WO2021169683A1 - 一种通信的方法及装置 - Google Patents

一种通信的方法及装置 Download PDF

Info

Publication number
WO2021169683A1
WO2021169683A1 PCT/CN2021/072918 CN2021072918W WO2021169683A1 WO 2021169683 A1 WO2021169683 A1 WO 2021169683A1 CN 2021072918 W CN2021072918 W CN 2021072918W WO 2021169683 A1 WO2021169683 A1 WO 2021169683A1
Authority
WO
WIPO (PCT)
Prior art keywords
access
network
terminal
identifier
message
Prior art date
Application number
PCT/CN2021/072918
Other languages
English (en)
French (fr)
Inventor
于游洋
吴问付
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21761809.9A priority Critical patent/EP4099758A4/en
Publication of WO2021169683A1 publication Critical patent/WO2021169683A1/zh
Priority to US17/896,161 priority patent/US20220408502A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • the terminal can directly access the core network through a third generation partnership project (3rd generation partnership project, 3GPP) access network or a non-non3GPP access network. If there is only one link available between the terminal and the core network, when the terminal has large-scale data transmission, the bandwidth resources provided by a single link are limited, which affects the quality of service and user experience.
  • 3GPP third generation partnership project
  • the embodiments of the present application provide a communication method and device to solve the problem of limited bandwidth resources of a single link, which affects the quality of service.
  • a communication method in the first aspect, can obtain a first IP address allocated to the terminal by a first network. Then, the terminal may send a first access message to an access gateway through the first network, and the first access message is encapsulated by the first IP address. Then, the terminal may also send a second access message to the access gateway through the second network, and the second access message may include at least one of the following: the first IP address and the first identifier of the terminal.
  • the first network includes a first access network and a first core network
  • the second network is a second access network
  • the first network is a second access network
  • the second network includes The first access network and the first core network.
  • the first access message and the second access message may be used for the terminal to request access to the access gateway.
  • the terminal may first access the second core network through the first network, and then access the second core network through the second network.
  • the first IP address allocated by the first network for the terminal is carried in the second access message, so that the access gateway can determine that it is a terminal establishment based on the first IP address Two communication links. By establishing two communication links between the terminal and the second core network, bandwidth resources can be increased and service quality can be improved.
  • the first identifier of the terminal may include a temporary identifier assigned to the terminal by the second core network and/or a permanent identifier of the terminal.
  • the temporary identifier assigned by the second core network to the terminal is a temporary identifier assigned by the second core network to the terminal when the terminal accesses the second core network through the first network.
  • the first access message may also include the first identification of the terminal, and the first identification of the terminal may be the permanent identification of the terminal, or it may be from the second core network (for example, when accessing the second core network last time).
  • Temporary ID obtained at the first identification of the terminal may be the permanent identification of the terminal, or it may be from the second core network (for example, when accessing the second core network last time).
  • the access gateway can determine again that the two access messages are sent by the same terminal according to the permanent identification or temporary identification of the terminal Yes, that is, a terminal requests to establish two communication links.
  • the first access message may include the identity of the first network, and the second access message may also include the identity of the second network. If the network includes the first access network and the first core network, the identifier of the network in the access message is the identifier of the first core network.
  • the above-mentioned identifier of the first core network includes at least one of a PLMN ID or an NPN network identifier (NID).
  • the source network of the first request message is identified through the identity of the first network or the identity of the second network, so that the second core network issues different policies for different networks.
  • the second access message may further include: the identifier of the access and mobility management function AMF network element in the second core network.
  • the access gateway can send a request message to the same AMF network element to establish two communication links.
  • An access gateway in a second core network can receive a first access message sent by a terminal through a first network, and the first access message can be sent by the first network. Encapsulation of the first IP address allocated for the terminal. Then, the access gateway may also receive a second access message sent by the terminal via a second network, the second access message including at least one of the following: the first IP address, the first IP address of the terminal Logo.
  • the first network includes a first access network and a first core network
  • the second network is a second access network
  • the first network is a second access network
  • the second network Including the first access network and the first core network.
  • the terminal may first access the second core network through the first network, and then access the second core network through the second network.
  • the first IP address allocated by the first network for the terminal is carried in the second access message, so that the access gateway can determine that it is a terminal establishment based on the first IP address Two communication links. By establishing two communication links between the terminal and the second core network, bandwidth resources can be increased and service quality can be improved.
  • the access gateway may also determine that the first access message corresponds to the second access message according to the first IP address and/or the first identifier of the terminal The terminal, that is, the first access message and the second access message are sent from the same terminal.
  • the first identifier of the terminal may include a temporary identifier assigned to the terminal by the second core network and/or a permanent identifier of the terminal.
  • the temporary identifier assigned by the second core network to the terminal is a temporary identifier assigned by the second core network to the terminal when the terminal accesses the second core network through the first network.
  • the first access message may also include the first identification of the terminal, and the first identification of the terminal may be the permanent identification of the terminal, or it may be from the second core network (for example, when accessing the second core network last time).
  • Temporary ID obtained at the first identification of the terminal may be the permanent identification of the terminal, or it may be from the second core network (for example, when accessing the second core network last time).
  • the access gateway can determine again that the two access messages are sent by the same terminal according to the permanent identification or temporary identification of the terminal Yes, that is, a terminal requests to establish two communication links.
  • the first access message may include the identity of the first network, and the second access message may also include the identity of the second network. If the network includes the first access network and the first core network, the identifier of the network in the access message is the identifier of the first core network.
  • the above-mentioned identifier of the first core network includes at least one of a PLMN ID or an NPN network identifier (NID).
  • the source network of the first request message is identified through the identity of the first network or the identity of the second network, so that the second core network issues different policies for different networks.
  • the second access message may further include: the identifier of the access and mobility management function AMF network element in the second core network.
  • the identifier of the AMF network element can be used to select the same AMF.
  • the access gateway can send the first request message to the same AMF network element to establish two communication links.
  • the access gateway may also send a first request message to the AMF network element, where the first request message includes at least one of the following: a link between the terminal and the access gateway Identification, multi-link indication; wherein, the multi-link indication is used to indicate that there are multiple links between the terminal and the access gateway.
  • the access gateway instructs the AMF network element to establish two communication links by sending two first request messages to the AMF network element, and each first request message carries a multi-link indication or a corresponding link identifier.
  • the link identifier between the terminal and the access gateway is an IP address allocated by the first core network for the terminal or an IP address allocated by the second access network for the terminal .
  • the link identifier is the IP address allocated by the first core network to the terminal.
  • the link identifier is the IP address allocated by the second access network to the terminal.
  • the first request message may also include at least one of the following: an indication of the access mode of the terminal, an identifier of the first network, or an identifier of the second network; wherein the access mode of the terminal indicates the terminal’s Access technology, or instruct the terminal to access the access gateway through the first core network.
  • Different access methods and/or different network identifiers are used to identify different links, so that the second core network device issues different policies for different links.
  • the access gateway may also receive a response message of the first request message sent by the AMF network element, and the response message of the first request message may include a link identifier;
  • the link identifier is used to indicate the link between the terminal corresponding to the response message and the access gateway.
  • the access gateway may establish a user plane connection between the terminal and the access gateway based on the link identifier.
  • the link identifier in the first request message may be the same as the link identifier in the corresponding response message.
  • the AMF network element sends a corresponding response message for each first request message.
  • the link identifier in one response message is used to instruct the terminal to access the second core network through the first core network, and the link identifier in the other response message Used to instruct the terminal to access the second core network through the second access network.
  • the access gateway may also receive a response message of the first request message sent by the AMF network element, and the response message of the first request message may include terminal identification information; further, The access gateway may associate the response message with the context of the same terminal based on the terminal identification information.
  • the terminal identification information in the response messages of the multiple first request messages is the same, and the terminal identification information is that after the AMF network element determines the context of the terminal based on the first identification of the terminal, in the context of the terminal Extracted. Then the terminal identification information may also be referred to as N2 terminal identification.
  • the N2 terminal identifier may be a terminal identifier used on the N2 interface, for example, it may be a temporary identifier assigned to the terminal by the AMF network element on the N2 interface, N2AMF UE ID; it may also be assigned to the terminal by the access gateway on the N2 interface
  • the temporary identifier of the such as N2 N3IWF UE ID.
  • the first network access technology is 3GPP access technology
  • the second network access technology is non3GPP access technology
  • the first network access technology is non3GPP access Technology
  • the second network access technology is 3GPP access technology
  • a communication method in a third aspect, can receive a first request message sent by an access gateway of a second core network, and the first request message can include at least one of the following : The link identifier between the terminal and the access gateway, a multi-link indication; wherein the multi-link indication is used to indicate that there are multiple links between the terminal and the access gateway. Then, the AMF network element sends a second request message to the session management function SMF network element.
  • the second request message may include the access mode of the terminal, and the access mode of the terminal indicates the access technology of the terminal, or indicates The terminal accesses the access gateway through the first core network.
  • the access gateway instructs the AMF network element to establish two communication links by sending two first request messages to the AMF network element, and each first request message carries a multi-link indication or a corresponding link identifier. Furthermore, the AMF network element can determine two access modes of the terminal, and then instruct the SMF network element to establish multiple links. Subsequently, the AMF network element can carry the same link identifier to the access gateway in the reply message, so that the access gateway can apply the parameters carried in the reply message to the corresponding link.
  • the link identifier between the terminal and the access gateway is an IP address allocated by the first core network for the terminal or an IP address allocated by the second access network for the terminal .
  • the link identifier is the IP address allocated by the first core network to the terminal.
  • the link identifier is the IP address allocated by the second access network to the terminal.
  • the first request message may also include at least one of the following: an access mode of the terminal, an identification of the first network, or an identification of the second network; wherein the access mode of the terminal indicates the access of the terminal. Access technology, or instruct the terminal to access the access gateway through the first core network. If the network includes the first access network and the first core network, the identifier of the network in the access message is the identifier of the first core network.
  • the above-mentioned identifier of the first core network includes at least one of a PLMN ID or an NPN network identifier (NID).
  • the AMF network element may also determine the access mode of the terminal carried in the second request message sent by the AMF network element to the SMF network element based on the access mode of the terminal reported by the access gateway.
  • the access gateway may identify different links through different access modes of the terminal and/or different network identifiers, so that the second core network device can issue different policies for different links.
  • the second request message may further include: a first indication of multiple links, an identifier of the first network, or an identifier of the second network;
  • the first multi-link indication is used to indicate that there are multiple links between the terminal and the access gateway of the second core network where the SMF network element is located.
  • the AMF network element instructs the establishment of multiple links through the multi-link indication, or identifies different links through the identification of the first network or the identification of the second network, so that the SMF network element issues different links for different links. Different strategies.
  • the AMF network element may also receive a response message of the second request message sent by the SMF network element, and the response message of the second request message may include the access mode of the terminal. Then, the AMF network element determines the link identifier between the terminal and the access gateway based on the access mode of the terminal.
  • the SMF network element identifies different links through different access modes of the terminal, thereby notifying the multiple links established by the AMF network element.
  • the AMF network element may also send a response message of the first request message to the access gateway, and the response message of the first request message may include the link identifier;
  • the link identifier is used to indicate the link between the terminal corresponding to the response message and the access gateway.
  • the AMF network element sends a corresponding response message for each first request message.
  • the link identifier in one response message is used to instruct the terminal to access the second core network through the first core network, and the link identifier in the other response message Used to instruct the terminal to access the second core network through the second access network.
  • the AMF network element may also send a response message of the first request message to the access gateway, and the response message of the first request message may include terminal identification information, and the terminal The identification information is extracted from the context of the terminal after the AMF network element determines the context of the terminal based on the first identification of the terminal.
  • the terminal identification information in the response messages of the multiple first request messages is the same.
  • the terminal identification information may be that after the AMF network element determines the context of the terminal based on the first identification of the terminal, the context of the terminal Extracted from it. Then the terminal identification information may also be referred to as N2 terminal identification.
  • the N2 terminal identifier may be a terminal identifier used on the N2 interface, for example, it may be a temporary identifier assigned to the terminal by the AMF network element on the N2 interface, N2AMF UE ID; it may also be assigned to the terminal by the access gateway on the N2 interface The temporary identifier of the, such as N2 N3IWF UE ID.
  • a communication method may receive a second request message sent by the AMF network element, and the second request message may include an indication of the access mode of the terminal.
  • the access mode of the terminal indicates the access technology of the terminal, or instructs the terminal to access the access gateway through the first core network. Then, the SMF may instruct the UPF network element to establish multiple user plane tunnels.
  • the AMF network element instructs the SMF network element to establish multiple links through multiple access methods of the terminal. Furthermore, the SMF network element instructs the UPF network element to establish multiple user plane tunnels. And the AMF network element identifies different links through different access methods, so that the SMF network element issues different strategies for different links.
  • the second request message may further include: a first indication of multiple links, an identifier of the first network, or an identifier of the second network;
  • the first multi-link indication is used to indicate that there are multiple links between the terminal and the access gateway of the second core network where the SMF network element is located.
  • the AMF network element instructs the establishment of multiple links through the multi-link indication, or identifies different links through the identification of the first network or the identification of the second network, so that the SMF network element issues different links for different links. Different strategies.
  • the SMF network element may send a response message of the second request message to the AMF network element, and the response message of the second request message includes the access mode of the terminal.
  • the SMF network element sends a corresponding response message for each second request message.
  • the access mode of the terminal in one response message is used to instruct the terminal to access the second core network through the first core network, and the terminal in the other response message
  • the access mode is used to instruct the terminal to access the second core network through the second access network.
  • the SMF network element identifies different links through different access modes of the terminal, thereby notifying the multiple links established by the AMF network element.
  • a communication device in a fifth aspect, has the function of implementing any of the foregoing first aspect and any possible implementation of the first aspect; or implementing any of the foregoing second aspect and any possible implementation of the second aspect.
  • These functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more functional modules corresponding to the above-mentioned functions.
  • a communication device in a sixth aspect, may be a terminal in any possible implementation of the first aspect and the first aspect, or a chip set in the terminal; or the second aspect and the second aspect.
  • the access gateway in any possible implementation of the aspect, or the chip set in the access gateway; or the AMF network element in any possible implementation of the third aspect and the third aspect, or set in the AMF network element Or the SMF network element in any possible implementation of the foregoing fourth aspect and the fourth aspect, or a chip set in the SMF network element.
  • the device includes a transceiver and a processor, a possible implementation manner, and also includes a memory. Wherein, the memory is used to store computer programs or instructions, and the processor is respectively coupled with the memory and the transceiver.
  • the device executes the first aspect and the first aspect through the transceiver.
  • the method executed by the terminal in any possible implementation; or the method executed by the access gateway in any possible implementation of the second aspect and the second aspect; or the method executed by the access gateway in any of the foregoing third aspect and the third aspect
  • a computer program product comprising: computer program code, when the computer program code runs on a computer, the computer executes the first aspect and any one of the possible aspects of the first aspect.
  • the present application provides a chip system that includes a processor and a memory, and the processor and the memory are electrically coupled; the memory is used to store computer program instructions; the processor , Used to execute part or all of the computer program instructions in the memory.
  • the part or all of the computer program instructions are executed, they are used to implement the first aspect and any one of the possible implementation methods of the first aspect.
  • the chip system may further include a transceiver, and the transceiver is configured to send a signal processed by the processor or receive a signal input to the processor.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a computer-readable storage medium stores a computer program.
  • the first aspect and any possible implementation of the first aspect are executed by the terminal.
  • the access gateway in any possible implementation of the second aspect and the second aspect is executed; or the AMF network element in any possible implementation of the third aspect and the third aspect is executed
  • the method of is executed; or the method executed by the SMF network element in any possible implementation of the foregoing fourth aspect and the fourth aspect is executed.
  • a communication system in a tenth aspect, includes: an access gateway that executes any one of the foregoing second aspect and any possible implementation method of the second aspect, and executes any one of the foregoing third aspect and the third aspect AMF network element of the possible implementation of the method.
  • the system may also include an SMF network element that executes the foregoing fourth aspect and any possible implementation method of the fourth aspect.
  • FIG. 1 is a schematic diagram of a 5G communication system architecture provided in an embodiment of this application;
  • FIG. 2 is a schematic diagram of a terminal accessing a core network through an untrusted non-3GPP access network provided in an embodiment of the application;
  • 3A and 3B are schematic diagrams of a terminal accessing another core network through one core network according to an embodiment of the application;
  • 3C, 3D, and 4 are schematic diagrams of a multi-link provided in an embodiment of this application.
  • Fig. 5a, Fig. 5b, and Fig. 6 are a communication method for establishing multiple links provided in an embodiment of this application;
  • Figures 7 and 8 are a communication device for establishing multiple links provided in an embodiment of this application.
  • FIG. 9 is a hardware structure diagram of a communication device provided in an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a terminal provided in an embodiment of this application.
  • FIG. 11 is a schematic diagram of a chip structure provided in an embodiment of the application.
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5th generation fifth generation
  • 5G new radio
  • FIG. 1 is a schematic diagram of a 5G communication system architecture to which this application applies.
  • FIG. 1 is a schematic diagram of a 5G network architecture based on a service-oriented architecture.
  • the 5G network architecture shown in FIG. 1 may include a terminal device part, an access network part, a core network part, a data network (DN) and an application function (AF) network element part.
  • the terminal accesses the core network through the access network, and the core network communicates with the DN or AF.
  • the functions of some of the network elements are briefly introduced below.
  • the core network part may include one or more of the following network elements: network exposure function (NEF) network element, network storage function (network repository function, NRF) network element, policy control function (policy control function) , PCF) network element, unified data management (UDM) network element, access and mobility management function (AMF) network element, session management function (session management function, SMF) network element , Radio access network (RAN) and user plane function (UPF) network elements, etc.
  • NEF network exposure function
  • NRF network storage function
  • policy control function policy control function
  • PCF unified data management
  • AMF access and mobility management function
  • SMF session management function
  • SMF Radio access network
  • UPF user plane function
  • Terminal device also called user equipment (user equipment, UE)
  • UE user equipment
  • Terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (Such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, satellites, etc.).
  • the RAN device in this application is a device that provides wireless communication functions for terminal devices, and the RAN device is also called an access network device.
  • the RAN equipment in this application includes but is not limited to: next-generation base stations (gnodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (RNC), node B in 5G (node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand) unit, BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc.
  • next-generation base stations gnodeB, gNB
  • evolved node B evolved node B
  • RNC radio network controller
  • node B in 5G node B, NB
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example
  • the access management network element is a control plane network element provided by the operator's network. It is responsible for the access control and mobility management of terminal equipment accessing the operator's network, including mobile status management, allocation of temporary user identities, authentication and authorization User and other functions.
  • the access management network element may be an access management function (access and mobility management function, AMF) network element.
  • AMF access management function
  • the access management network element may still be an AMF network element, or may also have other names, which is not limited in this application.
  • the session management network element is mainly responsible for session management in the mobile network, such as session establishment, modification, and release. Specific functions such as assigning IP addresses to users, selecting UPF that provides message forwarding functions, and so on.
  • the session management network element may be a session management function (session management function, SMF) network element.
  • SMF session management function
  • the session management network element may still be an SMF network element, or may also have other names, which is not limited in this application.
  • the application network element mainly supports the interaction with the 3rd generation partnership project (3rd generation partnership project, 3GPP) core network to provide services, such as influencing data routing decisions, policy control functions, or providing third-party services to the network side.
  • 3rd generation partnership project 3rd generation partnership project, 3GPP
  • the application network element may be an application function (AF) network element.
  • AF application function
  • the application network element may still be an AF network element, or may also have other names, which is not limited by this application.
  • Network storage network elements can be used to provide network element discovery functions, and provide network element information corresponding to the network element type based on requests from other network elements.
  • NRF also provides network element management services, such as network element registration, update, de-registration, and network element status subscription and push.
  • the network storage network element may be a network repository function (NRF) network element.
  • NRF network repository function
  • the network storage network element may still be an NRF network element, or may also have other names, which are not limited by this application.
  • DN can deploy multiple services and provide data and/or voice services for terminal devices.
  • DN is the private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal devices.
  • a control server for the sensors is deployed in the DN, and the control server can provide services for the sensors.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • the DN is the internal office network of a company.
  • the mobile phones or computers of the employees of the company can be terminal devices, and the mobile phones or computers of the employees can access the information and data resources on the internal office network of the company.
  • Nnef, Nnrf, Npcf, Nudm, Naf, Namf, Nsmf, N1, N2, N3, N4, and N6 are interface serial numbers.
  • the meaning of these interface serial numbers can refer to the meaning defined in the 3GPP standard protocol, which is not limited here.
  • the aforementioned network elements or functions may be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on a platform (for example, a cloud platform).
  • a platform for example, a cloud platform.
  • the foregoing network element or function may be implemented by one device, or jointly implemented by multiple devices, or may be a functional module in one device, which is not specifically limited in the embodiment of the present application.
  • the above-mentioned network architecture can support the access technologies defined by the 3GPP standard group, and can also support non-3GPP access technologies.
  • the access technologies defined by the 3GPP standard group are, for example, next-generation base station (gNB) technology or evolved node B (evolved node B, eNB) long term evolution (long term evolution, LTE) technology.
  • Non-3GPP access technologies such as WLAN, high-rate packet data (HRPD), evolved high-rate package data (EHRPD), and worldwide interoperability for microwave access, WiMAX) and so on.
  • non-trusted non3GPP access network and non-3GPP interworking function (N3IWF) in Figure 2 can be replaced with a trusted WLAN access gateway or a fixed access gateway, or N3IWF can be replaced with Trusted access gateway.
  • the access network equipment between the terminal and the aforementioned access gateway N3IWF includes WLAN AP, fixed access network equipment (fixed access network, FAN), switches, routers, etc.
  • the core network side can adopt the point-to-point interface protocol structure shown in Figure 2, or adopt the same structure as the 3GPP in Figure 1.
  • the terminal can directly access the core network through the 3GPP access network or the non3GPP access network.
  • the core network is, for example, a public land mobile network (PLMN) and a non-public network (NPN).
  • PLMN public land mobile network
  • NPN non-public network
  • the PLMN network is a public network that any legal terminal device can access.
  • the network structure of the NPN network is the same as the PLMN network structure, that is, it contains the same logical function network elements, but the NPN network only allows specific terminals to access. For example, a private NPN network that only allows employees to access is established in an enterprise park to facilitate employees' access to internal resources of the enterprise. Or, the NPN network where venues and clubs provide services for visitors, etc.
  • Figure 3A provides an architecture for interaction between NPN and PLMN.
  • the UE accesses the NPN network through the 3GPP access network, and then the NPN network accesses the PLMN network.
  • Figure 3B provides another NPN and PLMN interaction architecture.
  • the UE accesses the PLMN network through the 3GPP network, and then the PLMN network accesses the NPN.
  • the terminal can directly access the core network through a 3GPP access network or a non3GPP access network, or as shown in FIG. 3A or FIG. 3B, access to another core network through one core network.
  • a 3GPP access network or a non3GPP access network or as shown in FIG. 3A or FIG. 3B, access to another core network through one core network.
  • the terminal has large-scale data transmission, the bandwidth resources provided by a single link are limited, which affects the quality of service and user experience.
  • this application provides a communication method.
  • the terminal establishes two communication links with the second core network, and one communication link is for the terminal to access the first core through the first access network.
  • the second core network is connected to the second core network through the first core network, and the other communication link is for the terminal to access the second core network through the second access network.
  • the order in which these two communication links are established is not restricted. For example, on the basis of combining the UE accessing the PLMN interaction architecture through the NPN network shown in FIG. 4 and FIG. 3A, referring to FIG. 3C, a multi-link schematic diagram is provided. One link is for the terminal to access the NPN network through the 3GPP access network, and then access the PLMN network through the NPN network.
  • the other link is for the terminal to access the PLMN network through the WLAN AP network, where the NPN network is defined as CN1 and the PLMN network is defined as CN2.
  • the NPN network is defined as CN1 and the PLMN network is defined as CN2.
  • the PLMN network is CN1 and the NPN network is CN2, as shown in FIG. 3D, a multi-link schematic diagram is provided.
  • the multiple involved in this application refers to two or more.
  • the word "exemplary” is used to mean serving as an example, illustration, or illustration. Any embodiments or implementations described as “examples” in this application should not be construed as being more preferred or advantageous than other embodiments or implementations. Rather, the term example is used to present the concept in a concrete way.
  • FIG. 5a a schematic diagram of the process of establishing a communication link is provided.
  • the first network in FIG. 5a includes a first access network and a first core network
  • the second network is a second access network
  • the first network in FIG. 5a is the second access network
  • the second network includes the first access network and the first core network.
  • the second access network is, for example, a wifi AP network or a wired access network
  • the first access network is, for example, a cellular network, such as a 4G cellular base station, or a 5G cellular base station.
  • the first core network may be an NPN network or a PLMN network
  • the second core network may be a PLMN network or an NPN network.
  • the network identifiers of the first core network and the second core network may be the same or different.
  • the NPN network identifier is (network identifier, NID)
  • the PLMN network identifier is PLMN ID.
  • the access gateway may be, for example, a non-3GPP interworking function (non-3GPP interworking function, N3IWF) gateway or a next generation packet data gateway (ngPDG), or a wired access network gateway (wireline access gateway, W- AGF), or trusted network gateway (TNGF).
  • non-3GPP interworking function non-3GPP interworking function, N3IWF
  • ngPDG next generation packet data gateway
  • TNGF trusted network gateway
  • the IP address allocated by the first network to the terminal is referred to as the first IP address in the following.
  • the IP address allocated by the second network to the terminal is called the second IP address.
  • the first IP address can be allocated by the first core network
  • the second IP address can be accessed by the second network. Net distribution.
  • the first IP address may be allocated by the second access network
  • the second IP address may be allocated by the first core network.
  • the user location information when the terminal accesses the first network is called first user location information
  • the user location information when the terminal accesses the second network is called second user location information.
  • the first network includes the first access network and the first core network
  • the second network is the second access network
  • the first user location information is the user location information when the terminal accesses the first access network
  • the first The second user location information is user location information when the terminal accesses the second access network.
  • the first network is the second access network
  • the second network includes the first access network and the first core network
  • the first user location information is the user location information when the terminal accesses the second access network
  • the second user location The information is user location information when the terminal accesses the first access network.
  • the second network is the second access network
  • the identifier of the first network is the identifier of the first core network
  • the identifier of the second network is the second access network Of the logo.
  • the second network includes the first access network and the first core network
  • the identifier of the first network is the identifier of the second access network
  • the identifier of the second network is the first core network Of the logo.
  • the identifier of the second access network may be the name of the second access network, such as a wifi access point name, at least one of operators.
  • the name of the wifi access point is, for example, a service set identifier (SSID), or a homogeneous extended service set identifier (HESSID), or a basic service set identifier (BSSID).
  • the identification of the first core network includes at least one of the name of the first core network, an operator, a PLMN ID, or an NPN network identification (NID).
  • the terminal access technology in this application includes 3GPP access technology, non3GPP access technology, LTE access technology, NG-RAN access technology, wifi access technology, fixed network or wired access technology, etc.
  • step 500 is first performed: the terminal may obtain the first IP address allocated by the first network to the terminal. Then proceed to the following step 501.
  • the terminal may first register to the first core network through the first access network, and then the terminal is in A protocol data unit (PDU) session is established on the first core network, and the first IP address allocated by the first core network for the terminal is acquired.
  • PDU protocol data unit
  • the above-mentioned first IP address is the IP address allocated by the first network to the terminal.
  • the terminal can access the first access network through 3GPP access technology or non-3GPP access technology.
  • the 3GPP access technologies include 3GPP access technologies such as LTE and NG-RAN.
  • Non-3GPP access includes non3GPP access technologies such as WLAN, fixed network, and wired.
  • the first IP address indicates that the terminal accesses the second access network.
  • the second access network assigns an IP address to the terminal.
  • the terminal can access the second access network through 3GPP access technology or non-3GPP access technology.
  • the access technology used by the terminal to access the second access network and the access technology used by the terminal to access the first access network may be the same or different.
  • the terminal may also obtain one or more of the following information: location information of the first user when the terminal accesses the first network.
  • the terminal may also obtain the identity of the first core network.
  • the identifier of the first core network includes at least one of an NPN network identifier NID or a PLMN network identifier PLMN ID.
  • Step 501 The terminal sends a first access message to the access gateway of the second core network through the first network.
  • the access gateway receives the first access message sent by the terminal through the first network. information.
  • the first access message is encapsulated by a first IP address, and the first IP address is an IP address allocated by the first network to the terminal.
  • the terminal may obtain the IP address of the access gateway of the second core network based on the existing technology, and then send the first access message to the access gateway.
  • the access gateway may be, for example, N3IWF.
  • the terminal may first obtain the N3IWF FQDN, and then obtain the N3IWF IP address corresponding to the N3IWF FQDN through DNS query. Or, configure the IP address of the N3IWF locally based on the terminal.
  • the policy information obtained by the terminal from the network side includes the N3IWF IP address.
  • the access gateway may also be W-AGF or TNGF, for example. Among them, the method of obtaining the IP address of W-AGF and TNGF can be the same as the method of obtaining the IP address of N3IWF, and the introduction will not be repeated.
  • the terminal After obtaining the IP address of the access gateway, the terminal establishes a connection with the access gateway, and initiates a registration process to the second core network through the access gateway. Specifically, the terminal may send a first access message to the access gateway through a first network, and the first access message is encapsulated by a first IP address allocated by the first network to the terminal.
  • the first access message may be an IKEv2 message, such as an IKE_AUTH message.
  • the terminal can use the first IP address of the terminal as the source address of the terminal or the local IP address of the terminal to encapsulate the IKEv2 message and send it to the access gateway.
  • the first access message may also include at least one of the following: first user location information when the terminal accesses the first network, a first identification of the terminal, and a non-access stratum (NAS) ) The message, the identity of the first network.
  • the first identification of the terminal may include, but is not limited to, the temporary identification GUTI allocated by the second core network for the terminal and/or the permanent identification of the terminal. It should be noted that the temporary identifier assigned by the second core network to the terminal is a temporary identifier assigned by the second core network to the terminal when the terminal accesses the second core network through the previous network.
  • the NAS message for example, a registration request message, a service request message, or a PDU session establishment message or an update request message, etc., is not limited in this application.
  • the above-mentioned NAS message, and/or the location information of the first user when the terminal accesses the first network, and/or the identity of the first core network, and other parameters mentioned above, can be encapsulated in the EAP-5G parameters.
  • the IKEv2 message (that is, the first access message) is sent to the access gateway.
  • the access gateway may save the information included in the first access message and the corresponding relationship between the information, for example, save at least one of the following: The location information of the first user in a network, the identification of the first network, the first IP address allocated by the first network to the terminal, the first identification of the terminal, etc., and their corresponding relationships.
  • Step 502 The terminal sends a second access message to the access gateway through the second network, and correspondingly, the access gateway receives the second access message sent by the terminal through the second network.
  • the second access message is encapsulated by a second IP address, and the second IP address is an IP address allocated by a second network to the terminal.
  • the second access message includes at least one of the following: a first IP address allocated to the terminal by the first network, and a first identifier of the terminal.
  • the second access message may further include at least one of the following: second user location information when the terminal accesses the second network, the identifier of the AMF network element, the NAS message, and the identifier of the second network.
  • the first identification of the terminal may be a temporary identification assigned to the terminal by the second core network And/or the permanent identification of the terminal; wherein the temporary identification assigned to the terminal by the second core network is that when the terminal accesses the second core network through the first network, the second core network is the terminal Temporary identification assigned.
  • Temporary identification for example, globally unique temporary UE identity (GUTI).
  • GUI globally unique temporary UE identity
  • the second access message may be an IKEv2 message.
  • the second IP address may also be used as the source address of the terminal or the local IP address of the terminal to encapsulate the second access message.
  • the terminal establishes a connection with the second core network through the first network in step 501, and can obtain the temporary terminal identifier GUTI allocated by the second core network to the terminal.
  • the temporary identifier allocated by the second core network to the terminal includes the identifier of the AMF network element serving the terminal in the second core network. If the terminal accesses the same core network as in step 501 through the second network, that is, the second core network, the terminal can select the same access gateway as in step 501.
  • the terminal may send the identifier of the AMF network element serving the terminal in the second core network to the access gateway. That is, the second access message may also include the identifier of the AMF network element in the second core network.
  • the NAS message for example, a registration request message, a service request message, or a PDU session establishment message or an update request message, etc., is not limited in this application.
  • the above-mentioned NAS message, and/or the second user location information when the terminal accesses the second network, and other parameters mentioned above can be encapsulated into EAP-5G parameters through an IKEv2 message (ie, the second access message) Sent to the access gateway.
  • IKEv2 message ie, the second access message
  • the access gateway may save the information included in the second access message and the corresponding relationship. For example, save at least one of the following: the first identifier of the terminal, the second user location information when the terminal accesses the second network, the identifier of the AMF network element, the second IP address assigned by the second network to the terminal, and the first network is The first IP address assigned by the terminal, etc., and the corresponding relationship.
  • the corresponding relationship in step 503 is different from the corresponding relationship in step 502.
  • Step 503 The access gateway determines, according to the first IP address, that the first access message and the second access message correspond to the same terminal.
  • the access gateway may be based on the first IP address and/or the first identifier of the terminal carried in the first access message and the first IP address and/or the first IP address included in the second access message.
  • the first identifier of the terminal determines whether the first access message and the second access message are from the same terminal. If the first IP addresses are the same, they are from the same terminal; or if the first identifiers of the terminals are the same, they are from the same terminal.
  • the access gateway may establish two communication connections with one AMF network element for the terminal. For example, in step 504 and step 505, the access gateway sends two first request messages to an AMF network element.
  • the request message sent by the access gateway to the AMF network element is defined as the first request message. It should be noted that only one N2 connection is established between the access gateway and the AMF network element, and the access gateway sends two first request messages to the AMF network element on one N2 connection.
  • Step 504 After receiving the first access message sent by the terminal through the first network, the access gateway may send a first request message to the AMF network element. Accordingly, the AMF receives the first access message sent by the access gateway.
  • a first request message where the first request message includes: at least one of a link identifier between the terminal and the access gateway and a multi-link indication; wherein the multi-link indication is used to indicate the terminal There are multiple links with the access gateway.
  • the link identifier carried in the first request message in step 504 may be used to identify that the terminal accesses the second core network through the first network.
  • the above-mentioned link identifier may be, for example, a first IP address.
  • the first IP address is used to indicate the link established between the terminal and the access gateway through the first network, or it may be that the access gateway is the terminal and the Link identifiers allocated between the access gateways through the links connected by the first network.
  • the first request message sent by the access gateway to the AMF network element may also include one or more of the following: first user location information when the terminal accesses the first network, NAS message, identification of the first network, The first identifier of the terminal and the first IP address allocated by the first network to the terminal. This information comes from the first access message sent by the terminal.
  • the first user location information and/or the identification of the first network may be carried in the additional User location parameter.
  • the first request message may also include: an access mode of the terminal. If the first network includes the first access network and the first core network, here, the access mode of the terminal instructs the terminal to access the second core network through the first core network, and/or instructs the terminal to access the first access network Access technology.
  • the access gateway may recognize that the terminal accesses the access gateway through the first core network based on local configuration. Alternatively, the access gateway may recognize that the terminal accesses the access gateway through the first core network based on the first IP address. For example, the access network is determining that the first IP address of the terminal is the first When the core network is allocated to the terminal, it is determined that the terminal is connected to the access gateway through the first core gateway. If the first network includes the second access network, here, the access mode of the terminal indicates the access technology of the terminal to access the second access network. For example, 3GPP access technology or non3GPP access technology.
  • the AMF network element may also process NAS messages from the terminal, and complete related processes based on the NAS messages, such as completing the registration process of the terminal to the second core network, or the service request process, or the session establishment or update process.
  • the AMF network element may save the information in the first request message in step 504, and save the correspondence between the information.
  • Step 505 After receiving the second access message sent by the terminal through the second network, the access gateway may send another first request message to the AMF network element in step 504, and accordingly, the AMF receives The first request message sent by the access gateway.
  • the first request message includes: at least one of a link identifier between the terminal and the access gateway and a multi-link indication; wherein the multi-link indication is used to indicate that the terminal and the access gateway There are multiple links between gateways.
  • the link identifier carried in the first request message in step 505 may be used to identify that the terminal accesses the second core network through the second network.
  • the foregoing link identifier may be, for example, a second IP address, which is used to indicate the link established between the terminal and the access gateway through the second network, or the access gateway is the terminal and the The link identifiers allocated between the access gateways through the links connected by the second network.
  • the first request message sent by the access gateway to the AMF network element may also include one or more of the following: the second user location information when the terminal accesses the second network, the NAS message, the first identification of the terminal,
  • the second network is the second IP address and the identifier of the second network allocated by the terminal. This information comes from the second access message sent by the terminal.
  • the second user location information may be carried in the additional User location parameter.
  • the first request message may also include: an access mode of the terminal.
  • the access mode of the terminal indicates the access technology of the terminal to access the second access network.
  • the access mode of the terminal instructs the terminal to access the second core network through the first core network, and/or instructs the terminal to access the access technology of the first access network.
  • 3GPP access technology or non3GPP access technology.
  • the AMF network element can process the NAS message from the terminal, and complete related procedures based on the NAS message, such as completing the registration procedure from the terminal to the second core network, or the service request procedure, or the session establishment or update procedure.
  • the AMF network element may save the information in the first request message in step 505, and save the correspondence between the information. It is different from the corresponding relationship of the information in the first request message in step 504.
  • step 503 is after step 504 and step 505, and the sequence of step 503, step 504, and step 505 is not limited.
  • the link through which the terminal accesses the second core through the first core network and the link through which the terminal accesses the second core network through the second access network may be in an active state or an inactive state.
  • the active link has a data channel, which can transmit service data packets for the terminal.
  • the inactive state link does not have a data channel, and cannot transmit service data packets for the terminal.
  • the AMF network element may send two second request messages to the SMF network element, and the two second request messages may be sent through the N11 connection. See step 506 and step 507 for details.
  • Step 506 After receiving the first request message sent by the access gateway in step 504, the AMF network element may send a second request message to the SMF network element, and correspondingly, the SMF network element receives the AMF The second request message sent by the network element.
  • the second request message may include at least one of the following: a first indication that there are multiple links between the terminal and the access gateway; the identity of the first network, the access mode of the terminal, the NAS message, and the terminal access The location information of the first user in the first network, the first identifier of the terminal, and the first IP address allocated by the first network to the terminal.
  • the access mode of the terminal can be the first request message sent by the access gateway to the AMF network element in step 504, or the access mode of the terminal determined by the AMF network element based on the information of the access gateway.
  • the first indication that there are multiple links between the terminal and the access gateway can be the multi-link indication in the first request message sent by the access gateway to the AMF network element in step 504, or the AMF device based on The multi-link indication is the determined first indication. All other information in the second request message comes from the first request message sent by the access gateway to the AMF network element in step 504. If the NAS message is a registration request message, it can be processed by the AMF network element and does not need to be forwarded to the SMF network element. If the NAS message is a PDU session establishment request message, it needs to be forwarded to the SMF network element for processing.
  • the second request message may also include the identification of the first path.
  • the identifier of the first path may be the link identifier between the terminal and the access gateway included in the first request message sent by the access gateway in step 504, or the first path sent by the AMF network element to the access gateway. Another link identifier allocated by the link identifier between the terminal and the access gateway in the request message.
  • Step 507 After receiving the first request message sent by the access gateway in step 505, the AMF network element may send another second request message to the SMF network element.
  • the SMF network element receives The second request message sent by the AMF network element.
  • the second request message may include at least one of the following: a first indication that there are multiple links between the terminal and the access gateway, the identifier of the second network, the access mode of the terminal, the NAS message, and the terminal access The second user location information in the second network, the first identifier of the terminal, and the second IP address allocated by the second network to the terminal.
  • the access mode of the terminal can be the first request message sent by the access gateway to the AMF network element in step 505, or it can be the access mode of the terminal determined by the AMF network element based on the information of the access gateway.
  • the first indication that there are multiple links between the terminal and the access gateway can be the multi-link indication in the first request message sent by the access gateway to the AMF network element in step 505, or the AMF device based on The multi-link indication is the determined first indication. All other information in the second request message comes from the first request message sent by the access gateway to the AMF network element in step 505. If the NAS message is a registration request message, it can be processed by the AMF network element and does not need to be forwarded to the SMF network element. If the NAS message is a PDU session establishment request message, it needs to be forwarded to the SMF network element for processing.
  • the second request message may also include the identifier of the second path.
  • the identifier of the second path may be the link identifier between the terminal and the access gateway included in the first request message sent by the access gateway in step 505, or the first path sent by the AMF network element to the access gateway. Another link identifier allocated by the link identifier between the terminal and the access gateway in the request message.
  • Step 508 The SMF network element establishes two user plane tunnels based on the first instruction.
  • the specific process may include the SMF network element notifying the UPF network element to allocate user plane resources, and sending a response message of the second request message to the AMF network element for establishing two user plane tunnels.
  • steps 501 to 508 are the same as steps 501 to 508 in Fig. 5a.
  • Step 509 The SMF network element sends a response message of the second request message to the AMF network element.
  • the SMF network element sends two response messages to the AMF network element.
  • the corresponding response message may include at least one of the following: the identity of the first network, the access mode of the terminal, the location information of the first user when the terminal accesses the first network, and the first user location information of the terminal.
  • the access mode of the terminal, the first path identifier, the identifier of the first network, etc. may indicate the tunnel identifier between the terminal and the access gateway corresponding to the user plane tunnel of the UPF network element.
  • the response message of the second request message may also include a NAS reply message, N2 information.
  • the NAS reply message is the reply message or response message of the NAS message in the second request message in step 506, such as a PDU session establishment success message, Or PDU session update response message, etc.
  • N2 information includes UPF user plane tunnel identification, QoS parameters, QoS flow identification QFI, etc.
  • the corresponding response message may include at least one of the following: the identifier of the second network, the access mode of the terminal, the second user location information when the terminal accesses the second network, and the first An identifier, a second IP address and a second path identifier assigned by the second network to the terminal. These information all come from the second request message sent by the AMF network element to the SMF network element in step 507.
  • the access mode of the terminal, the second path identifier, the identifier of the second network, etc. may indicate the tunnel identifier between the terminal and the access gateway corresponding to the user plane tunnel of the UPF network element.
  • the response message of the second request message may also include a NAS reply message, N2 information.
  • the NAS reply message is the reply message or response message of the NAS message in the second request message in step 507, such as a PDU session establishment success message, Or PDU session update response message, etc.
  • N2 information includes UPF user plane tunnel identification, QoS parameters, QoS flow identification QFI, etc.
  • Step 510 The AMF network element determines the link identifier between the terminal and the access gateway based on the access mode of the terminal.
  • the two access modes of the terminal come from the first request message sent by the two access gateways to the AMF network element.
  • the response messages corresponding to the two second request messages received by the AMF network element may respectively include an access mode of the terminal.
  • the AMF determines the two link identifiers between the terminal and the access gateway based on the two different access modes of the terminal.
  • One link identifier is used to instruct the terminal to access the access gateway through the first core network
  • the other link identifier is used to instruct the terminal to access the access gateway through the second access network.
  • the second request message includes only one access mode of the terminal
  • one response message of the second request message also includes this access mode of the terminal
  • the other response message may not include another access mode of the terminal.
  • Access mode, or another response message contains another access mode of the terminal.
  • the AMF network element can distinguish which path corresponds to the terminal's access method that is not included in the response message. The AMF network element can still determine the two link identifiers between the terminal and the access gateway based on the two access modes of the terminal.
  • Step 511 The AMF network element sends a response message of the first request message to the access gateway, and correspondingly, the access gateway receives a response message of the first request message sent by the AMF network element .
  • the response message of the first request message includes the link identifier; the link identifier is used to indicate the link between the terminal corresponding to the response message of the first request message and the access gateway.
  • the AMF network element sends response messages of two first request messages to the access gateway, and a link identifier included in one response message is used to instruct the terminal to access the access gateway through the first core network, The link identifier included in the other response message is used to instruct the terminal to access the access gateway through the second access network.
  • the AMF network element and the access gateway establish an N2 connection for the terminal, so on an N2 connection, two response messages of the first request message are sent to the access gateway.
  • the AMF network element may determine the first network element in step 504 based on the first network identifier, the first path identifier, or the access technology indication in the response message of the second request message.
  • the link identifier in the first request message is generally the same as the link identifier in the corresponding response message.
  • the response message of the first request message may include at least one of a NAS reply message and N2 information, a first path identifier, and an identifier of the first network.
  • the AMF network element may determine the first network element in step 505 based on the second network identifier, the second path identifier, or the access technology indication in the response message of the second request message.
  • the link identifier in the first request message is generally the same as the link identifier in the corresponding response message.
  • the response message of the first request message may include at least one of a NAS reply message and N2 information, a second path identifier, and an identifier of the second network.
  • the access gateway establishes a user plane connection between the terminal and the access gateway based on the link identifier. specific:
  • Step 512a The access gateway establishes an access-side user plane tunnel with the terminal through the second access network.
  • Step 512b The access gateway establishes an access-side user plane tunnel with the terminal through the first core network and the first access network.
  • step 512a and step 512b can refer to the prior art.
  • the access gateway sends an IKEv2 child SA establishment request message to the terminal to establish an IPSec tunnel between the terminal and the access gateway.
  • the access gateway establishes the user plane tunnel between the access gateway and the UPF network element and the corresponding relationship between the access side link and the user plane tunnel between the terminal and the access gateway based on the two link identifiers. For example, the access gateway allocates different access gateway tunnel identifiers to the two access side tunnels, and sends the access gateway tunnel identifier to the UPF network element through the AMF network element and the SMF network element.
  • the offloading strategy is sent to the terminal by the SMF through the NAS message.
  • the offload strategy includes the correspondence between flow description information (such as IP 5-tuple: source and destination IP addresses, port numbers, and protocol types) and link identifiers.
  • flow description information such as IP 5-tuple: source and destination IP addresses, port numbers, and protocol types
  • link identifier is the identifier of the first network or the identifier of the second network, or the access technology indication for the terminal to access the first access network or the access technology indication for the terminal to access the second access network.
  • the SMF network element may generate the offload strategy based on the identity of the first network or the identity of the second network, or the access technology indication for the terminal to access the first access network or the access technology indication for the terminal to access the second access network, And send the above-mentioned distribution strategy to the terminal through the NAS reply message. That is, the SMF network element selects the appropriate link transmission for the service flow based on the network identification or the access technology. Alternatively, the SMF network element sends the identity of the first network or the identity of the second network, or the access technology indication for the terminal to access the first access network or the access technology indication for the terminal to access the second access network to the PCF For the network element, the PCF network element selects an appropriate link for the service flow based on the network identity or access technology. The PCF network element generates a distribution rule and sends it to the SMF network element, and then the SMF merges to generate the distribution strategy and sends it to the terminal through a NAS reply message.
  • the access gateway determines that the first access message and the second access message are from the same terminal according to the first IP address and/or the first identifier of the terminal. That is, the access gateway determines that a terminal requests the establishment of two links.
  • the access gateway does not perform the process of determining that a terminal requests the establishment of two links in step 503, but the AMF network element determines that a terminal requests the establishment of two links.
  • the specific process of this embodiment can be referred to as shown in FIG. 6, and the technical details that are the same as those of the foregoing embodiment will not be repeated.
  • Step 600 to step 602 are the same as step 500, step 501, and step 502 described above.
  • the first access request message and the second access request message must carry the NAS message and the identifier of the AMF network element. The rest of the technical details can be referred to the above description, and the repetition will not be repeated.
  • Step 603 After receiving the first access message and the second access message, the access gateway may select a second core according to the identifier of the AMF network element serving the terminal in the second core network sent by the terminal The identifier of the AMF network element serving the terminal in the network.
  • Step 604 and step 605 The access gateway sends a first request message to the AMF network element serving the terminal in the second core network respectively, that is, the access gateway sends two first request messages to the AMF network element.
  • the difference from the foregoing embodiment is that the two first request messages are sent based on two different N2 connections between the access gateway and the AMF network element.
  • the two first request messages must carry the NAS message, and the rest of the information can be referred to step 504 and step 505 above.
  • the AMF network element since the AMF network element receives two first request messages based on two N2 connections, the AMF network element cannot initially determine that the two first request messages are for one terminal.
  • the AMF network element may determine that the two first request messages are sent for the same terminal according to the terminal identifiers in the NAS messages respectively included in the two first request messages.
  • the AMF network element may associate these two N2 connections to the same terminal context.
  • the AMF network element may also save the information included in the first request messages corresponding to the two N2 connections respectively.
  • the information included in the first request message may be the same as the information included in the first request message in the foregoing embodiment, or may be part of the information, and the repetition will not be repeated.
  • the AMF network element can determine that there are multiple links between the terminal and the access gateway based on the two N2 connections, and then can perform the same process as step 506, step 507, and step 508 in the foregoing embodiment:
  • Step 607 After receiving the two first request messages of the access gateway, the AMF network element may send a second request message to the SMF network element, and accordingly, the SMF network element receives the AMF network element sent The second request message.
  • the second request message includes other parameter information mentioned in step 506 or step 507.
  • Step 608 The SMF network element establishes two user plane tunnels. Step 508 is the same.
  • Step 609 The SMF network element sends a response message of the second request message to the AMF network element, and correspondingly, the AMF network element receives a response message of the second request message sent by the SMF network element .
  • the response message of the second request message includes the first identifier of the terminal, and may also include other parameter information mentioned in step 509 above.
  • Step 610 After the AMF network element determines the context of the terminal based on the first identity of the terminal, it extracts terminal identification information from the context of the terminal.
  • Step 611 The AMF network element sends a response message of the first request message to the access gateway, and correspondingly, the access gateway receives the corresponding message of the first request message sent by the AMF network element .
  • the response message includes terminal identification information, and the terminal identification information may be extracted from the context of the terminal after the AMF network element determines the context of the terminal based on the first identification of the terminal. Then the terminal identification information may also be referred to as N2 terminal identification.
  • the N2 terminal identifier may be a terminal identifier used on the N2 interface, for example, it may be a temporary identifier assigned to the terminal by the AMF network element on the N2 interface, N2AMF UE ID; it may also be assigned to the terminal by the access gateway on the N2 interface
  • Response messages of different first request messages carry the same terminal identification information, so that the access gateway can associate the response messages of the two different first request messages to the same terminal based on the same terminal identification information.
  • Context That is, the response messages of the two first request messages are associated with the same terminal.
  • the first IP address allocated to the terminal by the first network and the second IP address allocated to the terminal by the second network may be used.
  • Step 612a The access gateway establishes an access-side user plane tunnel with the terminal through the second access network.
  • Step 612b The access gateway establishes an access-side user plane tunnel with the terminal through the first core network and the first access network.
  • the access gateway knows that different N2 connections correspond to the connection between different terminals and the access gateway.
  • the access gateway is based on different terminal IP addresses (one is the IP address assigned by the second access network to the terminal, and the other One is the IP address assigned by the first core network to the terminal) to distinguish the connection between the terminal and the access gateway, and correspond to different N2 connections.
  • the access gateway initiates a user plane tunnel establishment process between its corresponding terminal based on the N2 message, which is the same as the prior art. For example, sending an IKEv2 child SA establishment request message to the terminal to establish an IPSec tunnel between the terminal and the access gateway.
  • the foregoing describes the communication method for establishing multiple links in the embodiment of the present application, and the communication device in the embodiment of the present application will be introduced in the following.
  • the method and the device are based on the same technical idea. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the apparatus 700 can execute each step executed by the terminal in the foregoing method embodiment, and in order to avoid redundancy, details are not described herein again.
  • the apparatus 700 may be a terminal or a chip applied in the terminal.
  • the apparatus 700 may include: a transceiver module 720, a processing module 710, a possible implementation manner, and a storage module 730; the processing module 710 may be connected to the storage module 730 and the transceiver module 720 respectively, and the storage module 730 may also be connected to the transceiver module 720.
  • the module 720 is connected.
  • the first identifier of the device includes at least one of the following: a temporary identifier assigned to the device by the second core network, a permanent identifier of the device; wherein, the second core network assigns to the device
  • the temporary identifier of is a temporary identifier allocated by the second core network to the device when the device accesses the second core network through the first network.
  • the first access message includes: the identifier of the first network
  • the second access message further includes: the identifier of the second network.
  • the second access message further includes: the identifier of the access and mobility management function AMF network element in the second core network.
  • the storage module 730 may be used to store the first IP address, the second IP address, the identification of the first network, the identification of the second network, the first user location information, the second user location information, and the terminal's first IP address.
  • Identification the identification of the AMF network element.
  • the apparatus 700 can execute each step performed by the access gateway in the foregoing method embodiment.
  • the device 700 may be an access gateway or a chip applied in the access gateway.
  • the apparatus 700 may include: a transceiver module 720, a processing module 710, a possible implementation manner, and a storage module 730; the processing module 710 may be connected to the storage module 730 and the transceiver module 720 respectively, and the storage module 730 may also be connected to the transceiver module 720.
  • the module 720 is connected.
  • the transceiver module 720 is configured to receive a first access message sent by a terminal through a first network, where the first access message is encapsulated by a first IP address allocated by the first network for the terminal; And receiving a second access message sent by the terminal through a second network, where the second access message includes at least one of the following: the first IP address, the first identifier of the terminal; wherein, the first The network includes a first access network and a first core network, and the second network is a second access network; or, the first network is a second access network, and the second network includes a first access network And the first core network.
  • the first identifier of the terminal includes at least one of the following: a temporary identifier assigned by the second core network to the terminal, a permanent identifier of the terminal; wherein, the second core network assigns to the terminal
  • the temporary identifier is a temporary identifier allocated by the second core network to the terminal when the terminal accesses the second core network through the first network.
  • the first access message includes: the identifier of the first network
  • the second access message further includes: the identifier of the second network.
  • the second access message further includes: the identifier of the access and mobility management function AMF network element in the second core network.
  • the link identifier between the terminal and the device is an IP address allocated by the first core network for the terminal or an IP address allocated by the second access network for the terminal.
  • the transceiver module 720 is further configured to receive a response message of the first request message sent by the AMF network element, and the response message of the first request message includes a link identifier; To indicate the link between the terminal and the device corresponding to the response message; the processing module 710 is further configured to establish a user plane connection between the terminal and the device based on the link identifier .
  • the transceiver module 720 is further configured to receive a response message of the first request message sent by the AMF network element, and the response message includes terminal identification information; the processing module 710 is further configured to The terminal identification information associates the response message of the first request message with the context of the same terminal.
  • the storage module 730 may be used to store the first IP address, the second IP address, the identification of the first network, the identification of the second network, the first user location information, the second user location information, and the terminal's first IP address.
  • Identification the identification of the AMF network element.
  • the transceiver module 720 may be used to send a second request message, a response message of the first request message, and may be used to receive a response message of the second request message.
  • the processing module 710 may be configured to, after receiving the response message of the second request message sent by the SMF network element, determine the terminal based on the response message of the second request message including the access mode of the terminal The identifier of the link with the access gateway.
  • the apparatus 700 can execute each step performed by the SMF network element in the foregoing method embodiment. In order to avoid redundancy, the details are not described herein again.
  • the device 700 may be an SMF network element, or a chip applied in an SMF network element.
  • the apparatus 700 may include: a transceiver module 720, a processing module 710, a possible implementation manner, and a storage module 730; the processing module 710 may be connected to the storage module 730 and the transceiver module 720 respectively, and the storage module 730 may also be connected to the transceiver module 720.
  • the module 720 is connected.
  • the transceiver module 720 may be used to receive the second request message, and may be used to send a response message of the second request message.
  • the storage module 730 may be used to store the first IP address, the second IP address, the identification of the first network, the identification of the second network, the location information of the first user, the location information of the second user, the first identification of the terminal, The identifier, the first path identifier, and the second path identifier of the AMF network element.
  • the processing module 710 may be used to instruct the UPF network element to establish multiple user plane tunnels.
  • the communication device can be used in communication equipment, circuits, hardware components, or chips.
  • the aforementioned processing module 710, storage module 730, and transceiver module 720 may be connected through a communication bus.
  • the storage module 730 may include one or more memories, and the memories may be devices for storing programs or data in one or more devices or circuits.
  • the storage module 730 can store computer execution instructions of the method on the terminal, access gateway, AMF network element, and SMF network element side, so that the processing module 710 executes the terminal, access gateway, AMF network element, and SMF network element side in the foregoing embodiment. Methods.
  • the storage module 730 may be a register, a cache, a RAM, etc., and the storage module 730 may be integrated with the processing module 710.
  • the storage module 730 may be a ROM or another type of static storage device that can store static information and instructions, and the storage module 730 may be independent of the processing module 710.
  • the transceiver module 720 may be an input or output interface, pin or circuit, or the like.
  • FIG. 8 is a schematic block diagram of a communication device 800 according to an embodiment of the present application. It should be understood that the apparatus 800 can perform various steps performed by the terminal or the access gateway or the AMF network element or the SMF network element in the foregoing method. In order to avoid redundancy, it will not be detailed here.
  • the device 800 includes a processor 810 and a transceiver 820, a possible implementation manner, and also includes a memory 830.
  • the processor 810 and the memory 830 are electrically coupled.
  • the memory 830 is configured to store a computer program; the processor 810 may be configured to call a computer program or instruction stored in the memory to execute the above-mentioned communication method through the transceiver 820.
  • the processing module 710 in FIG. 7 may be implemented by the processor 810, the transceiver module 720 may be implemented by the transceiver 820, and the storage module 730 may be implemented by the memory 830.
  • the aforementioned processor may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor may further include a hardware chip or other general-purpose processors.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (generic array logic, GAL) and other programmable logic devices , Discrete gates or transistor logic devices, discrete hardware components, etc. or any combination thereof.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the embodiments of the present application also provide a computer storage medium that stores a computer program.
  • the computer program When the computer program is executed by a computer, the computer can be used to execute the above-mentioned communication method.
  • the embodiments of the present application also provide a computer program product containing instructions, which when running on a computer, enable the computer to execute the communication method provided above.
  • An embodiment of the present application also provides a communication system.
  • the system includes: an access gateway, an AMF network element, and an SMF network element that perform the above-mentioned communication method.
  • the embodiment of the present application provides a communication device.
  • the communication device includes one or more modules for implementing the method in step 500 to step 512 or step 600 to step 612.
  • the one or more modules can be combined with the above steps.
  • the steps of the method in step 500-step 512 or step 600-step 612 correspond to each other.
  • For each step in the method executed by the AMF network element there is a unit or module that executes each step in the method in the AMF network element.
  • For each step in the method executed by the SMF network element there is a unit or module that executes each step in the method in the SMF network element.
  • FIG. 9 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the application.
  • the communication device includes a processor 41, a communication line 44, and at least one communication interface (the communication interface 43 is exemplarily described in FIG. 9).
  • the processor 41 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 44 may include a path to transmit information between the aforementioned components.
  • the communication interface 43 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the communication device may further include a memory 42.
  • the memory 42 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 44. The memory can also be integrated with the processor.
  • the memory 42 is used to store computer-executable instructions for executing the solution of the present application, and the processor 41 controls the execution.
  • the processor 41 is configured to execute computer-executable instructions stored in the memory 42, so as to implement the communication method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 41 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 9.
  • the communication device may include multiple processors, such as the processor 41 and the processor 45 in FIG. 9.
  • processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication interface 43 is used to support the communication device to perform steps 504, 505, and steps in the foregoing embodiment.
  • the processor 41 and/or the processor 45 are configured to support the communication device to execute step 510, step 610, and so on in the foregoing embodiment.
  • taking the communication device may be an access gateway or a chip or chip system applied to the access gateway as an example
  • the communication interface 43 is used to support the communication device to perform steps 501 and 502 in the foregoing embodiment.
  • the processor 41 and/or the processor 45 are configured to support the communication device to execute step 503 and step 603 in the foregoing embodiment.
  • taking the communication device may be an SMF network element or a chip or a chip system applied to the SMF network element as an example
  • the communication interface 43 is used to support the communication device to perform steps 506 and 507 in the foregoing embodiment. , Step 509, Step 607, Step 609.
  • the processor 41 and/or the processor 45 are configured to support the communication device to execute step 508 and step 608 in the foregoing embodiment.
  • FIG. 10 it is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • the terminal includes at least one processor 1211, at least one transceiver 1212.
  • the terminal may further include at least one memory 1213, an output device 1214, an input device 1215, and one or more antennas 1216.
  • the processor 1211, the memory 1213, and the transceiver 1212 are connected.
  • the antenna 1216 is connected to the transceiver 1212, and the output device 1214 and the input device 1215 are connected to the processor 1211.
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory Random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, and can also be electrically erasable programmable read-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory Random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , Disk storage media or other magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • Disk storage media or other magnetic storage devices or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • the memory 1213 may exist independently and is connected to the processor 1211. In another example, the memory 1213 may also be integrated with the processor 1211, for example, integrated in one chip.
  • the memory 1213 can store program codes for executing the technical solutions of the embodiments of the present application, and is controlled by the processor 1211 to execute.
  • Various types of computer program codes executed can also be regarded as driver programs of the processor 1211.
  • the processor 1211 is configured to execute computer program codes stored in the memory 1213, so as to implement the technical solutions in the embodiments of the present application.
  • the transceiver 1212 may be used to support the reception or transmission of radio frequency signals between the terminal and the terminal or between the terminal and the access device, and the transceiver 1212 may be connected to the antenna 1216.
  • the transceiver 1212 includes a transmitter Tx and a receiver Rx. Specifically, one or more antennas 1216 can receive radio frequency signals, and the receiver Rx of the transceiver 1212 is used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital
  • the baseband signal or digital intermediate frequency signal is provided to the processor 1211, so that the processor 1211 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 1212 is also used to receive a modulated digital baseband signal or digital intermediate frequency signal from the processor 1211, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through a Or multiple antennas 1216 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal. The order of precedence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, the up-mixing processing and the digital-to-analog conversion processing
  • the order of precedence is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the processor 1211 may be a baseband processor or a CPU, and the baseband processor and the CPU may be integrated or separated.
  • the processor 1211 can be used to implement various functions for the terminal, for example, to process communication protocols and communication data, or to control the entire terminal device, execute software programs, and process data in software programs; or to assist in completion Computing processing tasks, such as graphics and image processing or audio processing, etc.; or the processor 1211 is used to implement one or more of the above-mentioned functions.
  • the output device 1214 communicates with the processor 1211, and can display information in a variety of ways.
  • the output device 1214 may be a liquid crystal display (Liquid Crystal Display, LCD), a light emitting diode (Light Emitting Diode, LED) display device, a cathode ray tube (Cathode Ray Tube, CRT) display device, or a projector (projector) Wait.
  • the input device 1215 communicates with the processor 1211, and can accept user input in a variety of ways.
  • the input device 1215 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • At least one processor 1211 is configured to execute step 500.
  • At least one transceiver 1212 is used to perform step 501 and step 502.
  • FIG. 11 is a schematic structural diagram of a chip 150 provided by an embodiment of the present invention.
  • the chip 150 includes one or more (including two) processors 1510 and a communication interface 1530.
  • the chip 150 further includes a memory 1540.
  • the memory 1540 may include a read-only memory and a random access memory, and provides operation instructions and data to the processor 1510.
  • a part of the memory 1540 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1540 stores the following elements, executable modules or data structures, or their subsets, or their extended sets:
  • the corresponding operation is executed by calling the operation instruction stored in the memory 1540 (the operation instruction may be stored in the operating system).
  • One possible implementation manner is that the structures of the chips used in the terminal, the access gateway, the AMF network element, and the SMF network element are similar, and different devices can use different chips to realize their respective functions.
  • the processor 1510 controls the operations of the terminal, the access gateway, the AMF network element, and the SMF network element.
  • the processor 1510 may also be referred to as a central processing unit (CPU).
  • the memory 1540 may include a read-only memory and a random access memory, and provides instructions and data to the processor 1510.
  • a part of the memory 1540 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1540, the communication interface 1530, and the memory 1540 are coupled together by a bus system 1520, where the bus system 1520 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • various buses are marked as the bus system 1520 in FIG. 11.
  • the above communication unit may be an interface circuit or communication interface of the device for receiving signals from other devices.
  • the communication unit is an interface circuit or communication interface used by the chip to receive signals or send signals from other chips or devices.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 1510 or implemented by the processor 1510.
  • the processor 1510 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by hardware integrated logic circuits in the processor 1510 or instructions in the form of software.
  • the aforementioned processor 1510 may be a general-purpose processor, a digital signal processing (digital signal processing, DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1540, and the processor 1510 reads the information in the memory 1540, and completes the steps of the foregoing method in combination with its hardware.
  • the communication interface 1530 is used to perform the steps of receiving and sending the terminal, the access gateway, the AMF network element, and the SMF network element in the embodiment shown in FIG. 5a, FIG. 5b, and FIG. 6.
  • the processor 1510 is configured to execute the processing steps of the terminal, the access gateway, the AMF network element, and the SMF network element in the embodiments shown in FIG. 5a, FIG. 5b, and FIG. 6.
  • the instructions stored in the memory for execution by the processor may be implemented in the form of a computer program product.
  • the computer program product may be written in the memory in advance, or it may be downloaded and installed in the memory in the form of software.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to transmit to another website site, computer, server or data center.
  • a cable such as Coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk, SSD).
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the methods described in the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If implemented in software, the functions can be stored on a computer-readable medium or transmitted on a computer-readable medium as one or more instructions or codes.
  • Computer-readable media may include computer storage media and communication media, and may also include any media that can transfer a computer program from one place to another.
  • the storage medium may be any target medium that can be accessed by a computer.
  • the computer-readable medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that is targeted to carry or use instructions or data structures.
  • the required program code is stored in the form of and can be accessed by the computer.
  • any connection is properly termed a computer-readable medium. For example, if you use coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) or wireless technology (such as infrared, radio and microwave) to transmit software from a website, server or other remote source, then coaxial cable, fiber optic cable , Twisted pair, DSL or wireless technologies such as infrared, radio and microwave are included in the definition of the medium.
  • DSL digital subscriber line
  • wireless technology such as infrared, radio and microwave
  • Magnetic disks and optical disks as used herein include compact disks (CDs), laser disks, optical disks, digital versatile disks (DVDs), floppy disks and blu-ray disks, in which disks usually reproduce data magnetically, and optical disks use lasers to optically reproduce data. Combinations of the above should also be included in the scope of computer-readable media.
  • the embodiment of the present application also provides a computer program product.
  • the methods described in the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If it is implemented in software, it can be fully or partially implemented in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the above computer program instructions are loaded and executed on the computer, the procedures or functions described in the above method embodiments are generated in whole or in part.
  • the above-mentioned computer may be a general-purpose computer, a special-purpose computer, a computer network, a base station, a terminal, or other programmable devices.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种通信的方法及装置,用以解决目前单条链路的带宽资源有限,影响服务质量的问题。终端通过第一网络向第二核心网中的接入网关发送第一接入消息,以及通过第二网络向接入网关发送第二接入消息,第一接入消息由第一IP地址封装,第二接入消息包括以下至少一个:第一IP地址,终端的第一标识。进而接入网关向AMF网元请求为所述终端建立两条通信链路。一条通信链路为终端通过第一网络接入核心网,另一条通信链路为终端通过第二网络接入核心网。通过终端与核心网建立两条通信链路,可以增加带宽资源,提高服务质量。

Description

一种通信的方法及装置
相关申请的交叉引用
本申请要求在2020年02月29日提交中国专利局、申请号为202010131801.7、申请名称为“一种通信的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信的方法及装置。
背景技术
在现有技术中,终端可以通过第三代合作伙伴计划(3rd generation partnership project,3GPP)接入网或非non3GPP接入网直接接入核心网。如果终端与核心网之间只有一条链路可用,当终端有大规模数据传输时,单条链路提供的带宽资源有限,从而影响服务质量与用户体验。
发明内容
本申请实施例提供一种通信的方法及装置,用以解决目前单条链路的带宽资源有限,影响服务质量的问题。
第一方面,提供了一种通信的方法,终端可以获取第一网络为所述终端分配的第一IP地址。然后,所述终端可以通过所述第一网络向接入网关发送第一接入消息,所述第一接入消息由所述第一IP地址封装。接着,所述终端还可以通过第二网络向所述接入网关发送第二接入消息,所述第二接入消息可以包括以下至少一个:所述第一IP地址,终端的第一标识。其中,所述第一网络包括第一接入网和第一核心网,所述第二网络为第二接入网;或者所述第一网络为第二接入网,所述第二网络包括第一接入网和第一核心网。
第一接入消息和第二接入消息可以用于终端请求接入到所述接入网关上。
终端可以先通过第一网络接入第二核心网,然后再通过第二网络接入第二核心网。在通过第二网络接入第二核心网时,在第二接入消息中携带第一网络为所述终端分配的第一IP地址,以便接入网关根据第一IP地址判断出是一个终端建立两条通信链路。通过终端与第二核心网建立两条通信链路,可以增加带宽资源,提高服务质量。
在一种可能的实现中,所述终端的第一标识可以包括第二核心网为终端分配的临时标识和/或终端的永久标识。其中,所述第二核心网为终端分配的临时标识是所述终端通过所述第一网络接入所述第二核心网时,第二核心网为所述终端分配的临时标识。
所述第一接入消息中也可以包括终端的第一标识,所述终端的第一标识可以是终端的永久标识,或者是之前(如上一次接入第二核心网时)从第二核心网处获取的临时标识。
终端在第一接入消息和第二接入消息中均携带终端的永久标识或临时标识时,可以使接入网关根据终端的永久标识或临时标识再次确定两条接入消息是同一个终端发送的,即一个终端请求建立两条通信链路。
在一种可能的实现中,所述第一接入消息中可以包括第一网络的标识,所述第二接入消息中还可以包括第二网络的标识。若所述网络包括第一接入网和第一核心网,接入消息中的网络的标识为第一核心网的标识。上述第一核心网的标识包括PLMN ID或NPN网络标识(NID)中的至少一个。
通过第一网络的标识或第二网络的标识,来标识第一请求消息的来源网络,以便第二核心网针对不同的网络,下发不同的策略。
在一种可能的实现中,所述第二接入消息还可以包括:第二核心网中的接入和移动性管理功能AMF网元的标识。
通过在第二接入消息中携带第二核心网中为所述终端服务的AMF网元的标识,可以使接入网关向同一个AMF网元发送请求消息,建立两条通信链路。
第二方面,提供了一种通信的方法,第二核心网中的接入网关可以接收终端通过第一网络发送的第一接入消息,所述第一接入消息可以由所述第一网络为所述终端分配的第一IP地址封装。接着,所述接入网关还可以接收所述终端通过第二网络发送的第二接入消息,所述第二接入消息包括以下至少一个:所述第一IP地址,所述终端的第一标识。其中,所述第一网络包括第一接入网和第一核心网,所述第二网络为第二接入网;或者,所述第一网络为第二接入网,所述第二网络包括第一接入网和第一核心网。
终端可以先通过第一网络接入第二核心网,然后再通过第二网络接入第二核心网。在通过第二网络接入第二核心网时,在第二接入消息中携带第一网络为所述终端分配的第一IP地址,以便接入网关根据第一IP地址判断出是一个终端建立两条通信链路。通过终端与第二核心网建立两条通信链路,可以增加带宽资源,提高服务质量。
在一种可能的实现中,所述接入网关还可以根据所述第一IP地址和/或所述终端的第一标识,确定所述第一接入消息和所述第二接入消息对应所述终端,即所述第一接入消息和所述第二接入消息是同一个终端发送过来的。
在一种可能的实现中,所述终端的第一标识可以包括第二核心网为终端分配的临时标识和/或终端的永久标识。其中,所述第二核心网为终端分配的临时标识是所述终端通过所述第一网络接入所述第二核心网时,第二核心网为所述终端分配的临时标识。
所述第一接入消息中也可以包括终端的第一标识,所述终端的第一标识可以是终端的永久标识,或者是之前(如上一次接入第二核心网时)从第二核心网处获取的临时标识。
终端在第一接入消息和第二接入消息中均携带终端的永久标识或临时标识时,可以使接入网关根据终端的永久标识或临时标识再次确定两条接入消息是同一个终端发送的,即一个终端请求建立两条通信链路。
在一种可能的实现中,所述第一接入消息中可以包括第一网络的标识,所述第二接入消息中还可以包括第二网络的标识。若所述网络包括第一接入网和第一核心网,接入消息中的网络的标识为第一核心网的标识。上述第一核心网的标识包括PLMN ID或NPN网络标识(NID)中的至少一个。
通过第一网络的标识或第二网络的标识,来标识第一请求消息的来源网络,以便第二核心网针对不同的网络,下发不同的策略。
在一种可能的实现中,所述第二接入消息还可以包括:第二核心网中的接入和移动性管理功能AMF网元的标识。所述AMF网元的标识可以用来选择到相同的AMF。
通过在第二接入消息中携带第二核心网中为所述终端服务的AMF网元的标识,可以 使接入网关向同一个AMF网元发送第一请求消息,建立两条通信链路。
在一种可能的实现中,所述接入网关还可以向所述AMF网元发送第一请求消息,所述第一请求消息包括以下至少一个:终端与所述接入网关之间的链路标识,多链路指示;其中,所述多链路指示用于指示所述终端与所述接入网关之间存在多条链路。
接入网关通过向AMF网元发送两条第一请求消息,并在每条第一请求消息中携带多链路指示、或者对应的链路标识,来指示AMF网元建立两条通信链路。
在一种可能的实现中,所述终端与所述接入网关之间的链路标识为第一核心网为所述终端分配的IP地址或第二接入网为所述终端分配的IP地址。
第一请求消息对应的链路为终端通过第一核心网接入第二核心网的链路时,链路标识为第一核心网为所述终端分配的IP地址。当第一请求消息对应的链路为终端通过第二接入网接入第二核心网是,链路标识为第二接入网为所述终端分配的IP地址。
在一种可能的实现中,所述第一请求消息还可以包括以下至少一个:终端的接入方式指示、第一网络的标识或第二网络的标识;其中,终端的接入方式指示终端的接入技术,或者指示终端通过第一核心网接入所述接入网关。
通过不同的接入方式和/或不同的网络的标识来标识不同的链路,以使第二核心网设备下针对不同的链路,下发不同的策略。
在一种可能的实现中,所述接入网关还可以接收所述AMF网元发送的所述第一请求消息的响应消息,所述第一请求消息的响应消息可以包括链路标识;所述链路标识用于指示所述响应消息对应的终端与所述接入网关之间的链路。进而,所述接入网关可以基于所述链路标识建立所述终端与所述接入网关之间的用户面连接。第一请求消息中的链路标识与对应的响应消息中的链路标识可以相同。
AMF网元针对每条第一请求消息发送了对应的响应消息,一条响应消息中的链路标识用于指示终端通过第一核心网接入第二核心网,另一条响应消息中的链路标识用于指示终端通过第二接入网接入第二核心网。
在一种可能的实现中,所述接入网关还可以接收所述AMF网元发送的所述第一请求消息的响应消息,所述第一请求消息的响应消息可以包括终端标识信息;进而,所述接入网关可以基于所述终端标识信息将所述响应消息关联到相同终端的上下文。
多条第一请求消息的响应消息中的终端标识信息相同,所述终端标识信息是所述AMF网元基于所述终端的第一标识确定所述终端的上下文后,在所述终端的上下文中提取出来的。则所述终端标识信息也可以称为N2终端标识。所述N2终端标识可以是在N2接口上使用的终端标识,例如可以是N2接口上AMF网元为终端分配的临时标识,N2AMF UE ID;也可以是N2接口上接入网关为所述终端分配的临时标识,例如N2 N3IWF UE ID。
在一种可能的实现中,所述第一网络接入技术为3GPP接入技术,所述第二网络接入技术为non3GPP接入技术;或者,所述第一网络接入技术为non3GPP接入技术,所述第二网络接入技术为3GPP接入技术。
第三方面,提供了一种通信的方法,接入和移动性管理功能AMF网元可以接收第二核心网的接入网关发送的第一请求消息,所述第一请求消息可以包括以下至少一个:终端与所述接入网关之间的链路标识,多链路指示;其中,所述多链路指示用于指示所述终端与所述接入网关之间存在多条链路。然后,所述AMF网元向会话管理功能SMF网元发送第二请求消息,所述第二请求消息可以包括终端的接入方式,所述终端的接入方式指示终 端的接入技术,或者指示终端通过第一核心网接入所述接入网关。
接入网关通过向AMF网元发送两条第一请求消息,并在每条第一请求消息中携带多链路指示、或者对应的链路标识,来指示AMF网元建立两条通信链路。进而,AMF网元可以确定出终端的两种接入方式,进而指示SMF网元建立多条链路。后续,AMF网元可以在回复消息里携带相同的链路标识给接入网关,这样接入网关就可以将回复消息里携带的参数应用到对应的链路上。
在一种可能的实现中,所述终端与所述接入网关之间的链路标识为第一核心网为所述终端分配的IP地址或第二接入网为所述终端分配的IP地址。
第一请求消息对应的链路为终端通过第一核心网接入第二核心网的链路时,链路标识为第一核心网为所述终端分配的IP地址。当第一请求消息对应的链路为终端通过第二接入网接入第二核心网是,链路标识为第二接入网为所述终端分配的IP地址。
在一种可能的实现中,所述第一请求消息还可以包括以下至少一个:终端的接入方式、第一网络的标识或第二网络的标识;其中,终端的接入方式指示终端的接入技术,或者指示终端通过第一核心网接入所述接入网关。若所述网络包括第一接入网和第一核心网,接入消息中的网络的标识为第一核心网的标识。上述第一核心网的标识包括PLMN ID或NPN网络标识(NID)中的至少一个。
AMF网元也可以基于接入网关上报的终端的接入方式,确定AMF网元向SMF网元发送的第二请求消息中携带的终端的接入方式。接入网关可以通过终端的不同的接入方式和/或不同的网络的标识来标识不同的链路,以使第二核心网设备下针对不同的链路,下发不同的策略。
在一种可能的实现中,所述第二请求消息还可以包括:多链路的第一指示、第一网络的标识或第二网络的标识;
多链路第一指示用来指示终端与所述SMF网元所在的第二核心网的接入网关之间存在多条链路。
AMF网元通过多链路指示来指示建立多条链路,或者通过第一网络的标识或第二网络的标识来标识不同的链路,以使SMF网元下针对不同的链路,下发不同的策略。
在一种可能的实现中,所述AMF网元还可以接收所述SMF网元发送的所述第二请求消息的响应消息,所述第二请求消息的响应消息可以包括终端的接入方式。然后,所述AMF网元基于所述终端的接入方式,确定所述终端与所述接入网关之间的链路标识。
SMF网元通过终端的不同的接入方式来标识不同的链路,从而告知AMF网元建立的多条链路。
在一种可能的实现中,所述AMF网元还可以向所述接入网关发送所述第一请求消息的响应消息,所述第一请求消息的响应消息可以包括所述链路标识;所述链路标识用于指示所述响应消息对应的终端与所述接入网关之间的链路。
AMF网元针对每条第一请求消息发送了对应的响应消息,一条响应消息中的链路标识用于指示终端通过第一核心网接入第二核心网,另一条响应消息中的链路标识用于指示终端通过第二接入网接入第二核心网。
在一种可能的实现中,所述AMF网元还可以向所述接入网关发送所述第一请求消息的响应消息,所述第一请求消息的响应消息可以包括终端标识信息,所述终端标识信息是所述AMF网元基于所述终端的第一标识确定所述终端的上下文后,在所述终端的上下文 中提取出来的。
多条第一请求消息的响应消息中的终端标识信息相同,所述终端标识信息可以是所述AMF网元基于所述终端的第一标识确定所述终端的上下文后,在所述终端的上下文中提取出来的。则所述终端标识信息也可以称为N2终端标识。所述N2终端标识可以是在N2接口上使用的终端标识,例如可以是N2接口上AMF网元为终端分配的临时标识,N2AMF UE ID;也可以是N2接口上接入网关为所述终端分配的临时标识,例如N2 N3IWF UE ID。
第四方面,提供了一种通信的方法,SMF网元可以接收AMF网元发送的第二请求消息,所述第二请求消息可以包括终端的接入方式指示。终端的接入方式指示终端的接入技术,或者指示终端通过第一核心网接入所述接入网关。然后,所述SMF可以指示UPF网元建立多条用户面隧道。
AMF网元通过终端的多种接入方式,指示SMF网元建立多条链路。进而,SMF网元指示UPF网元建立多条用户面隧道。并且AMF网元通过不同的接入方式来标识不同的链路,以使SMF网元针对不同的链路,下发不同的策略。
在一种可能的实现中,所述第二请求消息还可以包括:多链路的第一指示、第一网络的标识或第二网络的标识;
多链路第一指示用来指示终端与所述SMF网元所在的第二核心网的接入网关之间存在多条链路。
AMF网元通过多链路指示来指示建立多条链路,或者通过第一网络的标识或第二网络的标识来标识不同的链路,以使SMF网元下针对不同的链路,下发不同的策略。
在一种可能的实现中,所述SMF网元可以向所述AMF网元发送所述第二请求消息的响应消息,所述第二请求消息的响应消息包括所述终端的接入方式。
SMF网元针对每条第二请求消息发送了对应的响应消息,一条响应消息中的终端的接入方式用于指示终端通过第一核心网接入第二核心网,另一条响应消息中的终端的接入方式用于指示终端通过第二接入网接入第二核心网。SMF网元通过终端的不同的接入方式来标识不同的链路,从而告知AMF网元建立的多条链路。
第五方面及任一可能的实现,至,第十方面及任一可能的实现,的技术效果可以参见第一方面、第二方面、第三方面、第四方面及对应的可能的实现,不再重复赘述。
第五方面,提供了一种通信装置,所述通信具有实现上述第一方面及第一方面任一可能的实现中的功能;或者实现上述第二方面及第二方面任一可能的实现中的功能;或者实现上述第三方面及第三方面任一可能的实现中的功能;或者实现上述第四方面及第四方面任一可能的实现中的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的功能模块。
第六方面,提供了一种通信装置,该装置可以为上述第一方面及第一方面任一可能的实现中的终端,或者为设置在终端中的芯片;或者为上述第二方面及第二方面任一可能的实现中的接入网关,或者为设置在接入网关中的芯片;或者为上述第三方面及第三方面任一可能的实现中的AMF网元,或者设置在AMF网元中的芯片;或者为上述第四方面及第四方面任一可能的实现中的SMF网元,或者设置在SMF网元中的芯片。该装置包括收发器以及处理器,一种可能的实现方式,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器分别与存储器和收发器耦合,当处理器执行所述计算机程序或指令时,使装置通过所述收发器执行上述第一方面及第一方面任一可能的实现中由终端执行的方 法;或者执行上述第二方面及第二方面任一可能的实现中由接入网关执行的方法;或者执行上述第三方面及第三方面任一可能的实现中由AMF网元执行的方法;或者执行上述第四方面及第四方面任一可能的实现中由SMF网元执行的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面及第一方面任一可能的实现中由终端执行的方法;或者执行上述第二方面及第二方面任一可能的实现中由接入网关执行的方法;或者执行上述第三方面及第三方面任一可能的实现中由AMF网元执行的方法;或者执行上述第四方面及第四方面任一可能的实现中由SMF网元执行的方法。
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器和存储器,所述处理器、所述存储器之间电耦合;所述存储器,用于存储计算机程序指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序指令,当所述部分或者全部计算机程序指令被执行时,用于实现上述第一方面及第一方面任一可能的实现的方法中终端的功能;或者实现上述第二方面及第二方面任一可能的实现的方法中接入网关的功能;或者实现上述第三方面及第三方面任一可能的实现的方法中AMF网元的功能;或者实现上述第四方面及第四方面任一可能的实现的方法中SMF网元的功能。
在一种可能的设计中,所述芯片系统还可以包括收发器,所述收发器,用于发送所述处理器处理后的信号,或者接收输入给所述处理器的信号。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,上述第一方面及第一方面任一可能的实现中由终端执行的方法被执行,或者上述第二方面及第二方面任一可能的实现中由接入网关执行的方法被执行;或者上述第三方面及第三方面任一可能的实现中由AMF网元执行的方法被执行;或者上述第四方面及第四方面任一可能的实现中由SMF网元执行的方法被执行。
第十方面,提供了一种通信的系统,所述系统包括:执行上述第二方面及第二方面任一可能的实现中的方法的接入网关以及执行上述第三方面及第三方面任一可能的实现中的方法的AMF网元。该系统还可以包括执行上述第四方面及第四方面任一可能的实现中的方法的SMF网元。
附图说明
图1为本申请实施例中提供的一种5G的通信系统架构示意图;
图2为本申请实施例中提供的一种终端通过非可信non-3GPP接入网接入核心网的示意图;
图3A、图3B为本申请实施例中提供的一种终端通过一个核心网接入另一核心网的示意图;
图3C、图3D和图4为本申请实施例中提供的一种多链路示意图;
图5a、图5b、图6为本申请实施例中提供的一种建立多链路的通信方法;
图7、图8为本申请实施例中提供的一种建立多链路的通信装置;
图9为本申请实施例中提供的一种通信装置硬件结构图;
图10为本申请实施例中提供的一种终端的结构示意图;
图11为本申请实施例中提供的一种芯片结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th Generation,5G)系统,如新一代无线(new radio,NR)接入技术,及未来的通信系统等。
本申请以5G通信系统进行举例说明。
例如,图1为本申请适用的一种5G的通信系统架构示意图。具体的,图1为基于服务化架构的5G网络架构示意图。图1所示的5G网络架构中可包括终端设备部分、接入网部分,核心网部分和数据网络(data network,DN)和应用功能(application function,AF)网元部分。终端通过接入网接入核心网,核心网与DN或AF进行通信。下面对其中的部分网元的功能进行简单介绍说明。
其中,核心网部分可包括以下网元中的一个或多个:网络开放功能(network exposure function,NEF)网元、网络存储功能(network repository function,NRF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元、接入与移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、无线接入网(radio access network,RAN)以及用户面功能(user plane function,UPF)网元等。
终端设备(terminal device),也可以称为用户设备(user equipment,UE),是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
本申请中的RAN设备,是一种为终端设备提供无线通信功能的设备,RAN设备也称为接入网设备。本申请中的RAN设备包括但不限于:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
接入管理网元,是由运营商网络提供的控制面网元,负责终端设备接入运营商网络的接入控制和移动性管理,例如包括移动状态管理,分配用户临时身份标识,认证和授权用户等功能。在5G通信系统中,该接入管理网元可以是接入管理功能(access and mobility management function,AMF)网元。在未来通信系统中,接入管理网元仍可以是AMF网元,或者,还可以有其它的名称,本申请不做限定。
会话管理网元,主要负责移动网络中的会话管理,如会话建立、修改、释放。具体功能如为用户分配IP地址、选择提供报文转发功能的UPF等。在5G通信系统中,该会话管理网元可以是会话管理功能(session management function,SMF)网元。在未来通信系统中,会话管理网元仍可以是SMF网元,或者,还可以有其它的名称,本申请不做限定。
用户面网元,负责终端设备中用户数据的转发和接收。可以从数据网络接收用户数据,通过接入网设备传输给终端设备;UPF网元还可以通过接入网设备从终端设备接收用户数据,转发到数据网络。UPF网元中为终端设备提供服务的传输资源和调度功能由SMF网元管理控制的。在5G通信系统中,该用户面网元可以是用户面功能(user plane function,UPF)网元。在未来通信系统中,用户面网元仍可以是UPF网元,或者,还可以有其它的名称,本申请不做限定。
数据管理网元,用于生成认证信任状,用户标识处理(如存储和管理用户永久身份等),接入授权控制和签约数据管理等。在5G通信系统中,该数据管理网元可以是统一数据管理(unified data management,UDM)网元。在未来通信系统中,统一数据管理仍可以是UDM网元,或者,还可以有其它的名称,本申请不做限定。
应用网元,主要支持与第三代合作伙伴计划(3rd generation partnership project,3GPP)核心网交互来提供服务,例如影响数据路由决策,策略控制功能或者向网络侧提供第三方的一些服务。在5G通信系统中,该应用网元可以是应用功能(application function,AF)网元。在未来通信系统中,应用网元仍可以是AF网元,或者,还可以有其它的名称,本申请不做限定。
策略控制网元,主要支持提供统一的策略框架来控制网络行为,提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。在4G通信系统中,该策略控制网元可以是策略和计费规则功能(policy and charging rules function,PCRF)网元。在5G通信系统中,该策略控制网元可以是策略控制功能(policy control function,PCF)网元。在未来通信系统中,策略控制网元仍可以是PCF网元,或者,还可以有其它的名称,本申请不做限定。
网络存储网元,可用于提供网元发现功能,基于其他网元的请求,提供网元类型对应的网元信息。NRF还提供网元管理服务,如网元注册、更新、去注册以及网元状态订阅和推送等。在5G通信系统中,该网络存储网元可以是网络注册功能(network repository function,NRF)网元。在未来通信系统中,网络存储网元仍可以是NRF网元,或者,还可以有其它的名称,本申请不做限定。
网络开放功能网元,可用于提供用于安全地向外部开放由3GPP网络功能设备提供的业务和能力等。在5G通信系统中,网络开放功能网元可以是网络开放功能(network exposure function,NEF)网元。在未来通信系统中,网络开放功能网元仍可以是NEF网元,或者,还可以有其它的名称,本申请不做限定。
DN,可部署多种业务,可为终端设备提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端设备,DN中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
图1中Nnef、Nnrf、Npcf、Nudm、Naf、Namf、Nsmf、N1、N2、N3、N4,以及N6为接口序列号。这些接口序列号的含义可参见3GPP标准协议中定义的含义,在此不做限制。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。一种可能的实现方式,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
应理解,上述应用于本申请实施例的网络架构仅是举例说明的从服务化架构的角度描述的网络架构,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个设备的功能的网络架构都适用于本申请实施例。
上述网络架构可以支持3GPP标准组定义的接入技术,也可以支持non 3GPP的接入技术。其中,3GPP标准组定义的接入技术例如下一代基站(gNB)技术或者演进型节点B(evolved node B,eNB)长期演进(long term evolution,LTE)技术等。non-3GPP的接入技术例如WLAN、高速分组数据网(high rate packet data,HRPD)、演进的高速分组网络(evolved high rate package data,EHRPD)、全球微波互联接入(worldwide interoperability for microwave access,WiMAX)等。
如图2介绍了终端通过非可信non-3GPP接入网接入核心网,非可信non3GPP接入网例如可以是非可信WLAN网络。注意图2中只是画了AMF、SMF、UPF几个网元,其它网元省略了,并不是说N3IWF不和其他网元进行交互。此外,核心网还可以支持可信non3GPP接入网或/和固定接入网接入。可信non3GPP接入网包括可信WALN网络,固定接入网包括固定家庭网络等。网络架构与图2所示的非可信non3GPP接入网接入核心网的架构类似。具体的可以将图2中的非可信non3GPP接入网和non 3GPP转换功能(non-3GPP interworking function,N3IWF)替换成可信WLAN接入网关或替换成固定接入网关,或者将N3IWF替换成可信接入网关。终端与上述接入网关N3IWF之间的接入网设备包括WLAN AP,固定网络接入网设备(fixed Access network,FAN),交换机,路由器等。无论是可信Non-3GPP接入、非可信Non-3GPP接入还是固定接入网接入,核心网侧可以采用如图2所示的点对点接口协议结构,或者采用与图1中的3GPP接入网接入核心网架构一致的服务化接口架构。
基于上述描述的3GPP或non3GPP接入架构,终端可以通过3GPP接入网或non3GPP接入网直接接入核心网。如图3A和图3B所示,提供了一种通过一个核心网接入另一核心网的示例。核心网例如公共陆地移动网络(public land mobile network,PLMN)、非公共网络(non public network,NPN)。PLMN网络是任何合法的终端设备都可以接入的公共网络。NPN网络的网络结构与PLMN网络结构相同,即含有相同的逻辑功能网元,但NPN网络只允许特定的终端接入。例如,企业园区为了便于员工访问企业内部资源而建立的只允许员工接入的私有NPN网络。或者,场馆、会所为访客提供服务的NPN网络等。
图3A所示提供了一种NPN与PLMN交互架构,UE通过3GPP接入网接入NPN网络,然后NPN网络再访问PLMN网络。图3B提供了另一种NPN与PLMN交互架构,UE通过3GPP网络访问PLMN网络,然后PLMN网络再访问NPN。
在现有技术中,终端可以通过3GPP接入网或non3GPP接入网直接接入核心网,或者如图3A或图3B所示,通过一个核心网接入另一核心网。当终端有大规模数据传输时,单 条链路提供的带宽资源有限,从而影响服务质量与用户体验。
有鉴于此,本申请提供了一种通信的方式,如图4所示,终端与第二核心网建立两条通信链路,一条通信链路为终端通过第一接入网接入第一核心网,再通过第一核心网接入第二核心网,另一条通信链路为终端通过第二接入网接入第二核心网。这两条通信链路的建立顺序不进行限制。例如,在结合图4和图3A所示的UE通过NPN网络访问PLMN交互架构的基础上,参见图3C所示,提供了一种多链路示意图。一条链路为终端通过3GPP接入网接入NPN网络,然后通过NPN网络接入PLMN网络。另一条链路为终端通过WLAN AP的网络接入PLMN网络,其中NPN网络定义为CN1,PLMN网络定义为CN2。在图4结合图3B所示的NPN与PLMN交互架构,则PLMN网络为CN1,NPN网络为CN2的基础上,参见图3D所示,提供了一种多链路示意图。
接下来介绍本申请的通信过程,即建立多条通信链路的过程。需要注意的是,本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中所涉及的多个,是指两个或两个以上。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或实现方案不应被解释为比其它实施例或实现方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
如图5a所示,提供了一种建立通信链路的过程示意图。
结合图4所示,在一种示例中,图5a中的第一网络包括第一接入网和第一核心网,第二网络为第二接入网。在另一种示例中,图5a中的第一网络为第二接入网,所述第二网络包括第一接入网和第一核心网。
所述第二接入网例如为wifi AP的网络,或者有线接入网络,所述第一接入网例如蜂窝网络,例如4G蜂窝基站,或5G蜂窝基站等。
第一核心网可以是NPN网络或PLMN网络,第二核心网可以为PLMN网络或者NPN网络。第一核心网与第二核心网的网络标识可以相同或不同。例如NPN网络标识为(network identifier,NID)、PLMN网络标识为PLMN ID。
接入网关例如可以是non 3GPP互操作功能(non-3GPP interworking function,N3IWF)网关或下一代接入网关(next generation packet data gateway,ngPDG),或者有线接入网网关(wireline access gateway,W-AGF),或者可信接入网关(trusted network gateway,TNGF)。
另外,需要说明的是,以下将第一网络为所述终端分配的IP地址称为第一IP地址。将第二网络为所述终端分配的IP地址称为第二IP地址。具体的,当第一网络包括第一接入网和第一核心网,第二网络为第二接入网,第一IP地址可以由第一核心网分配,第二IP地址由第二接入网分配。当第一网络为第二接入网,第二网络包括第一接入网和第一核心网,第一IP地址可以由第二接入网分配,第二IP地址由第一核心网分配。
将终端接入第一网络时的用户位置信息称为第一用户位置信息,将终端接入第二网络时的用户位置信息称为第二用户位置信息。具体的,当第一网络包括第一接入网和第一核心网,第二网络为第二接入网,第一用户位置信息为终端接入第一接入网时的用户位置信 息,第二用户位置信息为终端接入第二接入网时的用户位置信息。当第一网络为第二接入网,第二网络包括第一接入网和第一核心网,第一用户位置信息为终端接入第二接入网时的用户位置信息,第二用户位置信息为终端接入第一接入网时的用户位置信息。
当第一网络包括第一接入网和第一核心网,第二网络为第二接入网,第一网络的标识为第一核心网的标识,第二网络的标识为第二接入网的标识。当第一网络为第二接入网,第二网络包括第一接入网和第一核心网,第一网络的标识为第二接入网的标识,第二网络的标识为第一核心网的标识。第二接入网的标识可以是第二接入网的名称,如wifi接入点名称,运营商中的至少一个。wifi接入点名称例如服务集标识(service set identifier,SSID),或同构扩展服务集标识(homogenous extended service set identifier,HESSID),或基本服务集标识(basic service set identifier,BSSID)。第一核心网的标识包括第一核心网的名称,运营商、PLMN ID或NPN网络标识(NID)中的至少一个。
另外,本申请中的终端的接入技术包括3GPP接入技术、non3GPP接入技术,LTE接入技术,NG-RAN接入技术,wifi接入技术,固网或有线接入技术等。
在该通信过程中,一种可能的实现方式,先进行步骤500:所述终端可以获取第一网络为所述终端分配的第一IP地址。然后再进行以下步骤501。
在所述第一网络包括第一接入网和第一核心网,所述第二网络为第二接入网时,终端可以先通过第一接入网注册到第一核心网,然后终端在第一核心网上建立协议数据单元(protocol data unit,PDU)会话,获取第一核心网为所述终端分配的第一IP地址。上述第一IP地址即为第一网络为所述终端分配的IP地址。所述终端可以通过3GPP接入技术或者非3GPP接入技术接入到第一接入网上。所述3GPP接入技术包括LTE,NG-RAN等3GPP接入技术。Non-3GPP接入包括WLAN、固网、有线等non3GPP接入技术。
在所述第一网络为第二接入网,所述第二网络包括第一接入网和第一核心网时,所述第一IP地址为所述终端接入到所述第二接入网时,所述第二接入网为所述终端分配的IP地址。所述终端可以通过3GPP接入技术或者非3GPP接入技术接入到第二接入网上。终端接入到第二接入网的接入技术,与终端接入到第一接入网的接入技术,可以相同,也可以不同。
所述终端还可以获取以下信息中的一种或多种:所述终端接入所述第一网络时的第一用户位置信息。
另外,在第一网络包括第一接入网和第一核心网,第二网络为第二接入网的情况下,所述终端还可以获取所述第一核心网的标识。所述第一核心网的标识包括NPN网络标识NID或者PLMN网络标识PLMN ID中的至少一个。
步骤501:终端通过所述第一网络向第二核心网的接入网关发送第一接入消息,相应的,所述接入网关接收所述终端通过所述第一网络发送的第一接入消息。所述第一接入消息由第一IP地址封装,所述第一IP地址为第一网络为所述终端分配的IP地址。
所述终端可以基于现有技术,获取第二核心网的接入网关的IP地址,然后向所述接入网关发送第一接入消息。所述接入网关例如可以是N3IWF,所述终端在获取N3IWF的IP地址时,可以是所述终端先获取N3IWF FQDN,然后通过DNS查询,获得N3IWF FQDN对应的N3IWF IP地址。或者,基于终端本地配置N3IWF的IP地址。或者,终端从网络侧获取的策略信息中包含N3IWF IP地址。所述接入网关例如还可以是W-AGF、TNGF。其中,W-AGF、TNGF的IP地址获取方式与N3IWF的IP地址的获取方式可以相同,不再 重复介绍。
所述终端在获取接入网关的IP地址后,与接入网关建立连接,并通过接入网关发起到第二核心网的注册流程。具体的,所述终端可以通过第一网络向所述接入网关发送第一接入消息,所述第一接入消息由所述第一网络为所述终端分配的第一IP地址封装。所述第一接入消息可以是IKEv2消息,例如IKE_AUTH消息。终端可以将终端的第一IP地址作为终端的源地址,或者终端local IP地址,来封装IKEv2消息,发送给接入网关。
所述第一接入消息还可以包括以下至少一种:所述终端接入所述第一网络时的第一用户位置信息、终端的第一标识、非接入层(Non-access stratum,NAS)消息、第一网络的标识。所述终端的第一标识可以包括但不限于第二核心网为终端分配的临时标识GUTI和/或终端的永久标识。需要注意的是,所述第二核心网为终端分配的临时标识是所述终端通过之前网络的接入所述第二核心网时,第二核心网为所述终端分配的临时标识。不同于步骤502中的第二核心网为终端分配的临时标识是所述终端通过所述第一网络接入所述第二核心网时,第二核心网为所述终端分配的临时标识。所述NAS消息例如注册请求消息、服务请求消息、或PDU会话建立消息或更新请求消息等,本申请不做限制。
另外,上述NAS消息,和/或终端接入第一网络时的第一用户位置信息,和/或第一核心网的标识等上述提及的所有参数,可以封装到EAP-5G参数中,通过IKEv2消息(即第一接入消息)发送给接入网关。
进一步地,所述接入网关在接收到第一接入消息后,可以保存所述第一接入消息中包括的信息,及信息之间的对应关系,例如保存以下至少一个:终端接入第一网络时的第一用户位置信息、第一网络的标识、第一网络为终端分配的第一IP地址,终端的第一标识等等,及其对应关系。
步骤502:所述终端通过第二网络向所述接入网关发送第二接入消息,相应的,所述接入网关接收所述终端通过所述第二网络发送的第二接入消息。所述第二接入消息由第二IP地址封装,所述第二IP地址为第二网络为所述终端分配的IP地址。所述第二接入消息包括以下至少一个:所述第一网络为所述终端分配的第一IP地址,终端的第一标识。
所述第二接入消息还可以包括以下至少一个:所述终端接入所述第二网络时的第二用户位置信息、AMF网元的标识、NAS消息、第二网络的标识。
在所述第一网络包括第一接入网和第一核心网,所述第二网络为第二接入网时,所述终端的第一标识可以是第二核心网为终端分配的临时标识和/或终端的永久标识;其中,所述第二核心网为终端分配的临时标识是所述终端通过所述第一网络接入所述第二核心网时,第二核心网为所述终端分配的临时标识。临时标识,例如全球唯一临时UE标识(globally unique temporary UE identity,GUTI)。第二核心网为所述终端分配的临时标识中包括AMF网元的标识。
第二接入消息可以是IKEv2消息。所述第二IP地址也可作为终端源地址或终端local IP地址来封装第二接入消息。
终端通过步骤501的第一网络建立了与第二核心网的连接,可以获取到第二核心网为所述终端分配的终端临时标识GUTI。所述第二核心网为所述终端分配的临时标识中包含所述第二核心网中为终端服务的AMF网元的标识。如果终端通过第二网络接入到与步骤501相同的核心网,即所述第二核心网上,则终端可以选择与步骤501中相同的接入网关。所述终端可以将第二核心网中为所述终端服务的AMF网元的标识发送给所述接入网关。 即所述第二接入消息中还可以包括第二核心网中的所述AMF网元的标识。
所述NAS消息例如注册请求消息、服务请求消息、或PDU会话建立消息或更新请求消息等,本申请不做限制。
另外,上述NAS消息,和/或终端接入第二网络时的第二用户位置信息等上述提及的所有参数,可以封装到EAP-5G参数中,通过IKEv2消息(即第二接入消息)发送给接入网关。
进一步地,所述接入网关在接收到第二接入消息后,可以保存所述第二接入消息中包括的信息,及其对应关系。例如保存以下至少一个:终端的第一标识,终端接入第二网络时的第二用户位置信息、AMF网元的标识、第二网络为所述终端分配的第二IP地址、第一网络为所述终端分配的第一IP地址等等,及其对应关系。步骤503中的对应关系不同与步骤502中的对应关系。
步骤503:所述接入网关根据所述第一IP地址,确定所述第一接入消息和所述第二接入消息对应同一个终端。
所述接入网关可以基于第一接入消息携带的所述第一IP地址和/或所述终端的第一标识和所述第二接入消息包括的所述第一IP地址和/或所述终端的第一标识,确定所述第一接入消息和所述第二接入消息是否来自同一终端。如果第一IP地址相同,则来自同一终端;或者终端的第一标识相同,则来自同一终端。
如果一个终端向接入网关发送了两条接入消息,则所述接入网关可以针对所述终端,与一个AMF网元建立两个通信连接。例如步骤504和步骤505,所述接入网关向一个AMF网元发送了两条第一请求消息。此处为了方便描述,将接入网关向AMF网元发送的请求消息定义为第一请求消息。需要注意的是,所述接入网关与AMF网元仅建立了一个N2连接,所述接入网关在一个N2连接上向AMF网元发送两条第一请求消息。
步骤504:所述接入网关在接收到终端通过第一网络发送的第一接入消息后,可以向AMF网元发送第一请求消息,相应的,所述AMF接收所述接入网关发送的第一请求消息,所述第一请求消息包括:终端与所述接入网关之间的链路标识,多链路指示中的至少一个;其中,所述多链路指示用于指示所述终端与所述接入网关之间存在多条链路。
步骤504中的第一请求消息中携带的链路标识可以用于标识所述终端通过第一网络接入所述第二核心网。上述链路标识例如可以为第一IP地址,第一IP地址用于表示终端通过第一网络与接入网关之间建立的链路,也可以是所述接入网关为所述终端与所述接入网关之间通过第一网络连接的链路分配的链路标识。
接入网关向AMF网元发送的所述第一请求消息还可以包括以下中的一种或多种:终端接入第一网络时的第一用户位置信息、NAS消息、第一网络的标识、终端的第一标识、第一网络为所述终端分配的第一IP地址。这些信息来自所述终端发送的第一接入消息。第一用户位置信息和/或第一网络的标识可以携带在additional User location参数中。
此外,所述第一请求消息还可以包括:终端的接入方式。如果第一网络包括第一接入网和第一核心网,此处,终端的接入方式指示终端通过第一核心网接入第二核心网,和/或指示终端接入第一接入网的接入技术。一种可能的实现方式,所述接入网关可以基于本地配置识别出所述终端通过所述第一核心网接入所述接入网关。或者,接入网关可以基于第一IP地址识别出所述终端通过所述第一核心网接入所述接入网关,例如所述接入网在判断终端的第一IP地址是所述第一核心网为所述终端分配的时,确定出终端是通过第一核心 网关接入到接入网关上的。如果第一网络包括第二接入网,此处,终端的接入方式指示终端接入第二接入网的接入技术。例如3GPP接入技术或者non3GPP接入技术。
所述AMF网元还可以处理来自终端的NAS消息,基于NAS消息完成相关流程,例如完成终端到第二核心网的注册流程,或服务请求流程,或会话建立或更新流程等。
进一步地,所述AMF网元可以保存步骤504中的所述第一请求消息中的信息,以及保存信息之间的对应关系。
步骤505:所述接入网关在接收到终端通过第二网络发送的第二接入消息后,可以向步骤504中的AMF网元发送另一条第一请求消息,相应的,所述AMF接收所述接入网关发送的第一请求消息。所述第一请求消息包括:终端与所述接入网关之间的链路标识,多链路指示中的至少一个;其中,所述多链路指示用于指示所述终端与所述接入网关之间存在多条链路。
步骤505中的第一请求消息中携带的链路标识可以用于标识所述终端通过第二网络接入所述第二核心网络。上述链路标识例如可以为第二IP地址,第二IP地址用于表示终端通过第二网络与接入网关之间建立的链路,也可以是所述接入网关为所述终端与所述接入网关之间通过第二网络连接的链路分配的链路标识。
接入网关向AMF网元发送的所述第一请求消息还可以包括以下中的一种或多种:终端接入第二网络时的第二用户位置信息、NAS消息、终端的第一标识、第二网络为所述终端分配的第二IP地址、第二网络的标识。这些信息来自所述终端发送的第二接入消息。第二用户位置信息可以携带在additional User location参数中。
此外,所述第一请求消息还可以包括:终端的接入方式。此处,终端的接入方式指示终端接入第二接入网的接入技术。或者终端的接入方式指示终端通过第一核心网接入第二核心网,和/或指示终端接入第一接入网的接入技术。例如3GPP接入技术或者non3GPP接入技术。
所述AMF网元可以处理来自终端的NAS消息,基于NAS消息完成相关流程,如完成终端到第二核心网的注册流程,或服务请求流程,或会话建立或更新流程等。
所述AMF网元可以保存步骤505中的所述第一请求消息中的信息,以及保存信息之间的对应关系。不同于步骤504中的第一请求消息中的信息的对应关系。
上述步骤503在步骤504和步骤505之后,步骤503、步骤504和步骤505的先后顺序不进行限制。
终端通过第一核心网接入第二核心的链路和终端通过第二接入网接入第二核心网的链路,这两条链路可以处于激活态或者非激活态。激活态链路存在数据通道,可以为终端传输业务数据包。非激活态链路不存在数据通道,不能为终端传输业务数据包。
所述AMF网元在接收到所述接入网关发送的两条第一请求消息后,可以向SMF网元发送两条第二请求消息,两个第二请求消息可以通过N11连接发送。具体参见步骤506和步骤507。
步骤506:所述AMF网元在接收到所述接入网关在步骤504发送的第一请求消息后,可以向SMF网元发送第二请求消息,相应的,所述SMF网元接收所述AMF网元发送的第二请求消息。所述第二请求消息可以包括以下至少一种:终端与所述接入网关之间存在多条链路的第一指示;第一网络的标识、终端的接入方式,NAS消息,终端接入第一网络时的第一用户位置信息,终端的第一标识、第一网络为所述终端分配的第一IP地址。
终端的接入方式可以是来自步骤504中接入网关向AMF网元发送的第一请求消息,也可以是AMF网元基于接入网关的信息确定出的终端的接入方式,该过程为现有技术。终端与所述接入网关之间存在多条链路的第一指示,可以是步骤504中接入网关向AMF网元发送的第一请求消息中的多链路指示,也可以是AMF设备基于所述多链路指示,确定出的第一指示。第二请求消息中的其他信息均来自步骤504中接入网关向AMF网元发送的第一请求消息。如果NAS消息是注册请求消息,AMF网元处理即可,无需继续转发给SMF网元。如果NAS消息是PDU会话建立请求消息,需继续转发给SMF网元处理。
此外,所述第二请求消息还可以包括第一路径的标识。其中,第一路径的标识可以是步骤504中接入网关发送的第一请求消息包括的终端与所述接入网关之间的链路标识,或者是AMF网元针对接入网关发送的第一请求消息中的终端与所述接入网关之间的链路标识分配的另一链路标识。
步骤507:所述AMF网元在接收到所述接入网关在步骤505发送的第一请求消息后,可以再向SMF网元发送另一条第二请求消息,相应的,所述SMF网元接收所述AMF网元发送的第二请求消息。所述第二请求消息可以包括以下至少一种:终端与所述接入网关之间存在多条链路的第一指示,第二网络的标识、终端的接入方式,NAS消息,终端接入第二网络时的第二用户位置信息,终端的第一标识、第二网络为所述终端分配的第二IP地址。
终端的接入方式可以是来自步骤505中接入网关向AMF网元发送的第一请求消息,也可以是AMF网元基于接入网关的信息确定出的终端的接入方式,该过程为现有技术。终端与所述接入网关之间存在多条链路的第一指示,可以是步骤505中接入网关向AMF网元发送的第一请求消息中的多链路指示,也可以是AMF设备基于所述多链路指示,确定出的第一指示。第二请求消息中的其他信息均来自步骤505中接入网关向AMF网元发送的第一请求消息。如果NAS消息是注册请求消息,AMF网元处理即可,无需继续转发给SMF网元。如果NAS消息是PDU会话建立请求消息,需继续转发给SMF网元处理。
此外,所述第二请求消息还可以包括第二路径的标识。其中,第二路径的标识可以是步骤505中接入网关发送的第一请求消息包括的终端与所述接入网关之间的链路标识,或者是AMF网元针对接入网关发送的第一请求消息中的终端与所述接入网关之间的链路标识分配的另一链路标识。
步骤508:所述SMF网元基于所述第一指示,建立两条用户面隧道。
具体过程可以包括SMF网元通知UPF网元分配用户面资源,以及向AMF网元发送第二请求消息的响应消息,用于建立两条用户面隧道。
以上对第一网络和第二网络在两种不同的情况下,建立多链路的具体过程进行了详细的描述。接下来参见图5b所示,介绍上述步骤508之后的详细过程:接下来介绍的过程可以适用于第一网络和第二网络的两种不同的情况。在图5b中,步骤501至步骤508与图5a中的步骤501至步骤508相同。
步骤509:所述SMF网元向所述AMF网元发送所述第二请求消息的响应消息,相应的,SMF网元向AMF网元发送了两个响应消息。
针对步骤506中的第二请求消息,其对应的响应消息可以包括以下至少一个:第一网络的标识、终端的接入方式,终端接入第一网络时的第一用户位置信息,终端的第一标识、第一网络为所述终端分配的第一IP地址、第一路径标识。这些信息均来自步骤506中AMF 网元向SMF网元发送的第二请求消息。所述终端的接入方式、第一路径标识、第一网络的标识等可以表示UPF网元的用户面隧道对应的终端与接入网关之间的隧道标识。所述第二请求消息的响应消息中还可以包括NAS回复消息,N2 information,NAS回复消息是步骤506中的第二请求消息中的NAS消息的回复消息或响应消息,如PDU会话建立成功消息,或PDU会话更新响应消息等。N2 information包括UPF用户面隧道标识、QoS参数、QoS flow标识QFI等。
针对步骤507中的第二请求消息,其对应的响应消息可以包括以下至少一个:第二网络的标识、终端的接入方式,终端接入第二网络时的第二用户位置信息,终端的第一标识、第二网络为所述终端分配的第二IP地址、第二路径标识。这些信息均来自步骤507中AMF网元向SMF网元发送的第二请求消息。所述终端的接入方式、第二路径标识、第二网络的标识等可以表示UPF网元的用户面隧道对应的终端与接入网关之间的隧道标识。所述第二请求消息的响应消息中还可以包括NAS回复消息,N2 information,NAS回复消息是步骤507中的第二请求消息中的NAS消息的回复消息或响应消息,如PDU会话建立成功消息,或PDU会话更新响应消息等。N2 information包括UPF用户面隧道标识、QoS参数、QoS flow标识QFI等。
步骤510:所述AMF网元基于所述终端的接入方式,确定所述终端与所述接入网关之间的链路标识。
在AMF向SMF网元发送的第二请求消息中包括终端的两个接入方式时,这终端的两个接入方式来自两条接入网关向AMF网元发送的第一请求消息。AMF网元接收到的两个第二请求消息各自对应的响应消息中可以分别包括终端的一种接入方式。则所述AMF基于终端的两种不同的接入方式,确定出所述终端与所述接入网关之间的两个链路标识。一个链路标识用于指示所述终端通过第一核心网接入所述接入网关,另一个链路标识用于指示所述终端通过第二接入网接入所述接入网关。
如果第二请求消息中只包括终端的一种接入方式,则第二请求消息的一条响应消息中也包括终端的该种接入方式,另一响应消息中可以不包括终端的另一种接入方式,或者另一响应消息中包含终端的另一种接入方式。当不包含另一种接入方式时,由于只建立两条链路,所以,AMF网元可以区分出未包含在响应消息中的终端的接入方式对应的路径是哪条。所述AMF网元仍然可以基于终端的两种接入方式,确定所述终端与所述接入网关之间的两个链路标识。
步骤511:所述AMF网元向所述接入网关发送所述第一请求消息的响应消息,相应的,所述接入网关接收所述AMF网元发送的所述第一请求消息的响应消息。
所述第一请求消息的响应消息包括所述链路标识;所述链路标识用于指示所述第一请求消息的响应消息对应的终端与所述接入网关之间的链路。
所述AMF网元向所述接入网关发送两个第一请求消息的响应消息,一个响应消息中包括的链路标识用于指示所述终端通过第一核心网接入所述接入网关,另一个响应消息中包括的链路标识用于指示所述终端通过第二接入网接入所述接入网关。所述AMF网元与接入网关针对所述终端建立一个N2连接,所以在一个N2连接上,向接入网关发送两个第一请求消息的响应消息。
针对步骤506中的第二请求消息的响应消息,AMF网元可以基于第二请求消息的响应消息中的第一网络的标识、第一路径标识、或接入技术指示确定步骤504中的第一请求消 息中响应消息中携带的链路标识。所述第一请求消息中的链路标识和对应的响应消息中的链路标识一般相同。所述第一请求消息的响应消息中可以包括NAS回复消息及N2 information、第一路径标识、第一网络的标识中的至少一个。
针对步骤507中的第二请求消息的响应消息,AMF网元可以基于第二请求消息的响应消息中的第二网络的标识、第二路径标识、或接入技术指示确定步骤505中的第一请求消息中响应消息中携带的链路标识。所述第一请求消息中的链路标识和对应的响应消息中的链路标识一般相同。所述第一请求消息的响应消息中可以包括NAS回复消息及N2 information、第二路径标识、第二网络的标识中的至少一个。
所述接入网关基于所述链路标识建立所述终端与所述接入网关之间的用户面连接。具体的:
步骤512a:所述接入网关通过所述第二接入网与所述终端建立接入侧用户面隧道。
步骤512b:所述接入网关通过所述第一核心网和所述第一接入网与所述终端建立接入侧用户面隧道。
步骤512a和步骤512b的具体过程可以参见现有技术。例如所述接入网关向终端发送IKEv2 child SA建立请求消息,以建立终端与接入网关之间的IPSec隧道。接入网关基于两个链路标识建立接入网关与UPF网元之间的用户面隧道与终端与接入网关之间的接入侧链路与用户面隧道对应关系。例如接入网关为两个接入侧隧道分配不同的接入网关隧道标识,并通过AMF网元和SMF网元将所述接入网关隧道标识发送给UPF网元。
终端与接入网关之间建立了多条用户面链路,业务流可以基于分流策略选择多链路中的至少一条进行传输。分流策略由SMF通过NAS消息发送给终端。分流策略包含流描述信息(如IP五元组:源目的IP地址、端口号、协议类型)与链路标识对应关系。上述链路标识是第一网络的标识或第二网络的标识,或者是终端接入第一接入网的接入技术指示或者终端接入第二接入网的接入技术指示。SMF网元可以基于第一网络的标识或第二网络的标识,或者是终端接入第一接入网的接入技术指示或者终端接入第二接入网的接入技术指示生成分流策略,并通过NAS回复消息将上述分流策略发送给终端。即SMF网元基于网络标识或者接入技术为业务流选择合适的链路传输。或者,SMF网元将第一网络的标识或第二网络的标识,或者是终端接入第一接入网的接入技术指示或者终端接入第二接入网的接入技术指示发送给PCF网元,由PCF网元基于网络标识或者接入技术为业务流选择合适的链路,PCF网元生成分流规则发送给SMF网元,再由SMF合并生成分流策略通过NAS回复消息发送给终端。
上述实施例中,由接入网关根据第一IP地址和/或终端的第一标识,确定所述第一接入消息和所述第二接入消息来自同一终端。也就是由接入网关确定一个终端请求建立两条链路。接下来的实施例中介绍,接入网关不执行步骤503中确定一个终端请求建立两条链路的过程,而是由AMF网元确定一个终端请求建立两条链路。该实施例的具体过程可以参见图6所示,与上述实施例的技术细节相同之处不再重复赘述。
步骤600至步骤602,与上述步骤500、步骤501和步骤502相同。在步骤601和步骤602中,第一接入请求消息和第二接入请求消息中必须携带NAS消息和AMF网元的标识。其余技术细节可参见上述描述,重复之处不再赘述。
步骤603:所述接入网关在接收到第一接入消息和第二接入消息后,可以根据终端发送的第二核心网中为终端服务的AMF网元的标识,选择出一个第二核心网中为终端服务 的AMF网元的标识。
步骤604和步骤605:所述接入网关向第二核心网中为终端服务的AMF网元分别发送第一请求消息,即所述接入网关向AMF网元发送两条第一请求消息。与上述实施例不同的是,这两条第一请求消息是基于接入网关与AMF网元间的两个不同的N2连接发送的。这两条第一请求消息中一定携带NAS消息,其余信息可以参见上述步骤504和步骤505。
对于AMF网元来说,由于所述AMF网元是基于两个N2连接接收到两条第一请求消息,AMF网元初期无法确定出这两条第一请求消息是针对一个终端的。在步骤606中:AMF网元可以根据两个第一请求消息中分别包括的NAS消息中的终端的标识,确定出两条第一请求消息是针对同一个终端发送的。所述AMF网元可以将这两个N2连接关联到相同的终端上下文。所述AMF网元还可以保存两个N2连接分别对应的第一请求消息中包括的信息。第一请求消息中包括的信息与上述实施例中第一请求消息中包括的信息可以相同,也可以是其中的一部分信息,重复之处不再重复赘述。
AMF网元可以根据两个N2连接,确定出终端与接入网关之间存在多条链路,则可以向执行与上述实施例中的步骤506、步骤507、步骤508相同的过程:
步骤607:所述AMF网元在接收到所述接入网关两条第一请求消息后,可以向SMF网元发送第二请求消息,相应的,所述SMF网元接收所述AMF网元发送的第二请求消息。所述第二请求消息包括上述步骤506或步骤507中提及的其他参数信息。
步骤608:所述SMF网元建立两条用户面隧道。步骤508相同。
步骤609:所述SMF网元向所述AMF网元发送所述第二请求消息的响应消息,相应的,所述AMF网元接收所述SMF网元发送的所述第二请求消息的响应消息。所述第二请求消息的响应消息包括终端的第一标识,还可以包括上述步骤509中的提及的其他参数信息。
步骤610:所述AMF网元基于所述终端的第一标识确定所述终端的上下文后,在所述终端的上下文中提取出来终端标识信息。
步骤611:所述AMF网元向所述接入网关发送所述第一请求消息的响应消息,相应的,所述接入网关接收所述AMF网元发送的所述第一请求消息的相应消息。所述响应消息包括终端标识信息,所述终端标识信息可以是所述AMF网元基于所述终端的第一标识确定所述终端的上下文后,在所述终端的上下文中提取出来的。则所述终端标识信息也可以称为N2终端标识。所述N2终端标识可以是在N2接口上使用的终端标识,例如可以是N2接口上AMF网元为终端分配的临时标识,N2AMF UE ID;也可以是N2接口上接入网关为所述终端分配的临时标识,例如N2 N3IWF UE ID。
不同的第一请求消息的响应消息携带相同的终端标识信息,从而接入网关可以基于相同的所述终端标识信息,将所述两个不同的第一请求消息的响应消息关联到相同的终端的上下文。即将两个第一请求消息的响应消息关联到相同的终端上。例如可以通过第一网络为所述终端分配的第一IP地址和第二网络为所述终端分配的第二IP地址。
步骤612a:所述接入网关通过所述第二接入网与所述终端建立接入侧用户面隧道。
步骤612b:所述接入网关通过所述第一核心网和所述第一接入网与所述终端建立接入侧用户面隧道。
接入网关知道不同的N2连接对应不同的终端与接入网关之间的连接,接入网关基于不同的终端IP地址(一种是第二接入网为所述终端分配的IP地址,另一种是第一核心网 为所述终端分配的IP地址)区别终端与接入网关之间的连接,并与不同的N2连接对应。接入网关基于N2消息发起与其对应的终端之间的用户面隧道建立流程,同现有技术。如发送IKEv2 child SA建立请求消息给终端,建立终端与接入网关之间的IPSec隧道。
前文介绍了本申请实施例的建立多链路的通信方法,下文中将介绍本申请实施例中的通信装置。方法、装置是基于同一技术构思的,由于方法、装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
基于与上述通信的方法的同一技术构思,如图7所示,提供了一种通信装置700。
在一种实施例中,装置700能够执行上述方法实施例中由终端执行的各个步骤,为了避免冗余,此处不再详述。装置700可以为终端,也可以为应用于终端中的芯片。装置700可以包括:收发模块720,处理模块710,一种可能的实现方式,还包括存储模块730;处理模块710可以分别与存储模块730和收发模块720相连,所述存储模块730也可以与收发模块720相连。
示例的,所述处理模块710,用于获取第一网络为所述装置分配的第一IP地址;所述收发模块720,用于通过所述第一网络向第二核心网中的接入网关发送第一接入消息,所述第一接入消息由所述第一IP地址封装;以及通过第二网络向所述接入网关发送第二接入消息,所述第二接入消息包括以下至少一个:所述第一IP地址,所述装置的第一标识;其中,所述第一网络包括第一接入网和第一核心网,所述第二网络为第二接入网;或者所述第一网络为第二接入网,所述第二网络包括第一接入网和第一核心网。
示例的,所述装置的第一标识包括以下至少一个:所述第二核心网为所述装置分配的临时标识,所述装置的永久标识;其中,所述第二核心网为所述装置分配的临时标识是所述装置通过所述第一网络接入所述第二核心网时,所述第二核心网为所述装置分配的临时标识。
示例的,所述第一接入消息包括:所述第一网络的标识,和/或,所述第二接入消息还包括:所述第二网络的标识。
示例的,所述第二接入消息还包括:所述第二核心网中的接入和移动性管理功能AMF网元的标识。
示例的,所述存储模块730,可以用于存储第一IP地址、第二IP地址、第一网络的标识、第二网络的标识、第一用户位置信息、第二用户位置信息、终端的第一标识、AMF网元的标识。
在另一种实施例中,装置700能够执行上述方法实施例中由接入网关执行的各个步骤,为了避免冗余,此处不再详述。装置700可以为接入网关,也可以为应用于接入网关中的芯片。装置700可以包括:收发模块720,处理模块710,一种可能的实现方式,还包括存储模块730;处理模块710可以分别与存储模块730和收发模块720相连,所述存储模块730也可以与收发模块720相连。
示例的,所述收发模块720,用于接收终端通过第一网络发送的第一接入消息,所述第一接入消息由所述第一网络为所述终端分配的第一IP地址封装;以及接收所述终端通过第二网络发送的第二接入消息,所述第二接入消息包括以下至少一个:所述第一IP地址,所述终端的第一标识;其中,所述第一网络包括第一接入网和第一核心网,所述第二网络为第二接入网;或者,所述第一网络为第二接入网,所述第二网络包括第一接入网和第一核心网。
示例的,所述处理模块710,用于根据所述第一IP地址和/或所述终端的第一标识,确定所述第一接入消息和所述第二接入消息对应所述终端。
示例的,所述终端的第一标识包括以下至少一个:所述第二核心网为所述终端分配的临时标识,所述终端的永久标识;其中,所述第二核心网为所述终端分配的临时标识是所述终端通过所述第一网络接入所述第二核心网时,所述第二核心网为所述终端分配的临时标识。
示例的,所述第一接入消息包括:所述第一网络的标识,和/或,所述第二接入消息还包括:所述第二网络的标识。
示例的,所述第二接入消息还包括:所述第二核心网中的接入和移动性管理功能AMF网元的标识。
示例的,所述收发模块720,还用于向所述AMF网元发送第一请求消息,所述第一请求消息包括以下至少一个:所述终端与所述装置之间的链路标识,多链路指示;其中,所述多链路指示用于指示所述终端与所述装置之间存在多条链路。
示例的,所述终端与所述装置之间的链路标识为所述第一核心网为所述终端分配的IP地址或所述第二接入网为所述终端分配的IP地址。
示例的,所述第一请求消息还包括以下至少一个:所述终端的接入方式指示、所述第一网络的标识或所述第二网络的标识;其中,所述终端的接入方式指示所述终端的接入技术,或者指示所述终端通过所述第一核心网接入所述装置。
示例的,所述收发模块720,还用于接收所述AMF网元发送的所述第一请求消息的响应消息,所述第一请求消息的响应消息包括链路标识;所述链路标识用于指示所述响应消息对应的所述终端与所述装置之间的链路;所述处理模块710,还用于基于所述链路标识建立所述终端与所述装置之间的用户面连接。
示例的,所述收发模块720,还用于接收所述AMF网元发送的所述第一请求消息的响应消息,所述响应消息包括终端标识信息;所述处理模块710,还用于基于所述终端标识信息将所述第一请求消息的响应消息关联到相同终端的上下文。
示例的,所述终端接入所述第一接入网的接入技术为第三代合作伙伴计划3GPP接入技术,所述终端接入所述第二接入网的接入技术为non3GPP接入技术;或者,所述终端接入所述第一接入网的接入技术为non3GPP接入技术,所述终端接入所述第二接入网的接入技术为3GPP接入技术。
示例的,所述存储模块730,可以用于存储第一IP地址、第二IP地址、第一网络的标识、第二网络的标识、第一用户位置信息、第二用户位置信息、终端的第一标识、AMF网元的标识。
在再一种实施例中,装置700能够执行上述方法实施例中由AMF网元执行的各个步骤,为了避免冗余,此处不再详述。装置700可以为AMF网元,也可以为应用于AMF网元中的芯片。装置700可以包括:收发模块720,处理模块710,一种可能的实现方式,还包括存储模块730;处理模块710可以分别与存储模块730和收发模块720相连,所述存储模块730也可以与收发模块720相连。
所述收发模块720,可以用于发送第二请求消息,第一请求消息的响应消息;可以用于接收第二请求消息的响应消息。
所述存储模块730,可以用于存储第一IP地址、第二IP地址、第一网络的标识、第 二网络的标识、第一用户位置信息、第二用户位置信息、终端的第一标识、AMF网元的标识、终端的接入方式。
所述处理模块710,可以用于在接收所述SMF网元发送的所述第二请求消息的响应消息后,基于所述第二请求消息的响应消息包括终端的接入方式,确定所述终端与所述接入网关之间的链路标识。
在又一种实施例中,装置700能够执行上述方法实施例中由SMF网元执行的各个步骤,为了避免冗余,此处不再详述。装置700可以为SMF网元,也可以为应用于SMF网元中的芯片。装置700可以包括:收发模块720,处理模块710,一种可能的实现方式,还包括存储模块730;处理模块710可以分别与存储模块730和收发模块720相连,所述存储模块730也可以与收发模块720相连。
所述收发模块720,可以用于接收第二请求消息,可以用于发送第二请求消息的响应消息。
所述存储模块730,可以用于存储第一IP地址、第二IP地址、第一网络的标识、第二网络的标识、第一用户位置信息、第二用户位置信息、终端的第一标识、AMF网元的标识、第一路径标识、第二路径标识。
所述处理模块710,可以用于指示UPF网元建立多条用户面隧道。
通信装置可以用于通信设备、电路、硬件组件或者芯片中。
上述处理模块710、存储模块730和收发模块720可以通过通信总线连接。
存储模块730可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。存储模块730可以存储终端、接入网关、AMF网元、SMF网元侧的方法的计算机执行指令,以使处理模块710执行上述实施例中终端、接入网关、AMF网元、SMF网元侧的方法。存储模块730可以是寄存器、缓存或者RAM等,存储模块730可以和处理模块710集成在一起。存储模块730可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储模块730可以与处理模块710相独立。
收发模块720可以是输入或者输出接口、管脚或者电路等。
图8是本申请实施例的通信装置800的示意性框图。应理解,所述装置800能够执行上述方法中由终端或者接入网关或者AMF网元或者SMF网元执行的各个步骤。为了避免冗余,此处不再详述。装置800包括:处理器810和收发器820,一种可能的实现方式,还包括存储器830。所述处理器810和所述存储器830之间电耦合。
示例的,存储器830,用于存储计算机程序;所述处理器810,可以用于调用所述存储器中存储的计算机程序或指令,以通过所述收发器820执行上述的通信的方法。
图7中的处理模块710可以通过处理器810来实现,收发模块720可以通过收发器820来实现,存储模块730可以通过存储器830来实现。
上述的处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处 理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机存储介质,存储有计算机程序,该计算机程序被计算机执行时,可以使得所述计算机用于执行上述通信的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述提供的通信的方法。
本申请实施例还提供了一种通信的系统,所述系统包括:执行上述通信的方法的接入网关、AMF网元、SMF网元。
本申请实施例提供了一种通信装置,该通信装置包括一个或者多个模块,用于实现上述步骤500-步骤512或者步骤600-步骤612中的方法,该一个或者多个模块可以与上述步骤500-步骤512或者步骤600-步骤612中的方法的步骤相对应。具体的,本申请实施例中由终端执行的方法中的每个步骤,终端中存在执行该方法中每个步骤的单元或者模块。由接入网关执行的方法中的每个步骤,接入网关中存在执行该方法中每个步骤的单元或者模块。由AMF网元执行的方法中的每个步骤,AMF网元中存在执行该方法中每个步骤的单元或者模块。由SMF网元执行的方法中的每个步骤,SMF网元中存在执行该方法中每个步骤的单元或者模块。
图9所示为本申请实施例提供的通信设备的硬件结构示意图。本申请实施例中的接入网关、AMF设备、SMF设备的硬件结构均可以参考如图9所示的通信设备的硬件结构示意图。该通信设备包括处理器41,通信线路44以及至少一个通信接口(图9中示例性的以通信接口43为例进行说明)。
处理器41可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路44可包括一通路,在上述组件之间传送信息。
通信接口43,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
可能的,该通信设备还可以包括存储器42。
存储器42可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的 其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路44与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器42用于存储执行本申请方案的计算机执行指令,并由处理器41来控制执行。处理器41用于执行存储器42中存储的计算机执行指令,从而实现本申请下述实施例提供的通信方法。
可能的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器41可以包括一个或多个CPU,例如图9中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备可以包括多个处理器,例如图9中的处理器41和处理器45。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
示例性的,以图9所涉及的通信装置为AMF网元或应用于AMF网元中的芯片为例,该通信接口43用于支持该通信装置执行上述实施例中的步骤504、步骤505、步骤506、步骤507、步骤509,步骤511、步骤604、步骤605、步骤607、步骤609、步骤611。处理器41和/或处理器45用于支持通信装置执行上述实施例中的步骤510、步骤610等等。
在另一种示例中,以通信装置可以为接入网关或应用于接入网关中的芯片或芯片系统为例,该通信接口43用于支持通信装置执行上述实施例中的步骤501、步骤502、步骤504、步骤505、步骤511、步骤601、步骤602、步骤604、步骤605、步骤611。处理器41和/或处理器45用于支持通信装置执行上述实施例中的步骤503、步骤603。
在另一种示例中,以通信装置可以为SMF网元或应用于SMF网元中的芯片或芯片系统为例,该通信接口43用于支持通信装置执行上述实施例中的步骤506、步骤507、步骤509、步骤607、步骤609。处理器41和/或处理器45用于支持通信装置执行上述实施例中的步骤508、步骤608。
如图10所示,为本申请实施例提供的一种终端的结构示意图。
终端包括至少一个处理器1211、至少一个收发器1212。在一种可能的示例中,终端还可以包括和至少一个存储器1213、输出设备1214、输入设备1215和一个或多个天线1216。处理器1211、存储器1213和收发器1212相连。天线1216与收发器1212相连,输出设备1214、输入设备1215与处理器1211相连。
本申请实施例中的存储器,例如存储器1213,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only  memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器1213可以是独立存在,与处理器1211相连。在另一种示例中,存储器1213也可以和处理器1211集成在一起,例如集成在一个芯片之内。其中,存储器1213能够存储执行本申请实施例的技术方案的程序代码,并由处理器1211来控制执行,被执行的各类计算机程序代码也可被视为是处理器1211的驱动程序。例如,处理器1211用于执行存储器1213中存储的计算机程序代码,从而实现本申请实施例中的技术方案。
收发器1212可以用于支持终端与终端或者终端与接入设备之间射频信号的接收或者发送,收发器1212可以与天线1216相连。收发器1212包括发射机Tx和接收机Rx。具体地,一个或多个天线1216可以接收射频信号,该收发器1212的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器1211,以便处理器1211对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器1212中的发射机Tx还用于从处理器1211接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线1216发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
处理器1211可以是基带处理器,也可以是CPU,基带处理器和CPU可以集成在一起,或者分开。
处理器1211可以用于为终端实现各种功能,例如用于对通信协议以及通信数据进行处理,或者用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据;或者用于协助完成计算处理任务,例如对图形图像处理或者音频处理等等;或者处理器1211用于实现上述功能中的一种或者多种。
输出设备1214和处理器1211通信,可以以多种方式来显示信息。例如,输出设备1214可以是液晶显示器(Liquid Crystal Display,LCD)、发光二级管(Light Emitting Diode,LED)显示设备、阴极射线管(Cathode Ray Tube,CRT)显示设备、或投影仪(projector)等。输入设备1215和处理器1211通信,可以以多种方式接受用户的输入。例如,输入设备1215可以是鼠标、键盘、触摸屏设备或传感设备等。
具体的,至少一个处理器1211用于执行步骤500。至少一个收发器1212用于执行步骤501、步骤502。
图11是本发明实施例提供的芯片150的结构示意图。芯片150包括一个或两个以上(包括两个)处理器1510和通信接口1530。
一种可能的实现方式,该芯片150还包括存储器1540,存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供操作指令和数据。存储器1540的一部分还 可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。
在一些实施方式中,存储器1540存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
在本发明实施例中,通过调用存储器1540存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
一种可能的实现方式中为:终端、接入网关、AMF网元、SMF网元所用的芯片的结构类似,不同的装置可以使用不同的芯片以实现各自的功能。
处理器1510控制终端、接入网关、AMF网元、SMF网元的操作,处理器1510还可以称为中央处理单元(central processing unit,CPU)。存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。例如应用中存储器1540、通信接口1530以及存储器1540通过总线系统1520耦合在一起,其中总线系统1520除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图11中将各种总线都标为总线系统1520。
以上通信单元可以是一种该装置的接口电路或通信接口,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该通信单元是该芯片用于从其它芯片或装置接收信号或发送信号的接口电路或通信接口。
上述本发明实施例揭示的方法可以应用于处理器1510中,或者由处理器1510实现。处理器1510可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1510中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1510可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1540,处理器1510读取存储器1540中的信息,结合其硬件完成上述方法的步骤。
一种可能的实现方式中,通信接口1530用于执行图5a、图5b、图6所示的实施例中的终端、接入网关、AMF网元、SMF网元的接收和发送的步骤。处理器1510用于执行图5a、图5b、图6所示的实施例中的终端、接入网关、AMF网元、SMF网元的处理的步骤。
在上述实施例中,存储器存储的供处理器执行的指令可以以计算机程序产品的形式实现。计算机程序产品可以是事先写入在存储器中,也可以是以软件形式下载并安装在存储器中。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令 可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk,SSD)等。
本申请实施例还提供了一种计算机可读存储介质。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,则功能可以作为一个或多个指令或代码存储在计算机可读介质上或者在计算机可读介质上传输。计算机可读介质可以包括计算机存储介质和通信介质,还可以包括任何可以将计算机程序从一个地方传送到另一个地方的介质。存储介质可以是可由计算机访问的任何目标介质。
作为一种可选的设计,计算机可读介质可以包括RAM,ROM,EEPROM,CD-ROM或其它光盘存储器,磁盘存储器或其它磁存储设备,或目标于承载的任何其它介质或以指令或数据结构的形式存储所需的程序代码,并且可由计算机访问。而且,任何连接被适当地称为计算机可读介质。例如,如果使用同轴电缆,光纤电缆,双绞线,数字用户线(DSL)或无线技术(如红外,无线电和微波)从网站,服务器或其它远程源传输软件,则同轴电缆,光纤电缆,双绞线,DSL或诸如红外,无线电和微波之类的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括光盘(CD),激光盘,光盘,数字通用光盘(DVD),软盘和蓝光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光光学地再现数据。上述的组合也应包括在计算机可读介质的范围内。
本申请实施例还提供了一种计算机程序产品。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,可以全部或者部分得通过计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行上述计算机程序指令时,全部或部分地产生按照上述方法实施例中描述的流程或功能。上述计算机可以是通用计算机、专用计算机、计算机网络、基站、终端或者其它可编程装置。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包括有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (35)

  1. 一种通信的方法,其特征在于,所述方法包括:
    第二核心网中的接入网关接收终端通过第一网络发送的第一接入消息,所述第一接入消息由所述第一网络为所述终端分配的第一IP地址封装;
    所述接入网关接收所述终端通过第二网络发送的第二接入消息,所述第二接入消息包括以下至少一个:所述第一IP地址,所述终端的第一标识;
    其中,所述第一网络包括第一接入网和第一核心网,所述第二网络为第二接入网;或者,所述第一网络为第二接入网,所述第二网络包括第一接入网和第一核心网。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    所述接入网关根据所述第一IP地址和/或所述终端的第一标识,确定所述第一接入消息和所述第二接入消息对应所述终端。
  3. 如权利要求1所述的方法,其特征在于,所述终端的第一标识包括以下至少一个:
    所述第二核心网为所述终端分配的临时标识,所述终端的永久标识;
    其中,所述第二核心网为所述终端分配的临时标识是所述终端通过所述第一网络接入所述第二核心网时,所述第二核心网为所述终端分配的临时标识。
  4. 如权利要求1所述的方法,其特征在于,所述第一接入消息包括:所述第一网络的标识,和/或,所述第二接入消息还包括:所述第二网络的标识。
  5. 如权利要求1所述的方法,其特征在于,所述第二接入消息还包括:所述第二核心网中的接入和移动性管理功能AMF网元的标识。
  6. 如权利要求1-5任一项所述的方法,其特征在于,还包括:
    所述接入网关向所述AMF网元发送第一请求消息,所述第一请求消息包括以下至少一个:所述终端与所述接入网关之间的链路标识,多链路指示;其中,所述多链路指示用于指示所述终端与所述接入网关之间存在多条链路。
  7. 如权利要求6所述的方法,其特征在于,所述终端与所述接入网关之间的链路标识为所述第一核心网为所述终端分配的IP地址或所述第二接入网为所述终端分配的IP地址。
  8. 如权利要求6或7所述的方法,其特征在于,所述第一请求消息还包括以下至少一个:
    所述终端的接入方式指示、所述第一网络的标识或所述第二网络的标识;
    其中,所述终端的接入方式指示所述终端的接入技术,或者指示所述终端通过所述第一核心网接入所述接入网关。
  9. 如权利要求6-8任一项所述的方法,其特征在于,还包括:
    所述接入网关接收所述AMF网元发送的所述第一请求消息的响应消息,所述第一请求消息的响应消息包括链路标识;所述链路标识用于指示所述响应消息对应的所述终端与所述接入网关之间的链路;
    所述接入网关基于所述链路标识建立所述终端与所述接入网关之间的用户面连接。
  10. 如权利要求6-8任一项所述的方法,其特征在于,还包括:
    所述接入网关接收所述AMF网元发送的所述第一请求消息的响应消息,所述响应消息包括终端标识信息;
    所述接入网关基于所述终端标识信息将所述第一请求消息的响应消息关联到相同终端的上下文。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述终端接入所述第一接入网的接入技术为第三代合作伙伴计划3GPP接入技术,所述终端接入所述第二接入网的接入技术为non3GPP接入技术;或者,
    所述终端接入所述第一接入网的接入技术为non3GPP接入技术,所述终端接入所述第二接入网的接入技术为3GPP接入技术。
  12. 一种通信的方法,其特征在于,所述方法包括:
    终端获取第一网络为所述终端分配的第一IP地址;
    所述终端通过所述第一网络向第二核心网中的接入网关发送第一接入消息,所述第一接入消息由所述第一IP地址封装;
    所述终端通过第二网络向所述接入网关发送第二接入消息,所述第二接入消息包括以下至少一个:所述第一IP地址,所述终端的第一标识;
    其中,所述第一网络包括第一接入网和第一核心网,所述第二网络为第二接入网;或者所述第一网络为第二接入网,所述第二网络包括第一接入网和第一核心网。
  13. 如权利要求12所述的方法,其特征在于,所述终端的第一标识包括以下至少一个:
    所述第二核心网为所述终端分配的临时标识,所述终端的永久标识;
    其中,所述第二核心网为所述终端分配的临时标识是所述终端通过所述第一网络接入所述第二核心网时,所述第二核心网为所述终端分配的临时标识。
  14. 如权利要求12所述的方法,其特征在于,所述第一接入消息包括:所述第一网络的标识,和/或,所述第二接入消息还包括:所述第二网络的标识。
  15. 如权利要求12所述的方法,其特征在于,所述第二接入消息还包括:所述第二核心网中的接入和移动性管理功能AMF网元的标识。
  16. 一种通信装置,其特征在于,所述装置包括:
    收发模块,用于接收终端通过第一网络发送的第一接入消息,所述第一接入消息由所述第一网络为所述终端分配的第一IP地址封装;以及接收所述终端通过第二网络发送的第二接入消息,所述第二接入消息包括以下至少一个:所述第一IP地址,所述终端的第一标识;
    其中,所述第一网络包括第一接入网和第一核心网,所述第二网络为第二接入网;或者,所述第一网络为第二接入网,所述第二网络包括第一接入网和第一核心网。
  17. 如权利要求16所述的装置,其特征在于,还包括:
    处理模块,用于根据所述第一IP地址和/或所述终端的第一标识,确定所述第一接入消息和所述第二接入消息对应所述终端。
  18. 如权利要求16所述的装置,其特征在于,所述终端的第一标识包括以下至少一个:
    所述第二核心网为所述终端分配的临时标识,所述终端的永久标识;
    其中,所述第二核心网为所述终端分配的临时标识是所述终端通过所述第一网络接入所述第二核心网时,所述第二核心网为所述终端分配的临时标识。
  19. 如权利要求16所述的装置,其特征在于,所述第一接入消息包括:所述第一网 络的标识,和/或,所述第二接入消息还包括:所述第二网络的标识。
  20. 如权利要求16所述的装置,其特征在于,所述第二接入消息还包括:所述第二核心网中的接入和移动性管理功能AMF网元的标识。
  21. 如权利要求16-20任一项所述的装置,其特征在于,还包括:
    所述收发模块,还用于向所述AMF网元发送第一请求消息,所述第一请求消息包括以下至少一个:所述终端与所述装置之间的链路标识,多链路指示;其中,所述多链路指示用于指示所述终端与所述装置之间存在多条链路。
  22. 如权利要求21所述的装置,其特征在于,所述终端与所述装置之间的链路标识为所述第一核心网为所述终端分配的IP地址或所述第二接入网为所述终端分配的IP地址。
  23. 如权利要求21或22所述的装置,其特征在于,所述第一请求消息还包括以下至少一个:
    所述终端的接入方式指示、所述第一网络的标识或所述第二网络的标识;
    其中,所述终端的接入方式指示所述终端的接入技术,或者指示所述终端通过所述第一核心网接入所述装置。
  24. 如权利要求21-23任一项所述的装置,其特征在于,还包括:
    所述收发模块,还用于接收所述AMF网元发送的所述第一请求消息的响应消息,所述第一请求消息的响应消息包括链路标识;所述链路标识用于指示所述响应消息对应的所述终端与所述装置之间的链路;
    所述处理模块,还用于基于所述链路标识建立所述终端与所述装置之间的用户面连接。
  25. 如权利要求21-23任一项所述的装置,其特征在于,还包括:
    所述收发模块,还用于接收所述AMF网元发送的所述第一请求消息的响应消息,所述响应消息包括终端标识信息;
    所述处理模块,还用于基于所述终端标识信息将所述第一请求消息的响应消息关联到相同终端的上下文。
  26. 如权利要求16-25任一项所述的装置,其特征在于,所述终端接入所述第一接入网的接入技术为第三代合作伙伴计划3GPP接入技术,所述终端接入所述第二接入网的接入技术为non3GPP接入技术;或者,
    所述终端接入所述第一接入网的接入技术为non3GPP接入技术,所述终端接入所述第二接入网的接入技术为3GPP接入技术。
  27. 一种通信装置,其特征在于,所述装置包括:
    处理模块,用于获取第一网络为所述装置分配的第一IP地址;
    收发模块,用于通过所述第一网络向第二核心网中的接入网关发送第一接入消息,所述第一接入消息由所述第一IP地址封装;以及通过第二网络向所述接入网关发送第二接入消息,所述第二接入消息包括以下至少一个:所述第一IP地址,所述装置的第一标识;
    其中,所述第一网络包括第一接入网和第一核心网,所述第二网络为第二接入网;或者所述第一网络为第二接入网,所述第二网络包括第一接入网和第一核心网。
  28. 如权利要求27所述的装置,其特征在于,所述装置的第一标识包括以下至少一个:
    所述第二核心网为所述装置分配的临时标识,所述装置的永久标识;
    其中,所述第二核心网为所述装置分配的临时标识是所述装置通过所述第一网络接入 所述第二核心网时,所述第二核心网为所述装置分配的临时标识。
  29. 如权利要求27所述的装置,其特征在于,所述第一接入消息包括:所述第一网络的标识,和/或,所述第二接入消息还包括:所述第二网络的标识。
  30. 如权利要求27所述的装置,其特征在于,所述第二接入消息还包括:所述第二核心网中的接入和移动性管理功能AMF网元的标识。
  31. 一种通信装置,其特征在于,包括:收发器和处理器;所述处理器分别与存储器和收发器耦合,所述存储器用于存储计算机程序或指令;
    当所述处理器执行所述计算机程序或指令时,使所述装置通过所述收发器执行上述1-15任一项所述的方法。
  32. 一种芯片系统,其特征在于,包括:处理器和存储器;所述处理器和所述存储器之间电耦合;
    所述存储器,用于存储计算机程序指令;
    所述处理器,用于执行所述存储器中的部分或者全部计算机程序指令,当所述部分或者全部计算机程序指令被执行时,用于实现权利要求1-15任一项所述的方法。
  33. 一种计算机可读存储介质,其特征在于,存储有计算机程序,当计算机程序被运行时,使得计算机执行权利要求1-15任一项所述的方法。
  34. 一种计算机程序产品,其特征在于,包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行权利要求1-15任一项所述的方法。
  35. 一种通信的系统,其特征在于,包括:执行权利要求1-11任一项所述方法的接入网关,以及执行权利要求12-15任一项所述方法的终端。
PCT/CN2021/072918 2020-02-29 2021-01-20 一种通信的方法及装置 WO2021169683A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21761809.9A EP4099758A4 (en) 2020-02-29 2021-01-20 COMMUNICATION METHOD AND DEVICE
US17/896,161 US20220408502A1 (en) 2020-02-29 2022-08-26 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010131801.7A CN113329448A (zh) 2020-02-29 2020-02-29 一种通信的方法及装置
CN202010131801.7 2020-02-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/896,161 Continuation US20220408502A1 (en) 2020-02-29 2022-08-26 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021169683A1 true WO2021169683A1 (zh) 2021-09-02

Family

ID=77412957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072918 WO2021169683A1 (zh) 2020-02-29 2021-01-20 一种通信的方法及装置

Country Status (4)

Country Link
US (1) US20220408502A1 (zh)
EP (1) EP4099758A4 (zh)
CN (1) CN113329448A (zh)
WO (1) WO2021169683A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11848909B2 (en) * 2021-09-21 2023-12-19 Nokia Technologies Oy Restricting onboard traffic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018158729A1 (en) * 2017-03-01 2018-09-07 Telefonaktiebolaget Lm Ericsson (Publ) Access and mobility management entity relocation in core networks
CN109314942A (zh) * 2016-11-10 2019-02-05 Lg 电子株式会社 在无线通信系统中通过属于相同plmn的网络接入的注册方法及其设备
CN110169098A (zh) * 2017-01-09 2019-08-23 三星电子株式会社 在移动通信系统中选择接入和移动性管理功能的方法和装置
WO2020036883A1 (en) * 2018-08-13 2020-02-20 Intel Corporation Use of user equipment (ue) identifiers for registration in fifth generation (5g) systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574969B (zh) * 2017-03-08 2021-04-09 华为技术有限公司 多接入场景中的连接处理方法和装置
US10757611B2 (en) * 2017-09-22 2020-08-25 Ofinno, Llc SMF and AMF relocation during UE registration
CN109587745A (zh) * 2017-09-29 2019-04-05 华为技术有限公司 接入方法、设备及系统
CN110366271B (zh) * 2018-04-10 2023-11-17 华为技术有限公司 通信方法和通信装置
WO2019196788A1 (zh) * 2018-04-10 2019-10-17 华为技术有限公司 通信方法和通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314942A (zh) * 2016-11-10 2019-02-05 Lg 电子株式会社 在无线通信系统中通过属于相同plmn的网络接入的注册方法及其设备
CN110169098A (zh) * 2017-01-09 2019-08-23 三星电子株式会社 在移动通信系统中选择接入和移动性管理功能的方法和装置
WO2018158729A1 (en) * 2017-03-01 2018-09-07 Telefonaktiebolaget Lm Ericsson (Publ) Access and mobility management entity relocation in core networks
WO2020036883A1 (en) * 2018-08-13 2020-02-20 Intel Corporation Use of user equipment (ue) identifiers for registration in fifth generation (5g) systems

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on enhancement of 5G System (5GS) for vertical and Local Area Network (LAN) services (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.734, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V16.2.0, 11 June 2019 (2019-06-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 117, XP051753966 *
HUAWEI, HISILICON: "New KI: Isolation of multiple NAS connections", 3GPP DRAFT; S3-190243, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG3, no. Kochi (India); 20190128 - 20190201, 21 January 2019 (2019-01-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051611510 *
SAMSUNG: "Non-3GPP Access: Correcting Connection Identifier", 3GPP DRAFT; S3-190365-CR-KN3IWF-V1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG3, no. Kochi, India; 20190128 - 20190201, 21 January 2019 (2019-01-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051611630 *
See also references of EP4099758A4 *

Also Published As

Publication number Publication date
EP4099758A1 (en) 2022-12-07
EP4099758A4 (en) 2023-07-19
CN113329448A (zh) 2021-08-31
US20220408502A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
US11844142B2 (en) Communications method and apparatus
EP2810461B1 (en) System and method for partner network sharing architecture
KR102469973B1 (ko) 통신 방법 및 장치
US20230069252A1 (en) Communication Method and Communication Apparatus
US20230199550A1 (en) Relay Management Method and Communication Apparatus
CN113207191B (zh) 基于网络切片的会话建立方法、装置、设备及存储介质
WO2021136211A1 (zh) 授权结果的确定方法及装置
EP4185009A1 (en) Packet forwarding method, apparatus and system
US20230189054A1 (en) Relay communication method, and communication apparatus
WO2023160199A1 (zh) 一种接入通信网络的方法和装置
US20230232468A1 (en) Session establishment method and apparatus
TW202013936A (zh) 無線通訊方法和通訊設備
US20220272577A1 (en) Communication method and communication apparatus
US20240155418A1 (en) Method and apparatus for connecting qos flow based terminal in wireless communication system
WO2023185880A9 (zh) 一种接入网设备的确定方法
CN115915196A (zh) 一种链路状态检测方法、通信装置及通信系统
WO2020034378A1 (en) Location reporting for mobile devices
WO2021169683A1 (zh) 一种通信的方法及装置
WO2022155853A1 (zh) 无线通信方法、通信装置及通信系统
WO2023087965A1 (zh) 一种通信方法及装置
WO2022022639A1 (zh) 一种通信方法及装置
WO2022170798A1 (zh) 确定策略的方法和通信装置
KR20240060670A (ko) 통신 방법 및 장치
WO2021138784A1 (zh) 一种接入网络的方法、装置及系统
WO2021042381A1 (zh) 一种通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021761809

Country of ref document: EP

Effective date: 20220830

NENP Non-entry into the national phase

Ref country code: DE