160, perform first weighting processing on the analog signal, and transmit the processed analog signal through the antenna module 120; or, to receive the analog signal sent by the antenna module 120 And perform third weighting processing on the analog signal, and output the processed analog signal to the radio frequency remote unit 160.
- the control module 130 is used to set the line length of the connection line between the n bridge modules included in the bridge network 110 to control the ratio of the output signal of the first port of the n bridge modules.
- the remote radio unit 160 is used to receive the digital signal sent by the baseband processing unit 170, convert the digital signal into an analog signal, and send it to the bridge network 110.
- the baseband processing unit 170 is configured to receive digital signals, perform second weighting processing on the digital signals, and send them to the radio remote unit 160; or, receive the digital signals sent by the radio remote unit 160, and perform fourth processing on the digital signals. Weighting processing to obtain the processed digital signal.
- the baseband processing unit 170 performs weighting processing on the digital signal, it may be the sum of the baseband processing, or after the baseband processing, which is not specifically limited in this application.
- the bridge network includes n bridge modules.
- the first bridge module is the first bridge module of the bridge network from left to right
- the second bridge module is the second bridge network from left to right.
- the first bridge module is connected to the first antenna of the n antennas
- the second bridge module is connected to the second antenna of the n antennas
- the nth bridge module is connected to the n antennas The nth antenna is connected.
- FIG. 1E is a schematic diagram of a scenario in which an analog signal is transmitted through the antenna system of an embodiment of the present application.
- the bridge network 110 includes n bridge modules, the third port of the first bridge module among the n bridge modules and the nth bridge module among the n bridge modules Is connected to the second port of the n bridge modules, the third port of the i-th bridge module in the n bridge modules is connected to the second port of the i-1th bridge module in the n bridge modules, and the n electrical
- the fourth port of the bridge module is respectively connected to n antennas, i is an integer greater than or equal to 2 and less than or equal to n, and n is an integer greater than or equal to 2.
- the first bridge module performs first weighting processing on the first analog signal input at the first port of the first bridge module and the second analog signal input at the second port of the first bridge module to obtain The first component and the second component; the first bridge module outputs the first component at the fourth port of the first bridge module, and sends the first component to the n-th bridge module at the third port of the first bridge module The second port inputs the second component, and uses the second component as the second analog signal of the second port of the nth bridge module.
- the k-th bridge module performs first weighting processing on the first analog signal input from the first port of the k-th bridge module and the second analog signal input from the second port of the k-th bridge module to obtain the first component And the second component; the k-th bridge module outputs the first component at the fourth port of the k-th bridge module, and sends the first component at the third port of the k-th bridge module to the second
- the second component is input to the port, and the second component is used as the second analog signal of the second port of the k-1th bridge module, and k is an integer greater than 1 and less than or equal to n.
- the first analog signal input from the first port of the bridge module included in the bridge network is expressed as:
- the analog signal output by the fourth port of the bridge module included in the bridge network is expressed as:
- the analog signal output from the fourth port of the bridge module included in the bridge network is equal to the analog signal input from the first port of the bridge module included in the bridge network multiplied by the first weighting matrix Umatrix, that is S is a matrix of n*n, n is the number of bridge modules included in the antenna system, D is a matrix of n*n, n is the number of bridge modules included in the antenna system, e- i(x) is a complex exponential function based on the natural number e, and ⁇ 0 is the first bridge module
- ⁇ 1 is the second port of the second bridge module
- the second analog signal of the second port of each bridge module in FIG. 1E is a zero signal at first, and then after this cycle is executed, the second analog signal of the second port of the bridge module is and The component input from the third port of the bridge module connected to the second port of the bridge module to the second port of the bridge module.
- the bridge network provided by the embodiments of the present application, different bridge modules are connected in a ring connection mode, and the first analog signal input from the first port of each bridge module included in the bridge network has a corresponding value.
- the output signal output by the fourth port of each bridge module therefore, through the antenna system of the embodiment of the present application, meets the antenna signal transmission requirements of three inputs and three outputs, four inputs and four outputs, and five inputs and five outputs.
- the antenna system of the embodiment of the present application realizes power sharing of the antenna signals of the three sectors included in the base station. Input the antenna signals of the three sectors to the first ports of the three bridge modules, and then the fourth ports of the three bridge modules output the output signals corresponding to the antenna signals of the three sectors respectively. Three inputs and three outputs, thereby improving the practicability of the antenna system in practical applications.
- FIG. 1F is a schematic diagram of a scene of receiving an analog signal through the antenna system of an embodiment of the present application.
- the bridge network 110 includes n bridge modules, the third port of the first bridge module among the n bridge modules and the nth bridge module among the n bridge modules Is connected to the second port of the n bridge modules, the third port of the i-th bridge module in the n bridge modules is connected to the second port of the i-1th bridge module in the n bridge modules, and the n electrical
- the fourth port of the bridge module is respectively connected to n antennas, i is an integer greater than or equal to 2 and less than or equal to n, and n is an integer greater than or equal to 2.
- the n-th bridge module inputs the third analog signal from the third port of the n-th bridge module and the n-th antenna among the n antennas inputs the fourth analog signal to the fourth port of the n-th bridge module.
- the third weighting process obtains the third component and the fourth component; the nth bridge module outputs the third component at the first port of the nth bridge module, and sends the third component to the first port at the second port of the nth bridge module.
- the third port of each bridge module inputs the fourth component, and the fourth component is used as the third analog signal of the third port of the nth bridge module.
- the j-th bridge module performs third weighting on the third analog signal input at the third port of the j-th bridge module and the fourth analog signal input from the j-th antenna to the fourth port of the j-th bridge module.
- the j-th bridge module outputs the third component at the first port of the j-th bridge module, and the third component is sent to the j+1-th at the second port of the j-th bridge module
- the third port of the bridge module inputs the fourth component, and the fourth component is used as the third analog signal of the third port of the j+1th bridge module, where j is an integer greater than or equal to 1 and less than n.
- the analog signal received by the fourth port of the bridge module included in the bridge network is expressed as The analog signal output from the first port of the bridge module included in the bridge network is expressed as Then the analog signal output from the first port of the bridge module included in the bridge network is equal to the analog signal received at the fourth port of the bridge module of the bridge network multiplied by the third weighting matrix Umatrix H , that is Umatrix H is the conjugate transpose of Umatrix.
- the third analog signal of the third port of each bridge module in FIG. 1F is a zero signal at first, and then after this cycle is executed, the third analog signal of the third port of the bridge module is the same as the The component input to the third port of the bridge module from the second port of the bridge module connected to the third port of the bridge module.
- the bridge module includes n bridge modules.
- the analog signal to be input is less than n, the analog signal to be input can only be input at the corresponding port of some of the bridge modules, and the remaining part of the bridge module The corresponding port of the module can be regarded as the input zero signal.
- the matrix form of the internal structure of the bridge module can be or
- the parameter j represents the unit of imaginary number.
- the imaginary part of j is a positive integer 1.
- the imaginary part of -j is a negative integer 1.
- the first analog signal enters from the first port of the bridge module, and the phase of the analog signal output from the third port of the bridge module is 90 degrees earlier than the phase of the analog signal output from the third port of the bridge module.
- the second analog signal enters from the second port of the bridge module, and the phase of the analog signal output from the fourth port of the bridge module is 90 degrees earlier than the phase of the analog signal output from the third port of the bridge module.
- the relationship between the output signal of the third port and the fourth port of each bridge module in FIG. 1G and the input signal of the first port and the second port of the bridge module can be known.
- the output signals of the third port and the fourth port of the second bridge module in Figure 1G The output signal of the third port and the fourth port of the n+1th bridge module
- the antenna system further includes a digital signal processing module 140 and a digital-to-analog conversion module 150.
- the process of digital signal processing by the digital signal processing module 140 in the digital domain is described based on the bridge network shown in FIG. 1E.
- the digital signal processing module 140 receives the first multi-channel digital signal, which is represented here as:
- the digital signal processing module 140 performs second weighting processing on the first multi-channel digital signal to obtain the second multi-channel digital signal.
- the second weighting process is implemented by a second weighting matrix, the second weighting matrix is an n*m matrix, where n is the number of bridge modules included in the antenna system, and m is the number of bridge modules included in the antenna system.
- the number of signals included, m is an integer greater than 0 and less than n.
- the second weighting matrix is Pmatrix.
- the digital signal processing module 140 sends the second multiple digital signals to the digital-to-analog conversion module 150.
- the digital-to-analog conversion module 150 performs digital-to-analog conversion on the second multiplexed digital signal to obtain the first multiplexed analog signal, which is input to the bridge network 110.
- the first multi-channel analog signal may be the first analog signal input to the first port of the m bridge modules in the n bridge modules in the bridge network shown in FIG. 1E.
- the second weighting matrix Pmatrix satisfies any of the following conditions:
- Each column vector of the second weighting matrix is orthogonal; or,
- Each column vector of the second weighting matrix is orthogonal to one or more row vectors of the first weighting matrix; or,
- the second weighting matrix is the conjugate transpose of the first weighting matrix.
- the signal type of the first multi-channel digital signal includes any one of the following:
- the digital signal processing module 140 can perform the second weighting process, and only send individual users or individual layer MIMO signals or individual cell signals or individual beam directions;
- Signals for individual users MIMO signals for individual layers, signals for individual cells, or signals for individual beam directions.
- Signals or signals are sent in multiple beam directions, and the digital signal processing module 140 performs second weighting processing to realize sending signals to multiple users, sending MIMO signals in multiple layers, sending signals on multiple cells, or Send signals in multiple beam directions.
- the antenna system further includes a digital signal processing module 140 and a digital-to-analog conversion module 150.
- the process of digital signal processing by the digital signal processing module 140 in the digital domain is described based on the bridge network shown in FIG. 1F.
- the digital-to-analog conversion module 150 receives the second multiplexed analog signal sent by the bridge network 110; performs digital-to-analog conversion on the second multiplexed analog signal to obtain the third multiplexed digital signal; the digital signal processing module 140 receives the bridge network
- the third multiplexed digital signal sent by 110 performs fourth weighting processing on the third multiplexed digital signal to obtain the fourth multiplexed digital signal.
- the third multi-channel digital signal is expressed as:
- the third multiplexed digital signal includes m signals, and m is an integer greater than or equal to 1 and less than or equal to n.
- the fourth multi-channel digital signal is Among them, Pmatrix H is the fourth weighting matrix, the fourth weighting matrix is an m*n matrix, and Pmatrix H is the conjugate transpose of Pmatrix.
- the fourth weighting matrix satisfies any of the following conditions:
- Each row vector of the fourth weighting matrix is orthogonal; or,
- Each row vector of the fourth weighting matrix is orthogonal to one or more column vectors of the third weighting matrix; or,
- the fourth weighting matrix is the conjugate transpose of the third weighting matrix.
- the signal type of the third multi-channel digital signal includes any one of the following:
- each bridge module is a same-frequency combiner (also called a 90-degree bridge), and the matrix form of the same-frequency combiner can be expressed as or Among them, the parameter j represents the imaginary unit, the imaginary part of j is a positive integer 1, and correspondingly, the imaginary part of -j is a negative integer 1.
- the same frequency combiner changes the power value of the analog signal by changing the amplitude of the analog signal.
- the bridge module included in the above-mentioned electric bridge network 110 may also be made of other electric bridge devices capable of realizing the above-mentioned functions.
- the composition form of the bridge modules in the bridge network 110 does not constitute a limitation on the structure of the bridge network 110, and may also be composed of other bridge devices.
- the ratio of the output components of the bridge modules included in the bridge network can be controlled by adjusting the length of the connecting lines connected between n bridge modules, so as to realize the antenna
- the power of the signal is allocated to realize the power sharing of the antenna signal.
- the function of the control module 130 is described by taking the bridge network shown in FIG. 1C as an example, and the control module 130 is configured to control the first line length and the second line length.
- the first line length and the second line length are used to control the output signal at the fourth port of the first bridge module and the fourth port of the second bridge module.
- the proportional value of the output signal is used to control the output signal at the first port of the first bridge module and the first port of the second bridge module.
- the proportional value of the output signal are described by taking the bridge network shown in FIG. 1C as an example, and the control module 130 is configured to control the first line length and the second line length.
- control module 130 controls the first line length by controlling the length of the microstrip line of the first phase shifter, and controls the second line length by controlling the length of the microstrip line of the second phase shifter.
- one end of the first phase shifter is connected to the second port of the first bridge module
- the other end of the first phase shifter is connected to the third port of the second bridge module
- one end of the second phase shifter is connected to the third port of the second bridge module.
- the third port of a bridge module is connected, and the other end of the second phase shifter is connected with the second port of the second bridge module.
- the electric bridge network of the embodiment of the present application includes a first electric bridge module and a second electric bridge module.
- the output signal of the fourth port of the bridge module in the bridge network is expressed as:
- the input signal of the first port of the bridge module in the bridge network is expressed as:
- First weighting matrix Since the bridge network includes two bridge modules, it can be seen that Among them, ⁇ 0 is the wavelength range corresponding to the second line length between the second port of the first bridge module and the third port of the second bridge module, and ⁇ 1 is the second port of the second bridge module and The wavelength range corresponding to the first line length between the third ports of the first bridge module.
- FIGS 3 and 4 show the structure of two possible three-input three-output bridge networks.
- FIG. 3 is a schematic structural diagram of a bridge network according to an embodiment of the application.
- the electric bridge network includes a first electric bridge module, a second electric bridge module, and a third electric bridge module.
- the third port of the first bridge module is connected to the second port of the third bridge module
- the third port of the third bridge module is connected to the second port of the second bridge module
- the third port of the second bridge module is connected to the second port of the second bridge module.
- the port is connected to the second port of the first bridge module.
- the phase difference of the analog signal through the connecting line between the bridge modules is 43.7 degrees.
- FIG. 4 is another schematic diagram of the structure of the electric bridge network according to the embodiment of the application.
- the electric bridge network is a three-dimensional electric bridge device.
- the bridge network 110 includes a first bridge module, a second bridge module, and a third bridge module.
- Figure 4 (a) is a top view of the three-dimensional view of the bridge network, the three bridge modules are connected by a microstrip line, and the length of the microstrip line is The wavelength of the carrier medium constitutes a circular loop circuit.
- the front view of the first bridge module is shown in the upper part of Figure 4(b).
- the digital signal processing module 140 receives the digital signal a c of the first cell, the digital signal b c of the second cell, and the digital signal c c of the third cell.
- the digital signal processing module 140 performs signal processing on a c , b c and c c , for example, multiplying the digital signal by the conjugate transpose of the first weighting matrix, specifically as follows:
- Umatrx H is the conjugate transpose of U matrix.
- a c , b c and c c are signals of three cells. If only the signal of the first cell is sent, the signal power of the second cell and the third cell can be borrowed from the first cell.
- the signal power of the second cell and the third cell can be borrowed from the first cell.
- the first column vector of Umatrx H is amplified by 3 times, or the digital signal power level of the first cell is not limited to 1, the amplitude of a c can be amplified Then the three digital signals can be expressed as:
- the digital-to-analog conversion module 150 performs digital-to-analog conversion on the processed three digital signals, which can be specifically expressed as:
- An embodiment of the present application also provides an access network device.
- the access network device includes the antenna system shown in FIG. 1B or FIG. The embodiments shown in FIG. 3 and FIG. 4 will not be repeated here.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
本申请实施例公开了一种天线系统和接入网设备,用于满足三输入三输出、四输入四输出、五输入五输出等天线信号发射需求,从而提高天线系统在实际应用中的实用性。本申请实施例的天线系统包括电桥网络和天线模块,所述天线模块包括n个天线,所述电桥网络包括n个电桥模块,所述n个电桥模块中的第1个电桥模块的第三端口与所述n个电桥模块中的第n个电桥模块的第二端口连接,所述n个电桥模块中的第i个电桥模块的第三端口与所述n个电桥模块中的第i-1个电桥模块的第二端口连接,所述n个电桥模块的第四端口分别与所述n个天线连接,i为大于等于2且小于等于n的整数,n为大于等于2的整数。
Description
本申请要求于2020年2月27日提交中国专利局,申请号为202010123881.1,发明名称为“天线系统和接入网设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及通信技术领域,尤其涉及一种天线系统和接入网设备。
在移动通信网络工程中,根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理地选择基站天线。
目前,在基站天线发射模拟信号之前,首先通过电桥网络对模拟信号进行功率聚合。电桥网络主要是由四个同频合路器或者4M个同频合路器组成的网络设备,M为正整数。具体如图1A所示,第一电桥子网络包括两个同频合路器,由于同频合路器2输入2输出,那么第一电桥子网络中的两个同频合路器分别连接对应的四个或四组天线,这样在第二电桥子网络的两个同频合路器中的四个输入端分别输入四个输入模拟信号,则在第一电桥子网络中的两个同频合路器所对应的四个输出端可以输出与该四个输入模拟信号对应的四个输出模拟信号,以实现四输入四输出的天线发射系统。对于包含4M个同频合路器的电桥网络,则实现4M输入4M输出的天线发射系统。
由此可知,在上述电桥网络的架构下,只能支持的是四输入四输出、八输入八输出等的方案,并不支持三输入三输出,五输入五输出等方案。而实际应用中,大多数基站所覆盖的范围包括三个扇区,三个扇区中的扇区设备的天线信号之间的功率共享就需要三输入三输出的天线发射系统,上述方案无法满足扇区设备的天线信号之间的功率共享的需求。
发明内容
本申请实施例提供了一种天线系统和接入网设备,用于实现三输入三输出、四输入四输出、五输入五输出等天线信号发射需求,从而提高天线系统在实际应用中的实用性。
本申请实施例第一方面提供一种天线系统,该天线系统包括电桥网络和天线模块,该天线模块包括n个天线,该电桥网络包括n个电桥模块,该n个电桥模块中的第1个电桥模块的第三端口与所述n个电桥模块中的第n个电桥模块的第二端口连接,该n个电桥模块中的第i个电桥模块的第三端口与该n个电桥模块中的第i-1个电桥模块的第二端口连接,该n个电桥模块的第四端口分别与该n个天线连接,i为大于等于2且小于等于n的整数,n为大于等于2的整数;该n个电桥模块中的第1个电桥模块对在该第1个电桥模块的第一端口输入的第一模拟信号和该第1个电桥模块的第二端口输入的第二模拟信号进行第一加权处理,得到第一分量和第二分量;该第1个电桥模块在该第1个电桥模块的第四端口输出该第一分量,在该第1个电桥模块的第三端口向该n个电桥模块中的第n个电桥模块的第二端口输入所述第二分量,将该第二分量作为该第n个电桥模块的第二端口的 第二模拟信号;该n个电桥模块中的第k个电桥模块对该第k个电桥模块的第一端口输入的第一模拟信号和该第k个电桥模块的第二端口输入的第二模拟信号进行第一加权处理,得到第一分量和第二分量;该第k个电桥模块在该第k个电桥模块的第四端口输出该第一分量,在该第k个电桥模块的第三端口向该n个电桥模块中的第k-1个电桥模块的第二端口输入该第二分量,将该第二分量作为该第k-1个电桥模块的第二端口的第二模拟信号,k大于1且小于等于n的整数。
本实施例中,电桥网络中不同电桥模块之间通过环形连接的方式进行连接,电桥网络所包括的每个电桥模块的第一端口输入的第一模拟信号都有对应的在每个电桥模块的第四端口输出的输出信号,满足三输入三输出、四输入四输出、五输入五输出等天线信号发射需求。例如,通过本实施例的天线系统实现基站所包括的三个扇区的天线信号的功率共享,将这三个扇区的天线信号分别输入到三个电桥模块的第一端口,那么这三个电桥模块的第四端口分别输出这三个扇区的天线信号所对应的输出信号,实现三输入三输出,从而提高天线系统在实际应用中的实用性。
一种可能的实现方式中,
为由该n个电桥模块中的每个电桥模块的第四端口的输出分量之和组成的矩阵,
S为n*n的矩阵,
D为n*n的矩阵,e
-i(x)为以自然数e为底的复指数函数,δ
0为该电桥网络的第1个电桥模块的第二端口与该第1个电桥模块的第二端口连接的电桥模块的第三端口的连接线的线长所对应的波长波程,δ
1为该电桥网络的第2个电桥模块的第二端口与该第2个电桥模块的第二端口连接的电桥模块的第三端口的连接线的线长所对应的波长波程,δ
n-1为该电桥网络的第n个电桥模块的第二端口与该第n个电桥模块的第二端口连接的电桥模块的第三端口的连接 线的线长所对应的波长波程,
为由该n个电桥模块中的每个电桥模块的第一端口的第一模拟信号组成的矩阵。
在该可能的实现方式中,提供了电桥模块的第一端口的输入信号与电桥模块的第四端口的输出信号之间的关系。
另一种可能的实现方式中,该天线系统还包括控制模块;该控制模块用于设置该n个电桥模块之间的连接线的线长,该n个电桥模块之间的连接线的线长用于控制在n个电桥模块的第一端口的输出信号的比例值。
在该可能的实现方式中,通过控制模块对电桥模块之间的连接线的线长,以实现对天线信号的功率分配和共享。
另一种可能的实现方式中,该天线系统还包括数字信号处理模块和数模转换模块,该数字信号处理模块与数模转换模块的第一端连接,该数模转换模块的第二端与电桥网络连接;该数字信号处理模块,用于对数字信号处理模块接收到的第一多路数字信号进行第二加权处理,得到第二多路数字信号,第二加权处理是通过第二加权矩阵实现的,该第二加权矩阵为n*m的矩阵,n为天线系统所包括的电桥模块的个数,m为第一多路数字信号所包括的信号个数,m为大于0且小于等于n的整数;第二加权矩阵满足以下任一条件:第二加权矩阵的每个列向量之间正交;或者,第二加权矩阵的每个列向量与第一加权矩阵的一个或多个行向量正交;或者,第二加权矩阵为第一加权矩阵的共轭转置;该数模转换模块,用于对第二多路数字信号进行数模转换,得到第一多路模拟信号,该第一多路模拟信号包括该n个电桥模块中的m个电桥模块的第一端口的第一模拟信号。
在该可能的实现方式中,通过数字信号处理模块对数字域信号进行第二加权处理,在数字域就可以实现对信号功率的共享和分配。
另一种可能的实现方式中,第一多路数字信号包括m层MIMO发送信号;或者,m个用户发送的信号;或者,m个小区发送的信号;或者,m个波束方向上发送的信号。
在该可能的实现方式中,提供了多种类型的数字信号,实现对该多种类型的数字信号的功率分配和共享。
另一种可能的实现方式中,该每个电桥模块为同频合路器。
本申请实施例第二方面提供一种天线系统,该天线系统包括电桥网络和天线模块,该天线模块包括n个天线,该电桥网络包括n个电桥模块,该n个电桥模块中的第1个电桥模块的第三端口与所述n个电桥模块中的第n个电桥模块的第二端口连接,该n个电桥模块中的第i个电桥模块的第三端口与该n个电桥模块中的第i-1个电桥模块的第二端口连接,该n个电桥模块的第四端口分别与该n个天线连接,i为大于等于2且小于等于n的整数,n为大于等于2的整数;该n个电桥模块中的第n个电桥模块对该第n个电桥模块的第三端口输入的第三模拟信号和该n个天线中的第n个天线向该第n个电桥模块的第四端口输入的第四模拟信号进行第三加权处理,得到第三分量和第四分量;该第n个电桥模块在该第n个电桥模块的第一端口输出该第三分量,在该第n个电桥模块的第二端口向第 1个电桥模块的第三端口输入该第四分量,将该第四分量作为该第n个电桥模块的第三端口的第三模拟信号;该n个电桥模块的第j个电桥模块对在该第j个电桥模块的第三端口输入的第三模拟信号和该第j个天线向所述第j个电桥模块的第四端口输入的第四模拟信号进行第三加权处理,得到第三分量和第四分量;该第j个电桥模块在该第j个电桥模块的第一端口输出该第三分量,在该第j个电桥模块的第二端口向第j+1个电桥模块的第三端口输入该第四分量,将该第四分量作为该第j+1个电桥模块的第三端口的第三模拟信号,j大于等于1且小于n的整数。
本实施例中,电桥网络中不同电桥模块之间通过环形连接的方式进行连接,电桥网络所包括的每个电桥模块的第四端口接收第四模拟信号都有对应的在每个电桥模块的第一端口输出的输出信号,实现了天线信号的功率共享和分配,提高天线系统在实际应用中的实用性。
一种可能的实现方式中,
为由该n个电桥模块中的每个电桥模块的第一端口的输出分量之和组成的矩阵,Umatrix
H为Umatrix的共轭转置,
S为n*n的矩阵,
D为n*n的矩阵,e
-i(x)为以自然数e为底的复指数函数,δ
0为该电桥网络的第1个电桥模块的第二端口与该第1个电桥模块的第二端口连接的电桥模块的第三端口的连接线的线长所对应的波长波程,δ
1为该电桥网络的第2个电桥模块的第二端口与该第2个电桥模块的第二端口连接的电桥模块的第三端口的连接线的线长所对应的波长波程,δ
n-1为该电桥网络的第n个电桥模块的第二端口与该第n个电桥模块的第二端口连接的电桥模块的第三端口的连接线的线长所对应的波长波程,
为由该n个电桥模块中的每个电桥模块的第四端口的第四模拟信号组成的矩阵。
在该可能的实现方式中,提供了电桥模块的第四端口接收的模拟信号与电桥模块的第一端口输出的模拟信号的关系。
另一种可能的实现方式中,该天线系统还包括控制模块;该控制模块用于设置该n个电桥模块之间的连接线的线长,该n个电桥模块之间的连接线的线长用于控制在该n个电桥模块的第一端口的输出信号的比例值。
在该可能的实现方式中,通过控制模块对电桥模块之间的连接线的线长,以实现对天线信号的功率分配和共享。
另一种可能的实现方式中,该天线系统还包括数字信号处理模块和数模转换模块,该数字信号处理模块与该数模转换模块的第一端连接,该数模转换模块的第二端与该电桥网络连接;该数模转换模块,用于接收该电桥网络发送的第二多路模拟信号;对该第二多路模拟信号进行数模转换,得到第三多路数字信号;该数字信号处理模块,用于对该第三多路数字信号进行第四加权处理,得到第四多路数字信号,该第四加权处理是通过第四加权矩阵实现的,该第四加权矩阵为m*n的矩阵,m为该第三多路数字信号所包括的信号个数,m为大于0且小于等于n的整数;该第四加权矩阵满足以下任一条件:该第四加权矩阵的每个行向量之间正交;或者,该第四加权矩阵的每个行向量与该第三加权矩阵的一个或多个列向量正交;或者,该第四加权矩阵为第三加权矩阵的共轭转置。
在该可能的实现方式中,通过数字信号处理模块对数字域信号进行第四加权处理,在数字域就可以实现对信号功率的共享和分配。
另一种可能的实现方式中,第三多路数字信号包括m层MIMO接收信号;或者,m个用户接收的信号;或者,m个小区接收的信号;或者,m个波束方向上接收的信号。
在该可能的实现方式中,提供了多种类型的数字信号,实现对该多种类型的数字信号的功率分配和共享。
另一种可能的实现方式中,该每个电桥模块为同频合路器。
本申请实施例第三方面提供一种接入网设备,该接入网设备包括如第一方面的天线系统和/或第二方面的天线系统。
从以上技术方案可以看出,本申请实施例具有以下优点:
经由上述技术方案可知,本申请实施例提供的电桥网络中不同电桥模块之间通过环形连接的方式进行连接,电桥网络所包括的每个电桥模块的第一端口输入的第一模拟信号都有对应的在每个电桥模块的第四端口输出的输出信号,所以通过本申请实施例的天线系统,满足三输入三输出、四输入四输出、五输入五输出等天线信号发射需求。例如,通过本申请实施例的天线系统实现了基站所包括的三个扇区的天线信号的功率共享。将这三个扇区的天线信号分别输入到三个电桥模块的第一端口,那么这三个电桥模块的第四端口分别输出这三个扇区的天线信号所对应的输出信号,实现三输入三输出,从而提高方案在实际应用中的实用性。
图1A为现有技术的一个电桥网络的结构示意图;
图1B为本申请实施例天线系统的一个结构示意图;
图1C为本申请实施例电桥网络和天线模块的一个结构示意图;
图1D为本申请实施例天线系统的另一个结构示意图;
图1E为通过本申请实施例的天线系统发射模拟信号的一个场景示意图;
图1F为通过本申请实施例的天线系统接收模拟信号的一个场景示意图;
图1G为本申请实施例电桥网络的一个场景示意图;
图2A为通过本申请实施例的天线系统发射模拟信号的另一个场景示意图;
图2B为通过本申请实施例的天线系统接收模拟信号的另一个场景示意图;
图3为本申请实施例电桥网络的另一个结构示意图;
图4为本申请实施例电桥网络的另一个结构示意图。
本申请实施例的技术方案应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WIMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)等。
请参阅图1B,图1B为本申请实施例提供的一种天线系统的结构示意图。该天线系统包括电桥网络110和天线模块120。可选的,该天线系统包括控制模块130、数字信号处理模块140和数模转换模块150。
天线模块120与电桥网络110的第一端连接,电桥网络110的第二端与控制模块130连接,电桥网络110的第三端与数模转换模块150的一端连接。
天线模块120用于接收和发射模拟信号。该天线模块包括多个天线。
电桥网络110用于接收数模转换模块150发送的模拟信号,并对该模拟信号进行第一加权处理,并通过天线模块120发射该处理后的模拟信号;或者,用于接收天线模块120发送的模拟信号,并对该模拟信号进行第三加权处理,然后输出处理后的模拟信号。该电桥网络110包括n个电桥模块,n为大于等于2的整数。
下面以该电桥网络110包括第一电桥模块和第二电桥模块为例介绍该电桥网络110。请参阅图1C,图1C为本申请实施例电桥网络和天线模块的一个结构示意图。电桥网络110包括第一电桥模块和第二电桥模块,该天线模块120包括第一天线和第二天线,该第一电桥模块的第四端口与第一天线连接,第二电桥模块的第四端口与第二天线连接。第一电桥模块的第三端口通过第一线长与第二电桥模块的第二端口连接,第二电桥模块的第三端口通过第二线长与第一电桥模块的第二端口连接。
本申请实施例中,电桥模块的端口命名规则如下:电桥模块的第一端口用于接收数模 转换模块150发送的模拟信号,或者发送数模转换模块150发送的模拟信号。电桥模块的第二端口用于与该每个电桥模块的第二端口连接的电桥模块的第三端口连接。电桥模块的第三端口用于与该每个电桥模块的第三端口连接的电桥模块的第二端口连接。电桥模块的第四端口用于接收与该电桥模块的第四端口连接的天线发送的模拟信号或向与该电桥模块的第四端口连接的天线发送的模拟信号。
控制模块130用于设置电桥网络110包括的n个电桥模块之间的连接线的线长,以控制n个电桥模块的第一端口的输出信号的比例值。例如,如图1C所示,控制模块130通过控制第一线长和第二线长以控制第一电桥模块的第四端口的输出信号与第二电桥模块的第四端口的输出信号的比例值。
数字信号处理模块140用于接收数字信号;对数字信号进行第二加权处理,得到处理后的数字信号;将处理后的数字信号转换为模拟信号,再发送给电桥网络110;或者,用于接收数模转换模块150发送的模拟信号,并将模拟信号转换为数字信号,再对数字信号进行第四加权处理,再输出该处理后的数字信号。
下面结合图1D介绍本申请实施例的天线系统应用于接入网设备的一个场景示意图。其中,该接入设备可以包括:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。有线通信系统中的接入网设备可以包括:无源光网络PON(Passive Optical Network),高速数字用户线HDSL(High Speed Digital Subscriber Line),不对称数字用户线ADSL(Asymmetrical Digital Subscriber Line)以及具有V5接口(V5 interface)的综合数字用户环路等等。
请参阅图1D,本申请实施例天线系统的另一个结构示意图,该天线系统包括电桥网络 110、天线模块120、控制模块130、射频拉远单元160和基带处理单元170。其中,上述图1B所示的数字信号处理模块140集成在基带处理单元170,上述图1B所示的数模转换模块150的数模转换功能由射频拉远单元160提供。
电桥网络110的第一端与天线模块120连接,该电桥网络110的第二端与控制模块130连接,电桥网络110的第三端与射频拉远单元160的第一端连接,该基带处理单元170的第一端与射频拉远单元160的第二端连接。
天线模块120用于接收和发射模拟信号。该天线模块包括多个天线。
电桥网络110用于接收射频拉远单元160发送的模拟信号,并对该模拟信号进行第一加权处理,并通过天线模块120发射该处理后的模拟信号;或者,用于接收天线模块120发送的模拟信号,并对该模拟信号进行第三加权处理,并向射频拉远单元160输出处理后的模拟信号。
控制模块130用于设置电桥网络110包括的n个电桥模块之间的连接线的线长,以控制n个电桥模块的第一端口的输出信号的比例值。
该射频拉远单元160用于接收基带处理单元170发送的数字信号,并将该数字信号转换为模拟信号再发送给电桥网络110。
基带处理单元170用于接收数字信号,并对数字信号进行第二加权处理处理,并发送给射频拉远单元160;或者,接收射频拉远单元160发送的数字信号,并对数字信号进行第四加权处理,得到处理后的数字信号。
需要说明的是,基带处理单元170在对数字信号加权处理时,可以是在基带处理之和,也可以是在基带处理之后,具体本申请不做限定。
在介绍本申请实施例所提供的电桥网络之前,先对本申请实施例中电桥模块的序号进行说明。请参阅图1E,电桥网络包括n个电桥模块。其中,第1个电桥模块为该电桥网络按照从左到右的顺序起算的首个电桥模块,第2个电桥模块为该电桥网络按照从左到右的顺序起算的第2个电桥模块,以此类推。并且第1个电桥模块与n个天线的第1个天线连接,第2个电桥模块与n个天线的第2个天线连接,以此类推,第n个电桥模块与n个天线的第n个天线连接。
请参阅图1E,图1E为通过本申请实施例的天线系统发射模拟信号的一个场景示意图。在图1E中,该电桥网络110包括n个电桥模块,该n个电桥模块中的第1个电桥模块的第三端口与该n个电桥模块中的第n个电桥模块的第二端口连接,该n个电桥模块中的第i个电桥模块的第三端口与n个电桥模块中的第i-1个电桥模块的第二端口连接,该n个电桥模块的第四端口分别与n个天线连接,i为大于等于2且小于等于n的整数,n为大于等于2的整数。
其中,第1个电桥模块对在第1个电桥模块的第一端口输入的第一模拟信号和第1个电桥模块的第二端口输入的第二模拟信号进行第一加权处理,得到第一分量和第二分量;该第1个电桥模块在第1个电桥模块的第四端口输出第一分量,在第1个电桥模块的第三端口向第n个电桥模块的第二端口输入第二分量,将第二分量作为第n个电桥模块的第二端口的第二模拟信号。
第k个电桥模块对第k个电桥模块的第一端口输入的第一模拟信号和第k个电桥模块的第二端口输入的第二模拟信号进行第一加权处理,得到第一分量和第二分量;第k个电桥模块在第k个电桥模块的第四端口输出第一分量,在第k个电桥模块的第三端口向第k-1个电桥模块的第二端口输入第二分量,将第二分量作为第k-1个电桥模块的第二端口的第二模拟信号,k大于1且小于等于n的整数。
其中,该电桥网络所包括的电桥模块的第一端口输入的第一模拟信号表示为:
该电桥网络所包括的电桥模块的第四端口输出的模拟信号表示为:
那么该电桥网络所包括的电桥模块的第四端口输出的模拟信号等于该电桥网络所包括的电桥模块的第一端口输入的模拟信号乘以第一加权矩阵Umatrix,即
S为n*n的矩阵,n为天线系统所包括的电桥模块的个数,
D为n*n的矩阵,n为所述天线系统所包括的电桥模块的个数,e
-i(x)为以自然数e为底的复指数函数,δ
0为第1个电桥模块的第二端口与所述第1个电桥模块的第二端口连接的电桥模块的第三端口的连接线的线长所对应的波长波程,δ
1为第2个电桥模块的第二端口与所述第2个电桥模块的第二端口连接的电桥模块的第三端口的连接线的线长所对应的波长波程,δ
n-1为第n个电桥模块的第二端口与所述第n个电桥模块的第二端口连接的电桥模块的第三端口的连接线的线长所对应的波长波程。可选的,连接线为微带线。
需要说明的是,图1E中每个电桥模块的第二端口的第二模拟信号一开始为零信号,然后在执行以此循环后,电桥模块的第二端口的第二模拟信号为与该电桥模块的第二端口连接的电桥模块的第三端口向该电桥模块的第二端口输入的分量。
本申请实施例提供的电桥网络中不同电桥模块之间通过环形连接的方式进行连接,电 桥网络所包括的每个电桥模块的第一端口输入的第一模拟信号都有对应的在每个电桥模块的第四端口输出的输出信号,所以通过本申请实施例的天线系统,满足三输入三输出、四输入四输出、五输入五输出等的天线信号发射需求。例如,通过本申请实施例的天线系统实现了基站所包括的三个扇区的天线信号的功率共享。将这三个扇区的天线信号分别输入到三个电桥模块的第一端口,那么这三个电桥模块的第四端口分别输出这三个扇区的天线信号所对应的输出信号,实现三输入三输出,从而提高天线系统在实际应用中的实用性。
请参阅图1F,图1F为通过本申请实施例的天线系统接收模拟信号的一个场景示意图。在图1F中,该电桥网络110包括n个电桥模块,该n个电桥模块中的第1个电桥模块的第三端口与该n个电桥模块中的第n个电桥模块的第二端口连接,该n个电桥模块中的第i个电桥模块的第三端口与n个电桥模块中的第i-1个电桥模块的第二端口连接,该n个电桥模块的第四端口分别与n个天线连接,i为大于等于2且小于等于n的整数,n为大于等于2的整数。
第n个电桥模块对第n个电桥模块的第三端口输入的第三模拟信号和n个天线中的第n个天线向第n个电桥模块的第四端口输入第四模拟信号进行第三加权处理,得到第三分量和第四分量;第n个电桥模块在第n个电桥模块的第一端口输出第三分量,在第n个电桥模块的第二端口向第1个电桥模块的第三端口输入第四分量,将第四分量作为第n个电桥模块的第三端口的第三模拟信号。
第j个电桥模块对在第j个电桥模块的第三端口输入的第三模拟信号和第j个天线向第j个电桥模块的第四端口输入的第四模拟信号进行第三加权处理,得到第三分量和第四分量;第j个电桥模块在第j个电桥模块的第一端口输出第三分量,在第j个电桥模块的第二端口向第j+1个电桥模块的第三端口输入第四分量,将第四分量作为第j+1个电桥模块的第三端口的第三模拟信号,j大于等于1且小于n的整数。
其中,该电桥网络所包括的电桥模块的第四端口接收的模拟信号表示为
该电桥网络所包括的电桥模块的第一端口输出的模拟信号表示为
那么该电桥网络所包括的电桥模块的第一端口输出的模拟信号等于该电桥网络的电桥模块的第四端口接收的模 拟信号乘以第三加权矩阵Umatrix
H,即
Umatrix
H为Umatrix的共轭转置。
需要说明的是,图1F每个电桥模块的第三端口的第三模拟信号一开始为零信号,然后在执行以此循环后,电桥模块的第三端口的第三模拟信号为与该电桥模块的第三端口连接的电桥模块的第二端口向该电桥模块的第三端口输入的分量。
本实施例中,电桥模块包括n个电桥模块,当待输入的模拟信号小于n个时,可以仅仅在部分电桥模块的对应端口输入该待输入的模拟信号,而剩余部分的电桥模块的对应端口可以视为输入零信号。
本实施例中,电桥模块的内部结构的矩阵形式可以为
或
参数j代表虚数单位,j的虚部位正整数1,相应的,-j的虚部为负整数1。例如,第一模拟信号从电桥模块的第一端口进入,从电桥模块的第三端口输出的模拟信号的相位早于电桥模块的第三端口输出的模拟信号的相位90度。第二模拟信号从电桥模块的第二端口进入,从电桥模块的第四端口输出的模拟信号的相位早于电桥模块的第三端口输出的模拟信号的相位90度。
定义
那么可知该图1G中的每个电桥模块的第三端口和第四端口的输出信号与电桥模块的第一端口和第二端口的输入信号的关系。例如,图1G中的第二个电桥模块的第三端口和第四端口的输出信号
第n+1个电桥模块的第三端口和第四端口的输出信号
根据上述图1G中的每个电桥模块的第三端口和第四端口的输出信号可以得到:
可选的,本申请实施例中,如图1B所示,该天线系统还包括数字信号处理模块140和数模转换模块150。以图1E所示的电桥网络为基础说明该数字信号处理模块140在数字域上对数字信号的处理过程。
首先,对于通过本申请实施例的天线系统来发射模拟信号的场景,该数字信号处理模块140接收第一多路数字信号,这里表示为:
该数字信号处理模块140对该第一多路数字信号进行第二加权处理,得到第二多路数字信号。具体的,第二加权处理是通过第二加权矩阵实现的,第二加权矩阵为n*m的矩阵,n为天线系统所包括的电桥模块的个数,m为第一多路数字信号所包括的信号个数,m为大于0且小于n的整数。具体表示为:第二多路数字信号
其中,第二加权矩阵为Pmatrix。然后,数字信号处理模块140将第二多路数字信号发送给数模转换模块150。数模转换模块150将该第二多路数字信号进行数模转换,得到第一多路模拟信号,并输入到电桥网络110中。其中,第一多路模拟信号可以为输入到图1E所示的电桥网络中的n个电桥模块中的m个电桥模块的第一端口的第一模拟信号。
第二加权矩阵Pmatrix满足以下任一条件:
第二加权矩阵的每个列向量之间正交;或者,
第二加权矩阵的每个列向量与该第一加权矩阵的一个或多个行向量正交;或者,
第二加权矩阵为该第一加权矩阵的共轭转置。
可选的,该第一多路数字信号的信号类型包括以下任一种:
m层MIMO发送信号;或者,
m个用户发送的信号;或者,
m个小区发送的信号;或者,
m个波束方向上发送的信号。
由此可知,上述介绍了数字信号处理模块140对数字域的数字信号进行处理的过程,该方式适用的场景包括:
1、多层MIMO信号加权处理的场景;
2、对于多个用户的信号、多层MIMO信号、多个小区或者多个波束方向上的信号,此时只需要发送部分用户的信号或者个别层MIMO信号或者个别小区的信号或者个别波束方向上的信号,那么可以通过数字信号处理模块140进行第二加权处理,仅发送个别用户或个别层MIMO信号或个别小区的信号或个别波束方向上的信号;
3、针对个别用户的信号、个别层MIMO信号、个别小区的信号或个别波束方向上的信号,此时需要向多个用户发送信号、在多个层中发送MIMO信号、在多个小区上发送信号或者在多个波束方向上发送信号,通过该数字信号处理模块140进行第二加权处理,以实现向多个用户发送信号、在多个层中发送MIMO信号、在多个小区上发送信号或者在多个波束方向上发送信号。
针对通过本申请实施例的天线系统接收模拟信号的场景,如图1B所示,该天线系统还包括数字信号处理模块140和数模转换模块150。以图1F所示的电桥网络为基础说明该数字信号处理模块140在数字域上对数字信号的处理过程。
数模转换模块150接收电桥网络110发送的第二多路模拟信号;对该第二多路模拟信号进行数模转换,得到第三多路数字信号;该数字信号处理模块140接收电桥网络110发送的第三多路数字信号,对该第三多路数字信号进行第四加权处理,得到第四多路数字信号。其中,第三多路数字信号表示为:
第三多路数字信号包括m个信号,m为大于等于1且小于等于n的整数。那么第四多路数字信号为
其中,Pmatrix
H为第四加权矩阵,第四加权矩阵为m*n的矩阵,Pmatrix
H为Pmatrix的共轭转置。
其中,第四加权矩阵满足以下任一条件:
第四加权矩阵的每个行向量之间正交;或者,
第四加权矩阵的每个行向量与该第三加权矩阵的一个或多个列向量正交;或者,
第四加权矩阵为该第三加权矩阵的共轭转置。
可选的,该第三多路数字信号的信号类型包括以下任一种:
m层MIMO接收信号;或者,
m个用户接收的信号;或者,
m个小区接收的信号;或者,
m个波束方向上接收的信号。
可以理解的是,同频合路器通过改变模拟信号的幅值来改变模拟信号的功率值。上述电桥网络110包括的电桥模块也可以由能够实现上述功能的其他电桥器件。同时上述电桥网络110中电桥模块的组成形式并不构成对电桥网络110的结构的限定,也可以是由其他电桥器件组成。
由于模拟信号所产生的电磁波在微带线中传递的波长波程都有对应的相位,不同的波长波程对应有不同的相位,而相位会影响电桥模块的输出分量的值。因此,本申请实施例所提供的电桥网络中,可以通过调节n个电桥模块之间连接的连接线的长度来控制电桥网络所包括的电桥模块的输出分量的比例,从而实现天线信号的功率分配,以实现天线信号的功率共享。
可选的,本申请实施例中,以上述图1C所示的电桥网络为例介绍该控制模块130的功能,该控制模块130用于控制第一线长和第二线长。对于通过本申请实施例的天线系统发射模拟信号的场景,该第一线长和第二线长用于控制在第一电桥模块的第四端口的输出信号与第二电桥模块的第四端口的输出信号的比例值。对于通过本申请实施例的天线系统接收模拟信号的场景,该第一线长和第二线长用于控制在第一电桥模块的第一端口的输出信号与第二电桥模块的第一端口的输出信号的比例值。
具体的,控制模块130通过控制第一移相器的微带线的长度来控制第一线长,通过控制第二移相器的微带线的长度来控制第二线长。其中,第一移相器的一端与第一电桥模块的第二端口连接,第一移相器的另一端与第二电桥模块的第三端口连接,第二移相器的一端与第一电桥模块的第三端口连接,第二移相器的另一端与第二电桥模块的第二端口连接。
下面示出本申请实施例的电桥网络包括第一电桥模块和第二电桥模块的示例。如图2A所示可知,该电桥网络中的电桥模块的第四端口的输出信号表示为:
该电桥网络中的电桥模块的第一端口的输入信号表示为:
则可知
第一加权矩阵
由于该电桥网络包括两个电桥模块,所以可知
其中,δ
0为第一电桥模块的第二端口与第二电桥模块的第三端口之间的第二线长所对应的波长波程,δ
1为第二电桥模块的第二端口与第一电桥模块的第三端口之间的第一线长所对应的波长波程。
下面通过图3和图4示出两种可能的三输入三输出的电桥网络的结构。
请参阅图3,图3为本申请实施例电桥网络的一个结构示意图。该电桥网络包括第一电桥模块、第二电桥模块和第三电桥模块。第一电桥模块的第三端口与第三电桥模块的第二端口连接,第三电桥模块的第三端口与第二电桥模块的第二端口连接,第二电桥模块的第三端口与第一电桥模块的第二端口连接。其中,模拟信号经过电桥模块之间的连接线的相位差为43.7度。
请参阅图4,图4为本申请实施例电桥网络的另一个结构示意图,该电桥网络为立体的电桥装置。该电桥网络110包括第一电桥模块、第二电桥模块和第三电桥模块。图4(a)为电桥网络的立体图的俯视图,三个电桥模块之间通过微带线连接,该微带线的线长为
载波介质波长,从而构成一个环形循环电路。其中,第一电桥模块的正视图如图4(b)所示的上部分。
为了将三个电桥模块输入的模拟信号尽量均匀地在三个电桥模块的第四端口输出到对应的天线上,即该电桥网络的电桥模块之间的输出分量的比例接近1:1,将δ
0,δ
1和δ
2都设置为
δ
0为第一电桥模块的第二端口与第二电桥模块的第三端口的连接线的线长所对应的波长波程,δ
1为第二电桥模块的第二端口与第三电桥模块的第三端口的连接线的线长所对应的波长波程,δ
2为第三电桥模块的第二端口与第一电桥模块的第三端口的连接线的线长所对应的波长波程。
在第一电桥模块的第一端口输入模拟信号a,在第二电桥模块的第一端口输入模拟信号b,在第三电桥模块的第一端口输入模拟信号c。那么可知,第一电桥模块的第四端口输出模拟信号A,第二电桥模块的第四端口输出模拟信号B,第三电桥模块的第四端口输出模 拟信号C。则可知:
由于δ
0,δ
1和δ
2都为
通过计算可知
那么可以计算得到A、B和C。
下面上述图3或图4所示的电桥网络的模拟信号a、模拟信号b和模拟信号c为数字信号处理模块140提供的场景介绍本申请实施例中数字信号处理模块140对接收到的数字信号的处理过程。
数字信号处理模块140接收第一小区的数字信号a
c,第二小区的数字信号b
c和第三小区的数字信号c
c。该数字信号处理模块140对a
c、b
c和c
c进行信号处理,例如,将数字信号乘以第一加权矩阵的共轭转置,具体如下:
可选的,a
c、b
c和c
c为三个小区的信号。如果只发送第一小区的信号,那么可以将第二小区和第三小区的信号功率借用与第一小区。例如,将Umatrx
H的第一列向量进行3倍功率放大,或者说第一小区的数字信号功率电平不局限在1之内,可以将该a
c的幅度放大
那么三个数字信号可以表示为:
然后,数模转换模块150对经过处理的三个数字信号进行数模转换,具体可以表示为:
本申请实施例还提供一种接入网设备,该接入网设备包括图1B或图1D所示的天线系统,该天线系统用于执行如前述图1E、图1F、图2A、图2B、图3和图4所示的实施例,此处不再赘述。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (13)
- 一种天线系统,其特征在于,所述天线系统包括电桥网络和天线模块,所述天线模块包括n个天线,所述电桥网络包括n个电桥模块,所述n个电桥模块中的第1个电桥模块的第三端口与所述n个电桥模块中的第n个电桥模块的第二端口连接,所述n个电桥模块中的第i个电桥模块的第三端口与所述n个电桥模块中的第i-1个电桥模块的第二端口连接,所述n个电桥模块的第四端口分别与所述n个天线连接,i为大于等于2且小于等于n的整数,n为大于等于2的整数;所述n个电桥模块中的第1个电桥模块对在所述第1个电桥模块的第一端口输入的第一模拟信号和所述第1个电桥模块的第二端口输入的第二模拟信号进行第一加权处理,得到第一分量和第二分量;所述第1个电桥模块在所述第1个电桥模块的第四端口输出所述第一分量,在所述第1个电桥模块的第三端口向所述n个电桥模块中的第n个电桥模块的第二端口输入所述第二分量,将所述第二分量作为所述第n个电桥模块的第二端口的第二模拟信号;所述n个电桥模块中的第k个电桥模块对所述第k个电桥模块的第一端口输入的第一模拟信号和所述第k个电桥模块的第二端口输入的第二模拟信号进行第一加权处理,得到第一分量和第二分量;所述第k个电桥模块在所述第k个电桥模块的第四端口输出所述第一分量,在所述第k个电桥模块的第三端口向所述n个电桥模块中的第k-1个电桥模块的第二端口输入所述第二分量,将所述第二分量作为所述第k-1个电桥模块的第二端口的第二模拟信号,k大于1且小于等于n的整数。
- 根据权利要求1所述的天线系统,其特征在于, 为由所述n个电桥模块中的每个电桥模块的第四端口的输出分量之和组成的矩阵,第一加权矩阵为 S为n*n的矩阵, D为n*n的矩阵,e -i(x)为以自然数e为底的复指数函数,δ 0为所述电桥网络的第1个电桥模块的第二端口与所述第1个电桥模块的第二端口 连接的电桥模块的第三端口的连接线的线长所对应的波长波程,δ 1为所述电桥网络的第2个电桥模块的第二端口与所述第2个电桥模块的第二端口连接的电桥模块的第三端口的连接线的线长所对应的波长波程,δ n-1为所述电桥网络的第n个电桥模块的第二端口与所述第n个电桥模块的第二端口连接的电桥模块的第三端口的连接线的线长所对应的波长波程, 为由所述n个电桥模块中的每个电桥模块的第一端口的第一模拟信号组成的矩阵。
- 根据权利要求1或2所述的天线系统,其特征在于,所述天线系统还包括控制模块;所述控制模块用于设置所述n个电桥模块之间的连接线的线长,所述n个电桥模块之间的连接线的线长用于控制在所述n个电桥模块的第一端口的输出信号的比例值。
- 根据权利要求2或3所述的天线系统,其特征在于,所述天线系统还包括数字信号处理模块和数模转换模块,所述数字信号处理模块与所述数模转换模块的第一端连接,所述数模转换模块的第二端与所述电桥网络连接;所述数字信号处理模块,用于对所述数字信号处理模块接收到的第一多路数字信号进行第二加权处理,得到第二多路数字信号,所述第二加权处理是通过第二加权矩阵实现的,所述第二加权矩阵为n*m的矩阵,n为所述天线系统所包括的电桥模块的个数,m为所述第一多路数字信号所包括的信号个数,m为大于0且小于等于n的整数;所述第二加权矩阵满足以下任一条件:所述第二加权矩阵的每个列向量之间正交;或者,所述第二加权矩阵的每个列向量与所述第一加权矩阵的一个或多个行向量正交;或者,所述第二加权矩阵为所述第一加权矩阵的共轭转置;所述数模转换模块,用于对所述第二多路数字信号进行数模转换,得到第一多路模拟信号,所述第一多路模拟信号包括所述n个电桥模块中的m个电桥模块的第一端口的第一模拟信号。
- 根据权利要求4所述的天线系统,其特征在于,所述第一多路数字信号包括:m层多进多出MIMO发送信号;或者,m个用户发送的信号;或者,m个小区发送的信号;或者,m个波束方向上发送的信号。
- 根据权利要求1至5中的任一项所述的天线系统,其特征在于,每个电桥模块为同频合路器。
- 一种天线系统,其特征在于,所述天线系统包括电桥网络和天线模块,所述天线模块包括n个天线,电桥网络包括n个电桥模块,所述n个电桥模块中的第一个电桥模块的第三端口与所述n个电桥模块中的第n个电桥模块的第二端口连接,所述n个电桥模块中 的第i个电桥模块的第三端口与所述n个电桥模块中的第i-1个电桥模块的第二端口连接,所述n个电桥模块的第四端口分别与所述n个天线连接,i为大于等于2小于等于n的整数,n为大于等于2的整数;所述n个电桥模块中的第n个电桥模块对所述第n个电桥模块的第三端口输入的第三模拟信号和所述n个天线中的第n个天线向所述第n个电桥模块的第四端口输入的第四模拟信号进行第三加权处理,得到第三分量和第四分量;所述第n个电桥模块在所述第n个电桥模块的第一端口输出所述第三分量,在所述第n个电桥模块的第二端口向第1个电桥模块的第三端口输入所述第四分量,将所述第四分量作为所述第n个电桥模块的第三端口的第三模拟信号;所述n个电桥模块的第j个电桥模块对在所述第j个电桥模块的第三端口输入的第三模拟信号和所述第j个天线向所述第j个电桥模块的第四端口输入的第四模拟信号进行第三加权处理,得到第三分量和第四分量;所述第j个电桥模块在所述第j个电桥模块的第一端口输出所述第三分量,在所述第j个电桥模块的第二端口向第j+1个电桥模块的第三端口输入所述第四分量,将所述第四分量作为所述第j+1个电桥模块的第三端口的第三模拟信号,j大于等于1且小于n的整数。
- 根据权利要求7所述的天线系统,其特征在于, 为由所述n个电桥模块中的每个电桥模块的第一端口的输出分量之和组成的矩阵,第三加权矩阵Umatrix H为Umatrix的共轭转置, S为n*n的矩阵, D为n*n的矩阵,e -i(x)为以自然数e为底的复指数函数,δ 0为所述电桥网络的第1个电桥模块的第二端口与所述第1个电桥模块的第二端口连接的电桥模块的第三端口的连接线的线长所对应的波长波程,δ 1为所述电桥网络的第2个电桥模块的第二端口与所述第2个电桥模块的第二端口连接的电桥模块的第三端口的连接线的线长所对应的波长波程,δ N-1为所述电桥网络的第n个电桥模块的第二端口与所述第n个电桥模块的第二端口连接的电桥模块的第 三端口的连接线的线长所对应的波长波程, 为由所述n个电桥模块中的每个电桥模块的第四端口的第四模拟信号组成的矩阵。
- 根据权利要求7或8所述的天线系统,其特征在于,所述天线系统还包括控制模块;所述控制模块用于设置所述n个电桥模块之间的连接线的线长,所述n个电桥模块之间的连接线的线长用于控制在所述n个电桥模块的第一端口的输出信号的比例值。
- 根据权利要求8或9所述的天线系统,其特征在于,所述天线系统还包括数字信号处理模块和数模转换模块,所述数字信号处理模块与所述数模转换模块的第一端连接,所述数模转换模块的第二端与所述电桥网络连接;所述数模转换模块,用于接收所述电桥网络发送的第二多路模拟信号;对所述第二多路模拟信号进行数模转换,得到第三多路数字信号;所述数字信号处理模块,用于对所述第三多路数字信号进行第四加权处理,得到第四多路数字信号,所述第四加权处理是通过第四加权矩阵实现的,所述第四加权矩阵为m*n的矩阵,m为所述第三多路数字信号所包括的信号个数,m为大于0且小于等于n的整数;所述第四加权矩阵满足以下任一条件:所述第四加权矩阵的每个行向量之间正交;或者,所述第四加权矩阵的每个行向量与所述第三加权矩阵的一个或多个列向量正交;或者,所述第四加权矩阵为所述第三加权矩阵的共轭转置。
- 根据权利要求10所述的天线系统,其特征在于,所述第三多路数字信号包括:m层多进多出MIMO接收信号;或者,m个用户接收的信号;或者,m个小区接收的信号;或者,m个波束方向上接收的信号。
- 根据权利要求7至11中的任一项所述的天线系统,其特征在于,每个电桥模块为同频合路器。
- 一种接入网设备,其特征在于,所述接入网设备包括如权利要求1至6或如权利要求7至12中的任一项所述的天线系统。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21761914.7A EP4089929A4 (en) | 2020-02-27 | 2021-02-26 | ANTENNA SYSTEM AND ACCESS NETWORK DEVICE |
US17/896,909 US20220407569A1 (en) | 2020-02-27 | 2022-08-26 | Antenna System and Access Network Device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010123881.1 | 2020-02-27 | ||
CN202010123881.1A CN113315550B (zh) | 2020-02-27 | 2020-02-27 | 天线系统和接入网设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/896,909 Continuation US20220407569A1 (en) | 2020-02-27 | 2022-08-26 | Antenna System and Access Network Device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021170057A1 true WO2021170057A1 (zh) | 2021-09-02 |
Family
ID=77370314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/078009 WO2021170057A1 (zh) | 2020-02-27 | 2021-02-26 | 天线系统和接入网设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220407569A1 (zh) |
EP (1) | EP4089929A4 (zh) |
CN (1) | CN113315550B (zh) |
WO (1) | WO2021170057A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022093988A1 (en) * | 2020-10-30 | 2022-05-05 | XCOM Labs, Inc. | Clustering and/or rate selection in multiple-input multiple-output communication systems |
CN117692916A (zh) * | 2022-08-31 | 2024-03-12 | 华为技术有限公司 | 一种信号处理系统、射频拉远单元和天线单元 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1697529A (zh) * | 2004-05-12 | 2005-11-16 | 华为技术有限公司 | 一种基站功率发射通道传输信号的方法和装置 |
CN1708150A (zh) * | 2004-06-04 | 2005-12-14 | 华为技术有限公司 | 基站功率发射通道传输信号的方法和装置 |
CN103414023A (zh) * | 2013-07-22 | 2013-11-27 | 西安空间无线电技术研究所 | 一种高容差性小型化输入Butler矩阵 |
US10009051B1 (en) * | 2017-11-04 | 2018-06-26 | Facebook, Inc. | Modem-agnostic analog spatial multiplexing |
CN208284635U (zh) * | 2018-03-28 | 2018-12-25 | 北京微度芯创科技有限责任公司 | 一种差分馈电的高增益贴片天线系统 |
US10432272B1 (en) * | 2018-11-05 | 2019-10-01 | XCOM Labs, Inc. | Variable multiple-input multiple-output downlink user equipment |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4612548A (en) * | 1984-06-01 | 1986-09-16 | Raytheon Company | Multi-port radio frequency networks for an antenna array |
DE3885082T2 (de) * | 1988-01-20 | 1994-05-11 | Hazeltine Corp | Phasengesteuerte Antenne mit Kopplern, die zu einem örtlich koppelndem Filter angordnet sind. |
US5028930A (en) * | 1988-12-29 | 1991-07-02 | Westinghouse Electric Corp. | Coupling matrix for a circular array microwave antenna |
US5191340A (en) * | 1991-08-16 | 1993-03-02 | Allied-Signal Inc. | Neutralization network for multielement antenna |
US6922169B2 (en) * | 2003-02-14 | 2005-07-26 | Andrew Corporation | Antenna, base station and power coupler |
GB0509647D0 (en) * | 2005-05-12 | 2005-06-15 | Quintel Technology Ltd | Electrically steerable phased array antenna system |
WO2012095056A2 (zh) * | 2012-03-05 | 2012-07-19 | 华为技术有限公司 | 天线系统 |
WO2013152141A1 (en) * | 2012-04-04 | 2013-10-10 | White Carson R | Antenna array with wide-band reactance reduction |
US9502746B2 (en) * | 2015-02-04 | 2016-11-22 | Tyco Electronics Corporation | 180 degree hybrid coupler and dual-linearly polarized antenna feed network |
US20170125873A1 (en) * | 2015-11-02 | 2017-05-04 | Honeywell International Inc. | Systems and methods for cascading quadrature couplers for flat frequency response |
WO2018040020A1 (zh) * | 2016-08-31 | 2018-03-08 | 华为技术有限公司 | 调节天线信号功率的方法及基站 |
CN110768698B (zh) * | 2018-07-27 | 2021-06-04 | 上海华为技术有限公司 | 信号处理的方法和装置 |
-
2020
- 2020-02-27 CN CN202010123881.1A patent/CN113315550B/zh active Active
-
2021
- 2021-02-26 EP EP21761914.7A patent/EP4089929A4/en active Pending
- 2021-02-26 WO PCT/CN2021/078009 patent/WO2021170057A1/zh unknown
-
2022
- 2022-08-26 US US17/896,909 patent/US20220407569A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1697529A (zh) * | 2004-05-12 | 2005-11-16 | 华为技术有限公司 | 一种基站功率发射通道传输信号的方法和装置 |
CN1708150A (zh) * | 2004-06-04 | 2005-12-14 | 华为技术有限公司 | 基站功率发射通道传输信号的方法和装置 |
CN103414023A (zh) * | 2013-07-22 | 2013-11-27 | 西安空间无线电技术研究所 | 一种高容差性小型化输入Butler矩阵 |
US10009051B1 (en) * | 2017-11-04 | 2018-06-26 | Facebook, Inc. | Modem-agnostic analog spatial multiplexing |
CN208284635U (zh) * | 2018-03-28 | 2018-12-25 | 北京微度芯创科技有限责任公司 | 一种差分馈电的高增益贴片天线系统 |
US10432272B1 (en) * | 2018-11-05 | 2019-10-01 | XCOM Labs, Inc. | Variable multiple-input multiple-output downlink user equipment |
Non-Patent Citations (1)
Title |
---|
See also references of EP4089929A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4089929A1 (en) | 2022-11-16 |
CN113315550B (zh) | 2022-03-29 |
CN113315550A (zh) | 2021-08-27 |
EP4089929A4 (en) | 2023-07-05 |
US20220407569A1 (en) | 2022-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alsharif et al. | Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells | |
US20220407569A1 (en) | Antenna System and Access Network Device | |
Hao et al. | Energy-efficient hybrid precoding design for integrated multicast-unicast millimeter wave communications with SWIPT | |
US7257424B2 (en) | Transceiver method in a radio system and a radio system | |
Tanwar et al. | Designing and Calculating Bandwidth of the LTE Network for Rural Areas | |
Asai | 5G radio access network and its requirements on mobile optical network | |
Jiang et al. | Wireless fronthaul for 5G and future radio access networks: Challenges and enabling technologies | |
Dhalbisoi et al. | A comparative analysis on 5G cell free massive Mimo in next generation networking environment | |
Ahmed et al. | On the performance of multi-user massive MIMO over mm wave channels | |
WO2024045878A1 (zh) | 一种信号处理系统、射频拉远单元和天线单元 | |
Okumura | 5G mobile radio access system using SHF/EHF bands | |
Yadav et al. | Design of a scheduling algorithm in 3D MIMO beamforming 5G systems for interference mitigation | |
CN110933716B (zh) | 一种基于边缘缓存的安全低时延毫米波传输方法 | |
Okuyama et al. | Experimental evaluation of digital beamforming for 5G multi-site massive MIMO | |
Miyazaki et al. | User selection and rank adaptation for multi-user Massive MIMO with hybrid beamforming | |
Belkin et al. | Studying an optimal approach to distribute signals through fiber-wireless Fronthaul network | |
US10243627B1 (en) | Optimizing LTE transmit diversity implementation based on wireless device transmit power and power headroom | |
Zou et al. | Low-complexity coordinated beamforming for full duplex MIMO wireless cellulars | |
Zhang et al. | Energy-efficient cooperative hybrid precoding for millimeter-wave communication networks | |
Mohamed | Optimizing Design Parameters for Relay-Aided Massive MIMO Systems | |
CN114584249B (zh) | 无线全双工系统的干扰消除方法 | |
WO2024168460A1 (en) | Methods for reducing beam sweeping time for a user equipment | |
Zhihong et al. | Review on strategic technology of dense connection for the future mobile network [J] | |
Zhang et al. | Decorrelating receiver of interference mitigation in MMwave small cells networks | |
US11405870B1 (en) | Minimizing uplink interference in wireless networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21761914 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021761914 Country of ref document: EP Effective date: 20220809 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |