WO2021161451A1 - 端末、無線通信方法及び基地局 - Google Patents
端末、無線通信方法及び基地局 Download PDFInfo
- Publication number
- WO2021161451A1 WO2021161451A1 PCT/JP2020/005556 JP2020005556W WO2021161451A1 WO 2021161451 A1 WO2021161451 A1 WO 2021161451A1 JP 2020005556 W JP2020005556 W JP 2020005556W WO 2021161451 A1 WO2021161451 A1 WO 2021161451A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- csi
- sinr
- report
- information
- transmission
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 58
- 238000000034 method Methods 0.000 title claims description 33
- 230000005540 biological transmission Effects 0.000 claims abstract description 107
- 238000005259 measurement Methods 0.000 description 68
- 238000012545 processing Methods 0.000 description 54
- 230000011664 signaling Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 17
- 238000007726 management method Methods 0.000 description 13
- 230000009977 dual effect Effects 0.000 description 10
- 238000001914 filtration Methods 0.000 description 9
- 238000013507 mapping Methods 0.000 description 9
- 238000010295 mobile communication Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 1
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 1
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 1
- 108700026140 MAC combination Proteins 0.000 description 1
- 101150071746 Pbsn gene Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0057—Physical resource allocation for CQI
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/336—Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
- LTE Long Term Evolution
- 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
- LTE Long Term Evolution
- 5G 5th generation mobile communication system
- 5G + plus
- NR New Radio
- 3GPP Rel.15 3GPP Rel.15 or later, etc.
- the L1-SINR report whether or not the group-based beam report can be set, and if it is set, how to include the SINR in the Channel State Information (CSI) report is still unclear. Consideration has not progressed. If the CSI report for SINR is not available, proper CSI reporting may not be possible and the communication throughput may decrease.
- CSI Channel State Information
- one of the purposes of this disclosure is to provide terminals, wireless communication methods and base stations that can suitably use CSI reports for SINR related to group-based beam reports.
- the terminal is enabled for group-based beam reporting in connection with Layer 1 Signal to Interference plus Noise Ratio (L1-SINR) reporting.
- L1-SINR Layer 1 Signal to Interference plus Noise Ratio
- it has a control unit for determining that the difference L1-SINR-based report is used for the channel state information (CSI) report, and a transmission unit for transmitting the CSI report.
- CSI channel state information
- CSI reports for SINR related to group-based beam reporting can be suitably used.
- FIG. 1A and 1B are diagrams showing an example of RRC information elements related to CSI reporting settings and CSI resource settings.
- 2A and 2B are diagrams showing an example of RRC information elements related to the NZP CSI-RS resource set and the CSI-SSB resource set.
- FIG. 3 is a diagram showing an example of RRC information elements relating to the TCI state.
- FIG. 4 is an excerpt of the RRC information element “CSI-ReportConfig”.
- FIG. 5 shows Rel. 15 It is a figure which shows an example of the CSI report in NR.
- 6A and 6B are diagrams showing an example of a CSI report including L1-SINR for a group-based beam report according to one embodiment.
- FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- FIG. 8 is a diagram showing an example of the configuration of the base station according to the embodiment.
- FIG. 9 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
- FIG. 10 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
- the UE measures the channel state using the reference signal (or the resource for the reference signal) and feeds back (reports) the channel state information (CSI) to the network (for example, the base station). )do.
- the UE is a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), a synchronization signal / broadcast channel (Synchronization Signal / Physical Broadcast Channel (SS / PBCH)) block, a synchronization signal (Synchronization Signal (SS)).
- CSI-RS Channel State Information Reference Signal
- SS Physical Broadcast Channel
- SS synchronization Signal
- DMRS DeModulation Reference Signal
- CSI-RS resources include non-zero power (Non Zero Power (NZP)) CSI-RS resources, zero power (Zero Power (ZP)) CSI-RS resources, and CSI Interference Measurement (CSI-IM) resources. At least one may be included.
- NZP Non Zero Power
- ZP Zero Power
- ZP Zero Power
- CSI-IM CSI Interference Measurement
- the resource for measuring the signal component for CSI may be referred to as a signal measurement resource (Signal Measurement Resource (SMR)) or a channel measurement resource (Channel Measurement Resource (CMR)).
- SMR Signal Measurement Resource
- CMR Channel Measurement Resource
- SMR may include, for example, NZP CSI-RS resources for channel measurement, SSB, and the like.
- the resource for measuring the interference component for CSI may be called an interference measurement resource (IMR).
- the IMR may include, for example, at least one of the NZP CSI-RS resource, SSB, ZP CSI-RS resource and CSI-IM resource for interference measurement.
- the SS / PBCH block is a block containing a synchronization signal (for example, a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS))) and a PBCH (and a corresponding DMRS), and is an SS. It may be called a block (SSB) or the like.
- a synchronization signal for example, a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS))
- SSS Secondary Synchronization Signal
- SSB block
- the CSI includes a channel quality indicator (Channel Quality Indicator (CQI)), a precoding matrix indicator (Precoding Matrix Indicator (PMI)), a CSI-RS resource indicator (CSI-RS Resource Indicator (CRI)), and an SS.
- CQI Channel Quality Indicator
- PMI Precoding Matrix Indicator
- CRI CSI-RS Resource Indicator
- SS / PBCH block resource indicator (SS / PBCH Block Resource Indicator (SSBRI)), layer indicator (Layer Indicator (LI)), rank indicator (Rank Indicator (RI)), L1-RSRP (reference signal reception in layer 1)
- SSBRI SS / PBCH Block Resource Indicator
- LI Layer Indicator
- RI rank indicator
- L1-RSRP reference signal reception in layer 1
- Even if at least one of power (Layer 1 Reference Signal Received Power), L1-RSRQ (Reference Signal Received Quality), L1-SINR (Signal to Interference plus Noise Ratio), L1-SNR (Signal to Noise Ratio), etc. is included. good.
- CSI may have multiple parts.
- CSI part 1 may include information with a relatively small number of bits (eg, RI).
- the CSI part 2 may include information having a relatively large number of bits (for example, CQI), such as information determined based on the CSI part 1.
- CSI may also be classified into several CSI types.
- the information type, size, etc. to be reported may differ depending on the CSI type.
- the CSI type set for communication using a single beam also called type I CSI, CSI for a single beam, etc.
- Type also called type 2 (type II) CSI, multi-beam CSI, etc.
- the usage of the CSI type is not limited to this.
- CSI feedback methods include periodic CSI (Periodic CSI (P-CSI)) reports, aperiodic CSI (Aperiodic CSI (A-CSI)) reports, and semi-persistent CSI (Semi-Persistent CSI (SP)). -CSI)) Reports are being considered.
- P-CSI Period CSI
- A-CSI aperiodic CSI
- SP semi-persistent CSI
- the UE may be notified of CSI measurement setting information using upper layer signaling, physical layer signaling, or a combination thereof.
- the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
- RRC Radio Resource Control
- MAC Medium Access Control
- MAC CE MAC Control Element
- PDU MAC Protocol Data Unit
- the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
- MIB Master Information Block
- SIB System Information Block
- RMSI Minimum System Information
- OSI Other System Information
- the physical layer signaling may be, for example, downlink control information (DCI).
- DCI downlink control information
- the CSI measurement setting information may be set using, for example, the RRC information element "CSI-MeasConfig".
- the CSI measurement setting information may include CSI resource setting information (RRC information element "CSI-ResourceConfig"), CSI report setting information (RRC information element "CSI-ReportConfig”), and the like.
- the CSI resource configuration information relates to the resource for CSI measurement
- the CSI reporting configuration information relates to how the UE performs CSI reporting.
- FIGS. 1A and 1B are diagrams showing an example of RRC information elements related to CSI report settings and CSI resource settings.
- an excerpt of a field (which may be called a parameter) contained in an information element is shown.
- 1A and 1B show ASN. It is described using the 1 (Abstract Syntax Notation One) notation. Drawings relating to other RRC information elements (or RRC parameters) of the present disclosure are also described in the same notation.
- the CSI report setting information (“CSI-ReportConfig”) includes resource information for channel measurement (“resourcesForChannelMeasurement”).
- the CSI report setting information includes resource information for interference measurement (for example, NZP CSI-RS resource information for interference measurement (“nzp-CSI-RS-ResourcesForInterference”)) and CSI-IM resource information for interference measurement (“csi-IM”). -ResourcesForInterference "), etc.) may also be included. These resource information correspond to the ID (Identifier) (“CSI-ResourceConfigId”) of the CSI resource setting information.
- the ID of the CSI resource setting information corresponding to each resource information (which may be called the CSI resource setting ID) may be one or a plurality of the same value, or may be different values. ..
- the CSI resource setting information (“CSI-ResourceConfig”) includes the CSI resource setting information ID, the CSI-RS resource set list information (“csi-RS-ResourceSetList”), and the resource type (“resourceType”). Etc. may be included.
- the CSI-RS resource set list includes NZP CSI-RS and SSB information for measurement (“nzp-CSI-RS-SSB”) and CSI-IM resource set list information (“csi-IM-ResourceSetList”). , At least one of them may be included.
- the resource type represents the behavior of the time domain of this CSI-RS resource setting, and can be set to "aperiodic", “semi-persistent", or "periodic".
- the corresponding CSI-RS may be referred to as A-CSI-RS, SP-CSI-RS, P-CSI-RS.
- the channel measurement resource may be used for calculation of, for example, CQI, PMI, L1-RSRP, and the like.
- the interference measurement resource may be used to calculate L1-SINR, L1-SNR, L1-RSRQ, and other indicators related to interference.
- each CSI-RS for channel measurement is associated with the CSI-IM resource in terms of resources, based on the order of the CSI-RS resource and the CSI-IM resource in the corresponding resource set. May be associated.
- Nsp-CSI-RS-SSB is NZP CSI-RS resource set list information ("nzp-CSI-RS-ResourceSetList”) and SSB resource set list information for CSI measurement (“csi-SSB-ResourceSetList”). May include. Each of these list information corresponds to one or more NZP CSI-RS resource set IDs ("NZP-CSI-RS-ResourceSetId”) and CSI-SSB resource set IDs (“CSI-SSB-ResourceSetId”). , May be used to identify the resource to be measured.
- FIGS. 2A and 2B are diagrams showing an example of RRC information elements related to the NZP CSI-RS resource set and the CSI-SSB resource set.
- the NZP CSI-RS resource set information (“NZP-CSI-RS-ResourceSet”) includes the NZP CSI-RS resource set ID and one or more NZP CSI-RS resource IDs (“NZP-”).
- NZP-CSI-RS-ResourceId the NZP CSI-RS resource set information
- the NZP CSI-RS resource information (“NZP-CSI-RS-Resource”) is the NZP CSI-RS resource ID and the ID (“TCI-stateId") of the transmission setting instruction state (TCI state (Transmission Configuration Indication state)). And may be included.
- TCI state will be described later.
- the CSI-SSB resource set information (“CSI-SSB-ResourceSet”) includes a CSI-SSB resource set ID and one or more SSB index information (“SSB-Index”). ..
- the SSB index information is, for example, an integer of 0 or more and 63 or less, and may be used to identify the SSB in the SS burst.
- FIG. 3 is a diagram showing an example of RRC information elements related to the TCI state.
- the TCI state is information related to pseudo collocation (Quasi-Co-Location (QCL)) of a channel or signal, and may also be called spatial reception parameter, spatial relation info, or the like.
- the TCI state may be set or specified in the UE on a channel-by-channel or signal-by-signal basis.
- the TCI state information (“TCI-State”) may include a TCI state ID and one or more QCL information (“QCL-Info”).
- the QCL information may include at least one of information regarding a reference signal of the QCL source (RS-related information (“referenceSignal”)) and information indicating the QCL type (QCL type information (“qcl-Type”)).
- the RS-related information may include information such as an RS index (for example, NZP CSI-RS resource ID, SSB index), a serving cell index, and a BWP (Bandwidth Part) index in which the RS is located.
- the UE performs reception processing (eg, reception, demapping, demodulation, etc.) on at least one of a signal and a channel (represented as a signal / channel) based on the TCI state corresponding to the TCI state ID associated with the signal / channel.
- reception processing eg, reception, demapping, demodulation, etc.
- transmission processing for example, at least one such as transmission, mapping, modulation, coding, transmission beam determination, etc.
- transmission processing for example, at least one such as transmission, mapping, modulation, coding, transmission beam determination, etc.
- a / B may mean "at least one of A and B”.
- the associated TCI state may be set by the RRC.
- the related TCI state may be determined based on higher layer signaling, physical layer signaling or a combination thereof.
- Beam management Beam management Rel.
- BM beam management
- Changing (switching) the beam of a signal / channel may correspond to changing at least one of the TCI state and QCL assumption of the signal / channel.
- the UE may report (transmit) the measurement result for beam management using the uplink control channel (Physical Uplink Control Channel (PUCCH)) or the uplink shared channel (Physical Uplink Shared Channel (PUSCH)). ..
- the measurement result may be, for example, a CSI containing at least one such as L1-RSRP, L1-RSRQ, L1-SINR, and L1-SNR.
- the measurement results (for example, CSI) reported for beam management may be referred to as beam measurement, beam measurement report, beam report, beam report CSI, and the like. ..
- CSI measurements for beam reports may include interference measurements.
- the UE may use the resources for CSI measurement to measure channel quality, interference, etc. and derive a beam report.
- the beam report may include the results of at least one of the channel quality measurement and the interference measurement.
- the result of the channel quality measurement may include, for example, L1-RSRP.
- the result of the interference measurement may include L1-SINR, L1-SNR, L1-RSRQ, and other indicators related to interference (for example, any index other than L1-RSRP).
- FIG. 4 is an excerpt of the RRC information element “CSI-ReportConfig”.
- FIG. 4 is an excerpt of another part of the same CSI report setting information (CSI-ReportConfig) as in FIG. 1A.
- the CSI report setting information may include "report quantity” (which may be represented by the RRC parameter "reportQuantity”), which is information on parameters to be reported by one report instance (for example, one CSI).
- the amount of reports is ASN. It is defined by the type of one object. Therefore, one of the parameters defined as the report amount (cri-RSRP, ssb-Index-RSRP, etc.) is set.
- a UE in which the upper layer parameter (for example, the RRC parameter “groupBasedBeamReporting” related to group-based beam reporting) included in the CSI report setting information is set to disabled is added to the CSI report setting information for each report setting.
- Beam measurement resource IDs for example, SSBRI, CRI
- RRC parameter "nrofReportedRS” indicating the number of reported RSs
- measurement results corresponding to the respective IDs for example, L1.
- -RSRP may be included in the beam report (one report instance).
- a UE with groupBasedBeamReporting set to enabled will beam report two different beam measurement resource IDs and two measurement results (eg, L1-RSRP) corresponding to each ID for each report setting. May be included in.
- a UE with groupBasedBeamReporting enabled divides DL-RS (eg, CSI-RS) into two groups and reports IDs and measurements for the higher RS in each group.
- the two beam measurement resources CSI-RS resource, SSB resource
- cri-RSRP and ssb-Index-RSRP are related to beam management among the reported quantities.
- FIG. 5 shows Rel. 15 It is a figure which shows an example of the CSI report in NR.
- One CSI report (nth CSI report) for CSI / RSRP or SSBRI / RSRP reports, as specified in 3GPP TS 38.212 V15.7.0 Table 6.3.1.1.1.2-8 The mapping order of the CSI fields included in # n) is shown.
- the CSI report of FIG. 5 can include one or more pairs of CRI / SSBRI and RSRP.
- the number of these pairs may be set by a higher layer parameter (eg, RRC parameter "nrofReportedRS") indicating the number of reference signal resources to be reported. Twice
- the differential RSRP # k which is calculated with reference to (eg, as a difference from the measured value), is included in the same CSI report (reporting instance).
- the UE will include RSRP # 1 and differential RSRP # 2 in the same CSI report.
- CRI / SSBRI # k in FIG. 5 is a field indicating CRI / SSBRI corresponding to RSRP # k or difference RSRP # k (included when reporting RSRP # k or difference RSRP # k).
- nrofReportedRS may have a value of 4 or more, or may be 4 or more.
- the CSI report may include four or more CRI / SSBRI and RSRP pairs. The above m, n and the like are not limited to 7 and 4, respectively.
- a user terminal (user terminal, User Equipment (UE)) having a plurality of panels (multi-panels), and a plurality of transmission / reception points (multi-Transmission / Reception).
- UE User Equipment
- multi-panels multi-panels
- transmission / reception points multi-Transmission / Reception
- Beam management-related extensions for example, beam reports suitable for multiple TRPs
- TRP Point
- the above-mentioned groupBasedBeamReporting can report on two groups in one report, and is suitable when multi-TRP transmission, multi-panel reception, etc. are applied. For example, it can be used to report the best beam of TRP1 as RSRP # 1 and the best beam of TRP2 as difference RSRP # 2.
- Rel. 16 NR is considering the introduction of L1-SINR report.
- the UE sets at least one of the NZP CSI-RS resource and the SSB resource for channel measurement, and sets at least one of the NZP CSI-RS resource and CSI-IM resource for interference measurement. May be done.
- the UE for which cri-SINR is set as the reporting amount reports the CRI and the L1-SINR corresponding to the CRI.
- a UE in which the upper layer parameter included in the CSI report setting information (for example, the RRC parameter “groupBasedBeamReporting” related to group-based beam reporting) is set to disabled is set to the CSI report setting information for each report setting.
- Beam measurement resource IDs eg, SSBRI, CRI
- RRC parameter "nrofReportedRSForSINR” indicating the number of RSs reported for SINR
- measurement results corresponding to the respective IDs eg, SSBRI, CRI.
- L1-SINR L1-SINR
- a UE with groupBasedBeamReporting set to enabled will beam report two different beam measurement resource IDs and two measurement results (eg, L1-SINR) corresponding to each ID for each report setting. May be included in.
- the two beam measurement resources (CSI-RS resource, SSB resource) may be simultaneously received by the UE using one spatial domain reception filter, or may be simultaneously received by using a plurality of simultaneous spatial domain reception filters. It may be received at the same time.
- groupBasedBeamReporting for SINR reporting may be read as a parameter such as "groupBasedBeamReportingForSINR".
- SINR # 1 which is a 7-bit field indicating the largest measured value of L1-SINR, is included in the CSI report.
- the difference SINR # k may be a 4-bit field.
- SINR # 1 may correspond to a value quantized to 7 bits with a step size of 0.5 dB in the range of -23 dB or more and 40 dB or less.
- SINR # k may correspond to a value quantized to 4 bits with a step size of 1 dB.
- the range of each value, the step size, etc. are not limited to these.
- the group-based beam report whether or not the group-based beam report can be set, and if it is set, how to include the SINR in the CSI report have not yet been examined. If the CSI report for SINR is not available, proper CSI reporting may not be possible and the communication throughput may decrease.
- the present inventors have conceived a method for preferably utilizing the CSI report for SINR related to the group-based beam report.
- a panel an Uplink (UL) transmission entity, a TRP, a spatial relationship, a control resource set (COntrol REsource SET (CORESET)), a PDSCH, a code word, a base station, and a predetermined antenna port (for example, a reference for demodulation).
- Signal DeModulation Reference Signal (DMRS) port
- predetermined antenna port group for example, DMRS port group
- predetermined group for example, Code Division Multiplexing (CDM)
- CORESET group predetermined reference signal group
- the panel Identifier (ID) and the panel may be read as each other.
- TRP ID and TRP may be read as each other.
- groups may be read as groups related to sets, clusters, panels, beams, etc.
- the UE may assume that if groupBasedBeamReporting is enabled, it will use the same CSI report to report L1-SINR for two or more groups.
- the number of groups related to groupBasedBeamReporting (the number of groups to be reported) may be set in the UE by higher layer signaling, may be predetermined by specifications, or may be based on the UE capability (eg, the number of supported groups). May be judged.
- the RRC parameter "nrofReportedRSForSINR" which indicates the number of RSs reported for SINR, may be set for each group (for example, the number of RSs to be reported for each group), or may be set across a plurality of groups. May (eg, indicate the number of RSs to be reported across all groups). It should be noted that the number of RSs reported for SINR per group or across groups may be set in the UE by higher layer signaling, may be predetermined by specifications, or report on UE capability (eg, supporting SINR). It may be judged based on the number of target RSs).
- the UE may make a differential L1-SINR-based report for each group within the group.
- the UE may make a differential L1-SINR-based report across groups.
- 6A and 6B are diagrams showing an example of a CSI report including L1-SINR for a group-based beam report according to one embodiment.
- the fields included in the CSI report are shown, but the order is not limited to these.
- FIG. 6A shows a CSI report containing N RS SINRs (or differential SINRs) for each of the two groups (groups # 1 and # 2) reported by the UE with groupBasedBeamReporting enabled.
- the difference SINR # 2- # N of the group # 1 is calculated with reference to the SINR # 1 of the group # 1.
- the difference SINR # 2- # N of the group # 2 is calculated with reference to the SINR # 1 of the group # 2.
- FIG. 6B shows a CSI report containing N RS SINRs (or differential SINRs) across three groups (groups # 1, # 2, # 3) reported by a UE with groupBasedBeamReporting enabled.
- SINR # 1 corresponds to SINR having the largest measured value in groups # 1 to # 3.
- the difference SINR # 2- # N corresponds to the SINR of any group, and is calculated with reference to the SINR # 1. This N may be the number of RSs to be reported over the group, or may be the sum of the number of RSs to be reported for each group.
- a report like that shown in FIG. 6A can preferably report a better SINR for each group.
- a report like that shown in FIG. 6B only one SINR needs to be reported (all the rest can be changed to the differential SINR), so that the number of bits of the CSI report can be expected to be reduced.
- the difference L1-SINR-based report across groups may be realized in a configuration that does not include SINR # 1 of group # 2 in FIG. 6A.
- the difference SINR # 2- # N of the group # 1 and the difference SINR # 2- # N of the group # 2 are calculated with reference to the SINR # 1 of the group # 1.
- multiple referenced SINRs may be included in the CSI report.
- the difference SINR of groups # 1 and # 2 is calculated by referring to the SINR of group # 1
- the difference SINR of group # 3 is calculated by referring to the SINR of group # 3
- the difference SINR of group # 1 is calculated.
- the SINR and the SINR of group # 3 may be included in the same CSI report.
- the group referred to in the calculation of the difference SINR of a certain group may be set in the UE by upper layer signaling, may be determined in advance by specifications, or may be determined based on the UE capability (for example, the number of supported groups). May be done.
- the UE can suitably report a CSI report for SINR related to group-based beam reporting.
- nrofReportedRSForSINR may be read as a value related to the number of RSs to be reported (for example, upper layer parameter) such as nrofReportedRS.
- wireless communication system Wireless communication system
- communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
- FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
- the radio communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
- MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
- -UTRA Dual Connectivity (NE-DC) may be included.
- the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
- the base station (gNB) of NR is MN
- the base station (eNB) of LTE (E-UTRA) is SN.
- the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
- a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
- NR-NR Dual Connectivity NR-DC
- gNB NR base stations
- the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
- the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
- the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
- the user terminal 20 may be connected to at least one of the plurality of base stations 10.
- the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
- CA Carrier Aggregation
- DC dual connectivity
- CC Component Carrier
- Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
- the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
- FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
- the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
- the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
- wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
- NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
- IAB Integrated Access Backhaul
- relay station relay station
- the base station 10 may be connected to the core network 30 via another base station 10 or directly.
- the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
- EPC Evolved Packet Core
- 5GCN 5G Core Network
- NGC Next Generation Core
- the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
- a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
- OFDM Orthogonal Frequency Division Multiplexing
- DL Downlink
- UL Uplink
- CP-OFDM Cyclic Prefix OFDM
- DFT-s-OFDM Discrete Fourier Transform Spread OFDM
- OFDMA Orthogonal Frequency Division Multiple. Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the wireless access method may be called a waveform.
- another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
- the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
- downlink shared channels Physical Downlink Shared Channel (PDSCH)
- broadcast channels Physical Broadcast Channel (PBCH)
- downlink control channels Physical Downlink Control
- Channel PDCCH
- the uplink shared channel Physical Uplink Shared Channel (PUSCH)
- the uplink control channel Physical Uplink Control Channel (PUCCH)
- the random access channel shared by each user terminal 20 are used.
- Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
- PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
- User data, upper layer control information, and the like may be transmitted by the PUSCH.
- MIB Master Information Block
- PBCH Master Information Block
- Lower layer control information may be transmitted by PDCCH.
- the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
- DCI Downlink Control Information
- the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
- the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
- the PDSCH may be read as DL data
- the PUSCH may be read as UL data.
- a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect PDCCH.
- CORESET corresponds to a resource that searches for DCI.
- the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
- One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
- One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
- One or more search spaces may be referred to as a search space set.
- the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
- channel state information (Channel State Information (CSI)
- delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
- scheduling request (Scheduling Request () Uplink Control Information (UCI) including at least one of SR)
- the PRACH may transmit a random access preamble to establish a connection with the cell.
- downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
- a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
- the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
- CRS Cell-specific Reference Signal
- CSI-RS Channel State Information Reference Signal
- DeModulation Demodulation reference signal
- Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
- PRS Positioning Reference Signal
- PTRS Phase Tracking Reference Signal
- the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
- SS, SSB and the like may also be called a reference signal.
- a measurement reference signal Sounding Reference Signal (SRS)
- a demodulation reference signal DMRS
- UL-RS Uplink Reference Signal
- UE-specific Reference Signal UE-specific Reference Signal
- FIG. 8 is a diagram showing an example of the configuration of the base station according to the embodiment.
- the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
- the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
- this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
- the control unit 110 controls the entire base station 10.
- the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
- the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
- the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
- the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
- the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
- the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
- the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
- the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
- the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
- the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
- the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
- the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
- the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
- digital beamforming for example, precoding
- analog beamforming for example, phase rotation
- the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- HARQ retransmission control HARQ retransmission control
- the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
- the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
- IFFT inverse fast Fourier transform
- the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
- the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
- the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
- FFT fast Fourier transform
- IDFT inverse discrete Fourier transform
- the transmission / reception unit 120 may perform measurement on the received signal.
- the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
- the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
- RSRP Reference Signal Received Power
- RSSQ Reference Signal Received Quality
- SINR Signal to Noise Ratio
- Signal strength for example, Received Signal Strength Indicator (RSSI)
- propagation path information for example, CSI
- the measurement result may be output to the control unit 110.
- the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
- the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
- the control unit 110 reports the group-based beam to the user terminal 20 in connection with the signal power to interference and noise power ratio (Layer 1 Signal to Interference plus Noise Ratio (L1-SINR)) report in layer 1. Control to enable it may be performed.
- L1-SINR Layer 1 Signal to Interference plus Noise Ratio
- the transmission / reception unit 120 receives the channel state information (CSI) report determined by the user terminal 20 to use the differential L1-SINR-based report based on the valid setting of the group-based beam report. May be good.
- CSI channel state information
- FIG. 9 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
- the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
- the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
- this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
- the control unit 210 controls the entire user terminal 20.
- the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
- the control unit 210 may control signal generation, mapping, and the like.
- the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
- the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
- the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
- the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
- the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
- the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
- the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
- the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
- the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
- the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
- digital beamforming for example, precoding
- analog beamforming for example, phase rotation
- the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
- RLC layer processing for example, RLC retransmission control
- MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
- HARQ retransmission control HARQ retransmission control
- the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
- Whether or not to apply the DFT process may be based on the transform precoding setting.
- the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
- the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
- the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
- the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
- the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
- the transmission / reception unit 220 may perform measurement on the received signal.
- the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
- the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
- the measurement result may be output to the control unit 210.
- the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
- control unit 210 When the control unit 210 is enabled to report the group-based beam in connection with the signal power to interference and noise power ratio (Layer 1 Signal to Interference plus Noise Ratio (L1-SINR)) report in layer 1, the control unit 210 is set to enable the group-based beam report. It may be determined that the differential L1-SINR-based report is used for the Channel State Information (CSI) report.
- CSI Channel State Information
- the transmission / reception unit 220 may transmit the CSI report to the network (for example, the base station 10).
- the control unit 210 may control each group so that the SINR related to the group and the difference SINR calculated based on the SINR are included in the CSI report.
- the control unit 210 may control the SINR for one group and the difference SINR for another group calculated based on the SINR so as to be included in the CSI report.
- each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
- the functional block may be realized by combining the software with the one device or the plurality of devices.
- the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
- a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
- the method of realizing each of them is not particularly limited.
- the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
- FIG. 10 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
- the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
- the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
- processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
- the processor 1001 may be mounted by one or more chips.
- the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
- predetermined software program
- Processor 1001 operates, for example, an operating system to control the entire computer.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
- CPU central processing unit
- control unit 110 210
- transmission / reception unit 120 220
- the like may be realized by the processor 1001.
- the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- a program program code
- the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
- the memory 1002 is a computer-readable recording medium, such as at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
- the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
- the storage 1003 may be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
- the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
- the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
- the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- the wireless frame may be composed of one or more periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
- the subframe may be composed of one or more slots in the time domain.
- the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
- the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
- Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
- SCS subcarrier Spacing
- TTI Transmission Time Interval
- a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
- the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.).
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the slot may be a time unit based on numerology.
- the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
- a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
- the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
- the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
- the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
- the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
- one subframe may be called TTI
- a plurality of consecutive subframes may be called TTI
- one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
- the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
- TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
- the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
- the definition of TTI is not limited to this.
- the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
- the time interval for example, the number of symbols
- the transport block, code block, code word, etc. may be shorter than the TTI.
- one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
- TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
- the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
- a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
- the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
- the number of subcarriers contained in the RB may be determined based on numerology.
- the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
- Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
- One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
- Physical RB Physical RB (PRB)
- SCG sub-carrier Group
- REG resource element group
- the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
- RE Resource Element
- 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
- Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
- the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
- BWP UL BWP
- BWP for DL DL BWP
- One or more BWPs may be set in one carrier for the UE.
- At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given channel / signal outside the active BWP.
- “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
- the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
- the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained in a slot, the number of symbols and RBs contained in a slot or minislot, and the number of RBs.
- the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
- the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
- information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
- Information, signals, etc. may be input / output via a plurality of network nodes.
- Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
- the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
- the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
- DCI downlink control information
- UCI Uplink Control Information
- RRC Radio Resource Control
- MIB master information block
- SIB system information block
- MAC medium access control
- the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
- the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
- MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
- CE MAC Control Element
- the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
- the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
- Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
- Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
- software, instructions, information, etc. may be transmitted and received via a transmission medium.
- a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
- wired technology coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.
- wireless technology infrared, microwave, etc.
- the terms “system” and “network” used in this disclosure may be used interchangeably.
- the “network” may mean a device (eg, a base station) included in the network.
- precoding "precoding weight”
- QCL Quality of Co-Co-Location
- TCI state Transmission Configuration Indication state
- space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
- Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
- Base station BS
- radio base station fixed station
- NodeB NodeB
- eNB eNodeB
- gNB gNodeB
- Access point "Transmission point (Transmission Point (TP))
- RP Reception point
- TRP Transmission / Reception Point
- Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
- Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
- the base station can accommodate one or more (for example, three) cells.
- a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
- Communication services can also be provided by Head (RRH))).
- RRH Head
- the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
- MS mobile station
- UE user equipment
- terminal terminal
- Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
- At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
- the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
- at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
- at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be read by the user terminal.
- the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
- D2D Device-to-Device
- V2X Vehicle-to-Everything
- Each aspect / embodiment of the present disclosure may be applied to the configuration.
- the user terminal 20 may have the function of the base station 10 described above.
- words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
- an uplink channel, a downlink channel, and the like may be read as a side channel.
- the user terminal in the present disclosure may be read as a base station.
- the base station 10 may have the functions of the user terminal 20 described above.
- the operation performed by the base station may be performed by its upper node (upper node) in some cases.
- various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
- Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
- each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- 6G 6th generation mobile communication system
- xG xG (xG (x is, for example, integer, fraction)
- Future Radio Access FAA
- RAT New -Radio Access Technology
- NR New Radio
- NX New radio access
- FX Future generation radio access
- GSM registered trademark
- CDMA2000 Code Division Multiple Access
- UMB Ultra Mobile Broadband
- LTE 802.11 Wi-Fi®
- LTE 802.16 WiMAX®
- LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios. It may be applied to a system using a communication method, a next-generation system extended based on these, and the like.
- UMB Ultra-WideBand
- references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
- determining used in this disclosure may include a wide variety of actions.
- judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
- judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)” such as “accessing” (for example, accessing data in memory).
- judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
- connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
- the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
- the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
- the term "A and B are different” may mean “A and B are different from each other”.
- the term may mean that "A and B are different from C”.
- Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
NRにおいては、UEは、参照信号(又は当該参照信号用のリソース)を用いてチャネル状態を測定し、チャネル状態情報(Channel State Information(CSI))をネットワーク(例えば、基地局)にフィードバック(報告)する。
Rel.15 NRにおいては、ビーム管理(Beam Management(BM))の方法が検討されてきた。当該ビーム管理においては、UEが報告したL1-RSRPをベースに、ビーム選択(beam selection)を行うことが検討されている。ある信号/チャネルのビームを変更する(切り替える)ことは、当該信号/チャネルのTCI状態及びQCL想定の少なくとも一方を変更することに相当してもよい。
一実施形態において、L1-SINR報告について、nrofReportedRSForSINRが1(値としては’n1’)に設定される場合、groupBasedBeamReportingが有効(enabled)に設定されるUEは、差分L1-SINRベース報告を利用する。具体的には、当該UEは、最も大きい測定値のL1-SINRを示すSINR#1と、k(例えば、k=2、3、4又はそれ以上)番目に大きいL1-SINRについての差分SINR#kと、を同じCSIレポート(レポーティングインスタンス)に含める。
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図8は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
図9は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
Claims (5)
- レイヤ1における信号電力対干渉及び雑音電力比(Layer 1 Signal to Interference plus Noise Ratio(L1-SINR))報告に関連してグループベースビーム報告を有効に設定された場合、チャネル状態情報(Channel State Information(CSI))レポートに差分L1-SINRベース報告を利用すると判断する制御部と、
前記CSIレポートを送信する送信部と、を有する端末。 - 前記制御部は、各グループについて、当該グループに関するSINRと、当該SINRに基づいて算出される差分SINRと、を前記CSIレポートに含めるように制御する請求項1に記載の端末。
- 前記制御部は、あるグループに関するSINRと、当該SINRに基づいて算出される別のグループに関する差分SINRと、を前記CSIレポートに含めるように制御する請求項1に記載の端末。
- レイヤ1における信号電力対干渉及び雑音電力比(Layer 1 Signal to Interference plus Noise Ratio(L1-SINR))報告に関連してグループベースビーム報告を有効に設定された場合、チャネル状態情報(Channel State Information(CSI))レポートに差分L1-SINRベース報告を利用すると判断するステップと、
前記CSIレポートを送信するステップと、を有する端末の無線通信方法。 - 端末に対して、レイヤ1における信号電力対干渉及び雑音電力比(Layer 1 Signal to Interference plus Noise Ratio(L1-SINR))報告に関連してグループベースビーム報告を有効に設定する制御部と、
前記グループベースビーム報告の有効の設定に基づいて差分L1-SINRベース報告を利用すると前記端末によって判断されたチャネル状態情報(Channel State Information(CSI))レポートを受信する受信部と、を有する基地局。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20918551.1A EP4106387A4 (en) | 2020-02-13 | 2020-02-13 | USER TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION |
CA3170209A CA3170209A1 (en) | 2020-02-13 | 2020-02-13 | Terminal, radio communication method and base station |
PCT/JP2020/005556 WO2021161451A1 (ja) | 2020-02-13 | 2020-02-13 | 端末、無線通信方法及び基地局 |
US17/904,188 US20230071430A1 (en) | 2020-02-13 | 2020-02-13 | Terminal, radio communication method, and base station |
JP2021577790A JP7455874B2 (ja) | 2020-02-13 | 2020-02-13 | 端末、無線通信方法、基地局及びシステム |
CN202080099573.8A CN115428509A (zh) | 2020-02-13 | 2020-02-13 | 终端、无线通信方法以及基站 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/005556 WO2021161451A1 (ja) | 2020-02-13 | 2020-02-13 | 端末、無線通信方法及び基地局 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021161451A1 true WO2021161451A1 (ja) | 2021-08-19 |
Family
ID=77292291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005556 WO2021161451A1 (ja) | 2020-02-13 | 2020-02-13 | 端末、無線通信方法及び基地局 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230071430A1 (ja) |
EP (1) | EP4106387A4 (ja) |
JP (1) | JP7455874B2 (ja) |
CN (1) | CN115428509A (ja) |
CA (1) | CA3170209A1 (ja) |
WO (1) | WO2021161451A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11985085B2 (en) * | 2021-01-26 | 2024-05-14 | Samsung Electronics Co., Ltd. | Method and apparatus for communications in a distributed antenna system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190306924A1 (en) * | 2018-06-26 | 2019-10-03 | Intel Corporation | Beam indication for semi-persistent and grant-free transmissions |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3378169B1 (en) * | 2015-11-16 | 2023-01-04 | Telefonaktiebolaget LM Ericsson (publ) | Reporting in different dimensions |
WO2018183991A1 (en) * | 2017-03-31 | 2018-10-04 | Intel IP Corporation | Beam management procedure triggering and signaling delivery in fall-back mode |
CN108810931B (zh) * | 2017-05-05 | 2024-07-05 | 华为技术有限公司 | 测量方法、终端设备和接入网设备 |
CN109121152B (zh) * | 2017-05-15 | 2019-09-20 | 华为技术有限公司 | 一种通信方法和装置 |
WO2019212224A1 (ko) * | 2018-04-30 | 2019-11-07 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 지원하는 장치 |
US11678174B2 (en) * | 2018-07-27 | 2023-06-13 | Ntt Docomo, Inc. | User terminal and radio communication method |
EP3832903A4 (en) * | 2018-08-03 | 2022-03-23 | NTT DoCoMo, Inc. | USER TERMINAL AND WIRELESS COMMUNICATION METHOD |
EP3804179B1 (en) * | 2018-09-28 | 2024-08-21 | Apple Inc. | Systems and methods for measurement period and accuracy for beam reporting based on l1-rsrp |
WO2020154496A1 (en) * | 2019-01-23 | 2020-07-30 | Apple Inc. | Data channel mapping type and dm-rs configuration to enable l1 cli measurement and reporting |
CN116367325A (zh) * | 2019-09-20 | 2023-06-30 | 北京小米移动软件有限公司 | 传输配置状态激活方法、装置及存储介质 |
-
2020
- 2020-02-13 JP JP2021577790A patent/JP7455874B2/ja active Active
- 2020-02-13 EP EP20918551.1A patent/EP4106387A4/en active Pending
- 2020-02-13 CN CN202080099573.8A patent/CN115428509A/zh active Pending
- 2020-02-13 CA CA3170209A patent/CA3170209A1/en active Pending
- 2020-02-13 WO PCT/JP2020/005556 patent/WO2021161451A1/ja unknown
- 2020-02-13 US US17/904,188 patent/US20230071430A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190306924A1 (en) * | 2018-06-26 | 2019-10-03 | Intel Corporation | Beam indication for semi-persistent and grant-free transmissions |
Non-Patent Citations (4)
Title |
---|
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01) |
3GPP TS 38.212 |
NTT DOCOMO, INC.: "Discussion on multi-beam enhancement", 3GPP DRAFT; R1-1813867, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051555774 * |
See also references of EP4106387A4 |
Also Published As
Publication number | Publication date |
---|---|
JP7455874B2 (ja) | 2024-03-26 |
JPWO2021161451A1 (ja) | 2021-08-19 |
CN115428509A (zh) | 2022-12-02 |
CA3170209A1 (en) | 2021-08-19 |
EP4106387A4 (en) | 2023-11-08 |
EP4106387A1 (en) | 2022-12-21 |
US20230071430A1 (en) | 2023-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020166081A1 (ja) | ユーザ端末及び無線通信方法 | |
JP7315573B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
JP7252251B2 (ja) | 端末、無線通信方法及びシステム | |
WO2021205667A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021064962A1 (ja) | 端末及び無線通信方法 | |
WO2022153395A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021220474A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021106092A1 (ja) | 端末及び無線通信方法 | |
WO2021215379A1 (ja) | 端末、無線通信方法及び基地局 | |
JPWO2020090061A1 (ja) | 端末、無線通信方法、基地局及びシステム | |
WO2022029979A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021220411A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021205604A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021210108A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2020255395A1 (ja) | 端末及び無線通信方法 | |
WO2021161451A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2022201550A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2022201551A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2022049711A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021156951A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021156950A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2022044290A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021186727A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021166244A1 (ja) | 端末、無線通信方法及び基地局 | |
JP7578677B2 (ja) | 端末、無線通信方法及び基地局 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20918551 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3170209 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2021577790 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020918551 Country of ref document: EP Effective date: 20220913 |