WO2021166046A1 - Ventilation system - Google Patents

Ventilation system Download PDF

Info

Publication number
WO2021166046A1
WO2021166046A1 PCT/JP2020/006111 JP2020006111W WO2021166046A1 WO 2021166046 A1 WO2021166046 A1 WO 2021166046A1 JP 2020006111 W JP2020006111 W JP 2020006111W WO 2021166046 A1 WO2021166046 A1 WO 2021166046A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
area
exhaust
pollutant
air supply
Prior art date
Application number
PCT/JP2020/006111
Other languages
French (fr)
Japanese (ja)
Inventor
天士郎 田口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/006111 priority Critical patent/WO2021166046A1/en
Publication of WO2021166046A1 publication Critical patent/WO2021166046A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a ventilation system that ventilates while exchanging heat between the supply air flow and the exhaust flow.
  • Patent Document 1 an air supply means for supplying air from the outside to the indoor space from an air supply port and an exhaust means for discharging the air in the indoor space to the outside from the exhaust port are provided in a plurality of rooms in the living space.
  • a ventilation system provided and provided with a control unit for controlling an air supply air volume by an air supply means and an exhaust air volume by an exhaust means is disclosed.
  • the ventilation system described in Patent Document 1 includes an air quality measuring unit for measuring the physical characteristics of indoor and outdoor air.
  • Air quality indicates the nature of air and is indicated by, for example, the concentration of carbon dioxide or the concentration of pollutants such as odorous substances emitted from the human body.
  • Patent Document 1 is intended for ventilation of a living space having a plurality of rooms in which one air supply port and one exhaust port are arranged, and the air quality is biased inside one room. Ventilation when it occurs is not considered. In the transitional period when the air quality of the room deteriorates, areas with poor air quality and areas where the air quality is not so bad coexist inside the room. However, in the technique described in Patent Document 1, the ventilation volume is controlled without considering the bias of the air quality in the room at all.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a ventilation system capable of performing ventilation according to the bias when the air quality is biased inside one room. ..
  • the ventilation system of the present disclosure includes an air supply passage, an exhaust passage, an air supply blower, an exhaust blower, an air supply air volume adjusting unit, and an exhaust air volume adjusting unit. , An air quality detection unit, and a control unit.
  • the air supply passage is provided in the first air supply port and the second area provided in the first area of the first area and the second area in which the space in the same room is divided into the suction port for sucking the outside air. Connect between the air supply port.
  • the exhaust passage connects between the first exhaust port provided in the first area and the second exhaust port provided in the second area, and the discharge port for discharging the air in the space to the outside.
  • the air supply blower is provided in the air supply passage and generates an air flow that blows out outside air from the first air supply port and the second air supply port.
  • the exhaust blower is provided in the exhaust passage and generates an air flow that sucks air in the space from the first exhaust port and the second exhaust port.
  • the air supply air volume adjusting unit distributes the first air supply air volume, which is the amount of air blown from the first air supply port, and the second air supply air volume, which is the amount of air blown out from the second air supply port. It can be changed.
  • the exhaust air volume adjusting unit can change the distribution between the first exhaust air volume, which is the amount of air sucked from the first exhaust port, and the second exhaust air volume, which is the amount of air sucked from the second exhaust port.
  • the air quality detection unit independently detects the air quality of the air in the first area sucked from the first exhaust port and the air in the second area sucked from the second exhaust port.
  • the control unit controls the air supply blower, the exhaust blower, the air supply air volume adjusting unit, and the exhaust air volume adjusting unit based on the detection result of the air quality detection unit.
  • the ventilation system according to the present disclosure has the effect of being able to perform ventilation according to the bias when the air quality is biased inside one room.
  • Flow chart showing an example of the procedure of the air volume adjustment method when the pollutant to be exhausted in the ventilation system according to the first embodiment is detected.
  • Flow chart showing an example of the procedure of the air volume adjustment method when the pollutant to be stopped from supplying air in the ventilation system according to the first embodiment is detected.
  • FIG. 1 is a diagram schematically showing an example of the configuration of the ventilation system according to the first embodiment.
  • the ventilation system 1 is provided to ventilate the partitioned space.
  • the partitioned space is also referred to as a room 110.
  • the ventilation system 1 is provided in the building 100 having the room 110.
  • buildings 100 are houses, buildings, schools, department stores, underground malls, and factories.
  • the building 100 has one or more chambers 110 and an attic 120 provided above the chambers 110.
  • the ventilation system 1 includes two air supply / discharge port grills 11A and 11B, two return air intake port grills 12A and 12B, a heat exchange ventilation device 20, an air supply duct 31, and an exhaust duct 41.
  • the air supply / discharge port grills 11A and 11B are discharge ports for discharging the air outside the building 100 into the chamber 110.
  • the return air suction port grills 12A and 12B are suction ports for sucking the air in the chamber 110.
  • the air supply / discharge port grill 11A and the return air suction port grill 12A are arranged close to each other in the ceiling 111.
  • the air supply / discharge port grill 11B and the return air suction port grill 12B are arranged close to each other at different positions from the air supply / discharge port grill 11A and the return air suction port grill 12A on the ceiling 111. In the example of FIG.
  • the inside of the chamber 110 is the area 110A to be ventilated by the air supply / discharge port grill 11A and the return air suction port grill 12A, and the ventilation target by the air supply / discharge port grill 11B and the return air suction port grill 12B. It is divided into an area 110B and the area 110B. Area 110A corresponds to the first area, and area 110B corresponds to the second area.
  • the air supply / discharge port grill 11A corresponds to the first air supply port, and the air supply / discharge port grill 11B corresponds to the second air supply port.
  • the return air suction port grill 12A corresponds to the second exhaust port, and the return air suction port grill 12B corresponds to the second exhaust port.
  • FIG. 1 it is shown that two supply / discharge port grills 11A and 11B and two return air suction port grills 12A and 12B are provided in the chamber 110, but three in the chamber 110.
  • the above air supply / discharge port grill and return air suction port grill may be provided.
  • the installation locations of the air supply / discharge port grills 11A and 11B and the return air suction port grills 12A and 12B are not limited to the ceiling 111, but may be the side wall 112 or the floor surface 113.
  • FIG. 1 shows a case where the air supply / discharge port grill 11A and the return air suction port grill 12A are arranged on the ceiling 111 in close proximity to each other, the air supply / discharge port grill 11A and the return air suction port are arranged. If the grill 12A can ventilate the air in the area 110A, it does not need to be placed in close proximity.
  • the air supply / discharge port grill 11A may be provided on the ceiling 111, and the return air suction port grill 12A may be provided on the floor surface 113 corresponding to the arrangement position of the air supply / discharge port grill 11A. The same applies to the air supply / discharge port grill 11B and the return air suction port grill 12B.
  • the heat exchange ventilation device 20 sucks in the outside air, which is the outside air of the building 100, and blows out the air supply SF, which is an air flow into the room 110, and the air inside the room 110, and discharges the air to the outside of the building 100.
  • the exhaust flow EF which is the air flow to be generated, is generated, and heat is exchanged between the supply air flow SF and the exhaust flow EF.
  • the heat exchange ventilation device 20 takes in outside air from an outside air suction port 21 that sucks in outside air, an air supply / discharge port 22 that discharges the sucked outside air, and an outside air suction port 21, and supplies and discharges air through the supply air discharge port 22.
  • the air supply blower 23 that supplies air from the outlet grills 11A and 11B into the chamber 110 is provided.
  • the air supply blower 23 generates an air flow SF that flows from the outside of the building 100 into the room 110.
  • the air supply blower 23 has a configuration in which the air volume can be changed.
  • the outside air suction port 21 corresponds to the suction port.
  • the heat exchange ventilation device 20 includes a return air suction port 24 that sucks in the air in the chamber 110, an exhaust discharge port 25 that exhausts the air in the sucked room 110 to the outside of the building 100, and a return air suction port grill 12A.
  • 12B includes an exhaust blower 26 that takes in the air in the chamber 110 and discharges it from the exhaust discharge port 25 to the outside of the chamber 110 through the return air suction port 24.
  • the exhaust blower 26 generates an exhaust flow EF that flows from the inside of the room 110 to the outside of the building 100.
  • the exhaust blower 26 has a configuration in which the air volume can be changed.
  • the exhaust discharge port 25 corresponds to the discharge port.
  • the heat exchange ventilation device 20 includes a supply airflow SF, which is a flow of air taken in from the outside of the room 110 from the outside air suction port 21, and an exhaust flow EF, which is a flow of air taken in from the inside of the room 110 from the return air suction port 24.
  • a heat exchanger 27 for exchanging heat between the and is provided. That is, the heat exchanger 27 is provided across the air supply passage, which is the passage through which the air supply SF flows, and the exhaust passage, which is the passage through which the exhaust flow EF flows. Heat exchange between them.
  • the heat exchanger 27 the temperature of the air taken in from the outside air suction port 21 is brought close to the temperature of the air in the chamber 110, and the air conditioning load in the chamber 110 is reduced.
  • the air supply duct 31 connects between the air supply / discharge port 22 of the heat exchange ventilation device 20 and the air supply / discharge port grills 11A and 11B. That is, the air supply / discharge port 22 of the heat exchange ventilation device 20 and the air supply / discharge port grills 11A and 11B provided in the areas 110A and 110B that divide the same indoor space are connected by the air supply duct 31. ..
  • the air supply duct 31 has an air volume adjusting unit 32 that adjusts the distribution of the air supply air volume discharged from the air supply / discharge port grill 11A and the air supply / discharge port grill 11B.
  • the air volume adjustment unit 32 blows out the air supply air volume, which is the amount of air blown out from the air supply outlet grill 11A, and the air supply outlet grill 11B.
  • the ratio of the air supply air volume, which is the amount of air to be grilled, is changed.
  • An example of the air volume adjusting unit 32 is a damper.
  • the passage connecting the outside air suction port 21 of the heat exchange ventilation device 20 and the air supply / discharge port grills 11A and 11B via the air supply duct 31 corresponds to the air supply passage.
  • the air volume adjusting unit 32 corresponds to the air supply air volume adjusting unit.
  • the amount of air supply air blown from the air supply / discharge port grill 11A corresponds to the amount of the first air supply air
  • the amount of air supply air blown out from the air supply / discharge port grill 11B corresponds to the amount of the second air supply air.
  • the exhaust duct 41 connects between the return air suction port grills 12A and 12B and the return air suction port 24 of the heat exchange ventilation device 20. That is, the return air suction port 24 of the heat exchange ventilation device 20 and the return air suction port grills 12A and 12B provided in different areas in the same indoor space are connected by an exhaust duct 41.
  • the exhaust duct 41 has an air volume adjusting unit 42 that adjusts the distribution of the exhaust air volume sucked from the return air suction port grills 12A and 12B.
  • the amount of exhaust air flowing through the exhaust duct 41 is constant, but the amount of exhaust air, which is the amount of air sucked from the return air suction port grill 12A, and the amount of air sucked from the return air suction port grill 12B by the air volume adjusting unit 42.
  • the ratio with a certain exhaust air volume is changed.
  • An example of the air volume adjusting unit 42 is a damper.
  • the passage connecting the return air suction port grills 12A and 12B and the exhaust discharge port 25 of the heat exchange ventilation device 20 via the exhaust duct 41 corresponds to the exhaust passage.
  • the air volume adjusting unit 42 corresponds to the exhaust air volume adjusting unit.
  • the exhaust air volume sucked from the return air suction port grill 12A corresponds to the first exhaust air volume
  • the exhaust air volume sucked from the return air suction port grill 12B corresponds to the second exhaust air volume.
  • the heat exchange ventilation device 20 the air supply duct 31, and the exhaust duct 41 are provided in the ceiling 120.
  • the ventilation system 1 includes an air quality detection sensor 43A for detecting the air quality in the area 110A and an air quality detection sensor 43B for detecting the air quality in the area 110B.
  • the air quality detection sensor 43A is provided near the return air suction port grill 12A, and the air quality detection sensor 43B is provided near the return air suction port grill 12B.
  • the air quality detection sensor 43A corresponds to the first air quality detection unit, and the air quality detection sensor 43B corresponds to the second air quality detection unit.
  • the air quality detection sensors 43A and 43B are sensors that can detect the air quality.
  • Air quality in one example, is the concentration of pollutants in the air.
  • pollutants are classified into three types: pollutants to be diluted, pollutants to be exhausted, and pollutants to be stopped.
  • the pollutants to be diluted when the pollutants were present in one area in the same indoor space at a predetermined concentration or more, the pollutants were detected as compared with other areas in the same indoor space. It is a pollutant that is treated to increase the air supply air volume in the area intensively.
  • the pollutants to be diluted include carbon dioxide (CO 2 ).
  • Exhaust target pollutants are compared to other areas in the same indoor space without stopping air supply when pollutants are present in a predetermined concentration or more in one area in the same indoor space. Therefore, it is a pollutant that is treated to intensively increase the exhaust air volume in the area where the pollutant is detected.
  • the pollutants to be exhausted include odorous substances. Examples of odorants are ammonia, hydrogen sulfide or methyl mercaptan.
  • pollutants subject to air supply suspension include smoke and carbon monoxide (CO).
  • the air quality detection sensors 43A and 43B may be those capable of detecting a plurality of types of pollutants with one sensor, or may have a plurality of types of sensors capable of detecting the pollutants to be detected. When it is desired to detect carbon dioxide as a pollutant to be diluted, the air quality detection sensors 43A and 43B become carbon dioxide sensors. When it is desired to detect an odorous substance as an exhaust target pollutant, the air quality detection sensors 43A and 43B serve as an odorous sensor.
  • the air quality detection sensors 43A and 43B When it is desired to detect smoke as a pollutant subject to air supply stop, the air quality detection sensors 43A and 43B become smoke sensors, and when it is desired to detect carbon monoxide as a pollutant subject to air supply stop, the air quality detection sensor 43A, 43B, 43B is a carbon monoxide sensor.
  • FIG. 1 shows a case where air quality detection sensors 43A and 43B are provided in the vicinity of the return air suction port grills 12A and 12B, respectively, one air quality detection sensor may be provided.
  • the first state in which the air volume adjusting unit 42 closes the exhaust duct 41 so as not to suck the air from the return air suction port grill 12B, and the exhaust so as not to suck the air from the return air suction port grill 12A. It is assumed that the exhaust air volume can be adjusted between the second state in which the duct 41 is closed and the second state.
  • the exhaust duct 41 capable of detecting the concentration of pollutants in the air sucked from the return air suction port grill 12A in the first state and the air sucked from the return air suction port grill 12B in the second state.
  • One air quality detection sensor is arranged at the inner position. As a result, the air quality detection sensor sets the air volume adjusting unit 42 in the first state to detect the concentration of pollutants in the area 110A, and sets the air volume adjusting unit 42 in the second state to detect the concentration of pollutants in the area 110B. Can be detected.
  • the ventilation system 1 has a remote controller 51 and a control unit 52.
  • the remote controller 51 and the control unit 52 are connected by wire or wirelessly.
  • the remote controller 51 is a user interface for setting the operating state of the ventilation system 1.
  • the remote controller 51 notifies the control unit 52 of the contents of the operating state set by the user.
  • the remote controller 51 sets the magnitudes of the supply air volume and the exhaust air volume, which are one of the operating states, in the control unit 52 according to an instruction from the user.
  • the magnitudes of the supply air volume and the exhaust air volume can be divided into a plurality of stages having different strengths.
  • the air supply air volume and the exhaust air volume are classified into "extra strong”, “strong", “weak”, and “weak” in descending order of air volume, and any of these states set by the user.
  • the control unit 52 is instructed to do so.
  • the control unit 52 controls the air supply blower 23, the exhaust blower 26, the air volume adjusting unit 32 and the air volume adjusting unit 42 according to the setting by the remote controller 51, and adjusts the air supply air volume and the exhaust air volume in each of the areas 110A and 110B. ..
  • the operation of the ventilation system 1 according to the setting by the remote controller 51 is hereinafter referred to as normal operation.
  • the control unit 52 deteriorates the air quality of the areas 110A and 110B based on the difference between the concentration of the pollutant which is the air quality value of the area 110A and the concentration of the pollutant which is the air quality value of the area 110B.
  • the air volume adjusting unit 32 is controlled so as to increase the air supply air volume to the target area, which is the area of the area, or to decrease the air supply air volume to other areas other than the target area.
  • the control unit 52 increases the exhaust air volume from the target area or adjusts the exhaust air volume to another area based on the difference between the concentration of the pollutant in the area 110A and the concentration of the pollutant in the area 110B.
  • the air volume adjusting unit 42 is controlled so as to reduce the air volume.
  • control unit 52 determines the amount of air supplied to the target area of the area 110A and the area 110B where the air quality is deteriorated, based on the difference between the concentration of the pollutant in the area 110A and the concentration of the pollutant in the area 110B.
  • the air volume adjusting unit 32 is controlled so as to increase the amount of air supplied to other areas.
  • control unit 52 increases the exhaust air volume from the target area to be larger than the exhaust air volume from other areas based on the difference between the concentration of the pollutants in the area 110A and the concentration of the pollutants in the area 110B. Controls the adjusting unit 42. More detailed control will be described below.
  • the control unit 52 When pollutants are detected by the air quality detection sensors 43A and 43B during normal operation, the control unit 52 has a plurality of areas 110A in the same indoor space according to the type and concentration of the detected pollutants.
  • the ratio of the supply air volume or the exhaust air volume at 110B is controlled.
  • the control unit 52 changes the ratio of the air supply air volume discharged from the air supply / discharge port grill 11A and the air supply / discharge port grill 11B.
  • the control unit 52 changes the ratio of the exhaust air volume sucked from the return air suction port grill 12A and the return air suction port grill 12B by controlling the position of the air volume adjusting unit 42.
  • the operation of the ventilation system 1 performed when a pollutant is detected is hereinafter referred to as a contaminated operation.
  • the control unit 52 detects a pollutant having a concentration equal to or higher than the lower limit concentration, which is a predetermined concentration of the pollutant
  • the control unit 52 executes the operation at the time of contamination. It is desirable that the operation at the time of contamination is executed when the difference in the concentration of pollutants in the plurality of areas 110A and 110B is equal to or more than a predetermined value.
  • the predetermined value is a value at which it can be determined that the concentrations of the pollutants in the plurality of areas 110A and 110B match within the margin of error.
  • control unit 52 When the control unit 52 detects a pollutant to be diluted at a concentration equal to or higher than the lower limit, the control unit 52 compares the concentration of the pollutant to be diluted in the detected area and another area in the same indoor space, and the concentration of the pollutant to be diluted is increased.
  • the air volume adjusting unit 32 is controlled so that the air supply air volume in the area where the concentration of the pollutant to be diluted is high is larger than that in the low area. As a result, the air supply air volume is intensively increased in the area where the concentration of the pollutant to be diluted is high, and the fresh outside air is supplied to the area where the concentration of the pollutant to be diluted is high.
  • the control unit 52 is the air volume adjusting unit 32 so that the air supply air volume increases in descending order of the concentration of the pollutants to be diluted. To control.
  • control unit 52 When the control unit 52 detects an exhaust target pollutant having a concentration equal to or higher than the lower limit, the control unit 52 compares the concentration of the exhaust target pollutant in the detected area and other areas in the same indoor space, and the concentration of the exhaust target pollutant is increased.
  • the air volume adjusting unit 42 is controlled so that the exhaust air volume in the area where the concentration of the pollutant to be exhausted is high is larger than that in the low area. As a result, the amount of exhaust air from the area where the concentration of the exhaust target pollutant is high is intensively increased, and the air having a high concentration of the exhaust target pollutant is exhausted from the area where the concentration of the exhaust target pollutant is high.
  • control unit 52 sets the air volume adjusting unit 42 so that the exhaust air volume increases in descending order of the concentration of the pollutants to be exhausted. Control.
  • the control unit 52 controls the air volume adjusting units 32 and 42 so that when the air supply stop target pollutant with a concentration equal to or higher than the lower limit is detected, the air supply is stopped and only exhaust is performed. Specifically, the control unit 52 controls the air volume adjusting unit 32 so as to stop the air supply into the room 110 including the area where the air supply stop target pollutant having a concentration equal to or higher than the lower limit is detected. Further, the control unit 52 compares the concentration of the air supply stop target pollutant with other areas in the same indoor space as the area where the air supply stop target pollutant is detected, and the concentration of the air supply stop target pollutant is low.
  • the air volume adjusting unit 42 is controlled so that the exhaust air volume in the area where the concentration of the pollutant to be stopped is high is larger than that in the area. As a result, the supply of air into the chamber 110 is stopped, and the amount of exhaust air from the area where the concentration of the pollutant to be stopped is high is intensively increased, so that the area where the concentration of the pollutant to be stopped is high is increased. The transfer of pollutants subject to air supply suspension to other areas is suppressed.
  • the control unit 52 is an air volume adjusting unit so that the exhaust air volume increases in descending order of the concentration of the pollutants subject to air supply stop. Control 42.
  • the air supply is stopped because there is a possibility that combustion or incomplete combustion has occurred in the space, so fresh air that promotes combustion or incomplete combustion is promoted. This is to prevent the introduction of.
  • the control unit 52 detects an air supply stop target pollutant in a certain area when the operation state is set by the user via the remote controller 51, the air supply stop target pollutant is detected.
  • the air volume of the exhaust blower 26 can be set to the maximum within a changeable range.
  • the control unit 52 controls the exhaust blower 26 so as to exhaust with the "extra strong" of the maximum air volume.
  • the timing to set the maximum air volume to "extra-strong" is before the concentration of pollutants subject to air supply suspension increases in the area where the pollutants subject to air supply suspension are detected, and the air supply to other areas is suspended.
  • Air supply stop in other areas due to migration of target pollutants It is desirable that the concentration of target pollutants is before the concentration that affects the human body.
  • the control unit 52 changes the total air supply amount by changing the rotation speed of the air supply blower 23, and changes the total exhaust amount by changing the rotation speed of the exhaust blower 26.
  • the remote controller 51 sets the lower limit concentration of the pollutant in the control unit 52 based on the contents set on the setting screen of the lower limit concentration of the pollutant that executes the operation at the time of contamination for each type of the pollutant. Can be done. As a result, it is possible to suppress an excessive increase or decrease in air supply and exhaust gas.
  • the remote controller 51 can set the control unit 52 to enable or disable the operation at the time of contamination based on the contents set on the setting screen for switching the enable / disable of the operation at the time of contamination. In this case, even if the operation at the time of contamination is disabled, the operation at the time of contamination is activated when the concentration of the pollutant detected in each of the areas 110A and 110B becomes a concentration affecting the human body.
  • the control unit 52 may be set.
  • the control unit 52 is realized as a processing circuit.
  • the processing circuit may be dedicated hardware or a circuit including a processor.
  • FIG. 2 is a block diagram schematically showing an example of a hardware configuration of a control unit provided in the ventilation system according to the embodiment.
  • the control unit 52 includes a processor 521 and a memory 522.
  • the processor 521 and the memory 522 are connected via the bus line 523.
  • the control unit 52 is realized by the processor 521 executing the program stored in the memory 522. Further, a plurality of processors and a plurality of memories may cooperate to realize the above function. Further, a part of the functions of the control unit 52 may be implemented as an electronic circuit which is dedicated hardware, and the other part may be realized by using the processor 521 and the memory 522.
  • the control unit 52 controls the air supply blower 23, the exhaust blower 26, the air volume adjusting unit 32, and the air volume adjusting unit 42 by an electric signal.
  • the air volume adjusting method when a plurality of air supply / discharge port grills 11A and 11B and a plurality of return air inlet grills 12A and 12B are provided in the room 110 which is the same indoor space is described.
  • the concentration of the pollutant in the area 110A is CA
  • the concentration of the pollutant in the area 110B is CB.
  • FIG. 3 is a flowchart showing an example of the procedure of the air volume adjusting method when the pollutant to be diluted is detected in the ventilation system according to the first embodiment.
  • the control unit 52 determines whether the air quality detection sensors 43A and 43B have detected the contaminants to be diluted at the lower limit concentration or higher (step S11). If the pollutant to be diluted at the lower limit concentration or higher is not detected (No in step S11), the state waits until the pollutant to be diluted at the lower limit concentration or higher is detected.
  • step S11 When a pollutant to be diluted at a concentration equal to or higher than the lower limit is detected (Yes in step S11), the control unit 52 switches the operation from the normal operation to the operation at the time of contamination (step S12). Next, the control unit 52 acquires the concentration CA of the pollutant to be diluted in the area 110A where the pollutant to be diluted is detected from the air quality detection sensor 43A (step S13). Further, the control unit 52 acquires the concentration CB of the pollutant to be diluted from another air quality detection sensor 43B arranged in the area 110B different from the area 110A where the pollutant to be diluted is detected (step S14).
  • the control unit 52 determines whether the concentration CA of the pollutant to be diluted in the area 110A is larger than the concentration CB of the pollutant to be diluted in the area 110B (step S15).
  • the control unit 52 increases the amount of air supplied to the area 110A.
  • the air volume adjusting unit 32 provided in the air supply duct 31 is controlled so as to be performed (step S16). As a result, the ratio of the air supply air volume to the area 110A and the air supply air volume to the area 110B is changed while keeping the total air supply amount as it is. Then, the process returns to step S13.
  • the control unit 52 controls the concentration of the pollutant to be diluted in the area 110A. It is determined whether the concentration CA is smaller than the concentration CB of the pollutant to be diluted in the area 110B (step S17). When the concentration CA of the pollutant to be diluted in the area 110A is smaller than the concentration CB of the pollutant to be diluted in the area 110B (Yes in step S17), the control unit 52 increases the amount of air supplied to the area 110B. The air volume adjusting unit 32 provided in the air supply duct 31 is controlled so as to do so (step S18). As a result, the ratio of the air supply air volume to the area 110A and the air supply air volume to the area 110B is changed while keeping the total air supply amount as it is. Then, the process returns to step S13.
  • the concentration CA of the contaminants to be diluted in area 110A is not smaller than the concentration CB of the contaminants to be diluted in area 110B, that is, the concentration CA of the contaminants to be diluted in area 110A is the concentration CB of the contaminants to be diluted in area 110B.
  • the control unit 52 determines whether the concentration CA of the contaminant to be diluted in the area 110A is below the lower limit (step S19). If the concentration CA of the pollutant to be diluted is not below the lower limit (No in step S19), the control unit 52 acquires the current air volume setting level (step S20), and the current air volume setting level is set. It is determined whether it is the maximum value of the air volume setting (step S21).
  • step S21 If the current air volume setting level is not the maximum value of the air volume setting (No in step S21), the control unit 52 raises the air volume setting level by one step (step S22), and the process returns to step S19. Then, while keeping the air supply air volume in each area 110A and 110B in a uniform state, the pollutants to be diluted are increased while increasing the air volume setting level in the order of "weak”, “weak”, “strong”, and "extra strong". Air is supplied until the concentration CA of is below the lower limit.
  • step S21 When the current air volume setting level is the maximum value of the air volume setting (Yes in step S21), air is supplied in the current state until the concentration CA of the pollutant to be diluted falls below the lower limit value. .. Then, the process returns to step S19.
  • step S19 When the concentration CA of the pollutant to be diluted falls below the lower limit in step S19 (Yes in step S19), the control unit 52 switches the operation from the contaminated operation to the normal operation (step S23). , The process ends.
  • the pollutant to be diluted is detected in the area 110A
  • the same treatment is performed when the pollutant to be diluted is detected in the area 110B.
  • the area 110A and the area 110B are interchanged in the flowchart of FIG.
  • FIG. 4 is a flowchart showing an example of the procedure of the air volume adjusting method when the pollutant to be exhausted in the ventilation system according to the first embodiment is detected.
  • the pollutant to be exhausted is detected in the area 110A of FIG. 1, the following description will be given.
  • control unit 52 determines whether the air quality detection sensors 43A and 43B have detected the exhaust target pollutant having a concentration equal to or higher than the lower limit (step S31). If no exhaust target pollutant having a lower limit concentration or higher is detected (No in step S31), the system waits until an exhaust target pollutant having a lower limit concentration or higher is detected.
  • step S31 When an exhaust target pollutant having a concentration equal to or higher than the lower limit is detected (Yes in step S31), the control unit 52 switches the operation from the normal operation to the operation at the time of contamination (step S32). Next, the control unit 52 acquires the concentration CA of the exhaust target pollutant in the area 110A where the exhaust target pollutant is detected from the air quality detection sensor 43A (step S33). Further, the control unit 52 acquires the concentration CB of the exhaust target pollutant from another air quality detection sensor 43B located in the area 110B different from the area 110A where the exhaust target pollutant is detected (step S34).
  • the control unit 52 determines whether the concentration CA of the exhaust target pollutant in the area 110A is larger than the concentration CB of the exhaust target pollutant in the area 110B (step S35). When the concentration CA of the exhaust target pollutant in the area 110A is larger than the concentration CB of the exhaust target pollutant in the area 110B (Yes in step S35), the control unit 52 increases the exhaust air volume to the area 110A. As described above, the air volume adjusting unit 42 provided in the exhaust duct 41 is controlled (step S36). As a result, the ratio of the exhaust air volume from the area 110A to the exhaust air volume from the area 110B is changed while keeping the total exhaust gas volume as it is. Then, the process returns to step S33.
  • the control unit 52 determines the exhaust target pollutant in the area 110A. It is determined whether the concentration CA is smaller than the concentration CB of the exhaust target pollutant in the area 110B (step S37).
  • the control unit 52 increases the exhaust air volume to the area 110B.
  • the air volume adjusting unit 42 provided in the exhaust duct 41 is controlled in this manner (step S38). As a result, the ratio of the exhaust air volume from the area 110A to the exhaust air volume from the area 110B is changed while keeping the total exhaust gas volume as it is. Then, the process returns to step S33.
  • the concentration CA of the exhaust target pollutant in the area 110A is not smaller than the concentration CB of the exhaust target pollutant in the area 110B, that is, the concentration CA of the exhaust target pollutant in the area 110A is the concentration CB of the exhaust target pollutant in the area 110B. If it is equal to (No in step S37), the control unit 52 determines whether the concentration CA of the exhaust target pollutant in the area 110A is below the lower limit value (step S39). When the concentration CA of the pollutant to be exhausted does not fall below the lower limit (No in step S39), the control unit 52 acquires the current air volume setting level (step S40), and the current air volume setting level is set. It is determined whether it is the maximum value of the air volume setting (step S41).
  • step S41 If the current air volume setting level is not the maximum value of the air volume setting (No in step S41), the control unit 52 raises the air volume setting level by one step (step S42), and the process returns to step S39. Then, while keeping the exhaust air volume in each area 110A and 110B in a uniform state, increasing the air volume setting level in the order of "weak”, “weak”, “strong”, and “extra strong", the exhaust target pollutants Exhaust is performed until the concentration CA falls below the lower limit.
  • step S41 If the current air volume setting level is the maximum value of the air volume setting (Yes in step S41), exhaust is performed until the concentration CA of the pollutant to be exhausted falls below the lower limit value in the current state. Then, the process returns to step S39.
  • step S39 When the concentration CA of the pollutant to be exhausted falls below the lower limit in step S39 (Yes in step S39), the control unit 52 switches the operation from the contaminated operation to the normal operation (step S43). , The process ends.
  • FIG. 5 is a flowchart showing an example of the procedure of the air volume adjusting method when the pollutant to be stopped from supplying air is detected in the ventilation system according to the first embodiment.
  • the following description will be given assuming that the pollutants subject to air supply stoppage have been detected in the area 110A of FIG.
  • control unit 52 determines whether or not the air quality detection sensors 43A and 43B have detected a pollutant subject to air supply stop target having a concentration equal to or higher than the lower limit (step S51). If no pollutant subject to air supply stoppage of the lower limit concentration or higher is detected (No in step S51), the state waits until the pollutant subject to air supply stoppage of the lower limit concentration or higher is detected.
  • step S51 When a pollutant subject to air supply stoppage of a concentration equal to or higher than the lower limit is detected (Yes in step S51), the control unit 52 switches the operation from the normal operation to the operation at the time of contamination (step S52). Further, the control unit 52 stops the air supply into the room 110 of the same indoor space as the area where the air supply stop target pollutant is detected, and sets only the exhaust air volume setting level to the maximum "extra strong”. Switching (step S53).
  • control unit 52 acquires the concentration CA of the air quality stop target pollutant in the area 110A where the air supply stop target pollutant is detected from the air quality detection sensor 43A (step S54). Further, the control unit 52 acquires the concentration CB of the air supply stop target pollutant from another air quality detection sensor 43B located in the area 110B different from the area 110A where the air supply stop target pollutant is detected ( Step S55).
  • the control unit 52 determines whether the concentration CA of the air supply stop target pollutant in the area 110A is larger than the concentration CB of the air supply stop target pollutant in the area 110B (step S56).
  • the control unit 52 exhausts the air to the area 110A.
  • the air volume adjusting unit 42 provided in the exhaust duct 41 is controlled so that the air volume increases (step S57). Then, the process returns to step S54.
  • the control unit 52 supplies the air supply in the area 110A. It is determined whether the concentration CA of the pollutant to be stopped is smaller than the concentration CB of the pollutant to be stopped in the area 110B (step S58). When the concentration CA of the air supply stop target pollutant in the area 110A is smaller than the concentration CB of the air supply stop target pollutant in the area 110B (Yes in step S58), the control unit 52 exhausts the air to the area 110B. The air volume adjusting unit 42 provided in the exhaust duct 41 is controlled so that the air volume increases (step S59). Then, the process returns to step S54.
  • the concentration CA of the air supply stop target pollutant in the area 110A is not smaller than the concentration CB of the air supply stop target pollutant in the area 110B, that is, the concentration CA of the air supply stop target pollutant in the area 110A is the supply of the area 110B.
  • the control unit 52 determines whether the concentration CA of the air-stopping target pollutant in the area 110A is below the lower limit value (step). S60).
  • the lower limit value is a value set by the remote controller 51, and the lower limit value can be set only within a range in which the concentration of the pollutant subject to air supply stop does not affect the human body.
  • step S60 If the concentration CA of the pollutant subject to air supply stop is not below the lower limit (No in step S60), the process returns to step S56. Then, the processes from step S56 to step S60 are performed until the concentrations CA and CB of the air supply stop target pollutants in the areas 110A and 110B are the same and the concentration CA of the air supply stop target pollutants falls below the lower limit value. Is repeated. At this time, the exhaust air volume in each of the areas 110A and 110B is made uniform.
  • the concentration CA of the pollutant to be stopped from supplying air falls below the lower limit (Yes in step S60)
  • the control unit 52 switches the operation from the contaminated operation to the normal operation (step S61). The process ends.
  • the air supply stop target pollutant is detected in the area 110A
  • the same treatment is performed when the air supply stop target pollutant is detected in the area 110B.
  • the area 110A and the area 110B are interchanged in the flowchart of FIG.
  • FIG. 6 is a diagram showing an example of a list of the balance between the air supply air volume and the exhaust air volume according to the concentration of pollutants in each area of FIG.
  • the pollutant to be diluted is carbon dioxide
  • the pollutant to be exhausted is an odorous substance
  • the pollutant to be stopped from supplying air is smoke and carbon monoxide
  • the control unit 52 detects a pollutant
  • the supply air volume and the exhaust air volume are the values shown in FIG. 6 based on the type of the pollutant and the level of the concentration of the pollutant in each of the areas 110A and 110B.
  • the air volume adjusting units 32 and 42 are adjusted so as to be.
  • control unit 52 holds in advance control information indicating the opening degree or position of the air volume adjusting units 32 and 42 with respect to the combination of the type of pollutant and the concentration of the pollutant for each of the areas 110A and 110B.
  • the air volume adjusting units 32 and 42 are controlled based on the control information.
  • the supply air volume and the exhaust air volume shown in FIG. 6 are achieved in the areas 110A and 110B, respectively.
  • the ratio of the total air supply to the total exhaust that is, the total, except when smoke and carbon monoxide, which affect the human body and require immediate priority for exhaust, are detected. Air can be supplied and exhausted without changing the ventilation volume. Further, since the numerical values of the supply air volume and the exhaust air volume in FIG. 6 are the ratio to the total supply air volume and the total exhaust volume, the supply air volume and the exhaust air volume can be changed by changing the air volume setting level of the supply air volume and the exhaust air volume. It is possible to change the exhaust air volume. Therefore, the supply air volume and the exhaust air volume can be changed with a certain degree of freedom.
  • the air supply passage and the exhaust passage are set as one set and two sets are provided in the same space, but the number of sets may be a plurality of sets and may be two or more sets.
  • a plurality of sets of the air supply / discharge port grills 11A and 11B and the return air suction port grills 12A and 12B are provided in the chamber 110 that partitions one space.
  • the air supply / discharge ports 22 of the heat exchange ventilation device 20 and the plurality of air supply / discharge port grills 11A and 11B are connected by an air supply duct 31, and the air supply ducts 31 are connected to the respective air supply / discharge port grills 11A and 11B.
  • An air volume adjusting unit 32 for adjusting the distribution of the air supply air volume to the air volume is provided.
  • the return air suction port 24 of the heat exchange ventilation device 20 and the plurality of return air suction port grills 12A and 12B are connected by an exhaust duct 41, and the exhaust duct 41 is connected to the return air suction port grills 12A and 12B.
  • An air volume adjusting unit 42 for adjusting the distribution of the exhaust air volume is provided.
  • the air quality detection sensors 43A and 43B for detecting the air quality of the areas 110A and 110B in which the pair of the air supply / discharge port grills 11A and 11B and the return air suction port grills 12A and 12B supply and exhaust air are provided in the respective areas 110A and 110A. It is provided in 110B.
  • the air volume adjusting units 32 and 42 provided in the air supply duct 31 and the exhaust duct 41 are adjusted according to the magnitude of the concentration of pollutants in the plurality of areas 110A and 110B detected by the air quality detection sensors 43A and 43B.
  • a control unit 52 for controlling the magnitude of the air volume is provided.
  • control unit 52 is connected to the air supply duct 31 and the exhaust duct 41 according to the type of pollutants detected by the air quality detection sensors 43A and 43B and the magnitude of the concentration of pollutants in the plurality of areas 110A and 110B.
  • the air volume adjusting units 32 and 42 provided are adjusted. As a result, the total air supply amount or the total exhaust amount is constant, and the ratio of the supply air amount or the exhaust air amount in each of the areas 110A and 110B is changed. As a result, it is possible to prevent the balance between air supply and exhaust in the chamber 110 from being deteriorated.
  • the ventilation method is changed according to the type of pollutants. This has the effect of being able to ventilate the room 110 suitable for the type of pollutant.
  • the pollutant is carbon dioxide
  • the concentration of carbon dioxide can be quickly reduced to a concentration that does not affect the human body. It can be reduced.
  • the pollutant is an odorous substance
  • the exhaust air volume is intensively increased in the area where the pollutant is detected to diffuse the odorous substance into the chamber 110, that is, the odor to other areas. The transfer of substances can be suppressed.
  • the pollutant is smoke or carbon monoxide, that is, if a fire breaks out in a certain area
  • the air supply to the room 110 is stopped and the pollutant is concentrated in the detected area.
  • Increase the exhaust air volume As a result, the progress of combustion and incomplete combustion can be suppressed, and the pollutants in the chamber 110 can be quickly exhausted to the outside of the chamber 110.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
  • Ventilation system 11A, 11B Air supply outlet grill, 12A, 12B Return air suction port grill, 20 Heat exchange ventilation device, 21 Outside air suction port, 22 Air supply discharge port, 23 Supply air blower, 24 Return air suction port, 25 exhaust outlet, 26 exhaust blower, 27 heat exchanger, 31 air supply duct, 32, 42 air volume control unit, 41 exhaust duct, 43A, 43B air quality detection sensor, 51 remote controller, 52 control unit, 100 buildings, 110 rooms, 110A, 110B areas, 111 ceilings, 112 side walls, 113 floors, 120 behind the ceiling, 521 processors, 522 memories, 523 bus lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

This ventilation system comprises a supply air passage, an exhaust air passage, a supply air blower, an exhaust air blower, a supply air volume adjustment unit, an exhaust air volume adjustment unit, an air quality detection unit, and a control unit. The supply air passage connects an intake port for drawing in external air to a first air supply port provided in a first area and a second air supply port provided in a second area. The exhaust air passage connects a first exhaust port provided in the first area and a second exhaust port provided in the second area, to a discharge port for discharging the air in the space to the outside. The supply air volume adjustment unit is capable of changing the distribution between the first supply air volume from the first air supply port and the second supply air volume from the second air supply port. The exhaust air volume adjustment unit is capable of changing the distribution between the first exhaust air volume at the first exhaust port and the second exhaust air volume at the second exhaust port. The air quality detection unit independently detects the quality of air in the first area and the second area. The control unit controls the supply air blower, the exhaust air blower, the supply air volume adjustment unit, and the exhaust air volume adjustment unit on the basis of the detection results of the air quality detection unit.

Description

換気システムVentilation system
 本開示は、給気流と排気流との間で熱交換を行いながら換気を行う換気システムに関する。 The present disclosure relates to a ventilation system that ventilates while exchanging heat between the supply air flow and the exhaust flow.
 従来、室内の空気中の汚染物質の他室への拡散を防止することを目的とした換気システムが提案されている。特許文献1には、室外からの空気を給気口から室内空間に供給する給気手段と、室内空間の空気を排気口から室外に排出する排気手段と、を居住空間内の複数の部屋に設け、給気手段による給気風量と排気手段による排気風量とを制御する制御部を備える換気システムが開示されている。特許文献1に記載の換気システムでは、室内および室外の空気の物性値を測定する空質測定部を備える。空質測定部によって、ある部屋に空気質を悪化させる要因があると判断されたとき、制御部は、その部屋における排気手段の排気風量を多くするとともに、その部屋以外の部屋における給気手段の給気風量を多くする給気排気バランス調整モードに切り替える。空気質は空気の性質を示すものであり、例えば、二酸化炭素濃度または人体から発せられる臭気物質などの汚染物質の濃度によって示される。 Conventionally, a ventilation system has been proposed for the purpose of preventing the diffusion of pollutants in the indoor air to other rooms. In Patent Document 1, an air supply means for supplying air from the outside to the indoor space from an air supply port and an exhaust means for discharging the air in the indoor space to the outside from the exhaust port are provided in a plurality of rooms in the living space. A ventilation system provided and provided with a control unit for controlling an air supply air volume by an air supply means and an exhaust air volume by an exhaust means is disclosed. The ventilation system described in Patent Document 1 includes an air quality measuring unit for measuring the physical characteristics of indoor and outdoor air. When the air quality measuring unit determines that there is a factor that deteriorates the air quality in a certain room, the control unit increases the exhaust air volume of the exhaust means in that room and increases the exhaust air volume of the exhaust means in the room other than that room. Switch to the air supply / exhaust balance adjustment mode that increases the air supply air volume. Air quality indicates the nature of air and is indicated by, for example, the concentration of carbon dioxide or the concentration of pollutants such as odorous substances emitted from the human body.
特開2016-138705号公報Japanese Unexamined Patent Publication No. 2016-138705
 しかしながら、上記特許文献1に記載の技術では、1つの給気口および1つの排気口が配置された部屋を複数備える居住空間の換気が対象であり、1つの部屋の内部で空気質に偏りが生じた場合の換気については考慮されていない。部屋の空気質が悪化する過渡期では、空気質の悪い領域と空気質が未だそれほど悪くなっていない領域とが部屋の内部に混在する。しかし、特許文献1に記載の技術では、部屋内の空気質の偏りを全く考慮せずに、換気量が制御されている。 However, the technique described in Patent Document 1 is intended for ventilation of a living space having a plurality of rooms in which one air supply port and one exhaust port are arranged, and the air quality is biased inside one room. Ventilation when it occurs is not considered. In the transitional period when the air quality of the room deteriorates, areas with poor air quality and areas where the air quality is not so bad coexist inside the room. However, in the technique described in Patent Document 1, the ventilation volume is controlled without considering the bias of the air quality in the room at all.
 本開示は、上記に鑑みてなされたものであって、1つの部屋の内部で空気質に偏りが生じた場合に、偏りに応じた換気を行うことができる換気システムを得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a ventilation system capable of performing ventilation according to the bias when the air quality is biased inside one room. ..
 上述した課題を解決し、目的を達成するために、本開示の換気システムは、給気通路と、排気通路と、給気送風機と、排気送風機と、給気風量調節部と、排気風量調節部と、空気質検知部と、制御部と、を備える。給気通路は、外部の空気を吸い込む吸込口と、同一室内の空間を分割した第1エリアおよび第2エリアのうち第1エリアに設けられる第1給気口および第2エリアに設けられる第2給気口と、の間を繋ぐ。排気通路は、第1エリアに設けられる第1排気口および第2エリアに設けられる第2排気口と、空間の空気を外部に排出する吐出口と、の間を繋ぐ。給気送風機は、給気通路に設けられ、第1給気口および第2給気口から外部の空気を吹き出させる空気流を生成する。排気送風機は、排気通路に設けられ、第1排気口および第2排気口から空間の空気を吸い込む空気流を生成する。給気風量調節部は、第1給気口から吹き出される空気の量である第1給気風量と第2給気口から吹き出される空気の量である第2給気風量との配分を変更可能である。排気風量調節部は、第1排気口から吸い込まれる空気の量である第1排気風量と第2排気口から吸い込まれる空気の量である第2排気風量との配分を変更可能である。空気質検知部は、第1排気口から吸い込まれる第1エリアの空気および第2排気口から吸い込まれる第2エリアの空気の空気質を独立して検知する。制御部は、空気質検知部の検知結果に基づいて、給気送風機、排気送風機、給気風量調節部および排気風量調節部を制御する。 In order to solve the above-mentioned problems and achieve the object, the ventilation system of the present disclosure includes an air supply passage, an exhaust passage, an air supply blower, an exhaust blower, an air supply air volume adjusting unit, and an exhaust air volume adjusting unit. , An air quality detection unit, and a control unit. The air supply passage is provided in the first air supply port and the second area provided in the first area of the first area and the second area in which the space in the same room is divided into the suction port for sucking the outside air. Connect between the air supply port. The exhaust passage connects between the first exhaust port provided in the first area and the second exhaust port provided in the second area, and the discharge port for discharging the air in the space to the outside. The air supply blower is provided in the air supply passage and generates an air flow that blows out outside air from the first air supply port and the second air supply port. The exhaust blower is provided in the exhaust passage and generates an air flow that sucks air in the space from the first exhaust port and the second exhaust port. The air supply air volume adjusting unit distributes the first air supply air volume, which is the amount of air blown from the first air supply port, and the second air supply air volume, which is the amount of air blown out from the second air supply port. It can be changed. The exhaust air volume adjusting unit can change the distribution between the first exhaust air volume, which is the amount of air sucked from the first exhaust port, and the second exhaust air volume, which is the amount of air sucked from the second exhaust port. The air quality detection unit independently detects the air quality of the air in the first area sucked from the first exhaust port and the air in the second area sucked from the second exhaust port. The control unit controls the air supply blower, the exhaust blower, the air supply air volume adjusting unit, and the exhaust air volume adjusting unit based on the detection result of the air quality detection unit.
 本開示にかかる換気システムは、1つの部屋の内部で空気質に偏りが生じた場合に、偏りに応じた換気を行うことができるという効果を奏する。 The ventilation system according to the present disclosure has the effect of being able to perform ventilation according to the bias when the air quality is biased inside one room.
実施の形態1による換気システムの構成の一例を模式的に示す図The figure which shows typically an example of the structure of the ventilation system by Embodiment 1. 実施の形態にかかる換気システムに備えられる制御部のハードウェア構成の一例を模式的に示すブロック図A block diagram schematically showing an example of a hardware configuration of a control unit provided in the ventilation system according to the embodiment. 実施の形態1による換気システムでの希釈対象汚染物質が検知された場合の風量調節方法の手順の一例を示すフローチャートFlow chart showing an example of the procedure of the air volume adjustment method when the pollutant to be diluted in the ventilation system according to the first embodiment is detected. 実施の形態1による換気システムでの排気対象汚染物質が検知された場合の風量調節方法の手順の一例を示すフローチャートFlow chart showing an example of the procedure of the air volume adjustment method when the pollutant to be exhausted in the ventilation system according to the first embodiment is detected. 実施の形態1による換気システムでの給気停止対象汚染物質が検知された場合の風量調節方法の手順の一例を示すフローチャートFlow chart showing an example of the procedure of the air volume adjustment method when the pollutant to be stopped from supplying air in the ventilation system according to the first embodiment is detected. 図1の各エリアでの汚染物質の濃度による給気風量および排気風量のバランスの一覧の一例を示す図The figure which shows an example of the list of the balance of the air supply air volume and the exhaust air volume by the concentration of the pollutant in each area of FIG.
 以下に、本開示の実施の形態にかかる換気システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの開示が限定されるものではない。 The ventilation system according to the embodiment of the present disclosure will be described in detail below with reference to the drawings. It should be noted that this embodiment does not limit this disclosure.
実施の形態1.
 図1は、実施の形態1による換気システムの構成の一例を模式的に示す図である。換気システム1は、仕切られた空間を換気するために設けられる。以下では、仕切られた空間は、室110とも称される。換気システム1は、室110を有する建築物100に設けられる。建築物100の一例は、住宅、ビル、学校、デパート、地下街、工場である。建築物100は、1以上の室110と、室110の上部に設けられる天井裏120と、を有する。
Embodiment 1.
FIG. 1 is a diagram schematically showing an example of the configuration of the ventilation system according to the first embodiment. The ventilation system 1 is provided to ventilate the partitioned space. Hereinafter, the partitioned space is also referred to as a room 110. The ventilation system 1 is provided in the building 100 having the room 110. Examples of buildings 100 are houses, buildings, schools, department stores, underground malls, and factories. The building 100 has one or more chambers 110 and an attic 120 provided above the chambers 110.
 換気システム1は、2つの給気吐出口グリル11A,11Bと、2つの還気吸込口グリル12A,12Bと、熱交換換気装置20と、給気ダクト31と、排気ダクト41と、を備える。 The ventilation system 1 includes two air supply / discharge port grills 11A and 11B, two return air intake port grills 12A and 12B, a heat exchange ventilation device 20, an air supply duct 31, and an exhaust duct 41.
 給気吐出口グリル11A,11Bは、建築物100の外部の空気を室110内に吐出する吐出口である。還気吸込口グリル12A,12Bは、室110内の空気を吸い込む吸込口である。給気吐出口グリル11Aおよび還気吸込口グリル12Aは、天井111に互いに近接して配置される。給気吐出口グリル11Bおよび還気吸込口グリル12Bは、天井111の給気吐出口グリル11Aおよび還気吸込口グリル12Aとは異なる位置に互いに近接して配置される。図1の例では、室110内は、給気吐出口グリル11Aおよび還気吸込口グリル12Aによる換気対象となるエリア110Aと、給気吐出口グリル11Bおよび還気吸込口グリル12Bによる換気対象となるエリア110Bと、に分けられる。エリア110Aは、第1エリアに対応し、エリア110Bは、第2エリアに対応する。給気吐出口グリル11Aは、第1給気口に対応し、給気吐出口グリル11Bは、第2給気口に対応する。還気吸込口グリル12Aは、第2排気口に対応し、還気吸込口グリル12Bは、第2排気口に対応する。 The air supply / discharge port grills 11A and 11B are discharge ports for discharging the air outside the building 100 into the chamber 110. The return air suction port grills 12A and 12B are suction ports for sucking the air in the chamber 110. The air supply / discharge port grill 11A and the return air suction port grill 12A are arranged close to each other in the ceiling 111. The air supply / discharge port grill 11B and the return air suction port grill 12B are arranged close to each other at different positions from the air supply / discharge port grill 11A and the return air suction port grill 12A on the ceiling 111. In the example of FIG. 1, the inside of the chamber 110 is the area 110A to be ventilated by the air supply / discharge port grill 11A and the return air suction port grill 12A, and the ventilation target by the air supply / discharge port grill 11B and the return air suction port grill 12B. It is divided into an area 110B and the area 110B. Area 110A corresponds to the first area, and area 110B corresponds to the second area. The air supply / discharge port grill 11A corresponds to the first air supply port, and the air supply / discharge port grill 11B corresponds to the second air supply port. The return air suction port grill 12A corresponds to the second exhaust port, and the return air suction port grill 12B corresponds to the second exhaust port.
 また、図1の例では、室110内に給気吐出口グリル11A,11Bおよび還気吸込口グリル12A,12Bは、2つずつ設けられる場合が示されているが、室110内に3つ以上の給気吐出口グリルおよび還気吸込口グリルが設けられてもよい。さらに、給気吐出口グリル11A,11Bおよび還気吸込口グリル12A,12Bの設置場所は、天井111に限られず、側壁112または床面113であってもよい。 Further, in the example of FIG. 1, it is shown that two supply / discharge port grills 11A and 11B and two return air suction port grills 12A and 12B are provided in the chamber 110, but three in the chamber 110. The above air supply / discharge port grill and return air suction port grill may be provided. Further, the installation locations of the air supply / discharge port grills 11A and 11B and the return air suction port grills 12A and 12B are not limited to the ceiling 111, but may be the side wall 112 or the floor surface 113.
 なお、図1では、給気吐出口グリル11Aおよび還気吸込口グリル12Aは、互いに近接して天井111に配置される場合が示されているが、給気吐出口グリル11Aおよび還気吸込口グリル12Aでエリア110A内の空気を換気することができれば、近接して配置される必要はない。一例では、給気吐出口グリル11Aは天井111に設けられ、還気吸込口グリル12Aは、給気吐出口グリル11Aの配置位置に対応する床面113に設けられるようにしてもよい。給気吐出口グリル11Bおよび還気吸込口グリル12Bについても同様である。 Although FIG. 1 shows a case where the air supply / discharge port grill 11A and the return air suction port grill 12A are arranged on the ceiling 111 in close proximity to each other, the air supply / discharge port grill 11A and the return air suction port are arranged. If the grill 12A can ventilate the air in the area 110A, it does not need to be placed in close proximity. In one example, the air supply / discharge port grill 11A may be provided on the ceiling 111, and the return air suction port grill 12A may be provided on the floor surface 113 corresponding to the arrangement position of the air supply / discharge port grill 11A. The same applies to the air supply / discharge port grill 11B and the return air suction port grill 12B.
 熱交換換気装置20は、建築物100の外部の空気である外気を吸込み、室110内に吹出させる空気流である給気流SFと、室110内の空気を吸込み、建築物100の外部に排出する空気流である排気流EFと、を生成するとともに、給気流SFと排気流EFとの間で熱交換させる。 The heat exchange ventilation device 20 sucks in the outside air, which is the outside air of the building 100, and blows out the air supply SF, which is an air flow into the room 110, and the air inside the room 110, and discharges the air to the outside of the building 100. The exhaust flow EF, which is the air flow to be generated, is generated, and heat is exchanged between the supply air flow SF and the exhaust flow EF.
 熱交換換気装置20は、外気を吸い込む外気吸込口21と、吸い込まれた外気を吐出する給気吐出口22と、外気吸込口21から外気を取り入れ、給気吐出口22を介して給気吐出口グリル11A,11Bから室110内に供給する給気送風機23と、を備える。給気送風機23によって、建築物100の外部から室110内へと流れる給気流SFが生成される。給気送風機23は、風量を変更可能な構成を有する。外気吸込口21は、吸込口に対応する。 The heat exchange ventilation device 20 takes in outside air from an outside air suction port 21 that sucks in outside air, an air supply / discharge port 22 that discharges the sucked outside air, and an outside air suction port 21, and supplies and discharges air through the supply air discharge port 22. The air supply blower 23 that supplies air from the outlet grills 11A and 11B into the chamber 110 is provided. The air supply blower 23 generates an air flow SF that flows from the outside of the building 100 into the room 110. The air supply blower 23 has a configuration in which the air volume can be changed. The outside air suction port 21 corresponds to the suction port.
 熱交換換気装置20は、室110内の空気を吸い込む還気吸込口24と、吸い込まれた室110内の空気を建築物100の外部に排気する排気吐出口25と、還気吸込口グリル12A,12Bから室110内の空気を取り入れ、還気吸込口24を介して排気吐出口25から室110外に排出する排気送風機26と、を備える。排気送風機26によって、室110内から建築物100の外部へと流れる排気流EFが生成される。排気送風機26は、風量を変更可能な構成を有する。排気吐出口25は、吐出口に対応する。 The heat exchange ventilation device 20 includes a return air suction port 24 that sucks in the air in the chamber 110, an exhaust discharge port 25 that exhausts the air in the sucked room 110 to the outside of the building 100, and a return air suction port grill 12A. , 12B includes an exhaust blower 26 that takes in the air in the chamber 110 and discharges it from the exhaust discharge port 25 to the outside of the chamber 110 through the return air suction port 24. The exhaust blower 26 generates an exhaust flow EF that flows from the inside of the room 110 to the outside of the building 100. The exhaust blower 26 has a configuration in which the air volume can be changed. The exhaust discharge port 25 corresponds to the discharge port.
 熱交換換気装置20は、外気吸込口21より室110外から取り入れられた空気の流れである給気流SFと、還気吸込口24より室110内から取り入れられた空気の流れである排気流EFと、の間で熱交換させる熱交換器27を備える。すなわち、熱交換器27は、給気流SFが流れる通路である給気通路および排気流EFが流れる通路である排気通路に跨って設けられ、給気通路を通る空気と排気通路を通る空気との間で熱交換を行う。熱交換器27によって、外気吸込口21から取り入れられた空気の温度が、室110内の空気の温度に近付けられ、室110内の空調負荷が低減される。 The heat exchange ventilation device 20 includes a supply airflow SF, which is a flow of air taken in from the outside of the room 110 from the outside air suction port 21, and an exhaust flow EF, which is a flow of air taken in from the inside of the room 110 from the return air suction port 24. A heat exchanger 27 for exchanging heat between the and is provided. That is, the heat exchanger 27 is provided across the air supply passage, which is the passage through which the air supply SF flows, and the exhaust passage, which is the passage through which the exhaust flow EF flows. Heat exchange between them. By the heat exchanger 27, the temperature of the air taken in from the outside air suction port 21 is brought close to the temperature of the air in the chamber 110, and the air conditioning load in the chamber 110 is reduced.
 給気ダクト31は、熱交換換気装置20の給気吐出口22と給気吐出口グリル11A,11Bとの間を接続する。すなわち、熱交換換気装置20の給気吐出口22と、同一の室内空間を分割したエリア110A,110Bに設けられる給気吐出口グリル11A,11Bと、の間が給気ダクト31で接続される。給気ダクト31は、給気吐出口グリル11Aおよび給気吐出口グリル11Bから吐出する給気風量の配分を調節する風量調節部32を有する。給気ダクト31を流れる給気風量は一定であるが、風量調節部32によって、給気吐出口グリル11Aから吹き出される空気の量である給気風量と、給気吐出口グリル11Bから吹き出される空気の量である給気風量と、の比が変更される。風量調節部32の一例は、ダンパである。熱交換換気装置20の外気吸込口21と、給気吐出口グリル11A,11Bと、の間を給気ダクト31を介して結ぶ通路は、給気通路に対応する。風量調節部32は、給気風量調節部に対応する。給気吐出口グリル11Aから吹き出される給気風量は第1給気風量に対応し、給気吐出口グリル11Bから吹き出される給気風量は第2給気風量に対応する。 The air supply duct 31 connects between the air supply / discharge port 22 of the heat exchange ventilation device 20 and the air supply / discharge port grills 11A and 11B. That is, the air supply / discharge port 22 of the heat exchange ventilation device 20 and the air supply / discharge port grills 11A and 11B provided in the areas 110A and 110B that divide the same indoor space are connected by the air supply duct 31. .. The air supply duct 31 has an air volume adjusting unit 32 that adjusts the distribution of the air supply air volume discharged from the air supply / discharge port grill 11A and the air supply / discharge port grill 11B. Although the amount of air supply air flowing through the air supply duct 31 is constant, the air volume adjustment unit 32 blows out the air supply air volume, which is the amount of air blown out from the air supply outlet grill 11A, and the air supply outlet grill 11B. The ratio of the air supply air volume, which is the amount of air to be grilled, is changed. An example of the air volume adjusting unit 32 is a damper. The passage connecting the outside air suction port 21 of the heat exchange ventilation device 20 and the air supply / discharge port grills 11A and 11B via the air supply duct 31 corresponds to the air supply passage. The air volume adjusting unit 32 corresponds to the air supply air volume adjusting unit. The amount of air supply air blown from the air supply / discharge port grill 11A corresponds to the amount of the first air supply air, and the amount of air supply air blown out from the air supply / discharge port grill 11B corresponds to the amount of the second air supply air.
 排気ダクト41は、還気吸込口グリル12A,12Bと熱交換換気装置20の還気吸込口24との間を接続する。すなわち、熱交換換気装置20の還気吸込口24と、同一の室内空間内の異なるエリアに設けられる還気吸込口グリル12A,12Bと、の間が排気ダクト41で接続される。排気ダクト41は、還気吸込口グリル12A,12Bから吸い込む排気風量の配分を調節する風量調節部42を有する。排気ダクト41を流れる排気風量は一定であるが、風量調節部42によって、還気吸込口グリル12Aから吸い込まれる空気の量である排気風量と、還気吸込口グリル12Bから吸い込まれる空気の量である排気風量と、の比が変更される。風量調節部42の一例は、ダンパである。還気吸込口グリル12A,12Bと、熱交換換気装置20の排気吐出口25と、の間を排気ダクト41を介して結ぶ通路は、排気通路に対応する。風量調節部42は、排気風量調節部に対応する。還気吸込口グリル12Aから吸い込まれる排気風量は第1排気風量に対応し、還気吸込口グリル12Bから吸い込まれる排気風量は第2排気風量に対応する。 The exhaust duct 41 connects between the return air suction port grills 12A and 12B and the return air suction port 24 of the heat exchange ventilation device 20. That is, the return air suction port 24 of the heat exchange ventilation device 20 and the return air suction port grills 12A and 12B provided in different areas in the same indoor space are connected by an exhaust duct 41. The exhaust duct 41 has an air volume adjusting unit 42 that adjusts the distribution of the exhaust air volume sucked from the return air suction port grills 12A and 12B. The amount of exhaust air flowing through the exhaust duct 41 is constant, but the amount of exhaust air, which is the amount of air sucked from the return air suction port grill 12A, and the amount of air sucked from the return air suction port grill 12B by the air volume adjusting unit 42. The ratio with a certain exhaust air volume is changed. An example of the air volume adjusting unit 42 is a damper. The passage connecting the return air suction port grills 12A and 12B and the exhaust discharge port 25 of the heat exchange ventilation device 20 via the exhaust duct 41 corresponds to the exhaust passage. The air volume adjusting unit 42 corresponds to the exhaust air volume adjusting unit. The exhaust air volume sucked from the return air suction port grill 12A corresponds to the first exhaust air volume, and the exhaust air volume sucked from the return air suction port grill 12B corresponds to the second exhaust air volume.
 図1の例では、熱交換換気装置20、給気ダクト31および排気ダクト41は、天井裏120に設けられる。 In the example of FIG. 1, the heat exchange ventilation device 20, the air supply duct 31, and the exhaust duct 41 are provided in the ceiling 120.
 換気システム1は、エリア110Aにおける空気質を検知する空気質検知センサ43Aと、エリア110Bにおける空気質を検知する空気質検知センサ43Bと、を備える。一例では、空気質検知センサ43Aは、還気吸込口グリル12A付近に設けられ、空気質検知センサ43Bは、還気吸込口グリル12B付近に設けられる。空気質検知センサ43Aは、第1空気質検知部に対応し、空気質検知センサ43Bは、第2空気質検知部に対応する。 The ventilation system 1 includes an air quality detection sensor 43A for detecting the air quality in the area 110A and an air quality detection sensor 43B for detecting the air quality in the area 110B. In one example, the air quality detection sensor 43A is provided near the return air suction port grill 12A, and the air quality detection sensor 43B is provided near the return air suction port grill 12B. The air quality detection sensor 43A corresponds to the first air quality detection unit, and the air quality detection sensor 43B corresponds to the second air quality detection unit.
 空気質検知センサ43A,43Bは、空気質を検知することができるセンサである。空気質は、一例では、空気中の汚染物質の濃度である。ここでは、汚染物質を、希釈対象汚染物質、排気対象汚染物質および給気停止対象汚染物質の3種類に分類する。 The air quality detection sensors 43A and 43B are sensors that can detect the air quality. Air quality, in one example, is the concentration of pollutants in the air. Here, pollutants are classified into three types: pollutants to be diluted, pollutants to be exhausted, and pollutants to be stopped.
 希釈対象汚染物質は、同一の室内空間内における1つのエリアで汚染物質が予め定められた濃度以上存在する場合に、同一の室内空間内の他のエリアに比して、汚染物質が検知されたエリアの給気風量を集中的に増加させる処理が行われる汚染物質である。希釈対象汚染物質には、二酸化炭素(CO2)が含まれる。 For the pollutants to be diluted, when the pollutants were present in one area in the same indoor space at a predetermined concentration or more, the pollutants were detected as compared with other areas in the same indoor space. It is a pollutant that is treated to increase the air supply air volume in the area intensively. The pollutants to be diluted include carbon dioxide (CO 2 ).
 排気対象汚染物質は、同一の室内空間内における1つのエリアで汚染物質が予め定められた濃度以上存在する場合に、給気を停止せずに、同一の室内空間内の他のエリアに比して、汚染物質が検知されたエリアの排気風量を集中的に増加させる処理が行われる汚染物質である。排気対象汚染物質には、臭気物質が含まれる。臭気物質の一例は、アンモニア、硫化水素またはメチルメルカプタンである。 Exhaust target pollutants are compared to other areas in the same indoor space without stopping air supply when pollutants are present in a predetermined concentration or more in one area in the same indoor space. Therefore, it is a pollutant that is treated to intensively increase the exhaust air volume in the area where the pollutant is detected. The pollutants to be exhausted include odorous substances. Examples of odorants are ammonia, hydrogen sulfide or methyl mercaptan.
 給気停止対象汚染物質は、同一の室内空間内における1つのエリアで汚染物質が予め定められた濃度以上存在する場合に、給気を停止して、同一の室内空間内の他のエリアに比して、汚染物質が検知されたエリアの排気風量を集中的に増加させる処理が行われる汚染物質である。給気停止対象汚染物質には、煙、一酸化炭素(CO)が含まれる。 When a pollutant is present in one area in the same indoor space at a predetermined concentration or more, the air supply is stopped and compared with other areas in the same indoor space. Then, the pollutant is treated to intensively increase the exhaust air volume in the area where the pollutant is detected. Pollutants subject to air supply suspension include smoke and carbon monoxide (CO).
 空気質検知センサ43A,43Bは、1つのセンサで複数種類の汚染物質を検知することができるものでもよいし、検知したい汚染物質を検知することができるセンサを複数種類有するものでもよい。希釈対象汚染物質として二酸化炭素を検出したい場合には、空気質検知センサ43A,43Bは、二酸化炭素センサとなる。排気対象汚染物質として臭気物質を検出したい場合には、空気質検知センサ43A,43Bは、臭気センサとなる。給気停止対象汚染物質として煙を検知したい場合には、空気質検知センサ43A,43Bは煙センサとなり、給気停止対象汚染物質として一酸化炭素を検知したい場合には、空気質検知センサ43A,43Bは一酸化炭素センサとなる。 The air quality detection sensors 43A and 43B may be those capable of detecting a plurality of types of pollutants with one sensor, or may have a plurality of types of sensors capable of detecting the pollutants to be detected. When it is desired to detect carbon dioxide as a pollutant to be diluted, the air quality detection sensors 43A and 43B become carbon dioxide sensors. When it is desired to detect an odorous substance as an exhaust target pollutant, the air quality detection sensors 43A and 43B serve as an odorous sensor. When it is desired to detect smoke as a pollutant subject to air supply stop, the air quality detection sensors 43A and 43B become smoke sensors, and when it is desired to detect carbon monoxide as a pollutant subject to air supply stop, the air quality detection sensor 43A, 43B, 43B is a carbon monoxide sensor.
 なお、図1では、還気吸込口グリル12A,12B付近にそれぞれ空気質検知センサ43A,43Bが設けられる場合を示したが、空気質検知センサは、1つ設けられるものであってもよい。一例では、風量調節部42が、還気吸込口グリル12Bからの空気を吸い込まないように排気ダクト41を塞ぐ状態である第1状態と、還気吸込口グリル12Aから空気を吸い込まないように排気ダクト41を塞ぐ状態である第2状態と、の間で排気風量を調節可能であるとする。この場合、第1状態のときに還気吸込口グリル12Aから吸い込んだ空気および第2状態のときに還気吸込口グリル12Bから吸い込んだ空気の汚染物質の濃度を検知することができる排気ダクト41内の位置に1つの空気質検知センサが配置される。これによって、空気質検知センサは、風量調節部42を第1状態にして、エリア110Aの汚染物質の濃度を検知し、また風量調節部42を第2状態にして、エリア110Bの汚染物質の濃度を検知することができる。 Although FIG. 1 shows a case where air quality detection sensors 43A and 43B are provided in the vicinity of the return air suction port grills 12A and 12B, respectively, one air quality detection sensor may be provided. In one example, the first state in which the air volume adjusting unit 42 closes the exhaust duct 41 so as not to suck the air from the return air suction port grill 12B, and the exhaust so as not to suck the air from the return air suction port grill 12A. It is assumed that the exhaust air volume can be adjusted between the second state in which the duct 41 is closed and the second state. In this case, the exhaust duct 41 capable of detecting the concentration of pollutants in the air sucked from the return air suction port grill 12A in the first state and the air sucked from the return air suction port grill 12B in the second state. One air quality detection sensor is arranged at the inner position. As a result, the air quality detection sensor sets the air volume adjusting unit 42 in the first state to detect the concentration of pollutants in the area 110A, and sets the air volume adjusting unit 42 in the second state to detect the concentration of pollutants in the area 110B. Can be detected.
 換気システム1は、リモートコントローラ51と、制御部52と、を有する。リモートコントローラ51と制御部52とは、有線または無線によって接続される。リモートコントローラ51は、換気システム1の運転状態の設定を行うユーザインタフェースである。リモートコントローラ51は、ユーザによって設定された運転状態の内容を制御部52に通知する。リモートコントローラ51は、一例では、運転状態の1つである給気風量および排気風量の大きさを、ユーザからの指示に従って制御部52に設定する。給気風量および排気風量の大きさは、強さの異なる複数段階に分けることができる。一例では、給気風量および排気風量を、風量の大きい順に、「特強」、「強」、「弱」、「微弱」に分類し、これらのうちのユーザによって設定されたいずれかの状態となるように、制御部52に指示する。 The ventilation system 1 has a remote controller 51 and a control unit 52. The remote controller 51 and the control unit 52 are connected by wire or wirelessly. The remote controller 51 is a user interface for setting the operating state of the ventilation system 1. The remote controller 51 notifies the control unit 52 of the contents of the operating state set by the user. In one example, the remote controller 51 sets the magnitudes of the supply air volume and the exhaust air volume, which are one of the operating states, in the control unit 52 according to an instruction from the user. The magnitudes of the supply air volume and the exhaust air volume can be divided into a plurality of stages having different strengths. In one example, the air supply air volume and the exhaust air volume are classified into "extra strong", "strong", "weak", and "weak" in descending order of air volume, and any of these states set by the user. The control unit 52 is instructed to do so.
 制御部52は、リモートコントローラ51による設定にしたがって、給気送風機23、排気送風機26、風量調節部32および風量調節部42を制御し、各エリア110A,110Bにおける給気風量および排気風量を調節する。リモートコントローラ51による設定に従った換気システム1の運転は、以下では、通常運転と称される。 The control unit 52 controls the air supply blower 23, the exhaust blower 26, the air volume adjusting unit 32 and the air volume adjusting unit 42 according to the setting by the remote controller 51, and adjusts the air supply air volume and the exhaust air volume in each of the areas 110A and 110B. .. The operation of the ventilation system 1 according to the setting by the remote controller 51 is hereinafter referred to as normal operation.
 制御部52は、エリア110Aの空気質の値である汚染物質の濃度とエリア110Bの空気質の値である汚染物質の濃度との差に基づいて、エリア110Aおよびエリア110Bのうち空気質が悪化しているエリアである対象エリアへの給気風量を増加させるように、または対象エリアではない他のエリアへの給気風量を減少させるように風量調節部32を制御する。あるいは、制御部52は、エリア110Aの汚染物質の濃度とエリア110Bの汚染物質の濃度との差に基づいて、対象エリアからの排気風量を増加させるように、または他のエリアへの排気風量を減少させるように風量調節部42を制御する。 The control unit 52 deteriorates the air quality of the areas 110A and 110B based on the difference between the concentration of the pollutant which is the air quality value of the area 110A and the concentration of the pollutant which is the air quality value of the area 110B. The air volume adjusting unit 32 is controlled so as to increase the air supply air volume to the target area, which is the area of the area, or to decrease the air supply air volume to other areas other than the target area. Alternatively, the control unit 52 increases the exhaust air volume from the target area or adjusts the exhaust air volume to another area based on the difference between the concentration of the pollutant in the area 110A and the concentration of the pollutant in the area 110B. The air volume adjusting unit 42 is controlled so as to reduce the air volume.
 また、制御部52は、エリア110Aの汚染物質の濃度とエリア110Bの汚染物質の濃度との差に基づいて、エリア110Aおよびエリア110Bのうち空気質が悪化している対象エリアへの給気風量を他のエリアへの給気風量よりも増加させるように風量調節部32を制御する。あるいは、制御部52は、エリア110Aの汚染物質の濃度とエリア110Bの汚染物質の濃度との差に基づいて、対象エリアからの排気風量を他のエリアからの排気風量よりも増加させるように風量調節部42を制御する。以下に、より詳細な制御について説明する。 Further, the control unit 52 determines the amount of air supplied to the target area of the area 110A and the area 110B where the air quality is deteriorated, based on the difference between the concentration of the pollutant in the area 110A and the concentration of the pollutant in the area 110B. The air volume adjusting unit 32 is controlled so as to increase the amount of air supplied to other areas. Alternatively, the control unit 52 increases the exhaust air volume from the target area to be larger than the exhaust air volume from other areas based on the difference between the concentration of the pollutants in the area 110A and the concentration of the pollutants in the area 110B. Controls the adjusting unit 42. More detailed control will be described below.
 制御部52は、通常運転時に、空気質検知センサ43A,43Bで汚染物質が検知された場合に、検知された汚染物質の種類および濃度に応じて、同一の室内空間内における複数のエリア110A,110Bでの給気風量または排気風量の割合を制御する。制御部52は、風量調節部32を制御することによって、給気吐出口グリル11Aおよび給気吐出口グリル11Bから吐出される給気風量の割合を変更する。同様に、制御部52は、風量調節部42の位置を制御することによって、還気吸込口グリル12Aおよび還気吸込口グリル12Bから吸い込む排気風量の割合を変更する。汚染物質が検知された場合に行われる換気システム1の運転は、以下では、汚染時運転と称される。以下では、制御部52の汚染時運転の処理について説明する。なお、制御部52は、予め定められた汚染物質の濃度である下限濃度以上の汚染物質が検知されると、汚染時運転を実行する。なお、複数のエリア110A,110Bでの汚染物質の濃度の差が予め定められた値以上である場合に汚染時運転が実行されることが望ましい。予め定められた値は、一例では、複数のエリア110A,110Bでの汚染物質の濃度が誤差の範囲内で一致していると判断することができる値である。 When pollutants are detected by the air quality detection sensors 43A and 43B during normal operation, the control unit 52 has a plurality of areas 110A in the same indoor space according to the type and concentration of the detected pollutants. The ratio of the supply air volume or the exhaust air volume at 110B is controlled. By controlling the air volume adjusting unit 32, the control unit 52 changes the ratio of the air supply air volume discharged from the air supply / discharge port grill 11A and the air supply / discharge port grill 11B. Similarly, the control unit 52 changes the ratio of the exhaust air volume sucked from the return air suction port grill 12A and the return air suction port grill 12B by controlling the position of the air volume adjusting unit 42. The operation of the ventilation system 1 performed when a pollutant is detected is hereinafter referred to as a contaminated operation. Hereinafter, the processing of the operation when the control unit 52 is contaminated will be described. When the control unit 52 detects a pollutant having a concentration equal to or higher than the lower limit concentration, which is a predetermined concentration of the pollutant, the control unit 52 executes the operation at the time of contamination. It is desirable that the operation at the time of contamination is executed when the difference in the concentration of pollutants in the plurality of areas 110A and 110B is equal to or more than a predetermined value. In one example, the predetermined value is a value at which it can be determined that the concentrations of the pollutants in the plurality of areas 110A and 110B match within the margin of error.
 制御部52は、下限濃度以上の希釈対象汚染物質を検知した場合に、検知したエリアおよび同一の室内空間内の他のエリアにおける希釈対象汚染物質の濃度を比較し、希釈対象汚染物質の濃度が低いエリアに比して希釈対象汚染物質の濃度が高いエリアの給気風量が多くなるように、風量調節部32を制御する。これによって、希釈対象汚染物質の濃度が高いエリアに給気風量を集中的に増加させ、新鮮な外気が希釈対象汚染物質の濃度が高いエリアに給気される。この場合、室110内における全体の給気風量である総給気量は、汚染時運転の前後で一定である。そのため、汚染時運転の前後で、室110内における総給気量と、全体の排気風量である総排気量と、のバランスが崩れることはない。なお、同一の室内空間内に3以上の給気吐出口グリルが存在する場合には、希釈対象汚染物質の濃度が高い順に、給気風量が増加するように、制御部52は風量調節部32を制御する。 When the control unit 52 detects a pollutant to be diluted at a concentration equal to or higher than the lower limit, the control unit 52 compares the concentration of the pollutant to be diluted in the detected area and another area in the same indoor space, and the concentration of the pollutant to be diluted is increased. The air volume adjusting unit 32 is controlled so that the air supply air volume in the area where the concentration of the pollutant to be diluted is high is larger than that in the low area. As a result, the air supply air volume is intensively increased in the area where the concentration of the pollutant to be diluted is high, and the fresh outside air is supplied to the area where the concentration of the pollutant to be diluted is high. In this case, the total air supply amount, which is the total air supply air volume in the room 110, is constant before and after the operation at the time of contamination. Therefore, the balance between the total air supply amount in the room 110 and the total exhaust amount, which is the total exhaust air amount, is not lost before and after the operation at the time of pollution. When there are three or more air supply outlet grills in the same indoor space, the control unit 52 is the air volume adjusting unit 32 so that the air supply air volume increases in descending order of the concentration of the pollutants to be diluted. To control.
 制御部52は、下限濃度以上の排気対象汚染物質を検知した場合に、検知したエリアおよび同一の室内空間内の他のエリアにおける排気対象汚染物質の濃度を比較し、排気対象汚染物質の濃度が低いエリアに比して排気対象汚染物質の濃度が高いエリアの排気風量が多くなるように、風量調節部42を制御する。これによって、排気対象汚染物質の濃度が高いエリアからの排気風量を集中的に増加させ、排気対象汚染物質の濃度が高いエリアから高い排気対象汚染物質の濃度を有する空気が排気される。また、排気対象汚染物質の濃度が高いエリアから低いエリアへの排気対象汚染物質の移行が抑制される。この場合、室110内における総排気量は、汚染時運転の前後で一定である。そのため、汚染時運転の前後で、室110内における総給気量と総排気量とのバランスが崩れることはない。なお、同一の室内空間内に3以上の還気吸込口グリルが存在する場合には、排気対象汚染物質の濃度が高い順に、排気風量が増加するように、制御部52は風量調節部42を制御する。 When the control unit 52 detects an exhaust target pollutant having a concentration equal to or higher than the lower limit, the control unit 52 compares the concentration of the exhaust target pollutant in the detected area and other areas in the same indoor space, and the concentration of the exhaust target pollutant is increased. The air volume adjusting unit 42 is controlled so that the exhaust air volume in the area where the concentration of the pollutant to be exhausted is high is larger than that in the low area. As a result, the amount of exhaust air from the area where the concentration of the exhaust target pollutant is high is intensively increased, and the air having a high concentration of the exhaust target pollutant is exhausted from the area where the concentration of the exhaust target pollutant is high. In addition, the migration of the pollutants to be exhausted from the area where the concentration of the pollutants to be exhausted is high to the area where the concentration of the pollutants to be exhausted is low is suppressed. In this case, the total displacement in the chamber 110 is constant before and after the operation at the time of contamination. Therefore, the balance between the total air supply amount and the total exhaust amount in the room 110 is not lost before and after the operation at the time of contamination. When there are three or more return air suction port grills in the same indoor space, the control unit 52 sets the air volume adjusting unit 42 so that the exhaust air volume increases in descending order of the concentration of the pollutants to be exhausted. Control.
 制御部52は、下限濃度以上の給気停止対象汚染物質を検知した場合に、給気を停止し、排気のみを行うように、風量調節部32,42を制御する。具体的には、制御部52は、下限濃度以上の給気停止対象汚染物質を検知したエリアを含む室110内への給気を停止するように、風量調節部32を制御する。また、制御部52は、給気停止対象汚染物質を検知したエリアと同一の室内空間内の他のエリアと給気停止対象汚染物質の濃度を比較し、給気停止対象汚染物質の濃度が低いエリアに比して給気停止対象汚染物質の濃度が高いエリアの排気風量が多くなるように、風量調節部42を制御する。これによって、室110内への給気が停止されるとともに、給気停止対象汚染物質の濃度が高いエリアからの排気風量を集中的に増加させ、給気停止対象汚染物質の濃度が高いエリアから他のエリアへの給気停止対象汚染物質の移行が抑制される。なお、同一の室内空間内に3以上の還気吸込口グリルが存在する場合には、給気停止対象汚染物質の濃度が高い順に、排気風量が増加するように、制御部52は風量調節部42を制御する。ここで、給気停止対象汚染物質の場合に、給気を停止させるのは、空間内で燃焼または不完全燃焼が起きている可能性があるため、燃焼または不完全燃焼を促進させる新鮮な空気の導入を防ぐためである。 The control unit 52 controls the air volume adjusting units 32 and 42 so that when the air supply stop target pollutant with a concentration equal to or higher than the lower limit is detected, the air supply is stopped and only exhaust is performed. Specifically, the control unit 52 controls the air volume adjusting unit 32 so as to stop the air supply into the room 110 including the area where the air supply stop target pollutant having a concentration equal to or higher than the lower limit is detected. Further, the control unit 52 compares the concentration of the air supply stop target pollutant with other areas in the same indoor space as the area where the air supply stop target pollutant is detected, and the concentration of the air supply stop target pollutant is low. The air volume adjusting unit 42 is controlled so that the exhaust air volume in the area where the concentration of the pollutant to be stopped is high is larger than that in the area. As a result, the supply of air into the chamber 110 is stopped, and the amount of exhaust air from the area where the concentration of the pollutant to be stopped is high is intensively increased, so that the area where the concentration of the pollutant to be stopped is high is increased. The transfer of pollutants subject to air supply suspension to other areas is suppressed. When there are three or more return air suction port grills in the same indoor space, the control unit 52 is an air volume adjusting unit so that the exhaust air volume increases in descending order of the concentration of the pollutants subject to air supply stop. Control 42. Here, in the case of pollutants subject to air supply suspension, the air supply is stopped because there is a possibility that combustion or incomplete combustion has occurred in the space, so fresh air that promotes combustion or incomplete combustion is promoted. This is to prevent the introduction of.
 なお、制御部52は、リモートコントローラ51を介してユーザによって運転状態が設定されていた場合で、あるエリアで給気停止対象汚染物質を検知した場合には、給気停止対象汚染物質が検出されたエリアでは、排気送風機26の風量を変更可能な範囲で最大に設定することができる。この場合には、制御部52は、最大風量の「特強」で排気を行うように排気送風機26を制御する。最大風量を「特強」にするタイミングは、給気停止対象汚染物質が検知されたエリア内で給気停止対象汚染物質の濃度が高くなる前であり、また、他のエリアへの給気停止対象汚染物質の移行によって他エリアの給気停止対象汚染物質の濃度が人体に影響を及ぼす濃度になる前であることが望ましい。なお、制御部52は、給気送風機23の回転数を変えることによって総給気量を変更し、排気送風機26の回転数を変えることによって総排気量を変更する。 When the control unit 52 detects an air supply stop target pollutant in a certain area when the operation state is set by the user via the remote controller 51, the air supply stop target pollutant is detected. In the area, the air volume of the exhaust blower 26 can be set to the maximum within a changeable range. In this case, the control unit 52 controls the exhaust blower 26 so as to exhaust with the "extra strong" of the maximum air volume. The timing to set the maximum air volume to "extra-strong" is before the concentration of pollutants subject to air supply suspension increases in the area where the pollutants subject to air supply suspension are detected, and the air supply to other areas is suspended. Air supply stop in other areas due to migration of target pollutants It is desirable that the concentration of target pollutants is before the concentration that affects the human body. The control unit 52 changes the total air supply amount by changing the rotation speed of the air supply blower 23, and changes the total exhaust amount by changing the rotation speed of the exhaust blower 26.
 また、リモートコントローラ51は、汚染物質の種類ごとに汚染時運転を実行する汚染物質の下限濃度の設定画面で設定された内容に基づいて、制御部52に、汚染物質の下限濃度を設定することができる。これによって、過剰なまでの給気および排気の増減を抑制することができる。 Further, the remote controller 51 sets the lower limit concentration of the pollutant in the control unit 52 based on the contents set on the setting screen of the lower limit concentration of the pollutant that executes the operation at the time of contamination for each type of the pollutant. Can be done. As a result, it is possible to suppress an excessive increase or decrease in air supply and exhaust gas.
 さらに、リモートコントローラ51は、汚染時運転の有効および無効を切り替える設定画面で設定された内容に基づいて、制御部52に、汚染時運転の有効または無効を設定することができる。この場合、汚染時運転が無効に設定されている場合でも、各エリア110A,110Bで検知された汚染物質の濃度が人体に影響を及ぼす濃度となった場合に、汚染時運転が作動するように制御部52が設定されてもよい。 Further, the remote controller 51 can set the control unit 52 to enable or disable the operation at the time of contamination based on the contents set on the setting screen for switching the enable / disable of the operation at the time of contamination. In this case, even if the operation at the time of contamination is disabled, the operation at the time of contamination is activated when the concentration of the pollutant detected in each of the areas 110A and 110B becomes a concentration affecting the human body. The control unit 52 may be set.
 制御部52は、処理回路として実現される。処理回路は専用のハードウェアであってもよいし、プロセッサを備える回路であってもよい。図2は、実施の形態にかかる換気システムに備えられる制御部のハードウェア構成の一例を模式的に示すブロック図である。制御部52は、プロセッサ521と、メモリ522と、を有する。プロセッサ521とメモリ522とは、バスライン523を介して接続される。制御部52は、メモリ522に記憶されたプログラムをプロセッサ521が実行することによって実現される。また、複数のプロセッサおよび複数のメモリが連携して上記機能を実現してもよい。また、制御部52の機能のうちの一部を専用のハードウェアである電子回路として実装し、他の部分をプロセッサ521およびメモリ522を用いて実現するようにしてもよい。制御部52は、給気送風機23、排気送風機26、風量調節部32および風量調節部42を電気信号によって制御する。 The control unit 52 is realized as a processing circuit. The processing circuit may be dedicated hardware or a circuit including a processor. FIG. 2 is a block diagram schematically showing an example of a hardware configuration of a control unit provided in the ventilation system according to the embodiment. The control unit 52 includes a processor 521 and a memory 522. The processor 521 and the memory 522 are connected via the bus line 523. The control unit 52 is realized by the processor 521 executing the program stored in the memory 522. Further, a plurality of processors and a plurality of memories may cooperate to realize the above function. Further, a part of the functions of the control unit 52 may be implemented as an electronic circuit which is dedicated hardware, and the other part may be realized by using the processor 521 and the memory 522. The control unit 52 controls the air supply blower 23, the exhaust blower 26, the air volume adjusting unit 32, and the air volume adjusting unit 42 by an electric signal.
 つぎに、換気システム1の動作について説明する。以下では、図1に示されるように、同一の室内空間である室110内に複数の給気吐出口グリル11A,11Bおよび複数の還気吸込口グリル12A,12Bを備える場合の風量調節方法を説明する。また、エリア110Aでの汚染物質の濃度をCAとし、エリア110Bでの汚染物質の濃度をCBとする。以下では、エリア110Aで下限濃度以上の各種の汚染物質が検出されたものとする。すなわち、CA>CBであるものとする。 Next, the operation of the ventilation system 1 will be described. In the following, as shown in FIG. 1, the air volume adjusting method when a plurality of air supply / discharge port grills 11A and 11B and a plurality of return air inlet grills 12A and 12B are provided in the room 110 which is the same indoor space is described. explain. Further, the concentration of the pollutant in the area 110A is CA, and the concentration of the pollutant in the area 110B is CB. In the following, it is assumed that various pollutants having a concentration equal to or higher than the lower limit are detected in the area 110A. That is, it is assumed that CA> CB.
 図3は、実施の形態1による換気システムでの希釈対象汚染物質が検知された場合の風量調節方法の手順の一例を示すフローチャートである。まず、制御部52は、空気質検知センサ43A,43Bによって、下限濃度以上の希釈対象汚染物質が検知されたかを判定する(ステップS11)。下限濃度以上の希釈対象汚染物質が検知されていない場合(ステップS11でNoの場合)には、下限濃度以上の希釈対象汚染物質が検知されるまで待ち状態となる。 FIG. 3 is a flowchart showing an example of the procedure of the air volume adjusting method when the pollutant to be diluted is detected in the ventilation system according to the first embodiment. First, the control unit 52 determines whether the air quality detection sensors 43A and 43B have detected the contaminants to be diluted at the lower limit concentration or higher (step S11). If the pollutant to be diluted at the lower limit concentration or higher is not detected (No in step S11), the state waits until the pollutant to be diluted at the lower limit concentration or higher is detected.
 下限濃度以上の希釈対象汚染物質が検知された場合(ステップS11でYesの場合)には、制御部52は、通常運転から汚染時運転へと動作の切り替えを行う(ステップS12)。ついで、制御部52は、希釈対象汚染物質が検知されたエリア110Aにおける希釈対象汚染物質の濃度CAを空気質検知センサ43Aから取得する(ステップS13)。また、制御部52は、希釈対象汚染物質を検出したエリア110Aとは別のエリア110Bに配置されている他の空気質検知センサ43Bから希釈対象汚染物質の濃度CBを取得する(ステップS14)。 When a pollutant to be diluted at a concentration equal to or higher than the lower limit is detected (Yes in step S11), the control unit 52 switches the operation from the normal operation to the operation at the time of contamination (step S12). Next, the control unit 52 acquires the concentration CA of the pollutant to be diluted in the area 110A where the pollutant to be diluted is detected from the air quality detection sensor 43A (step S13). Further, the control unit 52 acquires the concentration CB of the pollutant to be diluted from another air quality detection sensor 43B arranged in the area 110B different from the area 110A where the pollutant to be diluted is detected (step S14).
 制御部52は、エリア110Aの希釈対象汚染物質の濃度CAがエリア110Bの希釈対象汚染物質の濃度CBよりも大きいかを判定する(ステップS15)。エリア110Aの希釈対象汚染物質の濃度CAがエリア110Bの希釈対象汚染物質の濃度CBよりも大きい場合(ステップS15でYesの場合)には、制御部52は、エリア110Aへの給気風量が増加するように、給気ダクト31に設けられる風量調節部32を制御する(ステップS16)。これによって、総給気量はそのままで、エリア110Aへの給気風量とエリア110Bへの給気風量との比が変更される。そして、処理がステップS13に戻る。 The control unit 52 determines whether the concentration CA of the pollutant to be diluted in the area 110A is larger than the concentration CB of the pollutant to be diluted in the area 110B (step S15). When the concentration CA of the pollutant to be diluted in the area 110A is larger than the concentration CB of the pollutant to be diluted in the area 110B (Yes in step S15), the control unit 52 increases the amount of air supplied to the area 110A. The air volume adjusting unit 32 provided in the air supply duct 31 is controlled so as to be performed (step S16). As a result, the ratio of the air supply air volume to the area 110A and the air supply air volume to the area 110B is changed while keeping the total air supply amount as it is. Then, the process returns to step S13.
 エリア110Aの希釈対象汚染物質の濃度CAがエリア110Bの希釈対象汚染物質の濃度CBよりも大きくない場合(ステップS15でNoの場合)には、制御部52は、エリア110Aの希釈対象汚染物質の濃度CAがエリア110Bの希釈対象汚染物質の濃度CBよりも小さいかを判定する(ステップS17)。エリア110Aの希釈対象汚染物質の濃度CAがエリア110Bの希釈対象汚染物質の濃度CBよりも小さい場合(ステップS17でYesの場合)には、制御部52は、エリア110Bへの給気風量が増大するように給気ダクト31に設けられる風量調節部32を制御する(ステップS18)。これによって、総給気量はそのままで、エリア110Aへの給気風量とエリア110Bへの給気風量との比が変更される。そして、処理がステップS13に戻る。 When the concentration CA of the pollutant to be diluted in the area 110A is not larger than the concentration CB of the pollutant to be diluted in the area 110B (No in step S15), the control unit 52 controls the concentration of the pollutant to be diluted in the area 110A. It is determined whether the concentration CA is smaller than the concentration CB of the pollutant to be diluted in the area 110B (step S17). When the concentration CA of the pollutant to be diluted in the area 110A is smaller than the concentration CB of the pollutant to be diluted in the area 110B (Yes in step S17), the control unit 52 increases the amount of air supplied to the area 110B. The air volume adjusting unit 32 provided in the air supply duct 31 is controlled so as to do so (step S18). As a result, the ratio of the air supply air volume to the area 110A and the air supply air volume to the area 110B is changed while keeping the total air supply amount as it is. Then, the process returns to step S13.
 エリア110Aの希釈対象汚染物質の濃度CAがエリア110Bの希釈対象汚染物質の濃度CBよりも小さくない場合、すなわち、エリア110Aの希釈対象汚染物質の濃度CAがエリア110Bの希釈対象汚染物質の濃度CBと等しい場合(ステップS17でNoの場合)には、制御部52は、エリア110Aにおける希釈対象汚染物質の濃度CAが下限値を下回ったかを判定する(ステップS19)。希釈対象汚染物質の濃度CAが下限値を下回っていない場合(ステップS19でNoの場合)には、制御部52は、現在の風量設定レベルを取得し(ステップS20)、現在の風量設定レベルが風量設定の最大値であるかを判定する(ステップS21)。 When the concentration CA of the contaminants to be diluted in area 110A is not smaller than the concentration CB of the contaminants to be diluted in area 110B, that is, the concentration CA of the contaminants to be diluted in area 110A is the concentration CB of the contaminants to be diluted in area 110B. When equal to (No in step S17), the control unit 52 determines whether the concentration CA of the contaminant to be diluted in the area 110A is below the lower limit (step S19). If the concentration CA of the pollutant to be diluted is not below the lower limit (No in step S19), the control unit 52 acquires the current air volume setting level (step S20), and the current air volume setting level is set. It is determined whether it is the maximum value of the air volume setting (step S21).
 現在の風量設定レベルが風量設定の最大値ではない場合(ステップS21でNoの場合)には、制御部52は、風量設定レベルを1段階上げ(ステップS22)、処理がステップS19に戻る。そして、各エリア110A,110Bでの給気風量を均一状態としたまま、風量設定レベルを、「微弱」、「弱」、「強」、「特強」の順に大きくしながら、希釈対象汚染物質の濃度CAが下限値を下回るまで給気が行われる。 If the current air volume setting level is not the maximum value of the air volume setting (No in step S21), the control unit 52 raises the air volume setting level by one step (step S22), and the process returns to step S19. Then, while keeping the air supply air volume in each area 110A and 110B in a uniform state, the pollutants to be diluted are increased while increasing the air volume setting level in the order of "weak", "weak", "strong", and "extra strong". Air is supplied until the concentration CA of is below the lower limit.
 また、現在の風量設定レベルが風量設定の最大値である場合(ステップS21でYesの場合)には、現在の状態で、希釈対象汚染物質の濃度CAが下限値を下回るまで給気が行われる。その後、ステップS19に戻る。 When the current air volume setting level is the maximum value of the air volume setting (Yes in step S21), air is supplied in the current state until the concentration CA of the pollutant to be diluted falls below the lower limit value. .. Then, the process returns to step S19.
 ステップS19で希釈対象汚染物質の濃度CAが下限値を下回った場合(ステップS19でYesの場合)には、制御部52は、汚染時運転から通常運転へと動作の切り替えを行い(ステップS23)、処理が終了する。 When the concentration CA of the pollutant to be diluted falls below the lower limit in step S19 (Yes in step S19), the control unit 52 switches the operation from the contaminated operation to the normal operation (step S23). , The process ends.
 なお、ここでは、エリア110Aで希釈対象汚染物質が検知された場合を示したが、エリア110Bで希釈対象汚染物質が検知された場合も同様の処理が行われる。ただし、この場合には、図3のフローチャートでエリア110Aとエリア110Bとが入れ替わることになる。 Although the case where the pollutant to be diluted is detected in the area 110A is shown here, the same treatment is performed when the pollutant to be diluted is detected in the area 110B. However, in this case, the area 110A and the area 110B are interchanged in the flowchart of FIG.
 図4は、実施の形態1による換気システムでの排気対象汚染物質が検知された場合の風量調節方法の手順の一例を示すフローチャートである。ここでは、図1のエリア110Aで排気対象汚染物質が検知されたものとして、以下の説明を行う。 FIG. 4 is a flowchart showing an example of the procedure of the air volume adjusting method when the pollutant to be exhausted in the ventilation system according to the first embodiment is detected. Here, assuming that the pollutant to be exhausted is detected in the area 110A of FIG. 1, the following description will be given.
 まず、制御部52は、空気質検知センサ43A,43Bによって、下限濃度以上の排気対象汚染物質が検知されたかを判定する(ステップS31)。下限濃度以上の排気対象汚染物質が検知されていない場合(ステップS31でNoの場合)には、下限濃度以上の排気対象汚染物質が検知されるまで待ち状態となる。 First, the control unit 52 determines whether the air quality detection sensors 43A and 43B have detected the exhaust target pollutant having a concentration equal to or higher than the lower limit (step S31). If no exhaust target pollutant having a lower limit concentration or higher is detected (No in step S31), the system waits until an exhaust target pollutant having a lower limit concentration or higher is detected.
 下限濃度以上の排気対象汚染物質が検知された場合(ステップS31でYesの場合)には、制御部52は、通常運転から汚染時運転へと動作の切り替えを行う(ステップS32)。ついで、制御部52は、排気対象汚染物質が検知されたエリア110Aにおける排気対象汚染物質の濃度CAを空気質検知センサ43Aから取得する(ステップS33)。また、制御部52は、排気対象汚染物質を検知したエリア110Aとは別のエリア110Bに配置されている他の空気質検知センサ43Bから排気対象汚染物質の濃度CBを取得する(ステップS34)。 When an exhaust target pollutant having a concentration equal to or higher than the lower limit is detected (Yes in step S31), the control unit 52 switches the operation from the normal operation to the operation at the time of contamination (step S32). Next, the control unit 52 acquires the concentration CA of the exhaust target pollutant in the area 110A where the exhaust target pollutant is detected from the air quality detection sensor 43A (step S33). Further, the control unit 52 acquires the concentration CB of the exhaust target pollutant from another air quality detection sensor 43B located in the area 110B different from the area 110A where the exhaust target pollutant is detected (step S34).
 制御部52は、エリア110Aの排気対象汚染物質の濃度CAがエリア110Bの排気対象汚染物質の濃度CBよりも大きいかを判定する(ステップS35)。エリア110Aの排気対象汚染物質の濃度CAがエリア110Bの排気対象汚染物質の濃度CBよりも大きい場合(ステップS35でYesの場合)には、制御部52は、エリア110Aへの排気風量が増加するように、排気ダクト41に設けられる風量調節部42を制御する(ステップS36)。これによって、総排気量はそのままで、エリア110Aからの排気風量とエリア110Bからの排気風量との比が変更される。そして、処理がステップS33に戻る。 The control unit 52 determines whether the concentration CA of the exhaust target pollutant in the area 110A is larger than the concentration CB of the exhaust target pollutant in the area 110B (step S35). When the concentration CA of the exhaust target pollutant in the area 110A is larger than the concentration CB of the exhaust target pollutant in the area 110B (Yes in step S35), the control unit 52 increases the exhaust air volume to the area 110A. As described above, the air volume adjusting unit 42 provided in the exhaust duct 41 is controlled (step S36). As a result, the ratio of the exhaust air volume from the area 110A to the exhaust air volume from the area 110B is changed while keeping the total exhaust gas volume as it is. Then, the process returns to step S33.
 エリア110Aの排気対象汚染物質の濃度CAがエリア110Bの排気対象汚染物質の濃度CBよりも大きくない場合(ステップS35でNoの場合)には、制御部52は、エリア110Aの排気対象汚染物質の濃度CAがエリア110Bの排気対象汚染物質の濃度CBよりも小さいかを判定する(ステップS37)。エリア110Aの排気対象汚染物質の濃度CAがエリア110Bの排気対象汚染物質の濃度CBよりも小さい場合(ステップS37でYesの場合)には、制御部52は、エリア110Bへの排気風量が増大するように排気ダクト41に設けられる風量調節部42を制御する(ステップS38)。これによって、総排気量はそのままで、エリア110Aからの排気風量とエリア110Bからの排気風量との比が変更される。そして、処理がステップS33に戻る。 When the concentration CA of the exhaust target pollutant in the area 110A is not larger than the concentration CB of the exhaust target pollutant in the area 110B (No in step S35), the control unit 52 determines the exhaust target pollutant in the area 110A. It is determined whether the concentration CA is smaller than the concentration CB of the exhaust target pollutant in the area 110B (step S37). When the concentration CA of the exhaust target pollutant in the area 110A is smaller than the concentration CB of the exhaust target pollutant in the area 110B (Yes in step S37), the control unit 52 increases the exhaust air volume to the area 110B. The air volume adjusting unit 42 provided in the exhaust duct 41 is controlled in this manner (step S38). As a result, the ratio of the exhaust air volume from the area 110A to the exhaust air volume from the area 110B is changed while keeping the total exhaust gas volume as it is. Then, the process returns to step S33.
 エリア110Aの排気対象汚染物質の濃度CAがエリア110Bの排気対象汚染物質の濃度CBよりも小さくない場合、すなわち、エリア110Aの排気対象汚染物質の濃度CAがエリア110Bの排気対象汚染物質の濃度CBと等しい場合(ステップS37でNoの場合)には、制御部52は、エリア110Aにおける排気対象汚染物質の濃度CAが下限値を下回ったかを判定する(ステップS39)。排気対象汚染物質の濃度CAが下限値を下回っていない場合(ステップS39でNoの場合)には、制御部52は、現在の風量設定レベルを取得し(ステップS40)、現在の風量設定レベルが風量設定の最大値であるかを判定する(ステップS41)。 When the concentration CA of the exhaust target pollutant in the area 110A is not smaller than the concentration CB of the exhaust target pollutant in the area 110B, that is, the concentration CA of the exhaust target pollutant in the area 110A is the concentration CB of the exhaust target pollutant in the area 110B. If it is equal to (No in step S37), the control unit 52 determines whether the concentration CA of the exhaust target pollutant in the area 110A is below the lower limit value (step S39). When the concentration CA of the pollutant to be exhausted does not fall below the lower limit (No in step S39), the control unit 52 acquires the current air volume setting level (step S40), and the current air volume setting level is set. It is determined whether it is the maximum value of the air volume setting (step S41).
 現在の風量設定レベルが風量設定の最大値ではない場合(ステップS41でNoの場合)には、制御部52は、風量設定レベルを1段階上げ(ステップS42)、処理がステップS39に戻る。そして、各エリア110A,110Bでの排気風量を均一状態としたまま、風量設定レベルを、「微弱」、「弱」、「強」、「特強」の順に大きくしながら、排気対象汚染物質の濃度CAが下限値を下回るまで排気が行われる。 If the current air volume setting level is not the maximum value of the air volume setting (No in step S41), the control unit 52 raises the air volume setting level by one step (step S42), and the process returns to step S39. Then, while keeping the exhaust air volume in each area 110A and 110B in a uniform state, increasing the air volume setting level in the order of "weak", "weak", "strong", and "extra strong", the exhaust target pollutants Exhaust is performed until the concentration CA falls below the lower limit.
 また、現在の風量設定レベルが風量設定の最大値である場合(ステップS41でYesの場合)には、現在の状態で、排気対象汚染物質の濃度CAが下限値を下回るまで排気が行われる。その後、ステップS39に戻る。 If the current air volume setting level is the maximum value of the air volume setting (Yes in step S41), exhaust is performed until the concentration CA of the pollutant to be exhausted falls below the lower limit value in the current state. Then, the process returns to step S39.
 ステップS39で排気対象汚染物質の濃度CAが下限値を下回った場合(ステップS39でYesの場合)には、制御部52は、汚染時運転から通常運転へと動作の切り替えを行い(ステップS43)、処理が終了する。 When the concentration CA of the pollutant to be exhausted falls below the lower limit in step S39 (Yes in step S39), the control unit 52 switches the operation from the contaminated operation to the normal operation (step S43). , The process ends.
 なお、ここでは、エリア110Aで排気対象汚染物質が検知された場合を示したが、エリア110Bで排気対象汚染物質が検知された場合も同様の処理が行われる。ただし、この場合には、図4のフローチャートでエリア110Aとエリア110Bとが入れ替わることになる。 Although the case where the exhaust target pollutant is detected in the area 110A is shown here, the same treatment is performed when the exhaust target pollutant is detected in the area 110B. However, in this case, the area 110A and the area 110B are interchanged in the flowchart of FIG.
 図5は、実施の形態1による換気システムでの給気停止対象汚染物質が検知された場合の風量調節方法の手順の一例を示すフローチャートである。ここでは、図1のエリア110Aで給気停止対象汚染物質が検知されたものとして、以下の説明を行う。 FIG. 5 is a flowchart showing an example of the procedure of the air volume adjusting method when the pollutant to be stopped from supplying air is detected in the ventilation system according to the first embodiment. Here, the following description will be given assuming that the pollutants subject to air supply stoppage have been detected in the area 110A of FIG.
 まず、制御部52は、空気質検知センサ43A,43Bによって、下限濃度以上の給気停止対象汚染物質が検知されたかを判定する(ステップS51)。下限濃度以上の給気停止対象汚染物質が検知されていない場合(ステップS51でNoの場合)には、下限濃度以上の給気停止対象汚染物質が検知されるまで待ち状態となる。 First, the control unit 52 determines whether or not the air quality detection sensors 43A and 43B have detected a pollutant subject to air supply stop target having a concentration equal to or higher than the lower limit (step S51). If no pollutant subject to air supply stoppage of the lower limit concentration or higher is detected (No in step S51), the state waits until the pollutant subject to air supply stoppage of the lower limit concentration or higher is detected.
 下限濃度以上の給気停止対象汚染物質が検知された場合(ステップS51でYesの場合)には、制御部52は、通常運転から汚染時運転へと動作の切り替えを行う(ステップS52)。また、制御部52は、給気停止対象汚染物質が検出されたエリアと同一の室内空間の室110内への給気を停止し、排気の風量設定レベルのみを最大である「特強」に切り替える(ステップS53)。 When a pollutant subject to air supply stoppage of a concentration equal to or higher than the lower limit is detected (Yes in step S51), the control unit 52 switches the operation from the normal operation to the operation at the time of contamination (step S52). Further, the control unit 52 stops the air supply into the room 110 of the same indoor space as the area where the air supply stop target pollutant is detected, and sets only the exhaust air volume setting level to the maximum "extra strong". Switching (step S53).
 ついで、制御部52は、給気停止対象汚染物質が検知されたエリア110Aにおける給気停止対象汚染物質の濃度CAを空気質検知センサ43Aから取得する(ステップS54)。また、制御部52は、給気停止対象汚染物質を検知したエリア110Aとは別のエリア110Bに配置されている他の空気質検知センサ43Bから給気停止対象汚染物質の濃度CBを取得する(ステップS55)。 Next, the control unit 52 acquires the concentration CA of the air quality stop target pollutant in the area 110A where the air supply stop target pollutant is detected from the air quality detection sensor 43A (step S54). Further, the control unit 52 acquires the concentration CB of the air supply stop target pollutant from another air quality detection sensor 43B located in the area 110B different from the area 110A where the air supply stop target pollutant is detected ( Step S55).
 制御部52は、エリア110Aの給気停止対象汚染物質の濃度CAがエリア110Bの給気停止対象汚染物質の濃度CBよりも大きいかを判定する(ステップS56)。エリア110Aの給気停止対象汚染物質の濃度CAがエリア110Bの給気停止対象汚染物質の濃度CBよりも大きい場合(ステップS56でYesの場合)には、制御部52は、エリア110Aへの排気風量が増加するように、排気ダクト41に設けられる風量調節部42を制御する(ステップS57)。そして、処理がステップS54に戻る。 The control unit 52 determines whether the concentration CA of the air supply stop target pollutant in the area 110A is larger than the concentration CB of the air supply stop target pollutant in the area 110B (step S56). When the concentration CA of the air supply stop target pollutant in the area 110A is larger than the concentration CB of the air supply stop target pollutant in the area 110B (Yes in step S56), the control unit 52 exhausts the air to the area 110A. The air volume adjusting unit 42 provided in the exhaust duct 41 is controlled so that the air volume increases (step S57). Then, the process returns to step S54.
 エリア110Aの給気停止対象汚染物質の濃度CAがエリア110Bの給気停止対象汚染物質の濃度CBよりも大きくない場合(ステップS56でNoの場合)には、制御部52は、エリア110Aの給気停止対象汚染物質の濃度CAがエリア110Bの給気停止対象汚染物質の濃度CBよりも小さいかを判定する(ステップS58)。エリア110Aの給気停止対象汚染物質の濃度CAがエリア110Bの給気停止対象汚染物質の濃度CBよりも小さい場合(ステップS58でYesの場合)には、制御部52は、エリア110Bへの排気風量が増大するように排気ダクト41に設けられる風量調節部42を制御する(ステップS59)。そして、処理がステップS54に戻る。 When the concentration CA of the air supply stop target pollutant in the area 110A is not higher than the concentration CB of the air supply stop target pollutant in the area 110B (No in step S56), the control unit 52 supplies the air supply in the area 110A. It is determined whether the concentration CA of the pollutant to be stopped is smaller than the concentration CB of the pollutant to be stopped in the area 110B (step S58). When the concentration CA of the air supply stop target pollutant in the area 110A is smaller than the concentration CB of the air supply stop target pollutant in the area 110B (Yes in step S58), the control unit 52 exhausts the air to the area 110B. The air volume adjusting unit 42 provided in the exhaust duct 41 is controlled so that the air volume increases (step S59). Then, the process returns to step S54.
 エリア110Aの給気停止対象汚染物質の濃度CAがエリア110Bの給気停止対象汚染物質の濃度CBよりも小さくない場合、すなわち、エリア110Aの給気停止対象汚染物質の濃度CAがエリア110Bの給気停止対象汚染物質の濃度CBと等しい場合(ステップS58でNoの場合)には、制御部52は、エリア110Aにおける給気停止対象汚染物質の濃度CAが下限値を下回ったかを判定する(ステップS60)。ここで、下限値は、リモートコントローラ51で設定される値であり、下限値は、給気停止対象汚染物質の濃度が人体に影響がない範囲までしか設定することができない。 When the concentration CA of the air supply stop target pollutant in the area 110A is not smaller than the concentration CB of the air supply stop target pollutant in the area 110B, that is, the concentration CA of the air supply stop target pollutant in the area 110A is the supply of the area 110B. When it is equal to the concentration CB of the air-stopping target pollutant (No in step S58), the control unit 52 determines whether the concentration CA of the air-stopping target pollutant in the area 110A is below the lower limit value (step). S60). Here, the lower limit value is a value set by the remote controller 51, and the lower limit value can be set only within a range in which the concentration of the pollutant subject to air supply stop does not affect the human body.
 給気停止対象汚染物質の濃度CAが下限値を下回っていない場合(ステップS60でNoの場合)には、処理がステップS56に戻る。そして、各エリア110A,110Bでの給気停止対象汚染物質の濃度CA,CBが同一になり、かつ給気停止対象汚染物質の濃度CAが下限値を下回るまで、ステップS56からステップS60までの処理が繰り返される。このとき、各エリア110A,110Bでの排気風量は均一状態とされる。給気停止対象汚染物質の濃度CAが下限値を下回った場合(ステップS60でYesの場合)には、制御部52は、汚染時運転から通常運転へと動作の切り替えを行い(ステップS61)、処理が終了する。 If the concentration CA of the pollutant subject to air supply stop is not below the lower limit (No in step S60), the process returns to step S56. Then, the processes from step S56 to step S60 are performed until the concentrations CA and CB of the air supply stop target pollutants in the areas 110A and 110B are the same and the concentration CA of the air supply stop target pollutants falls below the lower limit value. Is repeated. At this time, the exhaust air volume in each of the areas 110A and 110B is made uniform. When the concentration CA of the pollutant to be stopped from supplying air falls below the lower limit (Yes in step S60), the control unit 52 switches the operation from the contaminated operation to the normal operation (step S61). The process ends.
 なお、ここでは、エリア110Aで給気停止対象汚染物質が検知された場合を示したが、エリア110Bで給気停止対象汚染物質が検知された場合も同様の処理が行われる。ただし、この場合には、図5のフローチャートでエリア110Aとエリア110Bとが入れ替わることになる。 Although the case where the air supply stop target pollutant is detected in the area 110A is shown here, the same treatment is performed when the air supply stop target pollutant is detected in the area 110B. However, in this case, the area 110A and the area 110B are interchanged in the flowchart of FIG.
 図6は、図1の各エリアでの汚染物質の濃度による給気風量および排気風量のバランスの一覧の一例を示す図である。ここでは、希釈対象汚染物質が二酸化炭素であり、排気対象汚染物質が臭気物質であり、給気停止対象汚染物質が煙および一酸化炭素である場合を例に挙げている。制御部52は、汚染物質を検知した場合に、汚染物質の種類と、エリア110A,110Bごとの汚染物質の濃度の大小と、に基づいて、給気風量および排気風量が図6に示される値となるように、風量調節部32,42を調節する。つまり、制御部52は、汚染物質の種類およびエリア110A,110Bごとに汚染物質の濃度の大小の組み合わせに対する風量調節部32,42の開度または位置を示す制御情報を予め保持しており、この制御情報に基づいて風量調節部32,42を制御する。その結果、各エリア110A,110Bにおいて、図6に示される給気風量および排気風量が達成されることになる。 FIG. 6 is a diagram showing an example of a list of the balance between the air supply air volume and the exhaust air volume according to the concentration of pollutants in each area of FIG. Here, the case where the pollutant to be diluted is carbon dioxide, the pollutant to be exhausted is an odorous substance, and the pollutant to be stopped from supplying air is smoke and carbon monoxide is taken as an example. When the control unit 52 detects a pollutant, the supply air volume and the exhaust air volume are the values shown in FIG. 6 based on the type of the pollutant and the level of the concentration of the pollutant in each of the areas 110A and 110B. The air volume adjusting units 32 and 42 are adjusted so as to be. That is, the control unit 52 holds in advance control information indicating the opening degree or position of the air volume adjusting units 32 and 42 with respect to the combination of the type of pollutant and the concentration of the pollutant for each of the areas 110A and 110B. The air volume adjusting units 32 and 42 are controlled based on the control information. As a result, the supply air volume and the exhaust air volume shown in FIG. 6 are achieved in the areas 110A and 110B, respectively.
 図6に示されるように、人体に影響を及ぼすため早急に排気を優先する必要がある煙および一酸化炭素を検知した場合を除いて、総給気量と総排気量との比、すなわち総換気量を変えることなく給気および排気が可能である。また、図6内の給気風量および排気風量の数値は、総給気量および総排気量に対する比であるため、給気風量および排気風量の風量設定レベルを変化させることによって、給気風量および排気風量を変化させることが可能である。そのため、給気風量および排気風量はある程度の自由度を有して変更することが可能である。 As shown in FIG. 6, the ratio of the total air supply to the total exhaust, that is, the total, except when smoke and carbon monoxide, which affect the human body and require immediate priority for exhaust, are detected. Air can be supplied and exhausted without changing the ventilation volume. Further, since the numerical values of the supply air volume and the exhaust air volume in FIG. 6 are the ratio to the total supply air volume and the total exhaust volume, the supply air volume and the exhaust air volume can be changed by changing the air volume setting level of the supply air volume and the exhaust air volume. It is possible to change the exhaust air volume. Therefore, the supply air volume and the exhaust air volume can be changed with a certain degree of freedom.
 なお、上記した説明では、給気通路と排気通路を1セットとして、同一の空間に2セットを設けた実施例を示したが、セット数は複数であればよく、2セット以上でもよい。 In the above description, an example is shown in which the air supply passage and the exhaust passage are set as one set and two sets are provided in the same space, but the number of sets may be a plurality of sets and may be two or more sets.
 実施の形態1では、1つの空間を仕切る室110内に、給気吐出口グリル11A,11Bおよび還気吸込口グリル12A,12Bの組を複数設けた。熱交換換気装置20の給気吐出口22と複数の給気吐出口グリル11A,11Bとの間は給気ダクト31で接続され、給気ダクト31には、各給気吐出口グリル11A,11Bへの給気風量の配分を調節する風量調節部32が設けられる。熱交換換気装置20の還気吸込口24と複数の還気吸込口グリル12A,12Bとの間は排気ダクト41で接続され、排気ダクト41には、各還気吸込口グリル12A,12Bからの排気風量の配分を調節する風量調節部42が設けられる。また、給気吐出口グリル11A,11Bおよび還気吸込口グリル12A,12Bの組が給気および排気するエリア110A,110Bの空気質を検知する空気質検知センサ43A,43Bが、各エリア110A,110Bに設けられる。空気質検知センサ43A,43Bで検知される複数のエリア110A,110Bにおける汚染物質の濃度の大小に応じて、給気ダクト31および排気ダクト41に設けられる風量調節部32,42を調節するとともに、風量の大きさを制御する制御部52が設けられる。このような構成によって、室110内の空間の空気質に偏りが生じた場合に、エリアごとに給気風量または排気風量が変更され、空気質の偏りに応じた効果的な換気を行うことができるという効果を有する。 In the first embodiment, a plurality of sets of the air supply / discharge port grills 11A and 11B and the return air suction port grills 12A and 12B are provided in the chamber 110 that partitions one space. The air supply / discharge ports 22 of the heat exchange ventilation device 20 and the plurality of air supply / discharge port grills 11A and 11B are connected by an air supply duct 31, and the air supply ducts 31 are connected to the respective air supply / discharge port grills 11A and 11B. An air volume adjusting unit 32 for adjusting the distribution of the air supply air volume to the air volume is provided. The return air suction port 24 of the heat exchange ventilation device 20 and the plurality of return air suction port grills 12A and 12B are connected by an exhaust duct 41, and the exhaust duct 41 is connected to the return air suction port grills 12A and 12B. An air volume adjusting unit 42 for adjusting the distribution of the exhaust air volume is provided. Further, the air quality detection sensors 43A and 43B for detecting the air quality of the areas 110A and 110B in which the pair of the air supply / discharge port grills 11A and 11B and the return air suction port grills 12A and 12B supply and exhaust air are provided in the respective areas 110A and 110A. It is provided in 110B. The air volume adjusting units 32 and 42 provided in the air supply duct 31 and the exhaust duct 41 are adjusted according to the magnitude of the concentration of pollutants in the plurality of areas 110A and 110B detected by the air quality detection sensors 43A and 43B. A control unit 52 for controlling the magnitude of the air volume is provided. With such a configuration, when the air quality of the space in the room 110 is biased, the air supply air volume or the exhaust air volume is changed for each area, and effective ventilation can be performed according to the air quality bias. It has the effect of being able to do it.
 また、制御部52は、空気質検知センサ43A,43Bで検知される汚染物質の種類と、複数のエリア110A,110Bにおける汚染物質の濃度の大小に応じて、給気ダクト31および排気ダクト41に設けられる風量調節部32,42を調節するようにした。これによって、総給気量または総排気量は一定で、各エリア110A,110Bの給気風量の比または排気風量の比が変更される。その結果、室110内における給気および排気のバランスが悪化してしまうことを防ぐことができる。 Further, the control unit 52 is connected to the air supply duct 31 and the exhaust duct 41 according to the type of pollutants detected by the air quality detection sensors 43A and 43B and the magnitude of the concentration of pollutants in the plurality of areas 110A and 110B. The air volume adjusting units 32 and 42 provided are adjusted. As a result, the total air supply amount or the total exhaust amount is constant, and the ratio of the supply air amount or the exhaust air amount in each of the areas 110A and 110B is changed. As a result, it is possible to prevent the balance between air supply and exhaust in the chamber 110 from being deteriorated.
 また、汚染物質が検出された場合に、汚染物質の種類に応じて換気方法を変更するようにした。これによって、汚染物質の種類に適した室110内の換気を行うことができるという効果を有する。汚染物質が二酸化炭素である場合には、汚染物質が検出されたエリア内で集中的に給気風量を増加させることで、二酸化炭素の濃度を人体に影響を及ぼさない程度の濃度へと速やかに低減させることができる。また、汚染物質が臭気物質である場合には、汚染物質が検出されたエリア内で集中的に排気風量を増加させることで、臭気物質の室110内への拡散、すなわち他のエリアへの臭気物質の移行を抑制することができる。さらに、汚染物質が煙または一酸化炭素である場合、すなわちあるエリアで火災が発生した場合には、室110内への給気を停止するとともに、汚染物質が検出されたエリア内で集中的に排気風量を増加させる。これによって、燃焼および不完全燃焼の進行を抑制するとともに、室110内の汚染物質を速やかに室110外へと排気することができる。 Also, when pollutants are detected, the ventilation method is changed according to the type of pollutants. This has the effect of being able to ventilate the room 110 suitable for the type of pollutant. When the pollutant is carbon dioxide, by increasing the air supply air volume intensively in the area where the pollutant is detected, the concentration of carbon dioxide can be quickly reduced to a concentration that does not affect the human body. It can be reduced. When the pollutant is an odorous substance, the exhaust air volume is intensively increased in the area where the pollutant is detected to diffuse the odorous substance into the chamber 110, that is, the odor to other areas. The transfer of substances can be suppressed. Furthermore, if the pollutant is smoke or carbon monoxide, that is, if a fire breaks out in a certain area, the air supply to the room 110 is stopped and the pollutant is concentrated in the detected area. Increase the exhaust air volume. As a result, the progress of combustion and incomplete combustion can be suppressed, and the pollutants in the chamber 110 can be quickly exhausted to the outside of the chamber 110.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
 1 換気システム、11A,11B 給気吐出口グリル、12A,12B 還気吸込口グリル、20 熱交換換気装置、21 外気吸込口、22 給気吐出口、23 給気送風機、24 還気吸込口、25 排気吐出口、26 排気送風機、27 熱交換器、31 給気ダクト、32,42 風量調節部、41 排気ダクト、43A,43B 空気質検知センサ、51 リモートコントローラ、52 制御部、100 建築物、110 室、110A,110B エリア、111 天井、112 側壁、113 床面、120 天井裏、521 プロセッサ、522 メモリ、523 バスライン。 1 Ventilation system, 11A, 11B Air supply outlet grill, 12A, 12B Return air suction port grill, 20 Heat exchange ventilation device, 21 Outside air suction port, 22 Air supply discharge port, 23 Supply air blower, 24 Return air suction port, 25 exhaust outlet, 26 exhaust blower, 27 heat exchanger, 31 air supply duct, 32, 42 air volume control unit, 41 exhaust duct, 43A, 43B air quality detection sensor, 51 remote controller, 52 control unit, 100 buildings, 110 rooms, 110A, 110B areas, 111 ceilings, 112 side walls, 113 floors, 120 behind the ceiling, 521 processors, 522 memories, 523 bus lines.

Claims (17)

  1.  外部の空気を吸い込む吸込口と、同一室内の空間を分割した第1エリアおよび第2エリアのうち前記第1エリアに設けられる第1給気口および前記第2エリアに設けられる第2給気口と、の間を繋ぐ給気通路と、
     前記第1エリアに設けられる第1排気口および前記第2エリアに設けられる第2排気口と、前記空間の空気を外部に排出する吐出口と、の間を繋ぐ排気通路と、
     前記給気通路に設けられ、前記第1給気口および前記第2給気口から外部の空気を吹き出させる空気流を生成する給気送風機と、
     前記排気通路に設けられ、前記第1排気口および前記第2排気口から前記空間の空気を吸い込む空気流を生成する排気送風機と、
     前記第1給気口から吹き出される空気の量である第1給気風量と前記第2給気口から吹き出される空気の量である第2給気風量との配分を変更可能な給気風量調節部と、
     前記第1排気口から吸い込まれる空気の量である第1排気風量と前記第2排気口から吸い込まれる空気の量である第2排気風量との配分を変更可能な排気風量調節部と、
     前記第1排気口から吸い込まれる前記第1エリアの空気および前記第2排気口から吸い込まれる前記第2エリアの空気の空気質を独立して検知する空気質検知部と、
     前記空気質検知部の検知結果に基づいて、前記給気送風機、前記排気送風機、前記給気風量調節部および前記排気風量調節部を制御する制御部と、
     を備えることを特徴とする換気システム。
    A suction port for sucking in external air and a first air supply port provided in the first area and a second air supply port provided in the second area of the first area and the second area in which the space in the same room is divided. And the air supply passage that connects between
    An exhaust passage connecting the first exhaust port provided in the first area, the second exhaust port provided in the second area, and the discharge port for discharging the air in the space to the outside.
    An air supply blower provided in the air supply passage to generate an air flow for blowing out external air from the first air supply port and the second air supply port.
    An exhaust blower provided in the exhaust passage to generate an air flow for sucking air in the space from the first exhaust port and the second exhaust port.
    The distribution of the first air supply air volume, which is the amount of air blown from the first air supply port, and the second air supply air volume, which is the amount of air blown out from the second air supply port, can be changed. Air volume control unit and
    An exhaust air volume adjusting unit capable of changing the distribution between the first exhaust air volume, which is the amount of air sucked from the first exhaust port, and the second exhaust air volume, which is the amount of air sucked from the second exhaust port.
    An air quality detection unit that independently detects the air quality of the air in the first area sucked from the first exhaust port and the air in the second area sucked from the second exhaust port.
    Based on the detection result of the air quality detection unit, the air supply blower, the exhaust blower, the air supply air volume adjusting unit, and the control unit that controls the exhaust air volume adjusting unit.
    Ventilation system characterized by being equipped with.
  2.  前記制御部は、前記空気質検知部で検知された前記第1エリアの空気の空気質の値と前記第2エリアの空気の空気質の値との差に基づいて、前記第1エリアおよび前記第2エリアのうち空気質が悪化しているエリアである対象エリアへの給気風量を増加させるように、もしくは前記対象エリアではない他のエリアへの給気風量を減少させるように前記給気風量調節部を制御し、または前記対象エリアからの排気風量を増加させるように、もしくは前記他のエリアへの排気風量を減少させるように前記排気風量調節部を制御することを特徴とする請求項1に記載の換気システム。 The control unit has the first area and the air quality based on the difference between the air quality value of the air in the first area and the air quality value of the air in the second area detected by the air quality detection unit. The air supply so as to increase the air supply air volume to the target area, which is an area of the second area where the air quality is deteriorated, or to decrease the air supply air volume to other areas other than the target area. The claim is characterized in that the exhaust air volume adjusting unit is controlled, or the exhaust air volume adjusting unit is controlled so as to increase the exhaust air volume from the target area or decrease the exhaust air volume to the other area. The ventilation system according to 1.
  3.  前記制御部は、前記空気質検知部で検知された前記第1エリアの空気の空気質の値と前記第2エリアの空気の空気質の値との差に基づいて、前記第1エリアおよび前記第2エリアのうち空気質が悪化しているエリアである対象エリアへの給気風量を、前記対象エリアではない他のエリアへの給気風量よりも増加させるように前記給気風量調節部を制御し、または前記対象エリアからの排気風量を前記他のエリアからの排気風量よりも増加させるように前記排気風量調節部を制御することを特徴とする請求項1に記載の換気システム。 The control unit has the first area and the air quality based on the difference between the air quality value of the air in the first area and the air quality value of the air in the second area detected by the air quality detection unit. The air supply air volume adjusting unit is set so as to increase the air supply air volume to the target area, which is an area where the air quality is deteriorated in the second area, than the air supply air volume to other areas other than the target area. The ventilation system according to claim 1, wherein the exhaust air volume adjusting unit is controlled so as to control or increase the exhaust air volume from the target area to be larger than the exhaust air volume from the other area.
  4.  前記空気質検知部は、前記対象エリア中に予め定められた濃度以上の汚染物質が存在する場合に、前記対象エリアへの給気風量を集中的に増加させる処理が行われる前記汚染物質である希釈対象汚染物質を検知するセンサであり、
     前記制御部は、前記空気質検知部で検知された前記第1エリアおよび前記第2エリアの前記希釈対象汚染物質の濃度のうち前記希釈対象汚染物質の濃度が大きい方のエリアを前記対象エリアとして、前記給気風量を増加させることを特徴とする請求項2に記載の換気システム。
    The air quality detection unit is the pollutant that is subjected to a process of intensively increasing the amount of air supplied to the target area when a pollutant having a concentration equal to or higher than a predetermined concentration is present in the target area. It is a sensor that detects pollutants to be diluted.
    The control unit uses the area where the concentration of the pollutant to be diluted is higher than the concentration of the pollutant to be diluted in the first area and the second area detected by the air quality detection unit as the target area. The ventilation system according to claim 2, wherein the air supply air volume is increased.
  5.  前記空気質検知部は、前記対象エリア中に予め定められた濃度以上の汚染物質が存在する場合に、前記対象エリアへの給気風量を集中的に増加させる処理が行われる前記汚染物質である希釈対象汚染物質を検知するセンサであり、
     前記制御部は、前記空気質検知部で検知された前記第1エリアおよび前記第2エリアの前記希釈対象汚染物質の濃度のうち前記希釈対象汚染物質の濃度が大きい方のエリアを前記対象エリアとして、前記給気風量を増加させ、前記希釈対象汚染物質の濃度が小さい方のエリアを前記他のエリアとして、前記給気風量を減少させることを特徴とする請求項3に記載の換気システム。
    The air quality detection unit is the pollutant that is subjected to a process of intensively increasing the amount of air supplied to the target area when a pollutant having a concentration equal to or higher than a predetermined concentration is present in the target area. It is a sensor that detects pollutants to be diluted.
    The control unit uses the area where the concentration of the pollutant to be diluted is higher than the concentration of the pollutant to be diluted in the first area and the second area detected by the air quality detection unit as the target area. The ventilation system according to claim 3, wherein the air supply air volume is increased, and the area where the concentration of the pollutant to be diluted is smaller is designated as the other area, and the air supply air volume is decreased.
  6.  前記希釈対象汚染物質は、二酸化炭素であることを特徴とする請求項4または5に記載の換気システム。 The ventilation system according to claim 4 or 5, wherein the pollutant to be diluted is carbon dioxide.
  7.  前記空気質検知部は、前記対象エリア中に予め定められた濃度以上の汚染物質が存在する場合に、給気を停止せずに、前記対象エリアの排気風量を集中的に増加させる処理が行われる前記汚染物質である排気対象汚染物質を検知するセンサであり、
     前記制御部は、前記空気質検知部で検知された前記第1エリアおよび前記第2エリアの前記排気対象汚染物質の濃度のうち前記排気対象汚染物質の濃度が大きい方のエリアを前記対象エリアとして、前記排気風量を増加させることを特徴とする請求項2に記載の換気システム。
    When a pollutant having a concentration equal to or higher than a predetermined concentration is present in the target area, the air quality detection unit performs a process of intensively increasing the exhaust air volume in the target area without stopping the supply of air. It is a sensor that detects the pollutant to be exhausted, which is the pollutant.
    The control unit uses the area having the higher concentration of the exhaust target pollutant among the concentrations of the exhaust target pollutants in the first area and the second area detected by the air quality detection unit as the target area. The ventilation system according to claim 2, wherein the exhaust air volume is increased.
  8.  前記空気質検知部は、前記対象エリア中に予め定められた濃度以上の汚染物質が存在する場合に、給気を停止せずに、前記対象エリアの排気風量を集中的に増加させる処理が行われる前記汚染物質である排気対象汚染物質を検知するセンサであり、
     前記制御部は、前記空気質検知部で検知された前記第1エリアおよび前記第2エリアの前記排気対象汚染物質の濃度のうち前記排気対象汚染物質の濃度が大きい方のエリアを前記対象エリアとして、前記排気風量を増加させ、前記排気対象汚染物質の濃度が小さい方のエリアを前記他のエリアとして、前記排気風量を減少させることを特徴とする請求項3に記載の換気システム。
    When a pollutant having a concentration equal to or higher than a predetermined concentration is present in the target area, the air quality detection unit performs a process of intensively increasing the exhaust air volume in the target area without stopping the supply of air. It is a sensor that detects the pollutant to be exhausted, which is the pollutant.
    The control unit uses the area having the higher concentration of the exhaust target pollutant among the concentrations of the exhaust target pollutants in the first area and the second area detected by the air quality detection unit as the target area. The ventilation system according to claim 3, wherein the exhaust air volume is increased, and the area where the concentration of the pollutant to be exhausted is smaller is designated as the other area, and the exhaust air volume is decreased.
  9.  前記排気対象汚染物質は、臭気物質であることを特徴とする請求項7または8に記載の換気システム。 The ventilation system according to claim 7 or 8, wherein the pollutant to be exhausted is an odorous substance.
  10.  前記空気質検知部は、前記対象エリア中に予め定められた濃度以上の汚染物質が存在する場合に、給気を停止して、前記対象エリアの排気風量を集中的に増加させる処理が行われる前記汚染物質である給気停止対象汚染物質を検知するセンサであり、
     前記制御部は、前記給気送風機を停止させるとともに、前記空気質検知部で検知された前記第1エリアおよび前記第2エリアの前記給気停止対象汚染物質の濃度のうち前記給気停止対象汚染物質の濃度が大きい方のエリアを前記対象エリアとして、前記排気風量を増加させることを特徴とする請求項2に記載の換気システム。
    When a pollutant having a concentration equal to or higher than a predetermined concentration is present in the target area, the air quality detection unit stops air supply and intensively increases the exhaust air volume in the target area. It is a sensor that detects the pollutant subject to air supply stoppage, which is the pollutant.
    The control unit stops the air supply blower, and among the concentrations of the air supply stop target pollutants in the first area and the second area detected by the air quality detection unit, the air supply stop target pollution. The ventilation system according to claim 2, wherein the area having the higher concentration of the substance is set as the target area, and the exhaust air volume is increased.
  11.  前記空気質検知部は、前記対象エリア中に予め定められた濃度以上の汚染物質が存在する場合に、給気を停止して、前記対象エリアの排気風量を集中的に増加させる処理が行われる汚染物質である給気停止対象汚染物質を検知するセンサであり、
     前記制御部は、前記給気送風機を停止させるとともに、前記空気質検知部で検知された前記第1エリアおよび前記第2エリアの前記給気停止対象汚染物質の濃度のうち前記給気停止対象汚染物質の濃度が大きい方のエリアを前記対象エリアとして、前記排気風量を増加させ、前記給気停止対象汚染物質の濃度が小さい方のエリアを前記他のエリアとして、前記排気風量を減少させることを特徴とする請求項3に記載の換気システム。
    When a pollutant having a concentration equal to or higher than a predetermined concentration is present in the target area, the air quality detection unit stops air supply and intensively increases the exhaust air volume in the target area. It is a sensor that detects pollutants subject to air supply stoppage, which are pollutants.
    The control unit stops the air supply blower, and among the concentrations of the air supply stop target pollutants in the first area and the second area detected by the air quality detection unit, the air supply stop target pollution. The area with the higher concentration of the substance is designated as the target area to increase the exhaust air volume, and the area with the lower concentration of the pollutant to be stopped from supplying air is designated as the other area to decrease the exhaust air volume. The ventilation system according to claim 3, wherein the ventilation system is characterized.
  12.  前記給気停止対象汚染物質は、煙または一酸化炭素であることを特徴とする請求項10または11に記載の換気システム。 The ventilation system according to claim 10 or 11, wherein the pollutant subject to air supply suspension is smoke or carbon monoxide.
  13.  前記制御部は、前記排気送風機の風量を変更可能な範囲で最大に設定することを特徴とする請求項10から12のいずれか1つに記載の換気システム。 The ventilation system according to any one of claims 10 to 12, wherein the control unit sets the maximum air volume of the exhaust blower within a changeable range.
  14.  全体の前記給気風量または全体の前記排気風量は一定であることを特徴とする請求項3,5,8および11のいずれか1つに記載の換気システム。 The ventilation system according to any one of claims 3, 5, 8 and 11, wherein the total air supply air volume or the total exhaust air volume is constant.
  15.  前記空気質検知部は、前記第1排気口から吸い込まれる空気の空気質を検知する第1空気質検知部と、前記第2排気口から吸い込まれる空気の空気質を検知する第2空気質検知部と、を有することを特徴とする請求項1から14のいずれか1つに記載の換気システム。 The air quality detection unit includes a first air quality detection unit that detects the air quality of the air sucked from the first exhaust port, and a second air quality detection unit that detects the air quality of the air sucked from the second exhaust port. The ventilation system according to any one of claims 1 to 14, characterized in that it has a portion and a portion.
  16.  前記排気風量調節部は、前記第2排気口からの空気を吸い込まないように前記排気通路を塞ぐ第1状態と、前記第1排気口からの空気を吸い込まないように前記排気通路を塞ぐ第2状態と、の間で排気風量を調節することが可能な構成を有し、
     前記空気質検知部は、前記第1状態および前記第2状態の両方で前記空気質を検知することができる前記排気通路内の位置に配置されるとともに、前記第1状態および前記第2状態にあるときに前記空気質を検知することを特徴とする請求項1から14のいずれか1つに記載の換気システム。
    The exhaust air volume adjusting unit has a first state of closing the exhaust passage so as not to suck air from the second exhaust port, and a second state of closing the exhaust passage so as not to suck air from the first exhaust port. It has a configuration that allows the exhaust air volume to be adjusted between the state and the state.
    The air quality detection unit is arranged at a position in the exhaust passage capable of detecting the air quality in both the first state and the second state, and is in the first state and the second state. The ventilation system according to any one of claims 1 to 14, wherein the air quality is detected at a certain time.
  17.  前記給気通路および前記排気通路に跨って設けられ、前記給気通路を通る空気と前記排気通路を通る空気との間で熱交換を行う熱交換器をさらに備えることを特徴とする請求項1から16のいずれか1つに記載の換気システム。 Claim 1 is further provided with a heat exchanger provided across the air supply passage and the exhaust passage to exchange heat between the air passing through the air supply passage and the air passing through the exhaust passage. The ventilation system according to any one of 16.
PCT/JP2020/006111 2020-02-17 2020-02-17 Ventilation system WO2021166046A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006111 WO2021166046A1 (en) 2020-02-17 2020-02-17 Ventilation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006111 WO2021166046A1 (en) 2020-02-17 2020-02-17 Ventilation system

Publications (1)

Publication Number Publication Date
WO2021166046A1 true WO2021166046A1 (en) 2021-08-26

Family

ID=77390653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006111 WO2021166046A1 (en) 2020-02-17 2020-02-17 Ventilation system

Country Status (1)

Country Link
WO (1) WO2021166046A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042657A1 (en) * 2022-08-24 2024-02-29 三菱電機株式会社 Air cleaning system
WO2024100790A1 (en) * 2022-11-09 2024-05-16 三菱電機株式会社 Air-conditioning system and air-conditioning method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237241A (en) * 1988-07-25 1990-02-07 Matsushita Electric Works Ltd Smoke sensor ventilating cooling heating equipment
JPH04270853A (en) * 1991-01-14 1992-09-28 Daikin Ind Ltd Air conditioning apparatus
JPH0593529A (en) * 1991-10-01 1993-04-16 Matsushita Electric Ind Co Ltd Air conditioning system of variable air-flow-rate type

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237241A (en) * 1988-07-25 1990-02-07 Matsushita Electric Works Ltd Smoke sensor ventilating cooling heating equipment
JPH04270853A (en) * 1991-01-14 1992-09-28 Daikin Ind Ltd Air conditioning apparatus
JPH0593529A (en) * 1991-10-01 1993-04-16 Matsushita Electric Ind Co Ltd Air conditioning system of variable air-flow-rate type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042657A1 (en) * 2022-08-24 2024-02-29 三菱電機株式会社 Air cleaning system
WO2024100790A1 (en) * 2022-11-09 2024-05-16 三菱電機株式会社 Air-conditioning system and air-conditioning method

Similar Documents

Publication Publication Date Title
WO2021166046A1 (en) Ventilation system
JP2022097186A (en) Air conditioner
JPH1078254A (en) Ventilating and air-conditioning system
WO2020003405A1 (en) Air-conditioning control system
JP7170592B2 (en) ventilation system
JP3750003B2 (en) Ventilation system equipment
JPH07158899A (en) Vintilation control device of air conditioner
JP7065696B2 (en) Ventilation systems, buildings, and control devices for ventilation systems
JP2006170596A (en) Air conditioner
JP7489278B2 (en) Ventilation system
JP7378338B2 (en) ventilation system
JP2010007925A (en) Air conditioning system
JPH09210421A (en) Ventilating and air-conditioning system
KR20060064521A (en) Air conditioner
JP2003269767A (en) Ventilating and air-conditioning system and building
JP4502859B2 (en) Air conditioner
JP3778977B2 (en) Duct type air conditioner
KR102440553B1 (en) Air conditioner system and control method thereof
JPH07103526A (en) Ventilation system for building
JPH08254329A (en) Outside air supplying structure for building
JP2000074446A (en) Heat exchanging ventilation system
WO2022162880A1 (en) Ventilation system
KR102469719B1 (en) Air exchange unit with smoke ventilation
JP4282499B2 (en) Air conditioner
JP2022190835A (en) Ventilation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP