WO2021147739A1 - 量子点发光器件及其制备方法、显示面板 - Google Patents

量子点发光器件及其制备方法、显示面板 Download PDF

Info

Publication number
WO2021147739A1
WO2021147739A1 PCT/CN2021/071556 CN2021071556W WO2021147739A1 WO 2021147739 A1 WO2021147739 A1 WO 2021147739A1 CN 2021071556 W CN2021071556 W CN 2021071556W WO 2021147739 A1 WO2021147739 A1 WO 2021147739A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
group
layer
transport layer
electron transport
Prior art date
Application number
PCT/CN2021/071556
Other languages
English (en)
French (fr)
Inventor
禹钢
王铁石
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/777,405 priority Critical patent/US20220399515A1/en
Publication of WO2021147739A1 publication Critical patent/WO2021147739A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present disclosure relates to the field of display technology, in particular to a quantum dot light-emitting device, a preparation method thereof, and a display panel.
  • Quantum dots are semiconductor nanocrystals that can be processed in a solution. They have the advantages of narrow emission spectra, adjustable emission wavelengths, and high spectral purity. They are most promising to become the core part of the next generation of light-emitting devices.
  • Quantum Dot Light Emitting Diodes uses quantum dots as the material for the light-emitting layer, and introduces the light-emitting layer between different conductive materials to obtain light of the required wavelength.
  • QLED has the advantages of wide color gamut, self-illumination, low starting voltage, fast response speed, and long life.
  • An electron transport layer the material of the electron transport layer includes a host material and a first group connected to the host material, and the first group is a hydrophilic group;
  • the quantum dot layer is laminated with and adjacent to the electron transport layer film layer.
  • the material of the quantum dot layer includes a quantum dot material and a second group connected to the quantum dot material, and the second group is a affinity group.
  • An aqueous group, on the contact surface of the quantum dot layer and the electron transport layer, the first group and the second group are combined by hydrogen bonding.
  • the second group is generated by photolysis of a third group connected to the quantum dot material, the third group is a lipophilic group, and the third group includes a photosensitive group .
  • the third group includes a long-chain carboxylic acid, an amine, a thiol, an organic phosphine oxide group, an o-diazoquinone, a benzoin derivative, an azobisnitrile derivative, or a group with a disulfide bond. group.
  • the second group includes at least one of the following: a hydroxyl group, a carboxyl group, and an amino group.
  • the material of the quantum dot layer further includes: a fourth group connected to the quantum dot material.
  • the fourth group includes at least one of the following: carboxylic acid, amine, mercaptan, and organic phosphine oxide.
  • the host material includes zinc oxide nanoparticles, and the first group includes a short-chain alcohol amine.
  • the first group includes ethanolamine
  • the second group includes indene 1-formate.
  • the ethanolamine and the 1-formic acid Indene is bonded by hydrogen bonding.
  • it further includes: a substrate, and a cathode, the electron transport layer, the quantum dot layer, the hole transport layer, the hole injection layer and the anode are sequentially stacked on the substrate.
  • the embodiments of the present disclosure also provide a method for manufacturing a quantum dot light-emitting device, the method including:
  • a film-layer laminated and adjacent electron transport layer and quantum dot layer are formed on the substrate, wherein the material of the electron transport layer includes a host material and a first group connected to the host material, the first The group is a hydrophilic group, the material of the quantum dot layer includes a quantum dot material and a third group connected to the quantum dot material, and the third group is a lipophilic group;
  • the quantum dot layer is illuminated to decompose the third group into a second group, wherein the second group is a hydrophilic group, and the quantum dot layer is in contact with the electron transport layer
  • the first group and the second group are bonded by hydrogen bonding.
  • forming the quantum dot layer specifically includes:
  • the quantum dot dispersion solution is deposited and dried on the substrate to form the quantum dot layer.
  • the quantum dot solution while providing the quantum dot solution and providing the first ligand including the third group, it also includes:
  • the quantum dot solution is mixed with the first ligand and the second ligand and stirred uniformly.
  • the mass ratio of the first ligand in the mixed solution is 1%-50%.
  • illuminating the quantum dot layer to decompose the third group into the second group specifically includes:
  • Ultraviolet light irradiation is performed from the electron transport layer side to decompose the third group into the second group.
  • the method before forming a laminated and adjacent electron transport layer and quantum dot layer on the substrate, the method further includes:
  • a laminated and adjacent electron transport layer and quantum dot layer are formed on the substrate, which specifically includes:
  • the quantum dot layer is formed on the electron transport layer.
  • the method further includes:
  • An anode is formed on the hole injection layer.
  • an embodiment of the present disclosure also provides a display panel, including the aforementioned quantum dot light-emitting device provided by the embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a quantum dot light-emitting device provided by an embodiment of the disclosure
  • Figure 2 is a current density/voltage curve diagram of quantum dot light-emitting device I and quantum dot light-emitting device II;
  • Figure 3 is a graph showing the brightness/voltage curve of quantum dot light-emitting device I and quantum dot light-emitting device II;
  • FIG. 4 is a schematic flow chart of a method for manufacturing a quantum dot light-emitting device according to an embodiment of the disclosure
  • FIG. 5 is a schematic diagram of a first ligand provided by an embodiment of the disclosure.
  • Fig. 6 is a schematic diagram of a second ligand provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of a quantum dot coordinated with a first ligand and a second ligand according to an embodiment of the disclosure
  • FIG. 8 is a schematic diagram of the reaction of a quantum dot provided by an embodiment of the disclosure under ultraviolet irradiation conditions
  • FIG. 9 is a schematic diagram of a hydrophilic ligand at the interface between a quantum dot layer and an electron transport layer provided by an embodiment of the present disclosure being combined by hydrogen bonding.
  • Quantum dot materials often use oily ligands (such as oleic acid, long-chain mercaptans), and The material of the electron transport layer uses short-chain hydrophilic ligands, so that the quantum dot layer and the electron transport layer correspond to mismatched ligand types.
  • the embodiments of the present disclosure provide a quantum dot light-emitting device.
  • the quantum dot light-emitting device includes: a quantum dot layer 1 and an electron transport layer 2 laminated with and adjacent to the quantum dot layer 1
  • the material of the electron transport layer 2 includes a host material and a first group connected to the host material, and the material of the quantum dot layer includes a quantum dot material and a second group connected to the quantum dot material; the first group and the second group
  • the groups are all hydrophilic groups; on the contact surface between the quantum dot layer 1 and the electron transport layer 2, the first group and the second group are combined by hydrogen bonds.
  • the ligands of the quantum dot layer 1 and the electron transport layer 2, that is, the first group and the second group are both hydrophilic groups, so that the quantum dot layer 1 and the electron transport layer 2 are hydrophilic groups.
  • the hydrophilic groups can be combined through hydrogen bonds, which enhances the bonding force of the interface and reduces interface defects, thereby improving the electron injection ability and improving the electroluminescence performance of the quantum dot light-emitting device And work stability.
  • the second group can be obtained by decomposing the third group connected to the quantum dot material by light irradiation, and the third group is a lipophilic group.
  • the solution when the quantum dot layer is formed by the solution film forming process, the solution includes a lipophilic third group, so that during the process of forming the quantum dot layer and the electron transport layer, the two film layers will not be mutually soluble.
  • the group is decomposed by light to form a second group, so that at the interface of the quantum dot layer and the electron transport layer, the hydrophilic groups are combined by hydrogen bonding, which increases the binding force between the quantum dot layer and the electron transport layer and reduces the interface defect.
  • the third group since the third group is decomposed after being exposed to light, the third group includes a photosensitive group.
  • the third group may include, for example, a long-chain carboxylic acid, amine, thiol, or organic phosphine oxide group of 3-20 carbon atoms connected to the quantum dot material, and may also include o-diazoquinones, benzoin derivatives, and A nitrobis nitrile derivative or a group having a disulfide bond.
  • the second group may include one of the following groups or a combination thereof: a hydroxyl group, a carboxyl group, and an amino group.
  • the quantum dot layer may further include a fourth group connected to the quantum dot material, that is, the ligand of the quantum dot material may include the second group and the second group at the same time.
  • the fourth group has a smaller steric hindrance, can fill the gaps between the second groups, further passivate the surface of the quantum dots, and improve the quantum yield.
  • the fourth group may include one or a combination of the following groups: carboxylic acid, amine, thiol, organic phosphine oxide.
  • the quantum dot material may be, for example, cadmium selenide/cadmium sulfide (CdSe/CdS) core-shell quantum dots, cadmium sulfide (CdS), cadmium selenide (CdSe) , Cadmium antimonide (CdTe), zinc selenide (ZnSe), indium phosphide (InP), lead sulfide (PbS), copper indium sulfide (CuInS 2 ), zinc oxide (ZnO), cesium lead chloride (CsPbCl 3 ) , Cesium lead bromide (CsPbBr 3 ), cesium lead iodide (CsPbI 3 ), cadmium sulfide/zinc sulfide (CdS/ZnS) core-shell quantum dots, cadmium selenide/zinc sulfide (CdS/ZnS) core-shell quantum dots, cadmium
  • the host material of the electron transport layer may be, for example, zinc oxide (ZnO) nanoparticles.
  • the first group may include a short chain alcohol amine.
  • the short-chain alcohol amine may be, for example, ethanolamine, propanolamine, and the like.
  • the first group may include ethanolamine
  • the second group may include indene 1-formate.
  • ethanolamine and Indene 1-formate can be combined by hydrogen bonding.
  • the quantum dot light-emitting device may further include: a substrate 3 on the side of the electron transport layer 2 away from the quantum dot layer 1, and The cathode 4 between the bottom 3 and the electron transport layer 2, the hole transport layer 5 on the side of the quantum dot layer 1 away from the electron transport layer 2, and the hole injection layer on the side of the hole transport layer 5 away from the quantum dot layer 1 6, and the anode 7 on the side of the hole injection layer 6 away from the hole transport layer 5.
  • the substrate may be, for example, a glass substrate
  • the material of the cathode may be, for example, indium tin oxide (ITO), other metals or conductive semiconductor materials
  • the hole transport layer The material can be, for example, 4,4'-N,N'-dicarbazole biphenyl (CBP), and the material of the hole injection layer can be, for example, 2,3,6,7,10,11-hexacyano-1, 4,5,8,9,12-hexaazatriphenylene (HAT-CN), the material of the anode may be silver (Ag), for example.
  • the quantum dot light-emitting device I is a quantum dot light-emitting device provided by the embodiments of the disclosure
  • the quantum dot light-emitting device II is a quantum dot light-emitting device provided by related technologies.
  • the quantum dot layer includes a lipophilic group but not a hydrophilic group
  • the electron transport layer includes a hydrophilic group. The lipophilic group and the hydrophilic group cannot be in the electron transport layer and the quantum The interface of the dot layer is bonded by hydrogen bonding.
  • the current density/voltage (J/V) curves of the quantum dot light-emitting device I and the quantum dot light-emitting device II are shown in Fig. 2.
  • the current density of the quantum dot light-emitting device I is greater than that of the quantum dot light-emitting device II.
  • the brightness/voltage (L/V) curves of quantum dot light-emitting device I and quantum dot light-emitting device II are shown in Figure 3.
  • the brightness of quantum dot light-emitting device I is greater than that of quantum dot light-emitting device II at the same voltage.
  • Quantum dot light-emitting device The performance of I is better than that of quantum dot light-emitting device II.
  • the embodiments of the present disclosure also provide a method for manufacturing a quantum dot light-emitting device, as shown in FIG. 4, including the following steps:
  • the material of the electron transport layer includes a host material and a first group connected to the host material, and the first group is a affinity Aqueous group
  • the material of the quantum dot layer includes a quantum dot material and a third group connected to the quantum dot material, and the third group is a lipophilic group
  • the electron transport layer formed on the substrate includes a hydrophilic first group
  • the formed quantum dot layer includes a lipophilic third group, so that Avoid mutual dissolution between the electron transport layer and the quantum dot layer during the film forming process of the electron transport layer and the quantum dot layer
  • the quantum dot layer is illuminated to make the lipophilic third group illuminated Decomposed into a hydrophilic second group, so that both the quantum dot layer and the electron transport layer include hydrophilic groups.
  • the hydrophilic groups can be combined by hydrogen bonds, so that the Reduce the defects of the interface between the quantum dot layer and the electron transport layer, and improve the electroluminescence performance and stability of the quantum dot light-emitting device.
  • forming a quantum dot layer including the third group may specifically include:
  • the quantum dot dispersion solution is deposited and dried on the substrate to form a quantum dot layer.
  • the provided quantum dot solution may be, for example, a quantum dot solution with other ligands, that is, the first ligand is used to replace the ligand of the quantum dot in the initial quantum dot solution by a method of ligand replacement.
  • an electron transport layer including the first group on the substrate specifically includes:
  • An electron transport layer including zinc oxide nanoparticles coordinated with a first group is formed on the substrate, wherein the first group includes: ethanolamine;
  • first ligand including the third group specifically including:
  • a first ligand including 1,2-naphthoquinone-2-diazide-6-propanethiol
  • the formation of the quantum dot layer includes:
  • Illuminating the quantum dot layer to decompose the third group into the second group which specifically includes:
  • the quantum dot solution and providing the first ligand including the third group may further include:
  • the quantum dot solution may also include:
  • the quantum dot solution is mixed with the first ligand and the second ligand and stirred uniformly.
  • the first ligand and the second ligand are used to replace the ligand of the initial quantum dot solution.
  • a second ligand is also added, so that the second ligand can fill the gap between 1-formic acid indene, further passivate the surface of the quantum dot, and improve Quantum yield.
  • the first ligand includes, for example, a long-chain carboxylic acid, amine or thiol group of 3-20 carbon atoms that can coordinate with the quantum dot, and may also include o-diazoquinones, benzoin derivatives, azo Dinitrile derivatives or compounds with disulfide bonds.
  • the second ligand may, for example, include one or a combination of the following groups: long-chain carboxylic acids of 3-20 carbon atoms, amines, thiols.
  • the mass ratio of the first ligand in the mixed solution is 1%-50%, so that the film-forming effect of the quantum dot layer can be ensured.
  • the first ligand may be, for example, 1,2-naphthoquinone-2-diazide-6-propanesulfide. alcohol.
  • the second ligand may be n-hexyl mercaptan, for example.
  • providing the quantum dot solution may include, for example, dissolving CdSe/CdS core-shell quantum dots of oleic acid-oleylamine ligand in anhydrous and oxygen-free n-hexane.
  • Providing the first ligand and providing the second ligand may include, for example, providing an anhydrous, oxygen-free n-hexane solution of 1,2-naphthoquinone-2-diazide-6-propanethiol and n-hexanethiol.
  • the quantum dot solution is mixed with the first ligand and the second ligand and stirred uniformly, for example, stirring can be carried out in an anhydrous and oxygen-free room temperature environment.
  • Adding the part from which the supernatant liquid is removed to the solvent to obtain a quantum dot dispersion solution may include, for example, adding the part from which the supernatant liquid is removed to n-hexane to re-dissolve to obtain a quantum dot dispersion solution.
  • the CdSe/CdS core-shell quantum dots of oleic acid-oleylamine ligand are substituted with the ligands shown in Fig. 5 and Fig. 6 and the quantum dot material is shown in Fig. 7.
  • the reaction formula under ultraviolet irradiation conditions is shown in Figure 8.
  • the lipophilic group is decomposed into the hydrophilic group indene 1-formate and nitrogen (N 2 ) under ultraviolet (Ultraviolet, UV) irradiation.
  • UV ultraviolet
  • the electron transport layer including zinc oxide nanoparticles connected to ethanolamine as an example, at the interface between the electron transport layer and the quantum dot layer, a schematic diagram of the hydrogen bond between the quantum dot material including hydrophilic ligands and the zinc oxide nanoparticles is shown in the figure 9 shown.
  • irradiating the quantum dot layer to decompose the third group into the second group specifically includes:
  • the ultraviolet light is irradiated from the side of the electron transport layer to decompose the third group into the second group.
  • ultraviolet light is irradiated on the side of the electron transport layer away from the quantum dot layer, and the electron transport layer does not absorb a large amount of ultraviolet light, so that it can be irradiated with a small dose of ultraviolet light at the same time. Avoid direct irradiation of the quantum dot layer to cause ultraviolet light to be absorbed by the quantum dot layer and cannot reach the interface between the quantum dot layer and the electron transport layer, and ensure that the interface between the quantum dot layer and the electron transport layer is fully irradiated by ultraviolet light to make the third
  • the group is decomposed into a second hydrophilic group, reducing the defects of the interface between the quantum dot layer and the electron transport layer.
  • the ultraviolet light can induce the surface defect state of the quantum dot to be filled and eliminated, thereby improving the photoluminescence quantum yield (PLQY) of the quantum dot.
  • the method may further include:
  • a laminated and adjacent electron transport layer and quantum dot layer are formed on the substrate, which specifically includes:
  • An electron transport layer is formed on the cathode
  • a quantum dot layer is formed on the electron transport layer.
  • the quantum dot layer is irradiated with ultraviolet light from the side of the substrate away from the quantum dot layer to decompose the lipophilic groups into hydrophilic groups.
  • the substrate may be a glass substrate, for example.
  • step S102 after step S102 illuminates the quantum dot layer to decompose the third group into the second group, it may further include:
  • An anode is formed on the hole injection layer.
  • an anode can also be formed on the substrate first, and a hole injection layer, a hole transport layer, a quantum dot layer, and an electron transport layer can be formed on the anode, and then the electron transport layer is separated from the quantum dot layer. Light is irradiated from the side, and then a cathode is formed on the electron transport layer.
  • the first ligand is 1,2-naphthoquinone-2-diazide-6-propanethiol
  • the second ligand is n-hexylsulfide
  • the quantum dots are CdSe/CdS core-shell quantum
  • the electron transport layer includes The zinc oxide nanoparticles:
  • the material of the cathode can be, for example, indium tin oxide (ITO), or other metal materials or semiconductor materials;
  • S202 Provide a ZnO nanoparticle solution, deposit the ZnO nanoparticle solution on the cathode through a spin coating or printing process, and remove the solvent to form a uniform film to form an electron transport layer;
  • the ligand of the ZnO nanoparticle can be, for example, a short-chain alcohol amine, such as ethanolamine, propanolamine, etc., and the ligand can be added during the preparation process of the ZnO nanoparticle;
  • CdSe/CdS core-shell quantum can be synthesized by thermal injection method
  • S205 Deposit a quantum dot dispersion solution including the third group and the fourth group on the electron transport layer by spin coating or printing process, and dry and remove the solvent to form a quantum dot layer;
  • the quantum dot dispersion solution can be spin-coated at 2500 revolutions per minute (rpm);
  • S206 Perform ultraviolet irradiation on the quantum dot layer from the side of the substrate away from the quantum dot layer;
  • the structure forming the quantum dot layer and the electron transport layer is placed on a UV lamp in a glove box environment, and ultraviolet rays with a wavelength of 365 nanometers (nm) are used to irradiate from the side of the substrate.
  • the radiation dose can be, for example, 10 millimeters. Joule per square centimeter (mJ/cm 2 );
  • HTA-CN is vapor-deposited on the CBP film layer as the hole injection layer
  • Ag is vapor-deposited on the HTA-CN film layer as the anode.
  • embodiments of the present disclosure also provide a display panel, including the aforementioned quantum dot light-emitting device provided by the embodiments of the present disclosure.
  • the electron transport layer formed on the substrate includes a hydrophilic first group
  • the formed quantum dot layer includes a lipophilic
  • the third group can avoid the mutual dissolution of the electron transport layer and the quantum dot layer during the film forming process of the electron transport layer and the quantum dot layer; after the electron transport layer and the quantum dot layer are formed, the quantum dot layer is illuminated to make the The oily third group is decomposed into a hydrophilic second group by light, so that both the quantum dot layer and the electron transport layer include hydrophilic groups.
  • the hydrophilic groups can Through hydrogen bonding, the defects of the interface between the quantum dot layer and the electron transport layer can be reduced, and the electroluminescence performance and stability of the quantum dot light-emitting device can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种量子点发光器件及其制备方法、显示面板,其中量子点发光器件包括:量子点层以及与量子点层相邻的电子传输层;电子传输层包括第一基团,量子点层包括第二基团;第一基团和第二基团均包括亲水性基团;在量子点层与电子传输层的接触面,第一基团和第二基团通过氢键结合,用以增强量子点层和电子传输层之间界面相互作用力,减少量子点层和电子传输层界面的缺陷,提高量子点器件的电致发光性能和稳定性。

Description

量子点发光器件及其制备方法、显示面板
相关申请的交叉引用
本公开要求在2020年01月20日提交中国专利局、申请号为202010065999.3、申请名称为“一种量子点发光器件及其制备方法、显示面板”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及一种量子点发光器件及其制备方法、显示面板。
背景技术
量子点是一种溶液可加工的半导体纳米晶体,具有发光光谱窄、发光波长可调控、光谱纯度高等优点,最有希望成为下一代发光器件的核心部分。量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)就是将量子点作为发光层的制作材料,在不同的导电材料之间引入发光层从而得到所需要波长的光。QLED具有色域广、自发光、启动电压低、响应速度快、寿命长等优点。
发明内容
本公开实施例提供的一种量子点发光器件,包括:
电子传输层,所述电子传输层的材料包括主体材料和与所述主体材料连接的第一基团,所述第一基团为亲水性基团;
量子点层,与所述电子传输层膜层层叠且相邻,所述量子点层的材料包括量子点材料和与所述量子点材料连接的第二基团,所述第二基团为亲水性基团,在所述量子点层与所述电子传输层的接触面,所述第一基团和所述第二基团通过氢键结合。
可选地,所述第二基团由与所述量子点材料连接的第三基团光照分解生成,所述第三基团为亲油性基团,所述第三基团包括光敏性基团。
可选地,所述第三基团包括长链羧酸、胺、硫醇、有机氧化膦基团、邻重氮醌类、安息香衍生物、偶氮双腈衍生物或具有二硫键的基团。
可选地,所述第二基团至少包括以下之一:羟基、羧基、氨基。
可选地,所述量子点层的材料还包括:与所述量子点材料连接的第四基团。
可选地,所述第四基团至少包括以下之一:羧酸、胺、硫醇、有机氧化膦。
可选地,所述主体材料包括氧化锌纳米粒子,所述第一基团包括短链醇胺。
可选地,所述第一基团包括乙醇胺,所述第二基团包括1-甲酸茚,在所述量子点层与所述电子传输层的接触面,所述乙醇胺和所述1-甲酸茚通过氢键结合。
可选地,还包括:衬底,位于衬底之上依次层叠设置的阴极、所述电子传输层、所述量子点层、空穴传输层、空穴注入层和阳极。
另一方面,本公开实施例还提供了一种量子点发光器件的制备方法,所述方法包括:
在衬底之上形成膜层层叠且相邻的电子传输层和量子点层,其中,所述电子传输层的材料包括主体材料和与所述主体材料连接的第一基团,所述第一基团为亲水性基团,所述量子点层的材料包括量子点材料和与所述量子点材料连接的第三基团,所述第三基团为亲油性基团;
光照所述量子点层以使所述第三基团分解为第二基团,其中,所述第二基团为亲水性基团,在所述量子点层与所述电子传输层的接触面,所述第一基团和所述第二基团通过氢键结合。
可选地,形成所述量子点层,具体包括:
提供量子点溶液,以及提供包括第三基团的第一配体;
将所述量子点溶液与所述第一配体混合并搅拌均匀,获得混合溶液;
将所述混合溶液离心并去除上层清液,将去除上层清液的部分加入溶剂获得量子点分散溶液;
采用旋涂或打印工艺,在所述衬底之上将所述量子点分散溶液沉积并干燥,形成所述量子点层。
可选地,提供量子点溶液,以及提供包括第三基团的第一配体的同时,还包括:
提供包括第四基团的第二配体;
将所述量子点溶液与所述第一配体混合并搅拌均匀的同时,还包括:
将所述量子点溶液与所述第一配体和第二配体混合并搅拌均匀。
可选地,所述第一配体在所述混合溶液中的质量比为1%~50%。
可选地,光照所述量子点层以使所述第三基团分解为第二基团,具体包括:
从所述电子传输层一侧进行紫外光辐照,以使所述第三基团分解为所述第二基团。
可选地,在衬底之上形成膜层层叠且相邻的电子传输层和量子点层之前,还包括:
在衬底上形成阴极;
在衬底之上形成膜层层叠且相邻的电子传输层和量子点层,具体包括:
在阴极上形成所述电子传输层;
在所述电子传输层上形成所述量子点层。
可选地,在光照所述量子点层以使所述第三基团分解为第二基团之后,还包括:
在所述量子点层上形成空穴传输层;
在所述空穴传输层上形成空穴注入层;
在所述空穴注入层上形成阳极。
另一方面,本公开实施例还提供了一种显示面板,包括本公开实施例提 供的上述量子点发光器件。
附图说明
图1为本公开实施例提供的一种量子点发光器件的结构示意图;
图2为量子点发光器件I和量子点发光器件II的电流密度/电压曲线图;
图3为量子点发光器件I和量子点发光器件II亮度/电压曲线图;
图4为本公开实施例提供的一种量子点发光器件的制备方法流程示意图;
图5为本公开实施例提供的一种第一配体的示意图;
图6为本公开实施例提供的一种第二配体的示意图;
图7为本公开实施例提供的一种与第一配体和第二配体配位的量子点的示意图;
图8为本公开实施例提供的一种量子点在紫外辐照条件下的反应示意图;
图9为本公开实施例提供的一种量子点层和电子传输层界面的亲水性配体通过氢键结合的示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
附图中各部件的形状和大小不反映真实比例,目的只是示意说明本发明内容。
相关技术在量子点发光器件成膜工艺中,为了避免量子点层与电子传输层互溶,需要采用不同的溶剂体系,量子点材料往往采用油性配体(如油酸、长链硫醇),而电子传输层的材料采用短链亲水性配体,从而量子点层与电子传输层对应不匹配的配体种类,这样在形成的量子点发光器件中,由于量子点层与电子传输层的配体种类不一样,导致量子点层与电子传输层界面亲和 性差,在量子点层与电子传输层之间容易形成缺陷态,不利于量子点发光器件的电致发光性能与稳定性。并且在量子点发光器件老化过程中,存在着界面去缺陷的过程,会出现亮度老化曲线异常的问题。
基于此,本公开实施例提供了一种量子点发光器件,如图1所示,量子点发光器件包括:量子点层1以及与量子点层1膜层层叠设置且相邻的电子传输层2;电子传输层2的材料包括主体材料和与主体材料连接的第一基团,量子点层的材料包括量子点材料和与量子点材料连接的第二基团;第一基团和第二基团均为亲水性基团;在量子点层1与电子传输层2的接触面,第一基团和第二基团通过氢键结合。
具体地,在本公开实施例提供的量子点发光器件中,量子点层1与电子传输层2的配体,即第一基团和第二基团均为亲水性基团,从而在量子点层1与电子传输层2界面,亲水性基团之间可以通过氢键结合,增强了界面的结合力,减少界面缺陷,从而可以提高电子注入能力,提高量子点发光器件电致发光性能和工作稳定性。
可选地,在本公开实施例提供的量子点发光器件中,第二基团可以通过光照量子点材料连接的第三基团分解获得,第三基团为亲油性基团。
在具体实施时,当采用溶液成膜工艺形成量子点层,溶液包括亲油性的第三基团,从而形成量子点层和电子传输层过程中,两膜层不会出现互溶,之后对第三基团光照分解形成第二基团,从而在量子点层和电子传输层界面,亲水性基团之间通过氢键结合,增加了量子点层和电子传输层之间界面结合力,减少界面缺陷。
具体地,由于第三基团被光照后发生分解,因此第三基团包括光敏性基团。第三基团例如可以包括与量子点材料连接的3-20个碳原子的长链羧酸、胺、硫醇或有机氧化膦基团,还可以包括邻重氮醌类、安息香衍生物、偶氮双腈衍生物或具有二硫键的基团。
可选地,在本公开实施例提供的量子点发光器件中,第二基团可以包括下列基团之一或其组合:羟基、羧基、氨基。
可选地,在本公开实施例提供的量子点发光器件中,量子点层还可以包括与量子点材料连接的第四基团,即量子点材料的配体可以同时包括第二基团和第四基团,第四基团具有更小的空间位阻,能够填充第二基团间的空隙,进一步钝化量子点表面,提高量子产率。
可选地,在本公开实施例提供的量子点发光器件中,第四基团可以包括下列基团之一或其组合:羧酸、胺、硫醇、有机氧化膦。
具体地,在本公开实施例提供的量子点发光器件中,量子点材料例如可以是硒化镉/硫化镉(CdSe/CdS)核壳量子点、硫化镉(CdS)、硒化镉(CdSe)、锑化镉(CdTe)、硒化锌(ZnSe)、磷化铟(InP)、硫化铅(PbS)、硫铟铜(CuInS 2)、氧化锌(ZnO)、氯化铯铅(CsPbCl 3)、溴化铯铅(CsPbBr 3)、碘化铯铅(CsPbI 3)、硫化镉/硫化锌(CdS/ZnS)核壳量子点、硒化镉/硫化锌(CdSe/ZnS)核壳量子点、硒化锌(ZnSe)、磷化铟/硫化锌(InP/ZnS)核壳量子点、硫化铅/硫化锌(PbS/ZnS)核壳量子点、砷化铟(InAs)、砷镓铟(InGaAs)、铟镓氮(InGaN)、氮化镓(GaN)、碲化锌(ZnTe)、硅(Si)、锗(Ge)、碳(C)等材料。
可选地,在本公开实施例提供的量子点发光器件中,电子传输层的主体材料例如可以是氧化锌(ZnO)纳米粒子。可选地,第一基团可以包括短链醇胺。短链醇胺例如可以是乙醇胺、丙醇胺等。
可选地,在本公开实施例提供的量子点发光器件中,第一基团可以包括乙醇胺,第二基团可以包括1-甲酸茚,在量子点层与电子传输层的接触面,乙醇胺和1-甲酸茚可以通过氢键结合。
可选地,在本公开实施例提供的量子点发光器件中,如图1所示,量子点发光器件还可以包括:位于电子传输层2背离量子点层1一侧的衬底3,位于衬底3和电子传输层2之间的阴极4,位于量子点层1背离电子传输层2一侧的空穴传输层5,位于空穴传输层5背离量子点层1一侧的空穴注入层6,以及位于空穴注入层6背离空穴传输层5一侧的阳极7。
可选地,在本公开实施例提供的量子点发光器件中,衬底例如可以是玻璃基板,阴极的材料例如可以是氧化铟锡(ITO)、其他金属或导电半导体材 料,空穴传输层的材料例如可以是4,4'-N,N'-二咔唑联苯(CBP),空穴注入层的材料例如可以是2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HAT-CN),阳极的材料例如可以是银(Ag)。
下面对本公开实施例提供的量子点发光器件的性能进行举例说明。其中,量子点发光器件I为本公开实施例提供的量子点发光器件,量子点发光器件II为相关技术提供的量子点发光器件。量子点发光器件II中量子点层包括亲油性基团而不包括亲水性基团,电子传输层包括亲水性基团,亲油性基团和亲水性基团不能在电子传输层和量子点层的界面通过氢键结合。量子点发光器件I和量子点发光器件II的电流密度/电压(J/V)曲线如图2所示,量子点发光器件I的电流密度大于量子点发光器件II的电流密度。量子点发光器件I和量子点发光器件II的亮度/电压(L/V)曲线如图3所示,同等电压下量子点发光器件I的亮度大于量子点发光器件II的亮度,量子点发光器件I的性能优于量子点发光器件II。
基于同一发明构思,本公开实施例还提供了一种量子点发光器件的制备方法,如图4所示,包括以下步骤:
S101、在衬底之上形成膜层层叠且相邻的电子传输层和量子点层,其中,电子传输层的材料包括主体材料和与主体材料连接的第一基团,第一基团为亲水性基团,量子点层的材料包括量子点材料和与所述量子点材料连接的第三基团,第三基团为亲油性基团;
S102、光照量子点层以使第三基团分解为第二基团,其中,第二基团为亲水性基团,在量子点层与电子传输层的接触面,第一基团和第二基团通过氢键结合。
本公开实施例提供的量子点发光器件的制备方法,在衬底之上形成的电子传输层包括亲水性的第一基团,形成的量子点层包括亲油性的第三基团,从而可以避免电子传输层和量子点层的成膜工艺过程出现电子传输层与量子点层互溶;在形成电子传输层和量子点层之后,对量子点层进行光照,使得亲油性的第三基团光照分解为亲水性的第二基团,从而量子点层和电子传输 层均包括亲水性基团,在量子点层和电子传输层界面,亲水性基团可以通过氢键结合,从而可以减少量子点层和电子传输层之间界面的缺陷,提高量子点发光器件电致发光性能和稳定性。
可选地,在本公开实施例提供的上述制备方法的步骤S101中,形成包括第三基团的量子点层,具体可以包括:
提供量子点溶液,以及提供包括第三基团的第一配体;
将量子点溶液与第一配体混合并搅拌均匀,获得混合溶液;
将混合溶液离心并去除上层清液,将去除上层清液的部分加入溶剂获得量子点分散溶液;
采用旋涂或打印工艺,在衬底之上将量子点分散溶液沉积并干燥,形成量子点层。
在具体实施时,提供的量子点溶液例如可以是具有其他配体的量子点溶液,即通过配体置换的方法,利用第一配体置换初始量子点溶液中量子点的配体。
可选地,在本公开实施例提供的上述制备方法中,在衬底之上形成包括第一基团的电子传输层,具体包括:
在衬底之上形成包括与第一基团配位的氧化锌纳米粒子的电子传输层,其中,第一基团包括:乙醇胺;
提供包括第三基团的第一配体,具体包括:
提供包括1,2-萘醌-2-二叠氮基-6-丙硫醇的第一配体;
形成量子点层,具体包括:
形成包括与第三基团配位的量子点的量子点层;
光照量子点层以使第三基团分解为第二基团,具体包括:
光照量子点层,以使1,2-萘醌-2-二叠氮基-6-丙硫醇分解为1-甲酸茚和氮气;其中,在量子点层与电子传输层的接触面,乙醇胺和1-甲酸茚通过氢键结合。
可选地,在本公开实施例提供的上述制备方法中,提供量子点溶液,以 及提供包括第三基团的第一配体的同时,还可以包括:
提供包括第四基团的第二配体;
将量子点溶液与第一配体混合并搅拌均匀的同时,还可以包括:
将量子点溶液与第一配体和第二配体混合并搅拌均匀。
具体地,通过配体置换的方法,利用第一配体和第二配体置换初始量子点溶液的配体。在本公开实施例提供的制备方法中,在量子点层的制备过程中,还加入第二配体,从而第二配体能够填充1-甲酸茚间的空隙,进一步钝化量子点表面,提高量子产率。
具体地,第一配体例如包括可以与量子点配位的3-20个碳原子的长链羧酸、胺或硫醇基团,还可以包括邻重氮醌类、安息香衍生物、偶氮双腈衍生物或具有二硫键的化合物。第二配体例如可以包括下列基团之一或其组合:3-20个碳原子的长链羧酸、胺、硫醇。
可选地,在本公开实施例提供的上述制备方法中,第一配体在混合溶液中的质量比为1%~50%,这样可以保证量子点层的成膜效果。
在具体实施时,以提供第一配体和第二配体为例,如图5所示,第一配体例如可以是1,2-萘醌-2-二叠氮基-6-丙硫醇。如图6所示,第二配体例如可以是正己硫醇。
具体地,提供量子点溶液例如可以包括:将油酸-油胺配体的CdSe/CdS核壳量子点溶于无水无氧正己烷。提供第一配体以及提供第二配体例如可以包括:提供1,2-萘醌-2-二叠氮基-6-丙硫醇和正己硫醇的无水无氧正己烷溶液。将量子点溶液与第一配体和第二配体混合并搅拌均匀,例如可以在无水无氧室温环境下进行搅拌。将去除上层清液的部分加入溶剂获得量子点分散溶液,例如可以包括,将去除上层清液的部分加入正己烷重新溶解,获得量子点分散溶液。例如用如图5、图6所示的配体将油酸-油胺配体的CdSe/CdS核壳量子点进行配体置换后的量子点材料如图7所示。其在紫外辐照条件下的反应式如图8所示,亲油性基团在紫外光(Ultraviolet,UV)辐照下分解为亲水性基团1-甲酸茚和氮气(N 2)。以电子传输层包括与乙醇胺连接的氧化锌纳米粒 子为例,在电子传输层和量子点层的界面,包括亲水性配体的量子点材料与氧化锌纳米粒子通过氢键结合的示意图如图9所示。
可选地,在本公开实施例提供的上述制备方法的步骤S102光照量子点层以使第三基团分解为第二基团,具体包括:
从电子传输层一侧进行紫外光辐照,以使第三基团分解为第二基团。
具体地,本公开实施例提供的制备方法,在电子传输层背离量子点层一侧进行紫外光辐照,电子传输层不会大量吸收紫外光,从而可以在小剂量紫外光辐照的同时,避免直接照射量子点层导致紫外光被量子点层吸收而无法到达量子点层与电子传输层的界面,保证量子点层与电子传输层的界面充分被紫外光辐照以使亲油性的第三基团分解为亲水性的第二基团,减少量子点层与电子传输层界面的缺陷。并且,紫外光辐照量子点层时,紫外光可以诱导量子点的表面缺陷态被填消除,从而可以提高量子点的光致发光量子产率(Photoluminescence Quantum Yield,PLQY)。
可选地,在本公开实施例提供的上述制备方法中,在衬底之上形成膜层层叠且相邻的电子传输层和量子点层之前,还可以包括:
在衬底上形成阴极;
在衬底之上形成膜层层叠且相邻的电子传输层和量子点层,具体包括:
在阴极上形成电子传输层;
在电子传输层上形成量子点层。
具体地,在电子传输层上形成量子点层之后,从衬底背离量子点层一侧对量子点层进行紫外光辐照,以使亲油性基团分解为亲水性基团。衬底例如可以是玻璃基板。
可选地,在本公开实施例提供的上述制备方法中,步骤S102光照量子点层以使第三基团分解为第二基团之后,还可以包括:
在量子点层上形成空穴传输层;
在空穴传输层上形成空穴注入层;
在空穴注入层上形成阳极。
当然,在具体实施时,也可以在衬底上先形成阳极,在阳极上依次形成空穴注入层、空穴传输层、量子点层、电子传输层,之后从电子传输层背离量子点层一侧进行光照,再之后在电子传输层上形成阴极。
下面以第一配体为1,2-萘醌-2-二叠氮基-6-丙硫醇、第二配体为正己硫、量子点为CdSe/CdS核壳量子,以及电子传输层包括氧化锌纳米粒子为例,对本公开实施例提供的量子点发光器件的制备方法进行举例说明。具体地,量子点发光器件的制备方法,包括如下步骤:
S201、在衬底上形成阴极;
阴极的材料例如可以是氧化铟锡(ITO),也可以是其他金属材料或半导体材料;
S202、提供ZnO纳米粒子溶液,将ZnO纳米粒子溶液通过旋涂或打印工艺沉积到阴极上,并去除溶剂均匀成膜,形成电子传输层;
其中,ZnO米粒子溶液中,ZnO纳米粒子的配体例如可以是短链醇胺,如乙醇胺、丙醇胺等,配体可以在ZnO纳米粒子的制备过程中加入;
S203、将200毫克(mg)油酸-油胺配体的CdSe/CdS核壳量子点溶于10毫升(mL)无水无氧正己烷,获得油酸-油胺配体的量子点溶液;
其中,CdSe/CdS核壳量子可以采用热注入法合成;
S204、向油酸-油胺配体的量子点溶液中加入含有200mg正己硫醇和100mg 1,2-萘醌-2-二叠氮基-6-丙硫醇的10mL无水无氧正己烷溶液,在无水无氧室温环境下搅拌1h,将反应液离心除去上清液,用正己烷重新溶解,得到包括第三基团和第四基团的QD分散溶液;
S205、在电子传输层上通过旋涂或打印工艺沉积包括第三基团和第四基团的量子点分散溶液,干燥去除溶剂,形成量子点层;
例如可以以2500转/分(rpm)的转速旋涂量子点分散溶液;
S206、从衬底背离量子点层一侧对量子点层进行紫外辐照;
例如,将形成了量子点层和电子传输层的结构置于手套箱环境下的UV灯之上,利用波长为365纳米(nm)紫外线从衬底一侧照射,辐照剂量例如 可以为10毫焦每平方厘米(mJ/cm 2);
S207、在量子点层上形成空穴传输层;
将进行了紫外辐照的结构置于真空腔体中,蒸镀CBP;
S208、在空穴传输层上形成空穴注入层;
例如在CBP膜层上蒸镀HTA-CN作为空穴注入层;
S209、在空穴注入层上形成阳极;
例如在HTA-CN膜层上蒸镀Ag作为阳极。
基于同一发明构思,本公开实施例还提供了一种显示面板,包括本公开实施例提供的上述量子点发光器件。
综上,本公开实施例提供的量子点发光器及其制备方法、显示面板,在衬底之上形成的电子传输层包括亲水性的第一基团,形成的量子点层包括亲油性的第三基团,从而可以避免电子传输层和量子点层的成膜工艺过程出现电子传输层与量子点层互溶;在形成电子传输层和量子点层之后,对量子点层进行光照,使得亲油性的第三基团光照分解为亲水性的第二基团,从而量子点层和电子传输层均包括亲水性基团,在量子点层和电子传输层界面,亲水性基团可以通过氢键结合,从而可以减少量子点层和电子传输层之间界面的缺陷,提高量子点发光器件电致发光性能和稳定性。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (17)

  1. 一种量子点发光器件,其中,包括:
    电子传输层,所述电子传输层的材料包括主体材料和与所述主体材料连接的第一基团,所述第一基团为亲水性基团;
    量子点层,与所述电子传输层膜层层叠且相邻,所述量子点层的材料包括量子点材料和与所述量子点材料连接的第二基团,所述第二基团为亲水性基团,在所述量子点层与所述电子传输层的接触面,所述第一基团和所述第二基团通过氢键结合。
  2. 根据权利要求1所述的量子点发光器件,其中,所述第二基团由与所述量子点材料连接的第三基团光照分解生成,所述第三基团为亲油性基团,所述第三基团包括光敏性基团。
  3. 根据权利要求2所述的量子点发光器件,其中,所述第三基团至少包括以下之一:长链羧酸、胺、硫醇、有机氧化膦基团、邻重氮醌类、安息香衍生物、偶氮双腈衍生物或具有二硫键的基团。
  4. 根据权利要求1所述的量子点发光器件,其中,所述第二基团至少包括以下之一:羟基、羧基、氨基。
  5. 根据权利要求1所述的量子点发光器件,其中,所述量子点层的材料还包括:与所述量子点材料连接的第四基团。
  6. 根据权利要求5所述的量子点发光器件,其中,所述第四基团至少包括以下之一:羧酸、胺、硫醇、有机氧化膦。
  7. 根据权利要求1-6任一项所述的量子点发光器件,其中,所述主体材料包括氧化锌纳米粒子,所述第一基团包括短链醇胺。
  8. 根据权利要求7所述的量子点发光器件,其中,所述第一基团包括乙醇胺,所述第二基团包括1-甲酸茚,在所述量子点层与所述电子传输层的接触面,所述乙醇胺和所述1-甲酸茚通过氢键结合。
  9. 根据权利要求1-6任一项所述的量子点发光器件,其中,还包括:衬 底,位于衬底之上依次层叠设置的阴极、所述电子传输层、所述量子点层、空穴传输层、空穴注入层和阳极。
  10. 一种量子点发光器件的制备方法,其中,所述方法包括:
    在衬底之上形成膜层层叠且相邻的电子传输层和量子点层,其中,所述电子传输层的材料包括主体材料和与所述主体材料连接的第一基团,所述第一基团为亲水性基团,所述量子点层的材料包括量子点材料和与所述量子点材料连接的第三基团,所述第三基团为亲油性基团;
    光照所述量子点层以使所述第三基团分解为第二基团,其中,所述第二基团为亲水性基团,在所述量子点层与所述电子传输层的接触面,所述第一基团和所述第二基团通过氢键结合。
  11. 根据权利要求10所述的方法,其中,形成所述量子点层,具体包括:
    提供量子点溶液,以及提供包括第三基团的第一配体;
    将所述量子点溶液与所述第一配体混合并搅拌均匀,获得混合溶液;
    将所述混合溶液离心并去除上层清液,将去除上层清液的部分加入溶剂获得量子点分散溶液;
    采用旋涂或打印工艺,在所述衬底之上将所述量子点分散溶液沉积并干燥,形成所述量子点层。
  12. 根据权利要求11所述的方法,其中,提供量子点溶液,以及提供包括第三基团的第一配体的同时,还包括:
    提供包括第四基团的第二配体;
    将所述量子点溶液与所述第一配体混合并搅拌均匀的同时,还包括:
    将所述量子点溶液与所述第一配体和第二配体混合并搅拌均匀。
  13. 根据权利要求11所述的方法,其中,所述第一配体在所述混合溶液中的质量比为1%~50%。
  14. 根据权利要求10所述的方法,其中,光照所述量子点层以使所述第三基团分解为第二基团,具体包括:
    从所述电子传输层一侧进行紫外光辐照,以使所述第三基团分解为所述 第二基团。
  15. 根据权利要求10-14任一项所述的方法,其中,在衬底之上形成膜层层叠且相邻的电子传输层和量子点层之前,还包括:
    在衬底上形成阴极;
    在衬底之上形成膜层层叠且相邻的电子传输层和量子点层,具体包括:
    在阴极上形成所述电子传输层;
    在所述电子传输层上形成所述量子点层。
  16. 根据权利要求10-14任一项所述的方法,其中,在光照所述量子点层以使所述第三基团分解为第二基团之后,还包括:
    在所述量子点层上形成空穴传输层;
    在所述空穴传输层上形成空穴注入层;
    在所述空穴注入层上形成阳极。
  17. 一种显示面板,其中,包括权利要求1~9任一项所述的量子点发光器件。
PCT/CN2021/071556 2020-01-20 2021-01-13 量子点发光器件及其制备方法、显示面板 WO2021147739A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/777,405 US20220399515A1 (en) 2020-01-20 2021-01-13 Quantum dot light-emitting device and manufacturing method therefor, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010065999.3A CN113140683B (zh) 2020-01-20 2020-01-20 一种量子点发光器件及其制备方法、显示面板
CN202010065999.3 2020-01-20

Publications (1)

Publication Number Publication Date
WO2021147739A1 true WO2021147739A1 (zh) 2021-07-29

Family

ID=76808907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071556 WO2021147739A1 (zh) 2020-01-20 2021-01-13 量子点发光器件及其制备方法、显示面板

Country Status (3)

Country Link
US (1) US20220399515A1 (zh)
CN (1) CN113140683B (zh)
WO (1) WO2021147739A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022143554A1 (zh) * 2020-12-31 2022-07-07 Tcl科技集团股份有限公司 发光器件及其制备方法
CN116171312A (zh) * 2021-09-24 2023-05-26 京东方科技集团股份有限公司 量子点膜层、量子点发光器件及其制作方法
WO2023097540A1 (en) * 2021-12-01 2023-06-08 Boe Technology Group Co., Ltd. Method of fabricating quantum dots layer, substrate, and display apparatus
WO2023206485A1 (zh) * 2022-04-29 2023-11-02 京东方科技集团股份有限公司 发光基板及制备方法、含有发光材料的溶液、发光装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113838990B (zh) * 2021-09-26 2024-04-09 北京京东方技术开发有限公司 量子点发光器件、其制作方法及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550707A (zh) * 2018-04-12 2018-09-18 京东方科技集团股份有限公司 量子点发光二极管、液晶显示设备
CN109266350A (zh) * 2017-07-17 2019-01-25 京东方科技集团股份有限公司 配体修饰量子点组合物及其制备方法、量子点发光二极管
CN110010776A (zh) * 2017-12-19 2019-07-12 三星电子株式会社 电致发光器件、和包括其的显示器件
CN110098341A (zh) * 2019-05-16 2019-08-06 京东方科技集团股份有限公司 一种量子点电致发光二极管、显示面板和制作方法
US20190319208A1 (en) * 2018-04-12 2019-10-17 Samsung Electronics Co., Ltd. Quantum dot device and electronic device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514302B (zh) * 2016-01-26 2017-07-18 京东方科技集团股份有限公司 量子点发光二极管亚像素阵列、其制造方法以及显示装置
CN106601925B (zh) * 2016-12-22 2020-10-27 Tcl科技集团股份有限公司 一种量子点发光层、量子点发光二极管及其制备方法
CN106784406B (zh) * 2016-12-28 2018-09-25 深圳市华星光电技术有限公司 一种oled器件的制备方法
CN107302059A (zh) * 2017-06-13 2017-10-27 深圳市华星光电技术有限公司 一种柔性oled及其制作方法
CN109935724B (zh) * 2017-12-15 2020-07-14 Tcl科技集团股份有限公司 量子点发光层及其制备方法和应用
US10818858B2 (en) * 2018-03-26 2020-10-27 Samsung Electronics Co., Ltd. Electroluminescent device and display device comprising the same
WO2019217199A1 (en) * 2018-05-09 2019-11-14 President And Fellows Of Harvard College Luminescent devices
CN110137387B (zh) * 2019-05-16 2021-11-16 京东方科技集团股份有限公司 纳米粒子层图案化的方法、量子点发光器件及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266350A (zh) * 2017-07-17 2019-01-25 京东方科技集团股份有限公司 配体修饰量子点组合物及其制备方法、量子点发光二极管
CN110010776A (zh) * 2017-12-19 2019-07-12 三星电子株式会社 电致发光器件、和包括其的显示器件
CN108550707A (zh) * 2018-04-12 2018-09-18 京东方科技集团股份有限公司 量子点发光二极管、液晶显示设备
US20190319208A1 (en) * 2018-04-12 2019-10-17 Samsung Electronics Co., Ltd. Quantum dot device and electronic device
CN110098341A (zh) * 2019-05-16 2019-08-06 京东方科技集团股份有限公司 一种量子点电致发光二极管、显示面板和制作方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022143554A1 (zh) * 2020-12-31 2022-07-07 Tcl科技集团股份有限公司 发光器件及其制备方法
CN116171312A (zh) * 2021-09-24 2023-05-26 京东方科技集团股份有限公司 量子点膜层、量子点发光器件及其制作方法
WO2023097540A1 (en) * 2021-12-01 2023-06-08 Boe Technology Group Co., Ltd. Method of fabricating quantum dots layer, substrate, and display apparatus
WO2023206485A1 (zh) * 2022-04-29 2023-11-02 京东方科技集团股份有限公司 发光基板及制备方法、含有发光材料的溶液、发光装置

Also Published As

Publication number Publication date
CN113140683B (zh) 2022-10-04
US20220399515A1 (en) 2022-12-15
CN113140683A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
WO2021147739A1 (zh) 量子点发光器件及其制备方法、显示面板
Hahm et al. Design principle for bright, robust, and color-pure InP/ZnSe x S1–x/ZnS heterostructures
JP6934104B2 (ja) 素子、電子機器、および素子の製造方法
US10056523B2 (en) Device including quantum dots
Lu et al. Ammonium thiocyanate-passivated CsPbI3 perovskite nanocrystals for efficient red light-emitting diodes
He et al. Ultra-stable, solution-processable CsPbBr3-SiO2 nanospheres for highly efficient color conversion in micro light-emitting diodes
US9722133B2 (en) Methods for processing quantum dots and devices including quantum dots
CN113903865B (zh) 氧化锌纳米材料及其制备方法、发光器件
Zhong et al. Improved color purity and efficiency of blue quantum dot light-emitting diodes
TW201926740A (zh) 顯示裝置
Shin et al. Light-induced crosslinking of perovskite nanocrystals for all-solution-processed electroluminescent devices
WO2020148912A1 (ja) 発光素子および電界発光装置並びに発光素子の製造方法
CN113838985B (zh) 氧化锌纳米材料及其制备方法、发光器件
Zhiwei et al. Highly efficient full color light-emitting diodes based on quantum dots surface passivation engineering
Zeng et al. Efficient CsPbBr3 Perovskite Light-Emitting Diodes via Novel Multi-Step Ligand Exchange Strategy Based on Zwitterionic Molecules
Zheng et al. Ligand exchange functionalization of CIS quantum dots for CIS/ZnO film heterojunctions
JP2016173888A (ja) 発光素子及びその製造方法、並びに表示装置
WO2022227661A1 (zh) 量子点薄膜及其制备方法、量子点发光二极管的制备方法
WO2020261346A1 (ja) 発光素子の製造方法および発光素子
CN113130790A (zh) 一种纳米材料及其制备方法与量子点发光二极管
Choi et al. Utilizing a Compact Diamino-Based Ligand as a Charge Balancer in Quantum Dot Light-Emitting Diodes
WO2023159993A1 (zh) 量子点材料及制备方法、发光二极管
CN116472326B (zh) 量子点膜和量子点膜图案化的方法以及它们的应用
JP2009009894A (ja) 電界発光素子とその製造方法、及びディスプレイ
CN117623369A (zh) 锌基氧化物半导体纳米晶的对称掺杂方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744940

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21744940

Country of ref document: EP

Kind code of ref document: A1