WO2021167148A1 - 휠베어링 조립체 - Google Patents

휠베어링 조립체 Download PDF

Info

Publication number
WO2021167148A1
WO2021167148A1 PCT/KR2020/002578 KR2020002578W WO2021167148A1 WO 2021167148 A1 WO2021167148 A1 WO 2021167148A1 KR 2020002578 W KR2020002578 W KR 2020002578W WO 2021167148 A1 WO2021167148 A1 WO 2021167148A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
nut
wheel hub
protrusion
bearing assembly
Prior art date
Application number
PCT/KR2020/002578
Other languages
English (en)
French (fr)
Inventor
정연호
이병용
Original Assignee
주식회사 일진글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 일진글로벌 filed Critical 주식회사 일진글로벌
Priority to PCT/KR2020/002578 priority Critical patent/WO2021167148A1/ko
Publication of WO2021167148A1 publication Critical patent/WO2021167148A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/18Arrangement of bearings

Definitions

  • the present disclosure relates to wheel bearing assemblies.
  • a wheel bearing assembly is a device mounted between a rotating element and a non-rotating element with respect to a vehicle body to facilitate rotation of the rotating element. It provides a function that allows it to move.
  • wheel bearings include a wheel hub that is integrally fastened with the wheel, an inner ring that is coupled to rotate integrally with the wheel hub, and an axially interlocking wheel hub and the inner ring to rotatably support the rolling element as a medium. It may be configured to include an outer ring and the like.
  • the constant velocity joint has a housing in which a stem passing through the center of the wheel hub extends long, and a threaded part machined at an outer end of the stem is defective with a nut, and is configured to be coupled to the wheel hub.
  • Embodiments of the present disclosure provide a wheel bearing assembly configured to prevent unintentional loosening of a nut that provides a preload to an inner ring.
  • a wheel bearing assembly includes: an outer ring coupled to a vehicle suspension and fixed to a vehicle body; a wheel hub configured to rotate relative to the outer ring, the wheel hub including a cylindrical portion and a joint portion extending from the cylindrical portion and having a thread formed on an outer circumferential surface; one or more inner rings press-fitted to the outer circumferential surface of the wheel hub; one or more rolling elements interposed between the wheel hub on which the inner ring is mounted and the outer ring; a nut screwed to the thread formed in the joint portion of the wheel hub to provide a preload to the inner ring; It may include a ring mounted between the nut and the wheel hub to prevent loosening of the nut.
  • the ring includes a first ring portion inserted into and coupled to the nut; a second ring portion extending from the first ring portion along an axial inner end surface of the nut; It may include a third ring portion extending from the second ring portion.
  • the nut includes one or more nut grooves recessed radially inwardly in the radially outer end face, and the first ring portion is formed to extend axially outward from the second ring portion so that the radial direction of the nut is formed. It may be configured to be inserted into and coupled to a nut groove formed in the outer end face.
  • the wheel hub is formed in the axial direction rather than the thread of the joint portion and has a wheel hub protrusion formed to protrude outward in the radial direction, and the third ring portion extends inward from the second ring portion in the axial direction. It may be formed so that the front end is mounted in contact with the axial outer end surface of the wheel hub protrusion.
  • the third ring portion may be formed to extend from the second ring portion in a direction inclined with respect to the central axis of the wheel bearing assembly.
  • the first ring portion and the third ring portion may be alternately disposed with each other along the circumferential direction of the ring.
  • the ring may further include a fourth ring portion formed to extend in the axial direction from the second ring portion.
  • a plurality of wheel hub protrusions may be provided to be spaced apart from each other along the circumferential direction of the wheel hub, and the fourth ring part may be inserted and mounted in a space between the wheel hub protrusions.
  • the ring has a first protrusion protruding radially inward
  • the wheel hub has a coupling groove recessed radially inwardly on the axial inner side of the thread to which the nut is coupled
  • 1 protrusion may be configured to be inserted into a coupling groove formed in the wheel hub to be coupled.
  • the wheel hub is formed on the inner side in the axial direction rather than the thread of the joint portion and has a wheel hub protrusion formed to protrude outward in the radial direction, and the first protrusion is inserted and mounted in the space between the wheel hub protrusions. It can be configured to be
  • the nut may include a first nut groove recessed in the radial direction in the radially outer end face.
  • the ring has a second protrusion extending radially outward
  • the nut has a second nut groove recessed radially outwardly in a radially inner end face
  • the second protrusion includes a second protrusion 2 It may be configured to be inserted into the nut groove and coupled.
  • the nut may include a nut protrusion extending in an axial direction, and the second nut groove may be formed in a radially inner end surface of the nut protrusion.
  • the first protrusion and the second protrusion may be alternately disposed with each other along the circumferential direction of the ring.
  • the axial inner end of the wheel hub is composed of an outer race of the constant velocity joint, and the rotation element of the constant velocity joint is provided on the inner peripheral surface of the axial inner end of the wheel hub constituting the outer race of the constant velocity joint.
  • One or more grooves for accommodating may be provided along the circumferential direction.
  • a wheel bearing assembly includes a ring for preventing loosening between a nut providing a preload to an inner ring and a wheel hub to prevent unintentional loosening of the nut coupled to the wheel hub.
  • FIG. 1 is a perspective view showing a wheel bearing assembly according to a first embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of the wheel bearing assembly of FIG. 1 taken along line I;
  • FIG. 3 is a cross-sectional view of the wheel bearing assembly of FIG. 1 taken along line II.
  • FIG. 4 is a perspective view illustrating a nut according to a first embodiment of the present disclosure.
  • FIG. 5 is a perspective view showing a ring according to a first embodiment of the present disclosure.
  • FIG. 6 is an enlarged view of a part of the cross-sectional view shown in FIG. 2 .
  • FIG. 7 is an enlarged view of a part of the cross-sectional view shown in FIG. 3 .
  • FIG. 8 is a perspective view illustrating a wheel bearing assembly according to a second embodiment of the present disclosure.
  • FIG. 9 is a perspective view showing a ring according to a second embodiment of the present disclosure.
  • FIG. 10 is an enlarged enlarged view of a part of a cross-sectional view taken along line III of a wheel bearing assembly according to a second embodiment of the present disclosure.
  • FIG. 11 is an enlarged enlarged view of a portion of a cross-sectional view taken along line IV of a wheel bearing assembly according to a second embodiment of the present disclosure.
  • FIG. 12 is a perspective view illustrating a wheel bearing assembly according to a third embodiment of the present disclosure.
  • FIG. 13 is a perspective view illustrating a nut according to a third embodiment of the present disclosure.
  • FIG. 14 is a perspective view illustrating a ring according to a third embodiment of the present disclosure.
  • 15 is an enlarged enlarged view of a portion of a cross-sectional view taken along line V of a wheel bearing assembly according to a third embodiment of the present disclosure.
  • 16 is an enlarged enlarged view of a portion of a cross-sectional view taken along line VI of a wheel bearing assembly according to a third embodiment of the present disclosure.
  • 17 is a partially enlarged view of a wheel bearing assembly according to a third embodiment of the present disclosure.
  • Embodiments of the present disclosure are exemplified for the purpose of explaining the technical spirit of the present disclosure.
  • the scope of the rights according to the present disclosure is not limited to the embodiments presented below or specific descriptions of these embodiments.
  • a component when referred to as being “connected” or “coupled” to another component, it means that a component can be directly connected or coupled to another component, or a new component. It should be understood that the elements may be connected or may be combined via an element.
  • the rotational axis direction may be defined as meaning a direction parallel to the rotational axis (R) of the wheel bearing, and the radial direction may be defined as meaning a direction away from or closer to the rotational axis, and the circumference
  • the direction may be defined to mean a direction surrounding the rotation axis R about the rotation axis R.
  • the direction of the axis of rotation R may refer to the direction of the axis of rotation of the wheel hub.
  • the rotational axis direction of the wheel bearing may be simply referred to as an 'axial direction (R)'.
  • an arrow 'D1' indicates an outboard direction in which the wheel is disposed with respect to the wheel hub as a direction along the axis of rotation of the wheel bearing
  • the arrow 'D2' indicates a direction opposite to that of D1 and the knuckle with respect to the wheel hub. It points to the inboard where it is placed.
  • arrow 'D3' indicates an outer radial direction away from the rotation axis among the radial directions with respect to the rotation axis of the wheel bearing
  • arrow 'D4' indicates an inner radial direction opposite to D3.
  • the arrow 'D5' indicates the direction of rotation about the rotation axis, that is, the circumferential direction.
  • the wheel bearing assembly may have a structure in which at least one inner ring is coupled to a wheel hub.
  • the wheel bearing may be configured such that a hub raceway is formed on a wheel hub, and one inner ring is coupled, so that the wheel hub rotates together with the inner ring.
  • FIG. 1 is a perspective view showing a wheel bearing assembly 1000 according to a first embodiment of the present disclosure
  • FIGS. 2 and 3 are cross-sectional views of the wheel bearing assembly 1000 of FIG. 1 taken along lines I and II, respectively. .
  • a wheel bearing assembly 1000 includes an outer ring 1500 coupled to a vehicle suspension; A wheel hub 1300 that rotates relative to the outer ring 1500 and includes a cylindrical portion 1320 and a joint portion 1310 extending from the cylindrical portion 1320 and having a thread formed on the outer circumferential surface; an inner ring 1400 that is press-fitted and mounted on the outer circumferential surface of the wheel hub; a rolling element 1510 interposed between the wheel hub 1300 and the outer ring 1500 on which the inner ring 1400 is mounted; a nut 1100 screwed to the thread formed in the joint portion 1310 of the wheel hub to provide a preload to the inner ring 1400; It is mounted between the nut 1100 and the wheel hub 1300 to prevent loosening of the nut 1100 and may include a ring 1200 and the like.
  • the wheel bearing assembly 1000 is configured such that the axial inner end of the wheel hub 1300 performs the function of the outer race of the constant velocity joint, that is, the wheel bearing assembly 1000 as shown in the drawings. ) may be configured to form a constant velocity joint integral structure.
  • the inner ring 1400 and the wheel hub 1300 are coupled, the inner ring 1400 is press-fitted to the outer circumferential surface of the wheel hub 1300, and then the wheel hub A method of applying a preload to the inner ring 1400 by fastening the nut 1100 to the 1300 may be used.
  • an unintentional loosening phenomenon may occur in the nut 1100 fastened to the wheel hub 1300 due to vibration and other impacts after the nut 1100 is fastened.
  • a method of fixing the nut to the wheel hub using a washer and a bolt that can be fixed to the wheel hub 1300 may be considered.
  • this method of fixing the nut to the wheel hub using the washer fixed to the wheel hub and the bolt fastened to the washer is difficult to assemble and disassemble due to the complicated structure and large number of parts, and there is a risk that the weight of the wheel bearing assembly may increase. .
  • a ring 1200 having a simple structure is mounted between the nut 1100 and the wheel hub 1300 to preload the inner ring 1400 as described below. It is configured to prevent unintentional loosening of the nut 1100 that provides the
  • the wheel hub 1300 may include a hub flange 1341 formed to extend radially outwardly D3 on the outer circumferential surface.
  • a bolt fastener 1342 to which a hub type or wheel type bolt (not shown) can be fastened is formed on the hub flange 1341 , and the wheel hub 1300 can be coupled to a wheel through the hub flange 1341 .
  • the wheel hub 1300 may directly contact a portion of the rolling element 1510 to rotatably support the rolling element 1510 .
  • one or more inner rings 1400 may be press-fitted to the wheel hub 1300 , and seal devices 1530 may be provided at both ends of the wheel hub.
  • an outer race 1330 of the constant velocity joint may be integrally formed at the axially inner (D2) end of the wheel hub 1300 . That is, the wheel hub 1300 may be configured to perform the function of the outer race 1330 of the constant velocity joint by itself.
  • a plurality of grooves 1332 may be formed in the surface 1331 forming the outer race 1330 of the wheel hub 1300 .
  • the inner end of the wheel hub 1300 in the axial direction forming the outer race 1330 of the constant velocity joint may be provided with a plurality of grooves 1332 having a recessed structure in the inner circumferential direction, spaced apart from each other in the circumferential direction.
  • a rotation element of the constant velocity joint may be inserted and mounted into the plurality of grooves 1332 , and for this purpose, at least the surface 1332 of the outer race including the groove 1332 is heat-treated to secure the strength required for the raceway.
  • the wheel hub 1300 may include a cylindrical portion 1320 and a joint portion 1310 extending from the cylindrical portion 1320 and having a thread formed on an outer circumferential surface.
  • the wheel hub 1300 may have a wheel hub protrusion 1311 formed on the inner side (D2) of the axial direction rather than the screw thread and protruding toward the outer side (D3) in the radial direction.
  • the nut 1100 may be screwed to the thread formed in the joint part 1310 and coupled to the joint part 1310 to provide a preload to the inner ring 1400 .
  • a ring 1200 which will be described later, is provided on the wheel hub 1300 between the nut 1100 and the nut 1100 to prevent unintentional loosening of the nut 1100 due to vibration and other impacts after fastening the nut 1100. can be configured to prevent.
  • a plurality of wheel hub protrusions 1311 may be provided to be spaced apart from each other along the circumferential direction D5 of the wheel hub 1300 .
  • the plurality of wheel hub protrusions 1311 may be disposed to be spaced apart from each other at regular intervals on the outer peripheral surface of the wheel hub 1300 .
  • the wheel hub protrusion 1311 may be formed in a single ring shape extending along the circumferential direction D5 of the wheel hub 1300 .
  • the ring 1200 includes a first ring portion 1210 inserted into the nut 1100; a second ring portion 1220 extending from the first ring portion 1210 along an axial inner cross-section of the nut 1100; It may be configured to include a third ring portion 1230, etc. extending from the second ring portion 1220 so that the tip is configured to contact the wheel hub 1300 .
  • the ring 1200 may be formed of a plate-shaped member having an end bent in the axial direction, the first ring portion 1210 is disposed on the radially outer side D3, and the third ring portion 1230 is radially inner side. (D4) can be placed.
  • the outer ring 1500 is a cylindrical body into which the wheel hub 1300 and the inner ring 1400 can be fitted, and the outer ring flange 1541 protrudes from the outer circumferential surface to the radially outer side (D3). ) can be provided.
  • a bolt fastener 1542 is formed in the outer ring flange 1541 , and the outer ring 1500 may be fastened to a non-rotating body such as a knuckle through a bolt (not shown) fastened to the bolt fastener 1542 .
  • the wheel bearing assembly 1000 may include one or more rolling elements 1510 for relatively rotatably supporting the wheel hub 1300 and the inner ring 1400 with respect to the outer ring 1500 .
  • the rolling elements 1510 may be configured to be spaced apart along the circumferential direction D5 through the cage 1520 .
  • the rolling element 1510 may be configured in a ball type.
  • the rolling element 1510 may have a roller or a tapered roller shape.
  • a bearing space 1501 in which a rolling element can be disposed. may be formed, and on one or both sides of the wheel bearing assembly 1000 in order to prevent foreign substances from being introduced into the bearing space 1501 or grease injected into the bearing space 1501 from leaking to the outside.
  • a sealing device 1530 may be provided. According to an embodiment of the present disclosure, such a sealing device 1530 may form a labyrinth sealing structure.
  • FIG 4 is a perspective view illustrating a nut 1100 according to a first embodiment of the present disclosure.
  • a screw thread 1100B may be formed on the inner circumferential surface 1100A of the nut 1100 , and the screw thread 1100B formed on the inner circumferential surface 1100A of the nut 1100 is the wheel hub 1300 .
  • the wheel hub 1300 and the inner ring 1400 may be coupled to the axial direction outer D1 of the nut 1100 coupled to the wheel hub 1300, and the nut 1100 is the wheel.
  • a preload may be provided to the inner race 1400 by supporting the inner axial end surface of the inner race 1400 coupled to the hub 1300 .
  • the nut 1100 may include at least one nut groove 1110 in a radially outer cross-section, and the nut groove 1110 is spaced apart from each other in the circumferential direction D5 in a plurality. (eg, 2 to 10) may be provided.
  • the nut groove 1110 may be used for coupling the nut 1100 and the fastening tool when the wheel hub 1300 and the nut 1100 are combined, and the nut groove ( 1110) may be configured such that a ring 1200 to be described later is inserted and coupled therein (eg, the first ring portion 1210 of the ring 1200 shown in FIG. 5 is inserted and coupled).
  • FIG 5 is a perspective view showing the ring 1200 according to the first embodiment of the present disclosure.
  • the ring 1200 includes a first ring portion 1210 inserted into the nut 1100 , and a second extending from the first ring portion 1210 along an axial inner cross-section of the nut 1100 .
  • the ring part 1220 may include a third ring part 1230 extending from the second ring part 1220 and configured to have a tip in contact with the wheel hub 1300 .
  • the first ring part 1210 may be configured to be inserted and mounted in the nut 1100 .
  • the first ring part 1210 may be configured to be inserted into a nut groove 1110 formed in a radially outer end surface of the nut 1100 .
  • the first ring portion 1210 may extend outwardly in the axial direction from the second ring portion 1220 .
  • the first ring portion 1210 is formed perpendicular to the second ring portion 1220, so that the cross section formed by the first ring portion 1210 and the second ring portion 1220 has an approximately “L” shape.
  • the second ring part 1220 may be formed in a substantially disk-shaped structure extending along the circumferential direction D5.
  • the second ring portion 1220 may extend from the first ring portion 1210 along an axial inner cross-section of the nut 1100 . That is, the second ring part 1220 may extend radially inwardly D4 from the first ring part 1210 .
  • the radial height of the second ring part 1220 may be formed to be 0.3 to 1.5 times the radial height of the nut 1100 .
  • the third ring part 1230 may be configured to extend from the second ring part 1220 so that the tip thereof contacts the wheel hub 1300 .
  • the wheel hub 1300 has a wheel hub protrusion 1311 that is formed on the inner side (D2) in the axial direction rather than the screw thread and protrudes outward in the radial direction (D3), and the third ring part 1230 ) may be configured to contact the outer end surface of the wheel hub protrusion 1311 in the axial direction.
  • the third ring portion 1230 may be formed to extend inwardly in the axial direction from the second ring portion 1220 .
  • the third ring part 1230 may be formed to extend from the second ring part 1220 to be inclined at a predetermined angle with respect to the central axis of the wheel bearing assembly as shown in the drawings.
  • the third ring part 1230 may be formed to be inclined at an angle of greater than 0° and less than 90° from the second ring part 1220 .
  • the third ring part 1230 may be formed to be inclined at an angle of more than 30° and less than 60° from the second ring part 1220 .
  • the first ring part 1210 may be provided in plurality while being spaced apart along the circumferential direction D5.
  • the plurality of first ring parts 1210 may be disposed to be spaced apart to have the same distance in the circumferential direction D5. That is, the first ring part 1210 may be formed only on the circumference of a part of the ring 1200 .
  • a plurality of third ring parts 1230 may be provided while being spaced apart along the circumferential direction D5.
  • the plurality of third ring parts 1230 may be spaced apart from each other to have the same distance in the circumferential direction D5. That is, the third ring part 1230 may be formed only on the circumference of a part of the ring 1200 .
  • the circumferential length of the first ring portion 1210 may be less than or equal to the circumferential length of the nut groove 1110 .
  • the circumferential length of the third ring part 1230 may be equal to, greater than, or smaller than the arc length of the wheel hub protrusion 1311 .
  • the support force of the ring 1200 against the loosening of the nut 1100 may become stronger.
  • the circumferential length of the third ring part 1230 becomes shorter, the ring 1200 can be more easily assembled or disassembled between the nut 1100 and the wheel hub 1300 .
  • the first ring portion 1210 and the third ring portion 1230 may be alternately disposed with each other along the circumferential direction D5 of the ring 1200 .
  • the second ring part 1220 includes a plurality of dividing lines A parallel to the axial direction R, and the first ring part 1210 is one side of the dividing line A based on the circumferential direction D5.
  • the third ring portion 1230 may be formed on the other side of the dividing line A with respect to the circumferential direction D5. That is, the first ring portion 1210 and the third ring portion 1230 may be alternatively formed in a portion of the second ring portion 1220 .
  • only the first ring portion 1210 may be formed in a portion of the second ring portion 1220, and only the third ring portion 1230 may be formed in another portion of the second ring portion 1220. have.
  • the ring 1200 is connected to the nut 1100 and the wheel hub 1300.
  • the ring 1200 is connected to the nut 1100 and the wheel hub 1300.
  • the ring 1200 is separated between the nut 1100 and the wheel hub 1300, it may be more easily separated.
  • FIG. 6 is an enlarged view of a part of the cross-sectional view shown in FIG. 2
  • FIG. 7 is an enlarged view of a part of the cross-sectional view shown in FIG. 3 .
  • FIG. 6 shows a cross-section of a portion of the ring 1200 formed by the first ring portion 1210 and the second ring portion 1220 and a cross-section of the nut groove 1110 formed in the radially outer cross-section of the nut 1100. .
  • the first ring part 1210 may be configured to be inserted and mounted in the nut groove 1110 .
  • the radially inner end face of the first ring portion 1210 does not contact the radially outer end surface of the nut groove 1110
  • the radial inner end surface of the first ring portion 1210 is the nut groove 1110 .
  • the second ring part 1220 may extend from the first ring part 1210 inserted into the nut groove 1110 along an axial inner end surface of the nut 1100 .
  • the axial outer end face of the second ring part 1220 is shown to be in contact with the axial inner end face of the nut 1100 , but the axial outer end face of the second ring part 1220 is in the axial direction of the nut 1100 . It may not come into contact with the inner end face.
  • the axial outer end face of the second ring portion 1220 may come into contact with the axial inner end face of the nut 1100 . Due to this, when the nut 1100 is loosened in the axial direction D2, the second ring portion 1220 may receive a force F1 from the nut 1100 to the axial inner side D2.
  • the axial direction outer end surface of the second ring part 1220 is in contact with the axial inner end surface of the nut 1100 so that the nut 1100 is supported by the ring 1200 located on the inner side in the axial direction than the nut 1100 . Loosening of the nut 1100 to the inner side D2 in the axial direction may be prevented.
  • FIG. 7 shows a cross-section of a portion of the ring 1200 formed of the second ring portion 1220 and the third ring portion 1230 and a cross-section of a portion of the nut 1100 in which the nut groove 1110 is not formed.
  • the axial outer end face of the second ring part 1220 may contact the axial inner end face of the nut 1100 .
  • the tip of the third ring part 1230 extending from the second ring part 1220 may contact the wheel hub 1300 .
  • the third ring portion 1230 has an axially inner tip in contact with the wheel hub protrusion 1311, extends from the second ring portion 1220 and is formed to be inclined at a predetermined angle, so that the nut 1100 is axially inner ( D2), the third ring part 1230 may be supported outward in the axial direction by the wheel hub protrusion 1311 .
  • the third ring portion 1230 is the second An axially inward force F2 may be received from the ring portion 1220 .
  • the tip 1230A of the third ring part 1230 comes into contact with the axial outer end face of the wheel hub protrusion 1311 , the third ring part 1230 is axially outward D1 by the wheel hub protrusion 1311 . ) can be supported.
  • the nut 1100 when the nut 1100 is loosened in the axial direction D2, the nut 1100 is supported by the second ring part 1220, and the second ring part 1220 is on the third ring part 1230.
  • the third ring part 1230 is supported by the wheel hub protrusion 1311 as the tip 1230A of the third ring part 1230 comes into contact with the outer end face of the wheel hub protrusion 1311 in the axial direction by the wheel hub protrusion 1311. ), the loosening of the nut 1100 can be prevented.
  • FIG. 8 is a perspective view illustrating a wheel bearing assembly 2000 according to a second embodiment of the present disclosure. A description of the configuration overlapping the configuration described in the above-described embodiment will be omitted. Since the wheel bearing assembly 2000 according to the second embodiment is different from the ring 2200 of the wheel bearing assembly 1000 according to the first embodiment in the configuration of the ring 2200, hereinafter, it will be mainly described.
  • a wheel bearing assembly 2000 includes an outer ring 2500 coupled to a vehicle suspension; A wheel hub 2300 that rotates relative to the outer ring 2500 and includes a cylindrical portion 2320 and a joint portion 2310 extending from the cylindrical portion 2320 and having a thread formed on an outer circumferential surface; an inner ring 2400 that is press-fitted to the outer peripheral surface of the wheel hub 2300 and mounted; a rolling element 2510 interposed between the wheel hub 2300 and the outer ring 2500 on which the inner ring 2400 is mounted; a nut 2100 screwed to the thread formed in the joint portion 2310 of the wheel hub 2300 to provide a preload to the inner ring 2400; It is mounted between the nut 2100 and the wheel hub 2300 to prevent loosening of the nut 2100 and may be configured to include a ring 2200 and the like.
  • FIG. 9 is a perspective view showing a ring 2200 according to a second embodiment of the present disclosure.
  • the ring 2200 includes a first ring portion 2210 inserted into the nut 2100 similarly to the above-described embodiment; a second ring portion 2220 extending from the first ring portion 2210 along an axial inner cross-section of the nut 2100; It may be configured to include a third ring part 2230 extending from the second ring part 2220 and the tip of which is configured to contact the wheel hub 2300 .
  • the ring 2200 according to the second embodiment may further include a fourth ring portion 2240 formed to protrude from the second ring portion 2220 in the axial direction (D2).
  • the fourth ring part 2240 may be configured to be inserted into and mounted in a circumferential space formed between the wheel hub protrusions 2311 .
  • the fourth ring part may be configured to contact the circumferential end surface of the wheel hub protrusion 2311 .
  • that the fourth ring part 2240 is configured to contact the circumferential end face of the wheel hub protrusion 2311 means that the fourth ring part 2240 is always in contact with the circumferential end face of the wheel hub protrusion 2311.
  • the fourth ring part 2240 may be configured to always be in contact with the circumferential end surface of the wheel hub protrusion 2311 , and the fourth ring part 2240 when the nut 2100 rotates in the circumferential direction D5 . ) may be configured to contact the circumferential section of the wheel hub protrusion 2311 .
  • the fourth ring part 2240 may be formed to be inclined at a predetermined angle from the second ring part 2220 .
  • the fourth ring part 2240 may be configured to extend further in the radially inward D4 from the second ring 2220 and then extend in the axially inward D2 in an approximately "L" shape.
  • the shape of the fourth ring part 2240 may vary depending on the length of the second ring part 2220 and the shape and position of the wheel hub protrusion 2311 .
  • the fourth ring part 2240 may be provided in plurality while being spaced apart along the circumferential direction D5.
  • the plurality of fourth ring parts 2240 may be spaced apart to have the same spacing in the circumferential direction D5. That is, the fourth ring part 2240 may be formed only on the circumference of a part of the ring 2240 .
  • the fourth ring portion 2240 may be configured to be positioned between the third ring portions 2230 in the circumferential direction (D5), and the same circumferential position as the first ring portion 2210 can be configured to be formed.
  • the circumferential length of the fourth ring part 2240 may be less than or equal to the circumferential distance between the wheel hub protrusions 2311 adjacent to each other. As the circumferential length of the fourth ring part 2240 increases, the supporting force of the ring 2200 against the loosening of the nut 2100 may become stronger. Conversely, as the circumferential length of the fourth ring part 2240 becomes shorter, the ring 2200 can be more easily assembled or disassembled between the nut 2100 and the wheel hub 2300 .
  • the fourth ring part 2240 is in contact with the circumferential end surface of the wheel hub protrusion 2311 to support the circumferential direction (D5) movement of the ring 2200 with respect to the wheel hub 2300 . can do.
  • Rotation of the nut 2100 may transmit a circumferential force to the ring 2200 by the first ring portion 2210 coupled to the nut groove 2110 .
  • rotation of the ring 2200 with respect to the wheel hub 2300 may be prevented by the fourth ring part 2240 being supported by the wheel hub protrusion 2311 .
  • the nut 2100 when the nut 2100 is loosened to the inner side D2 in the axial direction, the nut 2100 is not only supported to the outside D1 in the axial direction by the ring 2200 and the wheel hub protrusion 2311, but also the first Loosening in the circumferential direction D5 can also be prevented by the ring part 2210 and the fourth ring part 2240 .
  • FIG. 10 is an enlarged enlarged view of a portion of a cross-sectional view taken along line III of the wheel bearing assembly 2000 according to the second embodiment of the present disclosure.
  • FIG. 10 shows a cross section of a portion of the ring 2200 formed by the first ring portion 2210 , the second ring portion 2220 , and the fourth ring portion 2240 , and a nut groove 2110 formed on the radially outer end surface of the nut 2100 . ) is shown in cross section.
  • the first ring part 2210 may be configured to be inserted into the nut groove 2110 .
  • the radial inner end face of the first ring part 2210 does not contact the radial outer end surface of the nut groove 2110
  • the radial inner end face of the first ring part 2210 is the nut groove 2110. may be configured to contact the radially outer end surface of
  • the second ring part 2220 may extend from the first ring part 2210 inserted into the nut groove 2110 along an axial inner end surface of the nut 2100 .
  • the axial outer end face of the second ring part 2220 is shown to be in contact with the axial inner end face of the nut 2100 , but the axial outer end face of the second ring part 2220 is the axis of the nut 2100 . It may not be in contact with the directional inner section.
  • the second ring portion 2220 may receive a force F1a from the nut 2100 to the axial inner side D2, at this time the second ring portion ( The axial outer end face of 2220 is in contact with the axial inner end face of the nut 2100 so that the nut 2100 is supported by the ring 2200 located axially inner than the nut 2100 in the axial direction of the nut 2100 . Loosening to the inside (D2) can be prevented.
  • the fourth ring portion 2240 may be configured to protrude from the second ring portion 2220 in the axial direction inward (D2) and to contact the circumferential end surface of the wheel hub protrusion 2311 .
  • the fourth ring part 2240 may contact the circumferential end surface of the wheel hub protrusion 2311 .
  • the fourth ring part 2240 is supported by the circumferential end surface of the wheel hub protrusion 2311 , loosening of the nut 2100 in the axial direction inside D2 can be prevented.
  • a radially inner end surface of the fourth ring part 2240 may contact a radially outer end surface of the wheel hub 2300 .
  • loosening of the nut 2100 in the axial direction D2 can be more effectively prevented by the frictional force between the radially inner end surface of the fourth ring part 2240 and the radially outer end surface of the wheel hub 2300 . .
  • FIG 11 is an enlarged enlarged view of a portion of a cross-sectional view taken along line IV of the wheel bearing assembly 2000 according to the second embodiment of the present disclosure.
  • FIG. 11 shows a cross-section of a portion of the ring 2200 formed of the second ring portion 2220 and the third ring portion 2230 and a cross-section of a portion of the nut 2100 in which the nut groove 2110 is not formed.
  • the axial direction outer end surface of the second ring part 2220 may contact the axial inner end surface of the nut 2100 .
  • the tip of the third ring part 2230 extending from the second ring part 2220 may contact the wheel hub 2300 .
  • the third ring part 2230 has an axially inner front end in contact with the wheel hub protrusion 2311 , and extends from the second ring part 2220 and is formed to be inclined at a predetermined angle, so that the nut 2100 is axially inner
  • the second ring part 2220 may be supported outwardly in the axial direction by the wheel hub protrusion 2311 .
  • the third ring part 2230 is the second ring part 2220. 2 It is possible to receive a force F2a inward in the axial direction from the ring portion 2220 . At this time, as the tip 2230A of the third ring part 2230 comes into contact with the axial outer end face of the wheel hub protrusion 2311 , the third ring part 2230 is axially outward D1 by the wheel hub protrusion 2311 . ) can be supported.
  • the nut 2100 when the nut 2100 is loosened in the axial direction D2, the nut 2100 is supported by the second ring part 2220, and the second ring part 2220 is on the third ring part 2230. and the tip 2230A of the third ring part 2230 is in contact with the axial outer end face of the wheel hub protrusion 2311, so that the third ring part 2230 is axially outward D1 by the wheel hub protrusion 2311. ), and thus the loosening of the nut 2100 can be prevented.
  • the fourth ring part 2240 may be adjacent to the wheel hub protrusion 2311 in the circumferential direction.
  • the circumferential cross section of the wheel hub protrusion 2311 prevents the nut 2100 from loosening in the axial direction D2 by supporting the fourth ring part 2240 when the nut 2100 is loosened in the axial direction D2. can be prevented
  • FIG. 12 is a perspective view illustrating a wheel bearing assembly 3000 according to a third embodiment of the present disclosure. A description of the configuration overlapping the configuration described in the above-described embodiment will be omitted below.
  • the wheel bearing assembly 3000 includes an outer ring 3500 coupled to a vehicle suspension and fixed to the vehicle body;
  • a wheel hub 3300 that rotates relative to the outer ring 3500 and includes a cylindrical portion 3320 and a joint portion 3310 extending from the cylindrical portion 3320 and having a thread formed on the outer circumferential surface;
  • the inner ring 3400 is press-fitted to the outer peripheral surface of the wheel hub (3300);
  • the wheel hub 3300 may include a wheel hub protrusion 3311 that is formed on the inner side (D2) in the axial direction rather than the screw thread and protrudes outward (D3) in the radial direction.
  • the wheel hub 3300 may include a coupling groove 3312 recessed in the radial direction on the axial inner side of the screw thread to which the nut 3100 is coupled.
  • the wheel hub 3300 is located on the inner side (D2) in the axial direction rather than the screw thread, and in a portion where the wheel hub projections 3311 are not formed (for example, between the projections 3311 in the circumferential direction) radially inside ( D4) may further include a recessed coupling groove 3312.
  • FIG. 13 is a perspective view illustrating a nut 3100 according to a third embodiment of the present disclosure.
  • a thread 3100B may be formed on the inner circumferential surface 3100A of the nut 3100 .
  • the screw thread 3100B formed on the inner circumferential surface 3100A of the nut 3100 may be coupled with the screw thread formed on the outer circumferential surface of the joint portion 3310 of the wheel hub 3300 .
  • the wheel hub 3300 and the inner ring 3400 may be coupled to the axial direction outer D1 of the nut 3100 coupled to the wheel hub 3300 .
  • the nut 3100 may provide a preload to the inner ring 3400 by supporting the axial inner end face of the inner ring 3400 coupled to the wheel hub 3300 .
  • the nut 3100 may have a first nut groove 3110 formed in a radially outer cross-section.
  • the first nut grooves 3110 may be provided in a plurality [eg, 2 to 10] spaced apart along the circumferential direction.
  • the first nut groove 3110 may be used for coupling the nut 3100 and the fastening tool when the wheel hub 3300 and the nut 3100 are coupled.
  • the nut 3100 is provided with a second nut groove 3130 recessed radially outwardly in a radially inner end face so that the radially outer protrusion of the ring 3200 to be described later is coupled to it.
  • the nut 3100 may include a nut protrusion 3120 extending in the axial direction D2, and a second nut groove 3130 may be formed in the radially inner end surface of the nut protrusion 3120.
  • a plurality of second nut grooves 3130 may be provided to be spaced apart along the circumferential direction D5.
  • FIG. 14 is a perspective view showing a ring 3200 according to a third embodiment of the present disclosure.
  • the ring 3200 may include a first protrusion 3210 protruding radially inwardly (D4).
  • the first protrusion 3210 of the ring 3200 may be inserted into and coupled to the coupling groove 3312 provided in the wheel hub 3300 .
  • the first protrusion 3210 may be inserted into the coupling groove 3312 and configured to contact the circumferential end surface of the wheel hub protrusion 3311 .
  • that the first protrusion 3210 is configured to contact the circumferential end face of the wheel hub protrusion 3311 means that the first protrusion 3210 is always maintained in contact with the circumferential end face of the wheel hub protrusion 3311.
  • the first protrusion 3210 may be configured to be mounted in a state that is always in contact with the circumferential end surface of the wheel hub protrusion 3311, and when the nut 3100 rotates in the circumferential direction D5, the first protrusion ( 3210 may be configured to contact the circumferential cross-section of the wheel hub protrusion 3311 .
  • the ring 3200 may have a second protrusion 3220 extending radially outwardly D3.
  • the second protrusion 3220 may be inserted into and coupled to the second nut groove 3130 formed on the radially inner end surface of the nut 3100 .
  • a plurality of first protrusions 3210 may be provided to be spaced apart along the circumferential direction D5.
  • the plurality of first protrusions 3210 may be spaced apart to have the same distance in the circumferential direction D5. That is, the first protrusion 3210 may be formed only on the circumference of a part of the ring 1200 .
  • the second protrusion 3220 may be provided in plurality while being spaced apart along the circumferential direction D5.
  • the plurality of second protrusions 3220 may be spaced apart to have the same distance in the circumferential direction D5. That is, the second protrusion 3220 may be formed only on the circumference of a part of the ring 1200 .
  • the circumferential length of the first protrusion 3210 may be less than or equal to the length of the circumferential distance formed between the wheel hub protrusions 3311 adjacent to each other.
  • the circumferential length of the second protrusion 3220 may be less than or equal to the circumferential length of the second nut groove 3130 .
  • the first protrusion 3210 and the second protrusion 3220 may be alternately disposed along the circumferential direction D5 of the ring 3200 .
  • the ring 3200 includes a plurality of dividing lines A parallel to the axial direction R, and the first protrusion 3210 is located on one side of the dividing line A with respect to the circumferential direction D5. is formed, and the second protrusion 3220 may be formed on the other side of the dividing line A with respect to the circumferential direction D5. That is, the first protrusion 3210 and the second protrusion 3220 may be alternatively formed in a portion of the ring 3200 .
  • only the first protrusion 3210 may be formed on a portion of the ring 3200
  • only the second protrusion 3220 may be formed on the other portion of the ring 3200 .
  • the ring 3200 is connected to the nut 3100 and the wheel hub 3300.
  • the ring 3200 can be easily assembled while reducing the deformation of the ring 3200 when assembling between.
  • the ring 3200 can be more easily separated.
  • the ring 3200 may be a truncated O-ring or a C-ring.
  • the ring 3200 since the ring 3200 is interposed between the nut 3100 and the wheel hub 3300, when it is formed in the form of a cut O-ring or C-ring, assembly and disassembly can be performed more easily.
  • the cut O-ring may be a ring in which the ring is formed in an O-shape over the entire circumference and a part of the ring is cut
  • the C-ring is a ring in which the ring is formed in a C-shape only in a part of the circumference. It can be a ring.
  • FIG. 15 is an enlarged enlarged view of a part of a cross-sectional view of the wheel bearing assembly 3000 according to the third embodiment of the present disclosure taken along the line V. As shown in FIG.
  • the first protrusions 3210 of the ring 3200 may be spaced apart from each other in the circumferential direction D5 and may be configured to be positioned between the adjacent wheel hub protrusions 3311 .
  • the wheel hub 3300 may further include a coupling groove 3312 recessed in the radially inward (D4) to the axially inner (D2) than the screw thread, and the first protrusion ( 3210 ). ) may be inserted into the coupling groove 3312 to be coupled.
  • the first protrusion 3210 has a wheel hub protrusion 3311 when the ring 3200 rotates in the circumferential direction D5 with respect to the wheel hub 3300 by loosening the nut 3100 . ), it is possible to prevent the ring 3200 from being loosened in the circumferential direction D5 with respect to the wheel hub 3300 by the loosening of the nut 3100 in contact with the circumferential end face.
  • 16 is an enlarged enlarged view of a part of a cross-sectional view taken along line VI of the wheel bearing assembly 3000 according to the third embodiment of the present disclosure.
  • the second protrusion 3220 of the ring 3200 may be inserted into the second nut groove 3130 formed in the radially inner end surface of the nut protrusion 3120 .
  • a wheel hub protrusion 3311 may be positioned on the radially inner side D4 of the portion where the second protrusion 3220 is formed of the ring 3200 .
  • the first of the ring 3200 An axially outer end face of the second protrusion 3220 may be in contact with an axial inner end face of the second nut groove 3130 . Due to this contact, the second protrusion 3220 of the ring 3200 may receive a force F3 in the axial direction D2.
  • the second protrusion 3220 contacts the axial inner end face of the second nut groove 3130 to support the nut 3100 in the axial direction outer D1 (N1), so that the axis of the nut 3100 is Loosening in the direction inward D2 can be prevented.
  • FIG. 17 is a partially enlarged view of a wheel bearing assembly 3000 according to a third embodiment of the present disclosure.
  • the nut 3100 is shown by a double-dot chain line, and the illustration of the second nut groove 3130 is omitted, but the second protrusion 3220 is inserted into the second nut groove 3130 of the nut 3100 . may be in a state of
  • the first of the ring 3200 may contact the circumferential end surface of the second nut groove 3130 . Due to contact with the circumferential end surface of the second nut groove 3130 , the second protrusion 3220 of the ring 3200 may receive a circumferential force F4 in the direction in which the nut 3100 is loosened.
  • the first protrusion 3210 of the ring 3200 is a coupling groove 3312 and/or It may come into contact with the circumferential end surface of the wheel hub protrusion 3311 .
  • the first protrusion 3210 of the ring 3200 becomes the wheel. It may be supported by the hub protrusion 3311 (N3).
  • the second protrusion 3220 of the ring 3200 in which rotation with respect to the wheel hub 3300 is supported by the first protrusion 3210 may support the nut 3100 (N2).
  • the first protrusion 3210 prevents rotation of the ring 3200 in the circumferential direction (D5) with respect to the wheel hub 3300 (N3)
  • the second protrusion 3220 is a nut

Abstract

본 개시의 일 실시예에 따른 휠베어링 조립체는 차량의 현가 장치에 결합되어 차체에 고정되는 외륜과; 외륜에 대해 상대 회전하도록 구성되고, 원통부 및 원통부로부터 연장되고 외주면에 나사산이 형성된 조인트부를 포함하는 휠허브와; 휠허브의 외주면에 압입되어 장착되는 하나 이상의 내륜과; 내륜이 장착된 휠허브와 외륜 사이에 개재되는 하나 이상의 전동체와; 휠허브의 조인트부에 형성된 나사산에 나사결합되어 내륜에 예압을 제공하는 너트와; 너트와 휠허브 사이에 장착되어 너트의 풀림을 방지하는 링을 포함할 수 있다.

Description

휠베어링 조립체
본 개시는 휠베어링 조립체에 관한 것이다.
휠베어링 조립체는 차체에 대해 회전하는 요소와 회전하지 않는 요소 사이에 장착되어 회전하는 요소의 회전을 원활하게 하는 장치로, 차량의 휠베어링 조립체는 차량의 휠을 차체에 대해 회전 가능하게 연결시킴으로써 차량이 움직일 수 있도록 하는 기능을 제공한다.
이러한 휠베어링은 차륜과 일체로 체결되는 휠허브(wheel hub), 휠허브와 일체로 회전하도록 결합되는 내륜(inner ring), 휠허브와 내륜을 축방향으로 끼워서 전동체를 매개로 회전 가능하게 지지하는 외륜(outer ring) 등을 포함하여 구성될 수 있다.
종래의 휠베어링 조립체의 일 예로서, 차량의 종감속장치에 연결된 구동차축에 결합되어 차륜에 동력을 전달하는 등속조인트(constant velocity joint)가 체결되는 휠베어링이 제안되어 있다.
등속조인트는 휠허브의 중심부를 관통하는 스템(stem)이 길게 연장하도록 형성되는 하우징을 가지며, 스템의 외측 단부에 가공된 나사부가 너트와 결함됨으로써 휠허브에 결합되도록 구성된다.
본 개시의 실시예들은 내륜에 예압을 제공하는 너트에 의도치 않은 풀림이 발생하는 것을 방지할 수 있도록 구성된 휠베어링 조립체를 제공한다.
본 개시의 일 실시예에 따른 휠베어링 조립체는 차량의 현가 장치에 결합되어 차체에 고정되는 외륜과; 외륜에 대해 상대 회전하도록 구성되고, 원통부 및 원통부로부터 연장되고 외주면에 나사산이 형성된 조인트부를 포함하는 휠허브와; 휠허브의 외주면에 압입되어 장착되는 하나 이상의 내륜과; 내륜이 장착된 휠허브와 외륜 사이에 개재되는 하나 이상의 전동체와; 휠허브의 조인트부에 형성된 나사산에 나사결합되어 내륜에 예압을 제공하는 너트와; 너트와 휠허브 사이에 장착되어 너트의 풀림을 방지하는 링을 포함할 수 있다.
본 개시의 일 실시예에 따르면, 링은, 너트 내로 삽입되어 결합되는 제1 링부와; 제1 링부로부터 너트의 축방향 내측 단면을 따라 연장되어 형성된 제2 링부와; 제2 링부로부터 연장되어 형성된 제3 링부를 포함할 수 있다.
본 개시의 일 실시예에 따르면, 너트는 경방향 외측 단면에 경방향 내측으로 함몰된 하나 이상의 너트 홈을 포함하고, 제1 링부는 제2 링부로부터 축방향 외측으로 연장되도록 형성되어 너트의 경방향 외측 단면에 형성된 너트 홈에 삽입되어 결합되도록 구성될 수 있다.
본 개시의 일 실시예에 따르면, 휠허브는 조인트부의 나사산보다 축방향 내측에 형성되고 경방향 외측으로 돌출되어 형성된 휠허브 돌기를 구비하고, 제3 링부는 제2 링부로부터 축방향 내측으로 연장되도록 형성되어 선단이 휠허브 돌기의 축방향 외측 단면과 접촉하여 장착되도록 구성될 수 있다.
본 개시의 일 실시예에 따르면, 제3 링부는 제2 링부로부터 휠베어링 조립체의 중심축에 대해 경사진 방향으로 연장되어 형성될 수 있다.
본 개시의 일 실시예에 따르면, 제1 링부 및 제3 링부는 링의 원주방향을 따라 서로 교대로 배치될 수 있다.
본 개시의 일 실시예에 따르면, 링은 제2 링부로부터 축방향 내측으로 연장되어 형성되는 제4 링부를 더 포함할 수 있다.
본 개시의 일 실시예에 따르면, 휠허브 돌기는 휠허브의 원주방향을 따라 서로 이격되어 복수로 구비되고, 제4 링부는 휠허브 돌기 사이의 공간에 삽입되어 장착되도록 구성될 수 있다.
본 개시의 일 실시예에 따르면, 링은 경방향 내측으로 돌출된 제1 돌기부를 구비하고, 휠허브는 너트가 결합되는 나사산보다 축방향 내측에 경방향 내측으로 함몰된 결합홈을 구비하고, 제1 돌기부는 휠허브에 형성된 결합홈에 삽입되어 결합되도록 구성될 수 있다.
본 개시의 일 실시예에 따르면, 휠허브는 조인트부의 나사산보다 축방향 내측에 형성되며 경방향 외측으로 돌출되어 형성된 휠허브 돌기를 구비하고, 제1 돌기부는 휠허브 돌기 사이의 공간에 삽입되어 장착되도록 구성될 수 있다.
본 개시의 일 실시예에 따르면, 너트는 경방향 외측 단면에 경방향 내측으로 함몰된 제1 너트 홈을 구비할 수 있다.
본 개시의 일 실시예에 따르면, 링은 경방향 외측으로 연장된 제2 돌기부를 구비하고, 너트는 경방향 내측 단면에 경방향 외측으로 함몰된 제2 너트 홈을 구비하고, 제2 돌기부는 제2 너트 홈에 삽입되어 결합되도록 구성될 수 있다.
본 개시의 일 실시예에 따르면, 너트는 축방향 내측으로 연장된 너트 돌기부를 구비하고, 제2 너트 홈은 너트 돌기부의 경방향 내측 단면에 형성될 수 있다.
본 개시의 일 실시예에 따르면, 제1 돌기부 및 제2 돌기부는 링의 원주방향을 따라 서로 교대로 배치될 수 있다.
본 개시의 일 실시예에 따르면, 휠허브의 축방향 내측 단부는 등속조인트의 아우터 레이스로 구성되고, 등속 조인트의 아우터 레이스를 구성하는 휠허브의 축방향 내측 단부의 내주면에는 등속조인트의 회전요소를 수용하기 위한 그루브가 원주방향을 따라 하나 이상 구비될 수 있다.
본 개시의 실시예들에 따른 휠베어링 조립체는 내륜에 예압을 제공하는 너트와 휠허브의 사이에 풀림 방지를 위한 링을 구비해 휠허브에 결합된 너트에 의도치 않은 풀림이 발생하는 것을 방지하도록 구성되어 있어, 복잡한 결합부재들의 추가 없이 단순한 구조의 링을 이용해 내륜에 예압을 인가하는 너트의 풀림을 안정적으로 방지하면서 휠베어링 조립체의 구조를 단순화하고 원가를 절감할 수 있게 된다.
도 1은 본 개시의 제1 실시예에 따른 휠베어링 조립체를 나타낸 사시도이다.
도 2는 도 1의 휠베어링 조립체를 Ⅰ 선을 따라 절단한 단면도이다.
도 3은 도 1의 휠베어링 조립체를 Ⅱ 선을 따라 절단한 단면도이다.
도 4는 본 개시의 제1 실시예에 따른 너트를 나타낸 사시도이다.
도 5는 본 개시의 제1 실시예에 따른 링을 나타낸 사시도이다.
도 6은 도 2에 도시된 단면도의 일부를 확대한 확대도이다.
도 7은 도 3에 도시된 단면도의 일부를 확대한 확대도이다.
도 8은 본 개시의 제2 실시예에 따른 휠베어링 조립체를 나타낸 사시도이다.
도 9는 본 개시의 제2 실시예에 따른 링을 나타낸 사시도이다.
도 10은 본 개시의 제2 실시예에 따른 휠베어링 조립체를 Ⅲ 선을 따라 절단한 단면도의 일부를 확대한 확대도이다.
도 11은 본 개시의 제2 실시예에 따른 휠베어링 조립체를 Ⅳ 선을 따라 절단한 단면도의 일부를 확대한 확대도이다.
도 12는 본 개시의 제3 실시예에 따른 휠베어링 조립체를 나타낸 사시도이다.
도 13은 본 개시의 제3 실시예에 따른 너트를 나타낸 사시도이다.
도 14는 본 개시의 제3 실시예에 따른 링을 나타낸 사시도이다.
도 15는 본 개시의 제3 실시예에 따른 휠베어링 조립체를 Ⅴ 선을 따라 절단한 단면도의 일부를 확대한 확대도이다.
도 16은 본 개시의 제3 실시예에 따른 휠베어링 조립체를 Ⅵ 선을 따라 절단한 단면도의 일부를 확대한 확대도이다.
도 17은 본 개시의 제3 실시예에 따른 휠베어링 조립체의 부분확대도이다.
<부호의 설명>
1000, 2000, 3000 : 휠베어링 조립체
1100, 2100, 3100 : 너트
1110, 2110 : 너트 홈
3110 : 제1 너트 홈
3120 : 너트 돌기부
3130 : 제2 너트 홈
1200, 2200, 3200 : 링
1210, 2210 : 제1 링부
1220, 2220 : 제2 링부
1230, 2230 : 제3 링부
2240 : 제4 링부
3210 : 제1 돌기부
3220 : 제2 돌기부
1300, 2300, 3300 : 휠허브
1310, 2310, 3310 : 조인트부
1311, 2311, 3311 : 휠허브 돌기
1320, 2320, 3320 : 원통부
1400, 2400, 3400 : 내륜
1500, 2500, 3500 : 외륜
본 개시의 실시예들은 본 개시의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 개시에 따른 권리범위가 이하에 제시되는 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되는 것은 아니다.
본 개시에 사용되는 모든 기술적 용어들 및 과학적 용어들은 달리 정의되지 않는 한 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 일반적으로 이해되는 의미를 갖는다. 본 개시에 사용되는 모든 용어들은 본 개시를 더욱 명확히 설명하기 위한 목적으로 선택된 것이며 본 개시에 따른 권리범위를 제한하기 위해 선택된 것이 아니다.
본 개시에서 사용되는 "포함하는", "구비하는", "갖는" 등과 같은 표현은 해당 표현이 포함되는 어구 또는 문장에서 달리 언급되지 않는 한 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.
본 개시에서 기술된 단수형의 표현은 달리 언급하지 않는 한 복수형의 의미를 포함할 수 있으며, 이는 청구범위에 기재된 단수형의 표현에도 마찬가지로 적용된다.
본 개시에서 사용되는 "제1", "제2" 등의 표현들은 복수의 구성요소들을 상호 구분하기 위해 사용되며, 해당 구성요소들의 순서 또는 중요도를 한정하는 것은 아니다.
본 개시에서, 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "결합되어" 있다고 언급된 경우, 어떤 구성요소가 다른 구성요소에 직접적으로 연결될 수 있거나 결합될 수 있는 것으로, 또는 새로운 다른 구성요소를 매개로 하여 연결될 수 있거나 결합될 수 있는 것으로 이해되어야 한다.
이하, 첨부한 도면들을 참조하여, 본 개시의 실시예들을 설명한다. 첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.
본 개시에서, 회전축방향은 휠베어링의 회전축(rotational axis, R)과 평행한 방향을 의미하는 것으로 정의될 수 있고, 경방향은 회전축으로부터 멀어지거나 가까워지는 방향을 의미하는 것으로 정의될 수 있고, 원주방향은 회전축(R)을 중심으로 회전축(R)을 감싸는 방향을 의미하는 것으로 정의될 수 있다. 또한, 회전축(R) 방향은 휠허브의 회전축방향을 의미할 수 있다. 이하에서, 휠베어링의 회전축방향은 간단히 '축방향(R)'이라고 지칭될 수 있다.
본 개시에서, 화살표 'D1'은 휠베어링의 회전축을 따르는 방향으로서 휠허브에 대해 차륜이 배치되는 외측 축방향(outboard)을 가리키고, 화살표 'D2'는 D1의 반대 방향으로서 휠허브에 대해 너클이 배치되는 내측 축방향(inboard)을 가리킨다. 또한, 화살표 'D3'은 휠베어링의 회전축에 대한 방사상 방향(radial direction) 중 회전축으로부터 멀어지는 외측 경방향을 가리키고, 화살표 'D4'는 D3의 반대 방향인 내측 경방향을 가리킨다. 또한, 화살표 'D5'는 회전축을 중심으로 회전하는 방향, 즉 원주방향(circumference direction)을 가리킨다.
본 개시의 실시예들에 따른 휠베어링 조립체는 휠허브에 적어도 하나의 내륜이 결합되는 구조를 가질 수 있다. 예컨대, 휠베어링은 휠허브에 허브 궤도면이 형성되어 하나의 내륜이 결합되어, 휠허브가 내륜과 함께 회전하도록 구성될 수 있다.
도 1은 본 개시의 제1 실시예에 따른 휠베어링 조립체(1000)를 나타낸 사시도이고, 도 2와 도 3은 각각 도 1의 휠베어링 조립체(1000)를 Ⅰ 선과 Ⅱ 선을 따라 절단한 단면도이다.
본 개시의 실시예들에 따르면, 휠베어링 조립체(1000)는 차량의 현가 장치에 결합되는 외륜(1500); 외륜(1500)에 대해 상대 회전하며 원통부(1320) 및 원통부(1320)로부터 연장되고 외주면에 나사산이 형성된 조인트부(1310)를 포함하는 휠허브(1300); 휠허브의 외주면에 압입되어 장착되는 내륜(1400); 내륜(1400)이 장착된 휠허브(1300)와 외륜(1500) 사이에 개재되는 전동체(1510); 휠허브의 조인트부(1310)에 형성된 나사산에 나사결합되어 내륜(1400)에 예압을 제공하는 너트(1100); 너트(1100)와 휠허브(1300) 사이에 장착되어 너트(1100)의 풀림을 방지하는 링(1200) 등을 포함하여 구성될 수 있다.
본 개시의 실시예들에 따르면, 휠베어링 조립체(1000)는 도면에 도시된 바와 같이 휠허브(1300)의 축방향 내측 단부가 등속조인트의 아우터 레이스의 기능을 수행하도록, 즉 휠베어링 조립체(1000)가 등속조인트 일체형 구조로 형성되도록 구성될 수 있다.
이와 같이 등속조인트 일체형 구조를 갖는 휠베어링 조립체(1000) 등에서는, 내륜(1400)과 휠허브(1300)를 결합할 때에는 내륜(1400)이 휠허브(1300)의 외주면에 압입된 후, 휠허브(1300)에 너트(1100)를 체결해 내륜(1400)에 예압을 주는 방식이 사용될 수 있다.
그러나, 이러한 구조의 휠베어링 조립체(1000)는 너트(1100) 체결 후 진동 및 기타 충격으로 인해 휠허브(1300)에 체결된 너트(1100)에 의도치 않은 풀림 현상이 발생할 수 있다.
이러한 너트(1100)의 의도치 않은 풀림을 방지하기 위한 방안으로서, 휠허브(1300)에 고정시킬 수 있는 와셔와 볼트를 이용해 너트를 휠허브에 고정시키는 방안을 고려해 볼 수 있다. 그러나, 이와 같이 휠허브에 고정되는 와셔와 와셔에 체결되는 볼트를 이용해 너트를 휠허브에 고정하는 방식은 복잡한 구조와 많은 부품 수로 인해 조립과 분해가 어렵고 휠베어링 조립체의 중량이 증가될 우려가 있다.
이에 반해, 본 개시의 실시예들에 따른 휠베어링 조립체(1000)는 후술하는 바와 같이 너트(1100)와 휠허브(1300) 사이에 단순한 구조의 링(1200)을 장착해 내륜(1400)에 예압을 제공하는 너트(1100)에 의도치 않은 풀림이 발생하는 것을 방지하도록 구성되어 있어, 보다 단순하고 적은 수의 부품으로 간단하게 너트의 풀림을 방지할 수 있게 된다.
본 개시의 일 실시예에 따르면, 휠허브(1300)는 외주면에 경방향 외측(D3)으로 확장되게 형성된 허브 플랜지(1341)를 구비할 수 있다. 허브 플랜지(1341)에는 허브 타입 또는 휠 타입의 볼트(미도시)가 체결될 수 있는 볼트 체결구(1342)가 형성되며, 휠허브(1300)는 허브 플랜지(1341)를 통해 차륜과 결합될 수 있다.
본 개시의 일 실시예에 따르면, 휠허브(1300)는 직접 전동체(1510)의 일부와 접촉해 전동체(1510)를 회전 가능하게 지지할 수 있다. 한편, 휠허브(1300)에는 하나 이상의 내륜(1400)이 압입되어 장착될 수 있으며, 휠허브의 양측 단부에는 씨일 장치(1530)가 구비될 수 있다.
본 개시의 일 실시예에 따르면, 휠허브(1300)의 축방향 내측(D2) 단부에는 등속조인트의 아우터 레이스(outer race, 1330)가 일체로 형성될 수 있다. 즉, 휠허브(1300)는 그 자체로 등속조인트의 아우터 레이스(1330)을 기능을 수행하도록 구성될 수 있다.
본 개시의 일 실시예에 따르면, 휠허브(1300)의 아우터 레이스(1330)를 형성하는 표면(1331)에는 복수의 그루브(1332)가 형성될 수 있다. 예컨대, 등속조인트의 아우터 레이스(1330)를 형성하는 휠허브(1300)의 축방향 내측 단부는 내주면에 함몰된 구조의 그루브(1332)가 원주방향을 따라 이격되어 복수로 구비될 수 있다. 이러한 복수의 그루브(1332)에는 등속조인트의 회전요소가 삽입되어 장착될 수 있으며, 이를 위해 적어도 그루브(1332)를 포함하는 아우터 레이스의 표면(1332)은 전동면에 요구되는 강도를 확보하기 위해 열처리될 수 있다.
본 개시의 일 실시예에 따르면, 휠허브(1300)는 원통부(1320)와 원통부(1320)로부터 연장되고 외주면에 나사산이 형성된 조인트부(1310)를 포함할 수 있다. 또한, 휠허브(1300)는 나사산보다 축방향 내측(D2)에 형성되고 경방향 외측(D3)으로 돌출된 휠허브 돌기(1311)를 가질 수 있다. 너트(1100)는 조인트부(1310)에 형성된 나사산에 나사결합되어 조인트부(1310)에 결합됨으로써 내륜(1400)에 예압을 제공할 수 있다. 또한, 휠허브(1300) 상에는 너트(1100)와의 사이에 후술하는 링(1200)이 구비되어, 너트(1100) 체결 후 진동 및 기타 충격으로 인해 너트(1100)에 의도치 않은 풀림이 방생하는 것을 방지하도록 구성될 수 있다.
본 개시의 일 실시예에 따르면, 휠허브 돌기(1311)는 휠허브(1300)의 원주방향(D5)을 따라 서로 이격되어 복수로 구비될 수 있다. 예컨대, 복수의 휠허브 돌기(1311)가 휠허브(1300)의 외주면에 서로 일정한 간격으로 이격되어 배치될 수 있다. 다른 실시예에서, 휠허브 돌기(1311)는 휠허브(1300)의 원주방향(D5)을 따라 연장하는 하나의 링 형상으로 형성될 수 있다.
본 개시의 일 실시예에 따르면, 링(1200)은 너트(1100) 내에 삽입되는 제1 링부(1210); 제1 링부(1210)로부터 너트(1100)의 축방향 내측 단면을 따라 연장되는 제2 링부(1220); 제2 링부(1220)로부터 연장되어 선단이 휠허브(1300)와 접촉하도록 구성된 제3 링부(1230) 등을 포함하여 구성될 수 있다. 예컨대, 링(1200)은 단부가 축방향으로 절곡된 플레이트형 부재로 형성될 수 있으며, 제1 링부(1210)는 경방향 외측(D3)에 배치되고, 제3 링부(1230)는 경방향 내측(D4)에 배치될 수 있다.
본 개시의 일 실시예에 따르면, 외륜(1500)은 휠허브(1300)와 내륜(1400)이 내측에 끼워질 수 있는 원통체로서, 외주면에서 경방향 외측(D3)으로 돌출하는 외륜 플랜지(1541)를 구비할 수 있다. 외륜 플랜지(1541)에는 볼트 체결구(1542)가 형성되며, 외륜(1500)은 볼트 체결구(1542)에 체결되는 볼트(미도시)를 통해 비회전체인 너클 등과 체결될 수 있다.
본 개시의 일 실시예에 따르면, 휠베어링 조립체(1000)는 외륜(1500)에 대해 휠허브(1300)와 내륜(1400)을 상대회전 가능하게 지지하는 하나 이상의 전동체(1510)를 포함할 수 있다. 본 개시의 일 실시예에 따르면, 전동체(1510)는 케이지(1520)를 통해 원주방향(D5)을 따라 이격되어 배치되도록 구성될 수 있다. 본 개시의 일 실시예에 따르면, 전동체(1510)는 볼 타입으로 구성될 수 있다. 다른 예로, 전동체(1510)는 롤러 또는 테이퍼 롤러 형상을 가질 수 있다.
본 개시의 일 실시예에 따르면, 외륜(1500)의 내주면과 외륜(1500)의 내주면에 대해 이격된 휠허브(1300) 및 내륜(1400)의 외주면 사이에는 전동체가 배치될 수 있는 베어링 공간(1501)이 형성될 수 있으며, 이러한 베어링 공간(1501) 내에 이물질이 유입되거나 베어링 공간(1501)에 주입된 그리스(grease)가 외부로 누출되는 것을 차단하기 위하여 휠베어링 조립체(1000)의 일측 또는 양측에는 씨일 장치(1530)가 구비될 수 있다. 본 개시의 일 실시예에 따르면, 이러한 씨일 장치(1530)는 래비린스(labyrinth) 밀봉 구조를 형성할 수 있다.
도 4는 본 개시의 제1 실시예에 따른 너트(1100)를 나타낸 사시도이다.
본 개시의 일 실시예에 따르면, 너트(1100)의 내주면(1100A)에는 나사산(1100B)이 형성될 수 있으며, 너트(1100)의 내주면(1100A)에 형성되는 나사산(1100B)은 휠허브(1300)의 조인트부(1310)의 외주면에 형성된 나사산과 결합할 수 있다. 본 개시의 일 실시예에 따르면, 휠허브(1300)와 결합한 너트(1100)의 축방향 외측(D1)에는 휠허브(1300)와 내륜(1400)이 결합될 수 있고, 너트(1100)는 휠허브(1300)에 결합된 내륜(1400)의 축방향 내측 단면을 지지함으로써 내륜(1400)에 예압을 제공할 수 있다.
본 개시의 일 실시예에 따르면, 너트(1100)는 경방향 외측 단면에 적어도 하나의 너트 홈(1110)을 구비할 수 있으며, 너트 홈(1110)은 원주방향(D5)을 따라 이격되어 복수로(예컨대, 2 내지 10개) 구비될 수 있다. 본 개시의 일 실시예에 따르면, 너트 홈(1110)은 휠허브(1300)와 너트(1100)를 결합할 때의 너트(1100)와 체결 도구를 결합하기 위한 용도로 사용될 수 있으며, 너트 홈(1110) 내에는 후술하는 링(1200)이 삽입되어 결합되도록[예컨대, 도 5에 도시된 링(1200)의 제1 링부(1210)가 삽입되어 결합되도록] 구성될 수 있다.
도 5는 본 개시의 제1 실시예에 따른 링(1200)을 나타낸 사시도이다.
본 개시의 일 실시예에 따르면, 링(1200)은 너트(1100) 내에 삽입되는 제1 링부(1210), 제1 링부(1210)로부터 너트(1100)의 축방향 내측 단면을 따라 연장되는 제2 링부(1220), 제2 링부(1220)로부터 연장되어 선단이 휠허브(1300)와 접촉하도록 구성된 제3 링부(1230)를 포함할 수 있다.
본 개시의 일 실시예에 따르면, 제1 링부(1210)는 너트(1100) 내에 삽입되어 장착되도록 구성될 수 있다. 제1 링부(1210)는 너트(1100)의 경방향 외측 단면에 형성된 너트 홈(1110)에 삽입되도록 구성될 수 있다. 제1 링부(1210)는 제2 링부(1220)로부터 축방향 외측으로 연장될 수 있다. 예컨대, 제1 링부(1210)는 제2 링부(1220)에 수직하게 형성되어, 제1 링부(1210)와 제2 링부(1220)에 의해 형성되는 단면이 대략 "ㄱ"자 형상을 갖도록 구성될 수 있다.
본 개시의 일 실시예에 따르면, 제2 링부(1220)는 원주방향(D5)을 따라 연장되는 대략 디스크 형상의 구조로 형성될 수 있다. 제2 링부(1220)는 제1 링부(1210)로부터 너트(1100)의 축방향 내측 단면을 따라 연장될 수 있다. 즉, 제2 링부(1220)는 제1 링부(1210)로부터 경방향 내측(D4)으로 연장될 수 있다. 본 개시의 일 실시예에 따르면, 제2 링부(1220)의 경방향 높이는 너트(1100)의 경방향 높이의 0.3배 내지 1.5배로 형성될 수 있다.
본 개시의 일 실시예에 따르면, 제3 링부(1230)는 제2 링부(1220)로부터 연장되어 선단이 휠허브(1300)와 접촉하도록 구성될 수 있다. 본 개시의 일 실시예에 따르면, 휠허브(1300)는 나사산보다 축방향 내측(D2)에 형성되고 경방향 외측(D3)으로 돌출된 휠허브 돌기(1311)를 구비하고, 제3 링부(1230)의 선단은 휠허브 돌기(1311)의 축방향 외측 단면과 접촉하도록 구성될 수 있다.
본 개시의 일 실시예에 따르면, 제3 링부(1230)는 제2 링부(1220)로부터 축방향 내측으로 연장되어 형성될 수 있다. 본 개시의 일 실시예에 따르면, 제3 링부(1230)는 도면에 도시된 바와 같이 휠베어링 조립체의 중심축에 대해 소정의 각도로 경사지게 제2 링부(1220)로부터 연장되어 형성될 수 있다. 예컨대, 제3 링부(1230)는 제2 링부(1220)로부터 0° 초과 90° 미만의 각도로 경사지도록 형성될 수 있다. 일 예로, 제3 링부(1230)는 제2 링부(1220)로부터 30° 초과 60° 미만의 각도로 경사지도록 형성될 수 있다.
본 개시의 일 실시예에 따르면, 제1 링부(1210)는 원주방향(D5)을 따라 이격되어 복수로 구비될 수 있다. 본 개시의 일 실시예에 따르면, 복수의 제1 링부(1210)는 원주방향(D5)으로 동일한 간격을 갖도록 이격되어 배치될 수 있다. 즉, 제1 링부(1210)는 링(1200)의 일부의 원주에만 형성될 수 있다.
본 개시의 일 실시예에 따르면, 제3 링부(1230)는 원주방향(D5)을 따라 이격되어 복수로 제공될 수 있다. 본 개시의 일 실시예에 따르면, 복수의 제3 링부(1230)는 원주방향(D5)으로 동일한 간격을 갖도록 이격되어 배치될 수 있다. 즉, 제3 링부(1230)는 링(1200)의 일부의 원주에만 형성될 수 있다.
본 개시의 일 실시예에 따르면, 제1 링부(1210)의 원주방향 길이는 너트 홈(1110)의 원주방향 길이보다 작거나 같을 수 있다. 본 개시의 일 실시예에 따르면, 제3 링부(1230)의 원주방향 길이는 휠허브 돌기(1311)의 원호 길이와 같거나 이보다 크거나 작게 형성될 수 있다. 제3 링부(1230)의 원주방향 길이가 길어질수록 너트(1100)의 풀림에 대한 링(1200)의 지지력이 강해질 수 있다. 반대로, 제3 링부(1230)의 원주방향 길이가 짧아질수록 너트(1100)와 휠허브(1300)에 링(1200)을 보다 쉽게 조립 또는 분해할 수 있다.
본 개시의 일 실시예에 따르면, 제1 링부(1210) 및 제3 링부(1230)는 링(1200)의 원주방향(D5)을 따라 서로 교대로 배치될 수 있다. 예를 들어 제2 링부(1220)는 축방향(R)과 나란한 복수의 분할선(A)을 포함하고, 제1 링부(1210)는 원주방향(D5)을 기준으로 분할선(A)의 일측에 형성되고, 제3 링부(1230)는 원주방향(D5)을 기준으로 분할선(A)의 타측에 형성될 수 있다. 즉, 제1 링부(1210)와 제3 링부(1230)는 제2 링부(1220)의 일부에 있어서 택일적으로 형성될 수 있다. 본 개시의 일 실시예에 따르면, 제2 링부(1220)의 일부에는 제1 링부(1210)만이 형성될 수 있고, 제2 링부(1220)의 다른 일부에는 제3 링부(1230)만이 형성될 수 있다.
이와 같이, 제1 링부(1210) 및 제3 링부(1230)를 링(1200)의 원주방향(D5)을 따라 서로 교대로 배치하게 되면, 링(1200)을 너트(1100)와 휠허브(1300) 사이에 조립할 때 링(1200)의 변형을 줄이면서 용이한 조립이 가능할 수 있다. 또한, 링(1200)을 너트(1100)와 휠허브(1300) 사이에서 분리할 때에도 보다 용이한 분리가 가능해 질 수 있다.
도 6은 도 2에 도시된 단면도의 일부를 확대한 확대도이고, 도 7은 도 3에 도시된 단면도의 일부를 확대한 확대도이다.
도 6에는 제1 링부(1210) 및 제2 링부(1220)로 형성된 링(1200)의 일부분에 대한 단면 및 너트(1100)의 경방향 외측 단면에 형성된 너트 홈(1110)의 단면이 도시되어 있다.
본 개시의 일 실시예에 따르면, 제1 링부(1210)는 너트 홈(1110)에 삽입되어 장착되도록 구성될 수 있다. 도 6에는 제1 링부(1210)의 경방향 내측 단면이 너트 홈(1110)의 경방향 외측 단면과 접촉하지 않는 것으로 도시되어 있으나, 제1 링부(1210)의 경방향 내측 단면은 너트 홈(1110)의 경방향 외측 단면과 접촉하여 장착되도록 구성될 수도 있다.
본 개시의 일 실시예에 따르면, 제2 링부(1220)는 너트 홈(1110)에 삽입된 제1 링부(1210)로부터 너트(1100)의 축방향 내측 단면을 따라 연장될 수 있다. 도 6에는 제2 링부(1220)의 축방향 외측 단면이 너트(1100)의 축방향 내측 단면과 접촉하는 것으로 도시되었으나, 제2 링부(1220)의 축방향 외측 단면은 너트(1100)의 축방향 내측 단면과 접촉하지 않을 수도 있다. 제2 링부(1220)의 축방향 외측 단면이 너트(1100)의 축방향 내측 단면과 접촉하지 않는 경우에도, 너트(1100) 체결 후 진동 및 기타 충격으로 인해 휠허브(1300)에 체결된 너트(1100)가 축방향 내측으로 풀리는 경우, 제2 링부(1220)의 축방향 외측 단면은 너트(1100)의 축방향 내측 단면과 접촉하게 될 수 있다. 이로 인해, 너트(1100)가 축방향 내측(D2)으로 풀리는 경우, 제2 링부(1220)는 너트(1100)로부터 축방향 내측(D2)으로의 힘(F1)을 받을 수 있다. 이 때, 제2 링부(1220)의 축방향 외측 단면이 너트(1100)의 축방향 내측 단면과 접촉하여 너트(1100)가 너트(1100)보다 축방향 내측에 위치한 링(1200)에 의해 지지됨으로써 너트(1100)의 축방향 내측(D2)으로의 풀림이 방지될 수 있다.
도 7에는 제2 링부(1220) 및 제3 링부(1230)로 형성된 링(1200)의 일부분에 대한 단면 및 너트(1100)의 너트 홈(1110)이 형성되지 않은 부분의 단면이 도시되어 있다.
본 개시의 일 실시예에 따르면, 너트(1100)가 축방향 내측(D2)으로 풀리는 경우, 제2 링부(1220)의 축방향 외측 단면이 너트(1100)의 축방향 내측 단면과 접촉할 수 있다. 또한, 제2 링부(1220)로부터 연장된 제3 링부(1230)의 선단이 휠허브(1300)와 접촉할 수 있다. 제3 링부(1230)는 축방향 내측의 선단이 휠허브 돌기(1311)에 접촉하고 있고, 제2 링부(1220)로부터 연장되어 소정의 각도로 경사지게 형성되므로, 너트(1100)가 축방향 내측(D2)으로 풀리는 경우 휠허브 돌기(1311)에 의해 제3 링부(1230)가 축방향 외측으로 지지될 수 있다. 즉, 제2 링부(1220)가 너트(1100)의 축방향 내측(D2)으로의 풀림으로 의해 축방향 내측(D2)으로의 힘(F1)을 받는 경우, 제3 링부(1230)는 제2 링부(1220)로부터 축방향 내측으로의 힘(F2)을 받을 수 있다. 이 때, 제3 링부(1230)의 선단(1230A)이 휠허브 돌기(1311)의 축방향 외측 단면과 접촉함으로써, 제3 링부(1230)는 휠허브 돌기(1311)에 의해 축방향 외측(D1)으로 지지될 수 있다.
상술한 바와 같이, 너트(1100)가 축방향 내측(D2)으로 풀리는 경우, 너트(1100)는 제2 링부(1220)에 의해 지지되고, 제2 링부(1220)는 제3 링부(1230)에 의해 지지되고, 제3 링부(1230)는 제3 링부(1230)의 선단(1230A)이 휠허브 돌기(1311)의 축방향 외측 단면과 접촉함으로써 휠허브 돌기(1311)에 의해 축방향 외측(D1)으로 지지됨에 따라, 너트(1100)의 풀림이 방지될 수 있다.
도 8은 본 개시의 제2 실시예에 따른 휠베어링 조립체(2000)를 나타낸 사시도이다. 상술한 실시예에서 설명된 구성과 중복되는 구성에 대한 설명은 생략한다. 제2 실시예에 따른 휠베어링 조립체(2000)는 링(2200)의 구성에서 제1 실시예에 따른 휠베어링 조립체(1000)의 링(2200)와 차이가 있으므로 이하에서는 이를 중심으로 설명한다.
본 개시의 일 실시예에 따르면, 휠베어링 조립체(2000)는 차량의 현가 장치에 결합되는 외륜(2500); 외륜(2500)에 대해 상대 회전하며 원통부(2320) 및 원통부(2320)로부터 연장되고 외주면에 나사산이 형성된 조인트부(2310)를 포함하는 휠허브(2300); 휠허브(2300)의 외주면에 압입되어 장착되는 내륜(2400); 내륜(2400)이 장착된 휠허브(2300)와 외륜(2500) 사이에 개재되는 전동체(2510); 휠허브(2300)의 조인트부(2310)에 형성된 나사산에 나사결합되어 내륜(2400)에 예압을 제공하는 너트(2100); 너트(2100)와 휠허브(2300) 사이에 장착되어 너트(2100)의 풀림을 방지하는 링(2200) 등을 포함하여 구성될 수 있다.
도 9는 본 개시의 제2 실시예에 따른 링(2200)을 나타낸 사시도이다.
본 개시의 일 실시예에 따르면, 링(2200)은 전술한 실시예에서와 유사하게 너트(2100) 내에 삽입되는 제1 링부(2210); 제1 링부(2210)로부터 너트(2100)의 축방향 내측 단면을 따라 연장되는 제2 링부(2220); 제2 링부(2220)로부터 연장되어 선단이 휠허브(2300)와 접촉하도록 구성된 제3 링부(2230) 등을 포함하여 구성될 수 있다.
한편, 제2 실시예에 따른 링(2200)은 제2 링부(2220)로부터 축방향 내측(D2)으로 돌출되어 형성되는 제4 링부(2240)를 더 포함할 수 있다. 본 개시의 일 실시예에 따르면, 제4 링부(2240)는 휠허브 돌기(2311) 사이에 형성되는 원주방향 공간 내로 삽입되어 장착되도록 구성될 수 있다. 예컨대, 본 개시의 일 실시예에 따르면, 제4 링부는 휠허브 돌기(2311)의 원주방향 단면과 접촉하도록 구성될 수 있다. 여기서, 제4 링부(2240)가 휠허브 돌기(2311)의 원주방향 단면과 접촉하도록 구성된다는 것은 제4 링부(2240)가 휠허브 돌기(2311)의 원주방향 단면과 항상 접촉한 상태로 유지되는 것을 의미하지는 않을 수 있다. 예컨대, 제4 링부(2240)는 휠허브 돌기(2311)의 원주방향 단면과 항상 접촉한 상태가 되도록 구성될 수도 있고, 너트(2100)가 원주방향(D5)으로 회전할 때 제4 링부(2240)가 휠허브 돌기(2311)의 원주방향 단면과 접촉하도록 구성될 수도 있다.
본 개시의 일 실시예에 따르면, 제4 링부(2240)는 제2 링부(2220)로부터 소정의 각도로 경사지도록 형성될 수 있다. 예컨대, 제4 링부(2240)는 제2 링부(2220)로부터 경방향 내측(D4)으로 더 연장된 후, 대략 "L"자 형상으로 축방향 내측(D2)으로 연장되도록 구성될 수 있다. 다만, 제4 링부(2240)의 형상은 제2 링부(2220)의 길이, 휠허브 돌기(2311)의 형상 및 위치 등에 따라 달라질 수 있다.
본 개시의 일 실시예에 따르면, 제4 링부(2240)는 원주방향(D5)을 따라 이격되어 복수로 구비될 수 있다. 본 개시의 일 실시예에 따르면, 복수의 제4 링부(2240)는 원주방향(D5)으로 동일한 간격을 갖도록 이격될 수 있다. 즉, 제4 링부(2240)는 링(2240)의 일부의 원주에만 형성될 수 있다.
본 개시의 일 실시예에 따르면, 제4 링부(2240)는 원주방향(D5)으로 제3 링부(2230)의 사이에 위치하도록 구성될 수 있으며, 제1 링부(2210)와 동일한 원주방향 위치에 형성되도록 구성될 수 있다.
본 개시의 일 실시예에 따르면, 제4 링부(2240)의 원주방향 길이는 서로 이웃하는 휠허브 돌기(2311) 사이 원주방향 간격보다 작거나 같을 수 있다. 제4 링부(2240)의 원주방향 길이가 길어질수록 너트(2100)의 풀림에 대한 링(2200)의 지지력이 강해질 수 있다. 반대로, 제4 링부(2240)의 원주방향 길이가 짧아질수록 너트(2100)와 휠허브(2300) 사이에 링(2200)을 보다 쉽게 조립 또는 분해할 수 있다.
본 개시의 일 실시예에 따르면, 제4 링부(2240)는 휠허브 돌기(2311)의 원주방향 단면과 접촉하여, 휠허브(2300)에 대한 링(2200)의 원주방향(D5) 움직임을 지지할 수 있다. 너트(2100)의 회전은 너트 홈(2110)에 결합된 제1 링부(2210)에 의해 링(2200)에 원주방향의 힘을 전달할 수 있다. 이 때, 링(2200)의 휠허브(2300)에 대한 회전은 제4 링부(2240)가 휠허브 돌기(2311)에 의해 지지됨으로써 방지될 수 있다. 즉, 너트(2100)의 축방향 내측(D2)으로의 풀림시, 너트(2100)는 링(2200)과 휠허브 돌기(2311)에 의해 축방향 외측(D1)으로 지지될 뿐만 아니라, 제1 링부(2210) 및 제4 링부(2240)에 의해 원주방향(D5)의 풀림 역시 방지될 수 있게 된다.
도 10은 본 개시의 제2 실시예에 따른 휠베어링 조립체(2000)를 Ⅲ 선을 따라 절단한 단면도의 일부를 확대한 확대도이다.
도 10에는 제1 링부(2210), 제2 링부(2220) 및 제4 링부(2240)로 형성된 링(2200)의 일부분에 대한 단면 및 너트(2100)의 경방향 외측 단면에 형성된 너트 홈(2110)의 단면이 도시되어 있다.
본 개시의 일 실시예에 따르면, 제1 링부(2210)는 너트 홈(2110)에 삽입되도록 구성될 수 있다. 도 10에는 제1 링부(2210)의 경방향 내측 단면이 너트 홈(2110)의 경방향 외측 단면과 접촉하지 않는 것으로 도시되었으나, 제1 링부(2210)의 경방향 내측 단면은 너트 홈(2110)의 경방향 외측 단면과 접촉하도록 구성될 수도 있다.
본 개시의 일 실시예에 따르면, 제2 링부(2220)는 너트 홈(2110)에 삽입된 제1 링부(2210)로부터 너트(2100)의 축방향 내측 단면을 따라 연장될 수 있다. 도 10에는 제2 링부(2220)의 축방향 외측 단면이 너트(2100)의 축방향 내측 단면과 접촉하는 것으로 도시되어 있으나, 제2 링부(2220)의 축방향 외측 단면은 너트(2100)의 축방향 내측 단면과 접촉하지 않을 수도 있다. 제2 링부(2220)의 축방향 외측 단면이 너트(2100)의 축방향 내측 단면과 접촉하지 않는 경우에도, 너트(2100) 체결 후 진동 및 기타 충격으로 인해 휠허브(2300)에 체결된 너트(2100)가 축방향 내측(D2)으로 풀리는 경우 제2 링부(2220)의 축방향 외측 단면은 너트(2100)의 축방향 내측 단면과 접촉할 수 있다. 너트(2100)가 축방향 내측(D2)으로 풀리는 경우, 제2 링부(2220)는 너트(2100)로부터 축방향 내측(D2)으로의 힘(F1a)을 받을 수 있고, 이 때 제2 링부(2220)의 축방향 외측 단면은 너트(2100)의 축방향 내측 단면과 접촉해 너트(2100)가 너트(2100)보다 축방향 내측에 위치한 링(2200)에 의해 지지됨으로써 너트(2100)의 축방향 내측(D2)으로의 풀림이 방지될 수 있다.
본 개시의 일 실시예에 따르면, 제4 링부(2240)는 제2 링부(2220)로부터 축방향 내측(D2)으로 돌출되고 휠허브 돌기(2311)의 원주방향 단면과 접촉하도록 구성될 수 있다. 너트(2100)가 원주방향(D5)으로 회전하는 경우, 제4 링부(2240)는 휠허브 돌기(2311)의 원주방향 단면과 접촉할 수 있다. 이 때, 제4 링부(2240)가 휠허브 돌기(2311)의 원주방향 단면에 의해 지지됨으로써, 너트(2100)의 축방향 내측(D2)으로의 풀림이 방지될 수 있다.
또한, 제4 링부(2240)의 경방향 내측 단면은 휠허브(2300)의 경방향 외측 단면과 접촉할 수 있다. 이러한 경우, 제4 링부(2240)의 경방향 내측 단면과 휠허브(2300)의 경방향 외측 단면의 마찰력에 의하여 너트(2100)의 축방향 내측(D2)으로의 풀림이 보다 효과적으로 방지될 수 있다.
도 11은 본 개시의 제2 실시예에 따른 휠베어링 조립체(2000)를 Ⅳ 선을 따라 절단한 단면도의 일부를 확대한 확대도이다.
도 11에는 제2 링부(2220) 및 제3 링부(2230)로 형성된 링(2200)의 일부분에 대한 단면 및 너트(2100)의 너트 홈(2110)이 형성되지 않은 부분의 단면이 도시되어 있다.
너트(2100)가 축방향 내측(D2)으로 풀리는 경우, 제2 링부(2220)의 축방향 외측 단면이 너트(2100)의 축방향 내측 단면과 접촉할 수 있다. 또한, 제2 링부(2220)로부터 연장된 제3 링부(2230)의 선단이 휠허브(2300)와 접촉할 수 있다. 제3 링부(2230)는 축방향 내측의 선단이 휠허브 돌기(2311)에 접촉하고 있고, 제2 링부(2220)로부터 연장되어 소정의 각도로 경사지도록 형성되므로, 너트(2100)가 축방향 내측(D2)으로 풀리는 경우 휠허브 돌기(2311)에 의해 제2 링부(2220)를 축방향 외측으로 지지할 수 있다. 즉, 너트(2100)의 축방향 내측(D2)으로의 풀림으로 의해 제2 링부(2220)에 축방향 내측(D2)으로의 힘(F1a)이 인가되는 경우, 제3 링부(2230)는 제2 링부(2220)로부터 축방향 내측으로의 힘(F2a)을 받을 수 있다. 이 때, 제3 링부(2230)의 선단(2230A)이 휠허브 돌기(2311)의 축방향 외측 단면과 접촉함으로써, 제3 링부(2230)는 휠허브 돌기(2311)에 의해 축방향 외측(D1)으로 지지될 수 있다.
상술한 바와 같이, 너트(2100)가 축방향 내측(D2)으로 풀리는 경우, 너트(2100)는 제2 링부(2220)에 의해 지지되고, 제2 링부(2220)는 제3 링부(2230)에 의해 지지되고, 제3 링부(2230)의 선단(2230A)이 휠허브 돌기(2311)의 축방향 외측 단면과 접촉함으로써 제3 링부(2230)는 휠허브 돌기(2311)에 의해 축방향 외측(D1)으로 지지되고, 이에 따라 너트(2100)의 풀림이 방지될 수 있다.
본 개시의 일 실시예에 따르면, 휠허브 돌기(2311)의 원주방향에는 제4 링부(2240)가 이웃할 수 있다. 휠허브 돌기(2311)의 원주방향 단면은 너트(2100)가 축방향 내측(D2)으로 풀리는 경우, 제4 링부(2240)를 지지함으로써 너트(2100)의 축방향 내측(D2)으로의 풀림을 방지할 수 있다.
도 12는 본 개시의 제3 실시예에 따른 휠베어링 조립체(3000)를 나타낸 사시도이다. 상술한 실시예에서 설명된 구성과 중복되는 구성에 대한 설명은 이하에서 생략한다.
본 개시의 일 실시예에 따르면, 휠베어링 조립체(3000)는 차량의 현가 장치에 결합되어 차체에 고정되는 외륜(3500); 외륜(3500)에 대해 상대 회전하며 원통부(3320) 및 원통부(3320)로부터 연장되고 외주면에 나사산이 형성된 조인트부(3310)를 포함하는 휠허브(3300); 휠허브(3300)의 외주면에 압입되어 장착되는 내륜(3400); 내륜(3400)이 장착된 휠허브(3300)와 외륜(3500) 사이에 개재되는 하나 이상의 전동체(3510); 휠허브(3300)의 조인트부(3310)에 형성된 나사산에 나사결합되어 내륜(3400)에 예압을 제공하는 너트(3100); 너트(3100)와 휠허브(3300) 사이에 장착되어 너트(3100)의 풀림을 방지하는 링(3200) 등을 포함하여 구성될 수 있다.
본 개시의 일 실시예에 따르면, 휠허브(3300)는 나사산보다 축방향 내측(D2)에 형성되고 경방향 외측(D3)으로 돌출된 휠허브 돌기(3311)를 구비할 수 있다. 본 개시의 일 실시예에 따르면, 휠허브(3300)는 너트(3100)가 결합되는 나사산보다 축방향 내측에 경방향 내측으로 함몰된 결합홈(3312)을 구비할 수 있다. 예컨대, 휠허브(3300)는 나사산보다 축방향 내측(D2)에 위치하며 휠허브 돌기(3311)가 형성되지 않은 부분에[예를 들어, 원주방향으로 돌기부(3311) 사이에] 경방향 내측(D4)으로 함몰된 결합홈(3312)을 더 구비할 수 있다.
도 13은 본 개시의 제3 실시예에 따른 너트(3100)를 나타낸 사시도이다.
본 개시의 일 실시예에 따르면, 너트(3100)의 내주면(3100A)에는 나사산(3100B)이 형성될 수 있다. 너트(3100)의 내주면(3100A)에 형성되는 나사산(3100B)은 휠허브(3300)의 조인트부(3310)의 외주면에 형성된 나사산과 결합할 수 있다. 본 개시의 일 실시예에 따르면, 휠허브(3300)와 결합한 너트(3100)의 축방향 외측(D1)에는 휠허브(3300)와 내륜(3400)이 결합될 수 있다. 너트(3100)는 휠허브(3300)에 결합된 내륜(3400)의 축방향 내측 단면을 지지함으로써, 내륜(3400)에 예압을 제공할 수 있다.
본 개시의 일 실시예에 따르면, 너트(3100)는 경방향 외측 단면에 제1 너트 홈(3110)이 형성될 수 있다. 예를 들어, 제1 너트 홈(3110)은 원주방향을 따라 복수로[예컨대, 2 내지 10개] 이격되어 구비될 수 있다. 이러한 제1 너트 홈(3110)은 휠허브(3300)와 너트(3100)를 결합할 때의 너트(3100)와 체결 도구를 결합하기 위한 용도로 사용될 수 있다.
본 개시의 일 실시예에 따르면, 너트(3100)는 경방향 내측 단면에 경방향 외측으로 함몰된 제2 너트 홈(3130)이 구비되어 후술하는 링(3200)의 경방향 외측 돌기부가 결합되도록 구성될 수 있다. 예컨대, 너트(3100)는 축방향 내측(D2)으로 연장된 너트 돌기부(3120)를 구비할 수 있으며, 너트 돌기부(3120)의 경방향 내측 단면에 제2 너트 홈(3130)이 형성되도록 구성될 수 있다. 본 개시의 일 실시예에 따르면, 제2 너트 홈(3130)은 원주방향(D5)을 따라 이격되어 복수로 구비될 수 있다.
도 14는 본 개시의 제3 실시예에 따른 링(3200)을 나타낸 사시도이다.
본 개시의 일 실시예에 따르면, 링(3200)은 경방향 내측(D4)으로 돌출된 제1 돌기부(3210)를 구비할 수 있다. 본 개시의 일 실시예에 따르면, 링(3200)의 제1 돌기부(3210)는 휠허브(3300)에 구비된 결합홈(3312)에 삽입되어 결합될 수 있다. 예컨대, 제1 돌기부(3210)는 결합홈(3312)에 삽입되어 휠허브 돌기(3311)의 원주방향 단면과 접촉하도록 구성될 수 있다. 여기서, 제1 돌기부(3210)가 휠허브 돌기(3311)의 원주방향 단면과 접촉하도록 구성된다는 것은 제1 돌기부(3210)가 항상 휠허브 돌기(3311)의 원주방향 단면과 접촉한 상태로 유지되는 것을 의미하지는 않을 수 있다. 즉, 제1 돌기부(3210)는 휠허브 돌기(3311)의 원주방향 단면과 항상 접촉한 상태로 장착되도록 구성될 수도 있고, 너트(3100)가 원주방향(D5)으로 회전하는 경우 제1 돌기부(3210)가 휠허브 돌기(3311)의 원주방향 단면과 접촉하도록 구성될 수도 있다.
본 개시의 일 실시예에 따르면, 링(3200)은 경방향 외측(D3)으로 연장된 제2 돌기부(3220)를 가질 수 있다. 이러한 제2 돌기부(3220)는 너트(3100)의 경방향 내측 단면에 형성된 제2 너트 홈(3130)에 삽입되어 결합될 수 있다.
본 개시의 일 실시예에 따르면, 제1 돌기부(3210)는 원주방향(D5)을 따라 이격되어 복수로 구비될 수 있다. 본 개시의 일 실시예에 따르면, 복수의 제1 돌기부(3210)는 원주방향(D5)으로 동일한 간격을 갖도록 이격될 수 있다. 즉, 제1 돌기부(3210)는 링(1200)의 일부의 원주에만 형성될 수 있다.
본 개시의 일 실시예에 따르면, 제2 돌기부(3220)는 원주방향(D5)을 따라 이격되어 복수로 제공될 수 있다. 본 개시의 일 실시예에 따르면, 복수의 제2 돌기부(3220)는 원주방향(D5)으로 동일한 간격을 갖도록 이격될 수 있다. 즉, 제2 돌기부(3220)는 링(1200)의 일부의 원주에만 형성될 수 있다.
본 개시의 일 실시예에 따르면, 제1 돌기부(3210)의 원주방향 길이는 서로 이웃하는 휠허브 돌기(3311) 사이에 형성되는 원주방향 간격의 길이보다 작거나 같을 수 있다. 본 개시의 일 실시예에 따르면, 제2 돌기부(3220)의 원주방향 길이는 제2 너트 홈(3130)의 원주방향 길이보다 작거나 같을 수 있다. 제1 돌기부(3210) 및 제2 돌기부(3220)의 원호 길이가 길어질수록 너트(3100)의 풀림에 대한 링(3200)의 지지력이 강해질 수 있다. 반대로, 제1 돌기부(3210) 및 제2 돌기부(3220)의 원호 길이가 짧아질수록 너트(3100)와 휠허브(3300) 사이에 링(3200)을 보다 쉽게 조립 또는 분해할 수 있다.
본 개시의 일 실시예에 따르면, 제1 돌기부(3210) 및 제2 돌기부(3220)는 링(3200)의 원주방향(D5)을 따라 서로 교대로 배치될 수 있다. 예를 들어, 링(3200)은 축방향(R)과 나란한 복수의 분할선(A)을 포함하고, 제1 돌기부(3210)는 원주방향(D5)을 기준으로 분할선(A)의 일측에 형성되고, 제2 돌기부(3220)는 원주방향(D5)을 기준으로 분할선(A)의 타측에 형성될 수 있다. 즉, 제1 돌기부(3210)와 제2 돌기부(3220)는 링(3200)의 일부에 있어서 택일적으로 형성될 수 있다. 예컨대, 링(3200)의 일부에는 제1 돌기부(3210)만이 형성될 수 있고, 링(3200)의 다른 일부에는 제2 돌기부(3220)만이 형성될 수 있다.
이와 같이, 제1 돌기부(3210) 및 제2 돌기부(3220)를 링(3200)의 원주방향(D5)을 따라 서로 교대로 배치하게 되면, 링(3200)을 너트(3100)와 휠허브(3300) 사이에 조립할 때 링(3200)의 변형을 줄이면서 용이한 조립이 가능할 수 있다. 또한, 링(3200)을 너트(3100)와 휠허브(3300) 사이에서 분리할 때에도 링(3200)이 보다 쉽게 분리될 수 있게 된다.
본 개시의 일 실시예에 따르면, 링(3200)은 절단된 O-링 또는 C-링일 수 있다. 제3 실시예에 따르면, 링(3200)이 너트(3100)와 휠허브(3300) 사이에 개재되므로, 절단된 O-링 또는 C-링 형태로 형성될 경우 조립 및 분해가 보다 용이하게 수행될 수 있다. 절단된 O-링은 링이 원주 전체에 걸쳐 O-형상으로 형성되어 있고 그 중 일부가 절단된 형태의 링일 수 있으며, C-링은 링이 원주의 일부에만 C-형상으로 형성되어 있는 형태의 링일 수 있다.
도 15는 본 개시의 제3 실시예에 따른 휠베어링 조립체(3000)를 Ⅴ선을 따라 절단한 단면도의 일부를 확대한 확대도이다.
본 개시의 일 실시예에 따르면, 링(3200)의 제1 돌기부(3210)는 원주방향(D5)을 따라 서로 이격되며 이웃하는 휠허브 돌기(3311) 사이에 위치하도록 구성될 수 있다. 본 개시의 일 실시예에 따르면, 휠허브(3300)는 나사산보다 축방향 내측(D2)에 경방향 내측(D4)으로 함몰된 결합홈(3312)을 더 구비할 수 있고, 제1 돌기부(3210)는 결합홈(3312)에 삽입되어 결합될 수 있다. 본 개시의 일 실시예에 따르면, 제1 돌기부(3210)는 너트(3100)의 풀림에 의해 링(3200)이 휠허브(3300)에 대하여 원주방향(D5)으로 회전하는 경우 휠허브 돌기(3311)의 원주방향 단면과 접촉해 너트(3100)의 풀림에 의해 링(3200)이 휠허브(3300)에 대해 원주방향(D5)으로 풀리는 것을 방지할 수 있다.
도 16은 본 개시의 제3 실시예에 따른 휠베어링 조립체(3000)를 Ⅵ선을 따라 절단한 단면도의 일부를 확대한 확대도이다.
본 개시의 일 실시예에 따르면, 링(3200)의 제2 돌기부(3220)는 너트 돌기부(3120)의 경방향 내측 단면에 형성된 제2 너트 홈(3130)에 삽입될 수 있다. 링(3200)의 제2 돌기부(3220)가 형성된 부분의 경방향 내측(D4)에는 휠허브 돌기(3311)가 위치할 수 있다.
본 개시의 일 실시예에 따르면, 너트(3100) 체결 후 진동 및 기타 충격으로 인해 휠허브(3300)에 체결된 너트(3100)가 축방향 내측(D2)으로 풀리는 경우, 링(3200)의 제2 돌기부(3220)의 축방향 외측 단면이 제2 너트 홈(3130)의 축방향 내측 단면과 접촉할 수 있다. 이러한 접촉에 의해 링(3200)의 제2 돌기부(3220)는 축방향 내측(D2)으로의 힘(F3)을 받을 수 있다. 이 때, 제2 돌기부(3220)가 제2 너트 홈(3130)의 축방향 내측 단면과 접촉해 너트(3100)를 축방향 외측(D1)으로 지지함(N1)으로써, 너트(3100)의 축방향 내측(D2)으로의 풀림이 방지될 수 있다.
도 17은 본 개시의 제3 실시예에 따른 휠베어링 조립체(3000)의 부분확대도이다. 도 17에서 너트(3100)는 이점 쇄선으로 도시되어 있으며, 제2 너트 홈(3130)의 도시는 생략되어 있으나, 제2 돌기부(3220)는 너트(3100)의 제2 너트 홈(3130)에 삽입된 상태일 수 있다.
본 개시의 일 실시예에 따르면, 너트(3100) 체결 후 진동 및 기타 충격으로 인해 휠허브(3300)에 체결된 너트(3100)가 축방향 내측(D2)으로 풀리는 경우, 링(3200)의 제2 돌기부(3220)는 제2 너트 홈(3130)의 원주방향 단면과 접촉할 수 있다. 제2 너트 홈(3130)의 원주방향 단면과의 접촉에 의하여 링(3200)의 제2 돌기부(3220)는 너트(3100)가 풀리는 방향으로 원주방향의 힘(F4)을 받을 수 있다.
이러한 힘(F4)에 의해 너트(3100)가 풀리는 방향으로 너트(3100)와 링(3200)이 함께 회전하는 경우, 링(3200)의 제1 돌기부(3210)는 결합홈(3312) 및/또는 휠허브 돌기(3311)의 원주방향 단면과 접촉할 수 있다. 이 때, 링(3200)의 제1 돌기부(3210)가 결합홈(3312) 및/또는 휠허브 돌기(3311)의 원주방향 단면과 접촉함으로써, 링(3200)의 제1 돌기부(3210)는 휠허브 돌기(3311)에 의해 지지될 수 있다(N3). 또한, 제1 돌기부(3210)에 의해 휠허브(3300)에 대한 회전이 지지된 링(3200)의 제2 돌기부(3220)는 너트(3100)를 지지할 수 있다(N2).
이와 같이, 본 실시예에 따르면, 제1 돌기부(3210)는 링(3200)의 휠허브(3300)에 대한 원주방향(D5) 회전을 방지하고(N3), 제2 돌기부(3220)는 너트(3100)의 링(3200)에 대한 원주방향(D5) 회전을 방지함으로써(N2), 너트(3100)의 휠허브(3300)에 대한 원주방향(D5) 회전이 방지될 수 있다.
이상 일부 실시예들과 첨부된 도면에 도시된 예에 의해 본 개시의 기술적 사상이 설명되었지만, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 이해할 수 있는 본 개시의 기술적 사상 및 범위를 벗어나지 않는 범위에서 다양한 치환, 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 치환, 변형 및 변경은 첨부된 청구범위 내에 속하는 것으로 생각되어야 한다.

Claims (15)

  1. 차량의 현가 장치에 결합되어 차체에 고정되는 외륜과;
    상기 외륜에 대해 상대 회전하도록 구성되며, 원통부 및 상기 원통부로부터 연장되어 형성되고 외주면에 나사산이 형성된 조인트부를 포함하는 휠허브와;
    상기 휠허브의 외주면에 압입되어 장착되는 하나 이상의 내륜과;
    상기 내륜이 장착된 휠허브와 상기 외륜 사이에 개재되는 하나 이상의 전동체와;
    상기 휠허브의 조인트부에 형성된 나사산에 나사결합되어 상기 내륜에 예압을 제공하는 너트와;
    상기 너트와 상기 휠허브 사이에 장착되어 상기 너트의 풀림을 방지하는 링을 포함하는,
    휠베어링 조립체.
  2. 제1항에 있어서, 상기 링은,
    상기 너트 내로 삽입되어 결합되는 제1 링부와;
    상기 제1 링부로부터 상기 너트의 축방향 내측 단면을 따라 연장되어 형성된 제2 링부와;
    상기 제2 링부로부터 연장되어 형성된 제3 링부를 포함하는,
    휠베어링 조립체.
  3. 제2항에 있어서,
    상기 너트는 경방향 외측 단면에 함몰되어 형성된 하나 이상의 너트 홈을 포함하고,
    상기 제1 링부는 상기 제2 링부로부터 축방향 외측으로 연장되도록 형성되어, 상기 너트의 경방향 외측 단면에 형성된 너트 홈에 삽입되어 결합되도록 구성되는,
    휠베어링 조립체.
  4. 제2항 또는 3항에 있어서,
    상기 휠허브는 상기 조인트부의 나사산보다 축방향 내측에 형성되며 경방향 외측으로 돌출되어 형성된 휠허브 돌기를 구비하고,
    상기 제3 링부는 제2 링부로부터 축방향 내측으로 연장되도록 형성되어 선단이 상기 휠허브 돌기의 축방향 외측 단면과 접촉하여 장착되도록 구성된,
    휠베어링 조립체.
  5. 제2항 내지 제4항 중 어느 한 항에 있어서,
    상기 제3 링부는 상기 제2 링부로부터 휠베어링 조립체의 중심축에 대해 경사진 방향으로 연장되어 형성되는,
    휠베어링 조립체.
  6. 제2항 내지 제5항 중 어느 한 항에 있어서,
    상기 제1 링부 및 상기 제3 링부는 상기 링의 원주방향을 따라 서로 교대로 배치되는,
    휠베어링 조립체.
  7. 제2항 내지 제6항 중 어느 한 항에 있어서,
    상기 링은 상기 제2 링부로부터 축방향 내측으로 연장되어 형성되는 제4 링부를 더 포함하는,
    휠베어링 조립체.
  8. 제7항에 있어서,
    상기 휠허브 돌기는 상기 휠허브의 원주방향을 따라 서로 이격되어 복수로 구비되고,
    상기 제4 링부는 휠허브 돌기 사이의 공간에 삽입되어 장착되도록 구성되는,
    휠베어링 조립체.
  9. 제1항에 있어서,
    상기 링은 경방향 내측으로 돌출된 제1 돌기부를 구비하고,
    상기 휠허브는 상기 너트가 결합되는 나사산 보다 축방향 내측에 경방향 내측으로 함몰된 결합홈을 구비하고,
    상기 제1 돌기부는 상기 휠허브에 형성된 결합홈에 삽입되어 결합되는,
    휠베어링 조립체.
  10. 제9항에 있어서,
    상기 휠허브는 상기 조인트부의 나사산보다 축방향 내측에 형성되며 경방향 외측으로 돌출되어 형성된 휠허브 돌기를 구비하고,
    상기 제1 돌기부는 상기 휠허브 돌기 사이의 공간에 삽입되어 장착되도록 구성되는,
    휠베어링 조립체.
  11. 제9항 또는 제10항에 있어서,
    상기 너트는 경방향 외측 단면에 경방향 내측으로 함몰된 제1 너트 홈을 구비하는,
    휠베어링 조립체.
  12. 제9항 내지 제11항 중 어느 한 항에 있어서,
    상기 링은 경방향 외측으로 연장된 제2 돌기부를 구비하고,
    상기 너트는 경방향 내측 단면에 경방향 외측으로 함몰된 제2 너트 홈을 구비하고,
    상기 제2 돌기부는 상기 제2 너트 홈에 삽입되어 결합되도록 구성되는,
    휠베어링 조립체.
  13. 제12항에 있어서,
    상기 너트는 축방향 내측으로 연장된 너트 돌기부를 구비하고, 상기 제2 너트 홈은 상기 너트 돌기부의 경방향 내측 단면에 형성되는,
    휠베어링 조립체.
  14. 제12항 또는 13항에 있어서,
    상기 제1 돌기부 및 상기 제2 돌기부는 상기 링의 원주방향을 따라 서로 교대로 배치된,
    휠베어링 조립체.
  15. 제1항 내지 14항 중 어느 한 항에 있어서,
    상기 휠허브의 축방향 내측 단부는 등속조인트의 아우터 레이스로 구성되고,
    등속 조인트의 아우터 레이스를 구성하는 휠허브의 축방향 내측 단부의 내주면에는 등속조인트의 회전요소를 수용하기 위한 그루브가 원주방향을 따라 하나 이상 구비되는,
    휠베어링 조립체.
PCT/KR2020/002578 2020-02-21 2020-02-21 휠베어링 조립체 WO2021167148A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/002578 WO2021167148A1 (ko) 2020-02-21 2020-02-21 휠베어링 조립체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/002578 WO2021167148A1 (ko) 2020-02-21 2020-02-21 휠베어링 조립체

Publications (1)

Publication Number Publication Date
WO2021167148A1 true WO2021167148A1 (ko) 2021-08-26

Family

ID=77391674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002578 WO2021167148A1 (ko) 2020-02-21 2020-02-21 휠베어링 조립체

Country Status (1)

Country Link
WO (1) WO2021167148A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957328A (en) * 1988-03-18 1990-09-18 Koyo Seiko Co., Ltd. Hub unit
EP1070603A2 (en) * 1999-07-22 2001-01-24 Meritor Heavy Vehicle Systems, LLC Retaining assembly for an axle hub and bearing assembly
US20110097174A1 (en) * 2009-10-26 2011-04-28 Arnold Varden Locking axle nut
US20110316325A1 (en) * 2010-06-29 2011-12-29 Martin Iii Robert J Spindle nut assembly
KR20180043966A (ko) * 2016-10-21 2018-05-02 현대위아 주식회사 허브일체형 등속조인트
KR20200047105A (ko) * 2018-10-26 2020-05-07 주식회사 일진글로벌 휠 베어링 조립체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957328A (en) * 1988-03-18 1990-09-18 Koyo Seiko Co., Ltd. Hub unit
EP1070603A2 (en) * 1999-07-22 2001-01-24 Meritor Heavy Vehicle Systems, LLC Retaining assembly for an axle hub and bearing assembly
US20110097174A1 (en) * 2009-10-26 2011-04-28 Arnold Varden Locking axle nut
US20110316325A1 (en) * 2010-06-29 2011-12-29 Martin Iii Robert J Spindle nut assembly
KR20180043966A (ko) * 2016-10-21 2018-05-02 현대위아 주식회사 허브일체형 등속조인트
KR20200047105A (ko) * 2018-10-26 2020-05-07 주식회사 일진글로벌 휠 베어링 조립체

Similar Documents

Publication Publication Date Title
WO2019194548A1 (ko) 차량용 휠 베어링
WO2013151195A1 (ko) 휠 베어링 체결 구조 및 체결 방법
WO2012121425A1 (ko) 휠 베어링 조립체
WO2015170884A1 (ko) 호차
WO2020246833A1 (ko) 휠베어링 조립체
WO2021167148A1 (ko) 휠베어링 조립체
WO2021010733A1 (ko) 허브 일체형 등속조인트 장치
WO2020116901A1 (ko) 실링 장치 및 이를 포함하는 휠 베어링 조립체
WO2017069303A1 (ko) 휠 베어링 조립체
WO2020122692A1 (ko) 휠 베어링 조립체
WO2011083930A2 (ko) 차량용 휠 커버
WO2019194553A1 (ko) 휠 허브 및 이를 포함하는 휠 베어링 조립체
WO2018199422A1 (ko) 휠 베어링 어셈블리 및 휠 베어링
KR102601146B1 (ko) 휠 베어링 조립체
WO2020166778A1 (ko) 씰링 기능이 향상된 차량용 휠베어링
WO2020213907A1 (ko) 휠베어링 조립체
WO2021157921A1 (ko) 하이브리드 구동 모듈
WO2012015175A2 (ko) 하우징 일체형 다중 베어링 유닛
WO2022065584A1 (ko) 싸이클로이드 감속기
WO2023244057A1 (ko) 휠베어링 조립체
WO2021215858A1 (ko) 휠베어링 조립체
US11555520B2 (en) Cover assembly for bearing
WO2022260481A1 (ko) 드라이브 액슬의 부트조립체
WO2019221552A1 (ko) 휠 베어링 조립체
WO2018066794A1 (ko) 너클 및 휠 베어링 조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919843

Country of ref document: EP

Kind code of ref document: A1