WO2021164428A1 - 通信方法、装置及系统 - Google Patents

通信方法、装置及系统 Download PDF

Info

Publication number
WO2021164428A1
WO2021164428A1 PCT/CN2020/140749 CN2020140749W WO2021164428A1 WO 2021164428 A1 WO2021164428 A1 WO 2021164428A1 CN 2020140749 W CN2020140749 W CN 2020140749W WO 2021164428 A1 WO2021164428 A1 WO 2021164428A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
network slice
network
access
terminal device
Prior art date
Application number
PCT/CN2020/140749
Other languages
English (en)
French (fr)
Inventor
孙海洋
朱方园
王亚鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20919826.6A priority Critical patent/EP4093086A4/en
Publication of WO2021164428A1 publication Critical patent/WO2021164428A1/zh
Priority to US17/883,862 priority patent/US20220386229A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0895Configuration of virtualised networks or elements, e.g. virtualised network function or OpenFlow elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/40Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communication technology, and in particular to communication methods, devices and systems.
  • a network slice is a logically isolated network used to support specific network capabilities and network characteristics. It can include the entire end-to-end (E2E) network, or part of the network functions can be in multiple network slices. Sharing is a key technology to meet the needs of the 5th generation (5G) mobile communication technology for network differentiation proposed by the 3rd generation partnership project (3GPP). Generally, the network characteristics of different network slices are not the same, and the network slices are required to be isolated from each other without affecting each other. For example, network slicing of enhanced mobile broadband (eMBB) services can provide a transmission rate that is more than 10 times faster than 4G, and can be applied to the current popular augmented reality (AR) or virtual reality (virtual reality).
  • eMBB enhanced mobile broadband
  • the network slicing of large-scale Machine-Type Communications (mMTC) services requires support for the access of a large number of terminals, but the bandwidth is small and there is no requirement for delay.
  • the network slice of the ultra-reliable low-latency communication (URLLC) service has the characteristics of large bandwidth, low latency, and high reliability, and can be applied to 5G autonomous driving scenarios.
  • the wireless resources (such as frequencies or frequency bands) that need to be accessed for different network slices may be different. For example, for eMBB-type slices, it needs to be accessed from 2.6GHz or 4.9GHz; for URLLC-type slices, it needs to be accessed from 2.6GHz or 4.9GHz. 4.9GHz access.
  • the terminal device when the terminal device initially accesses or transitions from the idle state to the connected state, it scans different radio resources in sequence according to the configured priority, or the radio resource that was accessed last time within a certain period of time tries to select a cell connection. Into the network. The terminal device may fail when trying to access the slice using this method.
  • the embodiments of the present application provide a communication method, device, and system, which are used to improve the success rate of accessing slices, thereby improving user experience.
  • an embodiment of the present application provides a communication method.
  • the method includes: a terminal device receives first information from a network device, where the first information includes identification information of a first network slice and a communication method used to access the first network slice. First wireless resource information of a network slice; the terminal device accesses the first network slice through the first wireless resource according to the first information.
  • the identification information of the first network slice includes the type of the first network slice, the single network slice selection auxiliary information for identifying the first network slice, or the instance identification information of the first network slice.
  • the information of the first wireless resource indicates the frequency point, frequency, frequency band, or spectrum used to access the first network slice, and the information of the first wireless resource includes the indication information of the first wireless resource or Index information of the first wireless resource.
  • the terminal device can learn the relationship between different network slices and their corresponding wireless resources, and can access the requested network slice through the correct wireless resource based on this information when accessing the network slice, thereby ensuring the access
  • the success rate of importing slices improves user experience.
  • the first information further includes a correspondence between the location information of the terminal device and the identification information of the first network slice and the information of the first wireless resource.
  • the location information includes tracking area information, cell information, or base station information. Therefore, the terminal device can also learn the relationship between different network slices in different areas and their corresponding wireless resources, and when accessing network slices in different locations, they can access the requested network slice through the correct wireless resources based on this information, thereby It can guarantee the success rate of access slicing and improve user experience.
  • the first network slice is a network slice requested by the terminal device, a network slice subscribed by the terminal device, or a network slice configured by the terminal device. That is, the network device can obtain all the slices under the PLMN and the corresponding wireless resources, but according to the network slice requested by the terminal device, the network slice subscribed by the terminal device, or the network slice configured by the terminal device, Only the network slice requested by the terminal device, the network slice subscribed by the terminal device, or the network slice configured by the terminal device and its corresponding wireless resources are sent to the terminal device, thereby saving network resources.
  • the network device includes the terminal device receiving first information from the network device, including: the terminal device receives policy information from the network device, and the policy information includes the first information .
  • an embodiment of the present application provides a communication method.
  • the method includes: a network device determines first information, where the first information includes identification information of a first network slice and information used to access the first network slice. Information about the first wireless resource; the network device sends the first information to a terminal device, where the first information is used by the terminal device to access the first network slice through the first wireless resource.
  • the identification information of the first network slice includes the type of the first network slice, the single network slice selection auxiliary information for identifying the first network slice, or the instance identification information of the first network slice.
  • the information of the first wireless resource indicates the frequency point, frequency, frequency band, or spectrum used to access the first network slice, and the information of the first wireless resource includes the indication information of the first wireless resource or Index information of the first wireless resource.
  • the terminal device can learn the relationship between different network slices and their corresponding wireless resources, and can access the requested network slice through the correct wireless resource based on this information when accessing the network slice, thereby ensuring the access
  • the success rate of importing slices improves user experience.
  • the first information further includes a correspondence between the location information of the terminal device and the identification information of the first network slice and the information of the first wireless resource.
  • the location information includes tracking area information, cell information, or base station information. Therefore, the terminal device can also learn the relationship between different network slices in different areas and their corresponding wireless resources, and when accessing network slices in different locations, they can access the requested network slice through the correct wireless resources based on this information, thereby It can guarantee the success rate of access slicing and improve user experience.
  • the network device is a policy control function device.
  • the network device determines that the first information includes:
  • the policy control function device receives second information from the access and mobility management function device, and determines the first information according to the second information.
  • the second information includes the identification information of the first network slice and the information used for access Enter the first wireless resource information of the first network slice; or
  • the policy control function device sends information about the location of the terminal device to the network slice selection function device, receives second information from the network slice selection function device, and determines the first information according to the second information.
  • the second information includes identification information of the first network slice and first wireless resource information used to access the first network slice;
  • the first network slice can provide a service for the terminal device at the location of the terminal device.
  • the network device is an access and mobility management function device.
  • the network device determines that the first information includes:
  • the access and mobility management function device sends the location information of the terminal device to the network slice selection function device, receives second information from the network slice selection function device, and determines the first information according to the second information.
  • Information, the second information includes identification information of the first network slice and first wireless resource information used to access the first network slice, wherein the position of the first network slice in the terminal device is The terminal device provides services; or
  • the access and mobility management function device receives the first information from an access network device.
  • the network device is an access network device.
  • the network device determines that the first information includes:
  • the access network device receives third information from an access and mobility management network element, where the third information includes identification information of the first network slice and information about access to the first wireless resource of the first network slice.
  • the third information includes identification information of the first network slice and information about access to the first wireless resource of the first network slice.
  • the access network device determines that the terminal device requests to access the first network slice, and determines the first information according to the third information.
  • the first network slice is a network slice requested by the terminal device, a network slice subscribed by the terminal device, or a network slice configured by the terminal device. That is, the network device can obtain all the slices under the PLMN and the corresponding wireless resources, but according to the network slice requested by the terminal device, the network slice subscribed by the terminal device, or the network slice configured by the terminal device, Only the network slice requested by the terminal device, the network slice subscribed by the terminal device, or the network slice configured by the terminal device and its corresponding wireless resources are sent to the terminal device, thereby saving network resources.
  • the embodiments of the present application provide a communication device for implementing the foregoing various methods.
  • the communication device may be the terminal device in the foregoing first aspect, or a device including the foregoing terminal device; or, the communication device may be the network device in the foregoing second aspect, or a device including the foregoing network device.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device, including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device can execute any of the foregoing aspects.
  • the communication device may be the terminal device in the foregoing first aspect, or a device including the foregoing terminal device; or, the communication device may be the network device in the foregoing second aspect, or a device including the foregoing network device.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any one of the foregoing aspects according to the instruction.
  • the communication device may be the terminal device in the foregoing first aspect, or a device including the foregoing terminal device; or, the communication device may be the network device in the foregoing second aspect, or a device including the foregoing network device.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the method described in any of the above aspects.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the method described in any of the above aspects.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes a processor for implementing the functions involved in any of the foregoing aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices.
  • a communication system in a ninth aspect, includes:
  • a network device configured to determine first information, where the first information includes identification information of a first network slice and information used to access a first wireless resource of the first network slice; sending the first information;
  • the terminal device is configured to receive the first information from the foregoing network device, and access the first network slice through the first wireless resource according to the first information.
  • the technical effects brought about by any one of the design methods of the third aspect to the ninth aspect can be referred to the technical effects brought about by the different design methods in the first aspect or the second aspect, which will not be repeated here.
  • FIG. 1 is a schematic diagram of a 5G communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a communication method provided by an embodiment of the application.
  • FIG. 3 is a signaling interaction diagram for PCF to determine first information according to an embodiment of this application
  • FIG. 4 is a signaling interaction diagram for PCF to determine first information according to an embodiment of this application.
  • FIG. 5 is a signaling interaction diagram for PCF to determine first information according to an embodiment of this application.
  • FIG. 6 is a signaling interaction diagram for PCF to determine first information according to an embodiment of this application.
  • FIG. 7 is a signaling interaction diagram of a communication method provided by an embodiment of this application.
  • FIG. 8 is a signaling interaction diagram of a communication method provided by an embodiment of this application.
  • FIG. 9 is a signaling interaction diagram of a communication method provided by an embodiment of this application.
  • FIG. 10 is a signaling interaction diagram of a communication method provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • At least one of the following items refers to any combination of these items, including any combination of single items or plural items.
  • at least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference. Meanwhile, in the embodiments of the present application, words such as “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, the use of words such as “for example” is intended to present related concepts in a specific manner to facilitate understanding.
  • 5G will usher in an era of Internet of Everything. 5G supports three scenarios: eMBB, mMTC, and URLLC. The three scenarios contain diverse and differentiated applications.
  • eMBB Based on breakthroughs in wireless side spectrum utilization and spectrum bandwidth technology, 5G can provide a transmission rate that is more than 10 times faster than 4G. For the current popular AR/VR and high-definition video live broadcasts, only the ultra-high rate of 5G can meet the demand, and the transmission rate of 4G cannot be supported. Now when using VR to watch high-definition or large-scale interactive games, you must drag the network cable to obtain data. In the future, through 5G network wireless connection, VR/AR can get a fast experience.
  • 5G Through multi-user shared access, ultra-dense heterogeneous networks and other technologies, 5G can support access to 1 million devices per square kilometer, which is 10 times that of 4G.
  • public facilities such as street lights, manhole covers, and water meters have network connectivity and can be remotely managed, but 5G will have even greater innovations.
  • the public equipment of various industries in the city can be connected to the intelligent management platform.
  • These public facilities work together through the 5G network, and can be managed uniformly with only a small number of maintenance personnel, which greatly improves the operational efficiency of the city.
  • URLLC The most typical application in the 5G scenario is autonomous driving.
  • the most commonly used scenarios for autonomous driving such as sudden braking, car-to-car, car-to-person, car-to-infrastructure, and other multiple communications, require instantaneous data processing. And make decisions. Therefore, the network needs to have large bandwidth, low latency and high reliability at the same time, and the 5G network has the ability to cope with this scenario.
  • NB-IoT Narrowband Internet of Things
  • Network slicing technology allows operators to segment multiple virtual networks in a hardware infrastructure, allocate resources on demand, and flexibly combine capabilities to meet the different needs of various services.
  • the operator When a new requirement is proposed and the current network cannot meet the requirement, the operator only needs to create a virtual slice network for this requirement, without affecting the existing slice network, and launching services at the fastest speed.
  • Network slicing is to virtualize multiple end-to-end networks on the basis of a common hardware through slicing technology. Each network has different network functions and adapts to different types of service requirements. After the operators purchase physical resources, they virtualize an eMBB slice network for mass Internet services using physical resources, and then target the smart meter reading needs of certain vendors in the vertical industry by using physical resources to create a virtual mMTC slice network with two slices. The network provides services for different business scenarios.
  • the 5G standard also summarizes the requirements of different services for network functions into three typical scenarios.
  • the corresponding types of network slices corresponding to these three typical scenarios are eMBB slices, mMTC slices, and URLLC slices.
  • S-NSSAI Single Network Slice Selection Assistance Information
  • S-NSSAI is used to identify a network slice.
  • one S-NSSAI can be associated with one or more network slice instances, and one network slice instance can be associated with one or more S-NSSAIs.
  • eMBB slice 1, eMBB slice 2, and eMBB slice 3 are all eMBB-type slices, and their S-NSSAI values are all 0x01000000;
  • eMBB+mMTC slice 4 can provide services for eMBB-type services as well as mMTC services It provides services, so it is both an eMBB type slice and a mMTC type slice.
  • the corresponding S-NSSAI values are 0x01000000 and 0x02000000, respectively.
  • S-NSSAI includes two parts: slice/service type (Slice/ServiceType, SST) and slice difference (Slice Differentiator, SD):
  • SST refers to the expected network slicing behavior in terms of features and services.
  • the standard value range of SST is 1, 2, and 3.
  • the value 1 means eMBB
  • 2 means URLLC
  • 3 means Massive Internet of Things (MIoT).
  • SD is an optional information used to supplement SST to distinguish multiple network slices of the same slice/service type.
  • the two parts of SST and SD are combined to represent the slice type and multiple slices of the same slice type.
  • the value of S-NSSAI is 0x01000000, 0x02000000, and 0x03000000, which respectively represent eMBB type slices, URLLC type slices, and MIoT type slices.
  • the S-NSSAI values 0x01000001 and 0x01000002 indicate eMBB type slices, serving user group 1 and user group 2, respectively.
  • Network slice selection assistance information (Network Slice Selection Assistance Information, NSSAI):
  • NSSAI is a collection of S-NSSNI.
  • the NSSAI used in 5G networks includes requested NSSAI (Requested NSSAI), allowed NSSAI (Allowed NSSAI), and configured NSSAI (Configured NSSAI). Their specific definitions are shown in Table 1:
  • Network slice selection policy (Network Slice Selection Policy, NSSP)
  • the NSSP is issued by the PCF to the UE through the AMF as part of the UE Route Selection Policy (URSP) rule by the PCF, and the UE is used to associate applications (for example, through APP ID, IP address, or domain name) and S-NSSAI.
  • URSP UE Route Selection Policy
  • the radio access network first selects an initial AMF for the UE to provide services for the UE according to the locally stored information and the UE registration request message.
  • the initial AMF may not support the network slice to be used by the UE.
  • the initial AMF only supports the URLLC type network slice, but the UE requests the eMBB type network slice.
  • the initial AMF queries the network slice selection function (NSSF) for and selects the target AMF that can support the UE network slice, and then sends the UE registration request message directly or indirectly Sent to the target AMF, the target AMF processes the UE's registration request and then provides network services for the UE. Specifically, it can include the following steps:
  • Step 1 When the UE registers on a PLMN through an access type, it sends a registration request message to the RAN. If the configured NSSAI of this PLMN or the Allowed NSSAI of this access type of this PLMN is stored on the UE, the UE will carry the Requested NSSAI information in the non-access stratum (NAS) registration request message and the AN message, Requested The NSSAI contains the S-NSSAI of the slice that the UE wishes to register.
  • NAS non-access stratum
  • Step 2 The RAN selects the initial AMF according to the globally unique AMF identifier (GUAMI) or Requested NSSAI. If the UE does not provide Requested NSSAI and GUAMI in the AN message, the RAN shall send the registration request message from the UE to the default AMF.
  • GUIAMI globally unique AMF identifier
  • the initial AMF queries unified data management (UDM) to obtain UE subscription information including Subscribed S-NSSAIs.
  • the initial AMF judges whether it can provide services for the UE based on the received Requested NSSAI, Subscribed S-NSSAI and local configuration. If the AMF can serve the UE, the initial AMF is still the serving AMF of the UE, and then the AMF constructs an Allowed NSSAI based on the Subscribed S-NSSAI and Requested NSSAI, and returns the Allowed NSSAI to the UE through a registration acceptance message. If the initial AMF cannot serve the UE or cannot make a judgment, the AMF needs to query the NSSF.
  • UDM unified data management
  • Step 4 AMF sends Requested NSSAI, Subscribed S-NSSAI, subscription permanent identifier (subscription permanent identifier, SUPI) PLMN, tracking area identifier (tracking area identifier, TAI) and other information to NSSF for query.
  • subscription permanent identifier subscription permanent identifier
  • SUPI subscription permanent identifier
  • TAI tracking area identifier
  • Step 5 Based on the received information and local configuration, the NSSF selects the AMF Set (AMF Set) or candidate AMF list that can serve the UE, the Allowed NSSAI suitable for this access type, and may also select the one serving the UE.
  • AMF Set AMF Set
  • NMF network storage function
  • Step 6 If the initial AMF is not in the AMF Set and the AMF address information is not stored locally, the initial AMF obtains the candidate AMF list by querying the NRF. NRF returns a set of available AMF lists, including AMF pointer (AMF Pointer) and address information. The initial AMF selects one of them as the target AMF. If the initial AMF cannot obtain the candidate AMF list by querying the NRF, the initial AMF needs to send the UE registration request message to the target AMF through the RAN, and the message sent by the initial AMF to the RAN contains AMF Set and Allowed NSSAI.
  • AMF Pointer AMF pointer
  • Step 7 If the initial AMF decides to directly send the NAS message to the target AMF based on the local policy and subscription information, the initial AMF sends the UE registration request message and other information obtained from the NSSF except the AMF set to the target AMF.
  • the initial AMF decides to forward the NAS message to the target AMF through the RAN based on the local policy and subscription information, the initial AMF sends a Reroute NAS message to the RAN.
  • the Reroute NAS message includes target AMF Set information and registration request message, as well as related information obtained from NSSF.
  • Step 8 After receiving the registration request message sent in step 7, the target AMF continues to perform the relevant steps of the registration process, and finally sends a registration acceptance message to the UE, which carries Allowed NSSAI, NSSP and other information.
  • the wireless resources that need to be accessed for different network slices may be different. For example, for eMBB-type slices, you need to access from 2.6GHz or 4.9GHz; for URLLC-type slices, you need to access from 4.9GHz, such as Table 2 shows.
  • the wireless resources that terminal devices that need to access different types of slices need to access preferentially in different areas may also be different, as shown in Table 3.
  • the accessed spectrum is different.
  • eMBB-type services eMBB only
  • URLLC-type services URLLC only
  • the slice can be accessed through 4.9 GHz in the first area, but cannot access the slice after moving to the second area.
  • the slices are accessed through 4.9 GHz in both the first area and the second area.
  • a terminal device when a terminal device initially accesses or transitions from an idle state to a connected state, it either scans different radio resources in sequence according to the configured priority, or tries to select the radio resource that was accessed last time within a certain period of time. A cell is connected to the network. The terminal device may fail when trying to access the slice using this method.
  • the terminal device accesses the eMBB type slice through 2.6GHz last time, and then enters the idle state, when the terminal device enters the connected state again, it will still use 2.6GHZ to access the network, and URLLC cannot be used.
  • Type of slice For example, combined with Table 2 above, if the terminal device accesses the eMBB type slice through 2.6GHz last time, and then enters the idle state, when the terminal device enters the connected state again, it will still use 2.6GHZ to access the network, and URLLC cannot be used. Type of slice.
  • the eMBB only terminal device accesses the network through 2.6GHZ last time and then enters the idle state.
  • the terminal device moves from area 1 to area 2 and enters the connected state again, it will still be used 2.6GHZ is connected to the network, so you cannot access the eMBB slice of area 2.
  • This application provides the following embodiments to improve the success rate of UE access to slices, thereby improving user experience.
  • Fig. 1 shows a schematic diagram of a 5G communication system provided by an embodiment of the present application.
  • the communication system may include UE, (R)AN equipment, AMF equipment, Session Management function (SMF) equipment, User Plane Function (UPF) equipment, Policy Control Function (PCF) At least one of equipment, NSSF equipment, application function (AF) equipment, and UDM equipment.
  • SMF Session Management function
  • UPF User Plane Function
  • PCF Policy Control Function
  • the terminal device in the embodiment of this application may be a device used to implement wireless communication functions.
  • it may be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; or on the water. (Such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, satellites, etc.).
  • the terminal device may be a UE, an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, a terminal agent, or a terminal in a 5G network or a future evolved PLMN. Devices, etc.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminal in control), wireless terminal in self-driving (self-driving), wireless terminal in remote medical (remote medical), wireless terminal in smart grid, wireless terminal in transportation safety (transportation safety) Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal equipment can be mobile or fixed.
  • the access network device in the embodiment of the present application is a device that provides wireless communication functions for terminal devices.
  • base stations include but are not limited to: next-generation base stations (gnodeB, gNB) in 5G, evolved node B (evolved node B, eNB), radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BBU) , Transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center.
  • gnodeB, gNB next-generation base stations
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved nodeB, or home node B, HNB
  • BBU baseband unit
  • the mobility management network element in the embodiment of the present application such as the AMF device shown in Figure 1, main functions include: connection management, mobility management, registration management, access authentication and authorization, reachability management, security context management, etc. Access and mobility-related functions.
  • the session management network element in the embodiment of the present application is used for session management in the mobile network, such as session establishment, modification, and release.
  • Specific functions include allocating Internet Protocol (IP) addresses for terminal devices, selecting UPF to provide message forwarding functions, service and session continuity (SSC) mode selection, roaming and other session-related functions.
  • IP Internet Protocol
  • SSC session continuity
  • the user plane function network element in the embodiment of the present application such as the UPF device as shown in Figure 1, main functions include: data packet routing and transmission, packet inspection, service usage reporting, QoS processing, lawful monitoring, uplink packet inspection, and downlink data User-related functions such as packet storage.
  • UPF can be connected to a data network (DN).
  • DN data network
  • the policy control function network element in the embodiment of this application such as the PCF device shown in Figure 1, main functions include: unified policy formulation, policy control provision, and acquisition of policy decision-related information from a user database (User Data Repository, UDR) Policy-related functions such as contract information.
  • UDR User Data Repository
  • the network slice selection function network element in the embodiment of the present application such as the NSSF device shown in FIG. 1, main functions include: selecting a set of network slice instances for the UE, determining the allowed NSSAI, and determining the AMF set that can serve the UE.
  • the application function network element in the embodiment of the present application is responsible for interacting with the 3GPP core network to provide services or services, including interaction with the network exposure function (NEF), policy framework interaction, etc. .
  • NEF network exposure function
  • policy framework interaction etc.
  • the unified data management network element in the embodiment of this application supports the authentication credential processing in the 3GPP authentication and key negotiation mechanism, user identity processing, access authorization, registration and mobility management, Contract management, short message management, etc.
  • the above-mentioned network elements can be realized by designated hardware, or by software examples on designated hardware, or by virtual functions instantiated on a suitable platform, and the present invention is not limited here. .
  • a service-based interface is used in the control plane.
  • Namf is a service-based interface provided by AMF network elements, and AMF network elements can communicate with other network functions through Namf.
  • Nsmf is a service-based interface provided by SMF.
  • SMF can communicate with other network functions through Nsmf.
  • Nnssf is a service-based interface provided by NSSF network elements.
  • NSSF network elements can communicate with other network functions through Nnssf.
  • a functional network element can open its capabilities to other authorized functional network elements through a service-based interface, thereby providing network function (NF) services.
  • NF service refers to the various capabilities that can be provided.
  • the embodiments of the present application may also be applicable to other future-oriented communication technologies.
  • the network architecture and business scenarios described in this application are intended to explain the technical solutions of this application more clearly, and do not constitute a limitation on the technical solutions provided by this application. Those of ordinary skill in the art will know that with the evolution of the network architecture and new business scenarios The technical solutions provided in this application are equally applicable to similar technical problems.
  • Network slicing is a logically isolated network used to support specific network capabilities and network characteristics.
  • network slices will be referred to simply as slices for description.
  • Fig. 2 shows a signaling interaction diagram of the handover method provided according to an embodiment of the present application.
  • the method includes:
  • Step 201 The network device determines first information, where the first information includes identification information of a first network slice and information of a first wireless resource used to access the first network slice.
  • the first information may include a corresponding relationship (also referred to as a mapping relationship) between the identification information of the first network slice and the information used to access the first wireless resource of the first network slice, as shown in Table 4. Show.
  • the identification information of the first network slice includes the type of the first network slice (the above-mentioned SST or SD), the single network slice selection auxiliary information (S-NSSAI) used to identify the first network slice, or The instance identification information (slice instance ID) of the first network slice (the UE is required to perceive the slice instance, for example, to know the corresponding relationship between the slice instance and the S-NSSAI), or a combination of any number of items.
  • the information of the first wireless resource indicates the frequency point, frequency, frequency band, or spectrum used to access the first network slice, including the indication information of the first wireless resource (for example, indicating 4.9GHz or 2000M-3000MHz) or The index information (index) of the first wireless resource.
  • the resources allocated by the operator from the spectrum are spectrum resources, such as spectrum resources from 2000 MHz to 3000 MHz.
  • the frequency is a specific value in the frequency spectrum, such as 2000MHz.
  • Frequency bands, frequency bands, and frequency points are all based on the concept of frequency.
  • the frequency band is the frequency range between the highest frequency of the signal allowed to be transmitted and the lowest frequency of the signal allowed to be transmitted, and it will be numbered, as shown in the first column of Table 5 below.
  • the frequency band will correspond to a minimum frequency, as shown in the second column of Table 5 below. From this minimum frequency, the frequency band corresponding to the frequency band can be known.
  • the frequency band corresponding to frequency band 38 is the 2.6G frequency band
  • the frequency band corresponding to frequency band 40 is 2.3G.
  • Frequency bands, frequency bands and frequency bands all refer to a certain frequency.
  • the frequency point is the number of the fixed frequency, generally the center frequency of the modulation signal, for example, the frequency interval is 200KHz, so according to the frequency interval of 200KHz, from 890MHz, 890.2MHz, 890.4MHz, 890.6MHz, 890.8MHz, 891MHz...915MHz , These points are all frequency points, representing the frequency range of 100KHz above and below this point.
  • the description will be made by taking the wireless resource as a frequency or a frequency band as an example.
  • the network device that determines the first information may be PCF, AMF, or RAN.
  • Step 202 The network device sends the first information to the terminal device.
  • the terminal device receives the first information from the network device.
  • Step 203 The terminal device accesses the first network slice through the first wireless resource according to the first information.
  • the terminal device determines the requested network slice according to the received first information in combination with its service requirements, and accesses the network slice through the wireless resource corresponding to the network slice.
  • the terminal device can learn the relationship between different network slices and their corresponding wireless resources, and can access the requested network slice through the correct wireless resource according to the information when accessing the network slice. In this way, the success rate of access slicing can be guaranteed and user experience can be improved. For example, combining the example in Table 2 above, if the terminal device accesses the eMBB type slice through 2.6GHz last time, and then enters the idle state, when the terminal device enters the connected state again and wants to request the URLLC type slice, it can be based on The received information is connected to the URLLC type slice through 4.9 GHz, which avoids the problems existing in the prior art.
  • the first information further includes a correspondence between the location information of the terminal device and the identification information of the first network slice and the information of the first wireless resource, as shown in Table 6.
  • the location information includes tracking area (TA) information (for example, the TA information where the terminal device is located), cell information (for example, the cell information where the terminal device is located), or base station information (RAN Node ID).
  • TA tracking area
  • cell information for example, the cell information where the terminal device is located
  • RAN Node ID base station information
  • a base station may refer to a base station that serves terminal equipment, or may be a base station that supports slices subscribed by the UE. Therefore, the terminal device can also learn the relationship between different network slices in different areas and their corresponding wireless resources, and when accessing network slices in different locations, they can access the requested network slice through the correct wireless resources based on this information, thereby It can guarantee the success rate of access slicing and improve user experience.
  • the eMBB only terminal device accesses the network through 2.6GHZ in area 1 and then enters the idle state.
  • the terminal device moves from area 1 to area 2 and enters the connected state again
  • the eMBB slice of the 4.9 GHz access area 2 can be used according to the received information, avoiding the problems in the prior art.
  • the first network slice here may refer to all slices under the PLMN, or a slice requested by a terminal device (requested NSSAI), a slice subscribed by the terminal device (subscribed NSSAI), or a configuration of the terminal device Slices (configured NSSAI).
  • the network device can obtain all the slices under the PLMN and the corresponding radio resources, but according to the requested NSSAI, subscribed NSSAI, or configured NSSAI, only the requested NSSAI, subscribed NSSAI, or configured NSSAI and its corresponding radio resources are sent to the terminal device. Resources, thereby saving network resources.
  • the network device that determines the first information may be PCF, AMF, or RAN.
  • any of the following methods A1 to A4 can be used to determine the first information:
  • the AMF obtains the frequency information corresponding to the slice from the NSSF, and sends the frequency information corresponding to the slice to the PCF.
  • the AMF initiates the establishment or update process of the UE policy, it can obtain the corresponding relationship between the slice and the frequency band of the entire PLMN from the NSSF, or AMF can Request the NSSF for the correspondence between the slices and frequency bands around the UE location (base stations or TAs around the UE), or the AMF obtains the correspondence between the slices and frequency bands of the entire PLMN from the network management (OAM), and then reports to the PCF.
  • OAM network management
  • Step 300 Configure the corresponding relationship between the slices and the frequency bands used by the NSSF network element.
  • the NSSF network element is configured with the corresponding relationship between the slices of all TAs (or base stations) of the entire PLMN and the frequency bands.
  • Step 301 AMF determines to issue a UE policy.
  • Step 302 AMF sends a first request to NSSF.
  • the AMF may send the first request to the NSSF by calling the service of the NSSF (Nnssf_NSSelection_Get).
  • Step 303 The AMF receives the first response from the NSSF. For example, NSSF returns Nnssf_NSSelection_Get response to AMF.
  • the first response may include the correspondence between the slices and frequency bands of all TAs (or base stations) of the entire PLMN.
  • the first request in step 302 includes location information of the UE.
  • the location information of the UE is a cell ID (Cell ID) or a base station ID where the UE resides.
  • the cell identity or base station identity can be stored in the AMF as the UE context.
  • the location information of the UE may further include the identities of neighboring base stations or the identities of other base stations in the same TA.
  • the AMF can locally configure or query the topological relationship between the TA and the base station from the UDR. In this way, the AMF can request the corresponding relationship between the slices near the UE and the frequency bands used by the NSSF from the NSSF.
  • the NSSF may return the corresponding relationship between the slices near the UE and the frequency bands used by the UE to the AMF through step 303 according to the location information of the UE.
  • Step 304 AMF sends a second request to PCF.
  • the second request may be a UE policy creation request or a UE policy update request.
  • the AMF may send the second request to the PCF by calling the service of the PCF (Npcf_UEPolicyControl_Establishment/Update).
  • what the AMF receives is the correspondence between the slices of all TAs (or base stations) of the entire PLMN and the frequency bands
  • what it sends to the PCF is the correspondence between the slices of all TAs (or base stations) of the entire PLMN and the frequency bands.
  • what the AMF receives is the correspondence between the slices of all TAs (or base stations) in the entire PLMN and the frequency bands, and then the AMF determines the correspondence between the slices near the UE and the frequency bands used by the UE according to the location information of the UE. , And then send the corresponding relationship between the slices near the UE and the frequency bands used by the PCF to the PCF.
  • what the AMF receives is the correspondence between the slices near the UE and the frequency bands used by the AMF, and what is sent to the PCF is also the correspondence between the slices near the UE and the frequency bands used by the AMF.
  • the PCF receives from the AMF the correspondence between the slices of all TAs (or base stations) of the entire PLMN and the frequency bands, or the correspondence between the slices near the UE and the frequency bands used by them.
  • Step 305 The PCF determines the first information according to the information received from the AMF.
  • the PCF When the PCF receives the corresponding relationship between the slices of all TAs (or base stations) of the entire PLMN and the frequency band from the AMF, the PCF can determine the corresponding relationship between the slices near the UE and the frequency bands used by the corresponding relationship and the location information of the UE obtained from the AMF .
  • the corresponding relationship between the slices near the UE and the frequency bands used by them includes the above-mentioned first information.
  • the PCF may directly receive the corresponding relationship between the slices near the UE and the frequency bands used by the AMF from the AMF.
  • the corresponding relationship between the slices near the UE and the frequency bands used by them includes the above-mentioned first information.
  • either the NSSF can determine the corresponding relationship between the slices near the UE and the frequency bands used and then send it to the PCF through the AMF, or the AMF can obtain the corresponding relationship of the entire network and then determine the slices near the UE and the frequency bands used by it. The corresponding relationship is sent to the PCF, or the PCF may also obtain the corresponding relationship of the entire network and then determine the corresponding relationship between the slices near the UE and the frequency bands used by them.
  • the PCF obtains the frequency information corresponding to the slice from the NSSF.
  • the PCF initiates the establishment or update process of the UE policy, it can obtain the corresponding relationship between the slice and frequency band of the entire PLMN from the NSSF, or the PCF can Request the NSSF for the correspondence between the slices and frequency bands around the UE location (base stations or TAs around the UE).
  • Figure 4 shows that
  • Step 400 Configure the corresponding relationship between the slices and the frequency bands used by the NSSF network element.
  • the NSSF network element is configured with the corresponding relationship between the slices of all TAs (or base stations) of the entire PLMN and the frequency bands.
  • Step 401 The PCF determines to issue a UE policy.
  • Step 402 The PCF sends a third request to the NSSF.
  • the PCF may send a third request to the NSSF by calling the service of the NSSF (Nnssf_NSSelection_Get).
  • Step 403 The PCF receives the third response from the NSSF.
  • NSSF returns Nnssf_NSSelection_Get response to PCF.
  • the third response may include the correspondence between the slices and frequency bands of all TAs (or base stations) of the entire PLMN.
  • the PCF obtains the location information of the UE from the AMF, and the third request in step 402 above includes the location information of the UE.
  • the location information of the UE refer to the description in FIG. 3.
  • the PCF can request the corresponding relationship between the slices near the UE and the frequency bands used by the NSSF from the NSSF.
  • the NSSF can return to the PCF the corresponding relationship between the slices near the UE and the frequency bands used by the UE through step 403 according to the location information of the UE.
  • the PCF receives from the NSSF the correspondence between the slices of all TAs (or base stations) of the entire PLMN and the frequency bands, or the correspondence between the slices near the UE and the frequency bands used by them.
  • Step 404 The PCF determines the first information according to the information received from the NSSF.
  • the PCF can determine the correspondence between the slices near the UE and the frequency bands used according to the correspondence and the location information of the UE obtained from the AMF.
  • the corresponding relationship between the slices near the UE and the frequency bands used by them includes the above-mentioned first information.
  • the PCF may directly receive the corresponding relationship between the slices near the UE and the frequency bands used by the NSSF from the NSSF.
  • the corresponding relationship between the slices near the UE and the frequency bands used by them includes the above-mentioned first information.
  • the NSSF can determine the correspondence between the slices near the UE and the frequency band used and then send it to the PCF, or the PCF can obtain the correspondence between the entire network and then determine the correspondence between the slices near the UE and the frequency band used. .
  • the AMF obtains the frequency information corresponding to the slice from the RAN, and sends the frequency information corresponding to the slice to the PCF.
  • the RAN reports the corresponding relationship between slice and frequency information in the RAN to the AMF.
  • the AMF can report the corresponding relationship between the slices and frequency bands around the UE location (base stations or TAs around the UE) to the PCF according to the location information of the UE. As shown in Figure 5:
  • Step 501 In the NG setup process, the RAN sends an NG setup request to the AMF.
  • the NG setup request includes the corresponding relationship between slice and frequency information in the RAN. That is to say, the RAN may report to the AMF, for example, the corresponding relationship in Table 6, where the location information uses the information of the base station as the granularity.
  • step 502 the AMF sends an NG establishment response to the RAN.
  • step 503 the AMF determines to issue a UE policy.
  • Step 504 AMF sends a fourth request to PCF.
  • the fourth request may be a UE policy creation request or a UE policy update request.
  • the AMF may send the fourth request to the PCF by calling the PCF service (Npcf_UEPolicyControl_Establishment/Update).
  • the AMF may send the corresponding relationship between the slice and the frequency band around the location of the UE to the PCF through the fourth request according to the location information of the UE.
  • location information of the UE refer to the description in FIG. 3.
  • the AMF can learn the topological relationship of the base stations around the UE (the AMF is configured with the topological relationship of the physical locations of all RANs managed by the AMF, or is queried from the UDR), it can report the corresponding relationship between the slices of the neighboring base stations and the frequency bands to the PCF.
  • the AMF may report the corresponding relationship between the slices of the surrounding TA and the frequency band to the PCF.
  • the PCF can obtain the corresponding relationship between the slices and frequency bands around the UE location.
  • Step 505 The PCF determines the first information according to the information received from the NSSF.
  • step 505 reference may be made to the description of step 404 in FIG. 4, which will not be repeated here.
  • the PCF obtains the frequency information corresponding to the slice from the OAM.
  • the relevant OAM network element monitors the corresponding relationship between each area slice and the frequency band
  • the PCF can obtain the corresponding relationship between the slice and the frequency band of the entire PLMN from the OAM, or the PCF can ask OAM requests the correspondence between slices and frequency bands around the UE location (base stations or TAs around the UE).
  • Figure 6 shows that the relevant OAM network element monitors the corresponding relationship between each area slice and the frequency band, when the PCF initiates the establishment or update process of the UE policy, it can obtain the corresponding relationship between the slice and the frequency band of the entire PLMN from the OAM, or the PCF can ask OAM requests the correspondence between slices and frequency bands around the UE location (base stations or TAs around the UE).
  • Step 600 OAM related network elements monitor the corresponding relationship between each area slice and frequency band.
  • Step 601 The PCF determines to issue a UE policy.
  • Step 602 The PCF requests the OAM for the correspondence between the slices near the UE and the frequency bands used by the OAM according to the location information of the UE.
  • the PCF can query the corresponding relationship between the base station granularity or the TA granularity.
  • location information of the UE refer to the description in FIG. 3.
  • Step 603 The PCF determines the first information.
  • the received correspondence between the PCF/AMF and the issued correspondence may be different.
  • the correspondence relationship received by the PCF/AMF may be the second information, and the correspondence relationship issued may be the first information.
  • the second information includes at least information about radio resources corresponding to the first slice described above, and may also include information about radio resources corresponding to other slices.
  • the correspondence received by the PCF/AMF is the correspondence of the entire network, and the correspondence issued is the correspondence between the slices near the UE and the wireless resources used by it.
  • the PCF/AMF may also combine the slice requested by the UE, the subscribed slice or the configured slice to determine and deliver the corresponding relationship between the UE requested slice, the subscribed slice or the configured slice and the radio resource used.
  • the PCF may generate policy information, for example, a new UE policy including the foregoing corresponding relationship, and directly send the UE policy to the UE.
  • the UE policy may be included in a UE route selection policy (UE route selection policy, URSP), or may also be used as a separate policy.
  • the PCF can generate the RAT/Frequency Selection Priority (RFSP) or other access and mobility policies (access and mobility policy, AM policy) containing the above-mentioned corresponding relationship, and send the RFSP or other policies to the AMF.
  • RFSP Radio Resource Selection Priority
  • AM policy access and mobility policy
  • the first information can be determined in the following manner:
  • the AMF obtains the frequency information corresponding to the slice from the NSSF, as described in steps 300 to 303 in FIG. 3, which will not be repeated here.
  • the AMF obtains the frequency information corresponding to the slice from the RAN, as described in steps 501 and 502 in FIG. 5, which will not be repeated here.
  • the first information can be determined in the following manner:
  • the RAN can determine and issue the slices requested by the UE and the frequency bands used by the slices according to the slices requested by the UE. Correspondence. In other words, the RAN may further determine the corresponding relationship between the slice requested by the UE and the frequency band used by the UE based on the corresponding relationship obtained from the PCF/AMF, and send it to the UE through an access stratum (AS) message. For example, the RAN may send the corresponding relationship between the slice requested by the UE and the frequency band used by the UE through the system information block (SIB) information in the AS message.
  • SIB system information block
  • the PCF/AMF can send the corresponding relationship between the slice and the frequency band it uses to the UE through a non-access stratum (NAS) message.
  • NAS non-access stratum
  • Fig. 7 shows a signaling interaction diagram of a communication method provided according to an embodiment of the present application.
  • the method includes:
  • step 701 the PCF obtains the NSSAI information of the UE from the UDR/UDM.
  • Step 701 is an optional step.
  • Step 702 The PCF obtains the corresponding relationship between the slice and the frequency band.
  • the correspondence between slices and frequency bands may have the format of Table 4 or Table 6 above.
  • eMBB slices need to use the 4.9GHz frequency band.
  • the eMBB slice at a certain location (TA, Cell) needs to use the 4.9 GHz frequency band.
  • the PCF may only obtain the corresponding relationship related to the UE's subscription to the NSSAI.
  • the corresponding relationship may include the frequency required when multiple slices are simultaneously accessed.
  • the UE can access multiple slices at the same time.
  • Step 703 The PCF sends the corresponding relationship between the slice and the frequency/frequency band to the UE.
  • step 704 the UE selects a frequency access corresponding to a suitable slice according to the slice information that it needs to request.
  • steps of the method in this embodiment can be executed after the network establishes a UE policy association procedure for the UE, or can also be executed during the procedure, which is not limited in this application.
  • Fig. 8 shows a signaling interaction diagram of a communication method provided according to an embodiment of the present application.
  • the steps of the method in the embodiment of FIG. 8 may be executed after the network establishes the UE policy association procedure for the UE, or may also be executed during the procedure, which is not limited in this application.
  • the method includes:
  • step 801 the PCF obtains the requested NSSAI information of the UE from the AMF.
  • the AMF may report the requested NSSAI information of the UE in the policy association establishment request in the UE policy association process, or may also report the requested NSSAI information of the UE in other processes.
  • the PCF can set a policy control request trigger (Policy Control Request trigger, PCR Trigger) condition in the AMF: Request NSSAI change.
  • Policy Control Request trigger Policy Control Request trigger, PCR Trigger
  • Step 801 is an optional step.
  • Step 802 The PCF obtains the corresponding relationship between the slice and the frequency band.
  • the correspondence between slices and frequency bands may have the format of Table 4 or Table 6 above.
  • the PCF may only obtain the corresponding relationship related to the NSSAI requested by the UE.
  • the corresponding relationship may include the frequency required when multiple slices are simultaneously accessed.
  • the UE can access multiple slices at the same time.
  • Step 803 The PCF sends the corresponding relationship between the slice and the frequency/frequency band to the UE.
  • step 804 the UE selects a frequency access corresponding to a suitable slice according to the slice information that it needs to request.
  • Fig. 9 shows a signaling interaction diagram of a communication method provided according to an embodiment of the present application.
  • the steps of the method in the embodiment of FIG. 9 may be executed after the network establishes the UE policy association procedure for the UE, or may also be executed during the procedure, which is not limited in this application.
  • the method includes:
  • Step 901 The PCF obtains the requested NSSAI information of the UE from the AMF.
  • step 901 reference may be made to the description of step 801 in FIG. 8, which will not be repeated here.
  • Step 902 The PCF obtains the NSSAI information of the UE from the UDR/UDM.
  • Steps 901 and 902 are optional steps, and any one of them can be executed or all or none of them can be executed.
  • Step 903 The PCF obtains the corresponding relationship between the slice and the frequency band.
  • the correspondence between slices and frequency bands may have the format of Table 4 or Table 6 above.
  • the PCF converts the information of the frequency band into an RFSP index (RSFP index), and generates the corresponding relationship as shown in Table 7.
  • eMBB slices need to use the frequency band corresponding to RFSP index 1 (representing 4.9 GHz).
  • RFSP index 1 representing 4.9 GHz
  • the eMBB slice at a certain location needs to use 4.9 GHz corresponding to RFSP index 1.
  • the eMBB slice of area 2 needs to use 2.6GHz corresponding to RFSP index 2.
  • the PCF may only obtain the corresponding relationship related to the UE requesting the NSSAI or subscribing to the NSSAI.
  • the corresponding relationship may include index information of frequencies required when multiple slices are simultaneously accessed.
  • the UE can access multiple slices at the same time.
  • Step 904 The PCF sends the corresponding relationship between the slice and the RFSP index to the UE.
  • the PCF may first send the corresponding relationship to the AMF, for example, send the corresponding relationship to the AMF in the form of a tuple in Table 7, and then the AMF sends the corresponding relationship to the RAN.
  • the RAN forwards the corresponding relationship to the UE.
  • the RAN may also determine the RFSP Index corresponding to the NSSAI requested by the UE in combination with the NSSAI requested by the UE, and send an AS layer message containing the RFSP Index corresponding to the NSSAI requested by the UE to the UE (for example, through SIB ).
  • Step 905 The UE selects a frequency access corresponding to a suitable slice according to the slice information that it needs to request.
  • Fig. 10 shows a signaling interaction diagram of a communication method provided according to an embodiment of the present application.
  • the embodiment of FIG. 10 may be used in a user configuration update (UCU) process.
  • the method includes:
  • Step 1001 The AMF determines that the configuration of the UE needs to be updated.
  • the AMF finds that the frequency band corresponding to the slice needs to be updated, it determines that the configuration of the UE needs to be updated.
  • the AMF obtains the corresponding relationship between the slice and the frequency band configured by the UE.
  • the configured slice information may be configured on the AMF, or the AMF may obtain the configured slice information from the NSSF.
  • the corresponding relationship between the configured slice and the frequency band may have the format of Table 4, Table 6, or Table 7.
  • Step 1002 The AMF sends the fifth message to the UE.
  • the fifth message includes the corresponding relationship between the slice and frequency band configured by the UE.
  • the fifth message is a UE configuration update command message.
  • Step 1003 The UE sends a sixth message to the AMF.
  • the sixth message is a UE configuration update complete message.
  • Step 1004 The UE selects a suitable frequency access corresponding to the slice according to the slice information that it needs to request, and in combination with the received correspondence.
  • an embodiment of the present application also provides a communication device.
  • the communication device may be the terminal device in the foregoing method embodiment, or a device including the foregoing terminal device, or a component that can be used in a terminal device; or, the communication device may It is the network device in the foregoing method embodiment, or a device including the foregoing network device, or is a component that can be used in a network device. It can be understood that, in order to realize the above-mentioned functions, the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 11 shows a schematic structural diagram of a communication device 1100.
  • the communication device 1100 includes a transceiver module 1101 and a processing module 1102.
  • the transceiver module 1101 may also be referred to as a transceiver unit to implement a transceiver function, for example, it may be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module 1102 may also be referred to as a processing unit to implement processing functions, and may be, for example, a processing circuit, a processor, or a processor.
  • the communication apparatus may perform operations of the terminal device in FIG. 2 or the UE in FIG. 7 to FIG. 10.
  • the transceiver module 1101 is configured to receive first information from a network device, where the first information includes identification information of the first network slice and first wireless resource information used to access the first network slice.
  • the processing module 1102 is configured to access the first network slice through the first wireless resource according to the first information.
  • the identification information of the first network slice includes a type of the first network slice, single network slice selection auxiliary information for identifying the first network slice, or an instance identifier of the first network slice information.
  • the information of the first wireless resource indicates a frequency point, frequency, frequency band, or spectrum used to access the first network slice, and the information of the first wireless resource includes an indication of the first wireless resource Information or index information of the first wireless resource.
  • the first information further includes a correspondence between the location information of the terminal device and the identification information of the first network slice and the information of the first wireless resource.
  • the location information includes tracking area information, cell information, or base station information.
  • the first network slice is a network slice requested by the terminal device, a network slice subscribed by the terminal device, or a network slice configured by the terminal device.
  • the transceiver module 1101 is specifically configured to receive policy information from the network device, where the policy information includes the first information.
  • the communication apparatus may perform the operations of the network device in FIG. 2 or the PCF, AMF, or RAN in FIGS. 3-10.
  • the processing module 1102 is configured to determine first information, where the first information includes identification information of the first network slice and information of the first wireless resource used to access the first network slice.
  • the transceiver module 1101 is configured to send the first information to a terminal device, where the first information is used by the terminal device to access the first network slice through the first wireless resource.
  • the network device is a policy control function device.
  • the network device determines that the first information includes:
  • the policy control function device receives second information from the access and mobility management function device, and determines the first information according to the second information.
  • the second information includes the identification information of the first network slice and the information used for access Enter the first wireless resource information of the first network slice; or
  • the policy control function device sends information about the location of the terminal device to the network slice selection function device, receives second information from the network slice selection function device, and determines the first information according to the second information.
  • the second information includes identification information of the first network slice and first wireless resource information used to access the first network slice;
  • the first network slice can provide a service for the terminal device at the location of the terminal device.
  • the network device is an access and mobility management function device.
  • the network device determines that the first information includes:
  • the access and mobility management function device sends the location information of the terminal device to the network slice selection function device, receives second information from the network slice selection function device, and determines the first information according to the second information.
  • Information, the second information includes identification information of the first network slice and first wireless resource information used to access the first network slice, wherein the position of the first network slice in the terminal device is The terminal device provides services; or
  • the access and mobility management function device receives the first information from an access network device.
  • the network device is an access network device.
  • the network device determines that the first information includes:
  • the access network device receives third information from an access and mobility management network element, where the third information includes identification information of the first network slice and information about access to the first wireless resource of the first network slice.
  • the third information includes identification information of the first network slice and information about access to the first wireless resource of the first network slice.
  • the access network device determines that the terminal device requests to access the first network slice, and determines the first information according to the third information.
  • the identification information of the first network slice includes a type of the first network slice, single network slice selection auxiliary information for identifying the first network slice, or an instance identifier of the first network slice information.
  • the information of the first wireless resource indicates a frequency point, frequency, frequency band, or spectrum used to access the first network slice, and the information of the first wireless resource includes an indication of the first wireless resource Information or index information of the first wireless resource.
  • the first information further includes a correspondence between the location information of the terminal device and the identification information of the first network slice and the information of the first wireless resource.
  • the location information includes tracking area information, cell information, or base station information.
  • the first network slice is a network slice requested by the terminal device, a network slice subscribed by the terminal device, or a network slice configured by the terminal device.
  • the communication device 1100 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 1100 may take the form of the communication device 1200 shown in FIG. 12.
  • the processor 1201 in the communication device 1200 shown in FIG. 12 may invoke the computer execution instructions stored in the memory 1203 to make the communication device 1200 execute the communication method in the foregoing method embodiment.
  • the functions/implementation process of the transceiver module 1101 and the processing module 1102 in FIG. 11 may be implemented by the processor 1201 in the communication device 1200 shown in FIG. 12 calling the computer execution instructions stored in the memory 1203.
  • the function/implementation process of the processing module 1102 in FIG. 11 can be implemented by the processor 1201 in the communication device 1200 shown in FIG. 12 calling a computer execution instruction stored in the memory 1203.
  • the function of the transceiver module 1101 in FIG. 11 /The realization process can be realized through the communication interface 1204 in the communication device 1200 shown in FIG. 12.
  • the communication device 1100 or 1200 provided in this embodiment can perform the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • one or more of the above modules or units can be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built in SoC (system on chip) or ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • ASIC application specific integrated circuit
  • the processor's internal processing is used to execute software instructions for calculations or processing, and may further include necessary hardware accelerators, such as field programmable gate array (FPGA), PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the hardware can be a CPU, a microprocessor, a digital signal processing (digital signal processing, DSP) chip, a microcontroller unit (MCU), an artificial intelligence processor, an ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to perform the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • an artificial intelligence processor an ASIC
  • Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to perform the above method flow.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the communication device.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or includes one or more data storage devices such as servers, data centers, etc. that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供通信方法、设备及系统。该方法包括:终端设备从网络设备接收第一信息,所述第一信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息;终端设备根据所述第一信息,通过所述第一无线资源接入所述第一网络切片。采用本方法,能够提高接入切片的成功率,从而提高用户体验。

Description

通信方法、装置及系统
本申请要求于2020年2月17日提交中国专利局、申请号为202010096911.4、申请名称为“通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及通信方法、装置及系统。
背景技术
网络切片(network slice)是一个用于支持特定网络能力与网络特性的逻辑隔离的网络,可以包括端到端(end to end,E2E)的整个网络,也可以部分网络功能在多个网络切片中共享,是满足第三代合作伙伴项目(3rd generation partnership project,3GPP)提出的第五代(5th generation,5G)移动通信技术关于网络差异化需求的关键技术。通常,不同网络切片的网络特征并不相同,且要求网络切片之间相互隔离,互不影响。例如,增强型移动宽带业务(enhanced mobile broadband,eMBB)业务的网络切片可以提供比4G快10倍以上的传输速率,可应用于当下流行的增强实现(augmented reality,AR)或虚拟实现(virtual reality,VR)、高清视频直播,让用户获得快捷的体验。大规模机器通信(Massive Machine-Type Communications,mMTC)业务的网络切片要求支持海量终端接入,但带宽小,对时延没要求。超可靠低时延通信(ultra-reliable low-latency communication,URLLC)业务的网络切片具有大带宽、低时延和高可靠性的特点,可应用于5G自动驾驶的场景。
不同网络切片所对应的需要接入的无线资源(例如频率或频段)可能有所不同,例如,对于eMBB类型的切片,需要从2.6GHz或4.9GHz接入;而对于URLLC类型的切片,需要从4.9GHz接入。然而,终端设备在初始接入,或从空闲态转为连接态时,是根据配置的优先级,或者按顺序扫描不同无线资源,或者一定时间内上次接入的无线资源尝试选择一个小区接入网络。终端设备采用这样的方法尝试接入切片时可能会失败。
发明内容
本申请实施例提供了通信方法、装置及系统,用于提高接入切片的成功率,从而提高用户体验。
第一方面,本申请实施例提供了一种通信方法,该方法包括:终端设备从网络设备接收第一信息,所述第一信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息;所述终端设备根据所述第一信息,通过所述第一无线资源接入所述第一网络切片。
例如,所述第一网络切片的标识信息包括所述第一网络切片的类型、用于标识所述第一网络切片的单网络切片选择辅助信息、或所述第一网络切片的实例标识信息。
例如,所述第一无线资源的信息指示用于接入所述第一网络切片的频点、频率、频段或频谱,所述第一无线资源的信息包括所述第一无线资源的指示信息或所述第一无线资源的索引信息。
因此,采用上述方法,终端设备可以获知不同网络切片和其对应的无线资源之间的关系,在接入网络切片时可以根据该信息通过正确的无线资源接入请求的网络切片,从而能够保障接入切片的成功率,提高用户体验。
在一种可能的设计中,所述第一信息还包括所述终端设备的位置信息与所述第一网络切片的标识信息和所述第一无线资源的信息之间的对应关系。例如,所述位置信息包括跟踪区信息、小区信息或基站的信息。因此,终端设备还可以获知不同区域内不同网络切片和其对应的无线资源之间的关系,在不同的位置接入网络切片时可以根据该信息通过正确的无线资源接入请求的网络切片,从而能够保障接入切片的成功率,提高用户体验。
在一种可能的设计中,所述第一网络切片为所述终端设备请求的网络切片、所述终端设备签约的网络切片、或所述终端设备配置的网络切片。也就是说,网络设备可以获取到PLMN下的所有切片与其对应的无线资源,但是根据所述终端设备请求的网络切片、所述终端设备签约的网络切片、或所述终端设备配置的网络切片,仅向终端设备发送所述终端设备请求的网络切片、所述终端设备签约的网络切片、或所述终端设备配置的网络切片与其对应的无线资源,从而节约网络资源。
在一种可能的设计中,所述网络设备包括所述终端设备从网络设备接收第一信息,包括:所述终端设备从所述网络设备接收策略信息,所述策略信息包括所述第一信息。
第二方面,本申请实施例提供了一种通信方法,该方法包括:网络设备确定第一信息,所述第一信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源的信息;所述网络设备向终端设备发送所述第一信息,所述第一信息用于所述终端设备通过所述第一无线资源接入所述第一网络切片。
例如,所述第一网络切片的标识信息包括所述第一网络切片的类型、用于标识所述第一网络切片的单网络切片选择辅助信息、或所述第一网络切片的实例标识信息。
例如,所述第一无线资源的信息指示用于接入所述第一网络切片的频点、频率、频段或频谱,所述第一无线资源的信息包括所述第一无线资源的指示信息或所述第一无线资源的索引信息。
因此,采用上述方法,终端设备可以获知不同网络切片和其对应的无线资源之间的关系,在接入网络切片时可以根据该信息通过正确的无线资源接入请求的网络切片,从而能够保障接入切片的成功率,提高用户体验。
在一种可能的设计中,所述第一信息还包括所述终端设备的位置信息与所述第一网络切片的标识信息和所述第一无线资源的信息之间的对应关系。例如,所述位置信息包括跟踪区信息、小区信息或基站的信息。因此,终端设备还可以获知不同区域内不同网络切片和其对应的无线资源之间的关系,在不同的位置接入网络切片时可以根据该信息通过正确的无线资源接入请求的网络切片,从而能够保障接入切片的成功率, 提高用户体验。
在一种可能的设计中,所述网络设备为策略控制功能设备。例如,所述网络设备确定第一信息包括:
所述策略控制功能设备从接入和移动性管理功能设备接收第二信息,根据所述第二信息确定所述第一信息,所述第二信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息;或
所述策略控制功能设备向网络切片选择功能设备发送所述终端设备的位置的信息,从所述网络切片选择功能设备接收第二信息,根据所述第二信息确定所述第一信息,所述第二信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息;
其中,所述第一网络切片能够在所述终端设备的位置为所述终端设备提供服务。
在另一种可能的设计中,所述网络设备为接入和移动性管理功能设备。例如,所述网络设备确定第一信息包括:
所述接入和移动性管理功能设备向网络切片选择功能设备发送所述终端设备的位置的信息,从所述网络切片选择功能设备接收第二信息,根据所述第二信息确定所述第一信息,所述第二信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息,其中,所述第一网络切片能够在所述终端设备的位置为所述终端设备提供服务;或
所述接入和移动性管理功能设备从接入网设备接收所述第一信息。
在又一种可能的设计中,所述网络设备为接入网设备。例如,所述网络设备确定第一信息包括:
所述接入网设备从接入和移动性管理网元接收第三信息,所述第三信息包括所述第一网络切片的标识信息与接入所述第一网络切片的第一无线资源的信息之间的对应关系,以及第二网络切片的标识信息与接入所述第二网络切片的第二无线资源的信息之间的对应关系;
所述接入网设备确定所述终端设备请求接入所述第一网络切片,根据所述第三信息确定所述第一信息。
在一种可能的设计中,所述第一网络切片为所述终端设备请求的网络切片、所述终端设备签约的网络切片、或所述终端设备配置的网络切片。也就是说,网络设备可以获取到PLMN下的所有切片与其对应的无线资源,但是根据所述终端设备请求的网络切片、所述终端设备签约的网络切片、或所述终端设备配置的网络切片,仅向终端设备发送所述终端设备请求的网络切片、所述终端设备签约的网络切片、或所述终端设备配置的网络切片与其对应的无线资源,从而节约网络资源。
第三方面,本申请实施例提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置;或者,该通信装置可以为上述第二方面中的网络设备,或者包含上述网络设备的装置。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第四方面,本申请实施例提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置;或者,该通信装置可以为上述第二方面中的网络设备,或者包含上述网络设备的装置。
第五方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置;或者,该通信装置可以为上述第二方面中的网络设备,或者包含上述网络设备的装置。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第八方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,提供了一种通信系统,该通信系统包括:
网络设备,用于确定第一信息,所述第一信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源的信息;发送所述第一信息;
终端设备,用于从上述网络设备接收所述第一信息,根据所述第一信息,通过所述第一无线资源接入所述第一网络切片。
其中,第三方面至第九方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种5G通信系统示意图;
图2为本申请实施例提供的通信方法的示意图;
图3为本申请实施例提供的PCF确定第一信息的信令交互图;
图4为本申请实施例提供的PCF确定第一信息的信令交互图;
图5为本申请实施例提供的PCF确定第一信息的信令交互图;
图6为本申请实施例提供的PCF确定第一信息的信令交互图;
图7为本申请实施例提供的通信方法的信令交互图;
图8为本申请实施例提供的通信方法的信令交互图;
图9为本申请实施例提供的通信方法的信令交互图;
图10为本申请实施例提供的通信方法的信令交互图;
图11为本申请实施例提供的通信设备的结构示意图;
图12为本申请实施例提供的通信设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“以下至少一项”,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b,或c中的至少一项,可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“例如”等词旨在以具体方式呈现相关概念,便于理解。
以下将先对本申请涉及的一些概念进行介绍:
1.网络切片:
5G将开启一个万物互联的时代,5G支持eMBB、mMTC和URLLC三大场景,三大场景中包含了多样化差异化的应用。
eMBB:基于无线侧频谱利用率和频谱带宽技术的突破,5G可以提供比4G快10倍以上的传输速率。对于当下流行的AR/VR、高清视频直播,只有5G超高速率才能满足需求,4G的传输速率是无法支持的。现在使用VR看高清或者大型交互游戏时,必须要拖着网线来获取数据,在未来通过5G网络进行无线连接,VR/AR可以获得快捷的体验。
mMTC:通过多用户共享接入,超密集异构网络等技术,5G可以支持每平方公里接入100万个设备,是4G的10倍。近来智慧城市的快速发展,路灯,井盖,水表等公共设施都已经拥有了网络连接能力,可以进行远程管理,但是5G会有更大的革新。基于5G网络的强大连接能力,才可以把城市各个行业的公共设备都接入智能管理平台。这些公共设施通过5G网络协同工作,只需要少量的维护人员就可以统一管理,大大提升城市的运营效率。
URLLC:在5G场景下最典型的应用就是自动驾驶,自动驾驶最常用的场景如急刹车、车对车,车对人,车对基础设施等多路通信同时进行,需要瞬间进行大量的数据处理并决策。因此需要网络同时具有大带宽、低时延和高可靠性,5G网络具备应对这种场景的能力。
4G时代是通过一张网络满足所有的应用场景和客户群体,例如网络要提供窄带物联网(Narrowband Internet of Things,NB-IoT)能力就开通网元上的NB相关特性,要构筑网络可靠性,就增加网元设备级的冗余备份,通过不断叠加特性去满足大众市场不断提出的诉求。
但是垂直行业中各种业务在时延、连接数、可靠性、安全性等方面的要求相去甚远而且具有不可预知性,比如AR业务需要使用>1600Mbps的网络超高带宽、能源抄表业务需要网络提供海量连接,自动驾驶需要网络保证几毫秒的端到端低时延以及99.999%以上的高可靠性,如果还想通过一张网络满足目前所有需求以及未来可能提出 的需求,根本不可能实现。
网络切片技术可以让运营商在一个硬件基础设施切分出多个虚拟的网络,按需分配资源、灵活组合能力,满足各种业务的不同需求。当新需求提出而目前网络无法满足要求时,运营商只需要为此需求虚拟出一张新的切片网络,而不需要影响已有的切片网络,以最快速度上线业务。
网络切片是通过切片技术在一个通用硬件基础上虚拟出多个端到端的网络,每个网络具有不同网络功能,适配不同类型服务需求。运营商购买物理资源后,针对大众上网业务使用物理资源虚拟出一个eMBB切片网络,之后再针对垂直行业中某些厂商的智能抄表需求,使用物理资源再虚拟出一个mMTC切片网络,两个切片网络分别为不同业务场景提供服务。
虽然垂直行业中各行各业对对网络功能的需求多种多样,但是这些需求都可以解析成对网络带宽、连接数、时延、可靠性等网络功能的需求。5G标准也将不同业务对网络功能的需求特点归纳为三大典型场景,相应的这三大典型场景对应的网络切片的类型分别是eMBB切片、mMTC切片、URLLC切片。
2.单网络选择切片辅助信息(Single Network Slice Selection Assistance Information,S-NSSAI):
S-NSSAI用来标识一个网络切片。根据运营商的运营或部署需要,一个S-NSSAI可以关联一个或多个网络切片实例,一个网络切片实例可以关联一个或多个S-NSSAI。例如,eMBB切片1、eMBB切片2和eMBB切片3都是eMBB类型的切片,它们的S-NSSAI值都是0x01000000;eMBB+mMTC切片4既可以为eMBB类型业务提供服务,同时又可以为mMTC业务提供服务,所以它既是eMBB类型切片,又是mMTC类型的切片,对应的S-NSSAI值分别是0x01000000和0x02000000。
S-NSSAI包括切片/服务类型(Slice/ServiceType,SST)和切片差异(Slice Differentiator,SD)两部分:
SST是指在特性和服务方面预期的网络切片行为。SST的标准取值范围为1、2、3,取值1表示eMBB、2表示URLLC、3表示大规模物联网(Massive Internet of Things,MIoT)。
SD是一个可选信息,用来补充SST以区分同一个切片/业务类型的多个网络切片。
SST和SD两部分结合起来表示切片类型及同一切片类型的多个切片。例如S-NSSAI取值为0x01000000、0x02000000、0x03000000分别表示eMBB类型切片、URLLC类型切片、MIoT类型切片。而S-NSSAI取值为0x01000001、0x01000002则表示eMBB类型切片,分别服务于用户群1和用户群2。
3.网络切片选择辅助信息(Network Slice Selection Assistance Information,NSSAI):
NSSAI是S-NSSNI的集合。5G网络中使用到的NSSAI有请求的NSSAI(Requested NSSAI)、允许的NSSAI(Allowed NSSAI)、配置的NSSAI(Configured NSSAI),它们的具体定义如表1所示:
表1 NSSAI定义
Figure PCTCN2020140749-appb-000001
Figure PCTCN2020140749-appb-000002
4.网络切片选择策略(Network Slice Selection Policy,NSSP)
NSSP是由PCF将NSSP作为UE路由选择策略(UE Route Selection Policy,URSP)规则的一部分通过AMF发放给UE的,UE用来关联应用(例如通过APP ID、IP地址或域名)和S-NSSAI。
5.切片选择流程
在UE注册流程中,无线接入网(radio access network,RAN)首先根据本地存储信息及UE注册请求消息为UE选择一个初始AMF为其提供服务。但是初始AMF可能不支持UE要使用的网络切片,例如初始AMF只支持URLLC类型网络切片,但是UE请求的是eMBB类型的网络切片。如果初始AMF无法为UE提供服务,则初始AMF向网络切片选择功能(network slice selection function,NSSF)查询和选择能支持UE网络切片的目标AMF,然后将UE的注册请求消息通过直接或间接的方式发送给目标AMF,由目标AMF处理UE的注册请求进而为UE提供网络服务。具体可以包括如下步骤:
步骤1.UE通过一种接入类型注册到一个PLMN上时,发送注册请求消息给RAN。如果UE上存储有此PLMN的Configured NSSAI或者此PLMN此接入类型的Allowed NSSAI,那么UE将在非接入层(non-access stratum,NAS)注册请求消息以及AN消息中携带Requested NSSAI信息,Requested NSSAI包含UE希望注册的切片的S-NSSAI。
步骤2.RAN根据全球唯一AMF标识(globally unique AMF identifier,GUAMI)或Requested NSSAI选择初始AMF。如果UE没有在AN消息中提供Requested NSSAI和GUAMI,则RAN应将来自UE的注册请求消息发送给缺省AMF。
步骤3.初始AMF查询统一数据管理(unified data management,UDM)获取包括Subscribed S-NSSAIs在内的UE签约信息。初始AMF根据收到的Requested NSSAI、Subscribed S-NSSAI及本地配置判断是否可以为UE提供服务。如果AMF可以为UE服务,则初始AMF仍然是UE的服务AMF,然后AMF基于Subscribed S-NSSAI和 Requested NSSAI构造出Allowed NSSAI,并通过注册接受消息将Allowed NSSAI返回给UE。如果初始AMF无法为UE服务或者无法做出判断,则AMF需要向NSSF进行查询。
步骤4.AMF将Requested NSSAI、Subscribed S-NSSAI、签约永久标识(subscription permanent identifier,SUPI)的PLMN、跟踪区标识(tracking area identifier,TAI)等信息发送给NSSF进行查询。
步骤5.NSSF根据接收到的信息及本地配置,选出可以为UE服务的AMF集合(AMF Set)或候选AMF列表、适用于此次接入类型的Allowed NSSAI,可能还选出为UE服务的网络切片实例、实例内用于选择网络功能(network function,NF)的网络存储功能(network repository function,NRF),并将这些信息发送给初始AMF。
步骤6.如果初始AMF不在AMF Set内且本地未存储AMF地址信息,则初始AMF通过查询NRF获得候选AMF列表。NRF返回一组可用的AMF列表,包括AMF指针(AMF Pointer)和地址信息。初始AMF从中选择一个作为目标AMF。如果初始AMF无法通过查询NRF获得候选AMF列表,则初始AMF需要通过RAN将UE的注册请求消息发给目标AMF,初始AMF发送给RAN的消息里面包含AMF Set和Allowed NSSAI。
步骤7.如果初始AMF基于本地策略和签约信息决定直接将NAS消息发送给目标AMF,则初始AMF将UE注册请求消息以及从NSSF获得的除了AMF集合之外的其他信息都发送给目标AMF。
如果初始AMF基于本地策略和签约信息决定将NAS消息通过RAN转发给目标AMF,则初始AMF向RAN发送一条重路由(Reroute)NAS消息。Reroute NAS消息包括目标AMF Set信息和注册请求消息,以及从NSSF获得的相关信息。
步骤8.在接收到步骤7中发送的注册请求消息后,目标AMF继续执行注册流程的相关步骤,最终向UE发送注册接受消息,消息中携带Allowed NSSAI,NSSP等信息。
不同网络切片所对应的需要接入的无线资源可能有所不同,例如,对于eMBB类型的切片,需要从2.6GHz或4.9GHz接入;而对于URLLC类型的切片,需要从4.9GHz接入,如表2所示。
表2
Figure PCTCN2020140749-appb-000003
此外,需要接入不同类型切片的终端设备在不同的区域需要优先接入的无线资源也可能有所不同,如表3所示。比如区域1和区域2,对于相同的切片,接入的频谱是不一样的。例如,对于仅使用eMBB类型业务(eMBB only)的切片的终端设备, 在第一区域内优先接入2.6GHz,而移动到第二区域后,优选通过4.9GHz接入该切片。对于仅使用URLLC类型业务(URLLC only)的切片的终端设备,在第一区域内可通过4.9GHz接入该切片,而移动到第二区域后,无法接入该切片。对于能够同时使用eMBB和URLLC类型业务(eMBB and URLLC capable)的切片的终端设备,在第一区域和第二区域内都通过4.9GHz接入该切片。
表3
Figure PCTCN2020140749-appb-000004
现有技术中,终端设备在初始接入,或从空闲态转为连接态时,是根据配置的优先级,或者按顺序扫描不同无线资源,或者一定时间内上次接入的无线资源尝试选择一个小区接入网络。终端设备采用这样的方法尝试接入切片时可能会失败。
例如,结合上述表2,若终端设备上次通过2.6GHz接入了eMBB类型的切片,随后进入空闲态,当该终端设备再次进入连接态时会仍使用2.6GHZ接入网络,就无法使用URLLC类型的切片。
又例如,结合上述表3,对于上述eMBB only的终端设备,其上次通过2.6GHZ接入网络随后进入空闲态,当该终端设备从区域1移动到了区域2并再次进入连接态时会仍使用2.6GHZ接入网络,这样就无法接入区域2的eMBB切片。
本申请提供如下实施例,以提高UE接入切片的成功率,进而提高用户体验。
图1示出了本申请实施例提供的一种5G通信系统示意图。该通信系统可以包括UE、(R)AN设备、AMF设备、会话管理功能(Session Management function,SMF)设备、用户面功能(User Plane Function,UPF)设备、策略控制功能(Policy Control Function,PCF)设备、NSSF设备、应用功能(application function,AF)设备、UDM设备中的至少一项。
本申请实施例中的终端设备,如图1所示的UE,可以是用于实现无线通信功能的设备,例如其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。其中,终端设备可以是5G网络或者未来演进的PLMN中的UE、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线 终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端设备可以是移动的,也可以是固定的。
本申请实施例中的接入网设备,如图1所示的(R)AN设备,是一种为终端设备提供无线通信功能的设备。例如,基站包括但不限于:5G中的下一代基站(gnodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心。
本申请实施例中的移动性管理网元,如图1所示的AMF设备,主要功能包含:连接管理、移动性管理、注册管理、接入认证和授权、可达性管理、安全上下文管理等接入和移动性相关的功能。
本申请实施例中的会话管理网元,如图1所示的SMF设备,用于移动网络中的会话管理,如会话建立、修改、释放。具体功能包括为终端设备分配互联网协议(internet protocol,IP)地址、选择提供报文转发功能的UPF、业务和会话连续性(Service and Session Continuity,SSC)模式选择、漫游等会话相关的功能。
本申请实施例中的用户面功能网元,如图1所示的UPF设备,主要功能包含:数据包路由和传输、包检测、业务用量上报、QoS处理、合法监听、上行包检测、下行数据包存储等用户面相关的功能。UPF可连接至数据网络(data network,DN)。
本申请实施例中的策略控制功能网元,如图1所示的PCF设备,主要功能包含:统一策略制定、策略控制的提供和从用户数据库(User Data Repository,UDR)中获取策略决策相关的签约信息等策略相关的功能。
本申请实施例中的网络切片选择功能网元,如图1所示的NSSF设备,主要功能包含:为UE选择一组网络切片实例、确定允许的NSSAI和确定可以服务UE的AMF集等。
本申请实施例中的应用功能网元,如图1所示的AF设备,负责与3GPP核心网交互提供业务或者服务,包括与网络能力开放功能(network exposure function,NEF)交互,策略架构交互等。
本申请实施例中的统一数据管理网元,如图1所示的UDM设备,支持3GPP认证和秘钥协商机制中的认证信任状处理,用户身份处理,接入授权,注册和移动性管理,签约管理,短消息管理等。
上述各网元既可以由指定的硬件实现、或者,也可以由在指定硬件上的软件实例实现、或者,也可以由在合适的平台上实例化的虚拟功能来实现,本发明并不在此限制。
在服务化架构下,控制面内使用基于服务的接口(service-based interface)。例如,Namf是AMF网元提供的基于服务的接口,AMF网元可以通过Namf与其他的网络功能通信。Nsmf是SMF提供的基于服务的接口,SMF可以通过Nsmf与其他的网络功能通信。Nnssf是NSSF网元提供的基于服务的接口,NSSF网元可以通过Nnssf与其他的网络功能 通信。一个功能网元通过基于服务的接口,可以向被授权的其他功能网元开放它的能力,从而提供网络功能(network function,NF)服务。换句话说,NF服务就是指能被提供的各种能力。
此外,本申请实施例还可以适用于面向未来的其他通信技术。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
本申请适用于布局了网络切片通信网络。网络切片是一个用于支持特定网络能力与网络特性的逻辑隔离的网络。在后面的描述中,将把网络切片简称为切片进行描述。
图2所示为根据本申请实施例提供的切换方法的信令交互图。例如,该方法包括:
步骤201,网络设备确定第一信息,该第一信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源的信息。
例如,第一信息可以包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源的信息之间的对应关系(也可称为映射关系),如表4所示。
表4
Figure PCTCN2020140749-appb-000005
例如,所述第一网络切片的标识信息包括所述第一网络切片的类型(上述SST或SD)、用于标识所述第一网络切片的单网络切片选择辅助信息(S-NSSAI)、或所述第一网络切片的实例标识信息(slice instance ID)(要求UE感知切片实例,例如知道切片实例和S-NSSAI的对应关系)、或任意几项的组合。所述第一无线资源的信息指示用于接入第一网络切片的频点、频率、频段或频谱,包括所述第一无线资源的指示信息(例如,指示4.9GHz或2000M-3000MHz)或所述第一无线资源的索引信息(index)。
例如,运营商从频谱里分到的资源为频谱资源,如,从2000MHz到3000MHz的频谱资源。频率是频谱中具体的值,如2000MHz。频带、频段、频点都是基于频率的一个概念。其中,频带是允许传送的信号的最高频率与允许传送的信号的最低频率这之间的频率范围,会对其进行一个编号,如下面表5的第一列所示。频带会对应到一个最小频率,如下表5中的第二列,由这个最小频率可以知道频带所对应的频段,例如频带38所对应的频段为2.6G频段,频带40所对应的频段为2.3G频段,频段与频带都是来特指某段频率。频点是给固定频率的编号,一般为调制信号的中心频率,例如频率间隔都为200KHz,这样就依照200KHz的频率间隔从890MHz、890.2MHz、890.4MHz、890.6MHz、890.8MHz、891MHz……915MHz,这些点都是频点,代表这个点上下各100KHz的频率范围。
表5
Figure PCTCN2020140749-appb-000006
Figure PCTCN2020140749-appb-000007
在后面图3至图10的描述中,将以无线资源为频率或频段为例进行描述。
例如,确定第一信息的网络设备可以是PCF、AMF或RAN。
步骤202,网络设备向终端设备发送所述第一信息。相应的,终端设备从网络设备接收该第一信息。
步骤203,终端设备根据所述第一信息,通过所述第一无线资源接入所述第一网络切片。
例如,终端设备根据收到的第一信息,结合其业务需求确定请求的网络切片,并通过该网络切片对应的无线资源接入该网络切片。
因此,采用本申请实施例的方法,终端设备可以获知不同网络切片和其对应的无线资源之间的关系,在接入网络切片时可以根据该信息通过正确的无线资源接入请求的网络切片,从而能够保障接入切片的成功率,提高用户体验。例如,结合上述表2的例子,若终端设备上次通过2.6GHz接入了eMBB类型的切片,随后进入空闲态,当该终端设备再次进入连接态时想要请求URLLC类型的切片,就能够根据收到的信息通过4.9GHz接入URLLC类型的切片,避免了现有技术中存在的问题。
可选的,所述第一信息还包括所述终端设备的位置信息与所述第一网络切片的标识信息和所述第一无线资源的信息之间的对应关系,如表6所示。
表6
Figure PCTCN2020140749-appb-000008
例如,所述位置信息包括跟踪区(tracking area,TA)信息(例如,所述终端设备位于的TA信息)、小区(cell)信息(例如,所述终端设备位于的小区信息)或基站的信息(RAN Node ID)。例如,基站可以是指为终端设备服务的基站,或者,可以是支持UE签约的切片的基站。因此,终端设备还可以获知不同区域内不同网络切片和其对应的无线资源之间的关系,在不同的位置接入网络切片时可以根据该信息通过正确的无线资源接入请求的网络切片,从而能够保障接入切片的成功率,提高用户体验。例如,结合上述表3的例子,对于上述eMBB only的终端设备,其上次在区域1通过2.6GHZ接入网络随后进入空闲态,当该终端设备从区域1移动到了区域2并再次进入连接态时,就能够根据收到的信息使用4.9GHz接入区域2的eMBB切片,避 免了现有技术中存在的问题。
可选的,这里的第一网络切片可以是指PLMN下的所有切片、或者、是终端设备请求的切片(requested NSSAI)、所述终端设备签约的切片(subscribed NSSAI)、或所述终端设备配置的切片(configured NSSAI)。也就是说,网络设备可以获取到PLMN下的所有切片与其对应的无线资源,但是根据requested NSSAI、subscribed NSSAI、或configured NSSAI,仅向终端设备发送requested NSSAI、subscribed NSSAI、或configured NSSAI与其对应的无线资源,从而节约网络资源。
例如,对于上述步骤201,确定第一信息的网络设备可以是PCF、AMF或RAN。
A.当网络设备为PCF时,可以采用如下A1至A4中的任一方式确定第一信息:
A1.AMF从NSSF获取切片对应的频率信息,向PCF发送切片对应的频率信息。该场景下,考虑在NSSF网元上配置整个PLMN的切片和频段的对应关系,AMF在发起UE策略的建立或更新流程时,可以从NSSF获取整个PLMN的切片和频段对应关系,或者,AMF可以向NSSF请求UE位置周围(UE周围基站或TA)的切片和频段的对应关系,或者,AMF从网管(OAM)获取获取整个PLMN的切片和频段对应关系,再上报给PCF。如图3所示:
步骤300:在NSSF网元上配置切片和其使用频段的对应关系,此处假设NSSF网元上配置了整个PLMN所有TA(或基站)的切片与频段的对应关系。
步骤301:AMF确定下发UE策略。
步骤302:AMF向NSSF发送第一请求。例如,AMF可以通过调用NSSF的服务(Nnssf_NSSelection_Get)向NSSF发送第一请求。
步骤303:AMF从NSSF接收第一响应。例如,NSSF向AMF返回Nnssf_NSSelection_Get response。
在一种可能的实现方式中,第一响应中可以包括整个PLMN所有TA(或基站)的切片与频段的对应关系。
可选的,在另一种实现方式中,上述步骤302的第一请求包括UE的位置信息。例如,UE的位置信息为UE驻留的小区标识(Cell ID)或基站标识。小区标识或基站标识可以作为UE上下文存储在AMF中。可选的,UE的位置信息可以进一步包括相邻基站的标识或同一个TA内其他基站的标识。例如,AMF本地可以配置或从UDR中查询得到TA和基站的拓扑关系。这样,AMF就可以向NSSF请求UE附近的切片和其使用频段的对应关系。相应的,NSSF可以根据UE的位置信息通过步骤303向AMF返回UE附近的切片和其使用频段的对应关系。
步骤304:AMF向PCF发送第二请求。例如,第二请求可以是UE策略新建请求或UE策略更新请求。例如,AMF可以通过调用PCF的服务(Npcf_UEPolicyControl_Establishment/Update)向PCF发送第二请求。
在一种可能的实现方式中,AMF收到的是整个PLMN所有TA(或基站)的切片与频段的对应关系,向PCF发送的也是整个PLMN所有TA(或基站)的切片与频段的对应关系。
在另一种可能的实现方式中,AMF收到的是整个PLMN所有TA(或基站)的切片与频段的对应关系,然后AMF根据UE的位置信息确定UE附近的切片和其使用频 段的对应关系,进而向PCF发送UE附近的切片和其使用频段的对应关系。
在又一种可能的实现方式中,AMF收到的是UE附近的切片和其使用频段的对应关系,向PCF发送的也是UE附近的切片和其使用频段的对应关系。
相应的,PCF从AMF收到整个PLMN所有TA(或基站)的切片与频段的对应关系,或,UE附近的切片和其使用频段的对应关系。
步骤305,PCF根据从AMF收到的信息确定第一信息。
当PCF从AMF收到整个PLMN所有TA(或基站)的切片与频段的对应关系,PCF可以根据该对应关系以及从AMF获取到的UE的位置信息确定UE附近的切片和其使用频段的对应关系。其中,UE附近的切片和其使用频段的对应关系包括上述第一信息。
或者,PCF可以直接从AMF收到UE附近的切片和其使用频段的对应关系。其中,UE附近的切片和其使用频段的对应关系包括上述第一信息。
也就是说,既可以由NSSF确定UE附近的切片和其使用频段的对应关系然后通过AMF发给PCF,或者,也可以由AMF获得整网的对应关系然后确定UE附近的切片和其使用频段的对应关系发给PCF,或者,也可以由PCF获得整网的对应关系然后确定UE附近的切片和其使用频段的对应关系。
A2.PCF从NSSF获取切片对应的频率信息。该场景下,考虑在NSSF网元上配置整个PLMN的切片和频段的对应关系,PCF在发起UE策略的建立或更新流程时,可以从NSSF获取整个PLMN的切片和频段对应关系,或者,PCF可以向NSSF请求UE位置周围(UE周围基站或TA)的切片和频段的对应关系。如图4所示:
步骤400:在NSSF网元上配置切片和其使用频段的对应关系,此处假设NSSF网元上配置了整个PLMN所有TA(或基站)的切片与频段的对应关系。
步骤401:PCF确定下发UE策略。
步骤402:PCF向NSSF发送第三请求。例如,PCF可以通过调用NSSF的服务(Nnssf_NSSelection_Get)向NSSF发送第三请求。
步骤403:PCF从NSSF接收第三响应。例如,NSSF向PCF返回Nnssf_NSSelection_Get response。
在一种可能的实现方式中,第三响应中可以包括整个PLMN所有TA(或基站)的切片与频段的对应关系。
可选的,在另一种实现方式中,PCF从AMF获取到UE的位置信息,上述步骤402的第三请求包括UE的位置信息。UE的位置信息可参考图3中的描述。这样,PCF就可以向NSSF请求UE附近的切片和其使用频段的对应关系。相应的,NSSF可以根据UE的位置信息通过步骤403向PCF返回UE附近的切片和其使用频段的对应关系。
相应的,PCF从NSSF收到整个PLMN所有TA(或基站)的切片与频段的对应关系,或,UE附近的切片和其使用频段的对应关系。
步骤404:PCF根据从NSSF收到的信息确定第一信息。
当PCF收到整个PLMN所有TA(或基站)的切片与频段的对应关系,PCF可以根据该对应关系以及从AMF获取到的UE的位置信息确定UE附近的切片和其使用频段的对应关系。其中,UE附近的切片和其使用频段的对应关系包括上述第一信息。
或者,PCF可以直接从NSSF收到UE附近的切片和其使用频段的对应关系。其中,UE附近的切片和其使用频段的对应关系包括上述第一信息。
也就是说,既可以由NSSF确定UE附近的切片和其使用频段的对应关系然后发给PCF,或者,也可以由PCF获得整网的对应关系然后确定UE附近的切片和其使用频段的对应关系。
A3.AMF从RAN获取切片对应的频率信息,向PCF发送切片对应的频率信息。该场景下,考虑在AMF和RAN之间建立NG接口(NG setup)的流程中,由RAN向AMF上报切片和频率信息在该RAN中的对应关系。AMF可以根据UE的位置信息向PCF上报UE位置周围(UE周围基站或TA)的切片和频段的对应关系。如图5所示:
步骤501,在NG setup的流程中,RAN向AMF发送NG建立请求,NG建立请求中包括切片和频率信息在本RAN中的对应关系。也就是说,RAN可以向AMF上报例如上述表6的对应关系,其中位置信息以基站的信息为粒度。
步骤502,AMF向RAN发送NG建立响应。
步骤503,AMF确定下发UE策略。
步骤504,AMF向PCF发送第四请求。例如,第四请求可以是UE策略新建请求或UE策略更新请求。例如,AMF可以通过调用PCF的服务(Npcf_UEPolicyControl_Establishment/Update)向PCF发送第四请求。
例如,由于AMF获得的切片和频段的对应关系为基站粒度,因此,AMF可以根据UE的位置信息通过第四请求向PCF发送UE位置周围的切片和频段的对应关系。UE的位置信息可参考图3中的描述。例如,当AMF可以获知UE周围基站的拓扑关系(AMF上配置有AMF所管辖的所有RAN的物理位置拓扑关系,或从UDR查询),可向PCF上报相邻基站的切片和频段的对应关系。或者,AMF可以向PCF上报周围TA的切片和频段的对应关系。
相应的,PCF可以获得UE位置周围的切片和频段的对应关系。
步骤505:PCF根据从NSSF收到的信息确定第一信息。
步骤505可参考图4中步骤404的描述,此处不再赘述。
A4.PCF从OAM获取切片对应的频率信息。该场景下,考虑由OAM相关网元监测每个区域切片和频段对应关系,PCF在发起UE策略的建立或更新流程时,可以从OAM获取整个PLMN的切片和频段对应关系,或者,PCF可以向OAM请求UE位置周围(UE周围基站或TA)的切片和频段的对应关系。如图6所示:
步骤600:OAM相关网元监测每个区域切片和频段对应关系。
步骤601:PCF确定下发UE策略。
步骤602:PCF根据UE的位置信息向OAM请求UE附近的切片和其使用频段的对应关系。例如,PCF可查询基站粒度或TA粒度的对应关系情况。UE的位置信息可参考图3中的描述。
步骤603:PCF确定第一信息。
对于上述任一方式,如上所述,PCF/AMF收到的对应关系和下发的对应关系可能不同。PCF/AMF收到的对应关系可以是第二信息,而下发的对应关系可以是第一信息。其中,第二信息中至少包括了上述第一切片对应的无线资源的信息,还可以包括其他 切片对应的无线资源的信息。例如,PCF/AMF收到的对应关系是整网的对应关系,下发的对应关系UE附近的切片和其使用无线资源的对应关系。此外,PCF/AMF还可以结合UE请求的切片、签约的切片或配置的切片来确定并下发UE请求的切片、签约的切片或配置的切片和其使用无线资源的对应关系。
可选的,PCF采用上述任一方式确定第一信息后,PCF可以生成策略信息,例如,一种包含上述对应关系的新的UE策略,直接向UE发送该UE策略。该UE策略可以包含在UE路由选择策略(UE route selection policy,URSP)中,或者,也可以单独作为一个策略。或者,PCF可以生成包含上述对应关系的RAT/频率选择优先级(RAT/Frequency Selection Priority,RFSP)或其他接入和移动性策略(access and mobility policy,AM policy),向AMF发送该RFSP或其他AM policy,然后由AMF或AN向UE发送该对应关系。
B.当网络设备为AMF时,可以采用如下方式确定第一信息:
B1.AMF从NSSF获取切片对应的频率信息,如图3中步骤300至303的描述,此处不再赘述。
B2.AMF从RAN获取切片对应的频率信息,如图5中步骤501和502的描述,此处不再赘述。
C.当网络设备为RAN时,可以采用如下方式确定第一信息:
当上述PCF/AMF向RAN发送整网的对应关系,或,UE附近的切片和其使用频段的对应关系时,RAN可以根据UE请求的切片,确定并下发UE请求的切片和其使用频段的对应关系。也就是说,RAN可以基于从PCF/AMF获得的对应关系进一步确定出UE请求的切片和其使用频段的对应关系,并通过接入层(access stratum,AS)消息将其发送至UE。例如,RAN可以通过AS消息中的系统消息块(system information block,SIB)信息向UE发送UE请求的切片和其使用频段的对应关系。
当然,可以理解的是,PCF/AMF可以通过非接入层(non-access stratum,NAS)消息向UE发送切片和其使用频段的对应关系。
图7所示为根据本申请实施例提供的通信方法的信令交互图。例如,该方法包括:
步骤701,PCF从UDR/UDM获取UE的签约NSSAI信息。
步骤701为可选步骤。
步骤702,PCF获取切片和频段的对应关系。
切片和频段的对应关系可具有上述表4或表6的格式。例如,eMBB切片需要使用4.9GHz频段。可选的,当对应关系还包含位置信息时,某一位置(TA,Cell)的eMBB切片需要使用4.9GHz频段。
PCF获取切片和频段的对应关系的方式可参考上述图3至图6的描述,此处不再赘述。
可选的,当执行步骤701时,PCF可以只获取UE签约NSSAI相关的对应关系。当然,对应关系中可以包含同时接入多个切片时所需要的频率。例如,当Allowed NSSAI包含多个S-NSSAI且用户有需求时,UE可同时接入多个切片。
步骤703,PCF将切片和频率/频段的对应关系发送给UE。
步骤704,UE根据自身所需要请求的切片信息,选择合适的切片对应的频率接入。
可选的,UE再接入时还可以考虑信号强度等其他因素,来选择合适的切片对应的频率接入。
需要说明的是,本实施例的方法步骤可以在网络为该UE建立UE策略关联的流程后执行,或者,也可以在该流程过程中执行,本申请在此并不限制。
图8所示为根据本申请实施例提供的通信方法的信令交互图。类似的,图8实施例的方法步骤可以在网络为该UE建立UE策略关联的流程后执行,或者,也可以在该流程过程中执行,本申请在此并不限制。例如,该方法包括:
步骤801,PCF从AMF获取UE的请求NSSAI信息。
例如,AMF可以在UE策略关联流程中的策略关联建立请求中上报UE的请求NSSAI信息,或者,也可以在其他流程中上报UE的请求NSSAI信息。例如,PCF可以在AMF中设置策略控制请求触发(Policy Control Request trigger,PCR Trigger)的条件:Request NSSAI change。也就是说,PCF让AMF得到更新的Request NSSAI后需要向PCF上报该更新的Request NSSAI。
步骤801为可选步骤。
步骤802,PCF获取切片和频段的对应关系。
切片和频段的对应关系可具有上述表4或表6的格式。
PCF获取切片和频段的对应关系的方式可参考上述图3至图6的描述,此处不再赘述。
可选的,当执行步骤801时,PCF可以只获取UE请求NSSAI相关的对应关系。当然,对应关系中可以包含同时接入多个切片时所需要的频率。例如,当Allowed NSSAI包含多个S-NSSAI且用户有需求时,UE可同时接入多个切片。
步骤803,PCF将切片和频率/频段的对应关系发送给UE。
步骤804,UE根据自身所需要请求的切片信息,选择合适的切片对应的频率接入。
可选的,UE再接入时还可以考虑信号强度等其他因素,来选择合适的切片对应的频率接入。
图9所示为根据本申请实施例提供的通信方法的信令交互图。类似的,图9实施例的方法步骤可以在网络为该UE建立UE策略关联的流程后执行,或者,也可以在该流程过程中执行,本申请在此并不限制。例如,该方法包括:
步骤901,PCF从AMF获取UE的请求NSSAI信息。
步骤901可参考图8中步骤801的描述,此处不再赘述。
步骤902,PCF从UDR/UDM获取UE的签约NSSAI信息。
步骤901和902为可选步骤,可执行其中的任一个步骤或都执行或都不执行。
步骤903,PCF获取切片和频段的对应关系。
切片和频段的对应关系可具有上述表4或表6的格式。
PCF获取切片和频段的对应关系的方式可参考上述图3至图6的描述,此处不再赘述。
此外,PCF将频段的信息转换成RFSP索引(RSFP index),生成如表7所示的对应关系。
表7
Figure PCTCN2020140749-appb-000009
例如,eMBB切片需要使用RFSP index 1对应的频段(代表4.9GHz)。可选的,当对应关系还包含位置信息时,某一位置(区域1)的eMBB切片需要使用RFSP index 1对应的4.9GHz。区域2的eMBB切片需要使用RFSP index 2对应的2.6GHz。
可选的,当执行步骤901或902时,PCF可以只获取UE请求NSSAI或签约NSSAI相关的对应关系。当然,对应关系中可以包含同时接入多个切片时所需要的频率的索引信息。例如,当Allowed NSSAI包含多个S-NSSAI且用户有需求时,UE可同时接入多个切片。
步骤904,PCF将切片和RFSP index的对应关系发送给UE。
可选的,PCF可以先向AMF发送该对应关系,例如,通过表7中的元组(tuple)的形式向AMF发送该对应关系,然后AMF向RAN发送该对应关系。在一种实现方式中,RAN将对应关系转发给UE。在另一种实现方式中,RAN也可以结合UE请求的NSSAI,确定与UE请求的NSSAI对应的RFSP Index,向UE发送包含与UE请求的NSSAI对应的RFSP Index的AS层消息(例如,通过SIB)。
步骤905,UE根据自身所需要请求的切片信息,选择合适的切片对应的频率接入。
可选的,UE再接入时还可以考虑信号强度等其他因素,来选择合适的切片对应的频率接入。
图10所示为根据本申请实施例提供的通信方法的信令交互图。例如,图10的实施例可用于用户配置信息更新(user configuration update,UCU)流程。该方法包括:
步骤1001,AMF确定需要更新UE的配置。
例如,当AMF发现切片对应的频段需要更新时,确定需要更新UE的配置。
在此步骤中,AMF获取UE配置的切片和频段的对应关系。例如,配置的切片信息可以配置在AMF上,或者,AMF可以从NSSF获取配置的切片信息。配置的切片和频段的对应关系可具有上述表4、表6或表7的格式。
步骤1002,AMF向UE发送第五消息。第五消息中包括UE配置的切片和频段的对应关系。例如,第五消息为UE配置更新命令消息。
步骤1003,UE向AMF发送第六消息。例如,第六消息为UE配置更新完成消息。
步骤1004,UE根据自身所需要请求的切片信息,结合收到的对应关系选择合适的切片对应的频率接入。
可选的,UE再接入时还可以考虑信号强度等其他因素,来选择合适的切片对应的频率接入。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图11示出了一种通信装置1100的结构示意图。该通信装置1100包括收发模块1101和处理模块1102。所述收发模块1101,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。处理模块1102,也可以称为处理单元用以实现处理功能,例如可以是处理电路,处理机,或者处理器。
在一个实施例中,该通信装置可以执行图2中终端设备或图7至图10中UE的操作。例如,收发模块1101用于从网络设备接收第一信息,所述第一信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息。处理模块1102用于根据所述第一信息,通过所述第一无线资源接入所述第一网络切片。
可选的,所述第一网络切片的标识信息包括所述第一网络切片的类型、用于标识所述第一网络切片的单网络切片选择辅助信息、或所述第一网络切片的实例标识信息。
可选的,所述第一无线资源的信息指示用于接入所述第一网络切片的频点、频率、频段或频谱,所述第一无线资源的信息包括所述第一无线资源的指示信息或所述第一无线资源的索引信息。
可选的,所述第一信息还包括所述终端设备的位置信息与所述第一网络切片的标识信息和所述第一无线资源的信息之间的对应关系。
可选的,所述位置信息包括跟踪区信息、小区信息或基站的信息。
可选的,所述第一网络切片为所述终端设备请求的网络切片、所述终端设备签约的网络切片、或所述终端设备配置的网络切片。
可选的,所述收发模块1101具体用于从所述网络设备接收策略信息,所述策略信息包括所述第一信息。
在另一个实施例中,该通信装置可以执行图2中网络设备或图3至图10中PCF、AMF或RAN的操作。例如,处理模块1102用于确定第一信息,所述第一信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源的信息。收发模块1101用于向终端设备发送所述第一信息,所述第一信息用于所述终端设备通过所述第一无线资源接入所述第一网络切片。
可选的,所述网络设备为策略控制功能设备。例如,所述网络设备确定第一信息包括:
所述策略控制功能设备从接入和移动性管理功能设备接收第二信息,根据所述第二信息确定所述第一信息,所述第二信息包括第一网络切片的标识信息与用于接入所 述第一网络切片的第一无线资源信息;或
所述策略控制功能设备向网络切片选择功能设备发送所述终端设备的位置的信息,从所述网络切片选择功能设备接收第二信息,根据所述第二信息确定所述第一信息,所述第二信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息;
其中,所述第一网络切片能够在所述终端设备的位置为所述终端设备提供服务。
可选的,所述网络设备为接入和移动性管理功能设备。例如,所述网络设备确定第一信息包括:
所述接入和移动性管理功能设备向网络切片选择功能设备发送所述终端设备的位置的信息,从所述网络切片选择功能设备接收第二信息,根据所述第二信息确定所述第一信息,所述第二信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息,其中,所述第一网络切片能够在所述终端设备的位置为所述终端设备提供服务;或
所述接入和移动性管理功能设备从接入网设备接收所述第一信息。
可选的,所述网络设备为接入网设备。例如,所述网络设备确定第一信息包括:
所述接入网设备从接入和移动性管理网元接收第三信息,所述第三信息包括所述第一网络切片的标识信息与接入所述第一网络切片的第一无线资源的信息之间的对应关系,以及第二网络切片的标识信息与接入所述第二网络切片的第二无线资源的信息之间的对应关系;
所述接入网设备确定所述终端设备请求接入所述第一网络切片,根据所述第三信息确定所述第一信息。
可选的,所述第一网络切片的标识信息包括所述第一网络切片的类型、用于标识所述第一网络切片的单网络切片选择辅助信息、或所述第一网络切片的实例标识信息。
可选的,所述第一无线资源的信息指示用于接入所述第一网络切片的频点、频率、频段或频谱,所述第一无线资源的信息包括所述第一无线资源的指示信息或所述第一无线资源的索引信息。
可选的,所述第一信息还包括所述终端设备的位置信息与所述第一网络切片的标识信息和所述第一无线资源的信息之间的对应关系。
可选的,所述位置信息包括跟踪区信息、小区信息或基站的信息。
可选的,所述第一网络切片为所述终端设备请求的网络切片、所述终端设备签约的网络切片、或所述终端设备配置的网络切片。
此外,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置1100以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置1100可以采用图12所示的通信装置1200的形式。
比如,图12所示的通信装置1200中的处理器1201可以通过调用存储器1203中 存储的计算机执行指令,使得通信设备1200执行上述方法实施例中的通信方法。
具体的,图11中的收发模块1101和处理模块1102的功能/实现过程可以通过图12所示的通信装置1200中的处理器1201调用存储器1203中存储的计算机执行指令来实现。或者,图11中的处理模块1102的功能/实现过程可以通过图12所示的通信装置1200中的处理器1201调用存储器1203中存储的计算机执行指令来实现,图11中的收发模块1101的功能/实现过程可以通过图12中所示的通信装置1200中的通信接口1204来实现。
由于本实施例提供的通信装置1100或1200可执行上述的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体 介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (29)

  1. 一种通信方法,其特征在于,包括:
    终端设备从网络设备接收第一信息,所述第一信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源的信息;
    所述终端设备根据所述第一信息,通过所述第一无线资源接入所述第一网络切片。
  2. 根据权利要求1所述的方法,其特征在于,所述第一网络切片的标识信息包括所述第一网络切片的类型、用于标识所述第一网络切片的单网络切片选择辅助信息、或所述第一网络切片的实例标识信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一无线资源的信息指示用于接入所述第一网络切片的频点、频率、频段或频谱,所述第一无线资源的信息包括所述第一无线资源的指示信息或所述第一无线资源的索引信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一信息还包括位置信息与所述第一网络切片的标识信息和所述第一无线资源的信息之间的对应关系。
  5. 根据权利要求4所述的方法,其特征在于,所述位置信息包括跟踪区信息、小区信息或基站的信息。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一网络切片为所述终端设备请求的网络切片、所述终端设备签约的网络切片、或所述终端设备配置的网络切片。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述终端设备从网络设备接收第一信息,包括:
    所述终端设备从所述网络设备接收策略信息,所述策略信息包括所述第一信息。
  8. 一种通信方法,其特征在于,包括:
    网络设备确定第一信息,所述第一信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源的信息;
    所述网络设备向终端设备发送所述第一信息,所述第一信息用于所述终端设备通过所述第一无线资源接入所述第一网络切片。
  9. 根据权利要求8所述的方法,其特征在于,所述网络设备为策略控制功能设备。
  10. 根据权利要求9所述的方法,其特征在于,所述网络设备确定第一信息包括:
    所述策略控制功能设备从接入和移动性管理功能设备接收第二信息,根据所述第二信息确定所述第一信息,所述第二信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息;或
    所述策略控制功能设备向网络切片选择功能设备发送所述终端设备的位置的信息,从所述网络切片选择功能设备接收第二信息,根据所述第二信息确定所述第一信息,所述第二信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息;
    其中,所述第一网络切片能够在所述终端设备的位置为所述终端设备提供服务。
  11. 根据权利要求8所述的方法,其特征在于,所述网络设备为接入和移动性管理功能设备。
  12. 根据权利要求11所述的方法,其特征在于,所述网络设备确定第一信息包括:
    所述接入和移动性管理功能设备向网络切片选择功能设备发送所述终端设备的位置的信息,从所述网络切片选择功能设备接收第二信息,根据所述第二信息确定所述第一信息,所述第二信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息,其中,所述第一网络切片能够在所述终端设备的位置为所述终端设备提供服务;或
    所述接入和移动性管理功能设备从接入网设备接收所述第一信息。
  13. 根据权利要求8所述的方法,其特征在于,所述网络设备为接入网设备。
  14. 根据权利要求13所述的方法,其特征在于,所述网络设备确定第一信息包括:
    所述接入网设备从接入和移动性管理网元接收第三信息,所述第三信息包括所述第一网络切片的标识信息与接入所述第一网络切片的第一无线资源的信息之间的对应关系,以及第二网络切片的标识信息与接入所述第二网络切片的第二无线资源的信息之间的对应关系;
    所述接入网设备确定所述终端设备请求接入所述第一网络切片,根据所述第三信息确定所述第一信息。
  15. 根据权利要求8至14中任一项所述的方法,其特征在于,所述第一网络切片的标识信息包括所述第一网络切片的类型、用于标识所述第一网络切片的单网络切片选择辅助信息、或所述第一网络切片的实例标识信息。
  16. 根据权利要求8至15中任一项所述的方法,其特征在于,所述第一无线资源的信息指示用于接入所述第一网络切片的频点、频率、频段或频谱,所述第一无线资源的信息包括所述第一无线资源的指示信息或所述第一无线资源的索引信息。
  17. 根据权利要求8至16中任一项所述的方法,其特征在于,所述第一信息还包括所述终端设备的位置信息与所述第一网络切片的标识信息和所述第一无线资源的信息之间的对应关系。
  18. 根据权利要求17所述的方法,其特征在于,所述位置信息包括跟踪区信息、小区信息或基站的信息。
  19. 根据权利要求8至18中任一项所述的方法,其特征在于,所述第一网络切片为所述终端设备请求的网络切片、所述终端设备签约的网络切片、或所述终端设备配置的网络切片。
  20. 一种通信装置,其特征在于,包括:
    接收模块,用于从网络设备接收第一信息,所述第一信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息;和
    处理模块,用于根据所述第一信息,通过所述第一无线资源接入所述第一网络切片。
  21. 根据权利要求20所述的装置,其特征在于,所述接收模块用于从所述网络设备接收策略信息,所述策略信息包括所述第一信息。
  22. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第一信息,所述第一信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源的信息;
    发送模块,用于向终端设备发送所述第一信息,所述第一信息用于所述终端设备 通过所述第一无线资源接入所述第一网络切片。
  23. 根据权利要求22所述的装置,其特征在于,当所述网络设备为策略控制功能设备时,
    所述处理模块用于从接入和移动性管理功能设备接收第二信息,根据所述第二信息确定所述第一信息,所述第二信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息;或
    所述处理模块用于向网络切片选择功能设备发送所述终端设备的位置的信息,从所述网络切片选择功能设备接收第二信息,根据所述第二信息确定所述第一信息,所述第二信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息;
    其中,所述第一网络切片能够在所述终端设备的位置为所述终端设备提供服务。
  24. 根据权利要求22所述的装置,其特征在于,当所述网络设备为接入和移动性管理功能设备时,
    所述处理模块用于向网络切片选择功能设备发送所述终端设备的位置的信息,从所述网络切片选择功能设备接收第二信息,根据所述第二信息确定所述第一信息,所述第二信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源信息,其中,所述第一网络切片能够在所述终端设备的位置为所述终端设备提供服务;或
    所述处理模块用于从接入网设备接收所述第一信息。
  25. 根据权利要求22所述的装置,其特征在于,当所述网络设备为接入网设备时,
    所述处理模块用于从接入和移动性管理网元接收第三信息,所述第三信息包括所述第一网络切片的标识信息与接入所述第一网络切片的第一无线资源的信息之间的对应关系,以及第二网络切片的标识信息与接入所述第二网络切片的第二无线资源的信息之间的对应关系;确定所述终端设备请求接入所述第一网络切片,根据所述第三信息确定所述第一信息。
  26. 一种通信装置,其特征在于,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如权利要求1至19中任一项所述的方法。
  27. 一种通信系统,其特征在于,包括:
    网络设备,用于确定第一信息,所述第一信息包括第一网络切片的标识信息与用于接入所述第一网络切片的第一无线资源的信息;发送所述第一信息;
    终端设备,用于从上述网络设备接收所述第一信息,根据所述第一信息,通过所述第一无线资源接入所述第一网络切片。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至19中任一项所述的方法。
  29. 一种包含指令的计算机程序产品,其特征在于,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至19中任一项所述的方法。
PCT/CN2020/140749 2020-02-17 2020-12-29 通信方法、装置及系统 WO2021164428A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20919826.6A EP4093086A4 (en) 2020-02-17 2020-12-29 Communication method, apparatus and system
US17/883,862 US20220386229A1 (en) 2020-02-17 2022-08-09 Communication method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010096911.4 2020-02-17
CN202010096911.4A CN113271217B (zh) 2020-02-17 2020-02-17 通信方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/883,862 Continuation US20220386229A1 (en) 2020-02-17 2022-08-09 Communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2021164428A1 true WO2021164428A1 (zh) 2021-08-26

Family

ID=77227453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140749 WO2021164428A1 (zh) 2020-02-17 2020-12-29 通信方法、装置及系统

Country Status (4)

Country Link
US (1) US20220386229A1 (zh)
EP (1) EP4093086A4 (zh)
CN (1) CN113271217B (zh)
WO (1) WO2021164428A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106572516A (zh) * 2016-09-28 2017-04-19 华为技术有限公司 一种网络切片选择方法、终端设备及网络设备
WO2017174550A1 (en) * 2016-04-05 2017-10-12 Nokia Solutions And Networks Management International Gmbh Implementing radio access network slicing in a mobile network
CN109151906A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法、网络设备、终端设备和系统
EP3512272A1 (en) * 2018-01-12 2019-07-17 Panasonic Intellectual Property Corporation of America User equipment and base station supporting network slices and participating in paging procedure and connection setup
CN110380887A (zh) * 2018-04-13 2019-10-25 华为技术有限公司 通信方法与装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107197486A (zh) * 2016-03-15 2017-09-22 中兴通讯股份有限公司 一种驻留目标选择方法、传输方法及装置
EP4391700A2 (en) * 2016-08-12 2024-06-26 Huawei Technologies Co., Ltd. Network slice selection method, radio access device, and terminal
CN108566309B (zh) * 2017-01-26 2019-08-06 华为技术有限公司 一种接入目标小区的方法以及设备
KR102164230B1 (ko) * 2017-06-17 2020-10-12 엘지전자 주식회사 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치
CN109219111B (zh) * 2017-06-29 2020-09-04 华为技术有限公司 切片选择方法和装置
CN109391648B (zh) * 2017-08-04 2020-12-22 华为技术有限公司 一种应用与网络切片的关联方法、装置和通信系统
CN111901842B (zh) * 2017-10-26 2023-07-25 Oppo广东移动通信有限公司 无线通信方法和设备
CN109951877B (zh) * 2017-12-20 2023-06-02 华为技术有限公司 一种切片信息更新方法及装置
CN110278096B (zh) * 2018-03-14 2022-01-07 华为技术有限公司 一种基于网络切片的通信方法及装置
GB2574815B (en) * 2018-06-18 2021-10-13 British Telecomm Cellular telecommunications network
EP3589037A1 (en) * 2018-06-29 2020-01-01 Industrial Technology Research Institute Method and user equipment for accessing network slices which are not mutually exclusive
CN110662261B (zh) * 2018-06-30 2022-06-28 华为技术有限公司 一种网络切片的资源分配方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017174550A1 (en) * 2016-04-05 2017-10-12 Nokia Solutions And Networks Management International Gmbh Implementing radio access network slicing in a mobile network
CN106572516A (zh) * 2016-09-28 2017-04-19 华为技术有限公司 一种网络切片选择方法、终端设备及网络设备
CN109151906A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法、网络设备、终端设备和系统
EP3512272A1 (en) * 2018-01-12 2019-07-17 Panasonic Intellectual Property Corporation of America User equipment and base station supporting network slices and participating in paging procedure and connection setup
CN110380887A (zh) * 2018-04-13 2019-10-25 华为技术有限公司 通信方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4093086A4

Also Published As

Publication number Publication date
US20220386229A1 (en) 2022-12-01
EP4093086A4 (en) 2023-06-28
CN113271217A (zh) 2021-08-17
CN113271217B (zh) 2022-09-16
EP4093086A1 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
CN111684824B (zh) 增强的nef功能、mec和5g集成
WO2021017689A1 (zh) 一种用户面数据的获取方法、装置及存储介质
US11172405B2 (en) Method for checking change in wireless connection type of terminal in third-party application server
WO2022007899A1 (zh) Upf选择方法及装置
JP6448536B2 (ja) ポリシールールをモバイルエッジに配信するための方法、システム、およびコンピュータ読取可能媒体
EP4016961A1 (en) Information obtaining method and device
US11483801B2 (en) Resource configuration method and apparatus
WO2020224622A1 (zh) 一种信息配置方法及装置
CN111586690B (zh) 一种通信方法及装置
WO2021223507A1 (zh) 一种通信方法、装置及芯片
WO2022033558A1 (zh) 一种中继管理方法及通信装置
WO2020103517A1 (zh) 终端的能力信息的获取方法、装置及系统
WO2021051420A1 (zh) 一种dns缓存记录的确定方法及装置
CN115190436A (zh) 通信方法、设备及系统
WO2022033543A1 (zh) 一种中继通信方法及通信装置
WO2021164428A1 (zh) 通信方法、装置及系统
US20230057651A1 (en) Systems and methods for regional segmentation and selection of charging function
WO2022155853A1 (zh) 无线通信方法、通信装置及通信系统
CN115915196A (zh) 一种链路状态检测方法、通信装置及通信系统
WO2021138784A1 (zh) 一种接入网络的方法、装置及系统
US9674844B2 (en) Device and method for distributing WLAN user policy
CN115244991A (zh) 通信方法、装置及系统
WO2023082858A1 (zh) 确定移动性管理策略的方法、通信装置及通信系统
WO2021159523A1 (zh) 通信方法、装置及系统
WO2023061207A1 (zh) 一种通信方法、通信装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020919826

Country of ref document: EP

Effective date: 20220817

NENP Non-entry into the national phase

Ref country code: DE