WO2021155243A1 - Respiratory virus immunizing compositions - Google Patents
Respiratory virus immunizing compositions Download PDFInfo
- Publication number
- WO2021155243A1 WO2021155243A1 PCT/US2021/015840 US2021015840W WO2021155243A1 WO 2021155243 A1 WO2021155243 A1 WO 2021155243A1 US 2021015840 W US2021015840 W US 2021015840W WO 2021155243 A1 WO2021155243 A1 WO 2021155243A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- substitution
- rna
- hrsv
- sequence
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 229
- 241000700605 Viruses Species 0.000 title abstract description 88
- 230000000241 respiratory effect Effects 0.000 title abstract description 70
- 230000003053 immunization Effects 0.000 title description 55
- 229920002477 rna polymer Polymers 0.000 claims abstract description 256
- 238000000034 method Methods 0.000 claims abstract description 71
- 102000003886 Glycoproteins Human genes 0.000 claims description 212
- 108090000288 Glycoproteins Proteins 0.000 claims description 212
- 238000006467 substitution reaction Methods 0.000 claims description 155
- -1 cationic lipid Chemical class 0.000 claims description 84
- 150000002632 lipids Chemical class 0.000 claims description 83
- 125000003729 nucleotide group Chemical group 0.000 claims description 71
- 241000342334 Human metapneumovirus Species 0.000 claims description 70
- 241000712003 Human respirovirus 3 Species 0.000 claims description 70
- 210000004027 cell Anatomy 0.000 claims description 70
- 241000711920 Human orthopneumovirus Species 0.000 claims description 67
- 210000005220 cytoplasmic tail Anatomy 0.000 claims description 67
- 239000002105 nanoparticle Substances 0.000 claims description 62
- 150000001413 amino acids Chemical class 0.000 claims description 59
- 108700026244 Open Reading Frames Proteins 0.000 claims description 48
- 239000002773 nucleotide Substances 0.000 claims description 46
- 108020003589 5' Untranslated Regions Proteins 0.000 claims description 40
- 108020005345 3' Untranslated Regions Proteins 0.000 claims description 37
- 230000003472 neutralizing effect Effects 0.000 claims description 35
- 230000014509 gene expression Effects 0.000 claims description 32
- 108091023045 Untranslated Region Proteins 0.000 claims description 27
- 229930182558 Sterol Natural products 0.000 claims description 24
- 150000003432 sterols Chemical class 0.000 claims description 24
- 235000003702 sterols Nutrition 0.000 claims description 24
- 230000004048 modification Effects 0.000 claims description 23
- 238000012986 modification Methods 0.000 claims description 23
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 20
- 238000000338 in vitro Methods 0.000 claims description 18
- 210000004899 c-terminal region Anatomy 0.000 claims description 15
- 108091036407 Polyadenylation Proteins 0.000 claims description 13
- 238000007385 chemical modification Methods 0.000 claims description 12
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 claims description 10
- 235000012000 cholesterol Nutrition 0.000 claims description 10
- 229940125904 compound 1 Drugs 0.000 claims description 10
- UVBYMVOUBXYSFV-XUTVFYLZSA-N 1-methylpseudouridine Chemical compound O=C1NC(=O)N(C)C=C1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 UVBYMVOUBXYSFV-XUTVFYLZSA-N 0.000 claims description 8
- UVBYMVOUBXYSFV-UHFFFAOYSA-N 1-methylpseudouridine Natural products O=C1NC(=O)N(C)C=C1C1C(O)C(O)C(CO)O1 UVBYMVOUBXYSFV-UHFFFAOYSA-N 0.000 claims description 8
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 7
- 230000005875 antibody response Effects 0.000 claims description 6
- 108091026898 Leader sequence (mRNA) Proteins 0.000 claims description 5
- JFBCSFJKETUREV-LJAQVGFWSA-N 1,2-ditetradecanoyl-sn-glycerol Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](CO)OC(=O)CCCCCCCCCCCCC JFBCSFJKETUREV-LJAQVGFWSA-N 0.000 claims description 4
- 125000001433 C-terminal amino-acid group Chemical group 0.000 claims description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 4
- 206010061598 Immunodeficiency Diseases 0.000 claims description 3
- 208000019693 Lung disease Diseases 0.000 claims description 3
- 210000004962 mammalian cell Anatomy 0.000 claims 2
- 229960005486 vaccine Drugs 0.000 abstract description 68
- 239000000427 antigen Substances 0.000 description 144
- 102000036639 antigens Human genes 0.000 description 139
- 108091007433 antigens Proteins 0.000 description 139
- 241000725643 Respiratory syncytial virus Species 0.000 description 122
- 150000007523 nucleic acids Chemical class 0.000 description 111
- 102000039446 nucleic acids Human genes 0.000 description 109
- 108020004707 nucleic acids Proteins 0.000 description 109
- 108090000623 proteins and genes Proteins 0.000 description 81
- 102000004169 proteins and genes Human genes 0.000 description 69
- 235000018102 proteins Nutrition 0.000 description 67
- 230000028993 immune response Effects 0.000 description 48
- 108090000765 processed proteins & peptides Proteins 0.000 description 42
- 125000000217 alkyl group Chemical group 0.000 description 41
- 229940024606 amino acid Drugs 0.000 description 35
- 235000001014 amino acid Nutrition 0.000 description 35
- 102000040430 polynucleotide Human genes 0.000 description 34
- 108091033319 polynucleotide Proteins 0.000 description 34
- 239000002157 polynucleotide Substances 0.000 description 33
- 108700021021 mRNA Vaccine Proteins 0.000 description 30
- 108020004705 Codon Proteins 0.000 description 29
- 108020004999 messenger RNA Proteins 0.000 description 29
- 102000004196 processed proteins & peptides Human genes 0.000 description 28
- 229940022005 RNA vaccine Drugs 0.000 description 27
- 125000005647 linker group Chemical group 0.000 description 27
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 26
- 125000003342 alkenyl group Chemical group 0.000 description 26
- 125000006592 (C2-C3) alkenyl group Chemical group 0.000 description 24
- 150000001875 compounds Chemical class 0.000 description 23
- 229920001184 polypeptide Polymers 0.000 description 23
- 239000002777 nucleoside Substances 0.000 description 22
- 108010068327 4-hydroxyphenylpyruvate dioxygenase Proteins 0.000 description 21
- 108020004414 DNA Proteins 0.000 description 20
- 108010076504 Protein Sorting Signals Proteins 0.000 description 20
- 230000003097 anti-respiratory effect Effects 0.000 description 20
- 125000003835 nucleoside group Chemical group 0.000 description 20
- 108010033040 Histones Proteins 0.000 description 17
- 125000000623 heterocyclic group Chemical group 0.000 description 17
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 15
- 229910052739 hydrogen Inorganic materials 0.000 description 15
- 238000001727 in vivo Methods 0.000 description 15
- 230000003612 virological effect Effects 0.000 description 15
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 14
- 210000002966 serum Anatomy 0.000 description 14
- 230000014616 translation Effects 0.000 description 14
- 238000003556 assay Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- 125000001072 heteroaryl group Chemical group 0.000 description 13
- 238000010790 dilution Methods 0.000 description 12
- 239000012895 dilution Substances 0.000 description 12
- 238000011534 incubation Methods 0.000 description 12
- 208000015181 infectious disease Diseases 0.000 description 12
- 238000005457 optimization Methods 0.000 description 12
- 108020005176 AU Rich Elements Proteins 0.000 description 11
- 241001465754 Metazoa Species 0.000 description 11
- 230000000069 prophylactic effect Effects 0.000 description 11
- 239000012634 fragment Substances 0.000 description 10
- 230000005847 immunogenicity Effects 0.000 description 10
- 230000035772 mutation Effects 0.000 description 10
- 229920001223 polyethylene glycol Polymers 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 238000013519 translation Methods 0.000 description 10
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 9
- 238000002965 ELISA Methods 0.000 description 9
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 9
- 230000027455 binding Effects 0.000 description 9
- 239000003085 diluting agent Substances 0.000 description 9
- 230000002163 immunogen Effects 0.000 description 9
- 238000013518 transcription Methods 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 230000009385 viral infection Effects 0.000 description 9
- 102000008857 Ferritin Human genes 0.000 description 8
- 108050000784 Ferritin Proteins 0.000 description 8
- 238000008416 Ferritin Methods 0.000 description 8
- 108091081024 Start codon Proteins 0.000 description 8
- 230000000890 antigenic effect Effects 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- 230000036039 immunity Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000035897 transcription Effects 0.000 description 8
- 239000002671 adjuvant Substances 0.000 description 7
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- 108020001507 fusion proteins Proteins 0.000 description 7
- 102000037865 fusion proteins Human genes 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 238000006386 neutralization reaction Methods 0.000 description 7
- 239000008194 pharmaceutical composition Substances 0.000 description 7
- 239000000546 pharmaceutical excipient Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 230000000087 stabilizing effect Effects 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- 238000001890 transfection Methods 0.000 description 7
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 7
- 229940045145 uridine Drugs 0.000 description 7
- 108010068996 6,7-dimethyl-8-ribityllumazine synthase Proteins 0.000 description 6
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 229940104302 cytosine Drugs 0.000 description 6
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000000684 flow cytometry Methods 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 238000010172 mouse model Methods 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000001954 sterilising effect Effects 0.000 description 6
- 238000002255 vaccination Methods 0.000 description 6
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical class NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 5
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 108091034057 RNA (poly(A)) Proteins 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 239000013543 active substance Substances 0.000 description 5
- 229960005305 adenosine Drugs 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 5
- PTJWIQPHWPFNBW-GBNDHIKLSA-N pseudouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-GBNDHIKLSA-N 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- KVUXYQHEESDGIJ-UHFFFAOYSA-N 10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,16-diol Chemical compound C1CC2CC(O)CCC2(C)C2C1C1CC(O)CC1(C)CC2 KVUXYQHEESDGIJ-UHFFFAOYSA-N 0.000 description 4
- ZAYHVCMSTBRABG-UHFFFAOYSA-N 5-Methylcytidine Natural products O=C1N=C(N)C(C)=CN1C1C(O)C(O)C(CO)O1 ZAYHVCMSTBRABG-UHFFFAOYSA-N 0.000 description 4
- ZAYHVCMSTBRABG-JXOAFFINSA-N 5-methylcytidine Chemical compound O=C1N=C(N)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZAYHVCMSTBRABG-JXOAFFINSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- 102000055765 ELAV-Like Protein 1 Human genes 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 102100022823 Histone RNA hairpin-binding protein Human genes 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 101000825762 Homo sapiens Histone RNA hairpin-binding protein Proteins 0.000 description 4
- 241001244451 Human respiratory syncytial virus A Species 0.000 description 4
- 229930185560 Pseudouridine Natural products 0.000 description 4
- PTJWIQPHWPFNBW-UHFFFAOYSA-N Pseudouridine C Natural products OC1C(O)C(CO)OC1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-UHFFFAOYSA-N 0.000 description 4
- 241000144290 Sigmodon hispidus Species 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 238000005571 anion exchange chromatography Methods 0.000 description 4
- WGDUUQDYDIIBKT-UHFFFAOYSA-N beta-Pseudouridine Natural products OC1OC(CN2C=CC(=O)NC2=O)C(O)C1O WGDUUQDYDIIBKT-UHFFFAOYSA-N 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 210000001808 exosome Anatomy 0.000 description 4
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 108700023453 human respiratory syncytial virus F Proteins 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 238000002649 immunization Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 150000003833 nucleoside derivatives Chemical class 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 208000023504 respiratory system disease Diseases 0.000 description 4
- 238000004007 reversed phase HPLC Methods 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 229940035893 uracil Drugs 0.000 description 4
- 230000029812 viral genome replication Effects 0.000 description 4
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229930024421 Adenine Natural products 0.000 description 3
- 206010006448 Bronchiolitis Diseases 0.000 description 3
- 101710132601 Capsid protein Proteins 0.000 description 3
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 3
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 3
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 108060004795 Methyltransferase Proteins 0.000 description 3
- 102000016397 Methyltransferase Human genes 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 241000711904 Pneumoviridae Species 0.000 description 3
- 102000002067 Protein Subunits Human genes 0.000 description 3
- 108010001267 Protein Subunits Proteins 0.000 description 3
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 3
- 241000144282 Sigmodon Species 0.000 description 3
- 108010067390 Viral Proteins Proteins 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 229960000643 adenine Drugs 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 210000000805 cytoplasm Anatomy 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 108060003196 globin Proteins 0.000 description 3
- 102000018146 globin Human genes 0.000 description 3
- 210000002443 helper t lymphocyte Anatomy 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 229940031551 inactivated vaccine Drugs 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229940126582 mRNA vaccine Drugs 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 3
- 230000008488 polyadenylation Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 229940023143 protein vaccine Drugs 0.000 description 3
- 238000003753 real-time PCR Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 2
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 2
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 2
- 101100180402 Caenorhabditis elegans jun-1 gene Proteins 0.000 description 2
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 108010061982 DNA Ligases Proteins 0.000 description 2
- 101710088194 Dehydrogenase Proteins 0.000 description 2
- 108030002463 Dye decolorizing peroxidases Proteins 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 102000004961 Furin Human genes 0.000 description 2
- 108090001126 Furin Proteins 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 102100039869 Histone H2B type F-S Human genes 0.000 description 2
- 101001035372 Homo sapiens Histone H2B type F-S Proteins 0.000 description 2
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 241000711504 Paramyxoviridae Species 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- 206010035664 Pneumonia Diseases 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 2
- 102000002278 Ribosomal Proteins Human genes 0.000 description 2
- 108010000605 Ribosomal Proteins Proteins 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- 230000005867 T cell response Effects 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 101150114197 TOP gene Proteins 0.000 description 2
- 241000204666 Thermotoga maritima Species 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- FHHZHGZBHYYWTG-INFSMZHSSA-N [(2r,3s,4r,5r)-5-(2-amino-7-methyl-6-oxo-3h-purin-9-ium-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl [[[(2r,3s,4r,5r)-5-(2-amino-6-oxo-3h-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] phosphate Chemical compound N1C(N)=NC(=O)C2=C1[N+]([C@H]1[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=C(C(N=C(N)N4)=O)N=C3)O)O1)O)=CN2C FHHZHGZBHYYWTG-INFSMZHSSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- LGJMUZUPVCAVPU-UHFFFAOYSA-N beta-Sitostanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CC)C(C)C)C1(C)CC2 LGJMUZUPVCAVPU-UHFFFAOYSA-N 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 125000001369 canonical nucleoside group Chemical group 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 238000001818 capillary gel electrophoresis Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000007969 cellular immunity Effects 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical group O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 2
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 210000003608 fece Anatomy 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000007306 functionalization reaction Methods 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol Substances OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229960004956 glycerylphosphorylcholine Drugs 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 229940029575 guanosine Drugs 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000000126 in silico method Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 229940124590 live attenuated vaccine Drugs 0.000 description 2
- 229940023012 live-attenuated vaccine Drugs 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- UYEUUXMDVNYCAM-UHFFFAOYSA-N lumazine Chemical compound N1=CC=NC2=NC(O)=NC(O)=C21 UYEUUXMDVNYCAM-UHFFFAOYSA-N 0.000 description 2
- 235000018977 lysine Nutrition 0.000 description 2
- 125000003588 lysine group Chemical class [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 229960001521 motavizumab Drugs 0.000 description 2
- 201000009240 nasopharyngitis Diseases 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 210000004909 pre-ejaculatory fluid Anatomy 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 108020001580 protein domains Proteins 0.000 description 2
- 238000000275 quality assurance Methods 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 229940126583 recombinant protein vaccine Drugs 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- NLQLSVXGSXCXFE-UHFFFAOYSA-N sitosterol Natural products CC=C(/CCC(C)C1CC2C3=CCC4C(C)C(O)CCC4(C)C3CCC2(C)C1)C(C)C NLQLSVXGSXCXFE-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 229940031626 subunit vaccine Drugs 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 108010027510 vaccinia virus capping enzyme Proteins 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 229960004854 viral vaccine Drugs 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 2
- KZJWDPNRJALLNS-VPUBHVLGSA-N (-)-beta-Sitosterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]([C@H](CC[C@@H](C(C)C)CC)C)CC4)CC3)CC=2)CC1 KZJWDPNRJALLNS-VPUBHVLGSA-N 0.000 description 1
- JTERLNYVBOZRHI-PPBJBQABSA-N (2-aminoethoxy)[(2r)-2,3-bis[(5z,8z,11z,14z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphinic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)OC[C@H](COP(O)(=O)OCCN)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC JTERLNYVBOZRHI-PPBJBQABSA-N 0.000 description 1
- XLKQWAMTMYIQMG-SVUPRYTISA-N (2-{[(2r)-2,3-bis[(4z,7z,10z,13z,16z,19z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CC XLKQWAMTMYIQMG-SVUPRYTISA-N 0.000 description 1
- CSVWWLUMXNHWSU-UHFFFAOYSA-N (22E)-(24xi)-24-ethyl-5alpha-cholest-22-en-3beta-ol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(CC)C(C)C)C1(C)CC2 CSVWWLUMXNHWSU-UHFFFAOYSA-N 0.000 description 1
- RQOCXCFLRBRBCS-UHFFFAOYSA-N (22E)-cholesta-5,7,22-trien-3beta-ol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CCC(C)C)CCC33)C)C3=CC=C21 RQOCXCFLRBRBCS-UHFFFAOYSA-N 0.000 description 1
- WCGUUGGRBIKTOS-GPOJBZKASA-N (3beta)-3-hydroxyurs-12-en-28-oic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CC[C@@H](C)[C@H](C)[C@H]5C4=CC[C@@H]3[C@]21C WCGUUGGRBIKTOS-GPOJBZKASA-N 0.000 description 1
- SSCDRSKJTAQNNB-DWEQTYCFSA-N 1,2-di-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphoethanolamine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OC[C@H](COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC SSCDRSKJTAQNNB-DWEQTYCFSA-N 0.000 description 1
- FVXDQWZBHIXIEJ-LNDKUQBDSA-N 1,2-di-[(9Z,12Z)-octadecadienoyl]-sn-glycero-3-phosphocholine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC FVXDQWZBHIXIEJ-LNDKUQBDSA-N 0.000 description 1
- DSNRWDQKZIEDDB-SQYFZQSCSA-N 1,2-dioleoyl-sn-glycero-3-phospho-(1'-sn-glycerol) Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@@H](O)CO)OC(=O)CCCCCCC\C=C/CCCCCCCC DSNRWDQKZIEDDB-SQYFZQSCSA-N 0.000 description 1
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 description 1
- PDXQSLIBLQMPJS-FDDDBJFASA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-(methoxymethyl)pyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(COC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 PDXQSLIBLQMPJS-FDDDBJFASA-N 0.000 description 1
- WTJKGGKOPKCXLL-VYOBOKEXSA-N 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC WTJKGGKOPKCXLL-VYOBOKEXSA-N 0.000 description 1
- WFZFMHDDZRBTFH-CZEFNJPISA-N 2-[(e)-2-(5-carbamimidoyl-1-benzofuran-2-yl)ethenyl]-1-benzofuran-5-carboximidamide;dihydrochloride Chemical compound Cl.Cl.NC(=N)C1=CC=C2OC(/C=C/C=3OC4=CC=C(C=C4C=3)C(=N)N)=CC2=C1 WFZFMHDDZRBTFH-CZEFNJPISA-N 0.000 description 1
- OZNBTMLHSVZFLR-GWTDSMLYSA-N 2-amino-9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3h-purin-6-one;6-amino-1h-pyrimidin-2-one Chemical compound NC=1C=CNC(=O)N=1.C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OZNBTMLHSVZFLR-GWTDSMLYSA-N 0.000 description 1
- SLQKYSPHBZMASJ-QKPORZECSA-N 24-methylene-cholest-8-en-3β-ol Chemical compound C([C@@]12C)C[C@H](O)C[C@@H]1CCC1=C2CC[C@]2(C)[C@@H]([C@H](C)CCC(=C)C(C)C)CC[C@H]21 SLQKYSPHBZMASJ-QKPORZECSA-N 0.000 description 1
- KLEXDBGYSOIREE-UHFFFAOYSA-N 24xi-n-propylcholesterol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CCC)C(C)C)C1(C)CC2 KLEXDBGYSOIREE-UHFFFAOYSA-N 0.000 description 1
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 1
- 101710176159 32 kDa protein Proteins 0.000 description 1
- 101150033839 4 gene Proteins 0.000 description 1
- IZFJAICCKKWWNM-JXOAFFINSA-N 4-amino-1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methoxypyrimidin-2-one Chemical compound O=C1N=C(N)C(OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IZFJAICCKKWWNM-JXOAFFINSA-N 0.000 description 1
- AMMRPAYSYYGRKP-BGZDPUMWSA-N 5-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1-ethylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)N(CC)C=C1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 AMMRPAYSYYGRKP-BGZDPUMWSA-N 0.000 description 1
- ZXIATBNUWJBBGT-JXOAFFINSA-N 5-methoxyuridine Chemical compound O=C1NC(=O)C(OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZXIATBNUWJBBGT-JXOAFFINSA-N 0.000 description 1
- 102100027573 ATP synthase subunit alpha, mitochondrial Human genes 0.000 description 1
- 208000036065 Airway Remodeling Diseases 0.000 description 1
- ZKEHTYWGPMMGBC-XUXIUFHCSA-N Ala-Leu-Leu-Ser Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O ZKEHTYWGPMMGBC-XUXIUFHCSA-N 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 241000180579 Arca Species 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 201000001178 Bacterial Pneumonia Diseases 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- OILXMJHPFNGGTO-NRHJOKMGSA-N Brassicasterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@](C)([C@H]([C@@H](/C=C/[C@H](C(C)C)C)C)CC4)CC3)CC=2)CC1 OILXMJHPFNGGTO-NRHJOKMGSA-N 0.000 description 1
- 0 C*(C)N(CCC(C)(C)C*(C)N)*(C)CC(C)(C)NC(*)* Chemical compound C*(C)N(CCC(C)(C)C*(C)N)*(C)CC(C)(C)NC(*)* 0.000 description 1
- 210000004366 CD4-positive T-lymphocyte Anatomy 0.000 description 1
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 1
- SGNBVLSWZMBQTH-FGAXOLDCSA-N Campesterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]([C@H](CC[C@H](C(C)C)C)C)CC4)CC3)CC=2)CC1 SGNBVLSWZMBQTH-FGAXOLDCSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 101710167800 Capsid assembly scaffolding protein Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- LPZCCMIISIBREI-MTFRKTCUSA-N Citrostadienol Natural products CC=C(CC[C@@H](C)[C@H]1CC[C@H]2C3=CC[C@H]4[C@H](C)[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)C(C)C LPZCCMIISIBREI-MTFRKTCUSA-N 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- 102100025620 Cytochrome b-245 light chain Human genes 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 101710082494 DNA protection during starvation protein Proteins 0.000 description 1
- ARVGMISWLZPBCH-UHFFFAOYSA-N Dehydro-beta-sitosterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)CCC(CC)C(C)C)CCC33)C)C3=CC=C21 ARVGMISWLZPBCH-UHFFFAOYSA-N 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- GZDFHIJNHHMENY-UHFFFAOYSA-N Dimethyl dicarbonate Chemical compound COC(=O)OC(=O)OC GZDFHIJNHHMENY-UHFFFAOYSA-N 0.000 description 1
- 102000016662 ELAV Proteins Human genes 0.000 description 1
- 108010053101 ELAV Proteins Proteins 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014950 Eosinophilia Diseases 0.000 description 1
- DNVPQKQSNYMLRS-NXVQYWJNSA-N Ergosterol Natural products CC(C)[C@@H](C)C=C[C@H](C)[C@H]1CC[C@H]2C3=CC=C4C[C@@H](O)CC[C@]4(C)[C@@H]3CC[C@]12C DNVPQKQSNYMLRS-NXVQYWJNSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 208000002091 Febrile Seizures Diseases 0.000 description 1
- 108010057573 Flavoproteins Proteins 0.000 description 1
- 102000003983 Flavoproteins Human genes 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 102000048120 Galactokinases Human genes 0.000 description 1
- 108700023157 Galactokinases Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- BTEISVKTSQLKST-UHFFFAOYSA-N Haliclonasterol Natural products CC(C=CC(C)C(C)(C)C)C1CCC2C3=CC=C4CC(O)CCC4(C)C3CCC12C BTEISVKTSQLKST-UHFFFAOYSA-N 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 102100027685 Hemoglobin subunit alpha Human genes 0.000 description 1
- 108091005902 Hemoglobin subunit alpha Proteins 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 101000936262 Homo sapiens ATP synthase subunit alpha, mitochondrial Proteins 0.000 description 1
- 101000856723 Homo sapiens Cytochrome b-245 light chain Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 101001050288 Homo sapiens Transcription factor Jun Proteins 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 102000018251 Hypoxanthine Phosphoribosyltransferase Human genes 0.000 description 1
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- 101100113998 Mus musculus Cnbd2 gene Proteins 0.000 description 1
- 102000004364 Myogenin Human genes 0.000 description 1
- 108010056785 Myogenin Proteins 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- JAUOIFJMECXRGI-UHFFFAOYSA-N Neoclaritin Chemical compound C=1C(Cl)=CC=C2C=1CCC1=CC=CN=C1C2=C1CCNCC1 JAUOIFJMECXRGI-UHFFFAOYSA-N 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000002508 Peptide Elongation Factors Human genes 0.000 description 1
- 108010068204 Peptide Elongation Factors Proteins 0.000 description 1
- 208000005228 Pericardial Effusion Diseases 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 101710130420 Probable capsid assembly scaffolding protein Proteins 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 208000010378 Pulmonary Embolism Diseases 0.000 description 1
- 108020005073 RNA Cap Analogs Proteins 0.000 description 1
- 101710086015 RNA ligase Proteins 0.000 description 1
- 108010065868 RNA polymerase SP6 Proteins 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- 206010057190 Respiratory tract infections Diseases 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- BGNVBNJYBVCBJH-UHFFFAOYSA-N SM-102 Chemical compound OCCN(CCCCCCCC(=O)OC(CCCCCCCC)CCCCCCCC)CCCCCC(OCCCCCCCCCCC)=O BGNVBNJYBVCBJH-UHFFFAOYSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101710204410 Scaffold protein Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 241000723792 Tobacco etch virus Species 0.000 description 1
- XYNPYHXGMWJBLV-VXPJTDKGSA-N Tomatidine Chemical compound O([C@@H]1[C@@H]([C@]2(CC[C@@H]3[C@@]4(C)CC[C@H](O)C[C@@H]4CC[C@H]3[C@@H]2C1)C)[C@@H]1C)[C@@]11CC[C@H](C)CN1 XYNPYHXGMWJBLV-VXPJTDKGSA-N 0.000 description 1
- 101001023030 Toxoplasma gondii Myosin-D Proteins 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 102100023132 Transcription factor Jun Human genes 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 108010007780 U7 Small Nuclear Ribonucleoprotein Proteins 0.000 description 1
- 108091026823 U7 small nuclear RNA Proteins 0.000 description 1
- OILXMJHPFNGGTO-ZRUUVFCLSA-N UNPD197407 Natural products C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)C=C[C@H](C)C(C)C)[C@@]1(C)CC2 OILXMJHPFNGGTO-ZRUUVFCLSA-N 0.000 description 1
- HZYXFRGVBOPPNZ-UHFFFAOYSA-N UNPD88870 Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)=CCC(CC)C(C)C)C1(C)CC2 HZYXFRGVBOPPNZ-UHFFFAOYSA-N 0.000 description 1
- 241000710959 Venezuelan equine encephalitis virus Species 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 108010042365 Virus-Like Particle Vaccines Proteins 0.000 description 1
- 206010047924 Wheezing Diseases 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- SUTHKQVOHCMCCF-QZNUWAOFSA-N [(2r)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-docosa-2,4,6,8,10,12-hexaenoyloxypropyl] docosa-2,4,6,8,10,12-hexaenoate Chemical compound CCCCCCCCCC=CC=CC=CC=CC=CC=CC(=O)OC[C@H](COP(O)(=O)OCCN)OC(=O)C=CC=CC=CC=CC=CC=CCCCCCCCCC SUTHKQVOHCMCCF-QZNUWAOFSA-N 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 208000024716 acute asthma Diseases 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000003838 adenosines Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 210000001742 aqueous humor Anatomy 0.000 description 1
- 210000003567 ascitic fluid Anatomy 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000006472 autoimmune response Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 108010028263 bacteriophage T3 RNA polymerase Proteins 0.000 description 1
- SLQKYSPHBZMASJ-UHFFFAOYSA-N bastadin-1 Natural products CC12CCC(O)CC1CCC1=C2CCC2(C)C(C(C)CCC(=C)C(C)C)CCC21 SLQKYSPHBZMASJ-UHFFFAOYSA-N 0.000 description 1
- MJVXAPPOFPTTCA-UHFFFAOYSA-N beta-Sistosterol Natural products CCC(CCC(C)C1CCC2C3CC=C4C(C)C(O)CCC4(C)C3CCC12C)C(C)C MJVXAPPOFPTTCA-UHFFFAOYSA-N 0.000 description 1
- NJKOMDUNNDKEAI-UHFFFAOYSA-N beta-sitosterol Natural products CCC(CCC(C)C1CCC2(C)C3CC=C4CC(O)CCC4C3CCC12C)C(C)C NJKOMDUNNDKEAI-UHFFFAOYSA-N 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 210000004952 blastocoel Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 108010006025 bovine growth hormone Proteins 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- OILXMJHPFNGGTO-ZAUYPBDWSA-N brassicasterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)/C=C/[C@H](C)C(C)C)[C@@]1(C)CC2 OILXMJHPFNGGTO-ZAUYPBDWSA-N 0.000 description 1
- 235000004420 brassicasterol Nutrition 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 210000003123 bronchiole Anatomy 0.000 description 1
- SGNBVLSWZMBQTH-PODYLUTMSA-N campesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](C)C(C)C)[C@@]1(C)CC2 SGNBVLSWZMBQTH-PODYLUTMSA-N 0.000 description 1
- 235000000431 campesterol Nutrition 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000013553 cell monolayer Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 150000001783 ceramides Chemical class 0.000 description 1
- 210000002939 cerumen Anatomy 0.000 description 1
- 210000003756 cervix mucus Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000001268 chyle Anatomy 0.000 description 1
- 210000004913 chyme Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 208000027744 congestion Diseases 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229940028617 conventional vaccine Drugs 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 210000002726 cyst fluid Anatomy 0.000 description 1
- 108010009442 cytochrome b245 Proteins 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 238000004163 cytometry Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 239000005549 deoxyribonucleoside Substances 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- 150000001985 dialkylglycerols Chemical class 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 238000001085 differential centrifugation Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- DNVPQKQSNYMLRS-SOWFXMKYSA-N ergosterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H](CC[C@]3([C@H]([C@H](C)/C=C/[C@@H](C)C(C)C)CC[C@H]33)C)C3=CC=C21 DNVPQKQSNYMLRS-SOWFXMKYSA-N 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 210000004700 fetal blood Anatomy 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 150000002211 flavins Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000002873 global sequence alignment Methods 0.000 description 1
- 230000036433 growing body Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 235000020256 human milk Nutrition 0.000 description 1
- 210000004251 human milk Anatomy 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012642 immune effector Substances 0.000 description 1
- 230000009851 immunogenic response Effects 0.000 description 1
- 238000012151 immunohistochemical method Methods 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 239000003547 immunosorbent Substances 0.000 description 1
- 238000012750 in vivo screening Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 208000030208 low-grade fever Diseases 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000004914 menses Anatomy 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 229940031348 multivalent vaccine Drugs 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 210000001819 pancreatic juice Anatomy 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 210000004912 pericardial fluid Anatomy 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000008024 pharmaceutical diluent Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000008103 phosphatidic acids Chemical class 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 210000004224 pleura Anatomy 0.000 description 1
- 210000003281 pleural cavity Anatomy 0.000 description 1
- 210000004910 pleural fluid Anatomy 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 210000004908 prostatic fluid Anatomy 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 210000004915 pus Anatomy 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 210000001533 respiratory mucosa Anatomy 0.000 description 1
- 230000011506 response to oxidative stress Effects 0.000 description 1
- 238000012340 reverse transcriptase PCR Methods 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 239000003161 ribonuclease inhibitor Substances 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 210000003935 rough endoplasmic reticulum Anatomy 0.000 description 1
- 101150026538 rps9 gene Proteins 0.000 description 1
- 101150030614 rpsI gene Proteins 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 239000012898 sample dilution Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 210000002374 sebum Anatomy 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- PWRIIDWSQYQFQD-UHFFFAOYSA-N sisunine Natural products CC1CCC2(NC1)OC3CC4C5CCC6CC(CCC6(C)C5CCC4(C)C3C2C)OC7OC(CO)C(OC8OC(CO)C(O)C(OC9OC(CO)C(O)C(O)C9OC%10OC(CO)C(O)C(O)C%10O)C8O)C(O)C7O PWRIIDWSQYQFQD-UHFFFAOYSA-N 0.000 description 1
- KZJWDPNRJALLNS-VJSFXXLFSA-N sitosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](CC)C(C)C)[C@@]1(C)CC2 KZJWDPNRJALLNS-VJSFXXLFSA-N 0.000 description 1
- 235000015500 sitosterol Nutrition 0.000 description 1
- 229950005143 sitosterol Drugs 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 229940032091 stigmasterol Drugs 0.000 description 1
- HCXVJBMSMIARIN-PHZDYDNGSA-N stigmasterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)/C=C/[C@@H](CC)C(C)C)[C@@]1(C)CC2 HCXVJBMSMIARIN-PHZDYDNGSA-N 0.000 description 1
- 235000016831 stigmasterol Nutrition 0.000 description 1
- BFDNMXAIBMJLBB-UHFFFAOYSA-N stigmasterol Natural products CCC(C=CC(C)C1CCCC2C3CC=C4CC(O)CCC4(C)C3CCC12C)C(C)C BFDNMXAIBMJLBB-UHFFFAOYSA-N 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000012089 stop solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 229940036185 synagis Drugs 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- XYNPYHXGMWJBLV-OFMODGJOSA-N tomatidine Natural products O[C@@H]1C[C@H]2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]5[C@@H](C)[C@]6(O[C@H]5C4)NC[C@@H](C)CC6)CC3)CC2)CC1 XYNPYHXGMWJBLV-OFMODGJOSA-N 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 108010087967 type I signal peptidase Proteins 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- PLSAJKYPRJGMHO-UHFFFAOYSA-N ursolic acid Natural products CC1CCC2(CCC3(C)C(C=CC4C5(C)CCC(O)C(C)(C)C5CCC34C)C2C1C)C(=O)O PLSAJKYPRJGMHO-UHFFFAOYSA-N 0.000 description 1
- 229940096998 ursolic acid Drugs 0.000 description 1
- 229940125575 vaccine candidate Drugs 0.000 description 1
- 210000004916 vomit Anatomy 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/155—Paramyxoviridae, e.g. parainfluenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/275—Poxviridae, e.g. avipoxvirus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/14—Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/24—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/28—Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
- C07K14/08—RNA viruses
- C07K14/115—Paramyxoviridae, e.g. parainfluenza virus
- C07K14/135—Respiratory syncytial virus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/575—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6018—Lipids, e.g. in lipopeptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C225/00—Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
- C07C225/02—Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton
- C07C225/04—Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being saturated
- C07C225/06—Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being saturated and acyclic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18511—Pneumovirus, e.g. human respiratory syncytial virus
- C12N2760/18522—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18511—Pneumovirus, e.g. human respiratory syncytial virus
- C12N2760/18534—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18511—Pneumovirus, e.g. human respiratory syncytial virus
- C12N2760/18541—Use of virus, viral particle or viral elements as a vector
- C12N2760/18543—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18511—Pneumovirus, e.g. human respiratory syncytial virus
- C12N2760/18571—Demonstrated in vivo effect
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18611—Respirovirus, e.g. Bovine, human parainfluenza 1,3
- C12N2760/18634—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
Definitions
- Respiratory disease is a medical term that encompasses pathological conditions affecting the organs and tissues that make gas exchange possible in higher organisms, and includes conditions of the upper respiratory tract, trachea, bronchi, bronchioles, alveoli, pleura and pleural cavity, and the nerves and muscles of breathing. Respiratory diseases range from mild and self- limiting, such as the common cold, to life-threatening entities like bacterial pneumonia, pulmonary embolism, acute asthma and lung cancer. Respiratory disease is a common and significant cause of illness and death around the world. In the US, approximately 1 billion "common colds" occur each year. Respiratory conditions are among the most frequent reasons for hospital stays among children.
- Human respiratory syncytial vims is a negative- sense, single- stranded ribonucleic acid (RNA) vims of the genus Pneumovirinae.
- the vims is present in at least two antigenic subgroups, known as Group A and Group B, primarily resulting from differences in the surface G glycoproteins.
- Two hRSV surface glycoproteins - G and F - mediate attachment with and attachment to cells of the respiratory epithelium.
- F surface glycoproteins mediate coalescence of neighboring cells. This results in the formation of syncytial cells.
- hRSV is the most common cause of bronchiolitis. Most infected adults develop mild cold-like symptoms such as congestion, low-grade fever, and wheezing. Infants and small children may suffer more severe symptoms such as bronchiolitis and pneumonia. The disease may be transmitted among humans via contact with respiratory secretions.
- hMPV Human metapneumovims
- AP-PCR RNA arbitrarily primed PCR
- Parainfluenza virus type 3 (PIV3), like hMPV, is also a negative-sense, single-stranded sense RNA virus of the genus Pneumovirinae and of the family Paramyxoviridae and is a major cause of ubiquitous acute respiratory infections of infancy and early childhood. Its incidence peaks around 4-12 months of age, and the virus is responsible for 3-10% of hospitalizations, mainly for bronchiolitis and pneumonia. PIV3 can be fatal, and in some instances is associated with neurologic diseases, such as febrile seizures. It can also result in airway remodeling, a significant cause of morbidity.
- hPIV Human parainfluenza viruses
- immunizing compositions e.g., RNA vaccines and other immunogenic compositions
- RNA vaccines and other immunogenic compositions that comprise an RNA that encodes highly immunogenic antigens capable of eliciting potent neutralizing antibodies responses against respiratory virus antigens, such as human respiratory syncytial virus (hRSV) antigens, human metapneumo virus (hMPV) antigens, and/or human parainfluenza virus 3 (hPIV3) antigens.
- hRSV human respiratory syncytial virus
- hMPV human metapneumo virus
- hPIV3 human parainfluenza virus 3
- the data provided herein show that immunizing compositions that comprise an hRSV RNA encoding a stabilized prefusion form of an hRSV F glycoprotein that lacks a cytoplasmic tail, when administered to animals, induces a highly neutralizing antibody response against hRSV F glycoprotein, even at doses that are approximately 5-fold lower than control compositions.
- compositions comprising a human respiratory syncytial virus (hRSV) ribonucleic acid (RNA) encoding a stabilized prefusion form of an hRSV F glycoprotein variant that lacks a cytoplasmic tail and has at least 90% (e.g., at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%) identity to a wild-type hRSV F glycoprotein.
- hRSV human respiratory syncytial virus
- RNA ribonucleic acid
- hRSV human respiratory syncytial vims
- RNA ribonucleic acid
- mRNA messenger ribonucleic acid
- open reading frame that comprises a sequence having at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 7.
- mRNA messenger ribonucleic acid
- the mRNA encodes a stabilized prefusion form of an human respiratory syncytial virus (hRSV) ribonucleic F glycoprotein variant that lacks a cytoplasmic tail, wherein the RSV F glycoprotein variant has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to a full-length wild-type RSV F glycoprotein.
- the open reading from comprises the sequence of SEQ ID NO: 7.
- the mRNA is formulated in a lipid nanoparticle.
- the cytoplasmic tail comprises the C-terminal 20-30, 20-25, 15- 30, 15-25, 15-20, 10-30, 10-25, 10-20, 10-15, 5-30, 5-25, 5-20, or 5-15 amino acids of the of the hRSV F glycoprotein variant. In some embodiments, the cytoplasmic tail comprises the C- terminal 25 amino acids, 20 amino acids, 15 amino acids, or 10 amino acids of the hRSV F glycoprotein variant. In some embodiments, the cytoplasmic tail comprises of the following C- terminal amino acids of the hRSV F glycoprotein variant:
- the hRSV F glycoprotein variant further comprises a modification, relative to the wild-type hRSV F glycoprotein, selected from the group consisting of: a P102X substitution, a substitution of amino acids 104-144 with a linker molecule, an A149X substitution, an S155X substitution, an S190X substitution, a V207X substitution, an S290X substitution, a L373X substitution, an I379X substitution, an M447X substitution, and a Y458X substitution, wherein X is any amino acid.
- the hRSV F glycoprotein variant further comprises a modification, relative to the wild-type hRSV F glycoprotein, selected from the group consisting of: a P102A substitution, a substitution of amino acids 104-144 with a linker molecule, an A149C substitution, an S155C substitution, an S190F substitution, a V207L substitution, an S290C substitution, a L373R substitution, an I379V substitution, an M447V substitution, and a Y458C substitution.
- a modification relative to the wild-type hRSV F glycoprotein, selected from the group consisting of: a P102A substitution, a substitution of amino acids 104-144 with a linker molecule, an A149C substitution, an S155C substitution, an S190F substitution, a V207L substitution, an S290C substitution, a L373R substitution, an I379V substitution, an M447V substitution, and a Y458C substitution.
- the hRSV F glycoprotein variant further comprises the following modifications, relative to the wild-type hRSV F glycoprotein: a P102A substitution, a substitution of amino acids 104-144 with a linker molecule, an A149C substitution, an S155C substitution, an S190F substitution, a V207L substitution, an S290C substitution, a L373R substitution, an I379V substitution, an M447V substitution, and a Y458C substitution.
- the wild-type hRSV F glycoprotein comprises the sequence of SEQ ID NO: 1.
- the hRSV F glycoprotein variant comprises a sequence that has at least 95% or at least 98% identity to the sequence of SEQ ID NO: 8. In some embodiments, the hRSV F glycoprotein variant comprises the sequence of SEQ ID NO: 8.
- the hRSV RNA comprises an open reading frame (ORF) that comprises a sequence that has at least 90%, at least 95%, or at least 98% identity to the sequence of SEQ ID NO: 7. In some embodiments, the hRSV RNA comprises an ORF that comprises the sequence of SEQ ID NO: 7.
- ORF open reading frame
- the hRSV RNA comprises a 5' untranslated region (UTR) that comprises the sequence of SEQ ID NO: 2. In some embodiments, the hRSV RNA comprises a 3' UTR that comprises the sequence of SEQ ID NO: 4.
- UTR 5' untranslated region
- the hRSV RNA comprises a sequence that has at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 15. In some embodiments, the hRSV RNA comprises the sequence of SEQ ID NO: 15.
- the hMPV F glycoprotein comprises a sequence that has at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 11.
- the hMPV F glycoprotein comprises the sequence of SEQ ID NO: 11.
- the hMPV RNA comprises an ORF that comprises a sequence that has at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 10.
- the hMPV RNA comprises an ORF that comprises the sequence of SEQ ID NO: 10.
- the hMPV RNA comprises a 5' UTR that comprises the sequence of SEQ ID NO: 2. In some embodiments, the hMPV RNA comprises a 3' UTR that comprises the sequence of SEQ ID NO: 4.
- the hMPV RNA comprises a sequence that has at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 16. In some embodiments, the hMPV RNA comprises the sequence of SEQ ID NO: 16.
- the hPIV3 F glycoprotein comprises a sequence that has at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 14. In some embodiments, the hPIV3 F glycoprotein comprises the sequence of SEQ ID NO: 14.
- the hPIV3 RNA comprises an ORF that comprises a sequence that has at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 13.
- the hPIV3 RNA comprises an ORF that comprises the sequence of SEQ ID NO: 13.
- the hPIV3 RNA comprises a 5' UTR that comprises the sequence of SEQ ID NO: 2. In some embodiments, the hPIV3 RNA comprises a 3' UTR that comprises the sequence of SEQ ID NO: 4.
- the hPIV3 RNA comprises a sequence that has at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 17. In some embodiments, the hPIV3 RNA comprises the sequence of SEQ ID NO: 17.
- the hRSV RNA, the hMPV RNA, and/or the hPIV3 RNA further comprises a 7mG(5')ppp(5')NlmpNp cap.
- the hRSV RNA, the hMPV RNA, and/or the hPIV3 RNA further comprises a poly(A) tail, optionally having a length of 50 to 150 nucleotides.
- the hRSV RNA, the hMPV RNA, and/or the hPIV3 RNA comprises a chemical modification.
- the chemical modification is 1- methylp seudouridine .
- a composition comprises 25 mg - 200 mg of the hRSV RNA, the hMPV RNA, and/or the hPIV3 RNA.
- a composition further comprises a mixture of lipids that comprises a PEG-modified lipid, a non-cationic lipid, a sterol, an ionizable cationic lipid, or any combination thereof.
- a mixture of lipids comprises 0.5-15% PEG-modified lipid; 5- 25% non-cationic lipid; 25-55% sterol; and 20-60% ionizable cationic lipid.
- the PEG-modified lipid is 1,2 dimyristoyl-sn-glycerol, methoxypoly ethyleneglycol (PEG2000 DMG), the non-cationic lipid is 1,2 distearoyl-sn- glycero-3-phosphocholine (DSPC), the sterol is cholesterol; and the ionizable cationic lipid has the structure of Compound 1 : (Compound 1).
- a mixture of lipids forms lipid nanoparticles.
- the hRSV RNA, the hMPV RNA, and the hPIV3 RNA are formulated in the lipid nanoparticles.
- Some aspects of the present disclosure provide a method comprising administering to a subject the composition of any one of the preceding claims in an amount effective to induce a neutralizing antibody response against hRSV, hMPV, and/or hPIV3 in the subject.
- the subject is immunocompromised. In some embodiments, the subject has a pulmonary disease.
- the subject is 5 years of age or younger. In other embodiments, the subject is 65 years of age or older.
- a method comprises administering to the subject at least two doses of the composition.
- FIG. 1 shows schematic representations of the RSV F glycoprotein variant (encoded by mRNA-1345) and wild-type RSV F glycoprotein.
- FIGs. 2A-2B show in vitro screening of mRNAs having different features in HEK293T cells at two time points.
- AM14 a monoclonal antibody specific for the prefusion form of RSV F glycoprotein, was used for the flow cytometric analysis.
- the top leads are shown at 24 hours and 48 hours post-transfection.
- Feature 1 refers to an optimized 5' UTR and
- Feature 2 refers to 6 amino acid point mutations within the FI region of wild-type RSV F glycoprotein (FIG. 1).
- FIG. 2B depicts expression levels after three different doses of the candidate constructs.
- “dCT” represents an mRNA encoding an RSV F glycoprotein having a truncated cytoplasmic tail.
- FIGs. 3A-3B show in vivo screening of mRNAs having different features in mice. Following two doses of the mRNAs, post-fusion form RSV F protein levels (FIG. 3A) and the RSV-A neutralization titer (FIG. 3B) were measured.
- FIGs. 4A-4B show the in vitro expression levels of the prefusion form RSV F glycoprotein using a codon-optimized mRNA encoding an RSV F glycoprotein having a truncated cytoplasmic tail.
- FIG. 4A shows the results at three different time points.
- FIG. 4B compares the combination of both features (codon optimization and cytoplasmic tail truncation) to mRNAs having each feature individually.
- AM 14 and D25 are two prefusion RSV F glycoprotein-specific antibodies.
- Motavizumab detects both pre- and post-fusion RSV F glycoprotein.
- FIGs. 5A-5B illustrate the in vitro expression levels of the prefusion form of RSV F glycoprotein using a codon-optimized mRNA encoding an RSV F glycoprotein with a truncated cytoplasmic tail in HEK293T cells (FIG. 5A) and THP-1 cells (FIG. 5B).
- FIGs. 6A-6B show in vivo data for a codon-optimized mRNA encoding a prefusion form of RSV F glycoprotein with a truncated cytoplasmic tail.
- the post-fusion form of RSV F glycoprotein IgG titer levels resulting from administration of the mRNA are depicted after the first dose (FIG. 6A) and after the second dose (FIG. 6B).
- FIG. 7 shows two graphs depicting the frequency of prefusion form RSV F glycoprotein positive CD 14+ monocytes following 24 hours (left) and 48 hours (right) incubation with the mRNA indicated (control (an mRNA encoding an alternative RSV F glycoprotein), RSV F variant, or no mRNA).
- FIG. 8 is as graph depicting the frequency of prefusion form of RSV F glycoprotein positive CD 14+ monocytes following 24 hours (left) and 48 hours (right) incubation with the mRNA and concentration indicated (control (an mRNA encoding an alternative RSV F glycoprotein), a codon-optimized RSV F glycoprotein mRNA, an mRNA encoding an RSV F glycoprotein having a truncated cytoplasmic tail, an mRNA encoding the combination RSV F glycoprotein (codon-optimized with the cytoplasmic tail truncation), or no mRNA).
- FIG. 9 is a graph showing the mean intensity per cell (averaged) following microscopy experiments.
- HeLa cells were incubated for 24 or 48 hours with 200 ng of the mRNAs indicated (control (an alternative mRNA encoding a RSV F glycoprotein), a codon-optimized mRNA encoding a RSV F glycoprotein, an mRNA encoding a RSV F glycoprotein having a truncated cytoplasmic tail, an mRNA encoding the combination RSV F glycoprotein (codon-optimized with the cytoplasmic tail truncation), or no mRNA) and the mean intensity was measured.
- control an alternative mRNA encoding a RSV F glycoprotein
- a codon-optimized encoding a RSV F glycoprotein an alternative mRNA encoding a RSV F glycoprotein having a truncated cytoplasmic tail
- an mRNA encoding the combination RSV F glycoprotein codon-optimized with the
- FIGs. 10A-10B show RSV antibody titers after vaccination on Day 56.
- FIG. 10A shows the RSV neutralizing titer and
- FIG. 10B shows the RSV prefusion F protein IgG titer.
- the groups marked with an asterisk (*) are those that only received one dose of the composition indicated.
- “LotlOO” refers to the 1:100 formalin-inactivated RSV group (FI-RSV).
- FIGs. 11A-11B show lung viral load (FIG. 11 A) and nose viral load (FIG. 11B) after the RSV challenge (see Example 4).
- the groups marked with an asterisk (*) are those that only received one dose of the composition indicated.
- “LotlOO” refers to the 1 : 100 formalin- inactivated RSV group (FI-RSV).
- RNA vaccines that elicit potent neutralizing antibodies against respiratory virus antigens.
- the term “respiratory virus antigens” herein encompasses hRSV antigens (e.g., hRSV F glycoproteins), hMPV antigens (e.g., hMPV F glycoproteins), hPIV3 antigens (e.g., hPIV3 F glycoproteins), and any combination thereof (e.g., hRSV and hMPV, hRSV and hPIV3, hMPV and hPIV3, or hRSV, hMPV, and hPIV3) encoded by the RNA of the present disclosure.
- RNA and “RNA construct” may be used interchangeably herein.
- an immunizing composition includes RNA (e.g., messenger RNA (mRNA)) encoding a prefusion form of hRSV F glycoprotein.
- RNA e.g., messenger RNA (mRNA)
- an immunizing composition further comprises RNA (e.g., mRNA) encoding a human metapneumo virus (hMPV) F glycoprotein.
- hMPV human metapneumo virus
- an immunizing composition further comprises RNA (e.g., mRNA) encoding a human parainfluenza virus 3 (hPIV3) F glycoprotein.
- an immunizing composition includes an RNA (e.g., mRNA) encoding a prefusion form of hRSV F glycoprotein, RNA (e.g., mRNA) encoding an hMPV F glycoprotein, and RNA (e.g., mRNA) encoding an hPIV3 F glycoprotein.
- RNA e.g., mRNA
- the prefusion form of hRSV F glycoprotein, the hMPV F glycoprotein, and the hPIV3 F glycoprotein are encoded by the same (a single) RNA, while in other embodiments, they are encoded independently by multiple RNAs (one encoding prefusion hRSV F, one encoding hMPV F, and one encoding hPIV3 F).
- one RNA e.g., having a 5' UTR, ORF, 3' UTR, and poly(A) tail
- encodes the prefusion hRSV F glycoprotein encodes both the hMPV F glycoprotein and the hPIV3 F glycoprotein.
- hRSV F glycoprotein The envelope of hRSV contains three surface glycoproteins: F, G, and SH.
- the G and F proteins are protective antigens and targets of neutralizing antibodies.
- the F protein is more conserved across hRSV strains and types (A and B).
- hRSV F protein is a type I fusion glycoprotein that is well conserved between clinical isolates, including between the hRSV-A and hRSV-B antigenic subgroups.
- the F protein transitions between prefusion and more stable postfusion states, thereby facilitating entry into target cells.
- hRSV F glycoprotein is initially synthesized as an F0 precursor protein.
- hRSV F0 folds into a trimer which is activated by furin cleavage into the mature prefusion protein comprising FI and F2 subunits (Bolt, et al., Vims Res., 68:25, 2000).
- targets for neutralizing monoclonal antibodies exist on the postfusion conformation of F protein
- the neutralizing Ab response primarily targets the F protein prefusion conformation in people naturally infected with hRSV (Magro M et al., Proc Natl Acad Sci USA 2012; 109(8): 3089-94; Ngwuta JO et al., Sci Transl Med 2015; 7(309): 309ral62).
- hRSV F protein stabilized in the prefusion conformation produces a greater neutralizing immune response in animal models than that observed with hRSV F protein stabilized in the post fusion conformation (McLellan et al., Science, 342: 592- 598, 2013).
- stabilized prefusion hRSV F proteins are good candidates for inclusion in an hRSV vaccine.
- stabilized prefusion RSV F proteins which exist in a labile, high-energy state, are those that comprise mutations (e.g., stabilizing mutations) to prevent the transition of the protein into its post-fusion conformation.
- the stabilized prefusion RSV F protein comprises proline residue (e.g., an S215P substitution) and/or isoleucine (e.g., N67I substitution) substitutions.
- the DS-Cavl variant, a stabilized prefusion RSV F protein contains an additional disulfide bond (S155C/S290C) as well as two cavity-filling mutations (S190F/V207L).
- LNP lipid nanoparticle
- S215P proline substitution
- N67I mutation in the F2 subunit
- the hRSV RNA vaccines described herein are superior to current vaccines in several ways.
- the lipid nanoparticle (LNP) delivery system used herein increases the efficacy of RNA vaccines in comparison to other formulations, including a protamine -based approach described in the literature.
- the use of this LNP delivery system enables the effective delivery of chemically-modified RNA vaccines or unmodified RNA vaccines, without requiring additional adjuvant to produce a therapeutic result (e.g., production neutralizing antibody titer).
- the hRSV RNA vaccines disclosed herein are superior to conventional vaccines by a factor of at least 10 fold, 20, fold, 40, fold, 50 fold, 100 fold, 500 fold, or 1,000 fold when administered intramuscularly (IM) or intradermally (ID). These results can be achieved even when significantly lower doses of the RNA (e.g., mRNA) are administered in comparison with RNA doses used in other classes of lipid based formulations.
- IM intramuscularly
- ID intradermally
- compositions of the present disclosure do not require viral replication to produce enough protein to result in a strong immune response.
- the compositions of the present disclosure do not include self- replicating RNA and do not include components necessary for viral replication.
- RNAs provided herein are not limited by a particular strain of virus (e.g., hRSV, hMPV, and/or hPIV3).
- the strain of vims on which the mRNAs are based may be any strain of virus.
- the immunizing compositions e.g., RNA vaccines
- the RNA polynucleotides encoding respiratory virus antigens do not occur in nature.
- the RNA polynucleotides described herein are isolated from viral proteins and viral lipids as they exist in nature.
- an immunizing composition comprising an RNA formulated in a lipid nanoparticle, for example, excludes viruses (i.e., the compositions are not, nor do they contain, viruses).
- Antigens are proteins capable of inducing an immune response (e.g., causing an immune system to produce antibodies against the antigens).
- use of the term “antigen” encompasses immunogenic proteins and immunogenic fragments (an immunogenic fragment that induces (or is capable of inducing) an immune response to a (at least one) respiratory virus, e.g., hRSV, or hRSV, hMPV, and hPIV3), unless otherwise stated.
- hRSV hRSV
- hMPV hMPV
- hPIV3 a respiratory virus
- Exemplary sequences of the respiratory virus antigens and the RNA encoding the respiratory virus antigens of the compositions of the present disclosure are provided in Table 1.
- a composition comprises an RNA that encodes a prefusion form of an hRSV F glycoprotein that comprises the sequence of SEQ ID NO: 8. In some embodiments, a composition comprises an RNA that encodes a prefusion form of an hMPV F glycoprotein that comprises the sequence of SEQ ID NO: 11. In some embodiments, a composition comprises an RNA that encodes a prefusion form of an hPIV3 F glycoprotein that comprises the sequence of SEQ ID NO: 14.
- any one of the antigens encoded by the RNA described herein may or may not comprise a signal sequence.
- compositions of the present disclosure comprise a (at least one) RNA having an open reading frame (ORF) encoding a respiratory virus antigen.
- the RNA is a messenger RNA (mRNA).
- the RNA e.g., mRNA
- the RNA further comprises a 5' UTR, 3' UTR, a poly(A) tail and/or a 5' cap analog.
- the hMPV/hPIV3 mRNA vaccine of the present disclosure may include any 5' untranslated region (UTR) and/or any 3' UTR.
- UTR 5' untranslated region
- Exemplary UTR sequences are provided in the Sequence Listing (e.g., SEQ ID NOs: 2-5); however, other UTR sequences may be used or exchanged for any of the UTR sequences described herein. UTRs may also be omitted from the RNA polynucleotides provided herein.
- Nucleic acids comprise a polymer of nucleotides (nucleotide monomers). Thus, nucleic acids are also referred to as polynucleotides. Nucleic acids may be or may include, for example, deoxyribonucleic acids (DNAs), ribonucleic acids (RNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs, including LNA having a b-D-ribo configuration, a-LNA having an a-L-ribo configuration (a diastereomer of LNA), 2'-amino-LNA having a 2'-amino functionalization, and 2'-amino- a-LNA having a 2'- amino functionalization), ethylene nucleic acids (ENA), cyclohexenyl nucleic acids (CeNA) and/or chimeras and/or combinations thereof.
- Messenger RNA is any RNA that encodes a (at least one) protein (a naturally- occurring, non-naturally-occurring, or modified polymer of amino acids) and can be translated to produce the encoded protein in vitro, in vivo, in situ, or ex vivo.
- RNA messenger RNA
- nucleic acid sequences set forth in the instant application may recite “T”s in a representative DNA sequence but where the sequence represents RNA (e.g., mRNA), the “T”s would be substituted for “U”s.
- any of the DNAs disclosed and identified by a particular sequence identification number herein also disclose the corresponding RNA (e.g., mRNA) sequence complementary to the DNA, where each “T” of the DNA sequence is substituted with “U.”
- An open reading frame is a continuous stretch of DNA or RNA beginning with a start codon (e.g., methionine (ATG or AUG)) and ending with a stop codon (e.g., TAA, TAG or TGA, or UAA, UAG or UGA).
- An ORF typically encodes a protein. It will be understood that the sequences disclosed herein may further comprise additional elements, e.g., 5' and 3' UTRs, but that those elements, unlike the ORF, need not necessarily be present in an RNA polynucleotide of the present disclosure.
- compositions of the present disclosure include RNA that encodes a respiratory virus antigen variant.
- Antigen variants or other polypeptide variants refers to molecules that differ in their amino acid sequence from a wild-type, native, or reference sequence.
- the antigen/polypeptide variants may possess substitutions, deletions, and/or insertions at certain positions within the amino acid sequence, as compared to a native or reference sequence.
- variants possess at least 50% identity to a wild-type, native or reference sequence.
- variants share at least 80%, or at least 90% identity with a wild-type, native, or reference sequence.
- Variant antigens/polypeptides encoded by nucleic acids of the disclosure may contain amino acid changes that confer any of a number of desirable properties, e.g., that enhance their immunogenicity, enhance their expression, and/or improve their stability or PK/PD properties in a subject.
- Variant antigens/polypeptides can be made using routine mutagenesis techniques and assayed as appropriate to determine whether they possess the desired property. Assays to determine expression levels and immunogenicity are well known in the art and exemplary such assays are set forth in the Examples section.
- PK/PD properties of a protein variant can be measured using art recognized techniques, e.g., by determining expression of antigens in a vaccinated subject over time and/or by looking at the durability of the induced immune response.
- the stability of protein(s) encoded by a variant nucleic acid may be measured by assaying thermal stability or stability upon urea denaturation or may be measured using in silico prediction. Methods for such experiments and in silico determinations are known in the art.
- a composition comprises an RNA or an RNA ORF that comprises a nucleotide sequence of any one of the sequences provided herein (see, e.g., Sequence Listing and Table 1), or comprises a nucleotide sequence at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a nucleotide sequence of any one of the sequences provided herein.
- identity refers to a relationship between the sequences of two or more polypeptides (e.g. antigens) or polynucleotides (nucleic acids), as determined by comparing the sequences. Identity also refers to the degree of sequence relatedness between or among sequences as determined by the number of matches between strings of two or more amino acid residues or nucleic acid residues. Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (e.g., “algorithms”). Identity of related antigens or nucleic acids can be readily calculated by known methods.
- Percent (%) identity as it applies to polypeptide or polynucleotide sequences is defined as the percentage of residues (amino acid residues or nucleic acid residues) in the candidate amino acid or nucleic acid sequence that are identical with the residues in the amino acid sequence or nucleic acid sequence of a second sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent identity. Methods and computer programs for the alignment are well known in the art. It is understood that identity depends on a calculation of percent identity but may differ in value due to gaps and penalties introduced in the calculation. Generally, variants of a particular polynucleotide or polypeptide (e.g., antigen) have at least 40%, 45%, 50%, 55%, 60%, 65%,
- sequence alignment programs and parameters described herein and known to those skilled in the art include those of the BLAST suite (Stephen F. Altschul, et al (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402).
- Another popular local alignment technique is based on the Smith-Waterman algorithm (Smith, T.F. & Waterman, M.S.
- a general global alignment technique based on dynamic programming is the Needleman-Wunsch algorithm (Needleman, S.B. & Wunsch, C.D. (1970) “A general method applicable to the search for similarities in the amino acid sequences of two proteins.” J. Mol. Biol. 48:443-453). More recently a Fast Optimal Global Sequence Alignment Algorithm (FOGSAA) has been developed that purportedly produces global alignment of nucleotide and protein sequences faster than other optimal global alignment methods, including the Needleman-Wunsch algorithm.
- FOGSAA Fast Optimal Global Sequence Alignment Algorithm
- sequence tags or amino acids such as one or more lysines
- Sequence tags can be used for peptide detection, purification or localization.
- Lysines can be used to increase peptide solubility or to allow for biotinylation.
- amino acid residues located at the carboxy and amino terminal regions of the amino acid sequence of a peptide or protein may optionally be deleted providing for truncated sequences.
- Certain amino acids e.g., C-terminal or N-terminal residues
- sequences for (or encoding) signal sequences, termination sequences, transmembrane domains, linkers, multimerization domains (such as, e.g., foldon regions) and the like may be substituted with alternative sequences that achieve the same or a similar function.
- cavities in the core of proteins can be filled to improve stability, e.g., by introducing larger amino acids.
- buried hydrogen bond networks may be replaced with hydrophobic resides to improve stability.
- glycosylation sites may be removed and replaced with appropriate residues.
- sequences are readily identifiable to one of skill in the art. It should also be understood that some of the sequences provided herein contain sequence tags or terminal peptide sequences (e.g., at the N-terminal or C-terminal ends) that may be deleted, for example, prior to use in the preparation of an RNA (e.g., mRNA) vaccine.
- RNA e.g., mRNA
- protein fragments, functional protein domains, and homologous proteins are also considered to be within the scope of respiratory virus antigens of interest.
- any protein fragment meaning a polypeptide sequence at least one amino acid residue shorter than a reference antigen sequence but otherwise identical
- an antigen includes 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mutations, as shown in any of the sequences provided or referenced herein.
- Antigens/antigenic polypeptides can range in length from about 4, 6, or 8 amino acids to full length proteins.
- a composition comprises an RNA encoding a stabilized prefusion form of a hRSV F glycoprotein variant that lacks a cytoplasmic tail.
- the cytoplasmic tail comprises the C-terminal 20-30, 20-25, 15-30, 15-25, 15-20, 10-30, 10-25, 10- 20, 10-15, 5-30, 5-25, 5-20, or 5-15 amino acids of the of the hRSV F glycoprotein variant.
- the cytoplasmic tail comprises the C-terminal 25 amino acids (e.g.,
- the cytoplasmic tail comprises the C-terminal 20 amino acids (e.g.,
- the cytoplasmic tail comprises the C-terminal 15 amino acids (e.g., SKDQLSGINNIAFSN (SEQ ID NO: 27)) of the hRSV F glycoprotein. In some embodiments, the cytoplasmic tail comprises the C-terminal 10 amino acids (e.g., SGINNIAFSN (SEQ ID NO: 28)) of the hRSV F glycoprotein.
- a composition comprises an RNA encoding a stabilized prefusion form of a hRSV F glycoprotein variant that lacks a cytoplasmic tail, wherein the RSV F glycoprotein variant has at least 80%, at least 85%, at least 90%, at least 95% identity to a wild- type hRSV F glycoprotein (e.g., a wild-type hRSV F glycoprotein comprising the sequence of SEQ ID NO: 1) or a wild-type hRSV F glycoprotein that lacks a cytoplasmic tail.
- a wild- type hRSV F glycoprotein e.g., a wild-type hRSV F glycoprotein comprising the sequence of SEQ ID NO: 1
- a wild-type hRSV F glycoprotein comprising the sequence of SEQ ID NO: 1
- a composition comprises an RNA encoding a stabilized prefusion form of a hRSV F glycoprotein variant that lacks a cytoplasmic tail, wherein the RSV F glycoprotein variant has at least 80%, at least 85%, at least 90%, at least 95% identity to the sequence of SEQ ID NO: 8.
- a composition comprises an RNA encoding a stabilized prefusion form of a hRSV F glycoprotein variant that comprises the sequence of SEQ ID NO: 8.
- a composition comprises an RNA encoding a stabilized prefusion form of a hRSV F glycoprotein variant that that lacks a cytoplasmic tail, wherein the RNA comprises an ORF sequence that has at least 80%, at least 85%, at least 90%, at least 95% identity to the sequence of SEQ ID NO: 7.
- a composition comprises an RNA encoding a stabilized prefusion form of a hRSV F glycoprotein variant that lacks a cytoplasmic tail, wherein the RNA comprises a sequence that has at least 80%, at least 85%, at least 90%, at least 95% identity to the sequence of SEQ ID NO: 15.
- an hRSV F glycoprotein variant that lacks a cytoplasmic tail further comprises a modification, relative to the wild-type hRSV F glycoprotein (e.g., SEQ ID NO: 1), selected from the group consisting of: a P102X substitution, a substitution of amino acids 104-144 with a linker molecule, an A149X substitution, an S155X substitution, an S190X substitution, a V207X substitution, an S290X substitution, a L373X substitution, an I379X substitution, an M447X substitution, and a Y458X substitution, wherein X is any amino acid (e.g., A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, or V).
- a modification relative to the wild-type hRSV F glycoprotein (e.g., SEQ ID NO: 1), selected from the group consisting of: a P102X substitution, a substitution of amino
- an hRSV F glycoprotein variant that lacks a cytoplasmic tail further comprises a modification, relative to the wild-type hRSV F glycoprotein, selected from the group consisting of: a P102A substitution, a substitution of amino acids 104-144 with a linker molecule, an A149C substitution, an S155C substitution, an S190F substitution, a V207F substitution, an S290C substitution, a F373R substitution, an I379V substitution, an M447V substitution, and a Y458C substitution.
- an hRSV F glycoprotein variant that lacks a cytoplasmic tail further comprises a P102A substitution.
- an hRSV F glycoprotein variant that lacks a cytoplasmic tail further comprises a substitution of amino acids 104-144 with a linker molecule. In some embodiments, an hRSV F glycoprotein variant that lacks a cytoplasmic tail further comprises an A149C substitution. In some embodiments, an hRSV F glycoprotein variant that lacks a cytoplasmic tail further comprises an S155C substitution. In some embodiments, an hRSV F glycoprotein variant that lacks a cytoplasmic tail further comprises an S190F substitution. In some embodiments, an hRSV F glycoprotein variant that lacks a cytoplasmic tail further comprises a V207F substitution.
- an hRSV F glycoprotein variant that lacks a cytoplasmic tail further comprises an S290C substitution. In some embodiments, an hRSV F glycoprotein variant that lacks a cytoplasmic tail further comprises an F373R substitution. In some embodiments, an hRSV F glycoprotein variant that lacks a cytoplasmic tail further comprises an I379V substitution. In some embodiments, an hRSV F glycoprotein variant that lacks a cytoplasmic tail further comprises an M447V substitution. In some embodiments, an hRSV F glycoprotein variant that lacks a cytoplasmic tail further comprises a Y458C substitution.
- an hRSV F glycoprotein variant that lacks a cytoplasmic tail further comprises the following modifications, relative to the wild-type hRSV F glycoprotein: a P102A substitution, a substitution of amino acids 104-144 with a linker molecule, an A149C substitution, an S155C substitution, an S190F substitution, a V207F substitution, an S290C substitution, a F373R substitution, an I379V substitution, an M447V substitution, and a Y458C substitution.
- a composition comprises an RNA encoding an hMPV F glycoprotein variant that has at least 80%, at least 85%, at least 90%, at least 95% identity to a wild-type hMPV F glycoprotein. In some embodiments, a composition comprises an RNA encoding an hMPV F glycoprotein variant has at least 80%, at least 85%, at least 90%, at least 95% identity to the sequence of SEQ ID NO: 11. In some embodiments, a composition comprises an RNA encoding an hMPV F glycoprotein variant that comprises the sequence of SEQ ID NO: 11.
- a composition comprises an RNA encoding an hMPV F glycoprotein variant, wherein the RNA comprises an ORF sequence that has at least 80%, at least 85%, at least 90%, at least 95% identity to the sequence of SEQ ID NO: 10.
- a composition comprises an RNA encoding an hMPV F glycoprotein variant, wherein the RNA comprises a sequence that has at least 80%, at least 85%, at least 90%, at least 95% identity to the sequence of SEQ ID NO: 16.
- a composition comprises an RNA encoding an hPIV3 F glycoprotein variant that has at least 80%, at least 85%, at least 90%, at least 95% identity to a wild-type hPIV3 F glycoprotein. In some embodiments, a composition comprises an RNA encoding an hPIV3 F glycoprotein variant has at least 80%, at least 85%, at least 90%, at least 95% identity to the sequence of SEQ ID NO: 14. In some embodiments, a composition comprises an RNA encoding an hPIV3 F glycoprotein variant that comprises the sequence of SEQ ID NO: 14.
- a composition comprises an RNA encoding an hPIV3 F glycoprotein variant, wherein the RNA comprises an ORF sequence that has at least 80%, at least 85%, at least 90%, at least 95% identity to the sequence of SEQ ID NO: 13.
- a composition comprises an RNA encoding an hPIV3 F glycoprotein variant, wherein the RNA comprises a sequence that has at least 80%, at least 85%, at least 90%, at least 95% identity to the sequence of SEQ ID NO: 17.
- Naturally-occurring eukaryotic mRNA molecules can contain stabilizing elements, including, but not limited to untranslated regions (UTR) at their 5 '-end (5' UTR) and/or at their 3 '-end (3' UTR), in addition to other structural features, such as a 5 '-cap structure or a 3'-poly(A) tail.
- UTR untranslated regions
- Both the 5' UTR and the 3' UTR are typically transcribed from the genomic DNA and are elements of the premature mRNA. Characteristic structural features of mature mRNA, such as the 5 '-cap and the 3'-poly(A) tail are usually added to the transcribed (premature) mRNA during mRNA processing.
- a composition includes an RNA polynucleotide having an open reading frame encoding at least one antigenic polypeptide having at least one modification, at least one 5' terminal cap, and is formulated within a lipid nanoparticle.
- 5 '-capping of polynucleotides may be completed concomitantly during the in vitro-transcription reaction using the following chemical RNA cap analogs to generate the 5'-guanosine cap structure according to manufacturer protocols: 3'-0-Me-m7G(5')ppp(5') G [the ARCA cap];G(5')ppp(5')A; G(5')ppp(5')G; m7G(5')ppp(5')A; m7G(5')ppp(5')G (New England BioLabs, Ipswich, MA).
- 5'- capping of modified RNA may be completed post-transcriptionally using a Vaccinia Virus Capping Enzyme to generate the “Cap 0” structure: m7G(5')ppp(5')G (New England BioLabs, Ipswich, MA).
- Cap 1 structure may be generated using both Vaccinia Virus Capping Enzyme and a 2'-0 methyl-transferase to generate: m7G(5')ppp(5')G-2'-0-methyl.
- Cap 2 structure may be generated from the Cap 1 structure followed by the 2'-0-methylation of the 5 '-antepenultimate nucleotide using a 2'-0 methyl-transferase.
- Cap 3 structure may be generated from the Cap 2 structure followed by the 2'-0-methylation of the 5'-preantepenultimate nucleotide using a 2'-0 methyl-transferase.
- Enzymes may be derived from a recombinant source.
- the 3 '-poly(A) tail is typically a stretch of adenine nucleotides added to the 3 '-end of the transcribed mRNA. It can, in some instances, comprise up to about 400 adenine nucleotides. In some embodiments, the length of the 3'-poly(A) tail may be an essential element with respect to the stability of the individual mRNA.
- a composition includes a stabilizing element.
- Stabilizing elements may include for instance a histone stem-loop.
- a stem-loop binding protein (SLBP) a 32 kDa protein has been identified. It is associated with the histone stem-loop at the 3'-end of the histone messages in both the nucleus and the cytoplasm. Its expression level is regulated by the cell cycle; it peaks during the S-phase, when histone mRNA levels are also elevated. The protein has been shown to be essential for efficient 3'-end processing of histone pre-mRNA by the U7 snRNP.
- SLBP continues to be associated with the stem-loop after processing, and then stimulates the translation of mature histone mRNAs into histone proteins in the cytoplasm.
- the RNA binding domain of SLBP is conserved through metazoa and protozoa; its binding to the histone stem-loop depends on the structure of the loop.
- the minimum binding site includes at least three nucleotides 5' and two nucleotides 3' relative to the stem-loop.
- an RNA (e.g., mRNA) includes a coding region, at least one histone stem-loop, and optionally, a poly(A) sequence or polyadenylation signal.
- the poly(A) sequence or polyadenylation signal generally should enhance the expression level of the encoded protein.
- the encoded protein in some embodiments, is not a histone protein, a reporter protein (e.g. Luciferase, GFP, EGFP, b-Galactosidase, EGFP), or a marker or selection protein (e.g. alpha-Globin, Galactokinase and Xanthine:guanine phosphoribosyl transferase (GPT)).
- a reporter protein e.g. Luciferase, GFP, EGFP, b-Galactosidase, EGFP
- a marker or selection protein e.g. alpha-Globin, Galactokinase and X
- an RNA e.g., mRNA
- an RNA includes the combination of a poly(A) sequence or polyadenylation signal and at least one histone stem-loop, even though both represent alternative mechanisms in nature, acts synergistically to increase the protein expression beyond the level observed with either of the individual elements.
- the synergistic effect of the combination of poly(A) and at least one histone stem-loop does not depend on the order of the elements or the length of the poly(A) sequence.
- an RNA does not include a histone downstream element (HDE).
- Histone downstream element includes a purine-rich polynucleotide stretch of approximately 15 to 20 nucleotides 3' of naturally occurring stem-loops, representing the binding site for the U7 snRNA, which is involved in processing of histone pre-mRNA into mature histone mRNA.
- the nucleic acid does not include an intron.
- RNA may or may not contain an enhancer and/or promoter sequence, which may be modified or unmodified or which may be activated or inactivated.
- the histone stem-loop is generally derived from histone genes, and includes an intramolecular base pairing of two neighbored partially or entirely reverse complementary sequences separated by a spacer, consisting of a short sequence, which forms the loop of the structure.
- the unpaired loop region is typically unable to base pair with either of the stem loop elements. It occurs more often in RNA, as is a key component of many RNA secondary structures, but may be present in single- stranded DNA as well.
- the Stability of the stem-loop structure generally depends on the length, number of mismatches or bulges, and base composition of the paired region.
- wobble base pairing non-Watson-Crick base pairing
- the at least one histone stem-loop sequence comprises a length of 15 to 45 nucleotides.
- an RNA e.g., mRNA
- AURES are destabilizing sequences found in the 3’UTR.
- the AURES may be removed from the RNA vaccines. Alternatively the AURES may remain in the RNA vaccine.
- a composition comprises an RNA (e.g., mRNA) having an ORF that encodes a signal peptide fused to the respiratory virus antigen.
- Signal peptides comprising the N-terminal 15-60 amino acids of proteins, are typically needed for the translocation across the membrane on the secretory pathway and, thus, universally control the entry of most proteins both in eukaryotes and prokaryotes to the secretory pathway.
- the signal peptide of a nascent precursor protein pre -protein
- ER endoplasmic reticulum
- ER processing produces mature proteins, wherein the signal peptide is cleaved from precursor proteins, typically by a ER-resident signal peptidase of the host cell, or they remain uncleaved and function as a membrane anchor.
- a signal peptide may also facilitate the targeting of the protein to the cell membrane.
- a signal peptide may have a length of 15-60 amino acids.
- a signal peptide may have a length of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60 amino acids.
- a signal peptide has a length of 20-60, 25-60, 30-60, 35-
- the signal peptide may comprise one of the following sequences: MDSKGSSQKGSRLLLLLVVSNLLLPQGVVG (SEQ ID NO: 18),
- MD WT WILFLV A A ATRVHS (SEQ ID NO: 19); METP AQLLFLLLLWLPDTT G (SEQ ID NO: 20); MLGSNS GQRVVFTILLLLV APA Y S (SEQ ID NO: 21); MKCLLYLAFLFIGVNCA (SEQ ID NO: 22); M WLV S LAIVT AC AG A (SEQ ID NO: 23).
- a composition of the present disclosure includes an RNA (e.g., mRNA) encoding an antigenic fusion protein.
- the encoded antigen or antigens may include two or more proteins (e.g., protein and/or protein fragment) joined together.
- the RNA encodes a hMPV F glycoprotein fused to a hPIV3 F glycoprotein.
- the protein to which a protein antigen is fused does not promote a strong immune response to itself, but rather to the respiratory virus antigen.
- Antigenic fusion proteins in some embodiments, retain the functional property from each original protein.
- RNA vaccines as provided herein, in some embodiments, encode fusion proteins that comprise respiratory virus antigens linked to scaffold moieties.
- scaffold moieties impart desired properties to an antigen encoded by a nucleic acid of the disclosure.
- scaffold proteins may improve the immunogenicity of an antigen, e.g., by altering the structure of the antigen, altering the uptake and processing of the antigen, and/or causing the antigen to bind to a binding partner.
- the scaffold moiety is protein that can self-assemble into protein nanoparticles that are highly symmetric, stable, and structurally organized, with diameters of 10- 150 nm, a highly suitable size range for optimal interactions with various cells of the immune system.
- viral proteins or virus-like particles can be used to form stable nanoparticle structures. Examples of such viral proteins are known in the art.
- the scaffold moiety is a hepatitis B surface antigen (HBsAg). HBsAg forms spherical particles with an average diameter of -22 nm and which lacked nucleic acid and hence are non-infectious (Lopez-Sagaseta, J. et al.
- the scaffold moiety is a hepatitis B core antigen (HBcAg) self-assembles into particles of 24-31 nm diameter, which resembled the viral cores obtained from HBV-infected human liver.
- HBcAg produced in self-assembles into two classes of differently sized nanoparticles of 300 A and 360 A diameter, corresponding to 180 or 240 protomers.
- the respiratory virus antigen is fused to HBsAG or HBcAG to facilitate self-assembly of nanoparticles displaying the respiratory virus antigen.
- bacterial protein platforms may be used.
- these self-assembling proteins include ferritin, lumazine and encapsulin.
- Ferritin is a protein whose main function is intracellular iron storage. Ferritin is made of 24 subunits, each composed of a four-alpha-helix bundle, that self-assemble in a quaternary structure with octahedral symmetry (Cho K.J. et al. J Mol Biol. 2009;390:83-98). Several high- resolution structures of ferritin have been determined, confirming that Helicobacter pylori ferritin is made of 24 identical protomers, whereas in animals, there are ferritin light and heavy chains that can assemble alone or combine with different ratios into particles of 24 subunits (Granier T. et al. J Biol Inorg Chem. 2003;8:105-111; Lawson D.M. et al. Nature. 1991;349:541-544). Ferritin self-assembles into nanoparticles with robust thermal and chemical stability. Thus, the ferritin nanoparticle is well-suited to carry and expose antigens.
- Lumazine synthase is also well-suited as a nanoparticle platform for antigen display.
- LS which is responsible for the penultimate catalytic step in the biosynthesis of riboflavin, is an enzyme present in a broad variety of organisms, including archaea, bacteria, fungi, plants, and eubacteria (Weber S.E. Flavins and Flavoproteins. Methods and Protocols, Series: Methods in Molecular Biology. 2014).
- the LS monomer is 150 amino acids long, and consists of beta- sheets along with tandem alpha-helices flanking its sides.
- Encapsulin a novel protein cage nanoparticle isolated from thermophile Thermotoga maritima, may also be used as a platform to present antigens on the surface of self-assembling nanoparticles.
- the mRNAs of the disclosure encode more than one polypeptide, referred to herein as fusion proteins.
- the mRNA further encodes a linker located between at least one or each domain of the fusion protein.
- the linker can be, for example, a cleavable linker or protease-sensitive linker.
- the linker is selected from the group consisting of F2A linker, P2A linker, T2A linker, E2A linker, and combinations thereof.
- This family of self-cleaving peptide linkers, referred to as 2 A peptides has been described in the art (see for example, Kim, J.H. et al.
- the linker is an F2A linker. In some embodiments, the linker is a GGGS linker. In some embodiments, the fusion protein contains three domains with intervening linkers, having the structure: domain-linker-domain-linker-domain.
- Cleavable linkers known in the art may be used in connection with the disclosure.
- exemplary such linkers include: F2A linkers, T2A linkers, P2A linkers, E2A linkers (See, e.g., WO2017127750).
- linkers include: F2A linkers, T2A linkers, P2A linkers, E2A linkers (See, e.g., WO2017127750).
- linkers include: F2A linkers, T2A linkers, P2A linkers, E2A linkers (See, e.g., WO2017127750).
- the skilled artisan will appreciate that other art-recognized linkers may be suitable for use in the RNAs disclosure (e.g., encoded by the nucleic acids of the disclosure).
- polycistronic RNA e.g., mRNA encoding more than one antigen/polypeptide separately within the same molecule
- polycistronic RNA e.g.
- an ORF encoding an antigen of the disclosure is codon optimized. Codon optimization methods are known in the art. For example, an ORF of any one or more of the sequences provided herein may be codon optimized. Codon optimization, in some embodiments, may be used to match codon frequencies in target and host organisms to ensure proper folding; bias GC content to increase mRNA stability or reduce secondary structures; minimize tandem repeat codons or base runs that may impair gene construction or expression; customize transcriptional and translational control regions; insert or remove protein trafficking sequences; remove/add post translation modification sites in encoded protein (e.g., glycosylation sites); add, remove or shuffle protein domains; insert or delete restriction sites; modify ribosome binding sites and mRNA degradation sites; adjust translational rates to allow the various domains of the protein to fold properly; or reduce or eliminate problem secondary structures within the polynucleotide.
- Codon optimization may be used to match codon frequencies in target and host organisms to ensure proper folding; bias GC content to increase mRNA stability or reduce
- Codon optimization tools, algorithms and services are known in the art - non limiting examples include services from GeneArt (Life Technologies), DNA2.0 (Menlo Park CA) and/or proprietary methods.
- the open reading frame (ORF) sequence is optimized using optimization algorithms.
- a codon optimized sequence shares less than 95% sequence identity to a naturally-occurring or wild-type sequence ORF (e.g., a naturally-occurring or wild- type mRNA sequence encoding a respiratory virus antigen). In some embodiments, a codon optimized sequence shares less than 90% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a respiratory virus antigen). In some embodiments, a codon optimized sequence shares less than 85% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a respiratory virus antigen).
- a codon optimized sequence shares less than 80% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a respiratory vims antigen).
- a codon optimized sequence shares less than 75% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a respiratory virus antigen).
- a codon optimized sequence shares between 65% and 85% (e.g., between about 67% and about 85% or between about 67% and about 80%) sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a respiratory virus antigen). In some embodiments, a codon optimized sequence shares between 65% and 75% or about 80% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a respiratory virus antigen).
- a codon-optimized sequence encodes an antigen that is as immunogenic as, or more immunogenic than (e.g., at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 100%, or at least 200% more), than a respiratory virus antigen encoded by a non-codon-optimized sequence.
- the modified mRNAs When transfected into mammalian host cells, the modified mRNAs have a stability of between 12-18 hours, or greater than 18 hours, e.g., 24, 36, 48, 60, 72, or greater than 72 hours and are capable of being expressed by the mammalian host cells.
- a codon optimized RNA may be one in which the levels of G/C are enhanced.
- the G/C-content of nucleic acid molecules may influence the stability of the RNA.
- RNA having an increased amount of guanine (G) and/or cytosine (C) residues may be functionally more stable than RNA containing a large amount of adenine (A) and thymine (T) or uracil (U) nucleotides.
- WO02/098443 discloses a pharmaceutical composition containing an mRNA stabilized by sequence modifications in the translated region. Due to the degeneracy of the genetic code, the modifications work by substituting existing codons for those that promote greater RNA stability without changing the resulting amino acid. The approach is limited to coding regions of the RNA.
- an RNA (e.g., mRNA) is not chemically modified and comprises the standard ribonucleotides consisting of adenosine, guanosine, cytosine and uridine.
- nucleotides and nucleosides of the present disclosure comprise standard nucleoside residues such as those present in transcribed RNA (e.g. A, G, C, or U).
- nucleotides and nucleosides of the present disclosure comprise standard deoxyribonucleosides such as those present in DNA (e.g. dA, dG, dC, or dT).
- compositions of the present disclosure comprise, in some embodiments, an RNA having an open reading frame encoding a respiratory virus antigen, wherein the nucleic acid comprises nucleotides and/or nucleosides that can be standard (unmodified) or modified as is known in the art.
- nucleotides and nucleosides of the present disclosure comprise modified nucleotides or nucleosides.
- modified nucleotides and nucleosides can be naturally-occurring modified nucleotides and nucleosides or non-naturally occurring modified nucleotides and nucleosides.
- modifications can include those at the sugar, backbone, or nucleobase portion of the nucleotide and/or nucleoside as are recognized in the art.
- a naturally-occurring modified nucleotide or nucleotide of the disclosure is one as is generally known or recognized in the art.
- Non-limiting examples of such naturally occurring modified nucleotides and nucleotides can be found, inter alia, in the widely recognized MODOMICS database.
- a non-naturally occurring modified nucleotide or nucleoside of the disclosure is one as is generally known or recognized in the art.
- Non-limiting examples of such non-naturally occurring modified nucleotides and nucleosides can be found, inter alia, in published US application Nos. PCT/US2012/058519; PCT/US2013/075177; PCT/US2014/058897; PCT/US2014/058891; PCT/US2014/070413; PCT/US2015/36773; PCT/US2015/36759; PCT/US2015/36771; or PCT/IB 2017/051367 all of which are incorporated by reference herein.
- nucleic acids of the disclosure can comprise standard nucleotides and nucleosides, naturally- occurring nucleotides and nucleosides, non-naturally-occurring nucleotides and nucleosides, or any combination thereof.
- Nucleic acids of the disclosure e.g., DNA nucleic acids and RNA nucleic acids, such as mRNA nucleic acids
- Nucleic acids of the disclosure comprise various (more than one) different types of standard and/or modified nucleotides and nucleosides.
- a particular region of a nucleic acid contains one, two or more (optionally different) types of standard and/or modified nucleotides and nucleosides.
- a modified RNA nucleic acid e.g., a modified mRNA nucleic acid
- a modified RNA nucleic acid introduced to a cell or organism, exhibits reduced degradation in the cell or organism, respectively, relative to an unmodified nucleic acid comprising standard nucleotides and nucleosides.
- a modified RNA nucleic acid e.g., a modified mRNA nucleic acid
- introduced into a cell or organism may exhibit reduced immunogenicity in the cell or organism, respectively (e.g., a reduced innate response) relative to an unmodified nucleic acid comprising standard nucleotides and nucleosides.
- Nucleic acids e.g., RNA nucleic acids, such as mRNA nucleic acids
- Nucleic acids in some embodiments, comprise non-natural modified nucleotides that are introduced during synthesis or post-synthesis of the nucleic acids to achieve desired functions or properties.
- the modifications may be present on intemucleotide linkages, purine or pyrimidine bases, or sugars.
- the modification may be introduced with chemical synthesis or with a polymerase enzyme at the terminal of a chain or anywhere else in the chain. Any of the regions of a nucleic acid may be chemically modified.
- nucleic acid e.g., RNA nucleic acids, such as mRNA nucleic acids.
- a “nucleoside” refers to a compound containing a sugar molecule (e.g., a pentose or ribose) or a derivative thereof in combination with an organic base (e.g., a purine or pyrimidine) or a derivative thereof (also referred to herein as “nucleobase”).
- nucleotide refers to a nucleoside, including a phosphate group.
- Modified nucleotides may by synthesized by any useful method, such as, for example, chemically, enzymatically, or recombinantly, to include one or more modified or non-natural nucleosides.
- Nucleic acids can comprise a region or regions of linked nucleosides. Such regions may have variable backbone linkages. The linkages can be standard phosphodiester linkages, in which case the nucleic acids would comprise regions of nucleotides.
- Modified nucleotide base pairing encompasses not only the standard adenosine-thymine, adenosine-uracil, or guanosine-cytosine base pairs, but also base pairs formed between nucleotides and/or modified nucleotides comprising non-standard or modified bases, wherein the arrangement of hydrogen bond donors and hydrogen bond acceptors permits hydrogen bonding between a non-standard base and a standard base or between two complementary non-standard base structures, such as, for example, in those nucleic acids having at least one chemical modification.
- non-standard base pairing is the base pairing between the modified nucleotide inosine and adenine, cytosine or uracil. Any combination of base/sugar or linker may be incorporated into nucleic acids of the present disclosure.
- modified nucleobases in nucleic acids comprise 1 -methyl-pseudouridine (m 1 y), 1 -ethyl-pseudouridine (e l ⁇
- modified nucleobases in nucleic acids comprise 5-methoxymethyl uridine, 5-methylthio uridine, 1-methoxymethyl pseudouridine, 5-methyl cytidine, and/or 5-methoxy cytidine.
- the polyribonucleotide includes a combination of at least two (e.g., 2, 3, 4 or more) of any of the aforementioned modified nucleobases, including but not limited to chemical modifications.
- a mRNA of the disclosure comprises 1 -methyl-pseudouridine (m 1 ⁇
- a mRNA of the disclosure comprises 1 -methyl-pseudouridine ( 1 ⁇
- a mRNA of the disclosure comprises pseudouridine (y) substitutions at one or more or all uridine positions of the nucleic acid.
- a mRNA of the disclosure comprises pseudouridine (y) substitutions at one or more or all uridine positions of the nucleic acid and 5-methyl cytidine substitutions at one or more or all cytidine positions of the nucleic acid.
- a mRNA of the disclosure comprises uridine at one or more or all uridine positions of the nucleic acid.
- mRNAs are uniformly modified (e.g., fully modified, modified throughout the entire sequence) for a particular modification.
- a nucleic acid can be uniformly modified with 1 -methyl-pseudouridine, meaning that all uridine residues in the mRNA sequence are replaced with 1 -methyl-pseudouridine.
- a nucleic acid can be uniformly modified for any type of nucleoside residue present in the sequence by replacement with a modified residue such as those set forth above.
- nucleic acids of the present disclosure may be partially or fully modified along the entire length of the molecule.
- one or more or all or a given type of nucleotide e.g., purine or pyrimidine, or any one or more or all of A, G, U, C
- nucleotides X in a nucleic acid of the present disclosure are modified nucleotides, wherein X may be any one of nucleotides A, G, U, C, or any one of the combinations A+G, A+U, A+C, G+U, G+C, U+C, A+G+U, A+G+C, G+U+C or A+G+C.
- the nucleic acid may contain from about 1% to about 100% modified nucleotides (either in relation to overall nucleotide content, or in relation to one or more types of nucleotide, i.e., any one or more of A, G, U or C) or any intervening percentage (e.g., from 1% to 20%, from 1% to 25%, from 1% to 50%, from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%, from 10% to 20%, from 10% to 25%, from 10% to 50%, from 10% to 60%, from 10% to 70%, from 10% to 80%, from 10% to 90%, from 10% to 95%, from 10% to 100%, from 20% to 25%, from 20% to 50%, from 20% to 60%, from 20% to 70%, from 20% to 80%, from 20% to 90%, from 20% to 95%, from 20% to 100%, from 50% to 60%, from 50% to 70%, from 50% to 80%, from 50% to 90%, from 50% to 95%, from 50% to 100%, from 70% to
- the mRNAs may contain at a minimum 1% and at maximum 100% modified nucleotides, or any intervening percentage, such as at least 5% modified nucleotides, at least 10% modified nucleotides, at least 25% modified nucleotides, at least 50% modified nucleotides, at least 80% modified nucleotides, or at least 90% modified nucleotides.
- the nucleic acids may contain a modified pyrimidine such as a modified uracil or cytosine.
- At least 5%, at least 10%, at least 25%, at least 50%, at least 80%, at least 90% or 100% of the uracil in the nucleic acid is replaced with a modified uracil (e.g., a 5-substituted uracil).
- the modified uracil can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures).
- cytosine in the nucleic acid is replaced with a modified cytosine (e.g., a 5-substituted cytosine).
- the modified cytosine can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures).
- the mRNAs of the present disclosure may comprise one or more regions or parts which act or function as an untranslated region. Where mRNAs are designed to encode at least one antigen of interest, the nucleic may comprise one or more of these untranslated regions (UTRs). Wild-type untranslated regions of a nucleic acid are transcribed but not translated. In mRNA, the 5' UTR starts at the transcription start site and continues to the start codon but does not include the start codon; whereas, the 3' UTR starts immediately following the stop codon and continues until the transcriptional termination signal. There is growing body of evidence about the regulatory roles played by the UTRs in terms of stability of the nucleic acid molecule and translation.
- the regulatory features of a UTR can be incorporated into the polynucleotides of the present disclosure to, among other things, enhance the stability of the molecule.
- the specific features can also be incorporated to ensure controlled down-regulation of the transcript in case they are misdirected to undesired organs sites.
- a variety of 5' UTR and 3' UTR sequences are known and available in the art.
- a 5' UTR is region of an mRNA that is directly upstream (5') from the start codon (the first codon of an mRNA transcript translated by a ribosome).
- a 5' UTR does not encode a protein (is non-coding).
- Natural 5' UTRs have features that play roles in translation initiation. They harbor signatures like Kozak sequences which are commonly known to be involved in the process by which the ribosome initiates translation of many genes. Kozak sequences have the consensus CCR(A/G)CCAUGG (SEQ ID NO: 29), where R is a purine (adenine or guanine) three bases upstream of the start codon (AUG), which is followed by another 'G'. 5' UTRs also have been known to form secondary structures which are involved in elongation factor binding.
- a 5' UTR is a heterologous UTR, i.e., is a UTR found in nature associated with a different ORF.
- a 5' UTR is a synthetic UTR, i.e., does not occur in nature.
- Synthetic UTRs include UTRs that have been mutated to improve their properties, e.g., which increase gene expression as well as those which are completely synthetic.
- Exemplary 5' UTRs include Xcnopus or human derived a-globin or b- globin (8278063; 9012219), human cytochrome b-245 a polypeptide, and hydroxysteroid (17b) dehydrogenase, and Tobacco etch virus (US8278063, 9012219).
- CMV immediate-early 1 (IE1) gene (US20140206753, WO2013/185069), the sequence GGGAUCCUACC (SEQ ID NO: 30) (WO2014144196) may also be used.
- 5' UTR of a TOP gene is a 5' UTR of a TOP gene lacking the 5' TOP motif (the oligopyrimidine tract) (e.g., WO/2015101414, W02015101415, WO/2015/062738, WO2015024667, WO2015024667; 5' UTR element derived from ribosomal protein Large 32 (L32) gene (WO/2015101414, W02015101415, WO/2015/062738), 5' UTR element derived from the 5'UTR of an hydroxysteroid (17-b) dehydrogenase 4 gene (HSD17B4) (WO2015024667), or a 5' UTR element derived from the 5' UTR of ATP5A1 (WO2015024667) can be used.
- an internal ribosome entry site is used instead of a 5' UTR.
- a 5' UTR of the present disclosure comprises a sequence selected from SEQ ID NO: 3 and SEQ ID NO: 4.
- a 3' UTR is region of an mRNA that is directly downstream (3') from the stop codon (the codon of an mRNA transcript that signals a termination of translation).
- a 3' UTR does not encode a protein (is non-coding).
- Natural or wild type 3' UTRs are known to have stretches of adenosines and uridines embedded in them. These AU rich signatures are particularly prevalent in genes with high rates of turnover. Based on their sequence features and functional properties, the AU rich elements (AREs) can be separated into three classes (Chen et al, 1995): Class I AREs contain several dispersed copies of an AUUUA motif within U-rich regions. C-Myc and MyoD contain class I AREs.
- Class II AREs possess two or more overlapping UUAUUUA(U/A)(U/A) (SEQ ID NO: 31) nonamers. Molecules containing this type of AREs include GM-CSF and TNF-a. Class III ARES are less well defined. These U rich regions do not contain an AUUUA motif. c-Jun and Myogenin are two well-studied examples of this class.
- HuR binds to AREs of all the three classes. Engineering the HuR specific binding sites into the 3' UTR of nucleic acid molecules will lead to HuR binding and thus, stabilization of the message in vivo.
- AREs 3' UTR AU rich elements
- nucleic acids e.g., RNA
- AREs can be used to modulate the stability of nucleic acids (e.g., RNA) of the disclosure.
- nucleic acids e.g., RNA
- one or more copies of an ARE can be introduced to make nucleic acids of the disclosure less stable and thereby curtail translation and decrease production of the resultant protein.
- AREs can be identified and removed or mutated to increase the intracellular stability and thus increase translation and production of the resultant protein.
- Transfection experiments can be conducted in relevant cell lines, using nucleic acids of the disclosure and protein production can be assayed at various time points post-transfection. For example, cells can be transfected with different ARE-engineering molecules and by using an ELISA kit to the relevant protein and assaying protein produced at 6 hour, 12 hour, 24 hour, 48 hour, and 7 days post-transfection.
- 3' UTRs may be heterologous or synthetic.
- globin UTRs including Xenopus b-globin UTRs and human b-globin UTRs are known in the art (8278063, 9012219, US20110086907).
- a nucleic acid e.g., mRNA
- encoding a modified b-globin with enhanced stability in some cell types by cloning two sequential human b-globin 3' UTRs head to tail has been developed and is well known in the art (US2012/0195936, WO2014/071963).
- a2-globin, al -globin, UTRs and mutants thereof are also known in the art (W02015101415, WO2015024667).
- Other 3' UTRs described in the mRNA in the non-patent literature include CYBA (Ferizi et al., 2015) and albumin (Thess et al., 2015).
- Other exemplary 3 UTRs include that of bovine or human growth hormone (wild type or modified)
- WO2013/185069, US20140206753, WO2014152774 rabbit b globin and hepatitis B virus (HBV), a-globin 3' UTR and Viral VEEV 3 UTR sequences are also known in the art.
- the sequence UUUGAAUU (WO2014144196) is used.
- 3' UTRs of human and mouse ribosomal protein are used.
- Other examples include rps9 3 UTR (W02015101414), FIG4 (W02015101415), and human albumin 7 (W02015101415).
- a 3' UTR of the present disclosure comprises a sequence selected from SEQ ID NO: 5 and SEQ ID NO: 6.
- 5' UTRs that are heterologous or synthetic may be used with any desired 3 UTR sequence.
- a heterologous 5' UTR may be used with a synthetic 3 UTR with a heterologous 3 UTR.
- Non-UTR sequences may also be used as regions or subregions within a nucleic acid.
- introns or portions of introns sequences may be incorporated into regions of nucleic acid of the disclosure. Incorporation of intronic sequences may increase protein production as well as nucleic acid levels.
- the ORF may be flanked by a 5' UTR which may contain a strong Kozak translational initiation signal and/or a 3' UTR which may include an oligo(dT) sequence for templated addition of a poly-A tail.
- 5' UTR may comprise a first polynucleotide fragment and a second polynucleotide fragment from the same and/or different genes such as the 5' UTRs described in US Patent Application Publication No.20100293625 and PCT/US2014/069155, herein incorporated by reference in its entirety.
- any UTR from any gene may be incorporated into the regions of a nucleic acid.
- multiple wild-type UTRs of any known gene may be utilized. It is also within the scope of the present disclosure to provide artificial UTRs which are not variants of wild type regions. These UTRs or portions thereof may be placed in the same orientation as in the transcript from which they were selected or may be altered in orientation or location. Hence a 5' or 3' UTR may be inverted, shortened, lengthened, made with one or more other 5' UTRs or 3' UTRs.
- the term “altered” as it relates to a UTR sequence means that the UTR has been changed in some way in relation to a reference sequence.
- a 3' UTR or 5' UTR may be altered relative to a wild-type or native UTR by the change in orientation or location as taught above or may be altered by the inclusion of additional nucleotides, deletion of nucleotides, swapping or transposition of nucleotides. Any of these changes producing an “altered” UTR (whether 3' or 5') comprise a variant UTR.
- a double, triple or quadruple UTR such as a 5' UTR or 3' UTR may be used.
- a “double” UTR is one in which two copies of the same UTR are encoded either in series or substantially in series.
- a double beta-globin 3' UTR may be used as described in US Patent publication 20100129877, the contents of which are incorporated herein by reference in its entirety.
- patterned UTRs are those UTRs which reflect a repeating or alternating pattern, such as ABABAB or AABBAABBAABB or ABCABCABC or variants thereof repeated once, twice, or more than 3 times. In these patterns, each letter, A, B, or C represent a different UTR at the nucleotide level.
- flanking regions are selected from a family of transcripts whose proteins share a common function, structure, feature or property.
- polypeptides of interest may belong to a family of proteins which are expressed in a particular cell, tissue or at some time during development.
- the UTRs from any of these genes may be swapped for any other UTR of the same or different family of proteins to create a new polynucleotide.
- a “family of proteins” is used in the broadest sense to refer to a group of two or more polypeptides of interest which share at least one function, structure, feature, localization, origin, or expression pattern.
- the untranslated region may also include translation enhancer elements (TEE).
- TEE translation enhancer elements
- the TEE may include those described in US Application No.20090226470, herein incorporated by reference in its entirety, and those known in the art.
- RNA cDNA encoding the polynucleotides described herein may be transcribed using an in vitro transcription (IVT) system.
- IVT in vitro transcription
- In vitro transcription of RNA is known in the art and is described in International Publication WO/2014/ 152027, which is incorporated by reference herein in its entirety.
- the RNA transcript is generated using a non-amplified, linearized DNA template in an in vitro transcription reaction to generate the RNA transcript.
- the template DNA is isolated DNA.
- the template DNA is cDNA.
- the cDNA is formed by reverse transcription of a RNA polynucleotide, for example, but not limited to respiratory virus mRNA.
- cells e.g., bacterial cells, e.g., E. coli, e.g., DH-1 cells are transfected with the plasmid DNA template.
- the transfected cells are cultured to replicate the plasmid DNA which is then isolated and purified.
- the DNA template includes a RNA polymerase promoter, e.g., a T7 promoter located 5' to and operably linked to the gene of interest.
- a RNA polymerase promoter e.g., a T7 promoter located 5' to and operably linked to the gene of interest.
- an in vitro transcription template encodes a 5' untranslated (UTR) region, contains an open reading frame, and encodes a 3' UTR and a poly(A) tail.
- UTR 5' untranslated
- poly(A) tail The particular nucleic acid sequence composition and length of an in vitro transcription template will depend on the mRNA encoded by the template.
- a “5' untranslated region” refers to a region of an mRNA that is directly upstream (i.e., 5') from the start codon (i.e., the first codon of an mRNA transcript translated by a ribosome) that does not encode a polypeptide.
- the 5' UTR may comprise a promoter sequence. Such promoter sequences are known in the art. It should be understood that such promoter sequences will not be present in a vaccine of the disclosure.
- a “3' untranslated region” refers to a region of an mRNA that is directly downstream (i.e., 3') from the stop codon (i.e., the codon of an mRNA transcript that signals a termination of translation) that does not encode a polypeptide.
- An “open reading frame” is a continuous stretch of DNA beginning with a start codon (e.g., methionine (ATG)), and ending with a stop codon (e.g., TAA, TAG or TGA) and encodes a polypeptide.
- a start codon e.g., methionine (ATG)
- a stop codon e.g., TAA, TAG or TGA
- a “poly(A) tail” is a region of mRNA that is downstream, e.g., directly downstream (i.e., 3'), from the 3' UTR that contains multiple, consecutive adenosine monophosphates.
- a poly(A) tail may contain 10 to 300 adenosine monophosphates.
- a poly(A) tail may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210,
- a poly(A) tail contains 50 to 250 adenosine monophosphates.
- the poly(A) tail functions to protect mRNA from enzymatic degradation, e.g., in the cytoplasm, and aids in transcription termination, and/or export of the mRNA from the nucleus and translation.
- a nucleic acid includes 200 to 3,000 nucleotides.
- a nucleic acid may include 200 to 500, 200 to 1000, 200 to 1500, 200 to 3000, 500 to 1000, 500 to 1500, 500 to 2000, 500 to 3000, 1000 to 1500, 1000 to 2000, 1000 to 3000, 1500 to 3000, or 2000 to 3000 nucleotides).
- An in vitro transcription system typically comprises a transcription buffer, nucleotide triphosphates (NTPs), an RNase inhibitor and a polymerase.
- NTPs nucleotide triphosphates
- RNase inhibitor an RNase inhibitor
- the NTPs may be manufactured in house, may be selected from a supplier, or may be synthesized as described herein.
- the NTPs may be selected from, but are not limited to, those described herein including natural and unnatural (modified) NTPs. Any number of RNA polymerases or variants may be used in the method of the present disclosure.
- the polymerase may be selected from, but is not limited to, a phage RNA polymerase, e.g., a T7 RNA polymerase, a T3 RNA polymerase, a SP6 RNA polymerase, and/or mutant polymerases such as, but not limited to, polymerases able to incorporate modified nucleic acids and/or modified nucleotides, including chemically modified nucleic acids and/or nucleotides. Some embodiments exclude the use of DNase.
- the RNA transcript is capped via enzymatic capping.
- the RNA comprises 5' terminal cap, for example, 7mG(5')ppp(5')NlmpNp.
- Solid-phase chemical synthesis Nucleic acids the present disclosure may be manufactured in whole or in part using solid phase techniques.
- Solid-phase chemical synthesis of nucleic acids is an automated method wherein molecules are immobilized on a solid support and synthesized step by step in a reactant solution. Solid-phase synthesis is useful in site-specific introduction of chemical modifications in the nucleic acid sequences.
- DNA or RNA ligases promote intermolecular ligation of the 5' and 3 ends of polynucleotide chains through the formation of a phosphodiester bond.
- Nucleic acids such as chimeric polynucleotides and/or circular nucleic acids may be prepared by ligation of one or more regions or subregions. DNA fragments can be joined by a ligase catalyzed reaction to create recombinant DNA with different functions. Two oligodeoxynucleotides, one with a 5' phosphoryl group and another with a free 3 hydroxyl group, serve as substrates for a DNA ligase. Purification
- nucleic acid clean-up may include, but is not limited to, nucleic acid clean-up, quality assurance and quality control. Clean-up may be performed by methods known in the arts such as, but not limited to, AGENCOURT® beads (Beckman Coulter Genomics, Danvers, MA), poly-T beads, LNATM oligo-T capture probes (EXIQON® Inc, Vedbaek, Denmark) or HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC).
- AGENCOURT® beads Beckman Coulter Genomics, Danvers, MA
- poly-T beads poly-T beads
- LNATM oligo-T capture probes EXIQON® Inc, Vedbaek, Denmark
- HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (
- purified when used in relation to a nucleic acid such as a “purified nucleic acid” refers to one that is separated from at least one contaminant.
- a “contaminant” is any substance that makes another unfit, impure or inferior.
- a purified nucleic acid e.g., DNA and RNA
- a purified nucleic acid is present in a form or setting different from that in which it is found in nature, or a form or setting different from that which existed prior to subjecting it to a treatment or purification method.
- a quality assurance and/or quality control check may be conducted using methods such as, but not limited to, gel electrophoresis, UV absorbance, or analytical HPLC.
- the nucleic acids may be sequenced by methods including, but not limited to reverse-transcriptase-PCR.
- the nucleic acids of the present disclosure may be quantified in exosomes or when derived from one or more bodily fluid.
- Bodily fluids include peripheral blood, serum, plasma, ascites, urine, cerebrospinal fluid (CSL), sputum, saliva, bone marrow, synovial fluid, aqueous humor, amniotic fluid, cerumen, breast milk, broncheo alveolar lavage fluid, semen, prostatic fluid, cowper's fluid or pre-ejaculatory fluid, sweat, fecal matter, hair, tears, cyst fluid, pleural and peritoneal fluid, pericardial fluid, lymph, chyme, chyle, bile, interstitial fluid, menses, pus, sebum, vomit, vaginal secretions, mucosal secretion, stool water, pancreatic juice, lavage fluids from sinus cavities, bronchopulmonary aspirates, blastocyl cavity fluid, and umbilical cord blood.
- CSL cerebrospinal fluid
- exosomes may be retrieved from an organ selected from the group consisting of lung, heart, pancreas, stomach, intestine, bladder, kidney, ovary, testis, skin, colon, breast, prostate, brain, esophagus, liver, and placenta.
- Assays may be performed using antigen- specific probes, cytometry, qRT-PCR, real-time PCR, PCR, flow cytometry, electrophoresis, mass spectrometry, or combinations thereof while the exosomes may be isolated using immunohistochemical methods such as enzyme linked immunosorbent assay (ELISA) methods. Exosomes may also be isolated by size exclusion chromatography, density gradient centrifugation, differential centrifugation, nanomembrane ultrafiltration, immunosorbent capture, affinity purification, microfluidic separation, or combinations thereof.
- ELISA enzyme linked immunosorbent assay
- nucleic acids of the present disclosure in some embodiments, differ from the endogenous forms due to the structural or chemical modifications.
- the nucleic acid may be quantified using methods such as, but not limited to, ultraviolet visible spectroscopy (UV/Vis).
- UV/Vis ultraviolet visible spectroscopy
- a non-limiting example of a UV/Vis spectrometer is a NANODROP® spectrometer (ThermoFisher, Waltham, MA).
- the quantified nucleic acid may be analyzed in order to determine if the nucleic acid may be of proper size, check that no degradation of the nucleic acid has occurred.
- Degradation of the nucleic acid may be checked by methods such as, but not limited to, agarose gel electrophoresis, HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC- HPLC), liquid chromatography-mass spectrometry (LCMS), capillary electrophoresis (CE) and capillary gel electrophoresis (CGE).
- HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC- HPLC), liquid chromatography-mass spectrometry (LCMS), capillary electrophoresis (CE) and capillary gel electrophoresis (CGE).
- LNPs Lipid Nanoparticles
- the RNA (e.g., mRNA) of the disclosure is formulated in a lipid nanoparticle (LNP).
- Lipid nanoparticles typically comprise ionizable cationic lipid, non-cationic lipid, sterol and PEG lipid components along with the nucleic acid cargo of interest.
- the lipid nanoparticles of the disclosure can be generated using components, compositions, and methods as are generally known in the art, see for example PCT/US2016/052352; PCT/US2016/068300; PCT/US2017/037551; PCT/US2015/027400; PCT/US2016/047406; PCT/US2016000129; PCT/US2016/014280; PCT/US2016/014280; PCT/US2017/038426; PCT/US2014/027077; PCT/US2014/055394; PCT/US2016/52117; PCT/US2012/069610; PCT/US2017/027492; PCT/US2016/059575 and PCT/US2016/069491 all of which are incorporated by reference herein in their entirety.
- Vaccines of the present disclosure are typically formulated in lipid nanoparticle.
- the lipid nanoparticle comprises at least one ionizable cationic lipid, at least one non-cationic lipid, at least one sterol, and/or at least one polyethylene glycol (PEG)-modified lipid.
- the lipid nanoparticle comprises a molar ratio of 20-60% ionizable cationic lipid.
- the lipid nanoparticle may comprise a molar ratio of 20-50%, 20- 40%, 20-30%, 30-60%, 30-50%, 30-40%, 40-60%, 40-50%, or 50-60% ionizable cationic lipid.
- the lipid nanoparticle comprises a molar ratio of 20%, 30%, 40%, 50, or 60% ionizable cationic lipid.
- the lipid nanoparticle comprises a molar ratio of 5-25% non- cationic lipid.
- the lipid nanoparticle may comprise a molar ratio of 5-20%, 5-15%, 5-10%, 10-25%, 10-20%, 10-25%, 15-25%, 15-20%, or 20-25% non-cationic lipid.
- the lipid nanoparticle comprises a molar ratio of 5%, 10%, 15%, 20%, or25% non- cationic lipid.
- the lipid nanoparticle comprises a molar ratio of 25-55% sterol.
- the lipid nanoparticle may comprise a molar ratio of 25-50%, 25-45%, 25-40%, 25- 35%, 25-30%, 30-55%, 30-50%, 30-45%, 30-40%, 30-35%, 35-55%, 35-50%, 35-45%, 35-40%, 40-55%, 40-50%, 40-45%, 45-55%, 45-50%, or 50-55% sterol.
- the lipid nanoparticle comprises a molar ratio of 25%, 30%, 35%, 40%, 45%, 50%, or 55% sterol.
- the lipid nanoparticle comprises a molar ratio of 0.5-15% PEG- modified lipid.
- the lipid nanoparticle may comprise a molar ratio of 0.5-10%, 0.5- 5%, 1-15%, 1-10%, 1-5%, 2-15%, 2-10%, 2-5%, 5-15%, 5-10%, or 10-15%.
- the lipid nanoparticle comprises a molar ratio of 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, or 15% PEG-modified lipid.
- the lipid nanoparticle comprises a molar ratio of 20-60% ionizable cationic lipid, 5-25% non-cationic lipid, 25-55% sterol, and 0.5-15% PEG-modified lipid.
- an ionizable cationic lipid of the disclosure comprises a compound of Formula (I): or a salt or isomer thereof, wherein:
- Ri is selected from the group consisting of C5-30 alkyl, C5-20 alkenyl, -R*YR”, -YR”, and -R”M’R’;
- R2 and R3 are independently selected from the group consisting of H, Ci-14 alkyl, C2-14 alkenyl, -R*YR”, -YR”, and -R*OR”, or R2 and R3, together with the atom to which they are attached, form a heterocycle or carbocycle;
- R4 is selected from the group consisting of a C3-6 carbocycle, -(CH2) n Q, -(CH2) n CHQR, -CHQR, -CQ(R)2, and unsubstituted Ci- 6 alkyl, where Q is selected from a carbocycle, heterocycle, -OR, -0(CH 2 )nN(R) 2 , -C(0)0R, -0C(0)R, -CX3, -CX 2 H, -CXH 2 , -CN, -N(R) 2 , -C(0)N(R)2, -N(R)C(0)R, -N(R)S(0) 2 R
- M and M’ are independently selected from -C(0)0-, -OC(O)-, -C(0)N(R’)-,
- R7 is selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;
- Rs is selected from the group consisting of C3-6 carbocycle and heterocycle
- R 9 is selected from the group consisting of H, CN, NO2, Ci- 6 alkyl, -OR, -S(0) 2 R, -S(0) 2 N(R)2, C2-6 alkenyl, C3-6 carbocycle and heterocycle; each R is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H; each R’ is independently selected from the group consisting of C1-18 alkyl, C2-18 alkenyl, -R*YR”, -YR”, and H; each R” is independently selected from the group consisting of C3-14 alkyl and C3-14 alkenyl; each R* is independently selected from the group consisting of Ci-12 alkyl and C2-12 alkenyl; each Y is independently a C3-6 carbocycle; each X is independently selected from the group consisting of F, Cl, Br, and I; and m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13.
- a subset of compounds of Formula (I) includes those in which when R 4 is -(CH 2 ) n Q, -(CH 2 ) n CHQR, -CHQR, or -CQ(R) 2 , then (i) Q is not -N(R) 2 when n is 1, 2, 3, 4 or 5, or (ii) Q is not 5, 6, or 7-membered heterocycloalkyl when n is 1 or 2.
- another subset of compounds of Formula (I) includes those in which
- Ri is selected from the group consisting of C5-30 alkyl, C5-20 alkenyl, -R*YR”, -YR”, and -R”M’R’;
- R2 and R3 are independently selected from the group consisting of H, Ci-14 alkyl, C2-14 alkenyl, -R*YR”, -YR”, and -R*OR”, or R2 and R3, together with the atom to which they are attached, form a heterocycle or carbocycle;
- R4 is selected from the group consisting of a C3-6 carbocycle, -(CH2) n Q, -(CH2) n CHQR, -CHQR, -CQ(R)2, and unsubstituted Ci- 6 alkyl, where Q is selected from a C3-6 carbocycle, a 5- to 14-membered heteroaryl having one or more heteroatoms selected from N, O, and S, -OR, -0(CH 2 )nN(R) 2 , -C(0)0R, -0C(0)R, -CX3, -CX 2 H, -CXH 2 , -CN, -C(0)N(R) 2 , -N(R)C(0)R, -N(R)S(0) 2 R, -N(R)C(0)N(R)2, -N(R)C(S)N(R)2, -CRN(R) 2 C(0)0R, -N(R)RS, -0(CH 2 )
- M and M’ are independently selected from -C(0)0-, -OC(O)-, -C(0)N(R’)-,
- R7 is selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;
- Rs is selected from the group consisting of C3-6 carbocycle and heterocycle
- R 9 is selected from the group consisting of H, CN, NO2, Ci- 6 alkyl, -OR, -S(0) 2 R, -S(0) 2 N(R)2, C2-6 alkenyl, C3-6 carbocycle and heterocycle; each R is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H; each R’ is independently selected from the group consisting of C1-18 alkyl, C2-18 alkenyl, -R*YR”, -YR”, and H; each R” is independently selected from the group consisting of C3-14 alkyl and C3-14 alkenyl; each R* is independently selected from the group consisting of Ci-12 alkyl and C2-12 alkenyl; each Y is independently a C3-6 carbocycle; each X is independently selected from the group consisting of F, Cl, Br, and I; and m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.
- another subset of compounds of Formula (I) includes those in which
- Ri is selected from the group consisting of C5-30 alkyl, C5-20 alkenyl, -R*YR”, -YR”, and -R”M’R’;
- R2 and R3 are independently selected from the group consisting of H, Ci-14 alkyl, C2-14 alkenyl, -R*YR”, -YR”, and -R*OR”, or R2 and R3, together with the atom to which they are attached, form a heterocycle or carbocycle;
- R4 is selected from the group consisting of a C3-6 carbocycle, -(CFhl n Q, -(CFhl n CHQR, -CHQR, -CQ(R)2, and unsubstituted Ci- 6 alkyl, where Q is selected from a C3-6 carbocycle, a 5- to 14-membered heterocycle having one or more heteroatoms selected from N, O, and S, -OR, -0(CH 2 )nN(R) 2 , -C(0)OR, -OC(0)R, -CX3, -CX 2 H, -CXH 2 , -CN, -C(0)N(R) 2 , -N(R)C(0)R, -N(R)S(0) 2 R, -N(R)C(0)N(R)2, -N(R)C(S)N(R)2, -CRN(R) 2 C(0)OR, -N(R)RS, -0(CH 2 ) n
- M and M’ are independently selected from -C(0)0-, -OC(O)-, -C(0)N(R’)-,
- R 7 is selected from the group consisting of C 1-3 alkyl, C 2-3 alkenyl, and H;
- Rs is selected from the group consisting of C3-6 carbocycle and heterocycle
- R 9 is selected from the group consisting of H, CN, NO 2 , Ci- 6 alkyl, -OR, -S(0) 2 R, -S(0) 2 N(R)2, C2-6 alkenyl, C3-6 carbocycle and heterocycle; each R is independently selected from the group consisting of C 1-3 alkyl, C 2-3 alkenyl, and H; each R’ is independently selected from the group consisting of C 1-18 alkyl, C 2-18 alkenyl, -R*YR”, -YR”, and H; each R” is independently selected from the group consisting of C 3-14 alkyl and C 3-14 alkenyl; each R* is independently selected from the group consisting of Ci- 12 alkyl and C 2-12 alkenyl; each Y is independently a C 3-6 carbocycle; each X is independently selected from the group consisting of F, Cl, Br, and I; and m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.
- another subset of compounds of Formula (I) includes those in which
- Ri is selected from the group consisting of C 5-30 alkyl, C 5-20 alkenyl, -R*YR”, -YR”, and -R”M’R’;
- R 2 and R 3 are independently selected from the group consisting of H, Ci- 14 alkyl, C 2-14 alkenyl, -R*YR”, -YR”, and -R*OR”, or R 2 and R 3 , together with the atom to which they are attached, form a heterocycle or carbocycle;
- R4 is selected from the group consisting of a C3-6 carbocycle, -(CFh) n Q, -(CFhl n CHQR, -CHQR, -CQ(R)2, and unsubstituted Ci- 6 alkyl, where Q is selected from a C3-6 carbocycle, a 5- to 14-membered heteroaryl having one or more heteroatoms selected from N, O, and S, -OR, -0(CH 2 )nN(R) 2 , -C(0)OR, -OC(0)R, -CX3, -CX 2 H, -CXH 2 , -CN, -C(0)N(R) 2 , -N(R)C(0)R, -N(R)S(0) 2 R, -N(R)C(0)N(R)2, -N(R)C(S)N(R)2, -CRN(R) 2 C(0)OR, -N(R)RS, -0(CH 2 )
- M and M’ are independently selected from -C(0)0-, -OC(O)-, -C(0)N(R’)-,
- R7 is selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;
- Rs is selected from the group consisting of C3-6 carbocycle and heterocycle
- R 9 is selected from the group consisting of H, CN, NO 2 , Ci- 6 alkyl, -OR, -S(0) 2 R, -S(0) 2 N(R)2, C2-6 alkenyl, C3-6 carbocycle and heterocycle; each R is independently selected from the group consisting of C 1-3 alkyl, C 2-3 alkenyl, and H; each R’ is independently selected from the group consisting of C 1-18 alkyl, C 2-18 alkenyl, -R*YR”, -YR”, and H; each R” is independently selected from the group consisting of C3-14 alkyl and C3-14 alkenyl; each R* is independently selected from the group consisting of Ci- 12 alkyl and C 2-12 alkenyl; each Y is independently a C 3-6 carbocycle; each X is independently selected from the group consisting of F, Cl, Br, and I; and m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.
- another subset of compounds of Formula (I) includes those in which
- Ri is selected from the group consisting of C5-30 alkyl, C5-20 alkenyl, -R*YR”, -YR”, and -R”M’R’;
- R2 and R3 are independently selected from the group consisting of H, C2-14 alkyl, C2-14 alkenyl, -R*YR”, -YR”, and -R*OR”, or R2 and R3, together with the atom to which they are attached, form a heterocycle or carbocycle;
- R4 is -(CFh)nQ or -(CH2) n CHQR, where Q is -N(R) 2 , and n is selected from 3, 4, and 5; each R5 is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H; each R 6 is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H; M and M’ are independently selected from -C(0)0-, -OC(O)-, -C(0)N(R’)-,
- R7 is selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H; each R is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H; each R’ is independently selected from the group consisting of Ci-is alkyl, C2-18 alkenyl, -R*YR”, -YR”, and H; each R” is independently selected from the group consisting of C3-14 alkyl and C3-14 alkenyl; each R* is independently selected from the group consisting of Ci-12 alkyl and Ci-12 alkenyl; each Y is independently a C3-6 carbocycle; each X is independently selected from the group consisting of F, Cl, Br, and I; and m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.
- another subset of compounds of Formula (I) includes those in which
- Ri is selected from the group consisting of C5-30 alkyl, C5-20 alkenyl, -R*YR”, -YR”, and -R”M’R’;
- R2 and R3 are independently selected from the group consisting of Ci-14 alkyl, C2-14 alkenyl, -R*YR”, -YR”, and -R*OR”, or R2 and R3, together with the atom to which they are attached, form a heterocycle or carbocycle;
- R4 is selected from the group consisting of -(CFh)nQ, -(CFhlnCHQR, -CHQR, and -CQ(R)2, where Q is -N(R) 2 , and n is selected from 1, 2, 3, 4, and 5; each R5 is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H; each R 6 is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;
- M and M’ are independently selected from -C(0)0-, -OC(O)-, -C(0)N(R’)-,
- R 7 is selected from the group consisting of C 1-3 alkyl, C2-3 alkenyl, and H; each R is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H; each R’ is independently selected from the group consisting of C1-18 alkyl, C2-18 alkenyl, -R*YR”, -YR”, and H; each R” is independently selected from the group consisting of C3-14 alkyl and C3-14 alkenyl; each R* is independently selected from the group consisting of Ci-12 alkyl and Ci-12 alkenyl; each Y is independently a C3-6 carbocycle; each X is independently selected from the group consisting of F, Cl, Br, and I; and m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.
- a subset of compounds of Formula (I) includes those of Formula
- a subset of compounds of Formula (I) includes those of Formula
- a subset of compounds of Formula (I) includes those of Formula (Da), (lib), (lie), or (He): or a salt or isomer thereof, wherein R4 is as described herein.
- a subset of compounds of Formula (I) includes those of Formula
- each of R2 and R3 may be independently selected from the group consisting of C5-14 alkyl and C5-14 alkenyl.
- an ionizable cationic lipid of the disclosure comprises a compound having structure:
- an ionizable cationic lipid of the disclosure comprises a compound having structure:
- a non-cationic lipid of the disclosure comprises 1,2-distearoyl-sn- glycero-3-phosphocholine (DSPC), l,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), l,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-gly cero- phosphocholine (DMPC), l,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC), 1,2-diundecanoyl-sn-glycero-phosphocholine (DUPC), 1- palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), l,2-di-0-octadecenyl-s
- a PEG modified lipid of the disclosure comprises a PEG-modified phosphatidylethanolamine, a PEG-modified phosphatidic acid, a PEG-modified ceramide, a PEG-modified dialkylamine, a PEG-modified diacylglycerol, a PEG-modified dialkylglycerol, and mixtures thereof.
- the PEG-modified lipid is DMG-PEG, PEG-c- DOMG (also referred to as PEG-DOMG), PEG-DSG and/or PEG-DPG.
- a sterol of the disclosure comprises cholesterol, fecosterol, sitosterol, ergosterol, campesterol, stigmasterol, brassicasterol, tomatidine, ursolic acid, alpha- tocopherol, and mixtures thereof.
- a LNP of the disclosure comprises an ionizable cationic lipid of Compound 1, wherein the non-cationic lipid is DSPC, the structural lipid that is cholesterol, and the PEG lipid is DMG-PEG.
- the lipid nanoparticle comprises 45 - 55 mole percent ionizable cationic lipid.
- lipid nanoparticle may comprise 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, or 55 mole percent ionizable cationic lipid.
- the lipid nanoparticle comprises 5 - 15 mole percent DSPC.
- the lipid nanoparticle may comprise 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 mole percent DSPC.
- the lipid nanoparticle comprises 35 - 40 mole percent cholesterol.
- the lipid nanoparticle may comprise 35, 36, 37, 38, 39, or 40 mole percent cholesterol.
- the lipid nanoparticle comprises 1 - 2 mole percent DMG-PEG.
- the lipid nanoparticle may comprise 1, 1.5, or 2 mole percent DMG-PEG.
- the lipid nanoparticle comprises 50 mole percent ionizable cationic lipid, 10 mole percent DSPC, 38.5 mole percent cholesterol, and 1.5 mole percent DMG-PEG.
- a LNP of the disclosure comprises an N:P ratio of from about 2:1 to about 30:1.
- a LNP of the disclosure comprises an N:P ratio of about 6:1.
- a LNP of the disclosure comprises an N:P ratio of about 3:1.
- a LNP of the disclosure comprises a wt/wt ratio of the ionizable cationic lipid component to the RNA of from about 10:1 to about 100:1.
- a LNP of the disclosure comprises a wt/wt ratio of the ionizable cationic lipid component to the RNA of about 20:1.
- a LNP of the disclosure comprises a wt/wt ratio of the ionizable cationic lipid component to the RNA of about 10:1.
- a LNP of the disclosure has a mean diameter from about 50 nm to about 150 nm. In some embodiments, a LNP of the disclosure has a mean diameter from about 70 nm to about 120 nm.
- compositions may include RNA or multiple RNAs encoding two or more antigens of the same or different species.
- composition includes an RNA or multiple RNAs encoding two or more respiratory virus antigens.
- the RNA may encode 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more respiratory virus antigens.
- composition comprises an RNA encoding a hRSV F glycoprotein, an RNA encoding a hMPV F glycoprotein, and a hPIV3 F glycoprotein antigen.
- two or more different RNA (e.g., mRNA) encoding antigens may be formulated in the same lipid nanoparticle.
- two or more different RNA encoding antigens may be formulated in separate lipid nanoparticles (each RNA formulated in a single lipid nanoparticle).
- the lipid nanoparticles may then be combined and administered as a single vaccine composition (e.g., comprising multiple RNA encoding multiple antigens) or may be administered separately.
- compositions may include an RNA or multiple RNAs encoding two or more antigens of the same or different viral strains.
- combination vaccines that include RNA encoding one or more hRSV antigen(s) and one or more antigen(s) of a different organism, such as hMPV and/or hPIV3.
- the vaccines of the present disclosure may be combination vaccines that target one or more antigens of the same strain/species, or one or more antigens of different strains/species, e.g., antigens which induce immunity to organisms which are found in the same geographic areas where the risk of respiratory virus infection is high or organisms to which an individual is likely to be exposed to when exposed to a respiratory virus.
- compositions e.g., pharmaceutical compositions
- methods, kits and reagents for prevention or treatment of respiratory viruses in humans and other mammals
- the compositions provided herein can be used as therapeutic or prophylactic agents. They may be used in medicine to prevent and/or treat a respiratory virus infection.
- the respiratory virus vaccine containing RNA as described herein can be administered to a subject (e.g., a mammalian subject, such as a human subject), and the RNA polynucleotides are translated in vivo to produce an antigenic polypeptide (antigen).
- an “effective amount” of a composition is based, at least in part, on the target tissue, target cell type, means of administration, physical characteristics of the RNA (e.g., length, nucleotide composition, and/or extent of modified nucleosides), other components of the vaccine, and other determinants, such as age, body weight, height, sex and general health of the subject.
- an effective amount of a composition provides an induced or boosted immune response as a function of antigen production in the cells of the subject.
- an effective amount of the composition containing RNA polynucleotides having at least one chemical modifications are more efficient than a composition containing a corresponding unmodified polynucleotide encoding the same antigen or a peptide antigen.
- Increased antigen production may be demonstrated by increased cell transfection (the percentage of cells transfected with the RNA vaccine), increased protein translation and/or expression from the polynucleotide, decreased nucleic acid degradation (as demonstrated, for example, by increased duration of protein translation from a modified polynucleotide), or altered antigen specific immune response of the host cell.
- composition refers to the combination of an active agent with a carrier, inert or active, making the composition especially suitable for diagnostic or therapeutic use in vivo or ex vivo.
- a “pharmaceutically acceptable carrier,” after administered to or upon a subject, does not cause undesirable physiological effects.
- the carrier in the pharmaceutical composition must be “acceptable” also in the sense that it is compatible with the active ingredient and can be capable of stabilizing it.
- One or more solubilizing agents can be utilized as pharmaceutical carriers for delivery of an active agent.
- a pharmaceutically acceptable carrier include, but are not limited to, biocompatible vehicles, adjuvants, additives, and diluents to achieve a composition usable as a dosage form.
- examples of other carriers include colloidal silicon oxide, magnesium stearate, cellulose, and sodium lauryl sulfate. Additional suitable pharmaceutical carriers and diluents, as well as pharmaceutical necessities for their use, are described in Remington's Pharmaceutical Sciences.
- compositions comprising polynucleotides and their encoded polypeptides in accordance with the present disclosure may be used for treatment or prevention of a respiratory virus infection.
- a composition may be administered prophylactically or therapeutically as part of an active immunization scheme to healthy individuals or early in infection during the incubation phase or during active infection after onset of symptoms.
- the amount of RNA provided to a cell, a tissue or a subject may be an amount effective for immune prophylaxis.
- a composition may be administered with other prophylactic or therapeutic compounds.
- a prophylactic or therapeutic compound may be an adjuvant or a booster.
- the term “booster” refers to an extra administration of the prophylactic (vaccine) composition.
- a booster (or booster vaccine) may be given after an earlier administration of the prophylactic composition.
- the time of administration between the initial administration of the prophylactic composition and the booster may be, but is not limited to, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, 15 minutes, 20 minutes 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, 1 day, 36 hours, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 10 days, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 18 months, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14
- a composition may be administered intramuscularly, intranasally or intradermally, similarly to the administration of inactivated vaccines known in the art.
- RNA vaccines may be utilized to treat and/or prevent a variety of infectious disease.
- RNA vaccines have superior properties in that they produce much larger antibody titers, better neutralizing immunity, produce more durable immune responses, and/or produce responses earlier than commercially available vaccines.
- compositions including RNA and/or complexes optionally in combination with one or more pharmaceutically acceptable excipients.
- the RNA may be formulated or administered alone or in conjunction with one or more other components.
- an immunizing composition may comprise other components including, but not limited to, adjuvants.
- an immunizing composition does not include an adjuvant (they are adjuvant free).
- RNA may be formulated or administered in combination with one or more pharmaceutically-acceptable excipients.
- vaccine compositions comprise at least one additional active substances, such as, for example, a therapeutic ally- active substance, a prophylactically-active substance, or a combination of both.
- Vaccine compositions may be sterile, pyrogen-free or both sterile and pyrogen-free. General considerations in the formulation and/or manufacture of pharmaceutical agents, such as vaccine compositions, may be found, for example, in Remington: The Science and Practice of Pharmacy 21st ed., Lippincott Williams & Wilkins, 2005 (incorporated herein by reference in its entirety).
- an immunizing composition is administered to humans, human patients or subjects.
- active ingredient generally refers to the RNA vaccines or the polynucleotides contained therein, for example,
- RNA polynucleotides e.g., mRNA polynucleotides encoding antigens.
- Formulations of the vaccine compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology.
- preparatory methods include the step of bringing the active ingredient (e.g., mRNA polynucleotide) into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, dividing, shaping and/or packaging the product into a desired single- or multi-dose unit.
- compositions in accordance with the disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered.
- the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.
- an RNA is formulated using one or more excipients to: (1) increase stability; (2) increase cell transfection; (3) permit the sustained or delayed release (e.g., from a depot formulation); (4) alter the biodistribution (e.g., target to specific tissues or cell types); (5) increase the translation of encoded protein in vivo; and/or (6) alter the release profile of encoded protein (antigen) in vivo.
- excipients can include, without limitation, lipidoids, liposomes, lipid nanoparticles, polymers, lipoplexes, core-shell nanoparticles, peptides, proteins, cells transfected with the RNA (e.g., for transplantation into a subject), hyaluronidase, nanoparticle mimics and combinations thereof.
- immunizing compositions e.g., RNA vaccines
- methods, kits and reagents for prevention and/or treatment of respiratory virus infection in humans and other mammals can be used as therapeutic or prophylactic agents.
- immunizing compositions are used to provide prophylactic protection from respiratory virus infection.
- immunizing compositions are used to treat a respiratory virus infection.
- immunizing compositions are used in the priming of immune effector cells, for example, to activate peripheral blood mononuclear cells (PBMCs) ex vivo, which are then infused (re-infused) into a subject.
- PBMCs peripheral blood mononuclear cells
- a subject may be any mammal, including non-human primate and human subjects.
- a subject is a human subject.
- an immunizing composition e.g., RNA a vaccine
- a subject e.g., a mammalian subject, such as a human subject
- an immunizing composition is administered to a subject (e.g., a mammalian subject, such as a human subject) in an effective amount to induce an antigen-specific immune response.
- the RNA encoding the respiratory vims antigen is expressed and translated in vivo to produce the antigen, which then stimulates an immune response in the subject.
- Prophylactic protection from a respiratory virus can be achieved following administration of an immunizing composition (e.g., an RNA vaccine) of the present disclosure.
- Immunizing compositions can be administered once, twice, three times, four times or more but it is likely sufficient to administer the vaccine once (optionally followed by a single booster). It is possible, although less desirable, to administer an immunizing compositions to an infected individual to achieve a therapeutic response. Dosing may need to be adjusted accordingly.
- a method involves administering to the subject an immunizing composition comprising a RNA (e.g., mRNA) having an open reading frame encoding a respiratory virus antigen (e.g., hRSV F glycoprotein, hMPV F glycoprotein, and/or hPIV3 F glycoprotein), thereby inducing in the subject an immune response specific to the respiratory vims antigen, wherein anti-antigen antibody titer in the subject is increased following vaccination relative to anti-antigen antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the antigen.
- a respiratory virus antigen e.g., hRSV F glycoprotein, hMPV F glycoprotein, and/or hPIV3 F glycoprotein
- a prophylactically effective dose is an effective dose that prevents infection with the virus at a clinically acceptable level.
- the effective dose is a dose listed in a package insert for the vaccine.
- a traditional vaccine refers to a vaccine other than the mRNA vaccines of the present disclosure.
- a traditional vaccine includes, but is not limited, to live microorganism vaccines, killed microorganism vaccines, subunit vaccines, protein antigen vaccines, DNA vaccines, virus like particle (VLP) vaccines, etc.
- a traditional vaccine is a vaccine that has achieved regulatory approval and/or is registered by a national drug regulatory body, for example the Food and Drug Administration (FDA) in the United States or the European Medicines Agency (EMA).
- FDA Food and Drug Administration
- EMA European Medicines Agency
- the anti-antigen antibody titer in the subject is increased 1 log to 10 log following vaccination relative to anti-antigen antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the respiratory virus or an unvaccinated subject. In some embodiments, the anti-antigen antibody titer in the subject is increased 1 log, 2 log, 3 log, 4 log, 5 log, or 10 log following vaccination relative to anti-antigen antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the respiratory virus or an unvaccinated subject.
- a method of eliciting an immune response in a subject against a respiratory virus involves administering to the subject an immunizing composition (e.g., an RNA vaccine) comprising a RNA polynucleotide comprising an open reading frame encoding a respiratory virus antigen, thereby inducing in the subject an immune response specific to the respiratory virus, wherein the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine against the respiratory virus at 2 times to 100 times the dosage level relative to the immunizing composition.
- an immunizing composition e.g., an RNA vaccine
- a RNA polynucleotide comprising an open reading frame encoding a respiratory virus antigen
- the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at twice the dosage level relative to an immunizing composition of the present disclosure. In some embodiments, the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at three times the dosage level relative to an immunizing composition of the present disclosure. In some embodiments, the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 4 times, 5 times, 10 times, 50 times, or 100 times the dosage level relative to an immunizing composition of the present disclosure.
- the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 10 times to 1000 times the dosage level relative to an immunizing composition of the present disclosure. In some embodiments, the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 100 times to 1000 times the dosage level relative to an immunizing composition of the present disclosure.
- the immune response is assessed by determining [protein] antibody titer in the subject.
- the ability of serum or antibody from an immunized subject is tested for its ability to neutralize viral uptake or reduce respiratory virus transformation of human B lymphocytes.
- the ability to promote a robust T cell response(s) is measured using art recognized techniques.
- the disclosure provide methods of eliciting an immune response in a subject against a respiratory virus by administering to the subject an immunizing composition (e.g., an RNA vaccine) comprising an RNA having an open reading frame encoding a respiratory virus antigen, thereby inducing in the subject an immune response specific to the respiratory virus antigen, wherein the immune response in the subject is induced 2 days to 10 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the respiratory virus.
- the immune response in the subject is induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine at 2 times to 100 times the dosage level relative to an immunizing composition of the present disclosure.
- the immune response in the subject is induced 2 days, 3 days, 1 week, 2 weeks, 3 weeks, 5 weeks, or 10 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.
- An immunizing composition (e.g., an RNA vaccine) may be administered by any route that results in a therapeutically effective outcome. These include, but are not limited, to intradermal, intramuscular, intranasal, and/or subcutaneous administration.
- the present disclosure provides methods comprising administering RNA vaccines to a subject in need thereof. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like.
- the RNA is typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the RNA may be decided by the attending physician within the scope of sound medical judgment.
- the specific therapeutically effective, prophylactically effective, or appropriate imaging dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.
- the effective amount of the RNA may be as low as 20 pg, administered for example as a single dose or as two 10 pg doses. In some embodiments, the effective amount is a total dose of 20 pg-300 pg or 25 pg-300 pg.
- the effective amount may be a total dose of 20 pg, 25 pg, 30 pg, 35 pg, 40 pg, 45 pg, 50 pg, 55 pg, 60 pg, 65 pg, 70 pg, 75 pg, 80 pg, 85 pg, 90 pg, 95 pg, 100 pg, 110 pg, 120 pg, 130 pg, 140 pg, 150 pg, 160 pg, 170 pg, 180 pg, 190 pg, 200 pg, 250 pg, or 300 pg.
- the effective amount is a total dose of 25 pg-300 pg.
- the effective amount is a total dose of 20 pg. In some embodiments, the effective amount is a total dose of 25 pg. In some embodiments, the effective amount is a total dose of 75 pg. In some embodiments, the effective amount is a total dose of 150 pg. In some embodiments, the effective amount is a total dose of 300 pg.
- RNA described herein can be formulated into a dosage form described herein, such as an intranasal, intratracheal, or injectable (e.g., intravenous, intraocular, intravitreal, intramuscular, intradermal, intracardiac, intraperitoneal, and subcutaneous).
- injectable e.g., intravenous, intraocular, intravitreal, intramuscular, intradermal, intracardiac, intraperitoneal, and subcutaneous.
- RNA vaccines formulations of the immunizing compositions (e.g., RNA vaccines), wherein the RNA is formulated in an effective amount to produce an antigen specific immune response in a subject (e.g., production of antibodies specific to a respiratory virus antigen).
- an effective amount is a dose of the RNA effective to produce an antigen- specific immune response.
- methods of inducing an antigen- specific immune response in a subject are the development in a subject of a humoral and/or a cellular immune response to a (one or more) respiratory virus protein(s) present in the vaccine.
- a “humoral” immune response refers to an immune response mediated by antibody molecules, including, e.g., secretory (IgA) or IgG molecules, while a “cellular” immune response is one mediated by T-lymphocytes (e.g., CD4+ helper and/or CD8+ T cells (e.g., CTLs) and/or other white blood cells.
- T-lymphocytes e.g., CD4+ helper and/or CD8+ T cells (e.g., CTLs) and/or other white blood cells.
- CTLs cytolytic T-cells
- CTLs have specificity for peptide antigens that are presented in association with proteins encoded by the major histocompatibility complex (MHC) and expressed on the surfaces of cells.
- MHC major histocompatibility complex
- helper T-cells help induce and promote the destruction of intracellular microbes or the lysis of cells infected with such microbes.
- Another aspect of cellular immunity involves and antigen-specific response by helper T-cells.
- Helper T-cells act to help stimulate the function, and focus the activity nonspecific effector cells against cells displaying peptide antigens in association with MHC molecules on their surface.
- a cellular immune response also leads to the production of cytokines, chemokines, and other such molecules produced by activated T-cells and/or other white blood cells including those derived from CD4+ and CD8+ T-cells.
- the antigen- specific immune response is characterized by measuring an anti-respiratory virus antigen antibody titer produced in a subject administered an immunizing composition as provided herein.
- An antibody titer is a measurement of the amount of antibodies within a subject, for example, antibodies that are specific to a particular antigen (e.g., an anti-hRSV F glycoprotein) or epitope of an antigen.
- Antibody titer is typically expressed as the inverse of the greatest dilution that provides a positive result.
- Enzyme-linked immunosorbent assay is a common assay for determining antibody titers, for example.
- an antibody titer is used to assess whether a subject has had an infection or to determine whether immunizations are required. In some embodiments, an antibody titer is used to determine the strength of an autoimmune response, to determine whether a booster immunization is needed, to determine whether a previous vaccine was effective, and to identify any recent or prior infections. In accordance with the present disclosure, an antibody titer may be used to determine the strength of an immune response induced in a subject by an immunizing composition (e.g., RNA vaccine).
- an immunizing composition e.g., RNA vaccine
- an anti-respiratory virus antigen antibody titer produced in a subject is increased by at least 1 log relative to a control.
- anti-respiratory virus antigen antibody titer produced in a subject may be increased by at least 1.5, at least 2, at least 2.5, or at least 3 log relative to a control.
- the anti-respiratory virus antigen antibody titer produced in the subject is increased by 1, 1.5, 2, 2.5 or 3 log relative to a control.
- the anti-respiratory virus antigen antibody titer produced in the subject is increased by 1-3 log relative to a control.
- the anti-respiratory virus antigen antibody titer produced in a subject may be increased by 1-1.5, 1-2, 1-2.5, 1-3, 1.5-2, 1.5-2.5, 1.5-3, 2-2.5, 2-3, or 2.5-3 log relative to a control.
- the anti-respiratory virus antigen antibody titer produced in a subject is increased at least 2 times relative to a control.
- the anti-respiratory vims antigen n antibody titer produced in a subject may be increased at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, or at least 10 times relative to a control.
- the anti-respiratory virus antigen antibody titer produced in the subject is increased 2, 3, 4, 5, 6, 7, 8, 9, or 10 times relative to a control.
- the anti-respiratory virus antigen antibody titer produced in a subject is increased
- the anti-respiratory vims antigen antibody titer produced in a subject may be increased 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7,
- an antigen-specific immune response is measured as a ratio of geometric mean titer (GMT), referred to as a geometric mean ratio (GMR), of semm neutralizing antibody titers to hRSV, hMPV, and/or hPIV3.
- GTT geometric mean titer
- a geometric mean titer (GMT) is the average antibody titer for a group of subjects calculated by multiplying all values and taking the nth root of the number, where n is the number of subjects with available data.
- a control in some embodiments, is an anti-respiratory vims antigen antibody titer produced in a subject who has not been administered an immunizing composition (e.g., RNA vaccine).
- a control is an anti-respiratory vims antigen antibody titer produced in a subject administered a recombinant or purified protein vaccine.
- Recombinant protein vaccines typically include protein antigens that either have been produced in a heterologous expression system (e.g., bacteria or yeast) or purified from large amounts of the pathogenic organism.
- an immunizing composition e.g., RNA vaccine
- an immunizing composition may be administered to a murine model and the murine model assayed for induction of neutralizing antibody titers.
- Viral challenge studies may also be used to assess the efficacy of a vaccine of the present disclosure.
- an immunizing composition may be administered to a murine model, the murine model challenged with virus, and the murine model assayed for survival and/or immune response (e.g., neutralizing antibody response, T cell response (e.g., cytokine response)).
- an effective amount of an immunizing composition is a dose that is reduced compared to the standard of care dose of a recombinant protein vaccine.
- a “standard of care,” as provided herein, refers to a medical or psychological treatment guideline and can be general or specific. “Standard of care” specifies appropriate treatment based on scientific evidence and collaboration between medical professionals involved in the treatment of a given condition. It is the diagnostic and treatment process that a physician/ clinician should follow for a certain type of patient, illness or clinical circumstance.
- a “standard of care dose,” as provided herein, refers to the dose of a recombinant or purified protein vaccine, or a live attenuated or inactivated vaccine, or a VLP vaccine, that a physician/clinician or other medical professional would administer to a subject to treat or prevent respiratory virus infection or a related condition, while following the standard of care guideline for treating or preventing respiratory virus infection or a related condition.
- the anti-respiratory virus antigen antibody titer produced in a subject administered an effective amount of an immunizing composition is equivalent to an anti- respiratory virus antigen antibody titer produced in a control subject administered a standard of care dose of a recombinant or purified protein vaccine, or a live attenuated or inactivated vaccine, or a VLP vaccine.
- Vaccine efficacy may be assessed using standard analyses (see, e.g., Weinberg et al., J Infect Dis. 2010 Jun 1 ;201 ( 11 ) : 1607 -10). For example, vaccine efficacy may be measured by double-blind, randomized, clinical controlled trials. Vaccine efficacy may be expressed as a proportionate reduction in disease attack rate (AR) between the unvaccinated (ARU) and vaccinated (ARV) study cohorts and can be calculated from the relative risk (RR) of disease among the vaccinated group with use of the following formulas:
- AR disease attack rate
- vaccine effectiveness may be assessed using standard analyses (see, e.g., Weinberg et al., J Infect Dis. 2010 Jun 1 ;201 ( 11 ) : 1607 -10).
- Vaccine effectiveness is an assessment of how a vaccine (which may have already proven to have high vaccine efficacy) reduces disease in a population. This measure can assess the net balance of benefits and adverse effects of a vaccination program, not just the vaccine itself, under natural field conditions rather than in a controlled clinical trial.
- Vaccine effectiveness is proportional to vaccine efficacy (potency) but is also affected by how well target groups in the population are immunized, as well as by other non-vaccine-related factors that influence the ‘real-world’ outcomes of hospitalizations, ambulatory visits, or costs.
- a retrospective case control analysis may be used, in which the rates of vaccination among a set of infected cases and appropriate controls are compared.
- Vaccine effectiveness may be expressed as a rate difference, with use of the odds ratio (OR) for developing infection despite vaccination:
- efficacy of the immunizing composition is at least 60% relative to unvaccinated control subjects.
- efficacy of the immunizing composition may be at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 95%, at least 98%, or 100% relative to unvaccinated control subjects.
- Sterilizing immunity refers to a unique immune status that prevents effective pathogen infection into the host.
- the effective amount of an immunizing composition of the present disclosure is sufficient to provide sterilizing immunity in the subject for at least 1 year.
- the effective amount of an immunizing composition of the present disclosure is sufficient to provide sterilizing immunity in the subject for at least 2 years, at least 3 years, at least 4 years, or at least 5 years.
- the effective amount of an immunizing composition of the present disclosure is sufficient to provide sterilizing immunity in the subject at an at least 5-fold lower dose relative to control.
- the effective amount may be sufficient to provide sterilizing immunity in the subject at an at least 10-fold lower, 15-fold, or 20-fold lower dose relative to a control.
- the effective amount of an immunizing composition of the present disclosure is sufficient to produce detectable levels of respiratory virus antigen as measured in serum of the subject at 1-72 hours post administration.
- An antibody titer is a measurement of the amount of antibodies within a subject, for example, antibodies that are specific to a particular antigen (e.g., an anti-respiratory virus antigen). Antibody titer is typically expressed as the inverse of the greatest dilution that provides a positive result. Enzyme-linked immunosorbent assay (ELISA) is a common assay for determining antibody titers, for example.
- ELISA Enzyme-linked immunosorbent assay
- the effective amount of an immunizing composition of the present disclosure is sufficient to produce a 1,000-10,000 neutralizing antibody titer produced by neutralizing antibody against the respiratory virus antigen as measured in serum of the subject at 1-72 hours post administration. In some embodiments, the effective amount is sufficient to produce a 1,000-5,000 neutralizing antibody titer produced by neutralizing antibody against the respiratory virus antigen as measured in serum of the subject at 1-72 hours post administration.
- the effective amount is sufficient to produce a 5,000-10,000 neutralizing antibody titer produced by neutralizing antibody against the respiratory virus antigen as measured in serum of the subject at 1-72 hours post administration.
- the neutralizing antibody titer is at least 100 NT50.
- the neutralizing antibody titer may be at least 200, 300, 400, 500, 600, 700, 800, 900 or 1000 NT50.
- the neutralizing antibody titer is at least 10,000 NT50.
- the neutralizing antibody titer is at least 100 neutralizing units per milliliter (NU/mL).
- the neutralizing antibody titer may be at least 200, 300, 400, 500, 600, 700, 800, 900 or 1000 NU/mL.
- the neutralizing antibody titer is at least 10,000 NU/mL.
- an anti-respiratory virus antigen antibody titer produced in the subject is increased by at least 1 log relative to a control.
- an anti-respiratory virus antigen antibody titer produced in the subject may be increased by at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 log relative to a control.
- an anti-respiratory virus antigen antibody titer produced in the subject is increased at least 2 times relative to a control.
- an anti-respiratory virus antigen antibody titer produced in the subject is increased by at least 3, 4, 5, 6, 7, 8, 9 or 10 times relative to a control.
- a geometric mean which is the nth root of the product of n numbers, is generally used to describe proportional growth.
- Geometric mean in some embodiments, is used to characterize antibody titer produced in a subject.
- a control may be, for example, an unvaccinated subject, or a subject administered a live attenuated viral vaccine, an inactivated viral vaccine, or a protein subunit vaccine.
- FIG. 1 is a schematic illustrating the differences between the wild-type mRNA encoding the F protein and the RSV F variant described herein.
- the RSV F variant is a codon- optimized, membrane-anchored, single chain mRNA that comprises interprotomer disulfide stabilizing mutations and cavity-filing mutations, in addition to lacking a cytoplasmic tail.
- RSV F glycoprotein As an increase in the prefusion form of RSV F glycoprotein on cells has been found to increase immunogenicity in animals.
- mRNAs were designed to test different features (e.g., different codon optimization strategies, mutations, specific modifications, structural changes) and their effect on resulting expression levels.
- HEK293T cells were transfected with varying concentrations of the different mRNAs.
- Cell surface prefusion RSV F glycoprotein was detected 24 and 48 hours later by flow cytometry using an antibody specific to prefusion RSV F glycoprotein (AM14).
- AM14 antibody specific to prefusion RSV F glycoprotein
- FIG. 2A demonstrate that two of the features tested, codon optimization and cytoplasmic tail truncation (“dCT”), generated the greatest increase in cell surface prefusion RSV F glycoprotein.
- dCT cytoplasmic tail truncation
- the codon-optimized mRNA and the mRNA encoding an RSV F glycoprotein having a cytoplasmic tail truncation were then screened in vivo.
- the mRNAs were administered at a 3 week interval, and sera were collected after each dosing. Serum antibody titers against the F glycoprotein were determined with an ELISA.
- the postfusion F- specific IgG titer was measured.
- the codon-optimized mRNA and mRNA encoding an RSV F glycoprotein having a truncated cytoplasmic tail showed titers 2-3 fold higher and 2-4 fold higher those of the control (an mRNA encoding RSV F glycoprotein that does not include the two features), respectively (FIG. 3A).
- the RSV neutralization titer was also measured after the second dose (PD2) using a microneutralization assay.
- Individual mouse sera were evaluated for neutralization of RSV-A (Long strain) using the following procedures:
- RSV-Long stock virus was removed from the freezer and quickly thawed in 37°C water bath. Viruses were diluted to 2000 pfu/mL in virus diluent 3. Diluted virus was added to each well of the 96-well plate, with the exception of one column of cells.
- HEp-2 cells were trypsinized, washed, resuspended at 1.5 x 105 cells/ml in virus diluent, and 100 mL of the suspended cells were added to each well of the 96-well plate. The plates were then incubated for 72 hours at 37°C, 5% C02.
- Biotinylated horse anti-mouse IgG was diluted 1:200 in assay diluent and added to each well of the 96-well plate. Plates were incubated as above and washed.
- a cocktail of IRDye 800CW Streptavidin ( 1 : 1000 final dilution), Sapphire 700 (1:1000 dilution) and 5mM DRAQ5 solution (1:10,000 dilution) was prepared in assay diluent and 50 mL of the cocktail was added to each well of the 96-well plate. Plates were incubated as above in the dark, washed, and allowed to air dry.
- the serum neutralizing antibody titers for the mouse immunogenicity study measured post dose 2 (PD2) are shown in FIG. 3B.
- the codon-optimized mRNA and the mRNA encoding an RSV F glycoprotein having a cytoplasmic tail truncation had 1-3 times and 2-40 times the titer levels of the control, indicating that the neutralizing antibody titers are robust. Therefore, it was found, both in vitro and in vivo, that the two mRNAs were able to increase expression of RSV F glycoprotein and RSV-A neutralization titer.
- RSV F variant As the both codon-optimization and cytoplasmic tail truncation were shown to improve the expression and resulting immunogenicity of the RSV F protein, the combination of both features in the same mRNA was tested (“RSV F variant”).
- HEK293T cells were transfected with 20 ng or 200 ng of mRNAs having different combinations of the tested features. MRNAs comprising each feature individually were also screened. Cell surface prefusion RSV F glycoprotein was detected 24 and 48 hours later by flow cytometry using an antibody specific to prefusion RSV F glycoprotein (AM14).
- Ctrll contains 4 amino acid mutations in the FI region relative to wild-type RSV F glycoprotein (FIG. 1), and does not contain the deletion between amino acids 103 and 145. As a result, Ctrll includes the wild-type furin cleavage site and retains the cytoplasmic domain.
- Another control variant, Ctrl2 is derived from the RSV F variant shown in FIG. 1, but does not include the C terminal deletion nor the other RNA optimizations and enhancements.
- RSV F variant was then screened further.
- In vitro expression of RSV F glycoprotein was measured in HEK293T cells transfected with 500 ng of the mRNA RSV F variant, a control mRNA, or no mRNA (negative control). Then, 24, 48, and 72 hours later, levels of RSV F glycoprotein were measured with flow cytometry.
- Three different antibodies were used to measure RSV F glycoprotein: AM 14 and D25 (antibodies specific to the prefusion form of RSV F glycoprotein) and SYNAGIS®/motavizumab (directed to an epitope common to pre- and post fusion forms of RSV F glycoprotein).
- AM 14 and D25 antibodies specific to the prefusion form of RSV F glycoprotein
- SYNAGIS®/motavizumab directed to an epitope common to pre- and post fusion forms of RSV F glycoprotein.
- FIGs. 5 A and 5B demonstrate that the expression trends are not limited to HEK293T cells, and are maintained when performed in THP-1 cells (a human monocyte line).
- RSV F glycoprotein in HEK293T cells 48 hours after transfection with 200 ng of mRNA (RSV F variant, mRNA encoding RSV F glycoprotein having truncated cytoplasmic tail, codon-optimized mRNA encoding an RSV F glycoprotein, Ctrll and Ctrl2 mRNAs, or no mRNA) as determined by flow cytometry was compared.
- the RSV F variant showed expression levels that were at least additive, relative to a codon-optimized mRNA and an mRNA encoding an RSV F protein having a cytoplasmic tail truncation (FIG. 4B).
- HuPBMCs peripheral blood mononuclear cells
- HuPBMCs were plated in a 12-well plate at a concentration of 1 x 10 6 cells/well. 1000 ng of mRNA (either the RSV F variant or mRNAs encoding RSV F glycoprotein that do not include the two features) were then added to the wells, and the plates were incubated for 24 or 48 hours.
- the cells were stained with AM 14- FITC (targeting the prefusion form of RSV F protein), D25-PE (targeting the prefusion form of RSV F protein), or motazuvimab-APC (targeting an epitope common to the pre- and post-fusion forms of RSV F protein).
- AM 14- FITC targeting the prefusion form of RSV F protein
- D25-PE targeting the prefusion form of RSV F protein
- motazuvimab-APC targeting an epitope common to the pre- and post-fusion forms of RSV F protein.
- Higher levels of RSV F protein were observed with respect to the control mRNA and the cells that were not transfected, both at the 24 hour time point and at the 48 hour time point, regardless of the antibody used (FIG. 7).
- HeP3B human hepatoma HeP3B cells
- HeP3B cells were plated in a 24 well plate and transfected with either 500 ng, 100 ng, or 20 ng of mRNAs. The plates were incubated for 24 or 48 hours. Following incubation, the cells were stained with AM14-FITC, targeting the prefusion form of the RSV F protein.
- RSV F protein Higher levels were observed after incubation with the RSV F variant (codon optimization and cytoplasmic tail truncation) with respect to mRNAs having each individual feature (e.g., the codon-optimized mRNA and the mRNA encoding RSV F glycoprotein with a truncated cytoplasmic tail).
- the control mRNA an mRNA encoding an RSV F glycoprotein that does not include the two features
- no mRNA showed lower expression levels than the RSV F variant, in particular at 48 hours and at the lowest dose tested (FIG. 8). In microscopy experiments, it was found that the expression trends were consistent in HeLa cells.
- HeLa cells were plated in a 96 well plate and then transfected with 200 ng of mRNA (RSV F variant, a codon-optimized mRNA encoding an RSV F glycoprotein, an mRNA encoding an RSV F glycoprotein having a truncated cytoplasmic tail, a control mRNA that does not include the two features) or no mRNA (as a negative control)).
- mRNA RSV F variant, a codon-optimized mRNA encoding an RSV F glycoprotein, an mRNA encoding an RSV F glycoprotein having a truncated cytoplasmic tail, a control mRNA that does not include the two features
- no mRNA as a negative control
- the cells were then blocked in 1% BS A/PBS for 30 minutes at room temperature. Then, the primary antibody, an anti-RSV antibody (D25, Cambridge Bio) (diluted 1:100 in 1% BS A/PBS), was applied for one hour, followed by two washes in PBS. Then, the plates were blocked for 1% BSA for 10 minutes. A secondary antibody was applied for 30 minutes (diluted 1:2000 in BS A/PBS), and then the plates were washed twice with PBS. Then, NucBlue Fixed and CellMask Red were applied for 30 minutes, followed by washing twice with PBS. The resulting plates were then measured for protein expression using ALEXA488TM. Mean fluorescent intensity was measured per cell based on cytoplasmic segmentation. As shown in FIG.
- the RSV F variant (codon-optimized mRNA encoding a RSV F glycoprotein with cytoplasmic tail truncation) yielded the highest levels of RSV F protein.
- the RSV F variant (codon-optimized mRNA encoding a RSV F glycoprotein with cytoplasmic tail truncation) was then evaluated in vivo.
- lipid nanoparticles e.g., 0.5-15% PEG-modified lipid; 5-25% non-cationic lipid; 25-55% sterol; and 20-60% ionizable cationic lipid.
- the mRNAs were administered at a 3 week interval, and sera were collected after each immunization. Serum antibody titers against F glycoprotein were determined with an ELISA.
- the postfusion F-specific IgG titer was measured.
- the RSV F variant had a titer at least 3-5 times that of the control (an alternative mRNA encoding an RSV F glycoprotein) at the low dose (200 ng) (FIGs. 6A and 6B).
- HRSV-A Virospot assay was performed to detect HRSV-specific neutralization antibodies in the sera samples. Briefly, samples were inactivated by incubating for 30 minutes at 56 °C. Subsequently, serial two-fold dilutions of the samples were made in infection medium in triplicate in 96-wells plates starting with a dilution of 1:8 (first serum dilution in the test of 1:16). The sample dilutions were then incubated with a fixed amount of HRSV-A for 1 hour at 37 °C. Then, the virus-antibody mixtures were transferred to plates with HEp-2 cell culture monolayers. After an incubation period of 1 day at 37 °C, the monolayers were fixed and stained.
- X (a-b)(e-c)/(c-d) + a
- neutralization result a loglO of dilution above the 50% reduction point
- b log 10 of dilution below the 50% reduction point
- c average SC above the 50% reduction point (corresponds with a)
- d average SC below the 50% reduction point (corresponds with b)
- e value of 50% reduction of average virus control count.
- the RSV F variant (codon-optimized mRNA encoding a RSV F glycoprotein with cytoplasmic tail truncation) was then evaluated in vivo in cotton rats.
- the studies aimed to evaluate the immunogenicity, efficacy, and safety of the mRNA vaccine in the respiratory syncytial virus (RSV) cotton rat model, and include an evaluation of the potential for vaccine- enhanced respiratory disease (ERD) over a range of dose levels, including those inducing suboptimal neutralizing antibody titers permitting detectable virus replication after challenge.
- RSV respiratory syncytial virus
- the RSV F variant or a control mRNA were formulated in lipid nanoparticles (e.g., 0.5- 15% PEG-modified lipid; 5-25% non-cationic lipid; 25-55% sterol; and 20-60% ionizable cationic lipid).
- lipid nanoparticles e.g., 0.5- 15% PEG-modified lipid; 5-25% non-cationic lipid; 25-55% sterol; and 20-60% ionizable cationic lipid.
- the components of the lipid nanoparticle comprised heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6(undecyloxy)hexyl) amino) octanoate (Compound 1); 1,2-dimyristoyl-racn-glycerol, methoxypolyethyleneglycol (PEG2000-DMG); l,2-distearoyl-sn-glycero-3-phosphocholine (DSPC); and cholesterol.
- Compound 1 1,2-dimyristoyl-racn-glycerol, methoxypolyethyleneglycol (PEG2000-DMG); l,2-distearoyl-sn-glycero-3-phosphocholine (DSPC); and cholesterol.
- mice Female cotton rats (6-8 weeks of age) were dived into 14 groups of 10 animals and a control group of four animals. The rats were immunized according to the schedule shown in Table 2 below. Groups 1-13 were immunized intramuscularly with 100 pL dose of the mRNA- LNP composition per animal; Group 14 was infected intranasally with 100 pL dose RSV /A2 at 10 5 plaque forming units (PFUs) per animal. Some groups were immunized twice (Days 0 and 28), while others were immunized only on Day 0, as shown in Table 2. On Day 56, the mice were challenged with an intranasal administration of 0.1 mL of 5.0 logio RSV/A2.
- the animals were sacrificed, the nasal tissue was harvested for viral titration measurements and the lungs were harvested en bloc and trisected; the left section for viral titrations, the lingular lobe for quantitative polymerase chain reaction (qPCR) analysis, and the right section was inflated and used for histopathology for enhanced RSV disease (ERD) and eosinophilia.
- qPCR quantitative polymerase chain reaction
- Lung and nose homogenates were clarified by centrifugation and diluted in Eagle's Minimum Essential Medium (EMEM).
- EMEM Eagle's Minimum Essential Medium
- Confluent Hep-2 cell monolayers were infected in duplicate with diluted homogenates in 24 well plates. After a one -hour incubation at 37°C in a 5% CO2 incubator, the wells were overlayed with 0.75% methylcellulose medium. After 4 days of incubation, the overlays were removed, and the cells were fixed with 0.1% crystal violet for one hour and then rinsed and air dried. Plaques were counted and virus titer was expressed as plaque forming units per gram of tissue. Viral titers were calculated as geometric mean + standard error for all animals in a group.
- An HRSV-A Virospot assay was performed to detect HRSV-specific neutralization antibodies in the sera samples as described in Example 3.
- RSV-F enzyme-linked immunosorbent assays were performed to determine the antibody titer present in the animals’ sera. Briefly, 96-well microtiter plates were coated with lug/mL of prefusion RSV-F protein. After an overnight incubation at 4°C plates were washed 4 times with PBS/0.05% Tween-20 and blocked for 2 hours at 37°C (SuperBlock- Pierce #37515). After washing, serial dilutions of cotton rat serum were added (assay diluent was PBS + 5% goat serum).
- the RSV antibody titers are shown in FIGs. 1 lA-1 IB.
- the RSV F variant (codon- optimized and truncated cytoplasmic tail) was found to induce dose-dependent RSV neutralizing antibodies (FIG. 10A) and RSV prefusion F protein- specific IgG binding antibodies (FIG. 10B).
- the lung (FIG. 11A) and nose (FIG. 11B) viral loads after challenge demonstrated that the RSV F variant protected the cotton rats from the challenge (in particular, at higher doses with prime and booster doses).
- any of the mRNA sequences described herein may include a 5' UTR and/or a 3' UTR.
- the UTR sequences may be selected from the following sequences, or other known UTR sequences may be used.
- any of the mRNAs described herein may further comprise a poly(A) tail and/or cap (e.g., 7mG(5')ppp(5')NlmpNp).
- RNAs and encoded antigen sequences described herein include a signal peptide and/or a peptide tag (e.g., C-terminal His tag), it should be understood that the indicated signal peptide and/or peptide tag may be substituted for a different signal peptide and/or peptide tag, or the signal peptide and/or peptide tag may be omitted.
- a signal peptide and/or a peptide tag e.g., C-terminal His tag
- any of the mRNA sequences described herein may be fully or partially chemically modified (e.g., by Nl-methylpseudouridine).
- Nl-methylpseudouridine e.g., by Nl-methylpseudouridine
- any one of the open reading frames and/or corresponding amino acid sequences described in Table 1 may include or exclude a signal sequence. It should also be understood that the signal sequence may be replaced by a different signal sequence, for example, any one of SEQ ID NOs: 18-34.
- PCT/US2016/058314 PCT/US2016/058310, PCT/US2016/058321, PCT/US2016/058297, PCT/US2016/058319, and PCT/US2016/058314 are incorporated herein by reference.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Communicable Diseases (AREA)
- Dispersion Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Pulmonology (AREA)
- Dermatology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112022015053A BR112022015053A2 (en) | 2020-01-30 | 2021-01-29 | IMMUNIZING COMPOSITIONS AGAINST RESPIRATORY VIRUS |
US17/796,401 US20230338506A1 (en) | 2020-01-30 | 2021-01-29 | Respiratory virus immunizing compositions |
KR1020227028349A KR20220133911A (en) | 2020-01-30 | 2021-01-29 | Respiratory Virus Immunization Composition |
CA3169664A CA3169664A1 (en) | 2020-01-30 | 2021-01-29 | Respiratory virus immunizing compositions |
CN202180011671.6A CN115103682A (en) | 2020-01-30 | 2021-01-29 | Respiratory virus immunization compositions |
AU2021214774A AU2021214774A1 (en) | 2020-01-30 | 2021-01-29 | Respiratory virus immunizing compositions |
EP21747384.2A EP4096683A4 (en) | 2020-01-30 | 2021-01-29 | Respiratory virus immunizing compositions |
MX2022009429A MX2022009429A (en) | 2020-01-30 | 2021-01-29 | Respiratory virus immunizing compositions. |
JP2022546537A JP2023513073A (en) | 2020-01-30 | 2021-01-29 | Respiratory virus immunization composition |
IL295148A IL295148A (en) | 2020-01-30 | 2021-01-29 | Respiratory virus immunizing compositions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202062967888P | 2020-01-30 | 2020-01-30 | |
US62/967,888 | 2020-01-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2021155243A1 true WO2021155243A1 (en) | 2021-08-05 |
WO2021155243A8 WO2021155243A8 (en) | 2021-09-10 |
Family
ID=77079256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2021/015840 WO2021155243A1 (en) | 2020-01-30 | 2021-01-29 | Respiratory virus immunizing compositions |
Country Status (11)
Country | Link |
---|---|
US (1) | US20230338506A1 (en) |
EP (1) | EP4096683A4 (en) |
JP (1) | JP2023513073A (en) |
KR (1) | KR20220133911A (en) |
CN (1) | CN115103682A (en) |
AU (1) | AU2021214774A1 (en) |
BR (1) | BR112022015053A2 (en) |
CA (1) | CA3169664A1 (en) |
IL (1) | IL295148A (en) |
MX (1) | MX2022009429A (en) |
WO (1) | WO2021155243A1 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11202793B2 (en) | 2016-09-14 | 2021-12-21 | Modernatx, Inc. | High purity RNA compositions and methods for preparation thereof |
US11406703B2 (en) | 2020-08-25 | 2022-08-09 | Modernatx, Inc. | Human cytomegalovirus vaccine |
US11464848B2 (en) | 2017-03-15 | 2022-10-11 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
WO2022221336A1 (en) * | 2021-04-13 | 2022-10-20 | Modernatx, Inc. | Respiratory syncytial virus mrna vaccines |
US11484590B2 (en) | 2015-10-22 | 2022-11-01 | Modernatx, Inc. | Human cytomegalovirus RNA vaccines |
US11497807B2 (en) | 2017-03-17 | 2022-11-15 | Modernatx, Inc. | Zoonotic disease RNA vaccines |
US11541113B2 (en) | 2016-10-21 | 2023-01-03 | Modernatx, Inc. | Human cytomegalovirus vaccine |
US11547673B1 (en) | 2020-04-22 | 2023-01-10 | BioNTech SE | Coronavirus vaccine |
US11564893B2 (en) | 2015-08-17 | 2023-01-31 | Modernatx, Inc. | Methods for preparing particles and related compositions |
US11576961B2 (en) | 2017-03-15 | 2023-02-14 | Modernatx, Inc. | Broad spectrum influenza virus vaccine |
US11696946B2 (en) | 2016-11-11 | 2023-07-11 | Modernatx, Inc. | Influenza vaccine |
US11744801B2 (en) | 2017-08-31 | 2023-09-05 | Modernatx, Inc. | Methods of making lipid nanoparticles |
US11752206B2 (en) | 2017-03-15 | 2023-09-12 | Modernatx, Inc. | Herpes simplex virus vaccine |
US11767548B2 (en) | 2017-08-18 | 2023-09-26 | Modernatx, Inc. | RNA polymerase variants |
US11786607B2 (en) | 2017-06-15 | 2023-10-17 | Modernatx, Inc. | RNA formulations |
US11851694B1 (en) | 2019-02-20 | 2023-12-26 | Modernatx, Inc. | High fidelity in vitro transcription |
US11866696B2 (en) | 2017-08-18 | 2024-01-09 | Modernatx, Inc. | Analytical HPLC methods |
US11872278B2 (en) | 2015-10-22 | 2024-01-16 | Modernatx, Inc. | Combination HMPV/RSV RNA vaccines |
US11878055B1 (en) | 2022-06-26 | 2024-01-23 | BioNTech SE | Coronavirus vaccine |
US11905525B2 (en) | 2017-04-05 | 2024-02-20 | Modernatx, Inc. | Reduction of elimination of immune responses to non-intravenous, e.g., subcutaneously administered therapeutic proteins |
US11912982B2 (en) | 2017-08-18 | 2024-02-27 | Modernatx, Inc. | Methods for HPLC analysis |
US11911453B2 (en) | 2018-01-29 | 2024-02-27 | Modernatx, Inc. | RSV RNA vaccines |
US11918644B2 (en) | 2017-03-15 | 2024-03-05 | Modernatx, Inc. | Varicella zoster virus (VZV) vaccine |
WO2024089633A1 (en) * | 2022-10-27 | 2024-05-02 | Pfizer Inc. | Rna molecules encoding rsv-f and vaccines containing them |
CN118064456A (en) * | 2024-03-01 | 2024-05-24 | 嘉译生物医药(杭州)有限公司 | Novel RSV B mRNA vaccine for human syncytial virus |
US12070495B2 (en) | 2019-03-15 | 2024-08-27 | Modernatx, Inc. | HIV RNA vaccines |
US12090235B2 (en) | 2018-09-20 | 2024-09-17 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
WO2024193965A1 (en) * | 2023-03-17 | 2024-09-26 | Glaxosmithkline Biologicals Sa | Rsv-f-encoding nucleic acids |
US12128113B2 (en) | 2017-05-18 | 2024-10-29 | Modernatx, Inc. | Polynucleotides encoding JAGGED1 for the treatment of Alagille syndrome |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118108812A (en) * | 2023-05-04 | 2024-05-31 | 国药中生生物技术研究院有限公司 | Mutants of RSV F protein |
CN117586359A (en) * | 2024-01-19 | 2024-02-23 | 北京安百胜生物科技有限公司 | Respiratory Syncytial Virus (RSV) polypeptides having immunogenicity |
CN118480560A (en) * | 2024-07-09 | 2024-08-13 | 北京悦康科创医药科技股份有限公司 | Respiratory syncytial virus mRNA vaccine and preparation method and application thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010149743A2 (en) * | 2009-06-24 | 2010-12-29 | Id Biomedical Corporation Of Quebec | Vaccine |
WO2017070622A1 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
WO2017070626A2 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Respiratory virus vaccines |
WO2017172890A1 (en) * | 2016-03-29 | 2017-10-05 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Substitutions-modified prefusion rsv f proteins and their use |
WO2018107088A2 (en) * | 2016-12-08 | 2018-06-14 | Modernatx, Inc. | Respiratory virus nucleic acid vaccines |
WO2018170260A1 (en) * | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
WO2019148101A1 (en) * | 2018-01-29 | 2019-08-01 | Modernatx, Inc. | Rsv rna vaccines |
WO2019202035A1 (en) * | 2018-04-17 | 2019-10-24 | Curevac Ag | Novel rsv rna molecules and compositions for vaccination |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10017543B2 (en) * | 2013-03-13 | 2018-07-10 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Prefusion RSV F proteins and their use |
CA3058794A1 (en) * | 2017-04-04 | 2018-10-11 | University Of Washington | Self-assembling protein nanostructures displaying paramyxovirus and/or pneumovirus f proteins and their use |
-
2021
- 2021-01-29 BR BR112022015053A patent/BR112022015053A2/en not_active Application Discontinuation
- 2021-01-29 AU AU2021214774A patent/AU2021214774A1/en active Pending
- 2021-01-29 CA CA3169664A patent/CA3169664A1/en active Pending
- 2021-01-29 JP JP2022546537A patent/JP2023513073A/en active Pending
- 2021-01-29 WO PCT/US2021/015840 patent/WO2021155243A1/en active Application Filing
- 2021-01-29 IL IL295148A patent/IL295148A/en unknown
- 2021-01-29 EP EP21747384.2A patent/EP4096683A4/en active Pending
- 2021-01-29 CN CN202180011671.6A patent/CN115103682A/en active Pending
- 2021-01-29 MX MX2022009429A patent/MX2022009429A/en unknown
- 2021-01-29 US US17/796,401 patent/US20230338506A1/en active Pending
- 2021-01-29 KR KR1020227028349A patent/KR20220133911A/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010149743A2 (en) * | 2009-06-24 | 2010-12-29 | Id Biomedical Corporation Of Quebec | Vaccine |
WO2017070622A1 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
WO2017070626A2 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Respiratory virus vaccines |
WO2017172890A1 (en) * | 2016-03-29 | 2017-10-05 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Substitutions-modified prefusion rsv f proteins and their use |
WO2018107088A2 (en) * | 2016-12-08 | 2018-06-14 | Modernatx, Inc. | Respiratory virus nucleic acid vaccines |
WO2018170260A1 (en) * | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
WO2019148101A1 (en) * | 2018-01-29 | 2019-08-01 | Modernatx, Inc. | Rsv rna vaccines |
WO2019202035A1 (en) * | 2018-04-17 | 2019-10-24 | Curevac Ag | Novel rsv rna molecules and compositions for vaccination |
Non-Patent Citations (4)
Title |
---|
"Clinical trial NCT04528719: A Dose Escalation Study to Evaluate Safety, Reactogenicity, and Immunogenicity of mRNA-1345 in Healthy Adults and in Children Who Are Respiratory Syncytial Virus Seropositive (ModernaTX, Inc.)", CLINICAL TRIALS, 27 August 2020 (2020-08-27), XP055844909, Retrieved from the Internet <URL:https://www.clinicaltrials.gov/ct2/show/NCT04528719?term=NCT04528719&draw=2&rank=1> [retrieved on 20210315] * |
ESPESETH, AMY S, CEJAS PEDRO J; CITRON MICHAEL P; WANG DAI; DISTEFANO DANIEL J; CALLAHAN CHERYL; DONNELL GREGORY O’; GALLI JENNIFE: "Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection", NPJ VACCINES, vol. 5, no. 16, 14 February 2020 (2020-02-14), XP055695604, DOI: 10.1038/s41541-020-0163-z * |
MCLELLAN, JS. ET AL.: "Structure of respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of neutralizing epitopes.", JOURNAL OF VIROLOGY, vol. 85, no. 15, 2011, pages 7788 - 96, XP002710047, DOI: 10.1128/JVI.00555-11 * |
See also references of EP4096683A4 * |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11564893B2 (en) | 2015-08-17 | 2023-01-31 | Modernatx, Inc. | Methods for preparing particles and related compositions |
US11872278B2 (en) | 2015-10-22 | 2024-01-16 | Modernatx, Inc. | Combination HMPV/RSV RNA vaccines |
US11484590B2 (en) | 2015-10-22 | 2022-11-01 | Modernatx, Inc. | Human cytomegalovirus RNA vaccines |
US11202793B2 (en) | 2016-09-14 | 2021-12-21 | Modernatx, Inc. | High purity RNA compositions and methods for preparation thereof |
US11541113B2 (en) | 2016-10-21 | 2023-01-03 | Modernatx, Inc. | Human cytomegalovirus vaccine |
US11696946B2 (en) | 2016-11-11 | 2023-07-11 | Modernatx, Inc. | Influenza vaccine |
US11464848B2 (en) | 2017-03-15 | 2022-10-11 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
US11752206B2 (en) | 2017-03-15 | 2023-09-12 | Modernatx, Inc. | Herpes simplex virus vaccine |
US11918644B2 (en) | 2017-03-15 | 2024-03-05 | Modernatx, Inc. | Varicella zoster virus (VZV) vaccine |
US11576961B2 (en) | 2017-03-15 | 2023-02-14 | Modernatx, Inc. | Broad spectrum influenza virus vaccine |
US11497807B2 (en) | 2017-03-17 | 2022-11-15 | Modernatx, Inc. | Zoonotic disease RNA vaccines |
US11905525B2 (en) | 2017-04-05 | 2024-02-20 | Modernatx, Inc. | Reduction of elimination of immune responses to non-intravenous, e.g., subcutaneously administered therapeutic proteins |
US12128113B2 (en) | 2017-05-18 | 2024-10-29 | Modernatx, Inc. | Polynucleotides encoding JAGGED1 for the treatment of Alagille syndrome |
US11786607B2 (en) | 2017-06-15 | 2023-10-17 | Modernatx, Inc. | RNA formulations |
US11767548B2 (en) | 2017-08-18 | 2023-09-26 | Modernatx, Inc. | RNA polymerase variants |
US11866696B2 (en) | 2017-08-18 | 2024-01-09 | Modernatx, Inc. | Analytical HPLC methods |
US11912982B2 (en) | 2017-08-18 | 2024-02-27 | Modernatx, Inc. | Methods for HPLC analysis |
US11744801B2 (en) | 2017-08-31 | 2023-09-05 | Modernatx, Inc. | Methods of making lipid nanoparticles |
US11911453B2 (en) | 2018-01-29 | 2024-02-27 | Modernatx, Inc. | RSV RNA vaccines |
US12090235B2 (en) | 2018-09-20 | 2024-09-17 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
US11851694B1 (en) | 2019-02-20 | 2023-12-26 | Modernatx, Inc. | High fidelity in vitro transcription |
US12070495B2 (en) | 2019-03-15 | 2024-08-27 | Modernatx, Inc. | HIV RNA vaccines |
US11779659B2 (en) | 2020-04-22 | 2023-10-10 | BioNTech SE | RNA constructs and uses thereof |
US11547673B1 (en) | 2020-04-22 | 2023-01-10 | BioNTech SE | Coronavirus vaccine |
US11925694B2 (en) | 2020-04-22 | 2024-03-12 | BioNTech SE | Coronavirus vaccine |
US11951185B2 (en) | 2020-04-22 | 2024-04-09 | BioNTech SE | RNA constructs and uses thereof |
US11406703B2 (en) | 2020-08-25 | 2022-08-09 | Modernatx, Inc. | Human cytomegalovirus vaccine |
WO2022221336A1 (en) * | 2021-04-13 | 2022-10-20 | Modernatx, Inc. | Respiratory syncytial virus mrna vaccines |
US11878055B1 (en) | 2022-06-26 | 2024-01-23 | BioNTech SE | Coronavirus vaccine |
WO2024089633A1 (en) * | 2022-10-27 | 2024-05-02 | Pfizer Inc. | Rna molecules encoding rsv-f and vaccines containing them |
WO2024193965A1 (en) * | 2023-03-17 | 2024-09-26 | Glaxosmithkline Biologicals Sa | Rsv-f-encoding nucleic acids |
CN118064456A (en) * | 2024-03-01 | 2024-05-24 | 嘉译生物医药(杭州)有限公司 | Novel RSV B mRNA vaccine for human syncytial virus |
Also Published As
Publication number | Publication date |
---|---|
JP2023513073A (en) | 2023-03-30 |
CN115103682A (en) | 2022-09-23 |
AU2021214774A1 (en) | 2022-08-25 |
EP4096683A1 (en) | 2022-12-07 |
CA3169664A1 (en) | 2021-08-05 |
EP4096683A4 (en) | 2024-04-10 |
WO2021155243A8 (en) | 2021-09-10 |
KR20220133911A (en) | 2022-10-05 |
US20230338506A1 (en) | 2023-10-26 |
IL295148A (en) | 2022-09-01 |
BR112022015053A2 (en) | 2022-09-20 |
MX2022009429A (en) | 2022-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230338506A1 (en) | Respiratory virus immunizing compositions | |
US11351242B1 (en) | HMPV/hPIV3 mRNA vaccine composition | |
US20240299525A1 (en) | Rsv rna vaccines | |
US20230108894A1 (en) | Coronavirus rna vaccines | |
US11103578B2 (en) | Respiratory virus nucleic acid vaccines | |
US20230355743A1 (en) | Multi-proline-substituted coronavirus spike protein vaccines | |
WO2021222304A1 (en) | Sars-cov-2 rna vaccines | |
US20240207392A1 (en) | Epstein-barr virus mrna vaccines | |
US20240285754A1 (en) | Mrna vaccines encoding flexible coronavirus spike proteins | |
US20240293534A1 (en) | Coronavirus glycosylation variant vaccines | |
WO2022221336A1 (en) | Respiratory syncytial virus mrna vaccines | |
AU2022258335A1 (en) | Respiratory virus combination vaccines | |
EP4366768A1 (en) | Pan-human coronavirus vaccines | |
WO2023283645A1 (en) | Pan-human coronavirus domain vaccines | |
WO2023283642A2 (en) | Pan-human coronavirus concatemeric vaccines | |
WO2023092069A1 (en) | Sars-cov-2 mrna domain vaccines and methods of use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21747384 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022546537 Country of ref document: JP Kind code of ref document: A Ref document number: 3169664 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112022015053 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202217045746 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20227028349 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021214774 Country of ref document: AU Date of ref document: 20210129 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021747384 Country of ref document: EP Effective date: 20220830 |
|
ENP | Entry into the national phase |
Ref document number: 112022015053 Country of ref document: BR Kind code of ref document: A2 Effective date: 20220729 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 522433451 Country of ref document: SA |