WO2021149621A1 - 光源モジュール - Google Patents

光源モジュール Download PDF

Info

Publication number
WO2021149621A1
WO2021149621A1 PCT/JP2021/001315 JP2021001315W WO2021149621A1 WO 2021149621 A1 WO2021149621 A1 WO 2021149621A1 JP 2021001315 W JP2021001315 W JP 2021001315W WO 2021149621 A1 WO2021149621 A1 WO 2021149621A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
intensity modulation
semiconductor layer
light
Prior art date
Application number
PCT/JP2021/001315
Other languages
English (en)
French (fr)
Inventor
黒坂 剛孝
和義 廣瀬
聡 上野山
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020006907A external-priority patent/JP7308157B2/ja
Priority claimed from JP2020006906A external-priority patent/JP7445437B2/ja
Priority claimed from JP2020160719A external-priority patent/JP6891327B1/ja
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to DE112021000652.5T priority Critical patent/DE112021000652T5/de
Priority to US17/792,181 priority patent/US20230102430A1/en
Priority to CN202180009816.9A priority patent/CN115004491A/zh
Publication of WO2021149621A1 publication Critical patent/WO2021149621A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06253Pulse modulation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/4255Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application for alignment or positioning purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]

Definitions

  • the present disclosure relates to a light source module.
  • This application is filed on January 20, 2020, Japanese Patent Application No. 2020-006906, Japanese Patent Application No. 2020-006907 filed on January 20, 2020, and September 25, 2020. It claims the priority according to Japanese Patent Application No. 2020-16719, which is based on the content thereof and is incorporated herein by reference in its entirety.
  • Patent Document 1 discloses a technique relating to an end face emitting type semiconductor laser device.
  • the longitudinal direction of the first drive electrode is inclined with respect to the normal of the optical output end face of the semiconductor laser device when viewed from the thickness direction of the semiconductor laser device.
  • the region corresponding to the first region of the photonic crystal layer has first and second periodic structures in which the arrangement periods of the different refractive index portions having different refractive indexes from the surroundings are different from each other.
  • Two or more laser beams forming a predetermined angle with respect to the longitudinal direction of the first driving electrode are generated inside the semiconductor laser device according to the difference of the reciprocals of the respective array periods in the first and second periodic structures.
  • NS the refraction angle of one laser beam toward the light output end face with respect to the light output end face is less than 90 degrees.
  • Another at least one laser beam directed toward the light output end face satisfies the total reflection critical angle condition with respect to the light output end face.
  • Non-Patent Document 1 discloses a technique related to a computer-generated hologram (CGH).
  • One pixel is composed of four sub-pixels having independent reflectances created by printing, and the reflected light of the laser beam applied to the plurality of pixels is combined.
  • the light emitting direction from each pixel can be arbitrarily shifted.
  • Non-Patent Document 2 in the technique described in Non-Patent Document 1, if each pixel contains three sub-pixels having independent reflectances, the emission direction from each pixel is arbitrarily shifted. It is stated to get.
  • a phase modulation layer including a plurality of different refractive index regions is provided in the vicinity of the active layer of the semiconductor laser device. Then, in a virtual square lattice set on a plane perpendicular to the thickness direction of the phase modulation layer, for example, the center of gravity of a plurality of different refractive index regions is located at a position away from the lattice points of the virtual square lattice.
  • angles of the arranged and connecting the corresponding grid points and the center of gravity with respect to the virtual square grid are individually set. Similar to the photonic crystal laser element, such an element can output the laser beam along the stacking direction, spatially control the phase distribution of the laser beam, and output the laser beam as an arbitrary optical image.
  • the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a light source module capable of dynamically controlling the phase distribution of light.
  • the light source module includes a semiconductor laminated portion, a first electrode, a second electrode, a third electrode, and a fourth electrode.
  • the semiconductor laminated portion includes a first conductive type semiconductor layer, a second conductive type semiconductor layer, and a laminated body composed of an active layer and a photonic crystal layer.
  • the laminate composed of the active layer and the photonic crystal layer is arranged between the first conductive type semiconductor layer and the second conductive type semiconductor layer.
  • the photonic crystal layer causes oscillation at the ⁇ point.
  • the semiconductor laminated portion has a phase synchronization portion and an intensity modulation portion arranged along the first direction, which is one of the resonance directions of the photonic crystal layer.
  • the portion of the laminate that constitutes at least a part of the intensity modulation section has M pixels (M is an integer of 2 or more) arranged along the second direction intersecting the first direction.
  • M is an integer of 2 or more
  • N 1 pieces arranged along the second direction (N 1 is an integer of 2 or more) including the sub-pixels.
  • Two N consecutive of N 1 subpixels (N 2 ⁇ 2 N 1 an integer) length is defined along a second direction of a region consisting of a sub-pixel, the emission wavelength of the active layer Less than ⁇ .
  • the first electrode is electrically connected to a portion of the first conductive semiconductor layer that constitutes at least a part of the phase synchronization portion.
  • the second electrode is electrically connected to a portion of the second conductive semiconductor layer that constitutes at least a part of the phase synchronization portion.
  • the third electrode is one-to-one provided corresponding to N 1 subpixels, of the portion and the portion of the second conductive type semiconductor layer of the first conductivity type semiconductor layer constituting at least a part of the intensity modulation part It is electrically connected to one side.
  • the fourth electrode is electrically connected to the other of the portion of the first conductive semiconductor layer and the portion of the second conductive semiconductor layer that form at least a part of the intensity modulation unit.
  • This light source module outputs light from each of the M pixels included in the intensity modulation unit along a direction intersecting both the first direction and the second direction.
  • the light source module includes a semiconductor laminated portion, a first electrode, a second electrode, a third electrode, and a fourth electrode.
  • the semiconductor laminate includes a laminate composed of a first conductive semiconductor layer, a second conductive semiconductor layer, an active layer, and a resonance mode forming layer.
  • the laminate composed of the active layer and the resonance mode forming layer is arranged between the first conductive type semiconductor layer and the second conductive type semiconductor layer.
  • the semiconductor laminated portion has a phase synchronization portion and an intensity modulation portion arranged along a first direction, which is one of the resonance directions of the resonance mode forming layer.
  • the portion of the laminate that constitutes at least a part of the intensity modulation section has M pixels (M is an integer of 2 or more) arranged along the second direction intersecting the first direction.
  • M is an integer of 2 or more
  • N 1 pieces arranged along the second direction (N 1 is an integer of 2 or more) including the sub-pixels.
  • Two N consecutive of N 1 subpixels (N 2 ⁇ 2 N 1 an integer) length is defined along a second direction of a region consisting of a sub-pixel, the emission wavelength of the active layer Less than ⁇ .
  • the first electrode is electrically connected to a portion of the first conductive semiconductor layer that constitutes at least a part of the phase synchronization portion.
  • the second electrode is electrically connected to a portion of the second conductive semiconductor layer that constitutes at least a part of the phase synchronization portion.
  • the third electrode is provided to correspond one-to-one to N 1 subpixels, portions and portions of the second conductive type semiconductor layer of the first conductivity type semiconductor layer constituting at least a part of the intensity modulation part It is electrically connected to one of them.
  • the fourth electrode is electrically connected to the other of the portion of the first conductive semiconductor layer and the portion of the second conductive semiconductor layer that form at least a part of the intensity modulation unit.
  • the resonance mode forming layer comprises a basic layer and a plurality of different refractive index regions having a refractive index different from that of the basic layer and being two-dimensionally distributed on a plane perpendicular to the thickness direction of the resonance mode forming layer.
  • the arrangement of the plurality of different refractive index regions satisfies the condition of M point oscillation.
  • the centers of gravity of each of the plurality of different refractive index regions have the first form and the second form. It is arranged in one of the forms.
  • the centers of gravity of the plurality of different refractive index regions are arranged apart from the corresponding lattice points, and the angles of the vectors connecting the corresponding lattice points and the centers of gravity are individually set with respect to the virtual square lattice. Will be done.
  • each center of gravity of the plurality of different refractive index regions is arranged on a straight line that passes through the grid points of the virtual square lattice and is inclined with respect to the square lattice, and is arranged with each center of gravity of the plurality of different refractive index regions.
  • the distance to the corresponding grid point is set individually.
  • the vector angle distribution in the first form, or the distance distribution in the second form satisfies the condition for light to be output from the intensity modulator in the direction intersecting both the first direction and the second direction. ..
  • a light source module capable of dynamically controlling the phase distribution of light.
  • FIG. 1 is a plan view of a light source module according to an embodiment of the present disclosure.
  • FIG. 2 is a bottom view of the light source module according to the embodiment.
  • FIG. 3 is a diagram schematically showing a cross section along the line III-III shown in FIG.
  • FIG. 4 is a diagram schematically showing a cross section along the IV-IV line shown in FIG. 5 (a) and 5 (b) are diagrams for explaining ⁇ -point oscillation in real space and reciprocal lattice space, respectively.
  • 6 (a) to 6 (d) are diagrams illustrating a step of manufacturing the light source module according to the embodiment.
  • 7 (a) to 7 (d) are diagrams illustrating a step of manufacturing the light source module according to the embodiment.
  • FIG. 8 (a) to 8 (d) are diagrams illustrating a step of manufacturing the light source module according to the embodiment.
  • 9 (a) to 9 (d) are diagrams illustrating a step of manufacturing the light source module according to the embodiment.
  • 10 (a) to 10 (d) are diagrams illustrating a step of manufacturing the light source module according to the embodiment.
  • 11 (a) to 11 (d) are diagrams illustrating a step of manufacturing the light source module according to the embodiment.
  • 12 (a) to 12 (d) are diagrams illustrating a step of manufacturing the light source module according to the embodiment.
  • 13 (a) and 13 (b) are diagrams showing a step of flip-chip mounting the light source module on the control circuit board.
  • 14 is a diagram schematically showing a cross section of a light source module as a first modification.
  • 15 (a) to 15 (d) are diagrams for explaining a process of manufacturing the light source module according to the first modification.
  • 16 (a) to 16 (d) are diagrams for explaining a process of manufacturing the light source module according to the first modification.
  • 17 (a) to 17 (d) are diagrams for explaining a process of manufacturing the light source module according to the first modification.
  • 18 (a) to 18 (d) are diagrams for explaining a process of manufacturing the light source module according to the first modification.
  • 19 (a) to 19 (d) are diagrams for explaining a process of manufacturing the light source module according to the first modification.
  • FIG. 20 (a) to 20 (d) are diagrams for explaining a process of manufacturing the light source module according to the first modification.
  • 21 (a) to 21 (d) are diagrams for explaining a process of manufacturing the light source module according to the first modification.
  • 22 (a) and 22 (b) are diagrams showing a step of flip-chip mounting the light source module on the control circuit board.
  • FIG. 23 is a plan view showing the light source module according to the second modification.
  • FIG. 24 is a bottom view showing the light source module according to the second modification.
  • FIG. 25 is a plan view showing the sizes and positional relationships of the different refractive index region, the first electrode, the third electrode, and the slits at the same magnification as an embodiment of the second modification.
  • FIG. 26 (a) and 26 (b) are diagrams for explaining the effect of the phase shift portion.
  • FIG. 27 is a plan view showing the light source module according to the third modification.
  • FIG. 28 is a bottom view showing the light source module according to the third modification.
  • FIG. 29 is a diagram schematically showing a cross section along the XXIX-XXIX line shown in FIG. 27.
  • FIG. 30 is a diagram schematically showing a cross section along the line XXX-XXX shown in FIG. 27.
  • 31 (a) and 31 (b) are diagrams for explaining M-point oscillation in the real space and the reciprocal lattice space, respectively.
  • FIG. 32 is a plan view of the resonance mode forming layer of the intensity modulation unit.
  • FIG. 32 is a plan view of the resonance mode forming layer of the intensity modulation unit.
  • FIG. 33 is an enlarged view of the unit constituent area.
  • FIG. 34 is a diagram for explaining coordinate conversion from spherical coordinates (r, ⁇ rot , ⁇ tilt ) to coordinates ( ⁇ , ⁇ , ⁇ ) in the X'Y'Z Cartesian coordinate system.
  • FIG. 35 is a plan view showing a reciprocal lattice space regarding a phase modulation layer of a light emitting device that oscillates at point M.
  • FIG. 36 is a conceptual diagram illustrating a state in which a diffraction vector is added to an in-plane wave vector.
  • FIG. 37 is a diagram for schematically explaining the peripheral structure of the light line.
  • Figure 38 is a diagram schematically illustrating an example of a phase distribution ⁇ 2 (x, y).
  • FIG. 39 is a conceptual diagram for explaining a state in which a diffraction vector is added to a wave vector obtained by removing a wave number spread from an in-plane wave vector in four directions.
  • FIG. 40 is a plan view showing another form of the resonance mode forming layer of the intensity modulation unit.
  • FIG. 41 is a diagram showing the arrangement of the different refractive index region 14b in the resonance mode forming layer 14B.
  • FIG. 42 is a plan view showing the light source module according to the fourth modification.
  • FIG. 43 is a bottom view showing the light source module.
  • 44 (a) to 44 (h) are diagrams for explaining the technique described in Non-Patent Document 1.
  • 45 (a) and 45 (b) are diagrams for explaining the technique described in Non-Patent Document 2.
  • the first light source module includes, as one embodiment, a semiconductor laminated portion, a first electrode, a second electrode, a third electrode, and a fourth electrode.
  • the semiconductor laminated portion includes a first conductive type semiconductor layer, a second conductive type semiconductor layer, and a laminated body composed of an active layer and a photonic crystal layer.
  • the laminate composed of the active layer and the photonic crystal layer is arranged between the first conductive type semiconductor layer and the second conductive type semiconductor layer.
  • the photonic crystal layer causes oscillation at the ⁇ point.
  • the semiconductor laminated portion has a phase synchronization portion and an intensity modulation portion arranged along the first direction, which is one of the resonance directions of the photonic crystal layer.
  • the portion of the laminate that constitutes at least a part of the intensity modulation section has M pixels (M is an integer of 2 or more) arranged along the second direction intersecting the first direction.
  • M is an integer of 2 or more
  • N 1 pieces arranged along the second direction (N 1 is an integer of 2 or more) including the sub-pixels.
  • Two N consecutive of N 1 subpixels (N 2 ⁇ 2 N 1 an integer) length is defined along a second direction of a region consisting of a sub-pixel, the emission wavelength of the active layer Less than ⁇ .
  • the first electrode is electrically connected to a portion of the first conductive semiconductor layer that constitutes at least a part of the phase synchronization portion.
  • the second electrode is electrically connected to a portion of the second conductive semiconductor layer that constitutes at least a part of the phase synchronization portion.
  • the third electrode is one-to-one provided corresponding to N 1 subpixels, of the portion and the portion of the second conductive type semiconductor layer of the first conductivity type semiconductor layer constituting at least a part of the intensity modulation part It is electrically connected to one side.
  • the fourth electrode is electrically connected to the other of the portion of the first conductive semiconductor layer and the portion of the second conductive semiconductor layer that form at least a part of the intensity modulation unit.
  • This light source module outputs light from each of the M pixels included in the intensity modulation unit along a direction intersecting both the first direction and the second direction.
  • this first light source module when a current is supplied between the first electrode and the second electrode and between the third electrode and the fourth electrode, the active layer included in the phase synchronization section and the intensity modulation section. Light up respectively.
  • the light output from the active layer enters the photonic crystal layer and resonates in the photonic crystal layer in two directions including the first direction, which is perpendicular to the thickness direction.
  • This light becomes a coherent laser beam in which the phases are aligned in the photonic crystal layer of the phase synchronization unit.
  • the photonic crystal layer included in the intensity modulation section is aligned in the first direction with respect to the photonic crystal layer included in the phase synchronization section, the phase of the laser beam in the photonic crystal layer of each subpixel.
  • the phase of the laser beam in the photonic crystal layer of the phase synchronization unit matcheses the phase of the laser beam in the photonic crystal layer of the phase synchronization unit, and as a result, the phase of the laser beam in the photonic crystal layer is aligned between the subpixels. Since the photonic crystal layer causes ⁇ point oscillation, from each subpixel included in the intensity modulator, the phase-aligned laser beam intersects both the first and second directions (typically). Is output along the thickness direction of the intensity modulator).
  • the third electrode is provided on each subpixel in a one-to-one correspondence. Therefore, the magnitude of the current supplied to the intensity modulation unit can be adjusted individually for each subpixel. That is, the light intensity of the laser beam output from the intensity modulation unit can be adjusted individually (independently) for each subpixel. Further, the first light source module, at each pixel, the length of the second direction of a region consisting of N 2 sub successive pixels of the N 1 subpixels (i.e. the array direction of the sub-pixels), active It is smaller than the emission wavelength ⁇ of the layer, that is, the wavelength of the laser light.
  • each pixel is equivalent to a pixel with a single phase.
  • the phase of the laser beam output from each pixel is the N 1 subpixels constituting the pixel. It is determined by the intensity distribution realized by the pixels. Therefore, according to the first light source module, the phase distribution of light can be dynamically controlled.
  • the second light source module includes, as one embodiment, a semiconductor laminated portion, a first electrode, a second electrode, a third electrode, and a fourth electrode.
  • the semiconductor laminate includes a laminate composed of a first conductive semiconductor layer, a second conductive semiconductor layer, an active layer, and a resonance mode forming layer.
  • the laminate composed of the active layer and the resonance mode forming layer is arranged between the first conductive type semiconductor layer and the second conductive type semiconductor layer.
  • the semiconductor laminated portion has a phase synchronization portion and an intensity modulation portion arranged along a first direction, which is one of the resonance directions of the resonance mode forming layer.
  • the portion of the laminate that constitutes at least a part of the intensity modulation section has M pixels (M is an integer of 2 or more) arranged along the second direction intersecting the first direction.
  • M is an integer of 2 or more
  • N 1 pieces arranged along the second direction (N 1 is an integer of 2 or more) including the sub-pixels.
  • Two N consecutive of N 1 subpixels (N 2 ⁇ 2 N 1 an integer) length is defined along a second direction of a region consisting of a sub-pixel, the emission wavelength of the active layer Less than ⁇ .
  • the first electrode is electrically connected to a portion of the first conductive semiconductor layer that constitutes at least a part of the phase synchronization portion.
  • the second electrode is electrically connected to a portion of the second conductive semiconductor layer that constitutes at least a part of the phase synchronization portion.
  • the third electrode is provided to correspond one-to-one to N 1 subpixels, portions and portions of the second conductive type semiconductor layer of the first conductivity type semiconductor layer constituting at least a part of the intensity modulation part It is electrically connected to one of them.
  • the fourth electrode is electrically connected to the other of the portion of the first conductive semiconductor layer and the portion of the second conductive semiconductor layer that form at least a part of the intensity modulation unit.
  • the resonance mode forming layer comprises a basic layer and a plurality of different refractive index regions having a refractive index different from that of the basic layer and being two-dimensionally distributed on a plane perpendicular to the thickness direction of the resonance mode forming layer.
  • the arrangement of the plurality of different refractive index regions satisfies the condition of M point oscillation.
  • the centers of gravity of each of the plurality of different refractive index regions have the first form and the second form. It is arranged in one of the forms.
  • the centers of gravity of the plurality of different refractive index regions are arranged apart from the corresponding lattice points, and the angles of the vectors connecting the corresponding lattice points and the centers of gravity are individually set with respect to the virtual square lattice. Will be done.
  • each center of gravity of the plurality of different refractive index regions is arranged on a straight line that passes through the grid points of the virtual square lattice and is inclined with respect to the square lattice, and is arranged with each center of gravity of the plurality of different refractive index regions.
  • the distance to the corresponding grid point is set individually.
  • the vector angle distribution in the first form, or the distance distribution in the second form satisfies the condition for light to be output from the intensity modulator in the direction intersecting both the first direction and the second direction. ..
  • the active layers of the phase synchronization section and the intensity modulation section are respectively. It emits light.
  • the light output from the active layer enters the resonance mode forming layer and resonates in the resonance mode forming layer in two directions including the first direction, which is perpendicular to the thickness direction. This light becomes a coherent laser light in which the phases are aligned in the resonance mode forming layer of the phase synchronization unit.
  • each resonance mode forming layer of the intensity modulation unit divided into a plurality of subpixels is arranged in the first direction with respect to the resonance mode forming layer of the phase synchronization unit, it is within the resonance mode forming layer of each subpixel.
  • the phase of the laser light in the above matches the phase of the laser light in the resonance mode forming layer of the phase synchronization portion, and as a result, the phases of the laser light in the resonance mode forming layer are aligned between the subpixels.
  • the resonance mode forming layer of the second light source module causes M-point oscillation, but in the resonance mode forming layer portion included in the intensity modulation section, the distribution form of a plurality of different refractive index regions is different from the intensity modulation section.
  • the condition for outputting light in a direction intersecting both the first direction and the second direction is satisfied. Therefore, from each subpixel included in the intensity modulation unit, the laser beam having the same phase is output along the direction intersecting both the first direction and the second direction.
  • the third electrode is provided on each subpixel in a one-to-one correspondence. Therefore, the magnitude of the current supplied to the intensity modulation unit can be adjusted individually for each subpixel. That is, the light intensity of the laser beam output from the intensity modulation unit can be adjusted individually (independently) for each subpixel. Also in the second light source module, at each pixel, the length of the second direction of a region consisting of N 2 sub successive pixels of the N 1 subpixels (i.e. the array direction of the sub-pixels), It is smaller than the emission wavelength ⁇ of the active layer, that is, the wavelength of the laser beam.
  • each pixel is equivalent to a pixel with a single phase.
  • the phase of the laser beam output from each pixel is the N 1 subpixels constituting the pixel. It is determined by the intensity distribution realized by the pixels. Therefore, according to the second light source module, the phase distribution of light can be dynamically controlled.
  • the portion of the resonance mode forming layer included in the phase synchronization portion has a photonic crystal structure in which a plurality of different refractive index regions are periodically arranged. You may.
  • the laser beam having the same phase can be supplied to each subpixel from the phase synchronization unit.
  • the condition for outputting light from the intensity modulator in the direction intersecting both the first direction and the second direction is output from the intensity modulator.
  • An in-plane wave vector in four directions including a wave number spread corresponding to the angular spread of the light is formed on the reciprocal lattice space of the resonance mode forming layer, and at least one of the in-plane wave vectors in these four directions is in-plane.
  • the magnitude of the wave vector may be less than 2 ⁇ / ⁇ .
  • the photonic crystal layer is a phase shift portion provided in a one-to-one correspondence with N 1 subpixels, and is output from each pixel. It may include a phase shift portion for causing the phases of the light to be generated along the first direction to be different from each other among N 1 subpixels.
  • the resonance mode forming layer is a phase shift portion provided in a one-to-one correspondence with N 1 subpixels, and is output from each pixel. It may include a phase shift portion for causing the phases of the light to be generated along the first direction to be different from each other among N 1 subpixels.
  • the phase of the laser beam output from each pixel along the first direction is different for each subpixel. Therefore, the phase of the laser beam output from each pixel along the direction intersecting both the first direction and the second direction is also different for each subpixel.
  • the phase of the laser beam output from each pixel is determined by the intensity distribution and phase distribution of N 1 subpixels constituting the pixel. In this case, it is possible to dynamically modulate the phase distribution of light along the output direction that intersects both the first direction and the second direction, and the degree of freedom in controlling the phase distribution of light is further increased. ..
  • the first electrode is in contact with the first conductive semiconductor layer, and the portion of the first conductive semiconductor layer included in the phase synchronization unit. The entire surface may be covered. Further, the second electrode may come into contact with the second conductive semiconductor layer and cover the entire surface of the second conductive semiconductor layer included in the phase synchronization unit. In this case, the laser beam output from the phase-locked loop along the stacking direction is shielded by the first electrode and the second electrode. In particular, in the first light source module, since the photonic crystal layer in the phase-locked loop causes ⁇ point oscillation, such shielding by the first electrode and the second electrode is effective.
  • the third electrode is a portion of the first conductive semiconductor layer and the second conductive semiconductor layer forming at least a part of the intensity modulation section. You may touch one of the parts of.
  • the fourth electrode has a frame-like shape surrounding an opening for passing light, and is a portion of the first conductive semiconductor layer and the second conductive semiconductor layer that form at least a part of the intensity modulation portion. You may touch the other of the parts.
  • the laser beam can be output from the intensity modulation unit along the direction intersecting both the first direction and the second direction while supplying a sufficient current to the active layer of the intensity modulation unit.
  • the semiconductor laminated portion may include a plurality of slits.
  • the subpixels and the plurality of slits are alternately arranged one by one along the second direction.
  • the intensity modulation unit can be divided into a plurality of subpixels by a simple configuration.
  • the number N 1 and the number N 2 described above may both be 3 or more.
  • the phase of the laser beam output from each pixel can be controlled in the range of 0 ° to 360 °.
  • FIG. 1 is a plan view of the light source module 1A according to the embodiment of the present disclosure.
  • FIG. 2 is a bottom view of the light source module 1A.
  • FIG. 3 is a diagram schematically showing a cross section along the line III-III shown in FIG.
  • FIG. 4 is a diagram schematically showing a cross section along the IV-IV line shown in FIG.
  • the light source module 1A includes a semiconductor laminated portion 10, a first electrode 21, a second electrode 22, a plurality of third electrodes 23, a fourth electrode 24, and an antireflection film 25.
  • the semiconductor laminated portion 10 includes a semiconductor substrate 11 having a main surface 11a and a back surface 11b facing the main surface 11a, and a plurality of semiconductor layers laminated on the main surface 11a.
  • the thickness direction of the semiconductor substrate 11 that is, the normal direction of the main surface 11a
  • the stacking direction of the plurality of semiconductor layers coincide with the Z direction.
  • the plurality of semiconductor layers of the semiconductor laminated portion 10 include a first clad layer 12, an active layer 13, a photonic crystal layer 14, a second clad layer 15, and a contact layer 16.
  • the main surface 11a and the back surface 11b of the semiconductor substrate 11 are flat and parallel to each other.
  • the semiconductor substrate 11 is used for epitaxially growing a plurality of semiconductor layers of the semiconductor laminated portion 10.
  • the semiconductor substrate 11 is, for example, a GaAs substrate.
  • the semiconductor substrate 11 is, for example, an InP substrate.
  • the semiconductor substrate 11 is, for example, a GaN substrate.
  • the thickness of the semiconductor substrate 11 is, for example, in the range of 50 ⁇ m to 1000 ⁇ m.
  • the semiconductor substrate 11 has a p-type or n-type conductive type.
  • the planar shape of the main surface 11a is, for example, a rectangle or a square.
  • the first clad layer 12 is a semiconductor layer formed by epitaxial growth on the main surface 11a of the semiconductor substrate 11.
  • the first clad layer 12 has the same conductive type as the semiconductor substrate 11.
  • the semiconductor substrate 11 and the first clad layer 12 constitute the first conductive semiconductor layer in the present disclosure.
  • the first clad layer 12 may be provided directly on the main surface 11a by epitaxial growth, or may be provided on the main surface 11a via a buffer layer provided between the main surface 11a and the first clad layer 12. You may.
  • the active layer 13 is a semiconductor layer formed on the first clad layer 12 by epitaxial growth.
  • the active layer 13 receives an electric current to generate light.
  • the photonic crystal layer 14 is a semiconductor layer formed on the active layer 13 by epitaxial growth.
  • the second clad layer 15 is a semiconductor layer formed on the photonic crystal layer 14 by epitaxial growth.
  • the contact layer 16 is a semiconductor layer formed on the second clad layer 15 by epitaxial growth.
  • the second clad layer 15 and the contact layer 16 have a conductive type opposite to that of the first clad layer 12.
  • the second clad layer 15 and the contact layer 16 form the second conductive semiconductor layer in the present disclosure.
  • the refractive index of the active layer 13 is larger than the refractive index of the first clad layer 12 and the second clad layer 15, and the band gap of the active layer 13 is smaller than the band gap of the first clad layer 12 and the second clad layer 15.
  • the photonic crystal layer 14 may be provided between the first clad layer 12 and the active layer 13 and between the active layer 13 and the second clad layer 15.
  • Another semiconductor layer for example, between the active layer 13 and the photonic crystal layer 14 and the first clad layer 12, between the active layer 13 and the photonic crystal layer 14 and the second clad layer 15, or both
  • An optical confinement layer may be further provided.
  • the photonic crystal layer 14 has a two-dimensional diffraction grating.
  • the photonic crystal layer 14 has a basic layer 14a and a plurality of different refractive index regions 14b provided inside the basic layer 14a.
  • the refractive index of the different refractive index region 14b is different from the refractive index of the basic layer 14a.
  • the different refractive index region 14b is arranged in the basic layer 14a at regular intervals in the X direction and the Y direction.
  • Each different refractive index region 14b may be a pore, or may be configured by embedding a semiconductor having a refractive index different from that of the basic layer 14a in the pore.
  • the planar shape of each different refractive index region 14b can be various shapes such as a circle, a polygon (triangle, quadrangle, etc.), and an ellipse.
  • the different refractive index region 14b has an arrangement and an interval that satisfy the condition of ⁇ point oscillation with respect to the emission wavelength of the active layer 13.
  • FIG. 5A is a diagram for explaining ⁇ point oscillation in real space.
  • FIG. 5B is a diagram for explaining ⁇ point oscillation in the reciprocal lattice space.
  • the circles shown in FIGS. 5 (a) and 5 (b) represent the different refractive index region 14b.
  • FIG. 5A shows a case where the different refractive index region 14b is located at the center of the opening of the grid frame of the square lattice in the real space in which the XYZ three-dimensional Cartesian coordinate system is set.
  • the grid spacing of the square lattice is a
  • the center of gravity spacing of the Cartesian index regions 14b adjacent to each other in the X-axis direction and the Y-axis direction is also a.
  • the oscillation at the ⁇ point in the photonic crystal layer 14 is when ⁇ / n coincides with a, where ⁇ is the emission wavelength of the active layer 13 and n is the effective refractive index of the photonic crystal layer 14 at the wavelength ⁇ . Occurs.
  • FIG. 5 (b) shows the reciprocal lattice of the lattice of FIG. 5 (a), and the spacing between adjacent different refractive index regions 14b along the vertical direction ( ⁇ -Y) or the horizontal direction ( ⁇ -X). Is 2 ⁇ / a.
  • This 2 ⁇ / a corresponds to 2n e ⁇ / ⁇ (n e is the effective refractive index of the photonic crystal layer 14).
  • the different refractive index region 14b is located at the center of the opening of the lattice frame of the square lattice is shown, but the different refractive index region 14b is the lattice frame of another lattice (for example, a triangular lattice). It may be located in the center of the opening.
  • a cruciform mark 19 for positioning used at the time of manufacturing the light source module 1A is formed at the interface between the photonic crystal layer 14 and the second clad layer 15.
  • the marks 19 are formed near the four corners of the light source module 1A in a plan view, excluding the formation regions of the phase synchronization unit 17 and the intensity modulation unit 18, which will be described later.
  • the semiconductor laminated unit 10 has a phase synchronization unit 17 and an intensity modulation unit 18.
  • the phase synchronization unit 17 and the intensity modulation unit 18 are arranged along the Y direction (first direction), which is one of the resonance directions of the photonic crystal layer 14.
  • the phase synchronization unit 17 and the intensity modulation unit 18 are adjacent to each other along the Y direction. Another portion may be interposed between the phase synchronization unit 17 and the intensity modulation unit 18.
  • the planar shape of the phase synchronization unit 17 and the intensity modulation unit 18 is, for example, a rectangle or a square.
  • the phase synchronization unit 17 and the intensity modulation unit 18 have a pair of sides facing each other along the X direction and a pair of sides facing each other along the Y direction.
  • phase synchronization unit 17 on the intensity modulation unit 18 side along the X direction and one side of the phase synchronization unit 18 on the phase synchronization unit 17 side along the X direction face each other or coincide with each other.
  • the shapes of the phase synchronization unit 17 and the intensity modulation unit 18 correspond to the X direction in the longitudinal direction and the Y direction in the short-length direction. It is a rectangle that matches.
  • the area of the plane shape of the phase synchronization unit 17 may be larger than the area of the plane shape of the intensity modulation unit 18, may be the same as the area of the plane shape of the intensity modulation unit 18, and the plane shape of the intensity modulation unit 18 may be the same. It may be smaller than the area of.
  • the active layer 13 and the photonic crystal layer 14 of the intensity modulation unit 18 have M pixels (M is an integer of 2 or more).
  • M is an integer of 2 or more.
  • two pixel Pas are exemplified, and in FIG. 4, four pixel Pas are exemplified, but the number M of the pixels Pa is an arbitrary number of 2 or more. be.
  • Pixels Pa are arranged side by side along a direction (second direction, for example, the X direction) that intersects the Y direction.
  • the planar shape of each pixel Pa is rectangular or square. That is, each pixel Pa has a pair of sides facing each other along the X direction and a pair of sides facing each other along the Y direction.
  • Each pixel Pa includes N 1 subpixel Pb (N 1 is an integer of 2 or more) arranged along the arrangement direction (for example, the X direction) of the pixel Pa.
  • N 1 is an integer of 2 or more
  • the planar shape of each subpixel Pb is a rectangle whose longitudinal direction coincides with the Y direction and its lateral direction coincides with the arrangement direction (for example, the X direction) of the subpixel Pb.
  • One side of the phase synchronization unit 17 along the array direction and one side of each subpixel Pb along the array direction are separated from each other or are opposed to each other or coincide with each other.
  • each subpixel Pb is directly optically coupled to the phase synchronization unit 17 without interposing another subpixel Pb.
  • the length Da (specifically, the region) defined along the above-mentioned arrangement direction of the region consisting of two consecutive N subpixels Pb (N 2 is an integer of 2 or more and N 1 or less).
  • the distance between the two slits S sandwiching the two slits S) is smaller than the emission wavelength ⁇ of the active layer 13 (that is, the wavelength of the laser beam L output from each pixel Pa).
  • the wavelength ⁇ means the wavelength in the atmosphere.
  • the length of each pixel Pa in the array direction is 1.5 times the above length Da.
  • each pixel Pa When at least two subpixels Pb that are not adjacent to each other (separated from each other across the other subpixel Pb) in each pixel Pa output the laser beam L at the same time, they are defined along the arrangement direction of the pixel Pa.
  • the length may be smaller than the emission wavelength ⁇ .
  • the semiconductor laminated portion 10 further has a plurality of slits S.
  • the slit S is a groove formed in the semiconductor laminated portion 10 and is a void.
  • the slit S extends in the Y direction with the Z direction as the depth direction, and the subpixel Pb and the slit S are formed alternately one by one along the arrangement direction (for example, the X direction) of the subpixel Pb. Has been done. Therefore, the slit S is located between the subpixels Pb adjacent to each other.
  • the slit S does not have to be a void, and may be embedded with a material having a higher resistance and a higher refractive index than, for example, the active layer 13 and the photonic crystal layer 14.
  • the slit S optically and electrically divides the intensity modulation unit 18 into a plurality of subpixels Pb.
  • the width of each slit S defined along the arrangement direction of the subpixels Pb is less than ⁇ / N 1 , and the distance between adjacent slits S (that is, the width of each subpixel Pb in the arrangement direction) is ⁇ / N 1. Is less than.
  • the first electrode 21 and the second electrode 22 are metal electrodes provided in the phase synchronization unit 17.
  • the first electrode 21 is electrically connected to the contact layer 16 of the phase synchronization unit 17.
  • the first electrode 21 is an ohmic electrode that contacts the surface of the contact layer 16 of the phase synchronization unit 17, and covers the entire surface of the contact layer 16 of the phase synchronization unit 17.
  • the second electrode 22 is electrically connected to the semiconductor substrate 11 of the phase synchronization unit 17.
  • the second electrode 22 is an ohmic electrode that contacts the back surface 11b of the semiconductor substrate 11 of the phase synchronization unit 17, and covers the entire surface of the back surface 11b of the semiconductor substrate 11 of the phase synchronization unit 17.
  • the first electrode 21 may cover only a part of the surface of the contact layer 16 of the phase synchronization unit 17, and the second electrode 22 is the back surface 11b of the semiconductor substrate 11 of the phase synchronization unit 17. Only a part may be covered.
  • the second electrode 22 may make ohmic contact with the first clad layer 12 instead of the semiconductor substrate 11.
  • the third electrode 23 and the fourth electrode 24 are metal electrodes provided in the intensity modulation unit 18.
  • the third electrode 23 is electrically connected to the contact layer 16 of the intensity modulation unit 18.
  • the third electrode 23 is an ohmic electrode that contacts the surface of the contact layer 16 of the intensity modulation section 18.
  • the third electrode 23 is provided in a one-to-one correspondence with each subpixel Pb. That, M ⁇ N 1 pieces of the third electrode 23 is provided on the contact layer 16 in correspondence to the sub-pixels Pb.
  • the planar shape of each third electrode 23 is similar to the planar shape of each subpixel Pb, and is, for example, a rectangle whose longitudinal direction coincides with the Y direction.
  • the fourth electrode 24 is electrically connected to the semiconductor substrate 11 of the intensity modulation unit 18.
  • the fourth electrode 24 is an ohmic electrode that contacts the back surface 11b of the semiconductor substrate 11 of the intensity modulation unit 18.
  • the fourth electrode 24 has an opening 24a for passing the laser beam L output from the intensity modulation unit 18.
  • the planar shape of the fourth electrode 24 exhibits a rectangular or square frame shape surrounding the opening 24a. From each pixel Pa, the laser beam L is output in a direction (for example, the Z direction) that intersects both the X direction and the Y direction.
  • the antireflection film 25 is provided inside the opening 24a of the fourth electrode 24 on the back surface 11b to prevent the laser beam L to be output from the semiconductor substrate 11 from being reflected on the back surface 11b.
  • the antireflection film 25 is made of an inorganic material such as a silicon compound.
  • the conductive type of the semiconductor substrate 11 and the first clad layer 12 is, for example, n type.
  • the conductive type of the second clad layer 15 and the contact layer 16 is, for example, a p type.
  • a specific example of the light source module 1A is shown below.
  • Semiconductor substrate 11 n-type GaAs substrate (thickness about 150 ⁇ m)
  • First clad layer 12 n-type AlGaAs (refractive index 3.39, thickness 0.5 ⁇ m or more and 5 ⁇ m or less)
  • Active layer 13 InGaAs / AlGaAs multiple quantum well structure (InGaAs layer thickness 10 nm, AlGaAs layer thickness 10 nm, 3 cycles)
  • Second clad layer 15 p-type AlGaAs (refractive index 3.39, thickness 0.5 ⁇ m or more and 5 ⁇ m or less)
  • Contact layer 16 p-type GaAs (thickness 0.05 ⁇ m or more and 1 ⁇ m or less)
  • Basic layer 14a i-type GaAs (thickness 0.1 ⁇ m or more and 2 ⁇ m or less)
  • Different refractive index region 14b Pore, arrangement period 282 nm 1st electrode 21 and 3rd electrode 23: Cr / Au
  • 6 (a) shows a plan view
  • FIG. 6 (b) shows a bottom view
  • FIG. 6 (c) shows a schematic cross-sectional view taken along the line I-I of FIG. 6 (a).
  • FIG. 6 (d) shows a schematic cross-sectional view taken along the line II-II of FIG. 6 (a).
  • 7 (a) shows a plan view
  • FIG. 7 (b) shows a bottom view
  • FIG. 7 (c) shows a schematic view of a cross section taken along the line II of FIG. 7 (a).
  • 7 (d) shows a schematic view of the cross section along the line II-II of FIG. 7 (a).
  • 8 (a) shows a plan view
  • FIG. 8 (b) shows a bottom view
  • FIG. 8 (c) shows a schematic view of a cross section taken along the line II of FIG. 8 (a).
  • 8 (d) shows a schematic view of the cross section along the line II-II of FIG. 8 (a).
  • 9 (a) shows a plan view
  • FIG. 9 (b) shows a bottom view
  • FIG. 9 (c) shows a schematic view of a cross section taken along the line II of FIG.
  • 9 (a). 9 (d) shows a schematic view of the cross section along the line II-II of FIG. 9 (a).
  • 10 (a) shows a plan view
  • FIG. 10 (b) shows a bottom view
  • FIG. 10 (c) shows a schematic view of a cross section taken along the line II of FIG. 10 (a).
  • 10 (d) shows a schematic view of the cross section along the line II-II of FIG. 10 (a).
  • 11 (a) shows a plan view
  • FIG. 11 (b) shows a bottom view
  • FIG. 11 (c) shows a schematic view of a cross section taken along the line II of FIG. 11 (a).
  • 11 (d) shows a schematic view of the cross section along the line II-II of FIG. 11 (a).
  • FIG. 12 (a) shows a plan view
  • FIG. 12 (b) shows a bottom view
  • FIG. 12 (c) shows a schematic view of a cross section taken along the line II of FIG. 12 (a).
  • 12 (d) shows a schematic view of the cross section along the line II-II of FIG. 12 (a).
  • a metal organic vapor deposition (MOCVD) method is used on the main surface 11a of the semiconductor substrate 11. Epitaxial growth is performed to form the basic layer 14a of the 1-clad layer 12, the active layer 13, and the photonic crystal layer 14 in this order. Then, the positioning mark 19 is formed on the surface of the basic layer 14a.
  • the mark 19 is formed by, for example, electron beam lithography and dry etching.
  • a plurality of different refractive index regions 14b and a plurality of slits S are sometimes formed.
  • a SiN film is formed on the basic layer 14a, and then a resist mask is formed on the SiN film by using an electron beam lithography technique based on the mark 19.
  • a resist mask is formed on the SiN film by using an electron beam lithography technique based on the mark 19.
  • an opening corresponding to the position and shape of the different refractive index region 14b that satisfies the condition of ⁇ point oscillation is formed on a portion of the basic layer 14a that constitutes a part of the phase synchronization portion 17 and the intensity modulation portion 18. It is held on a part that constitutes a part.
  • this resist mask has an opening corresponding to the position and shape of the slit S on the portion of the basic layer 14a that constitutes the position whistle of the intensity modulation unit 18.
  • dry etching for example, reactive ion etching
  • etching mask made of SiN.
  • dry etching for example, inductively coupled plasma etching
  • recesses as a plurality of different refractive index regions 14b that satisfy the condition of ⁇ point oscillation are formed to a depth that does not penetrate the basic layer 14a.
  • the recesses as the plurality of slits S are formed to a depth that penetrates the photonic crystal layer 14 and the active layer 13 and reaches the first clad layer 12.
  • the etching rate of the slit S can be made higher than the etching rate of the different refractive index region 14b, so that the etching rate can be the same.
  • the slit S is formed deeper than the different refractive index region 14b. After that, the resist mask and the etching mask are removed.
  • the basic layer 14a, the photonic crystal layer 14 having the plurality of different refractive index regions 14b, and the plurality of slits S are formed.
  • the different refractive index region 14b may be formed by embedding the recess of the basic layer 14a with a semiconductor having a refractive index different from that of the basic layer 14a. ..
  • the slit S may be embedded by a high resistor having a refractive index larger than that of the basic layer 14a.
  • an ion implantation for example, oxidation ion implantation
  • an ion implantation may be performed through an etching mask to form a region having a high refractive index and high resistance.
  • epitaxial growth is performed on the photonic crystal layer 14 by using the MOCVD method to form the second clad layer 15 and the contact layer 16 in this order. Is done.
  • the semiconductor laminated section 10 including the phase synchronization section 17 and the intensity modulation section 18 is formed.
  • the first electrode 21 is formed on the contact layer 16 of the phase synchronization unit 17, and the first electrode 21 is formed on the contact layer 16 of the intensity modulation unit 18.
  • a plurality of third electrodes 23 are formed on the surface. Specifically, first, a resist mask having openings corresponding to the first electrode 21 and the third electrode 23 is formed on the contact layer 16 by using an electron beam lithography technique based on the mark 19. Then, after the materials of the first electrode 21 and the third electrode 23 are deposited by the vacuum vapor deposition method, the deposited portions other than the first electrode 21 and the third electrode 23 are removed together with the resist mask by the lift-off method.
  • the semiconductor substrate 11 is thinned by polishing the back surface 11b of the semiconductor substrate 11. Further, the back surface 11b is mirror-polished.
  • the absorption amount of the laser beam L in the semiconductor substrate 11 is reduced, and further, the back surface 11b from which the laser beam L is output is made a smooth surface, so that the extraction efficiency of the laser beam L is improved.
  • the antireflection film 25 is formed on the entire back surface 11b of the semiconductor substrate 11 by using the plasma CVD method. Then, using the photolithography technique based on the mark 19, a resist mask having openings corresponding to the second electrode 22 and the fourth electrode 24 is formed on the antireflection film 25. By performing wet etching or dry etching through this resist mask, openings corresponding to the second electrode 22 and the fourth electrode 24 are formed in the antireflection film 25.
  • the antireflection film 25 is a silicon compound film, for example, buffered hydrofluoric acid can be used as the etchant for wet etching. Further, as the etching gas for dry etching, for example, CF 4 gas can be used.
  • the second electrode 22 is formed on the back surface 11b of the portion of the semiconductor substrate 11 included in the phase synchronization unit 17, and the intensity modulation is performed.
  • the fourth electrode 24 is formed on the back surface 11b of the portion of the semiconductor substrate 11 included in the portion 18. Specifically, first, a resist mask having openings corresponding to the second electrode 22 and the fourth electrode 24 is formed on the antireflection film 25 by using a photolithography technique based on the mark 19. Then, after the materials of the second electrode 22 and the fourth electrode 24 are deposited by the vacuum vapor deposition method, the deposited portions other than the second electrode 22 and the fourth electrode 24 are removed together with the resist mask by the lift-off method. Finally, by annealing, the first electrode 21, the second electrode 22, the third electrode 23, and the fourth electrode 24 are alloyed. Through the above steps, the light source module 1A of the present embodiment is manufactured.
  • FIGS. 13 (a) and 13 (b) show FIGS. 13 (a) and 13 (b). That is, the first electrode 21 and the third electrode 23 of the light source module 1A and the wiring pattern provided on the control circuit board 30 corresponding to the first electrode 21 and the third electrode 23 are a conductive bonding material such as solder. They are joined together by 31.
  • FIG. 13 (a) shows FIG. 6 (a), FIG. 7 (a), FIG. 8 (a), FIG. 8 (a), FIG. 9 (a), FIG. 10 (a), and FIG. 11 (a). And is a schematic view corresponding to the II cross section shown in FIG. 12 (a), FIG. 13 (b) is FIG. 6 (a), FIG.
  • FIG. 7 (a), FIG. 8 (a), FIG. 8 It is a schematic diagram corresponding to the II-II cross section shown in a), FIG. 9 (a), FIG. 10 (a), FIG. 11 (a) and FIG. 12 (a). Then, the second electrode 22 and the fourth electrode 24 are connected to the control circuit board 30 by wire bonding.
  • the phase synchronization unit 17 and the intensity modulation unit 18 have a second position.
  • Carriers gather between the 1-clad layer 12 and the 2nd clad layer 15, and light is efficiently generated in the active layer 13.
  • the light output from the active layer 13 enters the photonic crystal layer 14 and resonates in the photonic crystal layer 14 in the X and Y directions perpendicular to the thickness direction. This light becomes a coherent laser beam in which the phases are aligned in the photonic crystal layer 14 of the phase synchronization unit 17.
  • the photonic crystal layer 14 of the intensity modulation unit 18 is aligned in the Y direction with respect to the photonic crystal layer 14 of the phase synchronization unit 17, the phase of the laser beam in the photonic crystal layer 14 of each subpixel Pb is , which coincides with the phase of the laser beam in the photonic crystal layer 14 of the phase synchronization unit 17. As a result, the phases of the laser beams in the photonic crystal layer 14 are aligned between the subpixels Pb. Since the photonic crystal layer 14 of the present embodiment causes ⁇ point oscillation, the direction in which the phase-aligned laser beam L intersects both the X direction and the Y direction from each subpixel Pb of the intensity modulation unit 18. It is output in the (typically Z direction).
  • a part of the laser beam L reaches the semiconductor substrate 11 directly from the photonic crystal layer 14. Further, the remaining portion of the laser beam L reaches the third electrode 23 from the photonic crystal layer 14, is reflected by the third electrode 23, and then reaches the semiconductor substrate 11.
  • the laser beam L passes through the semiconductor substrate 11 and exits from the back surface 11b of the semiconductor substrate 11 to the outside of the light source module 1A through the opening 24a of the fourth electrode 24.
  • the third electrode 23 is provided corresponding to each subpixel Pb. Therefore, the magnitude of the bias current supplied to the intensity modulation unit 18 can be individually adjusted for each subpixel Pb. That is, the light intensity of the laser beam L output from the intensity modulation unit 18 can be adjusted individually (independently) for each subpixel Pb. Further, in each pixel Pa, the length Da in the arrangement direction (X direction) of the region consisting of two consecutive N subpixels Pb is smaller than the emission wavelength ⁇ of the active layer 13, that is, the wavelength of the laser beam L.
  • FIGS. 44 (a) to 44 (h) are diagrams for explaining the technique described in Non-Patent Document 1.
  • a pixel 101 composed of four sub-pixels 102 arranged in one direction is shown, and the reflectance of each sub-pixel 102 is represented by the density of hatching. There is.
  • the coarser the hatching the higher the reflectance (that is, the higher the light intensity of the reflected light).
  • the four subpixels 102 can be collectively regarded as one pixel having a single phase equivalently.
  • the phase of the light output from the pixel 101 is determined by the intensity distribution of the four subpixels 102.
  • the four subpixels 102 correspond to the 0 °, 90 °, 180 °, and 270 ° phases from the left.
  • no reflected light is output from the two subpixels 102 corresponding to 180 ° and 270 °, respectively, and the two subpixels corresponding to 0 ° and 90 °, respectively.
  • the phase ⁇ of the light output from the pixel 101 can be set to an arbitrary value between 0 ° and 90 °. Can be controlled. Further, as shown in FIG. 44 (b), no reflected light is output from the two sub-pixels 102 corresponding to 90 ° and 180 °, respectively, and the two sub-pixels 102 corresponding to 0 ° and 270 °, respectively. By controlling the intensity ratio of the reflected light of, as shown in FIG. 44 (f), the phase ⁇ of the light output from the pixel 101 is arbitrary between 270 ° and 0 ° (360 °). Can be controlled by the value of. Further, as shown in FIG.
  • no reflected light is output from the two sub-pixels 102 corresponding to 0 ° and 90 °, respectively, and the two sub-pixels 102 corresponding to 180 ° and 270 °, respectively.
  • the phase ⁇ of the light output from the pixel 101 is controlled to an arbitrary value between 180 ° and 270 °. Can be done.
  • no reflected light is output from the two sub-pixels 102 corresponding to 0 ° and 270 °, respectively, and the two sub-pixels 102 corresponding to 90 ° and 180 °, respectively.
  • the phase ⁇ of the light output from the pixel 101 is controlled to an arbitrary value between 90 ° and 180 °. Can be done.
  • FIGS. 45 (a) and 45 (b) are diagrams for explaining the technique described in Non-Patent Document 2.
  • FIG. 45A shows a pixel 201 composed of three subpixels 202 arranged in one direction, and the reflectance of each subpixel 202 is represented by the density of hatching. In this case, the three subpixels 202 can be collectively regarded as one pixel having a single phase equivalently.
  • Non-Patent Document 2 states that when the phases of the reflected light from the three subpixels 202 are aligned with each other, the phase of the light output from the pixel 201 is determined by the intensity distribution of the three subpixels 202. ing.
  • the three subpixels 202 correspond to the 0 °, 120 °, and 240 ° phases from the left.
  • no reflected light is output from the subpixel 202 corresponding to 120 °, and the reflected light of the two subpixels 202 corresponding to 0 ° and 240 °, respectively.
  • the phase ⁇ of the light output from pixel 201 can be controlled to any value between 240 ° and 0 ° (360 °).
  • the intensity of one of the three subpixels 202 is always 0.
  • the light reflectance of the subpixels 102 and 202 is an uncontrollable fixed value. Therefore, the output phases of the pixels 101 and 201 cannot be dynamically controlled.
  • the light source module 1A of the present embodiment the intensity of the laser beam L output from the M ⁇ N 1 subpixels Pb included in each pixel Pa, be controlled independently for each sub-pixel Pb Can be done. Since the phases of the laser beam L are aligned with each other between the N 1 subpixel Pb, the phase of the laser beam L output from each pixel Pa is within the pixel Pa realized by the N 1 subpixel Pb. It is determined by the intensity distribution of.
  • the light source module 1A of the present embodiment it is possible to dynamically control the phase distribution of the laser beam L.
  • the phase distribution of light can be dynamically controlled in the range of 0 ° to 360 °.
  • the number of sub-pixels Pb that output light at the same time is limited to two. If the length of the region consisting of the two subpixels Pb in the array direction is smaller than the emission wavelength ⁇ of the active layer 13, the two subpixels Pb can be regarded as equivalently a pixel consisting of a single emission point. .. Therefore, if the range of the phase distribution that can be dynamically controlled is less than 360 °, the number of subpixels Pb that output light at the same time is N 2 consecutive (N 2 is an integer of 2 or more and N 1 or less).
  • the length Da in the array direction of the region consisting of two consecutive N 2 subpixels Pb may be set to be less than the emission wavelength ⁇ of the active layer 13.
  • the spatial phase of the laser beam L output from each pixel Pa along the X direction is in the range of 0 ° to 360 °. Can be dynamically controlled.
  • the light source module 1A of the present embodiment it is possible to dynamically control the phase distribution of the laser beam L.
  • the first electrode 21 contacts the contact layer 16 and covers the entire surface of the contact layer 16 of the phase synchronization unit 17, and the second electrode 22 contacts the semiconductor substrate 11 and the phase synchronization unit 17 The entire surface of the semiconductor substrate 11 may be covered.
  • the laser light output from the phase synchronization unit 17 along the stacking direction (Z direction) can be shielded by the first electrode 21 and the second electrode 22. Since the photonic crystal layer 14 of the phase synchronization unit 17 causes ⁇ point oscillation, such shielding by the first electrode 21 and the second electrode 22 is effective.
  • the fourth electrode 24 may come into contact with the semiconductor substrate 11 and have a frame shape surrounding the opening 24a for passing the laser beam L.
  • the laser beam L is output from the intensity modulation unit 18 through the opening 24a along the direction intersecting both the X direction and the Y direction. obtain.
  • the semiconductor laminated portion 10 may have a slit S.
  • the plurality of sub-pixels Pb and slits S may have a plurality of slits S that are alternately arranged one by one along the arrangement direction of the sub-pixels Pb.
  • the intensity modulation unit 18 can be divided into a plurality of subpixels Pb by a simple configuration.
  • the third electrode 23 corresponding to each subpixel Pb contacts the contact layer 16, and the frame-shaped fourth electrode 24 having the opening 24a contacts the back surface 11b of the semiconductor substrate 11. ing.
  • the third electrode corresponding to each subpixel Pb may be provided on the back surface 11b (or the first clad layer 12) of the semiconductor substrate 11, and the frame-shaped first electrode having an opening may be provided.
  • the four electrodes may be provided on the contact layer 16.
  • the third electrode provided corresponding to each subpixel Pb is one of a portion of the first conductive semiconductor layer and a portion of the second conductive semiconductor layer forming a part of the intensity modulation unit 18 (
  • the fourth electrode is electrically connected to the semiconductor layer), and the fourth electrode is the other portion (semiconductor layer) of the portion of the first conductive type semiconductor layer and the portion of the second conductive type semiconductor layer which form a part of the intensity modulation portion. Is electrically connected to.
  • FIG. 14 is a diagram schematically showing a cross section of a light source module as a first modification of the above embodiment, and shows a cross section corresponding to the IV-IV cross section shown in FIG.
  • the difference from the above embodiment in this light source module is the shape of the slit.
  • the slit S of the above embodiment is formed inside the semiconductor laminated portion 10 to divide the active layer 13 and the photonic crystal layer 14 (see FIG.
  • the slit SA of this modified example is a semiconductor laminated portion. It is formed from the surface to the inside of the part 10, and in addition to the active layer 13 and the photonic crystal layer 14, the second clad layer 15 and the contact layer 16 are divided. That is, each subpixel Pb of this modification is composed of an active layer 13, a photonic crystal layer 14, a second clad layer 15, and a contact layer 16.
  • the mode of the other slit SA is the same as that of the slit S of the above embodiment.
  • FIG. 15 (a) shows a plan view
  • FIG. 15 (b) shows a bottom view
  • FIG. 15 (c) shows a schematic cross-sectional view taken along the line I-I of FIG. 15 (a).
  • FIG. 15 (d) shows a schematic cross-sectional view taken along the line II-II of FIG. 15 (a).
  • 16 (a) shows a plan view
  • FIG. 16 (b) shows a bottom view
  • FIG. 16 (c) shows a schematic view of a cross section taken along the line II of FIG. 16 (a).
  • (D) shows a schematic view of the cross section along the line II-II of FIG. 16 (a).
  • 17 (a) shows a plan view
  • FIG. 17 (b) shows a bottom view
  • FIG. 17 (c) shows a schematic view of a cross section taken along the line II of FIG. 17 (a).
  • (D) shows a schematic view of the cross section along the line II-II of FIG. 17 (a).
  • 18 (a) shows a plan view
  • FIG. 18 (b) shows a bottom view
  • FIG. 18 (c) shows a schematic view of a cross section taken along the line II of FIG.
  • (D) shows a schematic view of the cross section along the line II-II of FIG. 18A.
  • 19 (a) shows a plan view
  • FIG. 19 (b) shows a bottom view
  • FIG. 19 (c) shows a schematic view of a cross section taken along the line II of FIG. 19 (a).
  • (D) shows a schematic view of the cross section along the line II-II of FIG. 19 (a).
  • 20 (a) shows a plan view
  • FIG. 20 (b) shows a bottom view
  • FIG. 20 (c) shows a schematic view of a cross section taken along the line II of FIG. 20 (a).
  • (D) shows a schematic view of the cross section along the line II-II of FIG. 20 (a).
  • FIG. 21 (a) shows a plan view
  • FIG. 21 (b) shows a bottom view
  • FIG. 21 (c) shows a schematic view of a cross section taken along the line II of FIG. 21 (a).
  • (D) shows a schematic view of the cross section along the line II-II of FIG. 21 (a).
  • the first clad layer 12, the active layer 13, and the basic layer 14a are placed on the main surface 11a of the semiconductor substrate 11 by using the MOCVD method. Epitaxial growth is performed to form in this order. Then, the positioning mark 19 is formed on the surface of the basic layer 14a. Next, a plurality of different refractive index regions 14b are formed in the region serving as the phase synchronization unit 17 and the region serving as the intensity modulation section 18 in the basic layer 14a.
  • the method for forming the different refractive index region 14b is the same as that of the above embodiment. In this way, the photonic crystal layer 14 having the basic layer 14a and the plurality of different refractive index regions 14b is formed.
  • FIGS. 16A to 16D epitaxial growth is performed in which the second clad layer 15 and the contact layer 16 are formed on the photonic crystal layer 14 in this order by using the MOCVD method. Will be done.
  • FIGS. 17A to 17D a plurality of regions in the active layer 13, the photonic crystal layer 14, the second clad layer 15 and the contact layer 16 serving as the intensity modulation section 18 are formed.
  • Slit SA is formed. Specifically, first, a SiN film is formed on the contact layer 16, and a resist mask is formed on the SiN film by using an electron beam lithography technique based on the mark 19.
  • This resist mask has an opening corresponding to the position and shape of the slit S on the region of the contact layer 16 that becomes the intensity modulation section 18.
  • dry etching for example, reactive ion etching
  • etching mask made of SiN.
  • dry etching for example, inductively coupled plasma etching
  • the recess is formed to a depth that penetrates the contact layer 16, the second clad layer 15, the photonic crystal layer 14, and the active layer 13 and reaches the first clad layer 12.
  • the slit SA may be formed by embedding the slit SA in the recess with a high resistor having a refractive index higher than that of the basic layer 14a.
  • an ion implantation for example, oxidation ion implantation
  • an etching mask to form a region having a high refractive index and high resistance.
  • the first electrode 21 is formed on the contact layer 16 included in the phase synchronization unit 17, and is included in the intensity modulation unit 18.
  • a plurality of third electrodes 23 are formed on the contact layer 16.
  • the semiconductor substrate 11 is thinned by polishing the back surface 11b of the semiconductor substrate 11.
  • the antireflection film 25 is formed on the entire surface of the back surface 11b of the semiconductor substrate 11 by using the plasma CVD method.
  • An opening corresponding to the second electrode 22 and the fourth electrode 24 is formed in the antireflection film 25 by using a photolithography technique based on the mark 19. As shown in FIGS.
  • the second electrode 22 is formed on the back surface 11b of the semiconductor substrate 11 included in the phase synchronization unit 17, and is included in the intensity modulation unit 18.
  • the fourth electrode 24 is formed on the back surface 11b of the semiconductor substrate 11.
  • the slit SA may be formed so as to divide the photonic crystal layer 14 and the active layer 13 from the surface of the semiconductor laminated portion 10. Even in this case, the same effects as those in the above embodiment can be obtained. Further, since the slit SA also electrically and optically divides the second clad layer 15 and the contact layer 16, the electrical and optical crosstalk between the subpixels Pb adjacent to each other is further reduced.
  • FIG. 23 is a plan view showing the light source module 1B according to the second modification of the above embodiment.
  • FIG. 24 is a bottom view showing the light source module 1B. Since the cross-sectional structure of the light source module 1B is the same as that of the above embodiment, the illustration is omitted.
  • the photonic crystal layer 14 includes a phase shift portion 14c provided in a one-to-one correspondence with N 1 subpixel Pb, and the phase shift portion 14c is output from each pixel Pa.
  • the phases of the laser beam L along the Y direction are made to be different from each other between N 1 subpixel Pb.
  • the three subpixels Pb included in each pixel Pa have a photonic crystal layer 14 including a plurality of different refractive index regions 14b.
  • the plurality of different refractive index regions 14b included in the photonic crystal layer 14 of each subpixel Pb are arranged along the Y direction. It is located on the phase synchronization unit 17 side (or in the phase synchronization unit 17) with respect to a certain different refractive index region 14b included in the photonic crystal layer 14 of one subpixel Pb and the different refractive index region 14b.
  • the center spacing (lattice point spacing) defined along the Y direction with another different refractive index region 14b is W1.
  • the center spacing W2 and W3 are set in the same manner for the other two subpixels Pb. In this case, the phase shift portion 14c is realized by making the center intervals W1 to W3 different from each other.
  • the phase difference of the laser beam L to each other output from each sub-pixel Pb is set to be an integral multiple of 2 ⁇ / N 1.
  • N 1 3
  • the center spacing W1 to W3 is set so that the phase difference between the laser beams L output from each subpixel Pb is an integral multiple of 2 ⁇ / 3.
  • one of the center spacings W1 to W3 is set to 2/3 times (or 5/3 times) the grid spacing a, the other is set to 4/3 times the grid spacing a, and the rest.
  • One of is set to be equal to the grid spacing a.
  • the difference between the center spacing W1 and the center spacing W2 and the difference between the center spacing W2 and the center spacing W3 are set to 1/3 times the grid spacing a.
  • the lattice spacing a is equal to ⁇ / n ( ⁇ : emission wavelength, n: effective refractive index of the photonic crystal layer 14).
  • the arrangement order of the three subpixels Pb is determined independently of the center spacing.
  • FIG. 25 is a plan view showing the sizes and positional relationships of the different refractive index region 14b, the first electrode 21, the third electrode 23, and the slit S at the same magnification as an embodiment of the present modification. Is.
  • the different refractive index regions 14b of 13 rows and 6 columns (78 in total) overlap with the first electrode 21 to form the photonic crystal layer 14 of the phase synchronization unit 17.
  • the different refractive index regions 14b of 11 cases in 2 rows (22 in total) overlap with the third electrode 23 to form the photonic crystal layer 14 of the subpixel Pb.
  • a portion (phase shift portion 14c) in which the distance between the different refractive index regions 14b adjacent to each other along the Y direction is different for each subpixel Pb is provided for each subpixel Pb.
  • the center spacing W1 is set to 2/3 times the grid spacing a
  • the center spacing W2 is set to 4/3 times the grid spacing a
  • the center spacing W3 is set to be equal to the grid spacing a.
  • the planar shape of the different refractive index region 14b is circular, the diameter thereof is, for example, 71.9 nm, and the center spacing (that is, the lattice spacing a) is, for example, 285 nm.
  • the ratio (filling factor) occupied by the different refractive index region 14b in the area of the unit constituent region R is, for example, 20%.
  • the width defined along the X direction of the slit S is, for example, 65 nm (0.228a).
  • the concave portion of the different refractive index region 14b stays in the basic layer 14a and the concave portion of the slit S is the first clad layer. It is determined based on the conditions that reach 12.
  • the width of the third electrode 23 defined along the X direction is, for example, 300 nm.
  • the phase shift unit for the photonic crystal layer 14 of each subpixel Pb to make the phase of the laser beam L output from each pixel Pa different from each other between the N 1 subpixel Pb. 14c may be included.
  • the phase of the laser beam L output from each pixel Pa in the Y direction is different for each subpixel Pb.
  • the phase of the laser beam L output from each pixel Pa in the Y direction is determined by the intensity distribution and the phase distribution of N 1 subpixel Pb constituting the pixel Pa.
  • the phase of the laser beam L in the Y direction can be dynamically modulated, but the light wave traveling in the Y direction is diffracted in the Z direction due to the diffraction effect of the different refractive index region 14b in the intensity modulation unit 18. Therefore, as a result, the phase in the Z direction can also be dynamically modulated. That is, the phase distribution of the light along the output direction can be dynamically modulated, and the degree of freedom in controlling the phase distribution of the laser beam L is further increased. That is, as shown in FIG. 26A, the above embodiment controls the spatial phase of the light emitting point La in the primary direction (X direction) on the surface, but this modification is shown in FIG. 26.
  • FIG. 27 is a plan view showing the light source module 1C according to the third modification of the above embodiment.
  • FIG. 28 is a bottom view showing the light source module 1C.
  • FIG. 29 is a diagram schematically showing a cross section along the XXIX-XXIX line shown in FIG. 27.
  • FIG. 30 is a diagram schematically showing a cross section along the line XXX-XXX shown in FIG. 27.
  • the light source module 1C of this modification includes a resonance mode forming layer 14A instead of the photonic crystal layer 14 of the above embodiment.
  • the arrangement of the resonance mode forming layer 14A is the same as that of the photonic crystal layer 14 of the above embodiment.
  • Other configurations of the light source module 1C except for the resonance mode forming layer 14A are the same as those of the light source module 1A of the above embodiment.
  • the form and method of forming the different refractive index region 14b are the same as those in the above embodiment.
  • the resonance mode forming layer 14A has a two-dimensional diffraction grating.
  • the resonance mode forming layer 14A has a basic layer 14a and a plurality of different refractive index regions 14b provided inside the basic layer 14a.
  • the refractive index of the different refractive index region 14b is different from the refractive index of the basic layer 14a.
  • the different refractive index region 14b is arranged in the basic layer 14a at regular intervals in a direction inclined by 45 ° with respect to the X direction and a direction inclined by 45 ° from the Y direction.
  • the configuration of each different refractive index region 14b is the same as that of the above embodiment.
  • the resonance mode forming layer 14A of the phase synchronization unit 17 has a photonic crystal structure in which a plurality of different refractive index regions 14b are periodically arranged.
  • the different refractive index region 14b has an arrangement and an interval that satisfy the condition of M-point oscillation with respect to the emission wavelength of the active layer 13.
  • FIG. 31A is a diagram for explaining M-point oscillation in real space.
  • FIG. 31B is a diagram for explaining M-point oscillation in the reciprocal lattice space.
  • the circles shown in FIGS. 31 (a) and 31 (b) represent the different refractive index region 14b.
  • FIG. 31A shows a case where the different refractive index region 14b is located at the center of the opening of the grid frame of the square lattice in the real space in which the XYZ three-dimensional Cartesian coordinate system is set.
  • the grid spacing of the square lattice is a
  • the center of gravity spacing of the different refractive index regions 14b adjacent to the X-axis direction and the Y-axis direction is 20.5 ⁇ a
  • FIG. 31 (b) shows the reciprocal lattice of the lattice of FIG. 31 (a), and the interval between adjacent different refractive index regions 14b along the ⁇ -M direction is (2 0.5 ⁇ ) / a. It corresponds to 2 ne ⁇ / ⁇ (n e is the effective refractive index of the photonic crystal layer 14).
  • the white arrows in FIGS. 31 (a) and 31 (b) indicate the traveling direction of the light wave.
  • the different refractive index region 14b is located at the center of the opening of the grid frame of the square lattice, but the different refractive index region 14b is the lattice frame of another lattice (for example, a triangular lattice). It may be located in the center of the opening.
  • the intensity modulation unit 18 of the present embodiment has a configuration as a so-called S-iPM (Static-integrable Phase Modulating) laser.
  • Each pixel Pa outputs the laser beam L in a direction perpendicular to the main surface 11a of the semiconductor substrate 11 (that is, a Z direction), a direction inclined with respect to the main surface 11a, or a direction including both of them.
  • S-iPM Static-integrable Phase Modulating
  • FIG. 32 is a plan view of the resonance mode forming layer 14A of the intensity modulation unit 18.
  • the resonance mode forming layer 14A includes a basic layer 14a and a plurality of different refractive index regions 14b having different refractive indexes from the basic layer 14a.
  • a virtual square lattice on the X'-Y'plane is set for the resonance mode forming layer 14A.
  • the X'axis is rotated 45 ° around the Z axis with respect to the X'axis
  • the Y'axis is rotated 45 ° around the Z axis with respect to the Y'axis.
  • a square unit constituent area R (0, 0) to R (intersection of lines x0 to x3 parallel to the Y'axis and lines y0 to y2 parallel to the X'axis) of the square grid. 3, 2) are arranged in a two-dimensional manner over a plurality of columns along the X'axis and a plurality of rows along the Y'axis. That is, the X'-Y'coordinates of each unit constituent area R are defined by the position of the center of gravity of each unit constituent region R. The positions of these centers of gravity coincide with the grid points O of the virtual square grid.
  • the different refractive index region 14b is provided, for example, one in each unit constituent region R.
  • the lattice point O may be located outside the different refractive index region 14b, or may be included inside the different refractive index region 14b.
  • FIG. 33 is an enlarged view of the unit constituent area R (x, y). As shown in FIG. 33, each of the different refractive index regions 14b has a center of gravity G.
  • the position in the unit constituent area R (x, y) is defined by the coordinates defined by the s axis (the axis parallel to the X'axis) and the t axis (the axis parallel to the Y'axis).
  • ⁇ (x, y) be the angle formed by the vector from the grid point O toward the center of gravity G and the s axis (the axis parallel to the X'axis).
  • x indicates the position of the xth grid point on the X'axis
  • y indicates the position of the yth grid point on the Y'axis.
  • the angle ⁇ is 0 °
  • the direction of the vector connecting the grid point O and the center of gravity G coincides with the positive direction of the X'axis.
  • r (x, y) be the length of the vector connecting the grid point O and the center of gravity G.
  • r (x, y) is constant throughout the resonance mode cambium 14A, regardless of x, y.
  • the direction of the vector connecting the grid point O and the center of gravity G that is, the angle ⁇ around the grid point O of the center of gravity G in the different refractive index region 14b depends on the desired shape of the output light. It is set individually for each grid point O according to the phase distribution ⁇ (x, y). In the present disclosure, such an arrangement form of the center of gravity G is referred to as a first form.
  • the phase distribution ⁇ (x, y) has a specific value for each position determined by the value of x, y, but is not always represented by a specific function.
  • the angular distribution ⁇ (x, y) is determined from the extracted phase distribution ⁇ (x, y) from the complex amplitude distribution obtained by Fourier transforming the desired shape of the output light.
  • an iterative algorithm such as the Gerchberg-Saxton (GS) method, which is generally used in the calculation of hologram generation. In this case, it is possible to improve the reproducibility of the beam pattern.
  • the angular distribution ⁇ (x, y) of the different refractive index region 14b in the resonance mode cambium 14A is determined by, for example, the following procedure.
  • a virtual square lattice composed of M1 ⁇ N1 (M1, N1 are integers of 1 or more) unit constituent regions R having a square shape is X'-. Set on the Y'plane.
  • the coordinates ( ⁇ , ⁇ , ⁇ ) in the X'Y'Z Cartesian coordinate system are, as shown in FIG. 34, the length r of the moving diameter and the inclination angle ⁇ from the Z axis.
  • the following equation (1) is used for the spherical coordinates (r, ⁇ rot , ⁇ tilt ) defined by the tilt, the rotation angle ⁇ rot from the X'axis specified on the X'- Y'plane, and the spherical coordinates (r, ⁇ rot, ⁇ tilt). It is assumed that the relationship shown by the formula (3) is satisfied.
  • ⁇ , ⁇ represents a design optical image on a predetermined plane set in the real space X'Y'Z Cartesian coordinate system.
  • the laser light L emitted from the light source module 1C when a set of bright points towards the direction defined by the angle theta tilt and theta rot, the angle theta tilt and theta rot is defined by the following formula (4)
  • the coordinate value kx on the K X axis which is the standardized wave number corresponding to the X'axis
  • the standardized wave number which is defined by the following equation (5), corresponds to the Y'axis and is on the K X axis. shall be converted into coordinate values ky on K Y axis orthogonal.
  • the normalized wave number means a wave number standardized with a wave number of 2 ⁇ / a corresponding to the lattice spacing of a virtual square lattice as 1.0.
  • the specific wave number range including the beam pattern corresponding to the laser beam L is each square M2 ⁇ N2 (M2 and N2 are 1 or more). It consists of an image area (an integer of).
  • the integer M2 does not have to match the integer M1.
  • the integer N2 does not have to match the integer N1.
  • Formulas (4) and (5) are disclosed in, for example, Non-Patent Document 3 above. a: Lattice constant of virtual square lattice ⁇ : Oscillation wavelength of light source module 1C
  • the as 3 preconditions, in Fourier space, out with K X-axis direction of the coordinate component kx (0 or M2-1 an integer) and K Y axis direction of the coordinate components ky (0 or more N2-1 an integer)
  • K X-axis direction of the coordinate component kx (0 or M2-1 an integer
  • K Y axis direction of the coordinate components ky (0 or more N2-1 an integer
  • the coordinate component x in the X'axis direction integer of 0 or more and M1-1 or less
  • the coordinate component y in the Y'axis direction integer of 0 or more and N1-1 or less.
  • the complex amplitude distribution F (x, y) obtained by performing a two-dimensional inverse discrete Fourier transform on the unit constituent region R (x, y) on the X'-Y'plane specified by) has j as an imaginary unit.
  • the complex amplitude distribution F (x, y) is defined by the following equation (7) when the amplitude distribution is A (x, y) and the phase distribution is ⁇ (x, y).
  • the unit constituent region R (x, y) is parallel to the X'axis and the Y'axis, respectively, and is the center of the unit constituent region R (x, y). Defined on the s and t axes that are orthogonal in y).
  • the resonance mode forming layer 14A of the intensity modulation unit 18 is configured to satisfy the following fifth or sixth condition. That is, the fifth condition is satisfied by arranging the center of gravity G away from the grid points O (x, y) in the unit constituent region R (x, y).
  • the sixth condition is that the line segment length r 2 (x, y) from the grid point O (x, y) to the corresponding center of gravity G is set to a common value in each of the unit constituent regions R of M1 ⁇ N1.
  • Proportional constant for example 180 ° / ⁇
  • B An arbitrary constant, for example 0
  • the corresponding different refractive index region 14b is arranged in the unit constituent region R (x, y) so as to satisfy the above relationship.
  • FIG. 35 is a plan view showing a reciprocal lattice space regarding a phase modulation layer of a light emitting device that oscillates at point M.
  • Point P in FIG. 35 represents a reciprocal lattice point.
  • arrows K1, K2, K3, and K4 represent four in-plane wave vectors.
  • the in-plane wave vector K1 to K4 each have a wave number spreading SP due to the angular distribution ⁇ (x, y).
  • the magnitude of the in-plane wave vector K1 to K4 (that is, the magnitude of the standing wave in the in-plane direction) is smaller than the magnitude of the basic reciprocal lattice vector B1. Therefore, the vector sum of the in-plane wavenumber vectors K1 to K4 and the basic reciprocal lattice vector B1 cannot be 0, and the wavenumber in the in-plane direction cannot be 0 due to diffraction. No diffraction occurs. If nothing is done, not only the 0th-order light in the direction perpendicular to the plane (Z-axis direction) but also the +1st-order light and the 1st-order light in the direction inclined with respect to the Z-axis direction are not output in each pixel Pa of M point oscillation. ..
  • the resonance mode forming layer 14A of the intensity modulation unit 18 by applying the following device to the resonance mode forming layer 14A of the intensity modulation unit 18, + 1st order light and a part of the primary light are output from each pixel Pa. That is, as shown in FIG. 36, by adding the diffraction vector V1 having a certain magnitude and direction to the in-plane wave vector K1 to K4, at least one of the in-plane wave vectors K1 to K4 is added.
  • the magnitude of (in-plane wave vector K3 in FIG. 36) is smaller than 2 ⁇ / ⁇ ( ⁇ : wavelength of light output from the active layer 13).
  • at least one of the in-plane wave vectors K1 to K4 after the diffraction vector V1 is added fits within the light line LL, which is a circular region having a radius of 2 ⁇ / ⁇ .
  • In-plane wave vectors K1 to K4 shown by broken lines in FIG. 36 represent before addition of the diffraction vector V1
  • in-plane wave vectors K1 to K4 shown by solid lines represent after addition of the diffraction vector V1.
  • the light line LL corresponds to the total reflection condition
  • the wave vector having a size within the light line LL has a component in the plane vertical direction (Z-axis direction).
  • the direction of the diffraction vector V1 is along the ⁇ -M1 axis or the ⁇ -M2 axis.
  • the magnitude of the diffraction vector V1 is in the range of 2 ⁇ / (2 0.5 ) a-2 ⁇ / ⁇ to 2 ⁇ / (2 0.5 ) a + 2 ⁇ / ⁇ , and in one example, it is 2 ⁇ / (2 0.5 ) a.
  • the size and orientation of the diffraction vector V1 for accommodating at least one of the in-plane wavenumber vectors K1 to K4 within the light line LL will be examined.
  • the following equations (8) to (11) show in-plane wave vector K1 to K4 before the diffraction vector V1 is added.
  • the wave vector spreads ⁇ kx and ⁇ ky satisfy the following equations (12) and (13), respectively.
  • Maximum Derutaky max 'of the maximum value Derutakx max and Y axial extent' axial extension X of the plane wave vector is defined by the angular spread of the light image of the design.
  • FIG. 37 is a diagram for schematically explaining the peripheral structure of the light line LL.
  • FIG. 37 shows the boundary between the device located in the Z direction and the air.
  • the magnitude of the wave vector of light in a vacuum is 2 ⁇ / ⁇ , but when light propagates in the device medium as shown in FIG. 37, the magnitude of the wave vector Ka in the medium having a refractive index n is 2 ⁇ n / ⁇ . It becomes.
  • the wavenumber component parallel to the boundary must be continuous (wavenumber conservation law).
  • the length of the wave vector (that is, the in-plane wave vector) Kb projected on the surface is (2 ⁇ n / ⁇ ) sin ⁇ .
  • the refractive index n of the medium is generally larger than 1
  • the wave number conservation law does not hold at an angle where the in-plane wave vector Kb in the medium is larger than 2 ⁇ / ⁇ .
  • the magnitude of the wave vector corresponding to this total reflection condition is the magnitude of the light line LL, that is, 2 ⁇ / ⁇ .
  • phase distribution ⁇ 1 (x, y) according to the desired output light shape is irrelevant to the desired output light shape.
  • a method of superimposing the phase distribution ⁇ 2 (x, y) can be considered.
  • ⁇ 1 (x, y) corresponds to the phase of the complex amplitude when the desired shape of the output light is Fourier transformed as described above.
  • ⁇ 2 (x, y) is a phase distribution for adding a diffraction vector V1 satisfying the above equation (19).
  • the phase distribution ⁇ 2 (x, y) of the diffraction vector V1 is represented by the inner product of the diffraction vector V1 (Vx, Vy) and the position vector r (x, y), and is given by the following equation.
  • Figure 38 is a diagram schematically illustrating an example of a phase distribution ⁇ 2 (x, y).
  • the first phase value ⁇ A and the second phase value ⁇ B having a value different from the first phase value ⁇ A are arranged in a checkered pattern.
  • the phase value ⁇ A is 0 (rad) and the phase value ⁇ B is ⁇ (rad).
  • the first phase value ⁇ A and the second phase value ⁇ B change by ⁇ .
  • the diffraction vector V1 along the ⁇ -M1 axis or the ⁇ -M2 axis can be preferably realized.
  • V1 ( ⁇ ⁇ / a, ⁇ ⁇ / a), and the diffraction vector V1 and any one of the in-plane wave vector K1 to K4 in FIG. 36 are exactly offset. Therefore, the axes of symmetry of the +1st order light and the -1st order light coincide with the Z direction, that is, the direction perpendicular to the direction defined on the plane of the resonance mode forming layer 14A. Further, the direction of the diffraction vector V1 can be adjusted to an arbitrary direction by changing the arrangement direction of the phase values ⁇ A and ⁇ B from 45 °.
  • the diffraction vector V1 is shifted from ( ⁇ ⁇ / a, ⁇ ⁇ / a) if at least one of the in-plane wave vector K1 to K4 is within the range within the light line LL. You may.
  • the wavenumber spread based on the angular spread of the output light is included in a circle having a radius ⁇ k centered on a certain point in the wavenumber space, it can be simply considered as follows.
  • the magnitude of at least one of the in-plane wave vectors K1 to K4 in the four directions becomes smaller than 2 ⁇ / ⁇ (light line LL).
  • at least one of the four-direction in-plane wave vector K1 to K4 is larger by adding the diffraction vector V1 to the vector obtained by removing the wave number expansion ⁇ k from the four-direction in-plane wave vector K1 to K4. It can be considered that is smaller than the value ⁇ (2 ⁇ / ⁇ ) ⁇ k ⁇ obtained by subtracting the wavenumber spread ⁇ k from 2 ⁇ / ⁇ .
  • FIG. 39 is a diagram conceptually showing the above concept.
  • the diffraction vector V1 is added to the in-plane wave vectors K1 to K4 from which the wave number spread ⁇ k is removed, the magnitude of at least one of the in-plane wave vectors K1 to K4 becomes ⁇ (. It is smaller than 2 ⁇ / ⁇ ) - ⁇ k ⁇ .
  • the region LL2 is a circular region having a radius of ⁇ (2 ⁇ / ⁇ ) ⁇ k ⁇ .
  • the in-plane wave vectors K1 to K4 shown by the broken line represent before the addition of the diffraction vector V1
  • the in-plane wave vectors K1 to K4 shown by the solid line represent after the addition of the diffraction vector V1.
  • the region LL2 corresponds to the total reflection condition in consideration of the wave number expansion ⁇ k, and the wave vector having a size within the region LL2 also propagates in the plane vertical direction (Z-axis direction).
  • the magnitude and orientation of the diffraction vector V1 for accommodating at least one of the in-plane wave vector K1 to K4 in the region LL2 will be described.
  • the following equations (20) to (23) show in-plane wave vector K1 to K4 before the diffraction vector V1 is added.
  • FIG. 40 is a plan view showing the resonance mode forming layer 14B as another form of the resonance mode forming layer of the intensity modulation unit 18.
  • FIG. 41 is a diagram showing the arrangement of the different refractive index region 14b in the resonance mode forming layer 14B of the intensity modulation unit 18. As shown in FIGS. 40 and 41, the center of gravity G of each different refractive index region 14b of the resonance mode forming layer 14B may be arranged on a straight line D.
  • the grid points O of the square grid are defined by the intersections of lines x0 to x3 parallel to the Y'axis and y0 to y2 parallel to the X'axis, and are centered on each grid point O as in the example of FIG.
  • the square region (square lattice) is set in the unit constituent regions R (0,0) to R (3,2).
  • the straight line D is a straight line that passes through the grid points O corresponding to the unit constituent region R (x, y) and is inclined with respect to each side of the square grid. That is, the straight line D is a straight line that is inclined with respect to both the X'axis and the Y'axis.
  • the inclination angle of the straight line D with respect to one side (X'axis) of the square lattice is ⁇ .
  • the inclination angle ⁇ is constant in the resonance mode forming layer 14B of the intensity modulation unit 18.
  • the inclination angle ⁇ is an angle excluding 0 °, 90 °, 180 ° and 270 °.
  • the distance between the grid point O and the center of gravity G is r (x). , Y).
  • x is the position of the xth grid point on the X'axis
  • y is the position of the yth grid point on the Y'axis.
  • the grid point O and the center of gravity G coincide with each other.
  • the inclination angles are preferably 45 °, 135 °, 225 ° and 275 °. At these tilt angles, only two of the four wave vectors (eg, in-plane wave vectors ( ⁇ ⁇ / a, ⁇ ⁇ / a)) that form the standing wave at point M are phase-modulated, and the others. Since the two are not phase-modulated, a stable standing wave can be formed.
  • the distance r (x, y) between the center of gravity G of each different refractive index region and the lattice point O corresponding to each unit constituent region R differs according to the phase distribution ⁇ (x, y) according to the desired output light shape. It is set individually for each refractive index region 14b. In the present disclosure, such an arrangement form of the center of gravity G is referred to as a second form.
  • the phase distribution ⁇ (x, y) and the distance distribution r (x, y) have specific values for each position determined by the values of x, y, but are not always represented by specific functions.
  • the distribution of the distance r (x, y) is determined from the extracted phase distribution ⁇ (x, y) from the complex amplitude distribution obtained by inverse Fourier transforming the desired output light shape.
  • the initial phase P 0 can be set arbitrarily.
  • the maximum value R 0 of r (x, y) is, for example, within the range of the following equation (29).
  • a desired light output shape can be obtained by determining the distribution of the distance r (x, y) in the different refractive index region 14b of the resonance mode forming layer 14B.
  • the resonance mode forming layer 14B is configured to satisfy the following conditions.
  • r (x, y) C ⁇ ( ⁇ (x, y) -P 0 )
  • Proportional constant for example R 0 / ⁇ P 0 : An arbitrary constant, for example, 0
  • the corresponding different refractive index regions 14b are arranged in the unit constituent region R (x, y) so as to satisfy the above relationship.
  • the light output shape is inverse-Fourier-transformed, and the distribution of the distance r (x, y) corresponding to the phase ⁇ (x, y) of the complex amplitude is distributed with a plurality of different refractive indexes. It is preferable to give it to the region 14b.
  • the phase ⁇ (x, y) and the distance r (x, y) may be proportional to each other.
  • the lattice spacing a of the virtual square lattice and the emission wavelength ⁇ of the active layer 13 satisfy the condition of M point oscillation.
  • the magnitude of at least one of the in-plane wave vectors K1 to K4 in the four directions including the wave number spread due to the distribution of the distance r (x, y) is 2 ⁇ . / ⁇ , that is, smaller than the light line LL.
  • the +1st order light and a part of the primary light are output.
  • the light line LL which is a circular region having a radius of 2 ⁇ / ⁇ .
  • the magnitude of at least one of the wave vector K1 to K4 in the four directions is smaller than the value ⁇ (2 ⁇ / ⁇ ) ⁇ k ⁇ obtained by subtracting the wavenumber expansion ⁇ k from 2 ⁇ / ⁇ . You may become. That is, by adding the diffraction vector V1 satisfying the above equation (28), any one of the in-plane wave vector K1 to K4 is contained in the region LL2, and a part of the +1st order light and the first order light is output.
  • the light source module 1C When a bias current is supplied between the first electrode 21 and the second electrode 22 and between the third electrode 23 and the fourth electrode 24, the first in the phase synchronization unit 17 and the intensity modulation unit 18, respectively. Carriers gather between the clad layer 12 and the second clad layer 15, and light is efficiently generated in the active layer 13.
  • the light output from the active layer 13 enters the resonance mode forming layer 14A and resonates in the resonance mode forming layer 14A in the X direction and the Y direction perpendicular to the thickness direction. This light becomes a coherent laser light in which the phases are aligned in the resonance mode forming layer 14A of the phase synchronization unit 17.
  • the portion of the resonance mode forming layer 14A forming a part of the intensity modulation unit 18 is arranged along the Y direction with respect to the part of the resonance mode forming layer 14A forming a part of the phase synchronization unit 17. Therefore, the phase of the laser beam in the resonance mode forming layer 14A of each subpixel Pb coincides with the phase of the laser beam in the resonance mode forming layer 14A of the phase synchronization unit 17. As a result, the phases of the laser beams in the resonance mode forming layer 14A are aligned between the subpixels Pb.
  • the resonance mode forming layer 14A of this modification oscillates at the M point, but in the resonance mode forming layer 14A of the intensity modulation unit 18, the distribution form of the plurality of different refractive index regions 14b is in the X direction from the intensity modulation unit 18 and in the X direction.
  • the condition for outputting the laser beam L in the direction intersecting both of the Y directions is satisfied. Therefore, from each subpixel Pb of the intensity modulation unit 18, the phase-aligned laser beam L is output in a direction intersecting both the X direction and the Y direction (for example, a direction inclined with respect to the Z direction). ..
  • a part of the laser beam L reaches the semiconductor substrate 11 directly from the resonance mode forming layer 14A.
  • the remaining portion of the laser beam L reaches the third electrode 23 from the resonance mode forming layer 14A, is reflected by the third electrode 23, and then reaches the semiconductor substrate 11.
  • the laser beam L passes through the semiconductor substrate 11 and exits from the back surface 11b of the semiconductor substrate 11 to the outside of the light source module 1C through the opening 24a of the fourth electrode 24.
  • the third electrode 23 is provided corresponding to each subpixel Pb. Therefore, the magnitude of the bias current supplied to the intensity modulation unit 18 can be individually adjusted for each subpixel Pb. That is, the light intensity of the laser beam L output from the intensity modulation unit 18 can be adjusted individually (independently) for each subpixel Pb. Further, the length Da (see FIGS. 27 and 30) of the region consisting of two consecutive N subpixels Pb in each pixel Pa in the arrangement direction (X direction) is the emission wavelength ⁇ of the active layer 13, that is, the laser beam. It is smaller than the wavelength of L.
  • each Pixel Pa can be regarded as a pixel having a single phase equivalently.
  • the phases of the laser light L output from the N 1 subpixel Pb constituting each pixel Pa are aligned with each other, the phase of the laser light L output from each pixel Pa constitutes the pixel Pa. It is determined by the intensity distribution realized by N 1 subpixel Pb. Therefore, even in the light source module 1C of this modification, the phase distribution of the laser beam L can be dynamically controlled. The above effect can be obtained similarly even when the resonance mode forming layer 14B is provided instead of the resonance mode forming layer 14A.
  • the resonance mode forming layer 14A (or 14B) included in the phase synchronization unit 17 may have a photonic crystal structure in which a plurality of different refractive index regions 14b are periodically arranged.
  • the laser light having the same phase can be supplied from the phase synchronization unit 17 to each subpixel Pb.
  • the condition for the laser beam L to be output from the intensity modulation section 18 in the direction intersecting both the X direction and the Y direction is that the angle spread of the laser beam L output from the intensity modulation section 18.
  • In-plane wavenumber vectors K1 to K4 in four directions including wavenumber spread corresponding to each are formed on the reciprocal lattice space of the resonance mode forming layer 14A (or 14B), and the magnitude of at least one in-plane wavenumber vector is 2 ⁇ /. It may be smaller than ⁇ , that is, the light line LL.
  • the in-plane wave vector K1 to K4 can be adjusted as described above by devising the arrangement of each different refractive index region 14b.
  • the in-plane wave vector has a component in the thickness direction (Z direction) of the resonance mode forming layer 14A (or 14B) and is also included. No total internal reflection occurs at the interface with air. As a result, a part of the signal light can be output from each pixel Pa as the laser light L.
  • FIG. 42 is a plan view showing the light source module 1D according to the fourth modification of the above embodiment.
  • FIG. 43 is a bottom view showing the light source module 1D. Since the cross-sectional configuration of the light source module 1D is the same as that of the third modification described above, the illustration is omitted.
  • the difference between this modification and the third modification is the structure of the resonance mode forming layer 14A (or 14B) in the intensity modulation unit 18. That is, in this modification, as in the second modification described above, the phase for causing the phase of the laser beam L output from each pixel Pa along the Y direction to be different from each other among the N 1 subpixel Pb.
  • the shift portion 14c includes a resonance mode forming layer 14A (or 14B) of each subpixel Pb. The details of the phase shift unit 14c are the same as those of the second modification.
  • the phase shift unit 14c for making the phases of the laser beam L output from each pixel Pa along the Y direction different from each other among the N 1 subpixels Pb is provided in each subpixel Pb.
  • Resonance mode forming layer 14A (or 14B) may be included.
  • the phase of the laser beam L output from each pixel Pa is different for each subpixel Pb.
  • the phase of the laser beam L output from each pixel Pa is determined by the intensity distribution and the phase distribution of N 1 subpixel Pb constituting the pixel Pa. Therefore, the degree of freedom in controlling the phase distribution of the laser beam L can be further increased.
  • the light source module according to the present disclosure is not limited to the above-described embodiment, and various other modifications are possible.
  • a plurality of pixel Pas are arranged in a one-dimensional shape is shown, but a plurality of pixel Pas may be arranged in a two-dimensional shape.
  • a plurality of light source modules disclosed in the above embodiment or each modification may be combined.
  • the semiconductor laminated portion 10 mainly contains a GaAs-based semiconductor is shown, but the semiconductor laminated portion 10 may mainly contain an InP-based semiconductor or a GaN-based semiconductor. ..
  • 1A to 1D Light source module, 10 ... Semiconductor laminated part, 11 ... Semiconductor substrate (included in the first conductive type semiconductor layer), 11a ... Main surface, 11b ... Back surface, 12 ... First clad layer (first conductive type semiconductor) (Included in the layer), 13 ... active layer, 14 ... photonic crystal layer, 14A, 14B ... resonance mode forming layer, 14a ... basic layer, 14b ... different refractive index region, 14c ... phase shift portion, 15 ... second clad Layer (included in the second conductive semiconductor layer), 16 ... contact layer (included in the second conductive semiconductor layer), 17 ... phase synchronization part, 18 ... intensity modulation part, 19 ...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本開示の一実施形態は光の位相分布を動的に制御し得る光源モジュールに関する。当該光源モジュールは、半導体積層部を備える。半導体積層部は、活性層およびΓ点発振を生じさせるフォトニック結晶層で構成される積層体を含み、フォトニック結晶層の共振方向の一つであるY方向に沿って並ぶ位相同期部と強度変調部とを有する。強度変調部の一部を構成する積層体は、X方向に沿って並ぶM個(Mは2以上の整数)のピクセルを有する。M個のピクセルそれぞれは、N1個(N1は2以上の整数)のサブピクセルを含む。N1個のサブピクセルのうち連続するN2個(N2は2以上N1以下の整数)のサブピクセルからなる領域のX方向に沿って定義される長さは、活性層の発光波長よりも小さい。当該光源モジュールは、強度変調部に含まれるM個のピクセルそれぞれからX方向およびY方向の双方と交差する方向に沿ってレーザ光を出力する。

Description

光源モジュール
 本開示は、光源モジュールに関するものである。
  本願は、2020年1月20日に出願された日本特許出願第2020-006906号、2020年1月20日に出願された日本特許出願第2020-006907号、および2020年9月25日に出願された日本特許出願第2020-160719号による優先権を主張するものであり、その内容に依拠すると共に、その全体を参照して本明細書に組み込む。
 特許文献1には、端面発光型の半導体レーザ素子に関する技術が開示されている。この半導体レーザ素子は、基板上に形成された下部クラッド層と、上部クラッド層と、下部クラッド層と上部クラッド層との間に介在する活性層と、活性層と上部クラッド層との間および活性層と下部クラッド層との間の少なくともいずれかに介在するフォトニック結晶層と、活性層の第1領域に駆動電流を供給するための第1駆動電極と、を備える。第1駆動電極の長手方向は、半導体レーザ素子の厚み方向から見た場合、この半導体レーザ素子の光出力端面の法線に対して傾斜している。フォトニック結晶層の第1領域に対応する領域は、周囲と屈折率が異なる異屈折率部の配列周期が互いに異なる第1および第2の周期構造を有する。第1および第2の周期構造におけるそれぞれの配列周期の逆数の差分に応じて、第1駆動電極の長手方向に対して所定の角度を成す2つ以上のレーザビームが半導体レーザ素子内部で生成される。これらのレーザビームのうち、光出力端面に向かう1つのレーザビームの光出力端面に対する屈折角は90度未満である。光出力端面に向かう別の少なくとも1つのレーザビームは、光出力端面に対して全反射臨界角条件を満たす。
 非特許文献1には、コンピュータ生成ホログラム(Computer Generated Hologram:CGH)に関する技術が開示されている。印刷により作成された、それぞれ独立した反射率を有する4つのサブピクセルで一つのピクセルが構成され、複数のピクセルに照射されたレーザ光の反射光が合成される。この場合、各ピクセルからの発光方向を任意にシフトし得ることが非特許文献1には述べられている。非特許文献2には、非特許文献1に記載された技術において、各ピクセルが、それぞれ独立した反射率を有する3つのサブピクセルを含んでいれば、各ピクセルからの発光方向を任意にシフトし得ることが述べられている。
特開2013-120801号公報
Wai Hon Lee, "Sampled Fourier Transform Hologram Generated by Computer", Applied Optics, Vol. 9, No. 3, pp.639-643, March 1970 C. B. Burckhardt, "A Simplification of Lee's Method of Generating Holograms by Computer", Applied Optics, Vol. 9, No. 8, p.1949, August 1970 Y. Kurosaka et al.," Effects of non-lasing band in two-dimensional photonic-crystal lasers clarified using omnidirectional band structure," Opt. Express 20, 21773-21783 (2012)
 発明者らは、上述の従来技術について検討した結果、以下のような課題を発見した。すなわち、従来から、空間的な位相変調により、光の進行方向を変化させる、或いは任意の光像を生成するなどの技術が研究されている。或る技術では、半導体レーザ素子の活性層の近傍に、複数の異屈折率領域を含む位相変調層が設けられる。そして、位相変調層の厚み方向に垂直な面上に設定された仮想的な正方格子において、例えば、複数の異屈折率領域について、その重心が仮想的な正方格子の格子点から離れた位置に配置されるとともに対応する格子点と当該重心とを結ぶベクトルの、仮想的な正方格子に対する角度が個別に設定される。このような素子は、フォトニック結晶レーザ素子と同様にレーザ光を積層方向に沿って出力するとともにレーザ光の位相分布を空間的に制御し、レーザ光を任意の光像として出力できる。
 しかしながら、上述の素子では、位相変調層の複数の異屈折率領域の配置が固定されているので、予め設計された一の光像のみしか出力することができない。出力光像や光の進行方向を動的に変化させるためには、出力光の位相分布を動的に制御する必要がある。
 本開示は上述のような課題を解決するためになされたものであり、光の位相分布を動的に制御し得る光源モジュールを提供することを目的としている。
 本開示の一形態に係る光源モジュールは、半導体積層部と、第1電極と、第2電極と、第3電極と、第4電極とを備える。半導体積層部は、第1導電型半導体層と、第2導電型半導体層と、活性層およびフォトニック結晶層で構成された積層体と、を含む。活性層およびフォトニック結晶層で構成された積層体は、第1導電型半導体層と第2導電型半導体層との間に配置されている。フォトニック結晶層は、Γ点での発振を生じさせる。半導体積層部は、フォトニック結晶層の共振方向の一つである第1方向に沿って並ぶ位相同期部と強度変調部とを有する。強度変調部の少なくとも一部を構成する積層体の部分は、第1方向と交差する第2方向に沿って並ぶM個(Mは2以上の整数)のピクセルを有する。M個のピクセルそれぞれは、第2方向に沿って並ぶN1個(N1は2以上の整数)のサブピクセルを含む。N1個のサブピクセルのうち連続するN2個(N2は2以上N1以下の整数)のサブピクセルからなる領域の第2方向に沿って定義される長さは、活性層の発光波長λよりも小さい。第1電極は、位相同期部の少なくとも一部を構成する第1導電型半導体層の部分に電気的に接続されている。第2電極は、位相同期部の少なくとも一部を構成する第2導電型半導体層の部分に電気的に接続されている。第3電極は、N1個のサブピクセルに一対一に対応して設けられ、強度変調部の少なくとも一部を構成する第1導電型半導体層の部分および第2導電型半導体層の部分のうち一方に電気的に接続されている。第4電極は、強度変調部の少なくとも一部を構成する第1導電型半導体層の部分および第2導電型半導体層の部分のうち他方に電気的に接続されている。この光源モジュールは、強度変調部に含まれるM個のピクセルそれぞれから第1方向および第2方向の双方と交差する方向に沿って光を出力する。
 本開示の別の一形態に係る光源モジュールは、半導体積層部と、第1電極と、第2電極と、第3電極と、第4電極とを備える。半導体積層部は、第1導電型半導体層と、第2導電型半導体層と、活性層および共振モード形成層で構成された積層体を含む。活性層および共振モード形成層で構成された積層体は、第1導電型半導体層と第2導電型半導体層との間に配置されている。半導体積層部は、共振モード形成層の共振方向の一つである第1方向に沿って並ぶ位相同期部と強度変調部とを有する。強度変調部の少なくとも一部を構成する積層体の部分は、第1方向と交差する第2方向に沿って並ぶM個(Mは2以上の整数)のピクセルを有する。M個のピクセルそれぞれは、第2方向に沿って並ぶN1個(N1は2以上の整数)のサブピクセルを含む。N1個のサブピクセルのうち連続するN2個(N2は2以上N1以下の整数)のサブピクセルからなる領域の第2方向に沿って定義される長さは、活性層の発光波長λよりも小さい。第1電極は、位相同期部の少なくとも一部を構成する第1導電型半導体層の部分に電気的に接続されている。第2電極は、位相同期部の少なくとも一部を構成する第2導電型半導体層の部分に電気的に接続されている。第3電極は、N1個のサブピクセルに一対一に対応して設けられており、強度変調部の少なくとも一部を構成する第1導電型半導体層の部分および第2導電型半導体層の部分のうち一方に電気的に接続されている。第4電極は、強度変調部の少なくも一部を構成する第1導電型半導体層の部分および第2導電型半導体層の部分のうち他方に電気的に接続されている。共振モード形成層は、基本層と、基本層の屈折率と異なる屈折率を有するとともに共振モード形成層の厚み方向と垂直な面上において二次元状に分布する複数の異屈折率領域と、を含む。複数の異屈折率領域の配置はM点発振の条件を満たす。強度変調部に含まれる共振モード形成層の部分では、上記面上に設定される仮想的な正方格子において、複数の異屈折率領域それぞれが、その重心が第1の形態および第2の形態のうちいずれかの形態に配置されている。第1の形態では、複数の異屈折率領域の各重心が対応する格子点から離れて配置され、該対応する格子点と重心とを結ぶベクトルの、仮想的な正方格子に対する角度が個別に設定される。第2の形態では、複数の異屈折率領域の各重心が仮想的な正方格子の格子点を通りかつ正方格子に対して傾斜する直線上に配置され、複数の異屈折率領域の各重心と対応する格子点との距離が個別に設定される。第1の形態におけるベクトルの角度の分布、または第2の形態における距離の分布は、強度変調部から第1方向および第2方向の双方と交差する方向に光が出力されるための条件を満たす。
 本開示によれば、光の位相分布の動的制御が可能な光源モジュールを提供し得る。
図1は、本開示の一実施形態に係る光源モジュールの平面図である。 図2は、一実施形態に係る光源モジュールの底面図である。 図3は、図1に示されたIII-III線に沿った断面を模式的に示す図である。 図4は、図1に示されたIV-IV線に沿った断面を模式的に示す図である。 図5(a)および図5(b)は、それぞれ実空間および逆格子空間におけるΓ点発振を説明するための図である。 図6(a)~図6(d)は、一実施形態に係る光源モジュールを作製する工程を説明する図である。 図7(a)~図7(d)は、一実施形態に係る光源モジュールを作製する工程を説明する図である。 図8(a)~図8(d)は、一実施形態に係る光源モジュールを作製する工程を説明する図である。 図9(a)~図9(d)は、一実施形態に係る光源モジュールを作製する工程を説明する図である。 図10(a)~図10(d)は、一実施形態に係る光源モジュールを作製する工程を説明する図である。 図11(a)~図11(d)は、一実施形態に係る光源モジュールを作製する工程を説明する図である。 図12(a)~図12(d)は、一実施形態に係る光源モジュールを作製する工程を説明する図である。 図13(a)および図13(b)は、制御回路基板上に光源モジュールをフリップチップ実装する工程を示す図である。 図14は、第1変形例としての光源モジュールの断面を模式的に示す図である。 図15(a)~図15(d)は、第1変形例に係る光源モジュールを作製する工程を説明する図である。 図16(a)~図16(d)は、第1変形例に係る光源モジュールを作製する工程を説明する図である。 図17(a)~図17(d)は、第1変形例に係る光源モジュールを作製する工程を説明する図である。 図18(a)~図18(d)は、第1変形例に係る光源モジュールを作製する工程を説明する図である。 図19(a)~図19(d)は、第1変形例に係る光源モジュールを作製する工程を説明する図である。 図20(a)~図20(d)は、第1変形例に係る光源モジュールを作製する工程を説明する図である。 図21(a)~図21(d)は、第1変形例に係る光源モジュールを作製する工程を説明する図である。 図22(a)および図22(b)は、制御回路基板上に光源モジュールをフリップチップ実装する工程を示す図である。 図23は、第2変形例に係る光源モジュールを示す平面図である。 図24は、第2変形例に係る光源モジュールを示す底面図である。 図25は、第2変形例の一実施例として、異屈折率領域、第1電極、第3電極、およびスリットの大きさおよび位置関係を全て同一の拡大率にて表した平面図である。 図26(a)および図26(b)は、位相シフト部による効果を説明するための図である。 図27は、第3変形例に係る光源モジュールを示す平面図である。 図28は、第3変形例に係る光源モジュールを示す底面図である。 図29は、図27に示されたXXIX-XXIX線に沿った断面を模式的に示す図である。 図30は、図27に示されたXXX-XXX線に沿った断面を模式的に示す図である。 図31(a)および図31(b)は、それぞれ実空間および逆格子空間におけるM点発振を説明するための図である。 図32は、強度変調部の共振モード形成層の平面図である。 図33は、単位構成領域を拡大して示す図である。 図34は、球面座標(r,θrottilt)からX’Y’Z直交座標系における座標(ξ,η,ζ)への座標変換を説明するための図である。 図35は、M点発振を行う発光デバイスの位相変調層に関する逆格子空間を示す平面図である。 図36は、面内波数ベクトルに対して回折ベクトルを加えた状態を説明する概念図である。 図37は、ライトラインの周辺構造を模式的に説明するための図である。 図38は、位相分布φ(x,y)の一例を概念的に示す図である。 図39は、4方向の面内波数ベクトルから波数拡がりを除いたものに対して回折ベクトルを加えた状態を説明するための概念図である。 図40は、強度変調部の共振モード形成層の別の形態を示す平面図である。 図41は、共振モード形成層14Bにおける異屈折率領域14bの配置を示す図である。 図42は、第4変形例に係る光源モジュールを示す平面図である。 図43は、光源モジュールを示す底面図である。 図44(a)~図44(h)は、非特許文献1に記載された技術を説明するための図である。 図45(a)および図45(b)は、非特許文献2に記載された技術を説明するための図である。
 [本願発明の実施形態の説明]
  最初に本願発明の実施形態の内容をそれぞれ個別に列挙して説明する。
(1) 本開示の一形態に係る第1の光源モジュールは、その一態様として、半導体積層部と、第1電極と、第2電極と、第3電極と、第4電極とを備える。半導体積層部は、第1導電型半導体層と、第2導電型半導体層と、活性層およびフォトニック結晶層で構成された積層体と、を含む。活性層およびフォトニック結晶層で構成された積層体は、第1導電型半導体層と第2導電型半導体層との間に配置されている。フォトニック結晶層は、Γ点での発振を生じさせる。半導体積層部は、フォトニック結晶層の共振方向の一つである第1方向に沿って並ぶ位相同期部と強度変調部とを有する。強度変調部の少なくとも一部を構成する積層体の部分は、第1方向と交差する第2方向に沿って並ぶM個(Mは2以上の整数)のピクセルを有する。M個のピクセルそれぞれは、第2方向に沿って並ぶN1個(N1は2以上の整数)のサブピクセルを含む。N1個のサブピクセルのうち連続するN2個(N2は2以上N1以下の整数)のサブピクセルからなる領域の第2方向に沿って定義される長さは、活性層の発光波長λよりも小さい。第1電極は、位相同期部の少なくとも一部を構成する第1導電型半導体層の部分に電気的に接続されている。第2電極は、位相同期部の少なくとも一部を構成する第2導電型半導体層の部分に電気的に接続されている。第3電極は、N1個のサブピクセルに一対一に対応して設けられ、強度変調部の少なくとも一部を構成する第1導電型半導体層の部分および第2導電型半導体層の部分のうち一方に電気的に接続されている。第4電極は、強度変調部の少なくとも一部を構成する第1導電型半導体層の部分および第2導電型半導体層の部分のうち他方に電気的に接続されている。この光源モジュールは、強度変調部に含まれるM個のピクセルそれぞれから第1方向および第2方向の双方と交差する方向に沿って光を出力する。
 この第1の光源モジュールにおいて、第1電極と第2電極との間、および第3電極と第4電極との間に電流が供給されると、位相同期部および強度変調部に含まれる活性層がそれぞれ発光する。活性層から出力された光はフォトニック結晶層に入り、フォトニック結晶層内において厚み方向に垂直な、第1方向を含む2つの方向に共振する。この光は、位相同期部のフォトニック結晶層内において、位相が揃ったコヒーレントなレーザ光となる。また、強度変調部に含まれるフォトニック結晶層は、位相同期部に含まれるフォトニック結晶層に対して第1方向に並んでいるので、各サブピクセルのフォトニック結晶層内のレーザ光の位相は位相同期部のフォトニック結晶層内のレーザ光の位相と一致し、その結果、サブピクセル相互間においてフォトニック結晶層内のレーザ光の位相が揃う。フォトニック結晶層はΓ点発振を生じさせるので、強度変調部に含まれる各サブピクセルからは、位相が揃ったレーザ光が、第1方向および第2方向の双方と交差する方向(典型的には強度変調部の厚み方向)に沿って出力される。
 第3電極は、各サブピクセルに一対一に対応して設けられている。したがって、強度変調部に供給する電流の大きさを、サブピクセルごとに個別に調整することができる。すなわち、強度変調部から出力されるレーザ光の光強度を、サブピクセルごとに個別に(独立して)調整することができる。また、第1の光源モジュールでは、各ピクセルにおいて、N個のサブピクセルのうち連続するN2個のサブピクセルからなる領域の第2方向(すなわちサブピクセルの配列方向)の長さが、活性層の発光波長λすなわちレーザ光の波長よりも小さい。各ピクセルを構成するN1個のサブピクセルのうち、同時に光を出力するサブピクセルが連続するN2個のサブピクセルに限定される場合、各ピクセルを、等価的に単一の位相を有する画素と見なすことができる。そして、各ピクセルを構成するN1個のサブピクセルから出力されるレーザ光の位相が互いに揃っている場合、各ピクセルから出力されるレーザ光の位相は、当該ピクセルを構成するN1個のサブピクセルにより実現される強度分布によって定まる。したがって、第1の光源モジュールによれば、光の位相分布を動的に制御することができる。
 (2) 本開示の一形態に係る第2の光源モジュールは、その一態様として、半導体積層部と、第1電極と、第2電極と、第3電極と、第4電極とを備える。半導体積層部は、第1導電型半導体層と、第2導電型半導体層と、活性層および共振モード形成層で構成された積層体を含む。活性層および共振モード形成層で構成された積層体は、第1導電型半導体層と第2導電型半導体層との間に配置されている。半導体積層部は、共振モード形成層の共振方向の一つである第1方向に沿って並ぶ位相同期部と強度変調部とを有する。強度変調部の少なくとも一部を構成する積層体の部分は、第1方向と交差する第2方向に沿って並ぶM個(Mは2以上の整数)のピクセルを有する。M個のピクセルそれぞれは、第2方向に沿って並ぶN1個(N1は2以上の整数)のサブピクセルを含む。N1個のサブピクセルのうち連続するN2個(N2は2以上N1以下の整数)のサブピクセルからなる領域の第2方向に沿って定義される長さは、活性層の発光波長λよりも小さい。第1電極は、位相同期部の少なくとも一部を構成する第1導電型半導体層の部分に電気的に接続されている。第2電極は、位相同期部の少なくとも一部を構成する第2導電型半導体層の部分に電気的に接続されている。第3電極は、N1個のサブピクセルに一対一に対応して設けられており、強度変調部の少なくとも一部を構成する第1導電型半導体層の部分および第2導電型半導体層の部分のうち一方に電気的に接続されている。第4電極は、強度変調部の少なくも一部を構成する第1導電型半導体層の部分および第2導電型半導体層の部分のうち他方に電気的に接続されている。共振モード形成層は、基本層と、基本層の屈折率と異なる屈折率を有するとともに共振モード形成層の厚み方向と垂直な面上において二次元状に分布する複数の異屈折率領域と、を含む。複数の異屈折率領域の配置はM点発振の条件を満たす。強度変調部に含まれる共振モード形成層の部分では、上記面上に設定される仮想的な正方格子において、複数の異屈折率領域それぞれが、その重心が第1の形態および第2の形態のうちいずれかの形態に配置されている。第1の形態では、複数の異屈折率領域の各重心が対応する格子点から離れて配置され、該対応する格子点と重心とを結ぶベクトルの、仮想的な正方格子に対する角度が個別に設定される。第2の形態では、複数の異屈折率領域の各重心が仮想的な正方格子の格子点を通りかつ正方格子に対して傾斜する直線上に配置され、複数の異屈折率領域の各重心と対応する格子点との距離が個別に設定される。第1の形態におけるベクトルの角度の分布、または第2の形態における距離の分布は、強度変調部から第1方向および第2方向の双方と交差する方向に光が出力されるための条件を満たす。
 この第2の光源モジュールにおいて、第1電極と第2電極との間、および第3電極と第4電極との間に電流が供給されると、位相同期部および強度変調部の活性層がそれぞれ発光する。活性層から出力された光は共振モード形成層に入り、共振モード形成層内において厚み方向に垂直な、第1方向を含む2つの方向に共振する。この光は、位相同期部の共振モード形成層内において、位相が揃ったコヒーレントなレーザ光となる。また、複数のサブピクセルに分割された強度変調部の各共振モード形成層は、位相同期部の共振モード形成層に対して第1方向に並んでいるので、各サブピクセルの共振モード形成層内のレーザ光の位相は位相同期部の共振モード形成層内のレーザ光の位相と一致し、その結果、サブピクセル相互間において共振モード形成層内のレーザ光の位相が揃う。
 第2の光源モジュールの共振モード形成層はM点発振を生じさせるが、強度変調部に含まれる共振モード形成層の部分においては、複数の異屈折率領域の分布形態が、強度変調部から第1方向および第2方向の双方と交差する方向に光が出力されるための条件を満たす。したがって、強度変調部に含まれる各サブピクセルからは、位相が揃ったレーザ光が、第1方向および第2方向の双方と交差する方向に沿って出力される。
 第3電極は、各サブピクセルに一対一に対応して設けられている。したがって、強度変調部に供給する電流の大きさを、サブピクセルごとに個別に調整することができる。すなわち、強度変調部から出力されるレーザ光の光強度を、サブピクセルごとに個別に(独立して)調整することができる。また、第2の光源モジュールにおいても、各ピクセルにおいて、N個のサブピクセルのうち連続するN2個のサブピクセルからなる領域の第2方向(すなわちサブピクセルの配列方向)の長さが、活性層の発光波長λすなわちレーザ光の波長よりも小さい。各ピクセルを構成するN1個のサブピクセルのうち、同時に光を出力するサブピクセルが連続するN2個のサブピクセルに限定される場合、各ピクセルを、等価的に単一の位相を有する画素と見なすことができる。そして、各ピクセルを構成するN1個のサブピクセルから出力されるレーザ光の位相が互いに揃っている場合、各ピクセルから出力されるレーザ光の位相は、当該ピクセルを構成するN1個のサブピクセルにより実現される強度分布によって定まる。したがって、第2の光源モジュールによれば、光の位相分布を動的に制御することができる。
 (3) 本開示の一態様として、第2の光源モジュールにおいて、位相同期部に含まれる共振モード形成層の部分は、複数の異屈折率領域が周期的に配列されたフォトニック結晶構造を有してもよい。この場合、位相が揃ったレーザ光を位相同期部から各サブピクセルに供給することができる。
 (4) 本開示の一態様として、第2の光源モジュールにおいて、強度変調部から第1方向および第2方向の双方と交差する方向に光が出力されるための条件は、強度変調部から出力される光の角度広がりに対応した波数拡がりをそれぞれ含む4方向の面内波数ベクトルが共振モード形成層の逆格子空間上において形成され、これら4方向の面内波数ベクトルのうち少なくとも1つの面内波数ベクトルの大きさが2π/λよりも小さいことであってもよい。
 (5) 本開示の一態様として、第1の光源モジュールにおいて、フォトニック結晶層は、N1個のサブピクセルに一対一に対応して設けられた位相シフト部であって、各ピクセルから出力される光の第1方向に沿った位相をN1個のサブピクセル間で相互に異ならせるための位相シフト部を含んでもよい。同様に、本開示の一態様として、第2の光源モジュールにおいて、共振モード形成層は、N1個のサブピクセルに一対一に対応して設けられた位相シフト部であって、各ピクセルから出力される光の第1方向に沿った位相をN1個のサブピクセル間で相互に異ならせるための位相シフト部を含んでもよい。この場合、各ピクセルから第1方向に沿って出力されるレーザ光の位相はサブピクセルごとに異なる。したがって、各ピクセルから第1方向および第2方向の双方と交差する方向に沿って出力されるレーザ光の位相もサブピクセルごとに異なる。そして、各ピクセルから出力されるレーザ光の位相は、当該ピクセルを構成するN1個のサブピクセルの強度分布および位相分布によって定まる。この場合、第1方向および第2方向の双方と交差する出力方向に沿っての光の位相の分布を動的に変調することが可能となり、光の位相分布を制御する自由度がより高められる。
 (6) 本開示の一態様として、第1および第2の光源モジュールにおいて、第1電極は、第1導電型半導体層に接触し、位相同期部に含まれる第1導電型半導体層の部分の全面を覆ってもよい。また、第2電極は、第2導電型半導体層に接触し、位相同期部に含まれる第2導電型半導体層の全面を覆ってもよい。この場合、位相同期部からその積層方向に沿って出力されるレーザ光が、第1電極および第2電極によって遮蔽される。特に、第1の光源モジュールでは位相同期部のフォトニック結晶層がΓ点発振を生じさせるので、このような第1電極および第2電極による遮蔽が有効である。
 (7) 本開示の一態様として、第1および第2の光源モジュールにおいて、第3電極は、強度変調部の少なくとも一部を構成する第1導電型半導体層の部分および第2導電型半導体層の部分のうち一方に接触してもよい。また、第4電極は、光を通過させるための開口を囲む枠状の形状を有するとともに、強度変調部の少なくとも一部を構成する第1導電型半導体層の部分および第2導電型半導体層の部分のうち他方に接触してもよい。この場合、強度変調部の活性層に十分な電流を供給しつつ、強度変調部から、第1方向および第2方向の双方と交差する方向に沿ってレーザ光が出力され得る。
 (8) 本開示の一態様として、第1および第2の光源モジュールにおいて、半導体積層部は、複数のスリットを含んでもよい。サブピクセルと複数のスリットは、第2方向に沿って1個ずつ交互に並べられる。この場合、簡易な構成によって強度変調部を複数のサブピクセルに分割することができる。
 (9) 本開示の一態様として、第1および第2の光源モジュールにおいて、上述の個数N1および個数N2は共に3以上であってもよい。この場合、各ピクセルから出力されるレーザ光の位相を0°~360°の範囲で制御することができる。
 以上、この[本願発明の実施形態の説明]の欄に列挙された各態様は、残りの全ての態様のそれぞれに対して、または、これら残りの態様の全ての組み合わせに対して適用可能である。
 [本願発明の実施形態の詳細]
  以下、本開示の実施形態に係る光源モジュールの具体的な構造を、添付図面を参照しながら詳細に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。また、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。
 図1は、本開示の一実施形態に係る光源モジュール1Aの平面図である。図2は、光源モジュール1Aの底面図である。図3は、図1に示されたIII-III線に沿った断面を模式的に示す図である。図4は、図1に示されたIV-IV線に沿った断面を模式的に示す図である。これらの図1~図4には、共通のXYZ直交座標系が示されている。光源モジュール1Aは、半導体積層部10と、第1電極21と、第2電極22と、複数の第3電極23と、第4電極24と、反射防止膜25と、を備える。半導体積層部10は、主面11aおよび該主面11aと対向する裏面11bを有する半導体基板11と、主面11a上に積層された複数の半導体層とを含む。半導体基板11の厚み方向(すなわち主面11aの法線方向)および複数の半導体層の積層方向は、Z方向と一致する。半導体積層部10の複数の半導体層は、第1クラッド層12と、活性層13と、フォトニック結晶層14と、第2クラッド層15と、コンタクト層16と、を含む。
 半導体基板11の主面11aおよび裏面11bは、平坦かつ互いに平行である。半導体基板11は、半導体積層部10の複数の半導体層をエピタキシャル成長させるために用いられる。半導体積層部10の複数の半導体層がGaAs系半導体層である場合、半導体基板11は例えばGaAs基板である。半導体積層部10の複数の半導体層がInP系半導体層である場合、半導体基板11は例えばInP基板である。半導体積層部10の複数の半導体層がGaN系半導体層である場合、半導体基板11は例えばGaN基板である。半導体基板11の厚みは、例えば50μm~1000μmの範囲内である。半導体基板11は、p型またはn型の導電型を有する。主面11aの平面形状は例えば長方形または正方形である。
 第1クラッド層12は、半導体基板11の主面11a上にエピタキシャル成長により形成された半導体層である。第1クラッド層12は、半導体基板11と同じ導電型を有する。半導体基板11および第1クラッド層12は、本開示における第1導電型半導体層を構成する。第1クラッド層12は、エピタキシャル成長により、主面11a上に直接設けられてもよく、主面11aと第1クラッド層12との間に設けられたバッファ層を介して主面11a上に設けられてもよい。活性層13は、第1クラッド層12上にエピタキシャル成長により形成された半導体層である。活性層13は、電流の供給を受けて光を発生する。フォトニック結晶層14は、活性層13上にエピタキシャル成長により形成された半導体層である。第2クラッド層15は、フォトニック結晶層14上にエピタキシャル成長により形成された半導体層である。コンタクト層16は、第2クラッド層15上にエピタキシャル成長により形成された半導体層である。第2クラッド層15およびコンタクト層16は、第1クラッド層12と反対の導電型を有する。第2クラッド層15およびコンタクト層16は、本開示における第2導電型半導体層を構成する。
 活性層13の屈折率は第1クラッド層12および第2クラッド層15の屈折率より大きく、活性層13のバンドギャップは第1クラッド層12および第2クラッド層15のバンドギャップより小さい。フォトニック結晶層14は、第1クラッド層12と活性層13との間、および、活性層13と第2クラッド層15との間のいずれに設けられてもよい。活性層13およびフォトニック結晶層14と第1クラッド層12との間、活性層13およびフォトニック結晶層14と第2クラッド層15との間、または、その双方に、別の半導体層(例えば光閉じ込め層)がさらに設けられてもよい。
 フォトニック結晶層14は、二次元の回折格子を有する。フォトニック結晶層14は、基本層14aと、基本層14aの内部に設けられた複数の異屈折率領域14bとを有する。異屈折率領域14bの屈折率は、基本層14aの屈折率と異なる。異屈折率領域14bは、基本層14a内においてX方向およびY方向に一定の周期で配置されている。各異屈折率領域14bは、空孔であってもよく、基本層14aと異なる屈折率を有する半導体が空孔内に埋め込まれることにより構成されてもよい。各異屈折率領域14bの平面形状は、例えば円形、多角形(三角形、四角形など)、楕円形など様々な形状であり得る。
 異屈折率領域14bは、活性層13の発光波長に対してΓ点発振の条件を満たす配置および間隔を有する。図5(a)は、実空間におけるΓ点発振を説明するための図である。図5(b)は、逆格子空間におけるΓ点発振を説明するための図である。これら図5(a)および図5(b)に示された円は、異屈折率領域14bを表している。
 図5(a)は、XYZ三次元直交座標系が設定された実空間において、異屈折率領域14bが正方格子の格子枠の開口中心に位置している場合を示す。正方格子の格子間隔はaであり、X軸方向およびY軸方向に隣接する異屈折率領域14bの重心間隔もaである。フォトニック結晶層14におけるΓ点での発振は、活性層13の発光波長をλ、当該波長λにおけるフォトニック結晶層14の実効屈折率をnとすると、λ/nがaと一致した場合に生じる。図5(b)は、図5(a)の格子の逆格子を示しており、縦方向(Γ-Y)または横方向(Γ-X)に沿って隣接する異屈折率領域14b間の間隔は2π/aである。この2π/aは2neπ/λに一致している(neはフォトニック結晶層14の実効屈折率)。なお、この例では異屈折率領域14bが正方格子の格子枠の開口中心に位置している場合が示されたが、異屈折率領域14bは、他の格子(例えば三角格子)の格子枠の開口中心に位置してもよい。
 再び図1~図4を参照する。図1に示されたように、フォトニック結晶層14と第2クラッド層15との界面には、光源モジュール1Aの作製時に用いられる、位置決め用の十字形のマーク19が形成されている。一例では、マーク19は、平面視において、後述する位相同期部17および強度変調部18の形成領域を除く光源モジュール1Aの四隅付近に形成されている。
 半導体積層部10は、位相同期部17と強度変調部18とを有する。位相同期部17および強度変調部18は、フォトニック結晶層14の共振方向の一つであるY方向(第1方向)に沿って並んでいる。一例では、位相同期部17および強度変調部18は、Y方向に沿って互いに隣接する。位相同期部17と強度変調部18との間に他の部分が介在してもよい。位相同期部17および強度変調部18の平面形状は、例えば長方形または正方形である。一例では、位相同期部17および強度変調部18は、X方向に沿って互いに対向する一対の辺と、Y方向に沿って互いに対向する一対の辺とを有する。位相同期部17のX方向に沿う強度変調部18側の一辺と、強度変調部18のX方向に沿う位相同期部17側の一辺とは、互いに離れた状態で対面するか、または一致している。図1~図4に示された例において、位相同期部17および強度変調部18の形状は、長手方向(longitudinal direction)がX方向に一致し、短手方向(short-length direction)がY方向に一致した長方形である。位相同期部17の平面形状の面積は、強度変調部18の平面形状の面積より大きくてもよく、強度変調部18の平面形状の面積と同じであってもよく、強度変調部18の平面形状の面積より小さくてもよい。
 図1および図4に示されたように、強度変調部18の活性層13およびフォトニック結晶層14は、M個(Mは2以上の整数)のピクセルPaを有する。図1には、2つのピクセルPaが例示的に示されており、図4には、4つのピクセルPaが例示的に示されているが、ピクセルPaの個数Mは2以上の任意の数である。ピクセルPaは、Y方向と交差する方向(第2方向、例えばX方向)に沿って並んで配置されている。各ピクセルPaの平面形状は、長方形または正方形である。すなわち、各ピクセルPaは、X方向に沿って互いに対向する一対の辺と、Y方向に沿って互いに対向する一対の辺とを有する。
 各ピクセルPaは、ピクセルPaの配列方向(例えばX方向)に沿って並ぶN1個(N1は2以上の整数)のサブピクセルPbを含む。図1および図4には、ピクセルPaの個数N1が3である場合が例示的に示されているが、個数N1は2であってもよく、4以上の任意の数であってもよい。各サブピクセルPbの平面形状は、その長手方向がY方向に一致し、その短手方向がサブピクセルPbの配列方向(例えばX方向)に一致した長方形である。位相同期部17の該配列方向に沿う一辺と、各サブピクセルPbの該配列方向に沿う一辺とは、互いに離れて対向するか、または一致している。各サブピクセルPbは、他のサブピクセルPbを介することなく、直接に位相同期部17と光結合している。各ピクセルPaにおいて、連続するN2個(N2は2以上N1以下の整数)のサブピクセルPbからなる領域の上記配列方向に沿って定義される長さDa(具体的には、該領域を挟む2つのスリットS間の距離)は、活性層13の発光波長λ(すなわち、各ピクセルPaから出力されるレーザ光Lの波長)よりも小さい。ここで、波長λは大気中の波長を意味する。一例として、N1=3、N2=2である場合、各ピクセルPaの配列方向の長さは上記長さDaの1.5倍である。各ピクセルPa内において互いに隣接しない(他のサブピクセルPbを挟んで互いに離れている)少なくとも2つのサブピクセルPbが同時にレーザ光Lを出力する場合には、ピクセルPaの配列方向に沿って定義される長さは発光波長λより小さくてもよい。
 半導体積層部10は、複数のスリットSをさらに有する。スリットSは、半導体積層部10に形成された溝であり、空隙である。スリットSは、Z方向を深さ方向としてY方向に延在しており、サブピクセルPbとスリットSは、サブピクセルPbの配列方向(例えばX方向)に沿って1個ずつ交互に並んで形成されている。したがって、互いに隣り合うサブピクセルPbの間には、スリットSが位置する。なお、スリットSは空隙でなくてもよく、例えば活性層13およびフォトニック結晶層14よりも高抵抗でありかつ高屈折率の材料によって埋め込まれてもよい。スリットSによって、強度変調部18は、複数のサブピクセルPbに光学的および電気的に分割される。サブピクセルPbの配列方向に沿って定義される各スリットSの幅はλ/N未満であり、隣り合うスリットS同士の間隔(すなわち各サブピクセルPbの配列方向の幅)はλ/N未満である。
 第1電極21および第2電極22は、位相同期部17に設けられた金属製の電極である。第1電極21は、位相同期部17のコンタクト層16に電気的に接続されている。本実施形態では、第1電極21は、位相同期部17のコンタクト層16の表面に接触するオーミック電極であり、位相同期部17のコンタクト層16の表面の全面を覆っている。第2電極22は、位相同期部17の半導体基板11に電気的に接続されている。本実施形態では、第2電極22は、位相同期部17の半導体基板11の裏面11bに接触するオーミック電極であり、位相同期部17の半導体基板11の裏面11bの全面を覆っている。なお、この例に限られず、第1電極21は位相同期部17のコンタクト層16の表面の一部のみを覆ってもよく、第2電極22は位相同期部17の半導体基板11の裏面11bの一部のみを覆ってもよい。第2電極22は、半導体基板11に代えて第1クラッド層12とオーミック接触してもよい。
 第3電極23および第4電極24は、強度変調部18に設けられた金属製の電極である。第3電極23は、強度変調部18のコンタクト層16に電気的に接続されている。一例では、第3電極23は強度変調部18のコンタクト層16の表面に接触するオーミック電極である。第3電極23は、各サブピクセルPbと一対一にて対応して設けられている。すなわち、M×N個の第3電極23が、サブピクセルPbにそれぞれ対応してコンタクト層16上に設けられている。各第3電極23の平面形状は、各サブピクセルPbの平面形状と相似し、例えばその長手方向がY方向に一致した長方形である。
 第4電極24は、強度変調部18の半導体基板11に電気的に接続されている。一例では、第4電極24は強度変調部18の半導体基板11の裏面11bに接触するオーミック電極である。第4電極24は、強度変調部18から出力されるレーザ光Lを通過させるための開口24aを有する。第4電極24の平面形状は、開口24aを囲む長方形または正方形の枠状を呈する。各ピクセルPaからは、X方向およびY方向の双方と交差する方向(例えばZ方向)に、レーザ光Lが出力される。
 反射防止膜25は、裏面11b上における第4電極24の開口24aの内側に設けられ、半導体基板11から出力されるべきレーザ光Lが裏面11bにおいて反射されることを防ぐ。反射防止膜25は、例えばシリコン化合物などの無機材料からなる。
 半導体基板11および第1クラッド層12が有する導電型は、例えばn型である。第2クラッド層15およびコンタクト層16が有する導電型は、例えばp型である。光源モジュール1Aの具体例を以下に示す。
(具体例)
半導体基板11:n型GaAs基板(厚み150μm程度)
第1クラッド層12:n型AlGaAs(屈折率3.39、厚み0.5μm以上5μm以下)
活性層13:InGaAs/AlGaAs多重量子井戸構造(InGaAs層の厚み10nm、AlGaAs層の厚み10nm、3周期)
第2クラッド層15:p型AlGaAs(屈折率3.39、厚み0.5μm以上5μm以下)
コンタクト層16:p型GaAs(厚み0.05μm以上1μm以下)
基本層14a:i型GaAs(厚み0.1μm以上2μm以下)
異屈折率領域14b:空孔、配列周期282nm
第1電極21および第3電極23:Cr/AuまたはTi/Au
第3電極23の配列ピッチ(サブピクセルPbの配列ピッチ):564nm
第3電極23の総数(サブピクセルPbの総数M×N):351個
ピクセルPaの総数M:117個
第2電極22および第4電極24:GeAu/Au
反射防止膜25:例えばSiN、SiOなどのシリコン化合物膜(厚み0.1μm以上0.5μm以下)
位相同期部17および強度変調部18のX方向の幅:200μm
位相同期部17のY方向の幅:150μm
強度変調部18のY方向の幅:50μm
チップサイズ:一辺700μm
 ここで、図6(a)~図6(d)、図7(a)~図7(d)、図8(a)~図8(d)、図9(a)~図9(d)、図10(a)~図10(d)、図11(a)~図11(d)および図12(a)~図12(d)を参照して、光源モジュール1Aを作製する方法の例について説明する。なお、図6(a)は平面図を示し、図6(b)は底面図を示し、図6(c)は図6(a)のI-I線に沿った断面の模式図をそれぞれ示し、図6(d)は図6(a)のII-II線に沿った断面の模式図を示す。図7(a)は平面図を示し、図7(b)は底面図を示し、図7(c)は図7(a)のI-I線に沿った断面の模式図をそれぞれ示し、図7(d)は図7(a)のII-II線に沿った断面の模式図を示す。図8(a)は平面図を示し、図8(b)は底面図を示し、図8(c)は図8(a)のI-I線に沿った断面の模式図をそれぞれ示し、図8(d)は図8(a)のII-II線に沿った断面の模式図を示す。図9(a)は平面図を示し、図9(b)は底面図を示し、図9(c)は図9(a)のI-I線に沿った断面の模式図をそれぞれ示し、図9(d)は図9(a)のII-II線に沿った断面の模式図を示す。図10(a)は平面図を示し、図10(b)は底面図を示し、図10(c)は図10(a)のI-I線に沿った断面の模式図をそれぞれ示し、図10(d)は図10(a)のII-II線に沿った断面の模式図を示す。図11(a)は平面図を示し、図11(b)は底面図を示し、図11(c)は図11(a)のI-I線に沿った断面の模式図をそれぞれ示し、図11(d)は図11(a)のII-II線に沿った断面の模式図を示す。図12(a)は平面図を示し、図12(b)は底面図を示し、図12(c)は図12(a)のI-I線に沿った断面の模式図をそれぞれ示し、図12(d)は図12(a)のII-II線に沿った断面の模式図を示す。
 まず、図6(a)~図6(d)に示されたように、半導体基板11の主面11a上に、有機金属気相成長(Metal Organic Chemical Vapor Deposition;MOCVD)法を用いて、第1クラッド層12、活性層13、およびフォトニック結晶層14の基本層14aをこの順に形成するエピタキシャル成長が行われる。そして、位置決め用のマーク19を基本層14aの表面に形成する。マーク19は、例えば電子線リソグラフィおよびドライエッチングにより形成される。
 次に、図7(a)~図7(d)に示されたように、複数の異屈折率領域14bおよび複数のスリットSが時に形成される。具体的には、まず基本層14a上にSiN膜が形成された後、マーク19を基準とする電子線リソグラフィ技術を用いてSiN膜上にレジストマスクが形成される。このレジストマスクは、Γ点発振の条件を満たす異屈折率領域14bの位置および形状に対応する開口を、基本層14aのうち位相同期部17の一部を構成する部分上および強度変調部18の一部を構成する部分上に有する。また、このレジストマスクは、スリットSの位置および形状に対応する開口を、基本層14aのうち強度変調部18の位置笛を構成する部分上に有する。そして、このレジストマスクを介してドライエッチング(例えば反応性イオンエッチング)がSiN膜に施されることにより、SiNからなるエッチングマスクが形成される。そして、このエッチングマスクを介してドライエッチング(例えば誘導結合プラズマエッチング)が、基本層14aおよび活性層13に施される。これにより、Γ点発振の条件を満たす複数の異屈折率領域14bとしての凹部が、基本層14aを貫通しない深さまで形成される。同時に、複数のスリットSとしての凹部が、フォトニック結晶層14および活性層13を貫通して第1クラッド層12に達する深さまで形成される。なお、スリットSの横幅と異屈折率領域14bの直径との比を適切に設定しておくことにより、スリットSのエッチングレートを異屈折率領域14bのエッチングレートより大きくできるので、同じエッチング時間でもスリットSが異屈折率領域14bよりも深く形成される。その後、レジストマスクおよびエッチングマスクが除去される。このようにして、基本層14aおよび複数の異屈折率領域14bを有するフォトニック結晶層14、および複数のスリットSが形成される。なお、基本層14aの凹部に基本層14aと屈折率が異なる半導体により埋め込むことにより異屈折率領域14bが構成されてもよい。。また、スリットSを、基本層14aよりも屈折率が大きい高抵抗体により埋め込んでもよい。或いは、スリットSの形成に代えて、エッチングマスクを介してイオン注入(例えば酸化イオン注入)を行うことにより、高屈折率かつ高抵抗の領域が形成されてもよい。
 続いて、図8(a)~図8(d)に示されたように、フォトニック結晶層14上に、MOCVD法を用いて、第2クラッド層15およびコンタクト層16をこの順に形成するエピタキシャル成長が行われる。以上の工程を経て、位相同期部17および強度変調部18を含む半導体積層部10が形成される。
 続いて、図9(a)~図9(d)に示されたように、位相同期部17のコンタクト層16上に第1電極21が形成されるとともに、強度変調部18のコンタクト層16上に複数の第3電極23が形成される。具体的には、まずマーク19を基準とする電子線リソグラフィ技術を用いて、第1電極21および第3電極23に対応する開口を有するレジストマスクがコンタクト層16上に形成される。そして、真空蒸着法により第1電極21および第3電極23の材料が堆積された後、リフトオフ法により第1電極21および第3電極23以外の堆積部分がレジストマスクとともに除去される。
 続いて、図10(a)~図10(d)に示されたように、半導体基板11の裏面11bを研磨することにより、半導体基板11が薄化される。さらに、裏面11bが鏡面研磨される。この研磨および鏡面研磨により、半導体基板11におけるレーザ光Lの吸収量が低減し、さらに、レーザ光Lが出力される裏面11bを平滑面にすることで、レーザ光Lの取り出し効率が高められる。
 続いて、図11(a)~図11(d)に示されたように、半導体基板11の裏面11bの全面に、プラズマCVD法を用いて反射防止膜25が形成される。そして、マーク19を基準とするフォトリソグラフィ技術を用いて、第2電極22および第4電極24に対応する開口を有するレジストマスクが反射防止膜25上に形成される。このレジストマスクを介してウェットエッチングまたはドライエッチングを施すことにより、第2電極22および第4電極24に対応する開口が反射防止膜25に形成される。反射防止膜25がシリコン化合物膜である場合、ウェットエッチングのエッチャントとしては例えばバッファードフッ酸が用いられ得る。また、ドライエッチングのエッチングガスとしては例えばCF4ガスが用いられ得る。
 続いて、図12(a)~図12(d)に示されたように、位相同期部17に含まれる半導体基板11の部分の裏面11b上に第2電極22が形成されるとともに、強度変調部18に含まれる半導体基板11の部分の裏面11b上に第4電極24が形成される。具体的には、まずマーク19を基準とするフォトリソグラフィ技術を用いて、第2電極22および第4電極24に対応する開口を有するレジストマスクが反射防止膜25上に形成される。そして、真空蒸着法により第2電極22および第4電極24の材料が堆積された後、リフトオフ法により第2電極22および第4電極24以外の堆積部分がレジストマスクとともに除去される。最後に、アニールが行われることにより、第1電極21、第2電極22、第3電極23、および第4電極24が合金化される。以上の工程を経て、本実施形態の光源モジュール1Aが作製される。
 その後、必要に応じて、図13(a)および図13(b)に示されたように、制御回路基板30上に光源モジュール1Aがフリップチップ実装される。すなわち、光源モジュール1Aの第1電極21および第3電極23と、第1電極21および第3電極23に対応して制御回路基板30に設けられた配線パターンとが、はんだ等の導電性接合材31によって相互に接合される。なお、図13(a)は、図6(a)、図7(a)、図8(a)、図8(a)、図9(a)、図10(a)、図11(a)および図12(a)に示されたI-I断面に対応する模式図であり、図13(b)は、図6(a)、図7(a)、図8(a)、図8(a)、図9(a)、図10(a)、図11(a)および図12(a)に示されたII-II断面に対応する模式図である。そして、第2電極22および第4電極24が、ワイヤボンディングによって制御回路基板30に接続される。
 以上の説明のように、本実施形態による光源モジュール1Aによって得られる作用効果について説明する。第1電極21と第2電極22との間、および、第3電極23と第4電極24との間にバイアス電流が供給されると、位相同期部17および強度変調部18のそれぞれにおいて、第1クラッド層12と第2クラッド層15との間にキャリアが集まり、活性層13において光が効率的に発生する。活性層13から出力された光は、フォトニック結晶層14に入り、フォトニック結晶層14内において厚み方向に垂直な、X方向およびY方向に共振する。この光は、位相同期部17のフォトニック結晶層14内において、位相が揃ったコヒーレントなレーザ光となる。
 強度変調部18のフォトニック結晶層14は、位相同期部17のフォトニック結晶層14に対してY方向に並んでいるので、各サブピクセルPbのフォトニック結晶層14内のレーザ光の位相は、位相同期部17のフォトニック結晶層14内のレーザ光の位相と一致する。その結果、サブピクセルPb相互間においてフォトニック結晶層14内のレーザ光の位相が揃う。本実施形態のフォトニック結晶層14はΓ点発振を生じさせるので、強度変調部18の各サブピクセルPbからは、位相が揃ったレーザ光Lが、X方向およびY方向の双方と交差する方向(典型的にはZ方向)に出力される。このレーザ光Lの一部は、フォトニック結晶層14から直接半導体基板11に達する。また、このレーザ光Lの残部は、フォトニック結晶層14から第3電極23に達し、第3電極23において反射した後、半導体基板11に達する。レーザ光Lは、半導体基板11を透過し、半導体基板11の裏面11bから第4電極24の開口24aを通って光源モジュール1Aの外部へ出る。
 第3電極23は、各サブピクセルPbに対応して設けられている。したがって、強度変調部18に供給するバイアス電流の大きさを、サブピクセルPbごとに個別に調整することができる。すなわち、強度変調部18から出力されるレーザ光Lの光強度を、サブピクセルPbごとに個別に(独立して)調整することができる。また、各ピクセルPaにおいて、連続するN2個のサブピクセルPbからなる領域の配列方向(X方向)の長さDaは、活性層13の発光波長λすなわちレーザ光Lの波長よりも小さい。
 ここで、図44(a)~図44(h)は、非特許文献1に記載された技術を説明するための図である。図44(a)~図44(d)には、一方向に沿って並ぶ4つのサブピクセル102からなるピクセル101が示されており、各サブピクセル102の反射率がハッチングの粗密により表現されている。ここでは、ハッチングが粗いほど反射率が大きい(すなわち反射光の光強度が大きい)ことを示している。この場合、4つのサブピクセル102を纏めて、等価的に単一の位相を有する一つの画素と見なせる。そして、4つのサブピクセル102からの反射光の位相が互いに揃っている場合、ピクセル101から出力される光の位相は、4つのサブピクセル102の強度分布によって定まる。例えば、4つのサブピクセル102が左から0°、90°、180°、および270°の各位相に対応している。この場合、図44(a)に示されたように、180°および270°にそれぞれ対応する2つのサブピクセル102から反射光は出力されず、0°および90°にそれぞれ対応する2つのサブピクセル102の反射光の強度比を制御することにより、図44(e)に示されたように、ピクセル101から出力される光の位相θは、0°と90°との間の任意の値に制御され得る。また、図44(b)に示されたように、90°および180°にそれぞれ対応する2つのサブピクセル102から反射光は出力されず、0°および270°にそれぞれ対応する2つのサブピクセル102の反射光の強度比を制御することにより、図44(f)に示されたように、ピクセル101から出力される光の位相θは、270°と0°(360°)との間の任意の値に制御され得る。また、図44(c)に示されたように、0°および90°にそれぞれ対応する2つのサブピクセル102から反射光は出力されず、180°および270°にそれぞれ対応する2つのサブピクセル102の反射光の強度比を制御することにより、図44(g)に示されたように、ピクセル101から出力される光の位相θは、180°と270°との間の任意の値に制御され得る。また、図44(d)に示されたように、0°および270°にそれぞれ対応する2つのサブピクセル102から反射光は出力されず、90°および180°にそれぞれ対応する2つのサブピクセル102の反射光の強度比を制御することにより、図44(h)に示されたように、ピクセル101から出力される光の位相θは、90°と180°との間の任意の値に制御され得る。
 図45(a)および図45(b)は、非特許文献2に記載された技術を説明するための図である。図45(a)には、一方向に沿って並ぶ3つのサブピクセル202からなるピクセル201が示されており、各サブピクセル202の反射率がハッチングの粗密により表現されている。この場合、3つのサブピクセル202を纏めて、等価的に単一の位相を有する一つの画素と見なせる。非特許文献2には、3つのサブピクセル202からの反射光の位相が互いに揃っている場合、ピクセル201から出力される光の位相は、3つのサブピクセル202の強度分布によって定まることが述べられている。例えば、3つのサブピクセル202が左から0°、120°、および240°の各位相に対応している。この場合、例えば、図45(b)に示されたように、120°に対応するサブピクセル202から反射光は出力されず、0°および240°にそれぞれ対応する2つのサブピクセル202の反射光の強度比を制御することにより、ピクセル201から出力される光の位相θは、240°と0°(360°)の間の任意の値に制御され得る。なお、3つのサブピクセル202のうち1つの強度は、必ず0になる。
 ただし、図44(a)~図44(h)、図45(a)および図45(b)に示された方式では、サブピクセル102,202の光反射率は制御不能な固定値である。そのため、ピクセル101,201の出力位相を動的に制御することはできない。これに対し、本実施形態の光源モジュール1Aは、各ピクセルPaに含まれるM×N個のサブピクセルPbから出力されるレーザ光Lの強度を、サブピクセルPbごとに独立して制御することができる。レーザ光Lの位相はN個のサブピクセルPb間において互いに揃っているので、各ピクセルPaから出力されるレーザ光Lの位相は、N個のサブピクセルPbにより実現される当該ピクセルPa内の強度分布によって定まる。したがって、本実施形態の光源モジュール1Aによれば、レーザ光Lの位相分布の動的制御が可能になる。例えば、Nが3以上である場合、光の位相分布は0°~360°の範囲で動的に制御可能である。
 なお、上述のように、3個以上のサブピクセルPbを各ピクセルPaが含む場合であっても、同時に光を出力するサブピクセルPbは2個に限られる。その2個のサブピクセルPbからなる領域の配列方向の長さが活性層13の発光波長λより小さければ、その2個のサブピクセルPbを、等価的に単一の発光点からなる画素と見なせる。したがって、動的に制御し得る位相分布の範囲が360°未満で足りるのであれば、同時に光を出力するサブピクセルPbの数が連続するN2個(N2は2以上N1以下の整数)に限定されるとともに、連続するN2個のサブピクセルPbからなる領域の配列方向の長さDaが活性層13の発光波長λ未満に設定されてもよい。なお、上述のように、個数N1および個数N2が共に3以上である場合、各ピクセルPaから出力されるレーザ光LのX方向の沿った空間位相は、0°~360°の範囲で動的に制御され得る。
 以上に説明されたように、本実施形態の光源モジュール1Aによれば、レーザ光Lの位相分布の動的制御が可能になる。
 本実施形態のように、第1電極21は、コンタクト層16に接触し、位相同期部17のコンタクト層16の全面を覆い、第2電極22は、半導体基板11に接触し、位相同期部17の半導体基板11の全面を覆ってもよい。この場合、位相同期部17からその積層方向(Z方向)に沿って出力されるレーザ光は、第1電極21および第2電極22によって遮蔽され得る。位相同期部17のフォトニック結晶層14はΓ点発振を生じさせるので、このような第1電極21および第2電極22による遮蔽が有効である。
 本実施形態のように、第4電極24は、半導体基板11に接触し、レーザ光Lを通過させるための開口24aを囲む枠状を呈してもよい。この場合、強度変調部18の活性層13に十分なバイアス電流が供給されつつ、強度変調部18からX方向およびY方向の双方と交差する方向に沿って、レーザ光Lが開口24aを通じて出力され得る。
 本実施形態のように、半導体積層部10は、スリットSを有してもよい。複数のサブピクセルPbとスリットSは、サブピクセルPbの配列方向に沿って1個ずつ交互に並ぶ複数のスリットSを有してもよい。この場合、簡易な構成によって強度変調部18は複数のサブピクセルPbに分割され得る。
 上述のように、本実施形態では、各サブピクセルPbに対応する第3電極23がコンタクト層16に接触し、開口24aを有する枠状の第4電極24が半導体基板11の裏面11bに接触している。本実施形態または後述する各変形例において、各サブピクセルPbに対応する第3電極は半導体基板11の裏面11b(または第1クラッド層12)に設けられてもよく、開口を有する枠状の第4電極はコンタクト層16上に設けられてもよい。すなわち、各サブピクセルPbに対応して設けられる第3電極は、強度変調部18の一部を構成する第1導電型半導体層の部分および第2導電型半導体層の部分のうち一方の部分(半導体層)に電気的に接続され、第4電極は、強度変調部の一部を構成する第1導電型半導体層の部分および第2導電型半導体層の部分のうち他方の部分(半導体層)に電気的に接続される。これにより、本実施形態と同様の作用効果を奏することができる。
 また、サブピクセルPbの配列方向に沿って定義される第3電極23の配列ピッチ(中心間隔)は、格子間隔aの整数倍であってもよい。この場合、各サブピクセルPbから出力されるレーザ光Lの光強度は均一状態に近づけられる。
(第1変形例)
  図14は、上記実施形態の第1変形例としての光源モジュールの断面を模式的に示す図であって、図1に示されたIV-IV断面に対応する断面を示す。この光源モジュールにおいて上記実施形態と異なる点は、スリットの形状である。上記実施形態のスリットSは、半導体積層部10の内部に形成されて活性層13およびフォトニック結晶層14を分割しているが(図4を参照)、本変形例のスリットSAは、半導体積層部10の表面から内部にわたって形成され、活性層13およびフォトニック結晶層14に加えて第2クラッド層15およびコンタクト層16を分割している。すなわち、本変形例の各サブピクセルPbは、活性層13、フォトニック結晶層14、第2クラッド層15およびコンタクト層16によって構成されている。なお、他のスリットSAの態様は、上記実施形態のスリットSと同様である。
 図15(a)~図15(d)、図16(a)~図16(d)、図17(a)~図17(d)、図18(a)~図18(d)、図19(a)~図19(d)、図20(a)~図20(d)および図21(a)~図21(d)を参照して、本変形例に係る光源モジュールの作製方法の例について説明する。なお、図15(a)は平面図を示し、図15(b)は底面図を示し、図15(c)は図15(a)のI-I線に沿った断面の模式図を示し、図15(d)は図15(a)のII-II線に沿った断面の模式図を示す。図16(a)は平面図を示し、図16(b)は底面図を示し、図16(c)は図16(a)のI-I線に沿った断面の模式図を示し、図16(d)は図16(a)のII-II線に沿った断面の模式図を示す。図17(a)は平面図を示し、図17(b)は底面図を示し、図17(c)は図17(a)のI-I線に沿った断面の模式図を示し、図17(d)は図17(a)のII-II線に沿った断面の模式図を示す。図18(a)は平面図を示し、図18(b)は底面図を示し、図18(c)は図18(a)のI-I線に沿った断面の模式図を示し、図18(d)は図18(a)のII-II線に沿った断面の模式図を示す。図19(a)は平面図を示し、図19(b)は底面図を示し、図19(c)は図19(a)のI-I線に沿った断面の模式図を示し、図19(d)は図19(a)のII-II線に沿った断面の模式図を示す。図20(a)は平面図を示し、図20(b)は底面図を示し、図20(c)は図20(a)のI-I線に沿った断面の模式図を示し、図20(d)は図20(a)のII-II線に沿った断面の模式図を示す。図21(a)は平面図を示し、図21(b)は底面図を示し、図21(c)は図21(a)のI-I線に沿った断面の模式図を示し、図21(d)は図21(a)のII-II線に沿った断面の模式図を示す。
 まず、図15(a)~図15(d)に示されたように、半導体基板11の主面11a上に、MOCVD法を用いて、第1クラッド層12、活性層13、および基本層14aをこの順に形成するエピタキシャル成長が行われる。そして、位置決め用のマーク19が基本層14aの表面に形成される。次に、基本層14aにおいて位相同期部17となる領域および強度変調部18となる領域に、複数の異屈折率領域14bが形成される。異屈折率領域14bの形成方法は、上記実施形態と同様である。このようにして、基本層14aおよび複数の異屈折率領域14bを有するフォトニック結晶層14が形成される。
 続いて、図16(a)~図16(d)に示されたように、フォトニック結晶層14上に、MOCVD法を用いて第2クラッド層15およびコンタクト層16をこの順に形成するエピタキシャル成長が行われる。そして、図17(a)~図17(d)に示されたように、活性層13、フォトニック結晶層14、第2クラッド層15およびコンタクト層16において強度変調部18となる領域に、複数のスリットSAが形成される。具体的には、まずコンタクト層16上にSiN膜が形成され、マーク19を基準とする電子線リソグラフィ技術を用いてSiN膜上にレジストマスクが形成される。このレジストマスクは、スリットSの位置および形状に対応する開口を、コンタクト層16において強度変調部18となる領域上に有する。そして、このレジストマスクを介してドライエッチング(例えば反応性イオンエッチング)がSiN膜に施されることにより、SiNからなるエッチングマスクが形成される。そして、このレジストマスクを介してドライエッチング(例えば誘導結合プラズマエッチング)がコンタクト層16、第2クラッド層15、フォトニック結晶層14および活性層13に施されることにより、複数のスリットSAとしての凹部が、コンタクト層16、第2クラッド層15、フォトニック結晶層14および活性層13を貫通して第1クラッド層12に達する深さまで形成される。なお、スリットSAは、この凹部に基本層14aよりも屈折率が大きい高抵抗体により埋め込むことにより形成されてもよい。或いは、スリットSAの形成に代えて、エッチングマスクを介してイオン注入(例えば酸化イオン注入)を行うことにより、高屈折率かつ高抵抗の領域が形成されてもよい。以上の工程を経て、位相同期部17および強度変調部18を含む半導体積層部10が形成される。
 続いて、図18(a)~図18(d)に示されたように、位相同期部17に含まれるコンタクト層16上に第1電極21が形成されるとともに、強度変調部18に含まれるコンタクト層16上に複数の第3電極23が形成される。図19(a)~図19(d)に示されたように、半導体基板11の裏面11bを研磨することにより、半導体基板11が薄化される。図20(a)~図20(d)に示されたように、半導体基板11の裏面11b上の全面に、プラズマCVD法を用いて反射防止膜25が形成される。マーク19を基準とするフォトリソグラフィ技術を用いて、第2電極22および第4電極24に対応する開口が反射防止膜25に形成される。図21(a)~図21(d)に示されたように、位相同期部17に含まれる半導体基板11の裏面11b上に第2電極22が形成されるとともに、強度変調部18に含まれる半導体基板11の裏面11b上に第4電極24が形成される。以上の工程を経て、本変形例の光源モジュールが作製される。その後、必要に応じて、図22(a)および図22(b)に示されたように、制御回路基板30上に光源モジュールがフリップチップ実装される。なお、図22(a)は、図15(a)、図16(a)、図17(a)、図18(a)、図19(a)、図20(a)および図21(a)に示されたI-I断面に対応する模式図であり、図22(b)は、図15(a)、図16(a)、図17(a)、図18(a)、図19(a)、図20(a)および図21(a)に示されたII-II断面に対応する模式図である。そして、第2電極22および第4電極24が、ワイヤボンディングによって制御回路基板30に接続される。
 本変形例のように、スリットSAは、半導体積層部10の表面からフォトニック結晶層14および活性層13を分割するように形成されてもよい。この場合であっても、上記実施形態と同様の作用効果を奏することができる。また、スリットSAが第2クラッド層15およびコンタクト層16をも電気的および光学的に分割するので、互いに隣接するサブピクセルPb間の電気的および光学的なクロストークは、より一層低減される。
(第2変形例)
  図23は、上記実施形態の第2変形例に係る光源モジュール1Bを示す平面図である。図24は、光源モジュール1Bを示す底面図である。なお、光源モジュール1Bの断面構成は上記実施形態と同様なので図示を省略する。
 本変形例と上記実施形態との相違は、強度変調部18におけるフォトニック結晶層14の構造である。すなわち、本変形例では、フォトニック結晶層14がN1個のサブピクセルPbに一対一に対応して設けられた位相シフト部14cを含み、位相シフト部14cは、各ピクセルPaから出力されるレーザ光LのY方向に沿った位相をN1個のサブピクセルPb間で相互に異ならせる。
 図23を参照して具体的に説明する。各ピクセルPaに含まれる3個のサブピクセルPbは、複数の異屈折率領域14bを含むフォトニック結晶層14を有する。各サブピクセルPbのフォトニック結晶層14に含まれる複数の異屈折率領域14bは、Y方向に沿って並んでいる。一つのサブピクセルPbのフォトニック結晶層14に含まれる或る一つの異屈折率領域14bと、該異屈折率領域14bに対して位相同期部17側(或いは位相同期部17内)に位置する別の異屈折率領域14bとの、Y方向に沿って定義される中心間隔(格子点間隔)はW1である。他の2つのサブピクセルPbについても、同様にして中心間隔W2,W3が設定される。この場合、上記の位相シフト部14cは、中心間隔W1~W3を互いに異ならせることによって実現される。
 これらの中心間隔は、各サブピクセルPbから出力されるレーザ光L同士の位相差が2π/Nの整数倍となるように設定される。N=3の場合、中心間隔W1~W3は、各サブピクセルPbから出力されるレーザ光L同士の位相差が2π/3の整数倍となるように設定される。一例では、中心間隔W1~W3のうち一つは格子間隔aの2/3倍(または5/3倍)に設定され、別の一つは格子間隔aの4/3倍に設定され、残りの一つは格子間隔aと等しく設定される。換言すれば、中心間隔W1と中心間隔W2との差、および、中心間隔W2と中心間隔W3との差は、格子間隔aの1/3倍に設定される。なお、上述のように、フォトニック結晶層14でΓ点発振が生じた場合、格子間隔aはλ/n(λ:発光波長、n:フォトニック結晶層14の実効屈折率)に等しい。3つのサブピクセルPbの配列順序は、上記中心間隔とは無関係に決定される。
 図25は、本変形例の一実施例として、異屈折率領域14b、第1電極21、第3電極23、およびスリットSの大きさおよび位置関係を全て同一の拡大率にて表した平面図である。図25に示された例では、13行6列(計78個)の異屈折率領域14bが、第1電極21と重なり、位相同期部17のフォトニック結晶層14を構成する。また、2行11例(計22個)の異屈折率領域14bが、第3電極23と重なり、サブピクセルPbのフォトニック結晶層14を構成する。そして、Y方向に沿って互いに隣り合う異屈折率領域14b同士の間隔がサブピクセルPbごとに異なる部分(位相シフト部14c)が、サブピクセルPbごとに設けられている。この例では、中心間隔W1が格子間隔aの2/3倍に設定され、中心間隔W2が格子間隔aの4/3倍に設定され、中心間隔W3が格子間隔aと等しく設定されている。
 なお、図25に示された例において、異屈折率領域14bの平面形状は円形であり、その直径は例えば71.9nm、中心間隔(すなわち格子間隔a)は例えば285nmである。単位構成領域Rの面積のうち異屈折率領域14bが占める割合(フィリングファクタ)は例えば20%である。スリットSのX方向に沿って定義される幅は例えば65nm(0.228a)である。なお、スリットSの幅と異屈折率領域14bの直径は、エッチングによりこれらを同時に形成する際に、異屈折率領域14bの凹部が基本層14a内に止まるとともにスリットSの凹部が第1クラッド層12に達するような条件に基づいて、決定される。X方向に沿って定義される第3電極23の幅は例えば300nmである。
 本変形例のように、各サブピクセルPbのフォトニック結晶層14が、各ピクセルPaから出力されるレーザ光Lの位相をN1個のサブピクセルPb間で相互に異ならせるための位相シフト部14cを含んでもよい。この場合、各ピクセルPaから出力されるレーザ光LのY方向の位相はサブピクセルPbごとに異なる。そして、各ピクセルPaから出力されるレーザ光LのY方向の位相は、当該ピクセルPaを構成するN1個のサブピクセルPbの強度分布および位相分布によって定まる。この場合、Y方向のレーザ光Lの位相は動的に変調可能になるが、強度変調部18において異屈折率領域14bの回折効果によりY方向に進む光波はZ方向に回折する。そのため、結果としてZ方向の位相も動的に変調可能になる。つまり、出力方向に沿っての光の位相の分布は動的に変調することが可能になり、レーザ光Lの位相分布を制御する自由度がより高められる。すなわち、図26(a)に示されたように、上記実施形態は、面上の1次方向(X方向)における発光点Laの空間位相を制御しているが、本変形例は、図26(b)に示されたように、各サブピクセルPbから面垂直方向(Z方向)に進む波面WF1~WF3の合成波面SWの位相を制御できる。
(第3変形例)
  図27は、上記実施形態の第3変形例に係る光源モジュール1Cを示す平面図である。図28は、光源モジュール1Cを示す底面図である。図29は、図27に示されたXXIX-XXIX線に沿った断面を模式的に示す図である。図30は、図27に示されたXXX-XXX線に沿った断面を模式的に示す図である。本変形例の光源モジュール1Cは、上記実施形態のフォトニック結晶層14に代えて、共振モード形成層14Aを備える。共振モード形成層14Aの配置は、上記実施形態のフォトニック結晶層14と同様である。共振モード形成層14Aを除く光源モジュール1Cの他の構成は、上記実施形態の光源モジュール1Aと同様である。また、異屈折率領域14bの形態および形成方法は上記実施形態と同様である。
 共振モード形成層14Aは、二次元の回折格子を有する。共振モード形成層14Aは、基本層14aと、基本層14aの内部に設けられた複数の異屈折率領域14bとを有する。異屈折率領域14bの屈折率は、基本層14aの屈折率と異なる。異屈折率領域14bは、基本層14a内においてX方向に対して45°傾斜した方向およびY方向から45°傾斜した方向に一定の周期で配置されている。各異屈折率領域14bの構成は、上記実施形態と同様である。
 位相同期部17の共振モード形成層14Aは、複数の異屈折率領域14bが周期的に配列されたフォトニック結晶構造を有する。そして、異屈折率領域14bは、活性層13の発光波長に対してM点発振の条件を満たす配置および間隔を有する。図31(a)は、実空間におけるM点発振を説明するための図である。図31(b)は、逆格子空間におけるM点発振を説明するための図である。これら図31(a)図31(b)に示された円は、異屈折率領域14bを表している。
 図31(a)は、XYZ三次元直交座標系を設定した実空間において、異屈折率領域14bが正方格子の格子枠の開口中心に位置している場合を示す。正方格子の格子間隔はa、X軸方向およびY軸方向に隣接する異屈折率領域14bの重心間隔は20.5・aであり、発光波長λを実効屈折率nで割った値λ/nはaの20.5倍(λ/n=a×20.5)である。この場合、共振モード形成層14Aのフォトニック結晶構造においては、M点での発振が生じる。このときX軸方向およびY軸方向にレーザ光が出力され、Z軸方向にレーザ光は出力されない。図31(b)は、図31(a)の格子の逆格子を示しており、Γ-M方向に沿って隣接する異屈折率領域14b間の間隔は(20.5π)/aであり、2neπ/λに一致している(neはフォトニック結晶層14の実効屈折率)。なお、図31(a)および図31(b)における白抜きの矢印は、光の波の進行方向を示している。
 上記の例では異屈折率領域14bが正方格子の格子枠の開口中心に位置している場合が示されているが、異屈折率領域14bは、他の格子(例えば三角格子)の格子枠の開口中心に位置してもよい。
 本実施形態の強度変調部18は、いわゆるS-iPM(Static-integrable Phase Modulating)レーザとしての構成を有する。各ピクセルPaは、半導体基板11の主面11aに垂直な方向(すなわちZ方向)またはこれに対して傾斜した方向、或いはその両方を含む方向に向けて、レーザ光Lを出力する。以下、強度変調部18の共振モード形成層14Aの構成について詳細に説明する。
 図32は、強度変調部18の共振モード形成層14Aの平面図である。図32に示されたように、共振モード形成層14Aは、基本層14aと、基本層14aとは屈折率の異なる複数の異屈折率領域14bとを含んでいる。図32では、共振モード形成層14Aに対し、X’-Y’面上における仮想的な正方格子が設定されている。X’軸はX’軸に対してZ軸回りに45°回転しており、Y’軸はY’軸に対してZ軸回りに45°回転している。正方格子の一辺は、X’軸と平行であり、他辺はY’軸と平行である。正方格子の格子点O(Y’軸に平行な線x0~x3とX’軸に平行な線y0~y2の交点)を中心とする正方形状の単位構成領域R(0、0)~R(3,2)は、X’軸に沿った複数列およびY’軸に沿った複数行にわたって二次元状に配列されている。すなわち、各単位構成領域RのX’-Y’座標が、それぞれの単位構成領域Rの重心位置により定義される。これらの重心位置は、仮想的な正方格子の格子点Oと一致する。異屈折率領域14bは、各単位構成領域R内に例えば1つずつ設けられる。格子点Oは、異屈折率領域14bの外部に位置してもよく、異屈折率領域14bの内部に含まれていてもよい。
 図33は、単位構成領域R(x、y)を拡大して示す図である。図33に示されたように、異屈折率領域14bのそれぞれは、重心Gを有する。単位構成領域R(x、y)内の位置は、s軸(X’軸に平行な軸)とt軸(Y’軸に平行な軸)で定義される座標で定義される。格子点Oから重心Gに向かうベクトルとs軸(X’軸に平行な軸)とのなす角度をα(x,y)とする。xは、X’軸におけるx番目の格子点の位置、yは、Y’軸におけるy番目の格子点の位置を示す。角度αが0°である場合、格子点Oと重心Gとを結ぶベクトルの向きは、X’軸の正方向と一致する。また、格子点Oと重心Gとを結ぶベクトルの長さをr(x,y)とする。一例では、r(x,y)は、x、yによらず、共振モード形成層14Aの全体にわたって一定である。
 図32に示されたように、格子点Oと重心Gとを結ぶベクトルの向き、すなわち、異屈折率領域14bの重心Gの格子点O周りの角度αは、出力光の所望の形状に応じた位相分布φ(x,y)に従って、格子点Oごとに個別に設定される。本開示では、このような重心Gの配置形態を第1の形態と称する。位相分布φ(x,y)は、x,yの値で決まる位置ごとに特定の値を有するが、必ずしも特定の関数で表わされるとは限らない。角度分布α(x,y)は、出力光の所望の形状をフーリエ変換して得られる複素振幅分布のうち、位相分布φ(x,y)を抽出したものから決定される。出力光の所望の形状から複素振幅分布を求める際には、ホログラム生成の計算時に一般的に用いられるGerchberg-Saxton(GS)法のような繰り返しアルゴリズムを適用するとよい。この場合、ビームパターンの再現性を向上させることが可能である。
 共振モード形成層14Aにおける異屈折率領域14bの角度分布α(x、y)は、例えば以下の手順によって決定される。
 第1の前提条件として、主面11aの法線方向に一致するZ軸と、複数の異屈折率領域14bを含む共振モード形成層14Aの一方の面に一致したX’-Y’平面と、によって定義されるX’Y’Z直交座標系において、正方形状を有するM1×N1個(M1,N1は1以上の整数)の単位構成領域Rにより構成される仮想的な正方格子がX’-Y’平面上に設定される。
 第2の前提条件として、X’Y’Z直交座標系における座標(ξ,η,ζ)は、図34に示されたように、動径の長さrと、Z軸からの傾き角θtiltと、X’-Y’平面上で特定されるX’軸からの回転角θrotと、により定義される球面座標(r,θrottilt)に対して、以下の式(1)~式(3)で示された関係を満たしているものとする。図34は、球面座標(r,θrottilt)からX’Y’Z直交座標系における座標(ξ,η,ζ)への座標変換を説明するための図であり、座標(ξ,η,ζ)により、実空間であるX’Y’Z直交座標系において設定される所定平面上の設計上の光像が表現される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 光源モジュール1Cから出力されるレーザ光Lを、角度θtiltおよびθrotで定義される方向に向かう輝点の集合とするとき、角度θtiltおよびθrotは、以下の式(4)で定義される規格化波数であってX’軸に対応したK軸上の座標値kxと、以下の式(5)で定義される規格化波数であってY’軸に対応すると共にK軸に直交するK軸上の座標値kyに換算されるものとする。規格化波数は、仮想的な正方格子の格子間隔に相当する波数2π/aを1.0として規格化された波数を意味する。このとき、K軸およびK軸により定義される波数空間において、レーザ光Lに相当するビームパターンを含む特定の波数範囲は、それぞれが正方形状のM2×N2個(M2,N2は1以上の整数)の画像領域で構成される。なお、整数M2は、整数M1と一致する必要はない。同様に、整数N2は、整数N1と一致する必要もない。式(4)および式(5)は、例えば上記非特許文献3に開示されている。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
            a:仮想的な正方格子の格子定数
            λ:光源モジュール1Cの発振波長
 第3の前提条件として、波数空間において、K軸方向の座標成分kx(0以上M2-1以下の整数)とK軸方向の座標成分ky(0以上N2-1以下の整数)とで特定される画像領域FR(kx,ky)それぞれを、X’軸方向の座標成分x(0以上M1-1以下の整数)とY’軸方向の座標成分y(0以上N1-1以下の整数)とで特定されるX’-Y’平面上の単位構成領域R(x,y)に二次元逆離散フーリエ変換することで得られる複素振幅分布F(x,y)は、jを虚数単位として、以下の式(6)で与えられる。複素振幅分布F(x,y)は、振幅分布をA(x,y)とすると共に位相分布をφ(x,y)とするとき、以下の式(7)により定義される。第4の前提条件として、単位構成領域R(x,y)は、X’軸およびY’軸にそれぞれ平行であって単位構成領域R(x,y)の中心となる格子点O(x,y)において直交する、s軸およびt軸で定義される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 上記第1~第4の前提条件の下、強度変調部18の共振モード形成層14Aは、以下の第5条件または第6条件を満たすように構成される。すなわち、第5条件は、単位構成領域R(x,y)内において、重心Gが格子点O(x,y)から離れた状態で配置されていることで満たされる。第6条件は、格子点O(x,y)から対応する重心Gまでの線分長r(x,y)がM1個×N1個の単位構成領域Rそれぞれにおいて共通の値に設定された状態で、格子点O(x,y)と対応する重心Gとを結ぶ線分と、s軸と、の成す角度α(x,y)が、
            α(x,y)=C×φ(x,y)+B
            C:比例定数であって例えば180°/π
            B:任意の定数であって例えば0
となる関係を満たすように、対応する異屈折率領域14bが単位構成領域R(x,y)内に配置されることで満たされる。
 次に、強度変調部18の共振モード形成層14AのM点発振について説明する。前述したように、M点発振のためには、仮想的な正方格子の格子間隔a、活性層13の発光波長λ、およびモードの等価屈折率nが、λ=(20.5)n×aといった条件を満たすとよい。図35は、M点発振を行う発光デバイスの位相変調層に関する逆格子空間を示す平面図である。図35中の点Pは、逆格子点を表している。図35中の矢印B1は、基本逆格子ベクトルを表しており、矢印K1,K2,K3,およびK4は、4つの面内波数ベクトルを表している。面内波数ベクトルK1~K4は、角度分布α(x,y)による波数拡がりSPをそれぞれ有している。
 面内波数ベクトルK1~K4の大きさ(すなわち面内方向の定在波の大きさ)は、基本逆格子ベクトルB1の大きさよりも小さい。したがって、面内波数ベクトルK1~K4と基本逆格子ベクトルB1とのベクトル和が0にはならず、回折によって面内方向の波数が0となり得ないので、面垂直方向(Z軸方向)への回折は生じない。このままでは、M点発振の各ピクセルPaにおいて、面垂直方向(Z軸方向)への0次光だけでなく、Z軸方向に対して傾斜した方向への+1次光および1次光も出力されない。
 本実施形態では、次のような工夫を強度変調部18の共振モード形成層14Aに施すことにより、各ピクセルPaから+1次光および1次光の一部が出力される。すなわち、図36に示されたように、面内波数ベクトルK1~K4に対し、ある一定の大きさおよび向きを有する回折ベクトルV1を加えることにより、面内波数ベクトルK1~K4のうち少なくとも1つ(図36では面内波数ベクトルK3)の大きさが2π/λ(λ:活性層13から出力される光の波長)よりも小さくなる。換言すれば、回折ベクトルV1が加えられた後の面内波数ベクトルK1~K4のうち少なくとも1つが、半径2π/λの円状領域であるライトラインLL内に収まる。
 図36において破線で示される面内波数ベクトルK1~K4は、回折ベクトルV1の加算前を表しており、実線で示される面内波数ベクトルK1~K4は、回折ベクトルV1の加算後を表している。ライトラインLLは、全反射条件に対応しており、ライトラインLL内に収まる大きさの波数ベクトルは、面垂直方向(Z軸方向)の成分を有することになる。一例では、回折ベクトルV1の方向は、Γ-M1軸またはΓ-M2軸に沿っている。回折ベクトルV1の大きさは、2π/(20.5)a-2π/λから2π/(20.5)a+2π/λの範囲内であり、一例では2π/(20.5)aである。
 続いて、面内波数ベクトルK1~K4のうち、少なくとも1つをライトラインLL内に収めるための回折ベクトルV1の大きさおよび向きについて検討する。以下の式(8)~式(11)は、回折ベクトルV1が加えられる前の面内波数ベクトルK1~K4を示す。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
波数ベクトルの広がりΔkxおよびΔkyは、以下の式(12)および式(13)をそれぞれ満たす。面内波数ベクトルのX’軸方向の広がりの最大値ΔkxmaxおよびY’軸方向の広がりの最大値Δkymaxは、設計の光像の角度広がりにより定義される。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 回折ベクトルV1を以下の式(14)のように表したとき、回折ベクトルV1が加えられた後の面内波数ベクトルK1~K4は以下の式(15)~式(18)となる。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 上記式(15)~式(18)において面内波数ベクトルK1~K4のいずれかがライトラインLL内に収まることを考慮すると、以下の式(19)の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000019
すなわち、式(19)を満たす回折ベクトルV1を加えることにより、面内波数ベクトルK1~K4のいずれかがライトラインLL内に収まり、+1次光および1次光の一部が出力される。
 ライトラインLLの大きさ(半径)を2π/λとしたのは、以下の理由による。図37は、ライトラインLLの周辺構造を模式的に説明するための図である。図37では、Z方向に位置するデバイスと空気との境界を示している。真空中の光の波数ベクトルの大きさは2π/λとなるが、図37のようにデバイス媒質中を光が伝搬するときには、屈折率nの媒質内の波数ベクトルKaの大きさは2πn/λとなる。このとき、デバイスと空気の境界を光が伝搬するためには、境界に平行な波数成分が連続している必要がある(波数保存則)。
 図37において、波数ベクトルKaとZ軸とが角度θをなす場合、面に投影された波数ベクトル(すなわち面内波数ベクトル)Kbの長さは、(2πn/λ)sinθとなる。一方で、一般には媒質の屈折率nは1より大きいので、媒質内の面内波数ベクトルKbが2π/λより大きくなる角度では、波数保存則が成立しなくなる。このとき、光は全反射し、空気側に取り出すことができなくなる。この全反射条件に対応する波数ベクトルの大きさがライトラインLLの大きさ、すなわち、2π/λとなる。
 面内波数ベクトルK1~K4に回折ベクトルV1を加える具体的な方式の一例として、所望の出力光形状に応じた位相分布φ(x,y)に対し、所望の出力光形状とは無関係の位相分布φ(x,y)を重畳する方式が考えられる。この場合、強度変調部18の共振モード形成層14Aの位相分布φ(x,y)は、φ(x,y)=φ(x,y)+φ(x,y)として表される。φ(x,y)は、前に述べたように出力光の所望の形状をフーリエ変換したときの複素振幅の位相に相当する。また、φ(x,y)は、上記式(19)を満たす回折ベクトルV1を加えるための位相分布である。なお、回折ベクトルV1の位相分布φ(x,y)は、回折ベクトルV1(Vx,Vy)と位置ベクトルr(x、y)との内積で表され、次式で与えられる。
φ(x,y)=V1・r=Vxx+Vyy
 図38は、位相分布φ(x,y)の一例を概念的に示す図である。図38の例では、第1の位相値φと、第1の位相値φとは異なる値の第2の位相値φとが市松模様に配列されている。一例では、位相値φは、0(rad)であり、位相値φは、π(rad)である。この場合、第1の位相値φと、第2の位相値φとがπずつ変化する。このような位相値の配列によって、Γ-M1軸またはΓ-M2軸に沿う回折ベクトルV1を好適に実現することができる。市松模様の配列の場合、V1=(±π/a,±π/a)となり、回折ベクトルV1と図36の面内波数ベクトルK1~K4のいずれか一つとが、丁度相殺される。したがって、+1次光と-1次光との対称軸が、Z方向、すなわち共振モード形成層14Aの面上で定義される方向に対して垂直な方向に一致する。また、位相値φ,φの配列方向を45°から変化させることにより、回折ベクトルV1の向きを任意の向きに調整することもできる。なお、前述のように、回折ベクトルV1は、面内波数ベクトルK1~K4のうち少なくとも1つがライトラインLLに入る範囲内であれば、(±π/a、±π/a)からシフトしていてもよい。
 本変形例において、出力光の角度広がりに基づく波数広がりが、波数空間上の或る点を中心とする半径Δkの円に含まれる場合、次のように簡略に考えることもできる。4方向の面内波数ベクトルK1~K4に回折ベクトルV1を加えることにより、4方向の面内波数ベクトルK1~K4のうち少なくとも1つの大きさが2π/λ(ライトラインLL)よりも小さくなる。このことは、4方向の面内波数ベクトルK1~K4から波数拡がりΔkが除かれたベクトルに対して回折ベクトルV1を加えることにより、4方向の面内波数ベクトルK1~K4のうち少なくとも1つの大きさが、2π/λから波数拡がりΔkを差し引いた値{(2π/λ)-Δk}より小さくなる、と考えてよい。
 図39は、上記の考え方を概念的に示す図である。図39に示されたように、波数拡がりΔkが除かれた面内波数ベクトルK1~K4に対して回折ベクトルV1を加えると、面内波数ベクトルK1~K4のうち少なくとも1つの大きさが{(2π/λ)-Δk}よりも小さくなる。図39において、領域LL2は、半径が{(2π/λ)-Δk}の円状の領域である。図39において、破線で示される面内波数ベクトルK1~K4は、回折ベクトルV1の加算前を表しており、実線で示される面内波数ベクトルK1~K4は、回折ベクトルV1の加算後を表している。領域LL2は、波数拡がりΔkを考慮した全反射条件に対応しており、領域LL2内に収まる大きさの波数ベクトルは、面垂直方向(Z軸方向)にも伝搬することとなる。
 この形態において、面内波数ベクトルK1~K4のうち少なくとも1つを領域LL2内に収めるための回折ベクトルV1の大きさおよび向きを説明する。以下の式(20)~式(23)は、回折ベクトルV1が加えられる前の面内波数ベクトルK1~K4を示す。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 ここで、回折ベクトルV1を上記式(14)のように表したとき、回折ベクトルV1が加えられた後の面内波数ベクトルK1~K4は、以下の式(24)~式(27)となる。
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
 上記式(24)~式(27)において、面内波数ベクトルK1~K4のいずれかが領域LL2内に収まることを考慮すると、以下の式(28)の関係が成り立つ。すなわち、式(28)を満たす回折ベクトルV1を加えることにより、波数拡がりΔkを除いた面内波数ベクトルK1~K4のいずれかが領域LL2内に収まる。このような場合であっても、+1次光および1次光の一部が出力され得る。
Figure JPOXMLDOC01-appb-M000028
 図40は、強度変調部18の共振モード形成層の別の形態として、共振モード形成層14Bを示す平面図である。図41は、強度変調部18の共振モード形成層14Bにおける異屈折率領域14bの配置を示す図である。図40および図41に示されたように、共振モード形成層14Bの各異屈折率領域14bの重心Gは、直線D上に配置されてもよい。正方格子の格子点Oは、Y’軸に平行な線x0~x3とX’軸に平行なy0~y2の交点で定義され、図32の例と同様に、各格子点Oを中心とする正方領域(正方格子)が単位構成領域R(0,0)~R(3,2)に設定される。直線Dは、単位構成領域R(x、y)に対応する格子点Oを通り、正方格子の各辺に対して傾斜する直線である。つまり、直線Dは、X’軸およびY’軸の双方に対して傾斜する直線である。正方格子の一辺(X’軸)に対する直線Dの傾斜角は、βである。
 この場合、傾斜角βは、強度変調部18の共振モード形成層14B内において一定である。傾斜角βは、0°<β<90°を満たし、一例ではβ=45°である。或いは、傾斜角βは、180°<β<270°を満たし、一例ではβ=225°である。傾斜角βが0°<β<90°または180°<β<270°を満たす場合、直線Dは、X’軸およびY’軸によって定義される座標平面の第1象限から第3象限にわたって延びる。傾斜角βは、90°<β<180°を満たし、一例ではβ=135°である。或いは、傾斜角βは、270°<β<360°を満たし、一例ではβ=315°である。傾斜角βが90°<β<180°または270°<β<360°を満たす場合、直線Dは、X’軸およびY’軸によって定義される座標平面の第2象限から第4象限にわたって延びる。このように、傾斜角βは、0°、90°、180°および270°を除く角度となっている。
 ここで、X’軸に平行なs軸とY’軸に平行なt軸によって座標が定義される単位構成領域R(x、y)において、格子点Oと重心Gとの距離をr(x,y)とする。xは、X’軸におけるx番目の格子点の位置であり、yは、Y’軸におけるy番目の格子点の位置である。距離r(x,y)が正の値である場合、重心Gは、第1象限(または第2象限)に位置する。距離r(x,y)が負の値である場合、重心Gは、第3象限(または第4象限)に位置する。距離r(x,y)が0である場合、格子点Oと重心Gとが互いに一致する。傾斜角度は、45°、135°、225°、275°が好適である。これらの傾斜角度では、M点の定在波を形成する4つの波数ベクトル(例えば、面内波数ベクトル(±π/a、±π/a))の中の2つのみが位相変調され、その他の2つが位相変調されないため、安定した定在波の形成が可能になる。
 各異屈折率領域の重心Gと各単位構成領域Rに対応する格子点Oとの距離r(x,y)は、所望の出力光形状に応じた位相分布φ(x,y)にしたがって異屈折率領域14bごとに個別に設定される。本開示では、このような重心Gの配置形態を第2の形態と称する。位相分布φ(x,y)および距離分布r(x,y)は、x,yの値で決まる位置ごとに特定の値を有するが、必ずしも特定の関数で表わされるとは限らない。距離r(x,y)の分布は、所望の出力光形状を逆フーリエ変換して得られる複素振幅分布のうち位相分布φ(x,y)を抽出したものから決定される。
 すなわち、或る座標(x,y)における位相φ(x,y)がP0である場合には、距離r(x,y)が0に設定され、位相φ(x,y)がπ+P0である場合には、距離r(x,y)が最大値R0に設定され、位相φ(x,y)が-π+P0である場合には、距離r(x,y)が最小値-R0に設定される。そして、その中間の位相φ(x,y)に対しては、r(x,y)={φ(x,y)-P0}×R0/πとなるように距離r(x,y)が設定される。初期位相P0は、任意に設定可能である。
 仮想的な正方格子の格子間隔をaとすると、r(x,y)の最大値R0は、例えば以下の式(29)の範囲内となる。所望の光像から複素振幅分布を求める際には、ホログラム生成の計算時に一般的に用いられるGS法のような繰り返しアルゴリズムを適用することによって、ビームパターンの再現性を向上させることが可能である。
Figure JPOXMLDOC01-appb-M000029
 この第2の形態においては、共振モード形成層14Bの異屈折率領域14bの距離r(x,y)の分布を決定することにより、所望の光出力形状を得ることができる。前述の第1の形態と同様の第1~第4の前提条件の下、共振モード形成層14Bは、以下の条件を満たすよう構成される。すなわち、格子点O(x,y)から対応する異屈折率領域14bの重心Gまでの距離r(x,y)が、
            r(x,y)=C×(φ(x,y)-P0
            C:比例定数で例えばR0/π
            P0:任意の定数であって例えば0
となる関係を満たすように、対応する異屈折率領域14bが単位構成領域R(x,y)内に配置される。所望の光出力形状を得たい場合、当該光出力形状を逆フーリエ変換して、その複素振幅の位相φ(x,y)に応じた距離r(x,y)の分布を複数の異屈折率領域14bに与えるとよい。位相φ(x,y)と距離r(x,y)とは、互いに比例してもよい。
 この第2の形態においても、前述の第1の形態と同様に、仮想的な正方格子の格子間隔aと活性層13の発光波長λとがM点発振の条件を満たす。さらに、共振モード形成層14Bにおいて逆格子空間を考えるとき、距離r(x,y)の分布による波数拡がりをそれぞれ含む4方向の面内波数ベクトルK1~K4のうち少なくとも1つの大きさは、2π/λすなわちライトラインLLよりも小さい。
 この第2の形態においても、M点で発振する発光デバイスにおいて次のような工夫を共振モード形成層14Bに施すことにより、+1次光および1次光の一部が出力される。具体的には、図36に示されたように、面内波数ベクトルK1~K4に対してある一定の大きさおよび向きを有する回折ベクトルV1を加えることにより、面内波数ベクトルK1~K4のうち少なくとも1つの大きさが、2π/λよりも小さくなる。すなわち、回折ベクトルV1が加えられた後の面内波数ベクトルK1~K4のうち少なくとも1つが半径2π/λの円状領域であるライトラインLL内に収められる。上記式(19)を満たす回折ベクトルV1を加えることにより、面内波数ベクトルK1~K4のいずれかがライトラインLL内に収まり、+1次光および1次光の一部が出力される。
 或いは、図39に示されたように、4方向の面内波数ベクトルK1~K4から波数拡がりΔkが除かれたベクトル(すなわちM点発振の正方格子PCSELにおける4方向の面内波数ベクトル)に対して回折ベクトルV1を加えることにより、4方向の面内波数ベクトルK1~K4のうち少なくとも1つの大きさは、2π/λから波数拡がりΔkを差し引いた値{(2π/λ)-Δk}より小さくなってもよい。すなわち、上記式(28)を満たす回折ベクトルV1を加えることにより、面内波数ベクトルK1~K4のいずれかが領域LL2内に収まり、+1次光および1次光の一部が出力される。
 以上に説明された、本変形例による光源モジュール1Cによって得られる作用効果について説明する。第1電極21と第2電極22との間、および第3電極23と第4電極24との間にバイアス電流が供給されると、位相同期部17および強度変調部18のそれぞれにおいて、第1クラッド層12と第2クラッド層15との間にキャリアが集まり、活性層13において光が効率的に発生する。活性層13から出力された光は、共振モード形成層14Aに入り、共振モード形成層14A内において厚み方向に垂直な、X方向およびY方向に共振する。この光は、位相同期部17の共振モード形成層14A内において、位相が揃ったコヒーレントなレーザ光となる。
 強度変調部18の一部を構成する共振モード形成層14Aの部分は、位相同期部17の一部を構成する共振モード形成層14Aの部分に対してY方向に沿って並んでいる。そのため、各サブピクセルPbの共振モード形成層14A内のレーザ光の位相は位相同期部17の共振モード形成層14A内のレーザ光の位相と一致する。その結果、サブピクセルPb相互間において共振モード形成層14A内のレーザ光の位相が揃う。
 本変形例の共振モード形成層14AはM点で発振するが、強度変調部18の共振モード形成層14Aにおいては、複数の異屈折率領域14bの分布形態が、強度変調部18からX方向およびY方向の双方と交差する方向にレーザ光Lが出力されるための条件を満たす。したがって、強度変調部18の各サブピクセルPbからは、位相が揃ったレーザ光Lが、X方向およびY方向の双方と交差する方向(例えば、Z方向に対して傾斜する方向)に出力される。このレーザ光Lの一部は、共振モード形成層14Aから直接半導体基板11に達する。また、このレーザ光Lの残部は、共振モード形成層14Aから第3電極23に達し、第3電極23において反射した後、半導体基板11に達する。レーザ光Lは、半導体基板11を透過し、半導体基板11の裏面11bから第4電極24の開口24aを通って光源モジュール1Cの外部へ出る。
 本変形例においても、第3電極23は、各サブピクセルPbに対応して設けられている。したがって、強度変調部18に供給するバイアス電流の大きさを、サブピクセルPbごとに個別に調整することができる。すなわち、強度変調部18から出力されるレーザ光Lの光強度は、サブピクセルPbごとに個別に(独立して)調整され得る。また、各ピクセルPaにおいて連続するN2個のサブピクセルPbからなる領域の配列方向(X方向)の長さDa(図27および図30を参照)は、活性層13の発光波長λすなわちレーザ光Lの波長よりも小さい。上記実施形態において説明されように、各ピクセルPaを構成するN1個のサブピクセルPbのうち、同時に光を出力するサブピクセルPbが連続するN2個のサブピクセルPbに限定される場合、各ピクセルPaは、等価的に単一の位相を有する画素と見なせる。そして、各ピクセルPaを構成するN1個のサブピクセルPbから出力されるレーザ光Lの位相が互いに揃っている場合、各ピクセルPaから出力されるレーザ光Lの位相は、当該ピクセルPaを構成するN1個のサブピクセルPbにより実現される強度分布によって定まる。したがって、本変形例の光源モジュール1Cにおいても、レーザ光Lの位相分布を動的に制御することができる。なお、上記の効果は、共振モード形成層14Aに代えて共振モード形成層14Bを設けた場合においても同様に得られる。
 本変形例のように、位相同期部17に含まれる共振モード形成層14A(または14B)は、複数の異屈折率領域14bが周期的に配列されたフォトニック結晶構造を有してもよい。この場合、位相が揃ったレーザ光を位相同期部17から各サブピクセルPbに供給することができる。
 本変形例のように、強度変調部18からX方向およびY方向の双方と交差する方向にレーザ光Lが出力されるための条件は、強度変調部18から出力されるレーザ光Lの角度広がりに対応した波数拡がりをそれぞれ含む4方向の面内波数ベクトルK1~K4が共振モード形成層14A(または14B)の逆格子空間上において形成され、少なくとも1つの面内波数ベクトルの大きさが2π/λ、すなわちライトラインLLよりも小さいことであってもよい。前述のように、通常、M点発振の定在波状態においては共振モード形成層14A(または14B)内を伝搬する光が全反射してしまい、信号光(例えば+1次光および1次光のうち少なくとも一方)および0次光の双方の出力が抑制される。これに対し、S-iPMレーザでは、各異屈折率領域14bの配置を工夫することにより、上記のような面内波数ベクトルK1~K4の調整が可能である。そして、少なくとも1つの面内波数ベクトルの大きさが2π/λよりも小さい場合、その面内波数ベクトルは、共振モード形成層14A(または14B)の厚み方向(Z方向)の成分を有するとともに、空気との界面において全反射を生じない。結果的に、信号光の一部がレーザ光Lとして各ピクセルPaから出力され得る。
 (第4変形例)
  図42は、上記実施形態の第4変形例に係る光源モジュール1Dを示す平面図である。図43は、光源モジュール1Dを示す底面図である。なお、光源モジュール1Dの断面構成は前述した第3変形例と同様なので図示を省略する。
 本変形例と上記第3変形例との相違は、強度変調部18における共振モード形成層14A(または14B)の構造である。すなわち、本変形例では、前述の第2変形例と同様、各ピクセルPaから出力されるレーザ光LのY方向に沿った位相をN1個のサブピクセルPb間で相互に異ならせるための位相シフト部14cが、各サブピクセルPbの共振モード形成層14A(または14B)が含まれる。位相シフト部14cの詳細は第2変形例と同様である。
 本変形例のように、各ピクセルPaから出力されるレーザ光LのY方向に沿った位相をN1個のサブピクセルPb間で相互に異ならせるための位相シフト部14cは、各サブピクセルPbの共振モード形成層14A(または14B)が含まれてもよい。この場合、各ピクセルPaから出力されるレーザ光Lの位相はサブピクセルPbごとに異なる。そして、各ピクセルPaから出力されるレーザ光Lの位相は、当該ピクセルPaを構成するN1個のサブピクセルPbの強度分布および位相分布によって定まる。故に、レーザ光Lの位相分布を制御する自由度をより高めることができる。
 本開示による光源モジュールは、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態および各変形例では、複数のピクセルPaが一次元状に配列された例が示されたが、複数のピクセルPaは二次元状に配列されてもよい。その場合、例えば上記実施形態または各変形例に開示された光源モジュールを複数組み合わせてもよい。また、上記実施形態では半導体積層部10がGaAs系半導体を主に含む例が示されたが、半導体積層部10は、InP系半導体を主に含んでもよく、GaN系半導体を主に含んでもよい。
 1A~1D…光源モジュール、10…半導体積層部、11…半導体基板(第1導電型半導体層に含まれる)、11a…主面、11b…裏面、12…第1クラッド層(第1導電型半導体層に含まれる)、13…活性層、14…フォトニック結晶層、14A,14B…共振モード形成層、14a…基本層、14b…異屈折率領域、14c…位相シフト部、15…第2クラッド層(第2導電型半導体層に含まれる)、16…コンタクト層(第2導電型半導体層に含まれる)、17…位相同期部、18…強度変調部、19…マーク、21…第1電極、22…第2電極、23…第3電極、24…第4電極、24a…開口、25…反射防止膜、30…制御回路基板、31…導電性接合材、B1…基本逆格子ベクトル、D…直線、G…重心、K1~K4,Ka,Kb…面内波数ベクトル、L…レーザ光、La…発光点、LL…ライトライン、LL2…領域、O…格子点、Pa…ピクセル、Pb…サブピクセル、R…単位構成領域、S,SA…スリット、SP…波数拡がり、SW…合成波面、V1…回折ベクトル、WF1~WF3…波面。

Claims (10)

  1.  第1導電型半導体層と、第2導電型半導体層と、前記第1導電型半導体層と前記第2導電型半導体層との間に配置されるとともに活性層およびΓ点発振を生じさせるフォトニック結晶層で構成された積層体と、を含む半導体積層部であって、前記フォトニック結晶層の共振方向の一つである第1方向に沿って並ぶ位相同期部と強度変調部とを有し、前記強度変調部の少なくとも一部を構成する前記積層体の部分が前記第1方向と交差する第2方向に沿って並ぶM個(Mは2以上の整数)のピクセルを有し、前記M個のピクセルそれぞれが前記第2方向に沿って並ぶN1個(N1は2以上の整数)のサブピクセルを含み、前記N個のサブピクセルのうち連続するN2個(N2は2以上N1以下の整数)のサブピクセルで構成された領域の前記第2方向に沿って定義される長さが前記活性層の発光波長λよりも小さい半導体積層部と、
     前記位相同期部の少なくとも一部を構成する前記第1導電型半導体層の部分に電気的に接続された第1電極と、
     前記位相同期部の少なくとも一部を構成する前記第2導電型半導体層の部分に電気的に接続された第2電極と、
     前記N1個のサブピクセルに一対一に対応して設けられた第3電極であって、前記強度変調部の少なくとも一部を構成する前記第1導電型半導体層の部分および前記第2導電型半導体層の部分のうち一方に電気的にそれぞれ接続された第3電極と、
     前記強度変調部の少なくとも一部を構成する前記第1導電型半導体層の前記部分および前記第2導電型半導体層の前記部分のうち他方に電気的に接続された第4電極と、
     を備え、
     前記強度変調部に含まれる前記M個のピクセルそれぞれから前記第1方向および前記第2方向の双方と交差する方向に沿って光が出力される、
     光源モジュール。
  2.  前記フォトニック結晶層は、前記N1個のサブピクセルに一対一に対応して設けられた位相シフト部であって、前記M個のピクセルそれぞれから出力される光の前記第1方向に沿った位相を前記N1個のサブピクセル間で相互に異ならせるための位相シフト部を含む、
     請求項1に記載の光源モジュール。
  3.  第1導電型半導体層と、第2導電型半導体層と、前記第1導電型半導体層と前記第2導電型半導体層との間に配置されるとともに活性層および共振モード形成層で構成された積層体と、を含む半導体積層部であって、前記共振モード形成層の共振方向の一つである第1方向に沿って並ぶ位相同期部と強度変調部とを有し、前記強度変調部の少なくとも一部を構成する前記積層体の部分が、前記第1方向と交差する第2方向に沿って並ぶM個(Mは2以上の整数)のピクセルを有し、前記M個のピクセルが前記第2方向に沿って並ぶN1個(N1は2以上の整数)のサブピクセルを含み、前記N1個のサブピクセルのうち連続するN2個(N2は2以上N1以下の整数)のサブピクセルからなる領域の前記第2方向に沿って定義される長さが前記活性層の発光波長λよりも小さい半導体積層部と、
     前記位相同期部の少なくとも一部を構成する前記第1導電型半導体層の部分に電気的に接続された第1電極と、
     前記位相同期部の少なくとも一部を構成する前記第2導電型半導体層の部分に電気的に接続された第2電極と、
     前記N1個のサブピクセルに一対一に対応して設けられた第3電極であって、前記強度変調部の少なくとも一部を構成する前記第1導電型半導体層の部分および前記第2導電型半導体層の部分のうち一方に電気的に接続された第3電極であってと、
     前記強度変調部の少なくとも一部を構成する前記第1導電型半導体層の部分および前記第2導電型半導体層の部分のうち他方に電気的に接続された第4電極と、
     を備え、
     前記共振モード形成層は、基本層と、前記基本層の屈折率とは異なる屈折率を有するとともに前記共振モード形成層の厚み方向と垂直な面上において二次元状に分布する複数の異屈折率領域とを含み、
     前記複数の異屈折率領域の配置がM点発振の条件を満たし、
     前記強度変調部の少なくとも一部を構成する前記共振モード形成層の部分は、前記面上に設定された仮想的な正方格子において、前記複数の異屈折率領域それぞれは、その重心が前記仮想的な正方格子の格子点のうち対応する格子点から離れて配置されるとともに前記対応する格子点と当該重心とを結ぶベクトルの、前記仮想的な正方格子に対する角度が個別に設定される第1の形態、および、その重心が前記対応する格子点を通りかつ前記正方格子に対して傾斜する直線上に配置されるとともに当該重心と前記対応する格子点との距離が個別に設定される第2の形態のうちいずれかの形態で配置されており、
     前記第1の形態における前記ベクトルの角度の分布、または、前記第2の形態における前記距離の分布は、前記強度変調部から前記第1方向および前記第2方向の双方と交差する方向に光が出力されるための条件を満たす、
     光源モジュール。
  4.  前記位相同期部の少なくとも一部を構成する前記共振モード形成層の部分は、前記複数の異屈折率領域が周期的に配列されたフォトニック結晶構造を有する、
     請求項3に記載の光源モジュール。
  5.  前記共振モード形成層は、前記N1個のサブピクセルに一対一に対応して設けられた位相シフト部であって、前記M個のピクセルそれぞれから出力される光の前記第1方向に沿った位相を前記N1個のサブピクセル間で相互に異ならせるための位相シフト部を含む、
     請求項3または4に記載の光源モジュール。
  6.  前記強度変調部から前記第1方向および前記第2方向の双方と交差する方向に光が出力されるための条件は、前記強度変調部から出力される光の角度広がりに対応した波数拡がりをそれぞれ含む4方向の面内波数ベクトルが前記共振モード形成層の逆格子空間上において形成され、前記4方向の面内波数ベクトルのうち少なくとも1つの面内波数ベクトルの大きさが2π/λよりも小さいことである、
     請求項3~5のいずれか一項に記載の光源モジュール。
  7.  前記第1電極は、前記位相同期部の少なくとも一部を構成する前記第1導電型半導体層の前記部分に接触した状態で前記第1導電型半導体層の前記部分の全面を覆い、
     前記第2電極は、前記位相同期部の少なくとも一部を構成する前記第2導電型半導体層の前記部分に接触した状態で前記第2導電型半導体層の前記部分の全面を覆う、
     請求項1~6のいずれか一項に記載の光源モジュール。
  8.  前記第3電極は、前記強度変調部の少なくとも一部を構成する前記第1導電型半導体層の前記部分および前記第2導電型半導体層の前記部分のうち一方に接触し、
     前記第4電極は、前記光を通過させるための開口を囲む枠状の形状を有するとともに、前記強度変調部の少なくとも一部を構成する前記第1導電型半導体層の部分および前記第2導電型半導体層の部分のうち他方に接触している、
     請求項1~7のいずれか一項に記載の光源モジュール。
  9.  前記半導体積層部は、複数のスリットを含み、前記N1個のサブピクセルと前記複数のスリットは、前記第2方向に沿って1個ずつ交互に並んでいる、
     請求項1~8のいずれか一項に記載の光源モジュール。
  10.  前記N1個のサブピクセルは3個以上のサブピクセルを含み、前記N個のサブピクセルは3個以上のサブピクセルを含む、
     請求項1~9のいずれか一項に記載の光源モジュール。
PCT/JP2021/001315 2020-01-20 2021-01-15 光源モジュール WO2021149621A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112021000652.5T DE112021000652T5 (de) 2020-01-20 2021-01-15 Lichtquellenmodul
US17/792,181 US20230102430A1 (en) 2020-01-20 2021-01-15 Light source module
CN202180009816.9A CN115004491A (zh) 2020-01-20 2021-01-15 光源模块

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020006907A JP7308157B2 (ja) 2020-01-20 2020-01-20 光源モジュール
JP2020-006907 2020-01-20
JP2020-006906 2020-01-20
JP2020006906A JP7445437B2 (ja) 2020-01-20 2020-01-20 光源モジュール及び光変調モジュール
JP2020160719A JP6891327B1 (ja) 2020-09-25 2020-09-25 光源モジュール
JP2020-160719 2020-09-25

Publications (1)

Publication Number Publication Date
WO2021149621A1 true WO2021149621A1 (ja) 2021-07-29

Family

ID=76992342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001315 WO2021149621A1 (ja) 2020-01-20 2021-01-15 光源モジュール

Country Status (4)

Country Link
US (1) US20230102430A1 (ja)
CN (1) CN115004491A (ja)
DE (1) DE112021000652T5 (ja)
WO (1) WO2021149621A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021803A1 (ja) * 2021-08-18 2023-02-23 浜松ホトニクス株式会社 位相変調層の設計方法、及び、発光素子の製造方法
WO2023171629A1 (ja) * 2022-03-09 2023-09-14 浜松ホトニクス株式会社 半導体発光素子
WO2023171450A1 (ja) * 2022-03-09 2023-09-14 浜松ホトニクス株式会社 位相分布設計方法、位相分布設計装置、位相分布設計プログラム及び記録媒体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330619A (ja) * 1998-05-18 1999-11-30 Nippon Telegr & Teleph Corp <Ntt> 光デバイス
JP2004253811A (ja) * 2002-02-08 2004-09-09 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
WO2014175447A1 (ja) * 2013-04-26 2014-10-30 浜松ホトニクス株式会社 半導体レーザ装置
WO2018181204A1 (ja) * 2017-03-27 2018-10-04 浜松ホトニクス株式会社 半導体発光モジュールおよびその制御方法
US20190089128A1 (en) * 2017-08-31 2019-03-21 Apple Inc. Creating arbitrary patterns on a 2-D uniform grid VCSEL array

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5850366B2 (ja) 2011-12-06 2016-02-03 国立大学法人京都大学 半導体レーザ素子及びレーザビーム偏向装置
JP7135519B2 (ja) 2018-07-12 2022-09-13 スズキ株式会社 ホイールハウス構造
JP7137382B2 (ja) 2018-07-12 2022-09-14 Kybモーターサイクルサスペンション株式会社 緩衝器支持装置及び懸架装置
JP7252029B2 (ja) 2019-03-26 2023-04-04 本田技研工業株式会社 サーバ装置、情報提供方法、およびプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330619A (ja) * 1998-05-18 1999-11-30 Nippon Telegr & Teleph Corp <Ntt> 光デバイス
JP2004253811A (ja) * 2002-02-08 2004-09-09 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
WO2014175447A1 (ja) * 2013-04-26 2014-10-30 浜松ホトニクス株式会社 半導体レーザ装置
WO2018181204A1 (ja) * 2017-03-27 2018-10-04 浜松ホトニクス株式会社 半導体発光モジュールおよびその制御方法
US20190089128A1 (en) * 2017-08-31 2019-03-21 Apple Inc. Creating arbitrary patterns on a 2-D uniform grid VCSEL array

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021803A1 (ja) * 2021-08-18 2023-02-23 浜松ホトニクス株式会社 位相変調層の設計方法、及び、発光素子の製造方法
WO2023171629A1 (ja) * 2022-03-09 2023-09-14 浜松ホトニクス株式会社 半導体発光素子
WO2023171450A1 (ja) * 2022-03-09 2023-09-14 浜松ホトニクス株式会社 位相分布設計方法、位相分布設計装置、位相分布設計プログラム及び記録媒体

Also Published As

Publication number Publication date
DE112021000652T5 (de) 2022-11-24
CN115004491A (zh) 2022-09-02
US20230102430A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
WO2021149621A1 (ja) 光源モジュール
JP6309947B2 (ja) 半導体レーザ装置
WO2019221133A1 (ja) 発光デバイス
JP6401701B2 (ja) 半導体レーザ装置
CN112640234B (zh) 发光装置
JP7245169B2 (ja) 発光装置およびその製造方法
CN112335145B (zh) 发光元件
CN109690890B (zh) 半导体发光元件和包含其的发光装置
CN112272906B (zh) 发光元件
WO2021241701A1 (ja) 光学デバイスおよび発光デバイス
JP6891327B1 (ja) 光源モジュール
JP7103817B2 (ja) 半導体発光素子
JP7109179B2 (ja) 発光装置
WO2021149620A1 (ja) 光源モジュール
JP7477420B2 (ja) 光導波構造及び光源装置
JP6925249B2 (ja) 発光装置
JP7241694B2 (ja) 発光装置およびその製造方法
WO2022224591A1 (ja) 面発光レーザ素子
WO2023021803A1 (ja) 位相変調層の設計方法、及び、発光素子の製造方法
JP7015684B2 (ja) 位相変調層設計方法
WO2021132374A1 (ja) 空間光変調器および発光装置
WO2022071330A1 (ja) 半導体レーザ素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744049

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21744049

Country of ref document: EP

Kind code of ref document: A1