WO2021149484A1 - 画像生成装置、画像生成方法、および、プログラム - Google Patents

画像生成装置、画像生成方法、および、プログラム Download PDF

Info

Publication number
WO2021149484A1
WO2021149484A1 PCT/JP2021/000141 JP2021000141W WO2021149484A1 WO 2021149484 A1 WO2021149484 A1 WO 2021149484A1 JP 2021000141 W JP2021000141 W JP 2021000141W WO 2021149484 A1 WO2021149484 A1 WO 2021149484A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
satellite
time
real
image generation
Prior art date
Application number
PCT/JP2021/000141
Other languages
English (en)
French (fr)
Inventor
至 清水
哲士 梅田
直道 菊地
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2021573048A priority Critical patent/JPWO2021149484A1/ja
Priority to CN202180009106.6A priority patent/CN114981846A/zh
Priority to US17/783,168 priority patent/US20230015980A1/en
Priority to EP21743834.0A priority patent/EP4095809A4/en
Publication of WO2021149484A1 publication Critical patent/WO2021149484A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • G06T15/205Image-based rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4038Image mosaicing, e.g. composing plane images from plane sub-images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2215/00Indexing scheme for image rendering
    • G06T2215/16Using real world measurements to influence rendering

Definitions

  • the present technology relates to an image generator, an image generation method, and a program, and in particular, an image generator capable of observing an arbitrary point on the ground at an arbitrary time from a free viewpoint in the sky.
  • Image generation method and program a program for observing an arbitrary point on the ground at an arbitrary time from a free viewpoint in the sky.
  • a 3D model that enables playback and display of an object as a subject from any free viewpoint is used.
  • the three-dimensional data of the 3D model of the subject is converted into, for example, a plurality of texture images and depth images taken from a plurality of viewpoints, transmitted to the reproduction device, and displayed on the reproduction side (see, for example, Patent Document 2).
  • This technology was made in view of such a situation, and makes it possible to observe any point on the ground at any time from a free viewpoint in the sky.
  • the image generator on one side of the present technology uses a 3D model of a stationary subject generated using a satellite image captured by an artificial satellite and dynamic subject identification information for identifying a dynamic subject in the sky. It is provided with an image generation unit that generates a free viewpoint image of a predetermined point on the ground from a predetermined virtual viewpoint.
  • the image generation device obtains a 3D model of a stationary subject generated by using a satellite image captured by an artificial satellite and dynamic subject identification information for identifying a dynamic subject. It is used to generate a free-viewpoint image of a predetermined point on the ground from a predetermined virtual viewpoint in the sky.
  • the program of one aspect of the present technology uses a computer in the sky using a 3D model of a stationary subject generated by using a satellite image captured by an artificial satellite and dynamic subject identification information for identifying a dynamic subject. This is for functioning as an image generation unit that generates a free-viewpoint image of a predetermined point on the ground viewed from a predetermined virtual viewpoint of the above.
  • a predetermined virtual sky above is used by using a 3D model of a stationary subject generated by using a satellite image imaged by an artificial satellite and dynamic subject identification information for identifying a dynamic subject.
  • a free-viewpoint image is generated that looks at a predetermined point on the ground from the viewpoint.
  • the image generator which is one aspect of the present technology, can be realized by causing a computer to execute a program.
  • the program to be executed by the computer can be provided by transmitting via a transmission medium or by recording on a recording medium.
  • the image generation device may be an independent device or an internal block constituting one device.
  • FIG. 1 is a block diagram showing a configuration example of a satellite image processing system as an embodiment to which the present technology is applied.
  • the satellite image processing system 1 of FIG. 1 uses images (hereinafter, referred to as satellite images) captured by a plurality of artificial satellites (hereinafter, simply referred to as satellites) at an arbitrary point on the ground at an arbitrary time.
  • satellite images images
  • the satellite is equipped with an imaging device and has at least a function of imaging the ground.
  • the satellite operating company has a satellite management device 11 that manages a plurality of satellites 21 and a plurality of communication devices 13 that communicate with the satellites 21.
  • the satellite management device 11 and a part of the plurality of communication devices 13 may be devices owned by a company other than the satellite operating company.
  • the satellite management device 11 and the plurality of communication devices 13 are connected to each other via a predetermined network 12.
  • the communication device 13 is arranged at the ground station (ground base station) 15. Note that FIG. 1 shows an example in which the number of communication devices 13 is three, that is, the communication devices 13A to 13C, but the number of communication devices 13 is arbitrary.
  • the satellite management device 11 manages a plurality of satellites 21 owned by the satellite operating company. Specifically, the satellite management device 11 acquires related information from the information providing servers 41 of one or more external organizations as necessary, and determines the operation plan of the plurality of satellites 21 owned by the satellite management device 11. Then, the satellite management device 11 causes the predetermined satellite 21 to perform imaging by giving an imaging instruction to the predetermined satellite 21 via the communication device 13 in response to the customer's request. Further, the satellite management device 11 acquires and stores a satellite image transmitted from the satellite 21 via the communication device 13. The acquired satellite image is subjected to predetermined image processing as necessary and provided (transmitted) to the customer. Further, the acquired satellite image is provided (transmitted) to the free viewpoint image generator 51 of the image providing company.
  • the information providing server 41 installed in the external organization supplies predetermined related information to the satellite management device 11 via a predetermined network in response to a request from the satellite management device 11 or periodically.
  • the related information provided by the information providing server 41 includes, for example, the following.
  • satellite orbit information described in TLE (Two Line Elements) format can be obtained as related information from NORAD (North American Aerospace Defense Command) as an external organization.
  • NORAD North American Aerospace Defense Command
  • the free viewpoint image generator 51 is free in the sky at any time on the ground at any point on the ground using the satellite image captured by the satellite 21 supplied from the satellite management device 11 via a predetermined network. Performs image processing to generate a free viewpoint image, which is a satellite image observed from the viewpoint.
  • the free viewpoint image generation device 51 transmits a satellite image imaging request to the satellite management device 11 as necessary in response to the generation instruction of the user 91 (FIG. 2).
  • the free-viewpoint image generation process may be performed by the satellite operating company, and in this case, the satellite operating company and the image providing company are the same. Further, the satellite management device 11 and the free viewpoint image generation device 51 may be realized by one device.
  • the communication device 13 communicates with a predetermined satellite 21 designated by the satellite management device 11 via the antenna 14 under the control of the satellite management device 11. For example, the communication device 13 transmits an imaging instruction for imaging a predetermined area on the ground to a predetermined satellite 21 at a predetermined time and position. Further, the communication device 13 receives the satellite image transmitted from the satellite 21 and supplies the satellite image to the satellite management device 11 via the network 12.
  • the transmission from the communication device 13 of the ground station 15 to the satellite 21 is also referred to as an uplink, and the transmission from the satellite 21 to the communication device 13 is also referred to as a downlink.
  • the communication device 13 can directly communicate with the satellite 21 and can also communicate with the relay satellite 22. As the relay satellite 22, for example, a geostationary satellite is used.
  • the network 12 or the network between the information providing server 41 or the free viewpoint image generation device 51 and the satellite management device 11 is an arbitrary communication network, which may be a wired communication network or a wireless communication network. It may be present or it may be composed of both of them. Further, the network 12 and the network between the information providing server 41 or the free viewpoint image generation device 51 and the satellite management device 11 may be configured by one communication network, or may be composed of a plurality of communication networks. It may be done. These networks include, for example, the Internet, public telephone network, wide area communication network for wireless mobiles such as so-called 4G line and 5G line, WAN (WideAreaNetwork), LAN (LocalAreaNetwork), Bluetooth (registered trademark).
  • WAN WideAreaNetwork
  • LAN LocalAreaNetwork
  • Bluetooth registered trademark
  • Wireless communication networks that perform standards-compliant communication, short-range wireless communication channels such as NFC (Near Field Communication), infrared communication channels, HDMI (registered trademark) (High-Definition Multimedia Interface) and USB (Universal Serial) It can be a communication network or communication path of any communication standard such as a wired communication communication network conforming to a standard such as Bus).
  • NFC Near Field Communication
  • HDMI registered trademark
  • USB Universal Serial
  • the plurality of satellites 21 may be operated by one satellite (single aircraft), or may be operated by a plurality of satellites forming one satellite group.
  • the illustration of the satellite 21 operated by a single machine is omitted, the satellite 21A and the satellite 21B form the first satellite group 31A, and the satellite 21C and the satellite 21D form the second satellite. It constitutes group 31B.
  • group 31B In the example of FIG. 1, for the sake of simplicity, an example in which one satellite group 31 is composed of two satellites 21 is shown, but the number of satellites 21 constituting one satellite group 31 is two. Not limited.
  • constellation and formation flight as a system that operates a plurality of satellites 21 as one unit (satellite group).
  • Constellation is a system that deploys services mainly globally by launching a large number of satellites into a single orbital plane.
  • Each of the satellites that make up the constellation has a predetermined function, and a plurality of satellites are operated for the purpose of improving the frequency of observation.
  • formation flight is a system in which a plurality of satellites deploy while maintaining a relative positional relationship in a narrow area of about several kilometers. Formation flights can provide services that cannot be realized by a single satellite, such as high-precision 3D measurement and speed detection of moving objects. In this embodiment, it does not matter whether the operation of the satellite group is a constellation or a formation flight.
  • the communication device 13 communicates with each satellite 21 constituting the satellite group 31, a method of individually communicating with each satellite 21 as in the first satellite group 31A in FIG. 1 and a second satellite group Like 31B, only one satellite 21C representing the satellite group 31 (hereinafter, also referred to as representative satellite 21C) communicates with the communication device 13, and the other satellites 21D communicate with the representative satellite 21C by intersatellite communication.
  • There is a method of indirectly communicating with the communication device 13. Which method is used to communicate with the ground station 15 (communication device 13) may be determined in advance by the satellite group 31, or may be appropriately selected according to the content of the communication.
  • the satellite 21 operated as a single machine may also communicate with the communication device 13 of the ground station 15 via the relay satellite 22 or may communicate with the communication device 13 of the ground station 15 via the relay satellite 22.
  • the satellite 21 can downlink to the communication device 13 at a predetermined frequency.
  • the satellite 21 is located within the communication range of the communication device 13 installed at the ground station 15 by intersatellite communication. It can be transmitted to another satellite 21 and downlinked to the ground station 15 via the other satellite 21. As a result, the real-time property of the satellite image can be guaranteed.
  • the satellite image processing system 1 is configured as described above.
  • the satellite management device 11 or the free viewpoint image generation device 51 can execute the following image processing on the satellite images captured by the individual satellites 21.
  • (1) Generation of metadata It is possible to generate metadata based on the information transmitted from the satellite 21 and the information of the satellite 21 in which the image was taken. For example, information on the latitude and longitude of the position to be imaged, information on attitude control and acceleration at the time of imaging of the satellite 21, and the like can be generated as metadata.
  • the metadata may be generated by the satellite 21 itself based on the conditions at the time of imaging, and in that case, the metadata added in advance to the satellite image captured by the satellite 21 may be used.
  • (2) Satellite image correction processing Radiometric correction related to sensitivity characteristics, geometric correction such as orbital position and orientation error of satellite 21, orthophoto correction for correcting geometric distortion caused by height difference of terrain, to map projection surface It is possible to perform correction processing such as map projection that projects the image of.
  • Color composition processing Performs color composition processing such as pan sharpening processing, true color composition processing, false color composition processing, natural color composition processing, SAR image composition processing, and processing for adding color to satellite images for each band. be able to.
  • Synthesis of other images Satellite images captured by oneself (satellite 21) in the past, satellite images captured by another satellite 21, composite with some other image, composite of satellite images captured in different bands , It is also possible to combine with map information.
  • Information extraction Calculate vegetation detection information such as NDVI (Normalized Difference Vegetation Index) and water detection information such as NDWI (Normalized Difference Water Index) using different bands such as R (Red) and IR (Infrared). Can be done. It is possible to perform highlighting processing of a specific subject such as a vehicle, a moving body, or a school of fish, information on a specific band, extraction of a change point from the previous imaging, and the like.
  • the satellite management device 11 or the free viewpoint image generation device 51 is more effective in the following image processing. It is possible to do it.
  • High-resolution or high-quality processing By superimposing a plurality of satellite images, it is possible to generate a satellite image with improved resolution.
  • high resolution is achieved by synthesizing pan-sharpened images that combine monochrome images and color images, and satellite images with different imaging conditions such as different dynamic ranges, shutter speeds, different bands (wavelength bands), and different resolutions. It is possible to generate satellite images.
  • Function sharing Indexes such as NDVI (Normalized Difference Vegetation Index) can be calculated using different bands such as R (Red) and IR (Infrared).
  • Three-dimensional measurement Three-dimensional information can be obtained from the parallax image. In addition, the accuracy of object recognition on the ground can be improved by using three-dimensional information.
  • an object is a vehicle (even if the image does not immediately indicate that the object is a vehicle, if what is on the road is not a pattern but a three-dimensional object, it can be determined. Can be presumed to be a vehicle).
  • Difference measurement It is possible to extract the change between the first time and the second time by using a plurality of satellite images taken from the same position with a time difference. In addition, imaging may be performed so that only the changed object is extracted and colored. Further, for example, the moving speed of a ship or a vehicle can be calculated by using a plurality of satellite images, or the wind speed can be calculated from the movement of clouds or the like.
  • Other image composition It is also possible to combine past satellite images and satellite images captured by other satellites 21, combine satellite images captured in different bands, and combine with map information. ..
  • the individual satellites 21 may transmit satellite images captured on the ground as RAW data to the communication device 13, or may transmit after performing the above-mentioned image processing.
  • JPEG2000 An image format standardized by the Joint Photographic Experts Group. JPEG 2000 not only increases the compression ratio, but also uses technology to improve the image in the area of interest and copyright protection technology such as digital watermarking.
  • volumetric capture technology A technology that provides a free viewpoint image by generating a 3D model of the subject from images taken from multiple viewpoints (including moving images) and generating a virtual viewpoint image of the 3D model according to an arbitrary viewing position. Are known. This technology is also called volumetric capture technology.
  • the free viewpoint image generation device 51 applies the volumetric capture technology to the satellite image, and generates a free viewpoint image which is a satellite image observed from a free viewpoint in the sky at an arbitrary point on the ground at an arbitrary time.
  • a plurality of captured images can be obtained by imaging a predetermined photographing space in which the subject is arranged with a plurality of imaging devices from the outer periphery thereof.
  • the captured image is composed of, for example, a moving image.
  • a 3D object that is a 3D model of the subject is generated (3D modeling).
  • a 3D object is generated by Visual Hull, which projects the silhouette of the subject at each viewpoint into 3D space and makes the intersection area of the silhouette a 3D shape, and Multiview stereo, which uses the matching of texture information between viewpoints. Will be done.
  • the data of one or more 3D objects (hereinafter, also referred to as 3D model data) is transmitted to the device on the reproduction side and reproduced. That is, the device on the playback side renders the 3D object based on the acquired data of the 3D object, so that the 3D shape image is displayed on the viewing device of the viewer.
  • the viewing device includes, for example, a liquid crystal display, a head-mounted display, and the like.
  • One of the data formats is a format in which the geometry information (shape information) of an object is represented by a set of points (point cloud) at the three-dimensional position of the object, and the color information of the object is held corresponding to each point. ..
  • this format one geometry information and one color information are held for one object.
  • This format is described as a point cloud format.
  • the other one of the data formats is that the geometry information of the object is represented by a set of points (point cloud) similar to the above point cloud format, or a vertex (Vertex) called a polygon mesh and a connection between the vertices, and the object.
  • This is a format in which the color information of the above is stored in a captured image (two-dimensional texture image) captured by each imaging device.
  • this format one geometry information and color information consisting of the same number of captured images (two-dimensional texture images) as the number of image pickup devices are held for one object.
  • This format is described as a multi-texture geometry format.
  • Yet another data format is a format in which the geometry information of an object is represented by a polygon mesh and the color information of the object is held corresponding to each polygon mesh.
  • the two-dimensional texture image as the color information pasted on each polygon mesh is represented by the UV coordinate system.
  • this format one geometry information and one color information consisting of one two-dimensional texture image are held for one object.
  • this format is referred to as a UV texture geometry format.
  • the UV texture geometry format is a format standardized by MPEG-4 AFX (Animation Framework eXtension).
  • the geometry information of the object is represented by the distance information corresponding to the captured image captured by each imaging device, and the color information of the object is represented by the captured image (two-dimensional texture image) captured by each imaging device.
  • the distance information corresponding to the captured image captured by each imaging device a depth image in which the distance in the depth direction to the subject is stored as a depth value corresponding to each pixel of the captured image is adopted.
  • geometry information consisting of the same number of depth images as the number of imaging devices and color information consisting of the same number of captured images (two-dimensional texture images) as the number of imaging devices are held for one object.
  • NS This format is described as a multi-texture depth format.
  • the merit of the multi-texture depth format is that the AVC (Advanced Video Coding) method, HEVC (High Efficiency Video Coding) method, etc. can be used as they are as the coding method when transmitting 3D model data, making it highly efficient. The point is that it can be compressed.
  • AVC Advanced Video Coding
  • HEVC High Efficiency Video Coding
  • the data format to be adopted is arbitrary.
  • the playback side may specify the data format, or the distribution side may determine the data format. Further, the data format may be determined in advance for each application.
  • the playback side can request only the 3D object to be viewed from among one or more 3D objects existing in the shooting space and display it on the viewing device.
  • the playback side assumes a virtual camera in which the viewing range of the viewer is the shooting range, and requests only the 3D object captured by the virtual camera among a large number of 3D objects existing in the shooting space for viewing. Display on the device.
  • the viewpoint (virtual viewpoint) of the virtual camera can be set to an arbitrary position so that the viewer can see the subject from an arbitrary viewpoint in the real world.
  • a background image representing a predetermined space is appropriately combined with the 3D object.
  • the background image may be a still image having a fixed virtual viewpoint, or may be an image that is changed according to the virtual viewpoint, like a subject as a foreground image.
  • FIG. 2 is a block diagram showing a detailed configuration example of the free viewpoint image generation device 51.
  • the free viewpoint image generation device 51 includes a free viewpoint image generation unit 61, a free viewpoint image storage unit 62, a coding unit 63, a communication unit 64, and a user IF (Interface) unit 65.
  • the user IF unit 65 includes a display unit 81 and an operation unit 82.
  • the free viewpoint image generation device 51 can accept the operation of the user 91 via the user IF unit 65 and execute the process according to the instruction of the user 91, and the user 91 can perform the free viewpoint image via the terminal device 92. Even when a predetermined process is instructed to the generation device 51, the process according to the instruction can be executed.
  • the user 91 sets a predetermined point (designated point) on the ground at a predetermined time (designated time) from a predetermined virtual viewpoint in the sky by directly inputting to the operation unit 82 or via the terminal device 92. Instructs the generation of a free-viewpoint image, which is the satellite image seen.
  • the free-viewpoint image generation device 51 synthesizes a base image and a real-time image viewed from a predetermined virtual viewpoint in response to a user's instruction to generate a free-viewpoint image, so that the free-viewpoint image generation device 51 can be displayed from a predetermined virtual viewpoint designated by the user. Generates a satellite image of a designated point on the ground at a designated time.
  • the base image viewed from a predetermined virtual viewpoint is a satellite image corresponding to the background image of the volumetric capture technology, and is a stationary subject that does not change in a certain time width (regardless of the change in a certain time width). It is a satellite image.
  • the base image is an image with relatively little change as compared with the real-time image.
  • the real-time image viewed from a predetermined virtual viewpoint is a satellite image corresponding to the foreground image (subject) of the volumetric capture technology, and is a satellite image of a dynamic subject (real-time subject) that changes in real time. ..
  • a dynamic subject that changes in real time is a subject that changes in a certain time width other than a stationary subject included in the base image. Includes changing subjects.
  • Dynamic subjects include, for example, moving objects such as airplanes, ships, vehicles, and people, meteorological phenomena such as clouds, aurora borealis, and eruptions of volcanoes, reflection of the sun on the sea, lakes, rivers, and ground surfaces, and sunrises and sunsets. It includes information such as the color of the sky and light rays including shadows.
  • Subjects other than dynamic subjects that change over a period of time longer than one day are included in static subjects. For example, changes in the color of mountains such as autumn leaves, the state immediately after planting rice fields, and the state of rice ears during the harvest season can be seen as the seasons change, so forests and rice fields are included in still subjects.
  • the free viewpoint image generation unit 61 includes a base image generation unit 71, a real-time image generation unit 72, an external information acquisition unit 73, and an image composition unit 74.
  • the free viewpoint image generation unit 61 of the free viewpoint image generation device 51 is connected to the satellite image storage server 101 and the external information providing server 102 via a predetermined network.
  • a predetermined network As the network between the free viewpoint image generation device 51 and the satellite image storage server 101 or the external information providing server 102, any communication network similar to the network 12 described above can be adopted.
  • the connection with the predetermined network is made via the communication unit 64.
  • the free viewpoint image generation unit 61 generates a free viewpoint image of a predetermined point on the ground from a predetermined virtual viewpoint in the sky based on a generation instruction from the control unit 66, and supplies the free viewpoint image storage unit 62 to the free viewpoint image storage unit 62. ..
  • the base image generation unit 71 acquires a plurality of satellite images stored (stored) in the satellite image storage server 101 and captured from different viewpoints, and uses the acquired plurality of satellite images to capture a stationary subject on the ground. Generate a 3D model. Then, the base image generation unit 71 generates a first virtual viewpoint image when a 3D model of a stationary subject on the ground is viewed from a predetermined virtual viewpoint designated by the user 91, and the image synthesis unit 74 is used as the base image. Supply to.
  • the base image generation unit 71 can be used to generate a 3D model of a stationary subject on the ground after removing dynamic subjects included in a plurality of satellite images acquired from the satellite image storage server 101 in advance.
  • the base image generation unit 71 generates a satellite image obtained by removing the subject to be included in the real-time image generated by the real-time image generation unit 72 from the satellite image acquired from the satellite image storage server 101, and is still on the ground. It can be used to generate a 3D model of the subject.
  • the removal of the dynamic subject included in the satellite image is possible, for example, by comparing the satellite images obtained by capturing the same point, detecting the inconsistent subject as the dynamic subject, and removing the subject. Further, for example, it is possible to detect and remove minute changes as a dynamic subject by using satellite images captured by a plurality of artificial satellites such as formation flights.
  • the satellite image storage server 101 stores a plurality of satellite images obtained by imaging the ground from the sky by an artificial satellite equipped with an imaging device.
  • the artificial satellite may be a satellite 21 of a satellite operating company that owns the satellite management device 11, or an artificial satellite of another company.
  • the satellite image storage server 101 may be a server operated by a satellite operating company that owns the satellite management device 11, a server operated by an image provider that owns the free-viewpoint image generation device 51, or operated by another company. It may be a server that does. Further, the satellite image storage server 101 may be included in a part of the free viewpoint image generation device 51 as a satellite image storage unit and store satellite images supplied from the satellite management device 11.
  • the satellite image stored in the satellite image storage server 101 is an image obtained by imaging the ground from a plurality of viewpoints in the sky with one or a plurality of artificial satellites.
  • a plurality of satellite images corresponding to a plurality of viewpoints are generated by imaging the ground in a time-division manner. Even when a plurality of artificial satellites are used, it is possible to generate a large number of satellite images corresponding to a large number of viewpoints by imaging the ground in a time-division manner.
  • the satellite image stored in the satellite image storage server 101 may be a satellite image obtained by combining two satellite images captured by an artificial satellite into one.
  • one satellite image can be obtained by performing stitch processing on two satellite images whose imaging areas partially overlap.
  • the two satellite images to be stitched may be images having different resolutions.
  • an aerial image captured by an aircraft may be used.
  • the resolution of the satellite image stored in the satellite image storage server 101 is preferably high because the accuracy of the subsequent processing changes.
  • the ground resolution is 1 m or less, and when it is desired to identify a surface structure such as a vehicle, it is preferable to have a resolution of 50 cm or less.
  • the satellite image storage server 101 may also store a depth image which is depth information up to a still subject.
  • the depth image can be generated from parallax information based on a plurality of satellite images obtained by capturing the same point from different viewpoints with a single machine or a plurality of machines, for example. Imaging by multiple aircraft includes imaging by formation flight. Further, the depth image may be generated from the altitude measurement result by the synthetic aperture radar satellite (SAR satellite). Alternatively, it may be generated by estimation from a two-dimensional satellite image, for example, by estimating height information based on the size of a shadow reflected in a satellite image or the like.
  • SAR satellite synthetic aperture radar satellite
  • the satellite images stored in the satellite image storage server 101 are stored at different times such as morning, noon, afternoon, evening, and night, different weather such as fine weather, sunny weather, cloudy weather, and rain, and for each season such as spring, summer, autumn, and winter. Can be accumulated for different conditions.
  • the base image generation unit 71 can generate a 3D model of a stationary subject on the ground for each accumulated condition.
  • the base image generation unit 71 estimates based on the satellite image of the same point captured under other conditions and does not store it. It can generate a satellite image and use it for the generation process of a 3D model of a still subject. For example, when the autumn satellite image is not accumulated, the autumn satellite image may be estimated and generated from the satellite image of the same point in summer or winter.
  • the satellite image storage server 101 may store data of a 3D model of a stationary subject on the ground generated by 3D modeling by another device, instead of satellite images captured from a large number of viewpoints in the sky.
  • the base image generation unit 71 acquires the data of the 3D model of the stationary subject on the ground stored in the satellite image storage server 101, and based on the acquired data of the 3D model of the stationary subject on the ground, the first Generate a virtual viewpoint image of.
  • the satellite image storage server 101 stores 3D model data of a stationary subject on the ground, the 3D modeling process is omitted.
  • the data format of the 3D model of the stationary subject on the ground stored in the satellite image storage server 101 may be any of the above-mentioned data formats of the 3D model data.
  • the data format when the base image generation unit 71 generates a 3D model of a still subject on the ground may be any format.
  • the satellite image stored in the satellite image storage server 101 is the free viewpoint designated by the user 91. It can be a satellite image taken about one week to one month before the specified time of the image. Alternatively, the satellite image stored in the satellite image storage server 101 may be a satellite image captured after (future) the designated time of the free viewpoint image designated by the user 91.
  • the base image generation unit 71 updates the 3D model of a stationary subject on the ground using the satellite image and generates a base image. can do.
  • the real-time image generation unit 72 is a satellite image corresponding to a designated point and a designated time designated by the user 91 as a point and a time for generating a free viewpoint image, and satellites a plurality of satellite images captured from different viewpoints. Obtained from the management device 11. A plurality of satellite images from different viewpoints corresponding to a specified time are referred to as real-time satellite images to distinguish them from satellite images used to generate a base image.
  • the real-time image generation unit 72 supplies the designated point and the designated time of the free viewpoint image to the satellite management device 11, and acquires a plurality of satellite images (real-time satellite images) obtained by capturing the designated point at the designated time from different viewpoints.
  • the satellite management device 11 transmits an image pickup instruction from the communication device 13 to the satellite 21 passing through the designated point in the vicinity of the designated time supplied from the real-time image generation unit 72, and causes the satellite 21 to take a picture.
  • the vicinity of the designated time may be a time including an error of several minutes to several tens of minutes.
  • the satellite management device 11 or the real-time image generation unit 72 may change the captured satellite image into an image that estimates the change according to the time error. For example, when an airplane flying at a predetermined point is imaged as a dynamic subject and there is an error with respect to the specified time, the position of the airplane is moved by the time of the error. It may be changed to a satellite image.
  • a plurality of satellite images from different viewpoints may be captured by one satellite 21 in a time-division manner, or may be captured by a plurality of satellites 21 having different orbits from their respective viewpoints.
  • a plurality of satellites 21 having the same orbit or a plurality of satellites 21 operated in the formation flight may be imaged with a time difference of about several minutes to several tens of minutes.
  • For satellite images with a time difference of several minutes to several tens of minutes change other satellite images to images that estimate changes according to the time error, based on the satellite image at the time closest to the specified time. May be good.
  • the real-time image generation unit 72 extracts a dynamic subject on the ground from each of the acquired real-time satellite images.
  • the extraction of a dynamic subject on the ground can be obtained, for example, by the difference from the base image of the same viewpoint.
  • a dynamic subject may be extracted by image recognition processing based on these characteristics.
  • the dynamic subject may be extracted by using the same processing as when the base image generation unit 71 removes the dynamic subject.
  • the real-time image generation unit 72 generates a 3D model of the dynamic subject from each of the extracted real-time satellite images including only the dynamic subject on the ground. Then, the real-time image generation unit 72 generates a second virtual viewpoint image when the 3D model of the dynamic subject is viewed from a predetermined virtual viewpoint designated by the user 91 as a real-time image of the dynamic subject, and image synthesis is performed. It is supplied to the unit 74.
  • the real-time image generation unit 72 may generate 3D information based on a parallax image calculated from a plurality of satellite images obtained by capturing a designated point from different viewpoints. ..
  • the real-time image generation unit 72 may generate 3D information by estimation using only the 2D satellite image without calculating the depth information, instead of generating the 3D model of the dynamic subject. ..
  • an airplane may be extracted as a dynamic subject from a two-dimensional satellite image, and three-dimensional information of the dynamic subject may be generated from the flight altitude of the airplane as known information.
  • the data format when the real-time image generation unit 72 generates a 3D model of a dynamic subject may be any of the above-mentioned 3D model data data formats.
  • the 3D model is not formed, only the two-dimensional satellite image is stored in the internal memory.
  • the real-time image generation unit 72 acquires the real-time satellite image acquired from the satellite management device 11
  • the real-time image generation unit 72 sends the acquired real-time satellite image to the base image generation unit 71 as an update satellite image for updating the satellite image at the same point. Can be supplied.
  • the satellite 21 may perform imaging, but in reality, the designated time is near the designated time. It can also happen if there is no satellite 21 passing through the point.
  • the real-time image generation unit 72 generates a real-time image of the dynamic subject using the external information acquired by the external information acquisition unit 73 from the external information providing server 102, and supplies the real-time image to the image synthesis unit 74.
  • the position information of the moving object at the specified time is provided as external information based on the information of the specified point and the specified time of the free viewpoint image. Obtained from server 102.
  • the position information of a moving object at a designated time can be acquired by acquiring AIS (Automatic Identification System) information from the external information providing server 102.
  • AIS Automatic Identification System
  • moving objects at a specified time are obtained by acquiring the position information of the devices mounted on the vehicles and people and the position information detected by the surveillance cameras installed on the ground from the external information providing server 102. You can get the location information of.
  • the position information of various moving objects may be acquired from the external information providing server 102 operated by the management company that provides the position information of the moving objects.
  • the real-time image generation unit 72 acquires known 3D model or texture information of a moving object from an external company or generates it in its own company, stores it internally in advance, and acquires it via the external information acquisition unit 73. By arranging the two-dimensional image of the moving object at a predetermined position based on the position information of the moving object, a real-time image of the dynamic subject is generated and supplied to the image synthesizing unit 74.
  • the dynamic subject is a meteorological phenomenon such as cloud distribution
  • information indicating cloud distribution and estimated altitude information are acquired from an external information providing server 102 operated by a meteorological service company that provides meteorological information.
  • a real-time image of the cloud distribution can be generated.
  • information such as the sun position is acquired from the external information providing server 102 operated by the meteorological service company, and the ray information or the like is estimated to be in a predetermined position. By arranging them, it is possible to generate a real-time image of ray information such as shadows and reflections of the sun.
  • the external information acquisition unit 73 determines different external information providing companies and external information in different places according to the type of external information to be acquired. By accessing the providing server 102, desired external information can be acquired.
  • the real-time image generation unit 72 generates a real-time image of the dynamic subject for each of the cases where the satellite image corresponding to the designated point and the designated time specified by the user 91 can be captured and the case where the satellite image cannot be captured.
  • the real-time image generation unit 72 is a satellite image captured at a time within an error range of a predetermined time with respect to a designated time specified by the user 91, and a plurality of satellite images captured from different viewpoints are captured by the satellite. Obtained from the management device 11.
  • a plurality of satellite images from different viewpoints corresponding to times within an error range of a predetermined time with respect to a specified time are referred to as quasi-real-time satellite images to distinguish them from satellite images used for generating a base image and real-time satellite images.
  • the error range of several hours with respect to the specified time is the error range assumed in the operation of the constellation, but the error range of the quasi-real-time satellite image with respect to the specified time is a maximum of one day assuming an observation satellite with one return day. And.
  • the real-time image generation unit 72 extracts a dynamic subject on the ground from each of the acquired plurality of quasi-real-time satellite images and generates a 3D model of the dynamic subject. Extraction of the dynamic subject and generation of the 3D model of the dynamic subject are the same as in the case of the above-mentioned real-time satellite image.
  • the real-time image generation unit 72 uses the external information about the dynamic subject acquired from the external information providing server 102 via the external information acquisition unit 73 from the generated 3D model of the dynamic subject, and uses the external information about the dynamic subject at the specified time.
  • Estimate a 3D model of a dynamic subject For example, the real-time image generation unit 72 acquires position information of an airplane or a ship as external information, and moves a 3D model of a moving object to a position based on the external information. Further, for example, the real-time image generation unit 72 acquires cloud distribution information as external information and moves the cloud 3D model to a position based on the external information.
  • the real-time image generation unit 72 moves the second virtual viewpoint image when the 3D model of the dynamic subject at the specified time estimated based on the external information is viewed from the predetermined virtual viewpoint designated by the user 91. It is generated as a real-time image of a target subject and supplied to the image composition unit 74.
  • the real-time image generation unit 72 uses the quasi-real-time image of the dynamic subject when the 3D model of the dynamic subject generated from the acquired plurality of quasi-real-time satellite images is viewed from a predetermined virtual viewpoint designated by the user 91. To generate. Then, the real-time image generation unit 72 dynamically uses the generated quasi-real-time image of the dynamic subject and the external information about the dynamic subject acquired from the external information providing server 102 via the external information acquisition unit 73. Estimate and generate a real-time image of the subject.
  • a quasi-real-time image that is a texture image of an airplane or a ship two hours ago is changed to a position at a designated time based on external information, and is used as a real-time image of a moving object at a designated time.
  • the quasi-real-time image, which is the texture image of the cloud two hours ago is changed based on the cloud information at the specified time based on external information, and the real-time image of the cloud at the specified time is generated.
  • a quasi-real-time satellite image when a quasi-real-time satellite image is acquired, there are a method of acquiring a real-time satellite image and generating a real-time image of a dynamic subject, and a method of generating a real-time image of a dynamic subject using only external information.
  • a real-time image of a dynamic subject is generated.
  • the quasi-real-time satellite image may also be used.
  • the real-time satellite image and the quasi-real-time satellite image together, the following effects can be obtained.
  • an image with a small amount of information of a real-time satellite image captured at a specified time can be tolerated.
  • the resolution of the real-time satellite image to be captured at a specified time may be low, and the imaging range can be expanded by the amount of the low resolution.
  • the real-time image generation unit 72 may use the base image that can be generated by the base image generation unit 71 to estimate the ray information as a dynamic subject and generate a real-time satellite image of the ray information.
  • the base image generator 71 can generate a 3D model of a still subject under different times such as morning, noon, and night, sunny, sunny weather, and seasons such as spring, summer, autumn, and winter. It is generated and the base image of each condition can be generated.
  • the real-time image generation unit 72 detects a change in ray information in the base image of each condition generated from a 3D model of a stationary subject under each condition, and detects a change in ray information in a base image of each condition, and a real-time satellite based on the time, season, and weather specified by the user 91.
  • Images can be generated by estimation.
  • the real-time satellite image may be estimated using a quasi-real-time satellite image or an incomplete real-time satellite image. Incomplete real-time satellite images are, for example, panchromic images (black-and-white images) and low-resolution images. Texture information representing shadows and colors of moving objects can also be estimated using a base image in the same manner as ray information.
  • the image synthesizing unit 74 synthesizes the base image supplied from the base image generation unit 71 and the real-time satellite image supplied from the real-time image generation unit 72, thereby designating the ground at a designated time designated by the user 91.
  • a free-viewpoint image of a point is generated and supplied to the free-viewpoint image storage unit 62.
  • the image composition unit 74 a real-time image corresponding to the foreground image (subject) of the volumetric capture technology is superimposed on the base image corresponding to the background image of the volumetric capture technology.
  • the free viewpoint image storage unit 62 stores the free viewpoint image supplied from the image composition unit 74.
  • the free viewpoint image storage unit 62 stores various virtual viewpoints, designated times, and free viewpoint images generated by the free viewpoint image generation unit 61, and responds to an instruction from the control unit 66. ,
  • the designated free viewpoint image can be selected and supplied to the coding unit 63 or the display unit 81.
  • the coding unit 63 encodes the free viewpoint image supplied from the free viewpoint image storage unit 62 by using a predetermined coding method such as an AVC (Advanced Video Coding) method or a HEVC (High Efficiency Video Coding) method. ..
  • AVC Advanced Video Coding
  • HEVC High Efficiency Video Coding
  • the communication unit 64 communicates with the terminal device 29 via a predetermined network.
  • the communication unit 64 supplies the generation instruction to the control unit 66.
  • the communication unit 64 transmits the free viewpoint image coding data supplied from the coding unit 63 to the terminal device 92 in response to the generation instruction. Further, the communication unit 64 transmits a satellite image imaging request to the satellite management device 11 under the control of the control unit 66.
  • the communication unit 64 also communicates with the satellite image storage server 101 and the external information providing server 102 under the control of the control unit 66.
  • the display unit 81 is composed of, for example, an LCD (Liquid Crystal Display) or an organic EL (Electro Luminescence) display.
  • the display unit 81 displays the free viewpoint image supplied from the free viewpoint image storage unit 62.
  • the operation unit 82 is composed of, for example, a keyboard, a mouse, a touch panel, or the like, and receives an operation of the user 91, and gives a generation instruction to generate a virtual viewpoint, a designated time, and a free viewpoint image of a designated point designated by the user 91. It is supplied to the control unit 66.
  • the control unit 66 controls the operation of the entire free viewpoint image generation device 51.
  • the control unit 66 is free to see a predetermined point on the ground at a predetermined time from a predetermined virtual viewpoint in the sky designated by the user 91 based on a generation instruction from the communication unit 64 or the user IF unit 65.
  • the viewpoint image generation instruction is supplied to the free viewpoint image generation unit 61.
  • the control unit 66 causes the communication unit 64 to transmit a satellite image imaging request to the satellite management device 11. Further, the control unit 66 supplies the free viewpoint image stored in the free viewpoint image storage unit 62 to the coding unit 63 or the display unit 81.
  • the terminal device 92 is composed of, for example, a smartphone, a tablet terminal, a mobile phone, a personal computer, or the like, and accepts the operation of the user 91.
  • the terminal device 92 transmits the generation instruction to the free viewpoint image generation device 51.
  • the terminal device 92 receives the free-viewpoint image coding data transmitted from the free-viewpoint image generation device 51 in response to the generation instruction, performs decoding processing corresponding to the coding method, and performs a decoding process corresponding to the coding method to display a display device (not shown). Display a free-viewpoint image.
  • the user can confirm the free viewpoint image (remotely) from any place by using the terminal device 92 owned by the user.
  • Free viewpoint image generation processing executed by the free viewpoint image generation device 51 will be described with reference to the flowchart of FIG.
  • the user 91 instructs the terminal device 92 to generate a free viewpoint image of a predetermined designated point on the ground at a predetermined designated time from a predetermined virtual viewpoint in the sky. If started.
  • step S1 the control unit 66 requests the imaging of the satellite image corresponding to the predetermined virtual viewpoint, the designated time, and the designated point via the communication unit 64 based on the generation instruction from the terminal device 92. Is transmitted to the satellite management device 11. Further, the control unit 66 supplies the free viewpoint image generation unit 61 with an instruction to generate a free viewpoint image that looks at a predetermined point on the ground at a predetermined time from a predetermined virtual viewpoint in the sky designated by the user 91. ..
  • step S2 the base image generation unit 71 acquires a plurality of satellite images captured from different viewpoints stored in the satellite image storage server 101, and removes dynamic subjects included in each of the plurality of satellite images.
  • step S3 the base image generation unit 71 generates a 3D model of a stationary subject on the ground using a plurality of satellite images from which the dynamic subject has been removed. Then, in step S4, the base image generation unit 71 generates a first virtual viewpoint image as a base image when the generated 3D model of the still subject is viewed from a predetermined virtual viewpoint designated by the user 91, and the image is displayed. It is supplied to the synthesis unit 74.
  • step S5 the real-time image generation unit 72 is a satellite image corresponding to a designated point and a designated time designated by the user 91 in response to the imaging request in step S1, and a plurality of real-time satellites captured from different viewpoints. It is determined whether the image can be acquired from the satellite management device 11.
  • step S5 If it is determined in step S5 that a plurality of real-time satellite images captured from different viewpoints can be acquired, the process proceeds to step S6, and the real-time image generation unit 72 dynamically obtains each of the acquired real-time satellite images. Extract the subject.
  • step S7 the real-time image generation unit 72 generates a 3D model of the dynamic subject from each of the extracted real-time satellite images including only the dynamic subject on the ground. Then, in step S8, the real-time image generation unit 72 generates a second virtual viewpoint image when the 3D model of the dynamic subject is viewed from a predetermined virtual viewpoint designated by the user 91 as a real-time image of the dynamic subject. Then, it is supplied to the image composition unit 74.
  • step S5 if it is determined in step S5 that a plurality of real-time satellite images captured from different viewpoints could not be acquired, the process proceeds to step S9, and the real-time image generation unit 72 arrives at the designated time specified by the user 91.
  • step S9 it is determined whether or not a plurality of quasi-real-time satellite images captured from different viewpoints, which are satellite images captured at a time within an error range of a predetermined time, can be acquired from the satellite management device 11.
  • step S9 If it is determined in step S9 that a plurality of quasi-real-time satellite images captured from different viewpoints can be acquired from the satellite management device 11, the process proceeds to step S10, and the real-time image generation unit 72 acquires the plurality of quasi-real-time satellite images.
  • a dynamic subject is extracted from each of the real-time satellite images, and a 3D model of the dynamic subject is generated from each of the quasi-real-time satellite images including only the extracted dynamic subject on the ground.
  • step S11 the real-time image generation unit 72 acquires external information about the dynamic subject from the external information providing server 102 via the external information acquisition unit 73.
  • step S12 the real-time image generation unit 72 estimates the 3D model of the dynamic subject at the specified time from the generated 3D model of the dynamic subject by using the acquired external information about the dynamic subject.
  • step S13 the real-time image generation unit 72 displays the second virtual viewpoint image of the dynamic subject in real time when the 3D model of the dynamic subject at the estimated time specified by the user 91 is viewed from the predetermined virtual viewpoint. It is generated as an image and supplied to the image composition unit 74.
  • step S9 if it is determined in step S9 that a plurality of quasi-real-time satellite images captured from different viewpoints could not be acquired from the satellite management device 11, the process proceeds to step S14, and the real-time image generation unit 72 dynamically. External information about the subject is acquired from the external information providing server 102 via the external information acquisition unit 73.
  • step S15 the real-time image generation unit 72 generates a real-time image of the dynamic subject using the acquired external information and supplies it to the image composition unit 74.
  • step S16 the image synthesizing unit 74 synthesizes the base image supplied from the base image generation unit 71 and the real-time satellite image supplied from the real-time image generation unit 72, so that the designated time specified by the user 91 is specified. Generates a free-viewpoint image of a designated point on the ground and supplies it to the free-viewpoint image storage unit 62.
  • step S17 the free viewpoint image storage unit 62 accumulates the free viewpoint image supplied from the image synthesis unit 74, and encodes the free viewpoint image supplied from the image synthesis unit 74 under the control of the control unit 66. It is supplied to the unit 63.
  • step S18 the coding unit 63 encodes the free viewpoint image supplied from the free viewpoint image storage unit 62 by using a predetermined coding method, and the communication unit 64 encodes the encoded free viewpoint image.
  • the data is transmitted to the terminal device 92.
  • a free viewpoint image based on the free viewpoint image coding data is displayed on the terminal device 92.
  • steps S17 and S18 when the generation instruction is supplied from the operation unit 82, the free viewpoint image supplied from the image composition unit 74 is supplied to the display unit 81 and displayed on the display unit 18. It is changed to processing.
  • steps S2 and S3 for generating a 3D model of a still subject do not affect the real-time situation at a predetermined time and point specified by the user 91, and thus the freedom of FIG. It can be executed in advance at a timing different from the viewpoint image generation process.
  • the free viewpoint image generation unit 61 when the free viewpoint image generation unit 61 can acquire a plurality of real-time satellite images corresponding to the designated point and the designated time designated by the user 91 from the satellite management device 11, the free viewpoint image generation unit 61 obtains the image.
  • a 3D model of a dynamic subject is generated using the plurality of real-time satellite images obtained.
  • the conditions for obtaining a plurality of real-time satellite images corresponding to a designated point and a designated time are limited to a certain period of time during which the satellite 21 passes over the designated point, and the most preferable condition is designated if the satellite 21 is a low-orbit satellite. It is about 10 minutes near the designated time with respect to the time, but if the range that can be estimated according to the time error from the captured satellite image is included, it will be about 1 hour including about 30 minutes of the designated time.
  • multiple real-time satellite images cannot be acquired in a time zone that exceeds the time range of about one hour with respect to the specified point and the specified time and has an error range of several hours, and moves based on the plurality of quasi-real-time satellite images.
  • a real-time image of the target subject is generated.
  • the first estimation method of estimating the 3D model of the temporary dynamic subject to generate a real-time image of the dynamic subject and the quasi-real-time image of the temporary dynamic subject are generated to generate the quasi-real-time image of the dynamic subject.
  • the free viewpoint image generation unit 61 generates a 3D model of a dynamic subject from a plurality of quasi-real-time satellite images in an error range of several hours from a specified time, and generates external information. It is used to estimate a 3D model of a dynamic subject at a specified time and generate a real-time image of the dynamic subject.
  • the free viewpoint image generation unit 61 generates a 3D model of a temporary dynamic subject from a plurality of quasi-real-time satellite images having an error range of several hours from the specified time, and the temporary dynamic subject is generated.
  • a quasi-real-time image of a dynamic subject specified by the user 91 from a virtual viewpoint is generated using a 3D model, and a real-time image of the dynamic subject is estimated from the quasi-real-time image of the dynamic subject using external information. Generate.
  • a real-time image of the dynamic subject is generated using the real-time external information acquired from the external information providing server 102 and the known information about the dynamic subject.
  • a real-time image of a dynamic subject is generated based on the position information (AIS information) of the airplane acquired in real time and the texture information generated from a known 3D model of the airplane.
  • AIS information position information
  • a plurality of real-time satellite images or quasi-real-time satellite images are required to generate a 3D model of a dynamic subject, but when a two-dimensional satellite image is used as real-time external information, one satellite image is required. But it may be.
  • the real-time satellite image can be acquired (steps S6 to S8) and the quasi-real-time satellite image can be acquired (steps S10 to S13) as in the free viewpoint image generation process of FIG. 3, the real-time satellite image and the quasi-real-time satellite
  • the dynamic subject is specified by appropriately combining the acquireable real-time satellite image, quasi-real-time satellite image, or external information without classifying into three ways. Or you may generate a real-time image.
  • an effect that a real-time satellite image having a low resolution and a wide imaging range can be tolerated can be obtained.
  • the free-viewpoint image generation unit 61 uses a 3D model of a stationary subject generated using a satellite image captured by the satellite 21 and dynamic subject identification information for identifying a dynamic subject, and uses a predetermined virtual image in the sky. Generates a free-viewpoint image that looks at a predetermined point on the ground from the viewpoint. As a result, it is possible to observe any point on the ground at any time from a free viewpoint (virtual viewpoint) in the sky.
  • the free viewpoint image generation device 51 sends the satellite management device 11 to the satellite management device 11. , The operation is requested so that the satellite 21 passes at the designated point and the designated time, and the satellite management device 11 can be controlled to pre-deploy the satellite 21 to be imaged and to give an orbit transition instruction to the satellite 21 in advance. can.
  • the free viewpoint image generator 51 acquires satellite images at a predetermined point and time, and the user 91 can observe the free viewpoint image.
  • the free viewpoint image generation device 51 acquires the orbit information of the satellite 21 from the satellite management device 11 or the like, presents the point and time at which the free viewpoint image can be generated to the user 91, and the user 91 is selected from among them. , Point and time may be selected and the free viewpoint image may be observed.
  • a part of the processing executed by the free viewpoint image generator 51 can be performed by the satellite 21.
  • the satellite 21 has a real-time image generation function by the real-time image generation unit 72, generates a real-time image viewed from a predetermined virtual viewpoint at a designated point and a designated time of the user 91, and downlinks the image.
  • a real-time image is obtained by extracting a dynamic subject on the ground by a difference from a base image of the same viewpoint, it is necessary to store the base image in the satellite 21.
  • the free viewpoint image generation device 51 generates a free viewpoint image by acquiring a real-time image generated by the satellite 21 via the satellite management device 11 and synthesizing it with a base image generated by itself. In this case, the amount of data required to generate a real-time image transmitted from the satellite 21 to the ground station 15 can be reduced.
  • the real-time image generation may be performed by the free viewpoint image generation device 51 on the ground by downlinking the 3D model of the dynamic subject from the satellite 21 to the ground station 15. In this case as well, the amount of downlink data required to generate a real-time image can be reduced.
  • the satellite image processing system 1 described above can be applied to the following applications.
  • -Checking the free viewpoint of landmarks You can enjoy the viewpoint from space by generating free viewpoint images of the user's travel destination and the situation of passing a landmark (for example, Mt. Fuji) on an airplane.
  • a landmark for example, Mt. Fuji
  • -Wide-area confirmation of disaster areas, etc. By generating free-viewpoint images of disaster areas and conflict areas, it is possible to confirm the situation of disaster areas and conflict areas.
  • -Satellite image with a three-dimensional effect By observing the situation of the target area or object and presenting a satellite image for satellite remote sensing to detect changes in the situation as a free-viewpoint image, even from a macroscopic viewpoint.
  • the change point in the city may be visualized by highlighting the change portion with respect to the base image.
  • Real-time information (movement status of vehicles, conductors, etc.) near a specific time point can be grasped from multiple viewpoints.
  • the construction status of facilities in remote areas can be grasped three-dimensionally from free-viewpoint images.
  • Facilities include buildings such as houses and buildings, dams, oil refineries, factories, and harbors.
  • the land maintenance status such as leveling can be grasped three-dimensionally from a free-viewpoint image.
  • the change point in the city may be visualized by highlighting the change portion with respect to the base image.
  • Real-time information (movement status of vehicles, conductors, etc.) in the vicinity of a specific time point can be grasped from multiple viewpoints.
  • an application that links a free viewpoint image that can be generated by the satellite image processing system 1 with an image captured by another imaging device is also conceivable.
  • a system capable of switching an image from a free viewpoint image generated by the free viewpoint image generation device 51 to an image captured from a short distance from the sky can be considered.
  • the user is free to check the free-viewpoint image as a macro image of the target point, and when zooming to a part of the free-viewpoint image, switch to the image captured by the city surveillance camera or drone.
  • the viewpoint image and the image captured from the sky at a short distance the detailed image of a part of the free viewpoint image can be confirmed at the same time.
  • the series of processes executed by the free-viewpoint image generator 51 can be executed by hardware or software.
  • the programs constituting the software are installed on the computer.
  • the computer includes a microcomputer embedded in dedicated hardware and, for example, a general-purpose personal computer capable of executing various functions by installing various programs.
  • FIG. 4 is a block diagram showing a configuration example of computer hardware that programmatically executes a series of processes executed by the free viewpoint image generator 51.
  • a CPU Central Processing Unit
  • ROM ReadOnly Memory
  • RAM RandomAccessMemory
  • An input / output interface 305 is further connected to the bus 304.
  • An input unit 306, an output unit 307, a storage unit 308, a communication unit 309, and a drive 310 are connected to the input / output interface 305.
  • the input unit 306 includes a keyboard, a mouse, a microphone, a touch panel, an input terminal, and the like.
  • the output unit 307 includes a display, a speaker, an output terminal, and the like.
  • the storage unit 308 includes a hard disk, a RAM disk, a non-volatile memory, and the like.
  • the communication unit 309 includes a network interface and the like.
  • the drive 310 drives a removable recording medium 311 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 301 loads the program stored in the storage unit 308 into the RAM 303 via the input / output interface 305 and the bus 304, and executes the above-described series. Is processed.
  • the RAM 303 also appropriately stores data and the like necessary for the CPU 301 to execute various processes.
  • the program executed by the computer (CPU301) can be recorded and provided on a removable recording medium 311 as a package medium or the like, for example. Programs can also be provided via wired or wireless transmission media such as local area networks, the Internet, and digital satellite broadcasting.
  • the program can be installed in the storage unit 308 via the input / output interface 305 by mounting the removable recording medium 311 in the drive 310. Further, the program can be received by the communication unit 309 and installed in the storage unit 308 via a wired or wireless transmission medium. In addition, the program can be pre-installed in the ROM 302 or the storage unit 308.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a device in which a plurality of modules are housed in one housing are both systems. ..
  • this technology can have a cloud computing configuration in which one function is shared by a plurality of devices via a network and processed jointly.
  • each step described in the above flowchart can be executed by one device or shared by a plurality of devices.
  • one step includes a plurality of processes
  • the plurality of processes included in the one step can be executed by one device or shared by a plurality of devices.
  • the present technology can have the following configurations. (1) Using a 3D model of a stationary subject generated using satellite images captured by an artificial satellite and dynamic subject identification information that identifies a dynamic subject, a predetermined point on the ground can be viewed from a predetermined virtual viewpoint in the sky.
  • An image generation device including an image generation unit that generates a viewed free-viewpoint image.
  • the image generation unit generates a 3D model of the still subject as a background image of a base image viewed from the predetermined virtual viewpoint in the sky, and uses the dynamic subject identification information to generate the predetermined virtual viewpoint in the sky.
  • the image generation apparatus wherein the free-viewpoint image is generated by generating a real-time image viewed from the above as a foreground image and synthesizing the base image and the real-time image.
  • the image generation unit uses a 3D model of the dynamic subject as the dynamic subject identification information.
  • the image generation unit generates a real-time image obtained by viewing a 3D model of the dynamic subject from a predetermined virtual viewpoint in the sky as the foreground image.
  • the image generation unit generates a 3D model of the dynamic subject using a real-time satellite image imaged by an artificial satellite in the vicinity of a time specified by the user.
  • Device (6)
  • the image generation device extracts the dynamic subject from the real-time satellite image and generates a 3D model of the dynamic subject from the extracted image.
  • the image generation unit generates a 3D model of a temporary dynamic subject using a quasi-real-time satellite image imaged by an artificial satellite at a time different from the time specified by the user for several hours, and uses external information to generate the above-mentioned.
  • the image generation device which estimates the 3D model of the dynamic subject at a time specified by the user from the 3D model of the temporary dynamic subject and generates the real-time image.
  • the image generation unit generates a 3D model of a temporary dynamic subject using a quasi-real-time satellite image imaged by an artificial satellite at a time different from the time specified by the user for several hours, and the image generation unit generates a 3D model of the temporary dynamic subject.
  • a quasi-real-time image of the dynamic subject viewed from a predetermined virtual viewpoint in the sky of the 3D model is generated, and the real-time image is generated from the quasi-real-time image of the dynamic subject using external information (3). ).
  • the image generator is configured to generate a 3D model of a temporary dynamic subject using a quasi-real-time satellite image imaged by an artificial satellite at a time different from the time specified by the user for several hours, and the image generation unit generates a 3D model of the temporary dynamic subject.
  • the image generator Using a 3D model of a stationary subject generated using satellite images captured by an artificial satellite and dynamic subject identification information that identifies a dynamic subject, a predetermined point on the ground can be viewed from a predetermined virtual viewpoint in the sky. An image generation method that generates a free-viewpoint image that you see. (13) Computer, Using a 3D model of a stationary subject generated using satellite images captured by an artificial satellite and dynamic subject identification information that identifies a dynamic subject, a predetermined point on the ground can be viewed from a predetermined virtual viewpoint in the sky. A program for functioning as an image generator that generates a free-viewpoint image that you see.
  • 1 satellite image processing system 11 satellite management device, 21 satellite, 51 free viewpoint image generation device, 61 free viewpoint image generation unit, 62 free viewpoint image storage unit, 63 coding unit, 65 user IF unit, 66 control unit, 71 Base image generation unit, 72 real-time image generation unit, 73 external information acquisition unit, 74 image composition unit, 101 satellite image storage server, 102 external information provision server, 301 CPU, 302 ROM, 303 RAM, 306 input unit, 307 output unit , 308 storage unit, 309 communication unit, 310 drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Computing Systems (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Image Processing (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本技術は、地上の任意の地点について、任意の時刻に、上空の自由な視点から観測を行うことができるようにする画像生成装置、画像生成方法、および、プログラムに関する。 画像生成装置は、人工衛星により撮像された衛星画像を用いて生成された静止被写体の3Dモデルと、動的被写体を特定する動的被写体特定情報とを用いて、上空の所定の仮想視点から地上の所定の地点を見た自由視点画像を生成する画像生成部を備える。本技術は、例えば、人工衛星により撮像された衛星画像から自由視点画像を生成する画像生成装置等に適用できる。

Description

画像生成装置、画像生成方法、および、プログラム
 本技術は、画像生成装置、画像生成方法、および、プログラムに関し、特に、地上の任意の地点について、任意の時刻に、上空の自由な視点から観測を行うことができるようにした画像生成装置、画像生成方法、および、プログラムに関する。
 撮像装置を搭載した観測衛星による地球観測が行われている(例えば、特許文献1参照)。特に近年は、低軌道の小型の観測衛星が増加している。
 VR(Virtual Reality)の技術分野では、被写体としてのオブジェクトを任意の自由な視点から再生表示を可能とする3Dモデルが用いられている。被写体の3Dモデルの3次元データは、例えば、複数の視点から撮影した複数のテクスチャ画像およびデプス画像に変換して再生装置に伝送され、再生側で表示される(例えば、特許文献2参照)。
特開2006-277007号公報 国際公開第2017/082076号
 地球を観測する場合にも、VRのように、地上の任意の地点について、任意の時刻に、上空の自由な視点から観測を行いたいという要望がある。しかしながら、静止衛星の場合、高度3万6千kmに位置するため、高分解能での観測は困難であり、衛星の位置が固定であるため、特定の地点しか観測できない。また、低軌道または中軌道を周回する周回衛星の場合は、軌道上の視点からしか見ることができず、自由な視点から見ることができない。よって、現時点では、地上の任意の地点について、任意の時刻に、上空の自由な視点から観測を行いたいという要望に十分にこたえられていない状況である。
 本技術は、このような状況に鑑みてなされたものであり、地上の任意の地点について、任意の時刻に、上空の自由な視点から観測を行うことができるようにするものである。
 本技術の一側面の画像生成装置は、人工衛星により撮像された衛星画像を用いて生成された静止被写体の3Dモデルと、動的被写体を特定する動的被写体特定情報とを用いて、上空の所定の仮想視点から地上の所定の地点を見た自由視点画像を生成する画像生成部を備える。
 本技術の一側面の画像生成方法は、画像生成装置が、人工衛星により撮像された衛星画像を用いて生成された静止被写体の3Dモデルと、動的被写体を特定する動的被写体特定情報とを用いて、上空の所定の仮想視点から地上の所定の地点を見た自由視点画像を生成する。
 本技術の一側面のプログラムは、コンピュータを、人工衛星により撮像された衛星画像を用いて生成された静止被写体の3Dモデルと、動的被写体を特定する動的被写体特定情報とを用いて、上空の所定の仮想視点から地上の所定の地点を見た自由視点画像を生成する画像生成部として機能させるためのものである。
 本技術の一側面においては、人工衛星により撮像された衛星画像を用いて生成された静止被写体の3Dモデルと、動的被写体を特定する動的被写体特定情報とを用いて、上空の所定の仮想視点から地上の所定の地点を見た自由視点画像が生成される。
 なお、本技術の一側面の画像生成装置は、コンピュータにプログラムを実行させることにより実現することができる。コンピュータに実行させるプログラムは、伝送媒体を介して伝送することにより、又は、記録媒体に記録して、提供することができる。
 画像生成装置は、独立した装置であっても良いし、1つの装置を構成している内部ブロックであっても良い。
本技術を適用した実施の形態としての衛星画像処理システムの構成例を示すブロック図である。 自由視点画像生成装置の詳細構成例を示すブロック図である。 自由視点画像生成装置で実行される自由視点画像生成処理を説明するフローチャートである。 本技術を適用したコンピュータの一実施の形態の構成例を示すブロック図である。
 以下、添付図面を参照しながら、本技術を実施するための形態(以下、実施の形態という)について説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。説明は以下の順序で行う。
1.衛星画像処理システムの構成例
2.ボリューメトリックキャプチャ技術について
3.自由視点画像生成装置の構成例
4.自由視点画像生成処理
5.アプリケーション適用例
6.コンピュータ構成例
<1.衛星画像処理システムの構成例>
 図1は、本技術を適用した実施の形態としての衛星画像処理システムの構成例を示すブロック図である。
 図1の衛星画像処理システム1は、複数の人工衛星(以下、単に衛星という。)によって撮像された画像(以下、衛星画像と称する。)を用いて、地上の任意の地点について、任意の時刻に、上空の自由な視点から観測を行うことができるシステムである。本実施の形態において、衛星は撮像装置を搭載し、地上を撮像する機能を少なくとも有する。
 衛星運用会社は、複数の衛星21を管理する衛星管理装置11と、衛星21と通信を行う複数の通信装置13とを有している。なお、衛星管理装置11および複数の通信装置13の一部は、衛星運用会社以外が所有する装置であってもよい。衛星管理装置11と複数の通信装置13とは、所定のネットワーク12を介して接続されている。通信装置13は、地上局(地上の基地局)15に配置されている。なお、図1では、通信装置13の個数が、通信装置13A乃至13Cの3個である例が示されているが、通信装置13の個数は任意である。
 衛星管理装置11は、衛星運用会社が所有する複数の衛星21を管理する。具体的には、衛星管理装置11は、1以上の外部機関の情報提供サーバ41から関連情報を必要に応じて取得し、自身が所有する複数の衛星21の運用計画を決定する。そして、衛星管理装置11は、顧客の要望に応じて、通信装置13を介して所定の衛星21に撮像指示を行うことにより、所定の衛星21に撮像を行わせる。また、衛星管理装置11は、通信装置13を介して衛星21から送信されてきた衛星画像を取得し、記憶する。取得された衛星画像は、必要に応じて所定の画像処理を行い、顧客へ提供(送信)される。また、取得された衛星画像は、画像提供会社の自由視点画像生成装置51へ提供(送信)される。
 外部機関に設置された情報提供サーバ41は、衛星管理装置11からの要求に応じて、あるいは、定期的に、所定の関連情報を、所定のネットワークを介して、衛星管理装置11へ供給する。情報提供サーバ41から提供される関連情報には、例えば、次のようなものがある。例えば、外部機関としてのNORAD(北アメリカ航空宇宙防衛司令部)から、TLE(Two Line Elements)フォーマットで記述された衛星の軌道情報を関連情報として取得することができる。また例えば、外部機関としての気象情報提供会社から、地上の所定の地点の天気、雲量などの気象情報を取得することができる。
 自由視点画像生成装置51は、所定のネットワークを介して衛星管理装置11から供給される、衛星21が撮像した衛星画像を用いて、地上の任意の地点について、任意の時刻に、上空の自由な視点から観測される衛星画像である自由視点画像を生成する画像処理を実行する。自由視点画像生成装置51は、ユーザ91(図2)の生成指示に応じて、必要に応じて衛星画像の撮像依頼を、衛星管理装置11に送信する。自由視点画像の生成処理は、衛星運用会社が行う場合もあり、この場合、衛星運用会社と画像提供会社は同一である。また、衛星管理装置11と自由視点画像生成装置51が1つの装置で実現されてもよい。
 通信装置13は、衛星管理装置11の制御に従い、衛星管理装置11によって指定された所定の衛星21と、アンテナ14を介して通信を行う。例えば、通信装置13は、所定の時刻および位置において、地上の所定の領域を撮像する撮像指示を所定の衛星21へ送信する。また、通信装置13は、衛星21から送信されてくる衛星画像を受信し、ネットワーク12を介して衛星管理装置11へ供給する。地上局15の通信装置13から衛星21への送信をアップリンク、衛星21から通信装置13への送信をダウンリンクとも称する。通信装置13は、衛星21と直接通信を行うことができる他、中継衛星22を介して通信を行うこともできる。中継衛星22としては、例えば、静止衛星が用いられる。
 ネットワーク12や、情報提供サーバ41または自由視点画像生成装置51と衛星管理装置11との間のネットワークは、任意の通信網であり、有線の通信網であってもよいし、無線の通信網であってもよいし、それらの両方により構成されてもよい。また、ネットワーク12と、情報提供サーバ41または自由視点画像生成装置51と衛星管理装置11との間のネットワークが、1の通信網により構成されるようにしてもよいし、複数の通信網により構成されるようにしてもよい。これらのネットワークは、例えば、インターネット、公衆電話回線網、所謂4G回線や5G回線等の無線移動体用の広域通信網、WAN(Wide Area Network)、LAN(Local Area Network)、Bluetooth(登録商標)規格に準拠した通信を行う無線通信網、NFC(Near Field Communication)等の近距離無線通信の通信路、赤外線通信の通信路、HDMI(登録商標)(High-Definition Multimedia Interface)やUSB(Universal Serial Bus)等の規格に準拠した有線通信の通信網等、任意の通信規格の通信網または通信路とすることができる。
 複数の衛星21は、1機(単機)で運用されている場合もあれば、複数機で1つの衛星群を構成し、衛星群単位で運用されている場合もある。図1の例では、単機で運用されている衛星21の図示は省略されており、衛星21Aと衛星21Bとが第1の衛星群31Aを構成し、衛星21Cと衛星21Dとが第2の衛星群31Bを構成している。なお、図1の例では、簡単のため、2機の衛星21により1つの衛星群31が構成される例を示しているが、1つの衛星群31を構成する衛星21の個数は2つに限られない。
 複数の衛星21を1つの単位(衛星群)として運用するシステムとしては、コンステレーションとフォーメーションフライトとがある。コンステレーションは、多数の衛星を単一もしくは複数の軌道面に投入することで、主に全球に均一にサービスを展開するシステムである。コンステレーションを構成する個々の衛星がそれぞれ所定の機能を有し、観測頻度向上などを目的として複数の衛星が運用される。一方、フォーメーションフライトは、数km程度の狭い領域で、複数の衛星が相対的な位置関係を維持しつつ、展開するシステムである。フォーメーションフライトでは、高精度の3次元計測や、移動体の速度検出など、単一衛星では実現できないサービスの提供が可能である。本実施の形態においては、衛星群の運用は、コンステレーションまたはフォーメーションフライトのいずれであるかを問合わない。
 通信装置13が、衛星群31を構成する各衛星21と通信を行う場合、図1の第1の衛星群31Aのように、各衛星21と個別に通信を行う方法と、第2の衛星群31Bのように、衛星群31を代表する1つの衛星21C(以下、代表衛星21Cともいう。)のみが通信装置13と通信を行い、その他の衛星21Dは、代表衛星21Cとの衛星間通信によって、間接的に通信装置13と通信を行う方法とがある。どちらの方法で地上局15(の通信装置13)と通信を行うかは、衛星群31によって予め決められてもよいし、通信の内容に応じて適宜選択してもよい。単機で運用されている衛星21も、衛星21が地上局15の通信装置13と通信を行う場合もあれば、中継衛星22を介して地上局15の通信装置13と通信を行う場合もある。衛星21が地上局15に設置された通信装置13の通信範囲内を移動している場合、衛星21は通信装置13と所定の周波数でダウンリンクすることができる。衛星21が地上局15に設置された通信装置13の通信範囲外を移動している場合、衛星21は、衛星間通信によって、地上局15に設置された通信装置13の通信範囲内に位置する他の衛星21へ伝送し、他の衛星21を介して、地上局15にダウンリンクすることができる。これにより、衛星画像のリアルタイム性を担保することができる。
 衛星画像処理システム1は、以上のように構成されている。
 衛星管理装置11または自由視点画像生成装置51は、個々の衛星21で撮像された衛星画像に対して、以下のような画像処理を実行することができる。
(1)メタデータの生成
 衛星21から送信されてきた情報や、撮像を行った衛星21の情報に基づいて、メタデータを生成することができる。例えば、撮像対象位置の緯度経度の情報、衛星21の撮像時の姿勢制御や加速度の情報などを、メタデータとして生成することができる。なお、メタデータは、撮像時の条件等に基づいて衛星21自身が生成する場合もあり、その場合、衛星21で撮像された衛星画像に予め付加されているメタデータを用いてもよい。
(2)衛星画像の補正処理
 感度特性に関するラジオメトリック補正、衛星21の軌道位置や姿勢誤差などの幾何補正、地形の高低差に起因する幾何学的な歪みを補正するオルソ補正、地図投影面への射像を行う地図投影、などの補正処理を行うことができる。
(3)カラー合成処理
 パンシャープン処理、トゥルーカラー合成処理、フォールスカラー合成処理、ナチュラルカラー合成処理、SAR画像合成処理、バンド毎の衛星画像に色を付加する処理、などのカラー合成処理を行うことができる。
(4)その他の画像合成
 過去に自分(衛星21)が撮像した衛星画像、他の衛星21で撮像された衛星画像、何らかの他の画像との合成、異なるバンドで撮像された衛星画像どうしの合成、地図情報との合成などを行うこともできる。
(5)情報抽出
 R(Red)とIR(Infrared)などの異なるバンドにより、NDVI(Normalized Difference Vegetation Index)等の植生検出情報や、NDWI(Normalized Difference Water Index)等の水検出情報を算定することができる。車両や移動体、魚群などの特定被写体のハイライト処理、特定バンドの情報、前回撮像時からの変化点の抽出などを行うことができる。
 特に、コンステレーションまたはフォーメーションフライトを行う複数の衛星21で撮像された複数の衛星画像を用いた場合には、衛星管理装置11または自由視点画像生成装置51は、以下のような画像処理をより効果的に行うことが可能である。
(1)高解像化または高品質化処理
 複数の衛星画像を重ね合わせることで、分解能を向上させた衛星画像を生成することができる。また、モノクロ画像とカラー画像を合わせたパンシャープン画像や、例えば異なるダイナミックレンジやシャッタスピード、異なるバンド(波長帯域)、異なる解像度など、撮像条件の異なる衛星画像の合成によって、高解像化させた衛星画像を生成することができる。
(2)機能分担
 R(Red)とIR(Infrared)などの異なるバンドにより、NDVI(Normalized Difference Vegetation Index)等の指標を算定することができる。
(3)3次元計測
 視差画像により、三次元情報を得ることができる。また、三次元情報により地上の物体認識の精度を高めることができる。たとえば、物体が車両であるか否かの判別を行うことができる(分解能的に画像から直ちには車両であるとはわからずとも、道路上にあるものが模様でなく立体物と分かれば、それが車両であると推定できる)。
(4)差分計測
 同一位置から時間差で撮像した複数の衛星画像を用いて、第1の時刻と第2の時刻との変化を抽出することができる。また、変化した対象のみを抽出して着色するような画像化を行ってもよい。また例えば、複数の衛星画像を用いて、船舶や車両の移動速度を算定したり、雲等の移動から風速を算出することができる。
(5)その他の画像合成
 過去の衛星画像や、他の衛星21で撮像された衛星画像との合成、異なるバンドで撮像された衛星画像どうしの合成、地図情報との合成などを行うこともできる。
 個々の衛星21は、地上を撮像した衛星画像をRAWデータで通信装置13へ送信してもよいし、上述した画像処理を行った後に、送信してもよい。
(画像フォーマット)
 画像処理後の処理画像、および、衛星画像は、例えば、以下のような画像フォーマットを用いて、各装置の記憶部に格納され、他の装置へ伝送される。
(1)CEOS
 CEOSは、地球観測衛星委員会 (committee on Earth Observation Satellites)で標準化されたフォーマットである。CEOSには、バンドごとにファイルが分割される「CEOS-BSQ」と、複数のバンドが多重化された「CEOS-BIL」とがある。
(2)HDF
 イリノイ大学のNCSA (National Center for Supercomputing Applications) で開発されたフォーマットである。多様なコンピュータ環境で容易にデータの相互交換を行えるように複数のバンドが一つのファイルにまとめられている。
(3)Geo TIFF
 TIFF(Tagged Image File Format)に、リモートセンシング用の情報を付加したフォーマットである。TIFF形式であるので、一般的な画像ビューア等で開くことが可能である。
(4)JPEG2000
 Joint Photographic Experts Groupにより規格化された画像フォーマットである。JPEG 2000は単に圧縮率を高めるだけではなく、注目領域の画像を向上させる技術や、電子透かしなどの著作権保護技術が採用されている。
<2.ボリューメトリックキャプチャ技術について>
 多視点で撮影された画像(動画像を含む)から被写体の3Dモデルを生成し、任意の視聴位置に応じた3Dモデルの仮想視点画像を生成することで自由な視点の画像を提供する技術が知られている。この技術は、ボリューメトリックキャプチャ技術などとも呼ばれている。
 自由視点画像生成装置51は、ボリューメトリックキャプチャ技術を衛星画像に適用し、地上の任意の地点について、任意の時刻に、上空の自由な視点から観測した衛星画像である自由視点画像を生成する。
 そこで、初めに、人物等を被写体とする場合の被写体の3Dモデルの生成と、生成された3Dモデルに基づく自由視点画像の表示について簡単に説明する。
 3Dモデルの生成においては、被写体が配置された所定の撮影空間を、その外周から複数の撮像装置で撮像を行うことにより複数の撮影画像が得られる。撮影画像は、例えば、動画像で構成される。
 異なる方向の複数の撮像装置から得られた撮影画像を用いて、撮影空間において表示対象となる前景の被写体を抽出し、被写体の3Dモデルである3Dオブジェクトが生成される(3Dモデリング)。例えば、各視点における被写体のシルエットを3D空間へ投影し、そのシルエットの交差領域を3D形状とするVisual Hullや、視点間のテクスチャ情報の一致性を利用するMulti view stereoなどにより、3Dオブジェクトが生成される。
 そして、撮影空間に存在する1以上の3Dオブジェクトのうち、1以上の3Dオブジェクトのデータ(以下、3Dモデルデータとも称する。)が、再生側の装置に伝送され、再生される。すなわち、再生側の装置において、取得した3Dオブジェクトのデータに基づいて、3Dオブジェクトのレンダリングを行うことにより、視聴者の視聴デバイスに3D形状映像が表示される。視聴デバイスは、例えば、液晶ディスプレイや、ヘッドマウントディスプレイなどで構成される。
 3Dモデルデータのデータフォーマットとしては、様々なフォーマットをとり得る。
 データフォーマットの一つは、オブジェクトのジオメトリ情報(形状情報)を、オブジェクトの3次元位置を点の集合(ポイントクラウド)で表し、その各点に対応してオブジェクトの色情報を保有する形式である。この形式では、1つのオブジェクトに対して、1つのジオメトリ情報と色情報が保持される。この形式を、ポイントクラウド形式と記述する。
 データフォーマットの他の一つは、オブジェクトのジオメトリ情報を、上記ポイントクラウド形式と同様の点の集合(ポイントクラウド)か、または、ポリゴンメッシュと呼ばれる頂点(Vertex)と頂点間のつながりで表し、オブジェクトの色情報を、各撮像装置が撮像した撮影画像(2次元テクスチャ画像)で保有する形式である。この形式では、1つのオブジェクトに対して、1つのジオメトリ情報と、撮像装置の台数と同じ枚数の撮影画像(2次元テクスチャ画像)からなる色情報が保持される。この形式を、マルチテクスチャジオメトリ形式と記述する。
 データフォーマットのさらに他の一つは、オブジェクトのジオメトリ情報をポリゴンメッシュで表し、その各ポリゴンメッシュに対応してオブジェクトの色情報を保有する形式である。各ポリゴンメッシュに貼り付けられる色情報としての2次元テクスチャ画像はUV座標系で表現される。この形式では、1つのオブジェクトに対して、1つのジオメトリ情報と、1つの2次元テクスチャ画像からなる色情報が保持される。本実施の形態では、この形式を、UVテクスチャジオメトリ形式と記述する。UVテクスチャジオメトリ形式は、MPEG-4 AFX(Animation Framework eXtension)で規格化された形式である。
 データフォーマットのさらに他の一つは、オブジェクトのジオメトリ情報を各撮像装置が撮像した撮影画像に対応する距離情報で表し、オブジェクトの色情報を、各撮像装置が撮像した撮影画像(2次元テクスチャ画像)で保有する形式である。各撮像装置が撮像した撮影画像に対応する距離情報には、撮影画像の各画素に対応させて、被写体までの奥行き方向の距離をデプス値として格納したデプス画像が採用される。この形式では、1つのオブジェクトに対して、撮像装置の台数と同じ枚数のデプス画像からなるジオメトリ情報と、撮像装置の台数と同じ枚数の撮影画像(2次元テクスチャ画像)からなる色情報が保持される。この形式を、マルチテクスチャデプス形式と記述する。マルチテクスチャデプス形式のメリットは、3Dモデルデータを伝送する場合の符号化方式として、AVC(Advanced Video Coding)方式、HEVC(High Efficiency Video Coding)方式等を、そのまま利用することができ、高効率に圧縮することができる点である。
 以上のような各種の3Dモデルデータのデータフォーマットのうち、どのようなデータフォーマットを採用するかは任意である。再生側がデータフォーマットを指定してもよいし、配信側がデータフォーマットを決定してもよい。また、アプリケーションごとに予めデータフォーマットを決めておいてもよい。
 再生側は、撮影空間に存在する1以上の3Dオブジェクトのうち、視聴対象の3Dオブジェクトだけを要求して、視聴デバイスに表示させることが可能である。例えば、再生側は、視聴者の視聴範囲が撮影範囲となるような仮想カメラを想定し、撮影空間に存在する多数の3Dオブジェクトのうち、仮想カメラで捉えられる3Dオブジェクトのみを要求して、視聴デバイスに表示させる。実世界において視聴者が任意の視点から被写体を見ることができるように、仮想カメラの視点(仮想視点)は任意の位置に設定することができる。3Dオブジェクトには、適宜、所定の空間を表す背景画像が合成される。背景画像は、仮想視点が固定の静止画像であってもよいし、前景画像としての被写体と同様に、仮想視点に応じて変更される画像であってもよい。
<3.自由視点画像生成装置の構成例>
 図2は、自由視点画像生成装置51の詳細構成例を示すブロック図である。
 自由視点画像生成装置51は、自由視点画像生成部61、自由視点画像蓄積部62、符号化部63、通信部64、および、ユーザIF(Interface)部65を備える。ユーザIF部65は、表示部81、および、操作部82を有する。
 自由視点画像生成装置51は、ユーザIF部65を介してユーザ91の操作を受け付け、ユーザ91の指示に従った処理を実行することができるとともに、ユーザ91が端末装置92を介して自由視点画像生成装置51に所定の処理を指示した場合にも、その指示に応じた処理を実行することができる。ユーザ91は、操作部82に直接入力することにより、または、端末装置92を介して、上空の所定の仮想視点から、所定の時刻(指定時刻)の、地上の所定の地点(指定地点)を見た衛星画像である自由視点画像の生成を指示する。
 自由視点画像生成装置51は、ユーザからの自由視点画像の生成指示に応じて、所定の仮想視点から見たベース画像とリアルタイム画像とを合成することにより、ユーザが指定した所定の仮想視点から、指定時刻に、地上の指定地点を見た衛星画像を生成する。
 所定の仮想視点から見たベース画像は、ボリューメトリックキャプチャ技術の背景画像に相当する衛星画像であり、一定の時間幅で変化が見られない(一定の時間幅における変化を問わない)静止被写体の衛星画像である。ベース画像は、リアルタイム画像と比較して相対的に変化が少ない画像となる。
 これに対して、所定の仮想視点から見たリアルタイム画像は、ボリューメトリックキャプチャ技術の前景画像(被写体)に相当する衛星画像であり、リアルタイムに変化する動的被写体(リアルタイム被写体)の衛星画像である。
 リアルタイムに変化する動的被写体(リアルタイム被写体)とは、ベース画像に含まれる静止被写体以外の、一定の時間幅で変化する被写体であり、例えば一瞬で変化する被写体から、数時間ないし1日程度で変化する被写体を含む。
 動的被写体には、例えば、飛行機、船舶、車両、人などの移動物体、雲、オーロラ、火山の噴火などの気象現象、海、湖、川、地表面などに対する太陽の反射現象、朝焼けや夕焼けの空の色、影などを含む光線情報などが含まれる。
 動的被写体以外の、1日程度より長い時間幅で変化する被写体は、静止被写体に含まれることとする。例えば、紅葉などの山色の変化や、田んぼの田植え直後の状態や収穫期の稲穂の状態などは、季節の移り変わりでみられるため、山林や田んぼは静止被写体に含まれる。
 自由視点画像生成部61は、ベース画像生成部71、リアルタイム画像生成部72、外部情報取得部73、および、画像合成部74を有する。
 自由視点画像生成装置51の自由視点画像生成部61は、衛星画像蓄積サーバ101および外部情報提供サーバ102と、所定のネットワークを介して接続される。自由視点画像生成装置51と、衛星画像蓄積サーバ101または外部情報提供サーバ102との間のネットワークは、上述したネットワーク12と同様の任意の通信網を採用することができる。所定のネットワークとの接続は、通信部64を介して行われる。
 自由視点画像生成部61は、制御部66からの生成指示に基づいて、上空の所定の仮想視点から地上の所定の地点を見た自由視点画像を生成し、自由視点画像蓄積部62に供給する。
 ベース画像生成部71は、衛星画像蓄積サーバ101に蓄積(記憶)されている、異なる視点から撮像された複数の衛星画像を取得し、取得した複数の衛星画像を用いて、地上の静止被写体の3Dモデルを生成する。そして、ベース画像生成部71は、ユーザ91によって指定され所定の仮想視点から、地上の静止被写体の3Dモデルを見たときの第1の仮想視点画像を生成し、ベース画像として、画像合成部74に供給する。
 ベース画像生成部71は、衛星画像蓄積サーバ101から取得した複数の衛星画像に含まれる動的被写体を予め除去してから、地上の静止被写体の3Dモデルの生成に用いることができる。換言すれば、ベース画像生成部71は、衛星画像蓄積サーバ101から取得した衛星画像から、リアルタイム画像生成部72が生成するリアルタイム画像に含まれるべき被写体を除去した衛星画像を生成し、地上の静止被写体の3Dモデルの生成に用いることができる。衛星画像に含まれる動的被写体の除去は、例えば、同一地点を撮像した衛星画像どうしを比較し、一致しない被写体を動的被写体として検出し、除去することで可能となる。また例えば、フォーメーションフライト等の複数の人工衛星で撮像された衛星画像を用いて微小な変化を動的被写体として検出し、除去することで可能となる。
 衛星画像蓄積サーバ101には、撮像装置を搭載した人工衛星が上空から地上を撮像した複数の衛星画像が蓄積されている。人工衛星は、衛星管理装置11を所有する衛星運用会社の衛星21でもよいし、他の会社の人工衛星でもよい。衛星画像蓄積サーバ101は、衛星管理装置11を所有する衛星運用会社が運用するサーバでもよいし、自由視点画像生成装置51を所有する画像提供会社が運用するサーバでもよいし、他の会社が運用するサーバでもよい。また、衛星画像蓄積サーバ101は、衛星画像蓄積部として、自由視点画像生成装置51の一部に含まれ、衛星管理装置11から供給される衛星画像を蓄積してもよい。
 衛星画像蓄積サーバ101に蓄積される衛星画像は、1機または複数機の人工衛星により上空の複数の視点から地上を撮像して得られる画像である。1機の人工衛星で撮像する場合には、時分割で地上を撮像することで、複数の視点に対応する複数の衛星画像が生成される。複数機の人工衛星を用いる場合も、それぞれが時分割で地上を撮像することで、多数の視点に対応する多数の衛星画像を生成することができる。
 衛星画像蓄積サーバ101に蓄積される衛星画像は、人工衛星が撮像した2枚の衛星画像を1枚に結合した衛星画像であってもよい。例えば、撮像エリアが一部重複する2枚の衛星画像に対してスティッチ処理を行うことで1枚の衛星画像とすることができる。スティッチ処理を行う2枚の衛星画像は、異なる解像度の画像であってもよい。
 衛星画像蓄積サーバ101に蓄積される衛星画像に代えて、航空機により撮像された空撮画像を用いてもよい。
 衛星画像蓄積サーバ101に蓄積される衛星画像の解像度は、後段処理の精度が変化することから、高解像度であることが望ましい。例えば、地上分解能が1m以下であることが望ましく、車両等の地表構造物を識別したい場合には、50cm以下の分解能を有することが好ましい。
 衛星画像蓄積サーバ101には、テクスチャ情報としての衛星画像に加えて、静止被写体までの奥行き情報であるデプス画像も蓄積してもよい。デプス画像は、例えば、単機または複数機で異なる視点から同一地点を撮像した複数の衛星画像に基づく視差情報から生成することができる。複数機による撮像には、フォーメーションフライトによる撮像を含む。また、デプス画像は、合成開口レーダー衛星(SAR衛星)による高度計測結果から生成してもよい。あるいはまた、例えば、衛星画像に写る影の大きさなどに基づいて高さ情報を推定するなど、2次元の衛星画像からの推定により生成してもよい。
 衛星画像蓄積サーバ101に蓄積される衛星画像は、朝、昼、午後、夕方、夜間などの異なる時刻、快晴、晴れ、曇り、雨などの異なる天候、春、夏、秋、冬などの季節ごとの異なる条件ごとに蓄積されるようにすることができる。この場合、ベース画像生成部71は、蓄積された条件ごとに地上の静止被写体の3Dモデルを生成することができる。所定の条件の衛星画像が衛星画像蓄積サーバ101に蓄積されていない場合には、ベース画像生成部71は、他の条件で撮像された同一地点の衛星画像に基づいて推定し、蓄積されていない衛星画像を生成し、静止被写体の3Dモデルの生成処理に利用することができる。例えば、秋の衛星画像が蓄積されていない場合、夏または冬の同一地点の衛星画像から、秋の衛星画像を推定して生成してもよい。
 衛星画像蓄積サーバ101には、上空の多数の視点から撮像された衛星画像ではなく、他の装置で3Dモデリングにより生成された地上の静止被写体の3Dモデルのデータが蓄積されてもよい。この場合、ベース画像生成部71は、衛星画像蓄積サーバ101に蓄積されている地上の静止被写体の3Dモデルのデータを取得し、取得した地上の静止被写体の3Dモデルのデータに基づいて、第1の仮想視点画像を生成する。換言すれば、衛星画像蓄積サーバ101に地上の静止被写体の3Dモデルのデータが蓄積されている場合、3Dモデリングの処理は省略される。
 衛星画像蓄積サーバ101に蓄積される地上の静止被写体の3Dモデルのデータフォーマットは、上述した3Dモデルデータのデータフォーマットのいずれの形式でもよい。ベース画像生成部71が地上の静止被写体の3Dモデルを生成する場合のデータフォーマットも、いずれの形式でもよい。
 ベース画像は、ユーザ91によって指定された自由視点画像の指定時刻に影響のない静止被写体の衛星画像であるので、衛星画像蓄積サーバ101に蓄積される衛星画像は、ユーザ91によって指定された自由視点画像の指定時刻よりも1週間ないし1か月程度以前に撮像された衛星画像とすることができる。あるいはまた、衛星画像蓄積サーバ101に蓄積される衛星画像は、ユーザ91によって指定された自由視点画像の指定時刻より後(未来)に撮像された衛星画像であってもよい。
 衛星画像蓄積サーバ101から取得した衛星画像よりも、同一地点を撮像した衛星画像であって、撮像時刻が新しい衛星画像、または、解像度が高い衛星画像が、リアルタイム画像生成部72から供給される場合がある。ベース画像生成部71は、リアルタイム画像生成部72から、より最新または高解像度の衛星画像が供給された場合、その衛星画像を用いて、地上の静止被写体の3Dモデルを更新し、ベース画像を生成することができる。
 リアルタイム画像生成部72は、自由視点画像を生成する地点および時刻として、ユーザ91によって指定された指定地点および指定時刻に対応する衛星画像であって、異なる視点から撮像された複数の衛星画像を衛星管理装置11から取得する。指定時刻に対応する異なる視点の複数の衛星画像を、ベース画像の生成に使用する衛星画像と区別して、リアルタイム衛星画像と称する。
 リアルタイム画像生成部72は、衛星管理装置11に自由視点画像の指定地点および指定時刻を供給して、異なる視点から指定地点を指定時刻に撮像した複数の衛星画像(リアルタイム衛星画像)を取得する。衛星管理装置11は、リアルタイム画像生成部72から供給された指定時刻近傍に、指定地点を通過する衛星21に通信装置13から撮像指示を送信し、撮像させる。指定時刻近傍は、数分ないし数十分程度の誤差を含む時刻であってよい。衛星管理装置11またはリアルタイム画像生成部72は、撮像された衛星画像を、時刻の誤差に応じた変化を推定した画像に変更してもよい。例えば、動的被写体として、所定の時点に所定の地点を飛行する飛行機が撮像された場合に、当該時点が指定時刻に対して誤差がある場合には、当該誤差の時間だけ飛行機の位置を移動させた衛星画像に変更してもよい。
 異なる視点からの複数の衛星画像は、1機の衛星21が時分割で撮像してもよいし、異なる軌道を持つ複数の衛星21が、それぞれの視点から撮像してもよい。あるいはまた、同じ軌道を持つ複数の衛星21や、フォーメーションフライトで運用されている複数の衛星21が、数分ないし数十分程度の時間差で撮像してもよい。数分ないし数十分程度の時間差を有する衛星画像についても、指定時刻に最も近い時刻の衛星画像を基準に、他の衛星画像を、時刻の誤差に応じた変化を推定した画像に変更してもよい。
 リアルタイム画像生成部72は、取得した複数のリアルタイム衛星画像それぞれから、地上の動的被写体を抽出する。地上の動的被写体の抽出は、例えば、同一視点のベース画像との差分により求めることができる。また、雲や飛行機、船舶、車両などは特徴的な形状や色を有するので、これらの特徴に基づく画像認識処理により、動的被写体を抽出してもよい。あるいはまた、ベース画像生成部71が動的被写体を除去する際と同様の処理を用いて、動的被写体を抽出してもよい。
 リアルタイム画像生成部72は、抽出された地上の動的被写体のみが含まれるリアルタイム衛星画像それぞれから、動的被写体の3Dモデルを生成する。そして、リアルタイム画像生成部72は、ユーザ91によって指定され所定の仮想視点から、動的被写体の3Dモデルを見たときの第2の仮想視点画像を動的被写体のリアルタイム画像として生成し、画像合成部74に供給する。
 リアルタイム画像生成部72は、動的被写体の3Dモデルを生成する代わりに、異なる視点から指定地点を撮像した複数の衛星画像から計算される視差画像に基づいて、3次元情報を生成してもよい。あるいはまた、リアルタイム画像生成部72は、動的被写体の3Dモデルを生成する代わりに、デプス情報を算出せずに、2次元の衛星画像のみを用いて推定により3次元情報を生成してもよい。例えば、2次元の衛星画像から動的被写体として飛行機を抽出し、既知情報としての飛行機の飛行高度から動的被写体の3次元情報を生成してもよい。
 リアルタイム画像生成部72が動的被写体の3Dモデルを生成する場合のデータフォーマットも、上述した3Dモデルデータのデータフォーマットのいずれの形式でもよい。3Dモデルが形成されない場合には、2次元の衛星画像のみが内部メモリに保持される。
 リアルタイム画像生成部72は、衛星管理装置11から取得したリアルタイム衛星画像を取得した場合、取得したリアルタイム衛星画像を、同一地点の衛星画像を更新する更新用の衛星画像として、ベース画像生成部71に供給することができる。
 リアルタイム画像生成部72から供給された指定時刻近傍に、指定地点を通過する衛星21が存在する場合には、その衛星21に撮像を行わせればよいが、実際には、指定時刻近傍に、指定地点を通過する衛星21が存在しない場合も起こり得る。そのような場合、リアルタイム画像生成部72は、外部情報提供サーバ102から外部情報取得部73が取得した外部情報を用いて、動的被写体のリアルタイム画像を生成し、画像合成部74に供給する。
 動的被写体が、飛行機、船舶、車両、人などの移動物体である場合には、自由視点画像の指定地点および指定時刻の情報に基づいて、移動物体の指定時刻における位置情報が、外部情報提供サーバ102から取得される。例えば、船舶、飛行機などについては、AIS(Automatic Identification System)情報を外部情報提供サーバ102から取得することで、指定時刻における移動物体の位置情報を取得することができる。車両や人などについては、車両や人に装着されている装置の位置情報や地上に設置された監視カメラで検出された位置情報を外部情報提供サーバ102から取得することで、指定時刻における移動物体の位置情報を取得することができる。移動物体の位置情報を提供する運用会社が運営する外部情報提供サーバ102から、各種の移動物体の位置情報を取得してもよい。
 リアルタイム画像生成部72は、移動物体の既知の3Dモデルまたはテクスチャ情報を外部の会社から取得または自身の会社で生成し、予め内部に記憶しておき、外部情報取得部73を介して取得される移動物体の位置情報に基づいて移動物体の2次元画像を所定の位置に配置することで、動的被写体のリアルタイム画像を生成し、画像合成部74に供給する。
 動的被写体が、雲の分布などの気象現象である場合には、気象情報を提供する気象サービス企業が運営する外部情報提供サーバ102から、雲の分布を示す情報と推定高度情報を取得し、雲の2次元画像を推定高度に配置することで、雲の分布のリアルタイム画像を生成することができる。また例えば、動的被写体が太陽の反射現象である場合には、気象サービス企業が運営する外部情報提供サーバ102から、太陽位置などの情報を取得し、光線情報などを推定して所定の位置に配置することで、影や太陽の反射などの光線情報のリアルタイム画像を生成することができる。
 図2では、説明の便宜上、1つの外部情報提供サーバ102しか図示していないが、外部情報取得部73は、取得したい外部情報の種類に応じて、異なる外部情報提供会社や異なる場所の外部情報提供サーバ102にアクセスすることで、所望の外部情報を取得することができる。
 上述した説明では、リアルタイム画像生成部72が、ユーザ91によって指定された指定地点および指定時刻に対応する衛星画像が撮像可能である場合と撮像できない場合のそれぞれについて、動的被写体のリアルタイム画像を生成する方法について説明したが、実際には、それらの中間的な場合が有り得る。すなわち、ユーザ91によって指定された指定時刻に対して数十分程度の誤差範囲の指定地点の衛星画像は撮像できないが、1時間前、3時間前、6時間前、数時間の誤差範囲の指定地点の衛星画像を取得できる場合がある。
 この場合、リアルタイム画像生成部72は、ユーザ91によって指定された指定時刻に対して所定時間の誤差範囲の時刻に撮像した衛星画像であって、異なる視点から撮像された複数の衛星画像を、衛星管理装置11から取得する。指定時刻に対して所定時間の誤差範囲の時刻に対応する異なる視点の複数の衛星画像を、ベース画像の生成に使用する衛星画像、および、リアルタイム衛星画像と区別して、準リアルタイム衛星画像と称する。指定時刻に対する数時間の誤差範囲は、コンステレーションの運用で想定される誤差範囲であるが、準リアルタイム衛星画像の指定時刻に対する誤差範囲は、回帰日数1日の観測衛星を想定して最大1日とする。
 リアルタイム画像生成部72は、取得した複数の準リアルタイム衛星画像それぞれから、地上の動的被写体を抽出し、動的被写体の3Dモデルを生成する。動的被写体の抽出、および、動的被写体の3Dモデルの生成は、上述したリアルタイム衛星画像の場合と同様である。
 次に、リアルタイム画像生成部72は、生成した動的被写体の3Dモデルから、外部情報取得部73を介して外部情報提供サーバ102から取得される動的被写体に関する外部情報を用いて、指定時刻の動的被写体の3Dモデルを推定する。例えば、リアルタイム画像生成部72は、外部情報としての飛行機や船舶の位置情報を取得し、移動物体の3Dモデルを、外部情報に基づく位置に移動させる。また例えば、リアルタイム画像生成部72は、外部情報としての雲の分布情報を取得し、雲の3Dモデルを、外部情報に基づく位置に移動させる。そして、リアルタイム画像生成部72は、ユーザ91によって指定され所定の仮想視点から、外部情報に基づいて推定された指定時刻の動的被写体の3Dモデルを見たときの第2の仮想視点画像を動的被写体のリアルタイム画像として生成し、画像合成部74に供給する。
 あるいはまた、リアルタイム画像生成部72は、取得した複数の準リアルタイム衛星画像から生成した動的被写体の3Dモデルを、ユーザ91によって指定され所定の仮想視点から見たときの動的被写体の準リアルタイム画像を生成する。そして、リアルタイム画像生成部72は、生成した動的被写体の準リアルタイム画像と、外部情報取得部73を介して外部情報提供サーバ102から取得される動的被写体に関する外部情報とを用いて、動的被写体のリアルタイム画像を推定して生成する。例えば、2時間前の飛行機または船舶のテクスチャ画像である準リアルタイム画像が、外部情報に基づく指定時刻の位置に変更され、指定時刻の移動物体のリアルタイム画像とされる。2時間前の雲のテクスチャ画像である準リアルタイム画像が、外部情報に基づく指定時刻の雲の情報に基づいて変更され、指定時刻の雲のリアルタイム画像が生成される。
 すなわち、準リアルタイム衛星画像が取得される場合には、リアルタイム衛星画像を取得して動的被写体のリアルタイム画像を生成する方法と、外部情報のみを用いて動的被写体のリアルタイム画像を生成する方法の両方の方法を連携(相互補完)することにより、動的被写体のリアルタイム画像が生成される。
 なお、ユーザ91が指定した指定時刻に対応するリアルタイム衛星画像が取得可能な場合であっても、準リアルタイム衛星画像も用いるようにしてもよい。リアルタイム衛星画像と準リアルタイム衛星画像を併用することにより、次のような効果が得られる。1つの効果として、指定時刻に撮像するリアルタイム衛星画像の情報量が少ない画像でも許容できる。例えば、リアルタイム衛星画像と準リアルタイム衛星画像の両方を用いることで、指定時刻に撮像するリアルタイム衛星画像の解像度が低くても良く、解像度が低い分、撮像範囲を広げることができる。リアルタイム衛星画像を撮像するための衛星21と、準リアルタイム衛星画像を撮像するための衛星21とで異なる種類の衛星21を使用することができ、複数種類の衛星21を準備する余地ができる。リアルタイム衛星画像と準リアルタイム衛星画像との差分情報に基づき、その間の時間帯の雲の変化など、その間の情報を補完することもできる。
 その他、リアルタイム画像生成部72は、ベース画像生成部71により生成可能なベース画像を用いて、動的被写体としての光線情報を推定し、光線情報のリアルタイム衛星画像を生成してもよい。例えば、ベース画像生成部71によって、朝、昼、夜間などの異なる時刻ごと、快晴、晴れの天候ごと、春、夏、秋、冬などの季節ごと、などの各条件で静止被写体の3Dモデルが生成され、各条件のベース画像が生成可能である。リアルタイム画像生成部72は、各条件の静止被写体の3Dモデルから生成された、各条件のベース画像における光線情報の変化を検出して、ユーザ91によって指定された時刻、季節、天候に基づくリアルタイム衛星画像を、推定により生成することができる。リアルタイム衛星画像は、準リアルタイム衛星画像や不完全なリアルタイム衛星画像を用いて推定してもよい。不完全なリアルタイム衛星画像は、例えば、パンクロミック画像(モノクロ画像)や、分解能の低い画像である。移動物体の影や色を表すテクスチャ情報についても、光線情報と同様に、ベース画像を用いて推定することができる。
 画像合成部74は、ベース画像生成部71から供給されるベース画像と、リアルタイム画像生成部72から供給されるリアルタイム衛星画像とを合成することにより、ユーザ91によって指定された指定時刻において地上の指定地点を見た自由視点画像を生成し、自由視点画像蓄積部62に供給する。画像合成部74では、ボリューメトリックキャプチャ技術の背景画像に相当するベース画像に、ボリューメトリックキャプチャ技術の前景画像(被写体)に相当するリアルタイム画像が重畳される。
 自由視点画像蓄積部62は、画像合成部74から供給される自由視点画像を蓄積する。自由視点画像蓄積部62は、自由視点画像生成部61で生成された様々な仮想視点、指定時刻、および、指定地点の自由視点画像を蓄積しておき、制御部66からの指示に対応して、指定された自由視点画像を選択して、符号化部63または表示部81に供給することもできる。
 符号化部63は、自由視点画像蓄積部62から供給される自由視点画像を、AVC(Advanced Video Coding)方式、HEVC(High Efficiency Video Coding)方式等の所定の符号化方式を用いて符号化する。符号化された自由視点画像符号化データが通信部64に供給される。
 通信部64は、所定のネットワークを介して端末装置29と通信を行う。通信部64は、端末装置92から、所定の仮想視点、指定時刻、および、指定地点の自由視点画像を生成する生成指示が供給された場合、その生成指示を制御部66に供給する。通信部64は、生成指示に応じて符号化部63から供給される自由視点画像符号化データを端末装置92に送信する。また、通信部64は、制御部66の制御に従い、衛星画像の撮像依頼を衛星管理装置11へ送信する。通信部64は、制御部66の制御に従い、衛星画像蓄積サーバ101と、外部情報提供サーバ102とも通信を行う。
 表示部81は、例えば、LCD(Liquid Crystal Display)や有機EL(Electro Luminescence)ディスプレイで構成される。表示部81は、自由視点画像蓄積部62から供給される自由視点画像を表示する。
 操作部82は、例えば、キーボードやマウス、タッチパネル等で構成され、ユーザ91の操作を受け付け、ユーザ91が指定した仮想視点、指定時刻、および、指定地点の自由視点画像を生成する生成指示を、制御部66に供給する。
 制御部66は、自由視点画像生成装置51全体の動作を制御する。例えば、制御部66は、通信部64またはユーザIF部65からの生成指示に基づいて、ユーザ91によって指定された上空の所定の仮想視点から所定の時刻に、地上の所定の地点を見た自由視点画像の生成指示を、自由視点画像生成部61に供給する。また、制御部66は、自由視点画像の生成に必要な衛星画像を撮像する必要がある場合、通信部64に対して、衛星画像の撮像依頼を衛星管理装置11へ送信させる。また、制御部66は、自由視点画像蓄積部62に蓄積されている自由視点画像を、符号化部63または表示部81に供給させる。
 端末装置92は、例えば、スマートフォン、タブレット型端末、携帯電話機、パーソナルコンピュータ等で構成され、ユーザ91の操作を受け付ける。ユーザ91が端末装置92を介して自由視点画像生成装置51に自由視点画像の生成を指示すると、端末装置92は、その生成指示を自由視点画像生成装置51に送信する。また、端末装置92は、生成指示に応じて自由視点画像生成装置51から送信されてくる自由視点画像符号化データを受信し、符号化方式に対応する復号処理を行って、不図示の表示装置に、自由視点画像を表示する。ユーザは、自分が所有する端末装置92を用いて、任意の場所から(リモートで)自由視点画像を確認することができる。
<4.自由視点画像生成処理>
 次に、図3のフローチャートを参照して、自由視点画像生成装置51で実行される、自由視点画像生成処理を説明する。この処理は、例えば、ユーザ91が、端末装置92において、上空の所定の仮想視点から、所定の指定時刻の、地上の所定の指定地点を見た自由視点画像の生成を指示する操作を行った場合に開始される。
 初めに、ステップS1において、制御部66は、端末装置92からの生成指示に基づいて、通信部64を介して、所定の仮想視点、指定時刻、および、指定地点に対応する衛星画像の撮像依頼を衛星管理装置11へ送信する。また、制御部66は、ユーザ91によって指定された上空の所定の仮想視点から所定の時刻に、地上の所定の地点を見た自由視点画像の生成指示を、自由視点画像生成部61に供給する。
 ステップS2において、ベース画像生成部71は、衛星画像蓄積サーバ101に蓄積されている異なる視点から撮像された複数の衛星画像を取得し、複数の衛星画像それぞれに含まれる動的被写体を除去する。
 ステップS3において、ベース画像生成部71は、動的被写体が除去された複数の衛星画像を用いて、地上の静止被写体の3Dモデルを生成する。そして、ステップS4において、ベース画像生成部71は、ユーザ91が指定した所定の仮想視点から、生成した静止被写体の3Dモデルを見たときの第1の仮想視点画像をベース画像として生成し、画像合成部74に供給する。
 ステップS5において、リアルタイム画像生成部72は、ステップS1における撮像依頼に応じて、ユーザ91によって指定された指定地点および指定時刻に対応する衛星画像であって、異なる視点から撮像された複数のリアルタイム衛星画像を衛星管理装置11から取得できたかを判定する。
 ステップS5で、異なる視点から撮像された複数のリアルタイム衛星画像を取得できたと判定された場合、処理はステップS6に進み、リアルタイム画像生成部72は、取得した複数のリアルタイム衛星画像それぞれから、動的被写体を抽出する。
 ステップS7において、リアルタイム画像生成部72は、抽出された地上の動的被写体のみが含まれるリアルタイム衛星画像それぞれから、動的被写体の3Dモデルを生成する。そして、ステップS8において、リアルタイム画像生成部72は、ユーザ91によって指定され所定の仮想視点から、動的被写体の3Dモデルを見たときの第2の仮想視点画像を動的被写体のリアルタイム画像として生成し、画像合成部74に供給する。
 一方、ステップS5で、異なる視点から撮像された複数のリアルタイム衛星画像を取得できなかったと判定された場合、処理はステップS9に進み、リアルタイム画像生成部72は、ユーザ91によって指定された指定時刻に対して所定時間の誤差範囲の時刻に撮像した衛星画像であって、異なる視点から撮像された複数の準リアルタイム衛星画像を、衛星管理装置11から取得できたかを判定する。
 ステップS9で、異なる視点から撮像された複数の準リアルタイム衛星画像を、衛星管理装置11から取得できたと判定された場合、処理はステップS10に進み、リアルタイム画像生成部72は、取得した複数の準リアルタイム衛星画像それぞれから、動的被写体を抽出し、抽出された地上の動的被写体のみが含まれる準リアルタイム衛星画像それぞれから、動的被写体の3Dモデルを生成する。
 ステップS11において、リアルタイム画像生成部72は、動的被写体に関する外部情報を、外部情報取得部73を介して外部情報提供サーバ102から取得する。
 ステップS12において、リアルタイム画像生成部72は、生成した動的被写体の3Dモデルから、取得した動的被写体に関する外部情報を用いて、指定時刻の動的被写体の3Dモデルを推定する。
 ステップS13において、リアルタイム画像生成部72は、ユーザ91によって指定され所定の仮想視点から、推定した指定時刻の動的被写体の3Dモデルを見たときの第2の仮想視点画像を動的被写体のリアルタイム画像として生成し、画像合成部74に供給する。
 一方、ステップS9で、異なる視点から撮像された複数の準リアルタイム衛星画像を、衛星管理装置11から取得できなかったと判定された場合、処理はステップS14に進み、リアルタイム画像生成部72は、動的被写体に関する外部情報を、外部情報取得部73を介して外部情報提供サーバ102から取得する。
 ステップS15において、リアルタイム画像生成部72は、取得した外部情報を用いて、動的被写体のリアルタイム画像を生成し、画像合成部74に供給する。
 ステップS16において、画像合成部74は、ベース画像生成部71から供給されたベース画像と、リアルタイム画像生成部72から供給されたリアルタイム衛星画像とを合成することにより、ユーザ91によって指定された指定時刻において地上の指定地点を見た自由視点画像を生成し、自由視点画像蓄積部62に供給する。
 ステップS17において、自由視点画像蓄積部62は、画像合成部74から供給された自由視点画像を蓄積するとともに、制御部66の制御にしたがって、画像合成部74から供給された自由視点画像を符号化部63へ供給する。
 ステップS18において、符号化部63は、自由視点画像蓄積部62から供給された自由視点画像を、所定の符号化方式を用いて符号化し、通信部64が、符号化された自由視点画像符号化データを端末装置92へ送信する。自由視点画像符号化データに基づく自由視点画像が、端末装置92で表示される。
 なお、ステップS17およびS18の処理は、操作部82から生成指示が供給された場合には、画像合成部74から供給された自由視点画像が表示部81へ供給され、表示部18で表示される処理に変更される。
 以上で自由視点画像生成処理が終了する。
 上述した自由視点画像生成処理において、静止被写体の3Dモデルを生成するステップS2およびS3の処理は、ユーザ91によって指定された所定の時刻および地点のリアルタイムな状況に影響がないので、図3の自由視点画像生成処理とは別のタイミングで、予め実行しておくことができる。
 上述した自由視点画像生成処理では、自由視点画像生成部61は、ユーザ91によって指定された指定地点および指定時刻に対応する複数のリアルタイム衛星画像を衛星管理装置11から取得できた場合には、得られた複数のリアルタイム衛星画像を用いて動的被写体の3Dモデルを生成する。指定地点および指定時刻に対応する複数のリアルタイム衛星画像を得られる条件は、指定地点の上空を衛星21が通過する一定時間に限定され、最も好ましい条件では、衛星21が低軌道衛星であれば指定時刻に対して約10分程度の指定時刻近傍となるが、撮像された衛星画像から時刻の誤差に応じて推定可能な範囲を含めると、指定時刻の30分前後を含む1時間程度となる。
 一方、指定地点および指定時刻に対して1時間程度の時間範囲を超え、数時間の誤差範囲の時間帯では、複数のリアルタイム衛星画像が取得できず、複数の準リアルタイム衛星画像に基づいて、動的被写体のリアルタイム画像が生成される。この場合、仮の動的被写体の3Dモデルを推定して、動的被写体のリアルタイム画像を生成する第1の推定方法と、仮の動的被写体の準リアルタイム画像を生成して、動的被写体のリアルタイム画像を推定する第2の推定方法とがある。より具体的には、第1の推定方法では、自由視点画像生成部61は、指定時刻から数時間の誤差範囲の複数の準リアルタイム衛星画像から動的被写体の3Dモデルを生成し、外部情報を用いて、指定時刻の動的被写体の3Dモデルを推定して、動的被写体のリアルタイム画像を生成する。第2の推定方法では、自由視点画像生成部61は、指定時刻から数時間の誤差範囲の複数の準リアルタイム衛星画像から仮の動的被写体の3Dモデルを生成し、その仮の動的被写体の3Dモデルを用いてユーザ91によって指定され仮想視点からの動的被写体の準リアルタイム画像を生成し、動的被写体の準リアルタイム画像から、外部情報を用いて、動的被写体のリアルタイム画像を推定して生成する。
 さらに、準リアルタイム衛星画像さえも取得できない時間帯では、外部情報提供サーバ102から取得されるリアルタイムな外部情報と、動的被写体についての既知情報とを用いて、動的被写体のリアルタイム画像が生成される。例えば、リアルタイムに取得した飛行機の位置情報(AIS情報)と、飛行機の既知の3Dモデルから生成したテクスチャ情報とに基づいて、動的被写体のリアルタイム画像が生成される。動的被写体の3Dモデルを生成するためには、リアルタイム衛星画像または準リアルタイム衛星画像が複数枚必要となるが、リアルタイムな外部情報として2次元の衛星画像を用いる場合には、1枚の衛星画像でもよい。
 図3の自由視点画像生成処理のように、リアルタイム衛星画像を取得できた場合(ステップS6ないしS8)、準リアルタイム衛星画像を取得できた場合(ステップS10ないしS13)、リアルタイム衛星画像および準リアルタイム衛星画像のいずれも取得できなかった場合(ステップS14およびS15)と3通りに区分けせずに、取得可能なリアルタイム衛星画像、準リアルタイム衛星画像、または、外部情報を適宜組み合わせて、動的被写体を特定したり、リアルタイム画像を生成してもよい。上述したように、例えば、リアルタイム衛星画像と準リアルタイム衛星画像を併用することにより、解像度が低く、撮像範囲が広いリアルタイム衛星画像も許容できるなどの効果が得られる。
 動的被写体のリアルタイム画像を生成するための、指定地点および指定時刻に対応するリアルタイム衛星画像、準リアルタイム衛星画像、外部情報提供サーバ102から取得されるリアルタイムな外部情報、および、動的被写体についての既知情報は、動的被写体を特定する動的被写体特定情報であるということができる。
 自由視点画像生成部61は、衛星21により撮像された衛星画像を用いて生成された静止被写体の3Dモデルと、動的被写体を特定する動的被写体特定情報とを用いて、上空の所定の仮想視点から地上の所定の地点を見た自由視点画像を生成する。これにより、地上の任意の地点について、任意の時刻に、上空の自由な視点(仮想視点)から観測を行うことができる。
 なお、ユーザ91によって指定された指定地点および指定時刻に撮像可能な衛星21が少ないという状況は、運用する機数の増加、衛星間通信の通信技術の発達により、解消されることが期待される。
 また、ユーザ91が、一定程度先の所定の地点および時刻を予約指定して、所定の仮想視点から見た衛星画像を所望する場合には、自由視点画像生成装置51は、衛星管理装置11に、指定地点および指定時刻に衛星21が通過するように運用を依頼し、衛星管理装置11が、撮像する衛星21の事前配備や、衛星21に対する軌道遷移指示などを予め行うように制御することができる。これにより、自由視点画像生成装置51が所定の地点および時刻の衛星画像を取得し、ユーザ91が自由視点画像を観測することができる。自由視点画像生成装置51は、衛星管理装置11などから衛星21の軌道情報などを取得して、自由視点画像の生成が可能な地点および時刻をユーザ91に提示し、ユーザ91が、そのなかから、地点および時刻を選択し、自由視点画像を観測するようにしてもよい。
 自由視点画像生成装置51が実行する処理の一部は、衛星21で行わせるようにすることができる。
 例えば、衛星21は、リアルタイム画像生成部72によるリアルタイム画像生成機能を備え、ユーザ91の指定地点および指定時刻に所定の仮想視点から見たリアルタイム画像を生成し、ダウンリンクする。リアルタイム画像を、同一視点のベース画像との差分により地上の動的被写体を抽出して求める場合には、ベース画像を衛星21に蓄積しておく必要がある。自由視点画像生成装置51は、衛星管理装置11を介して衛星21が生成したリアルタイム画像を取得し、自身で生成したベース画像と合成することにより、自由視点画像を生成する。この場合、衛星21から地上局15へ送信するリアルタイム画像の生成に必要なデータ量を削減することができる。リアルタイム画像の生成は、動的被写体の3Dモデルを衛星21から地上局15にダウンリンクし、地上の自由視点画像生成装置51で実行してもよい。この場合も、リアルタイム画像の生成に必要なダウンリンクのデータ量を削減することができる。
<5.アプリケーション適用例>
 上述した衛星画像処理システム1は、以下のようなアプリケーションに適用することができる。
・ランドマークの自由視点確認
 ユーザの旅行先や、飛行機に乗ってランドマーク(例えば富士山)を通過する状況について自由視点画像を生成することで、宇宙からの視点を楽しむことができる。
・災害地域などの広域確認
 災害地域や紛争地域の自由視点画像を生成することで、災害地域や紛争地域の状況を確認することができる。
・立体感のある衛星画像
 対象地域または対象物の状況を観測したり、状況変化を検出する衛星リモートセンシングのための衛星画像を自由視点画像として提示することで、マクロな視点であっても、立体感のある自然な画像としてみることができる。
・高度気象観測
 自由視点画像により、雲などの気象現象を、三次元的かつ自由視点で確認することにより、気象現象をより高度に分析することができる。また、分析結果を高度な気象予報等に活用することができる。
・農作物や樹木の育成状況把握
 農作物や樹木の育成状況を、自由視点画像により三次元視覚データとして提示することができる。自由視点であるため、より多角的な解析が可能になる。
・都市計画
 都市の状況を自由視点画像により立体的に観測できる。特にリアルタイムの変化を観測することができる。このとき、ベース画像に対する変化部分をハイライト表示するなどして、都市における変化点を可視化してもよい。特定時点近傍におけるリアルタイムな情報(車両等の移動状況や導線)を多角視点で把握することができる。
・建設現場の状況把握
 遠隔地にある施設等の建設状況を、自由視点画像により三次元的に把握することができる。施設は、住居やビルなどの建築物、ダム、石油コンビナート、工場、港湾などを含む。また、整地など土地整備状況も自由視点画像により三次元的に把握することができる。このとき、ベース画像に対する変化部分をハイライト表示するなどして、都市における変化点を可視化してもよい。特定時点近傍におけるリアルタイムな情報(車両等の移動状況や導線)を多角視点で把握することができる。
 その他、衛星画像処理システム1で生成可能な自由視点画像と、他の撮影装置で撮像した画像とを連携するアプリケーションも考えられる。例えば、自由視点画像生成装置51が生成する自由視点画像から、近距離の上空から撮像した画像へ、画像を切り替えることができるようなシステムが考えられる。ユーザは、対象地点のマクロ映像として、自由視点画像を確認し、自由視点画像の一部の地点にズーム操作をした場合、都市の監視カメラや、ドローンにより撮像された画像に切り替えるように、自由視点画像と近距離の上空から撮像した画像とを連携させることで、自由視点画像の一部の地点の詳細画像も同時に確認することができる。
<6.コンピュータ構成例>
 自由視点画像生成装置51が実行する一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウエアに組み込まれているマイクロコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
 図4は、自由視点画像生成装置51が実行する一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。
 コンピュータにおいて、CPU(Central Processing Unit)301,ROM(Read Only Memory)302,RAM(Random Access Memory)303は、バス304により相互に接続されている。
 バス304には、さらに、入出力インタフェース305が接続されている。入出力インタフェース305には、入力部306、出力部307、記憶部308、通信部309、及びドライブ310が接続されている。
 入力部306は、キーボード、マウス、マイクロホン、タッチパネル、入力端子などよりなる。出力部307は、ディスプレイ、スピーカ、出力端子などよりなる。記憶部308は、ハードディスク、RAMディスク、不揮発性のメモリなどよりなる。通信部309は、ネットワークインタフェースなどよりなる。ドライブ310は、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどのリムーバブル記録媒体311を駆動する。
 以上のように構成されるコンピュータでは、CPU301が、例えば、記憶部308に記憶されているプログラムを、入出力インタフェース305及びバス304を介して、RAM303にロードして実行することにより、上述した一連の処理が行われる。RAM303にはまた、CPU301が各種の処理を実行する上において必要なデータなども適宜記憶される。
 コンピュータ(CPU301)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記録媒体311に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブル記録媒体311をドライブ310に装着することにより、入出力インタフェース305を介して、記憶部308にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部309で受信し、記憶部308にインストールすることができる。その他、プログラムは、ROM302や記憶部308に、あらかじめインストールしておくことができる。
 本明細書において、フローチャートに記述されたステップは、記載された順序に沿って時系列的に行われる場合はもちろん、必ずしも時系列的に処理されなくとも、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで実行されてもよい。
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、上述した複数の実施の形態の全てまたは一部を組み合わせた形態を採用することができる。
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、本明細書に記載されたもの以外の効果があってもよい。
 なお、本技術は、以下の構成を取ることができる。
(1)
 人工衛星により撮像された衛星画像を用いて生成された静止被写体の3Dモデルと、動的被写体を特定する動的被写体特定情報とを用いて、上空の所定の仮想視点から地上の所定の地点を見た自由視点画像を生成する画像生成部を備える
 画像生成装置。
(2)
 前記画像生成部は、前記静止被写体の3Dモデルを、前記上空の所定の仮想視点から見たベース画像を背景画像として生成し、前記動的被写体特定情報を用いて、前記上空の所定の仮想視点から見たリアルタイム画像を前景画像として生成し、前記ベース画像と前記リアルタイム画像を合成することで、前記自由視点画像を生成する
 前記(1)に記載の画像生成装置。
(3)
 前記画像生成部は、前記動的被写体特定情報として、前記動的被写体の3Dモデルを用いる
 前記(2)に記載の画像生成装置。
(4)
 前記画像生成部は、前記動的被写体の3Dモデルを、前記上空の所定の仮想視点から見た前記リアルタイム画像を前記前景画像として生成する
 前記(3)に記載の画像生成装置。
(5)
 前記画像生成部は、前記動的被写体の3Dモデルを、ユーザにより指定された時刻近傍に人工衛星により撮像されたリアルタイム衛星画像を用いて生成する
 前記(3)または(4)に記載の画像生成装置。
(6)
 前記画像生成部は、前記リアルタイム衛星画像から前記動的被写体を抽出し、抽出された画像から、前記動的被写体の3Dモデルを生成する
 前記(5)に記載の画像生成装置。
(7)
 前記画像生成部は、ユーザにより指定された時刻と数時間異なる時刻に人工衛星により撮像された準リアルタイム衛星画像を用いて仮の動的被写体の3Dモデルを生成し、外部情報を用いて、前記仮の動的被写体の3Dモデルから、ユーザにより指定された時刻の前記動的被写体の3Dモデルを推定して、前記リアルタイム画像を生成する
 前記(3)に記載の画像生成装置。
(8)
 前記画像生成部は、ユーザにより指定された時刻と数時間異なる時刻に人工衛星により撮像された準リアルタイム衛星画像を用いて仮の動的被写体の3Dモデルを生成し、前記仮の動的被写体の3Dモデルを前記上空の所定の仮想視点から見た前記動的被写体の準リアルタイム画像を生成し、前記動的被写体の準リアルタイム画像から、外部情報を用いて、前記リアルタイム画像を生成する
 前記(3)に記載の画像生成装置。
(9)
 前記画像生成部は、前記準リアルタイム衛星画像から前記動的被写体を抽出し、抽出された画像から、前記仮の動的被写体の3Dモデルを生成する
 前記(7)または(8)に記載の画像生成装置。
(10)
 前記画像生成部は、前記動的被写体特定情報として、リアルタイムな外部情報と、前記動的被写体についての既知情報とを用いる
 前記(2)に記載の画像生成装置。
(11)
 前記画像生成部は、人工衛星により撮像された衛星画像に含まれる動的被写体を除去した画像を用いて、前記静止被写体の3Dモデルを生成する
 前記(1)乃至(10)のいずれかに記載の画像生成装置。
(12)
 画像生成装置が、
 人工衛星により撮像された衛星画像を用いて生成された静止被写体の3Dモデルと、動的被写体を特定する動的被写体特定情報とを用いて、上空の所定の仮想視点から地上の所定の地点を見た自由視点画像を生成する
 画像生成方法。
(13)
 コンピュータを、
 人工衛星により撮像された衛星画像を用いて生成された静止被写体の3Dモデルと、動的被写体を特定する動的被写体特定情報とを用いて、上空の所定の仮想視点から地上の所定の地点を見た自由視点画像を生成する画像生成部
 として機能させるためのプログラム。
 1 衛星画像処理システム, 11 衛星管理装置, 21 衛星, 51 自由視点画像生成装置, 61 自由視点画像生成部, 62 自由視点画像蓄積部, 63 符号化部, 65 ユーザIF部, 66 制御部, 71 ベース画像生成部, 72 リアルタイム画像生成部, 73 外部情報取得部, 74 画像合成部, 101 衛星画像蓄積サーバ, 102 外部情報提供サーバ, 301 CPU, 302 ROM, 303 RAM, 306 入力部, 307 出力部, 308 記憶部, 309 通信部, 310 ドライブ

Claims (13)

  1.  人工衛星により撮像された衛星画像を用いて生成された静止被写体の3Dモデルと、動的被写体を特定する動的被写体特定情報とを用いて、上空の所定の仮想視点から地上の所定の地点を見た自由視点画像を生成する画像生成部を備える
     画像生成装置。
  2.  前記画像生成部は、前記静止被写体の3Dモデルを、前記上空の所定の仮想視点から見たベース画像を背景画像として生成し、前記動的被写体特定情報を用いて、前記上空の所定の仮想視点から見たリアルタイム画像を前景画像として生成し、前記ベース画像と前記リアルタイム画像を合成することで、前記自由視点画像を生成する
     請求項1に記載の画像生成装置。
  3.  前記画像生成部は、前記動的被写体特定情報として、前記動的被写体の3Dモデルを用いる
     請求項2に記載の画像生成装置。
  4.  前記画像生成部は、前記動的被写体の3Dモデルを、前記上空の所定の仮想視点から見た前記リアルタイム画像を前記前景画像として生成する
     請求項3に記載の画像生成装置。
  5.  前記画像生成部は、前記動的被写体の3Dモデルを、ユーザにより指定された時刻近傍に人工衛星により撮像されたリアルタイム衛星画像を用いて生成する
     請求項3に記載の画像生成装置。
  6.  前記画像生成部は、前記リアルタイム衛星画像から前記動的被写体を抽出し、抽出された画像から、前記動的被写体の3Dモデルを生成する
     請求項5に記載の画像生成装置。
  7.  前記画像生成部は、ユーザにより指定された時刻と数時間異なる時刻に人工衛星により撮像された準リアルタイム衛星画像を用いて仮の動的被写体の3Dモデルを生成し、外部情報を用いて、前記仮の動的被写体の3Dモデルから、ユーザにより指定された時刻の前記動的被写体の3Dモデルを推定して、前記リアルタイム画像を生成する
     請求項3に記載の画像生成装置。
  8.  前記画像生成部は、ユーザにより指定された時刻と数時間異なる時刻に人工衛星により撮像された準リアルタイム衛星画像を用いて仮の動的被写体の3Dモデルを生成し、前記仮の動的被写体の3Dモデルを前記上空の所定の仮想視点から見た前記動的被写体の準リアルタイム画像を生成し、前記動的被写体の準リアルタイム画像から、外部情報を用いて、前記リアルタイム画像を生成する
     請求項3に記載の画像生成装置。
  9.  前記画像生成部は、前記準リアルタイム衛星画像から前記動的被写体を抽出し、抽出された画像から、前記仮の動的被写体の3Dモデルを生成する
     請求項7に記載の画像生成装置。
  10.  前記画像生成部は、前記動的被写体特定情報として、リアルタイムな外部情報と、前記動的被写体についての既知情報とを用いる
     請求項2に記載の画像生成装置。
  11.  前記画像生成部は、人工衛星により撮像された衛星画像に含まれる動的被写体を除去した画像を用いて、前記静止被写体の3Dモデルを生成する
     請求項1に記載の画像生成装置。
  12.  画像生成装置が、
     人工衛星により撮像された衛星画像を用いて生成された静止被写体の3Dモデルと、動的被写体を特定する動的被写体特定情報とを用いて、上空の所定の仮想視点から地上の所定の地点を見た自由視点画像を生成する
     画像生成方法。
  13.  コンピュータを、
     人工衛星により撮像された衛星画像を用いて生成された静止被写体の3Dモデルと、動的被写体を特定する動的被写体特定情報とを用いて、上空の所定の仮想視点から地上の所定の地点を見た自由視点画像を生成する画像生成部
     として機能させるためのプログラム。
PCT/JP2021/000141 2020-01-20 2021-01-06 画像生成装置、画像生成方法、および、プログラム WO2021149484A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021573048A JPWO2021149484A1 (ja) 2020-01-20 2021-01-06
CN202180009106.6A CN114981846A (zh) 2020-01-20 2021-01-06 图像生成设备、图像生成方法和程序
US17/783,168 US20230015980A1 (en) 2020-01-20 2021-01-06 Image generation device, image generation method, and program
EP21743834.0A EP4095809A4 (en) 2020-01-20 2021-01-06 Image generation device, image generation method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-006726 2020-01-20
JP2020006726 2020-01-20

Publications (1)

Publication Number Publication Date
WO2021149484A1 true WO2021149484A1 (ja) 2021-07-29

Family

ID=76991749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000141 WO2021149484A1 (ja) 2020-01-20 2021-01-06 画像生成装置、画像生成方法、および、プログラム

Country Status (5)

Country Link
US (1) US20230015980A1 (ja)
EP (1) EP4095809A4 (ja)
JP (1) JPWO2021149484A1 (ja)
CN (1) CN114981846A (ja)
WO (1) WO2021149484A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023033975A (ja) * 2021-08-30 2023-03-13 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117278734B (zh) * 2023-11-21 2024-04-19 北京星河动力装备科技有限公司 火箭发射沉浸式观看系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132826A1 (ja) * 2014-03-05 2015-09-11 パナソニックIpマネジメント株式会社 画像処理装置、監視カメラ及び画像処理方法
JP2017098879A (ja) * 2015-11-27 2017-06-01 パナソニックIpマネジメント株式会社 モニタリング装置、モニタリングシステムおよびモニタリング方法
WO2018147329A1 (ja) * 2017-02-10 2018-08-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 自由視点映像生成方法及び自由視点映像生成システム
JP2018129009A (ja) * 2017-02-10 2018-08-16 日本電信電話株式会社 画像合成装置、画像合成方法及びコンピュータプログラム
WO2019244621A1 (ja) * 2018-06-21 2019-12-26 富士フイルム株式会社 撮像装置、無人移動体、撮像方法、システム、及びプログラム
JP2019220783A (ja) * 2018-06-18 2019-12-26 キヤノン株式会社 情報処理装置、システム、情報処理方法及びプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2455359C (en) * 2004-01-16 2013-01-08 Geotango International Corp. System, computer program and method for 3d object measurement, modeling and mapping from single imagery
US8019447B2 (en) * 2007-09-14 2011-09-13 The Boeing Company Method and system to control operation of a device using an integrated simulation with a time shift option
CA2728216C (en) * 2008-06-27 2017-03-14 Globalflows, Inc. System and method for generating commodity flow information
IL202460A (en) * 2009-12-01 2013-08-29 Rafael Advanced Defense Sys Method and system for creating a 3D view of real arena for military planning and operations
US9508002B2 (en) * 2011-06-14 2016-11-29 Google Inc. Generating cinematic flyby sequences following paths and GPS tracks
US9367959B2 (en) * 2012-06-05 2016-06-14 Apple Inc. Mapping application with 3D presentation
EP3602399B1 (en) * 2017-03-24 2022-10-05 Magic Leap, Inc. Accumulation and confidence assignment of iris codes
WO2023047648A1 (ja) * 2021-09-22 2023-03-30 ソニーグループ株式会社 情報処理装置および情報処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132826A1 (ja) * 2014-03-05 2015-09-11 パナソニックIpマネジメント株式会社 画像処理装置、監視カメラ及び画像処理方法
JP2017098879A (ja) * 2015-11-27 2017-06-01 パナソニックIpマネジメント株式会社 モニタリング装置、モニタリングシステムおよびモニタリング方法
WO2018147329A1 (ja) * 2017-02-10 2018-08-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 自由視点映像生成方法及び自由視点映像生成システム
JP2018129009A (ja) * 2017-02-10 2018-08-16 日本電信電話株式会社 画像合成装置、画像合成方法及びコンピュータプログラム
JP2019220783A (ja) * 2018-06-18 2019-12-26 キヤノン株式会社 情報処理装置、システム、情報処理方法及びプログラム
WO2019244621A1 (ja) * 2018-06-21 2019-12-26 富士フイルム株式会社 撮像装置、無人移動体、撮像方法、システム、及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4095809A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023033975A (ja) * 2021-08-30 2023-03-13 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
JP7500512B2 (ja) 2021-08-30 2024-06-17 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム

Also Published As

Publication number Publication date
CN114981846A (zh) 2022-08-30
US20230015980A1 (en) 2023-01-19
EP4095809A1 (en) 2022-11-30
EP4095809A4 (en) 2023-06-28
JPWO2021149484A1 (ja) 2021-07-29

Similar Documents

Publication Publication Date Title
US11483518B2 (en) Real-time moving platform management system
EP3077985B1 (en) Systems and methods for processing distributing earth observation images
JP7497727B2 (ja) 衛星システムの撮像方法、および、送信装置
US11403822B2 (en) System and methods for data transmission and rendering of virtual objects for display
WO2021149484A1 (ja) 画像生成装置、画像生成方法、および、プログラム
CN106095774A (zh) 一种无人机图像全景展示方法
KR20120121163A (ko) 웹 3d를 이용한 실시간 해양공간정보 제공시스템 및 그 방법
US20230079285A1 (en) Display control device, display control method, and program
Yang et al. A Low‐Cost and Ultralight Unmanned Aerial Vehicle‐Borne Multicamera Imaging System Based on Smartphones
WO2020250708A1 (ja) 画像管理方法、および、メタデータのデータ構造
KR101674033B1 (ko) 삼차원 지도 기반 폐쇄회로 텔레비전 영상 매핑 시스템
Alamouri et al. The joint research project ANKOMMEN–Exploration using automated UAV and UGV
Tsai et al. Application of near real-time and multiscale three dimensional earth observation platforms in disaster prevention
Kerle et al. Guidance notes Session 2: Obtaining spatial data for risk assessment
CN114241126A (zh) 一种基于实景模型的单目视频中物体位置信息提取方法
Hnatushenko et al. Generation of a landsat 8 mosaic for online visualization
Sik et al. Fusing geo-referenced images for urban scene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21743834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021743834

Country of ref document: EP

Effective date: 20220822