WO2021147044A1 - 一种时间敏感网络时间同步方法及装置 - Google Patents

一种时间敏感网络时间同步方法及装置 Download PDF

Info

Publication number
WO2021147044A1
WO2021147044A1 PCT/CN2020/073919 CN2020073919W WO2021147044A1 WO 2021147044 A1 WO2021147044 A1 WO 2021147044A1 CN 2020073919 W CN2020073919 W CN 2020073919W WO 2021147044 A1 WO2021147044 A1 WO 2021147044A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
tsn
synchronization information
time synchronization
bridge
Prior art date
Application number
PCT/CN2020/073919
Other languages
English (en)
French (fr)
Inventor
强鹂
常俊仁
张向东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080059274.1A priority Critical patent/CN114270913B/zh
Priority to EP20916139.7A priority patent/EP4072187A4/en
Priority to PCT/CN2020/073919 priority patent/WO2021147044A1/zh
Publication of WO2021147044A1 publication Critical patent/WO2021147044A1/zh
Priority to US17/868,510 priority patent/US20220353834A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2212/00Encapsulation of packets

Definitions

  • This application relates to the field of communication technology, and in particular to a time-sensitive network (time sensitive network, TSN) time synchronization method and device.
  • TSN time sensitive network
  • 3GPP R16 is discussing 5G systems to support TSN.
  • the TSN system sends timing information to the TSN nodes through the 5G system to achieve the purpose of clock synchronization for the TSN nodes in the same time domain. Generally speaking, the clock time of each TSN node is the same.
  • the 5G system deploys functional modules on user equipment (UE): device-side TSN translator (DS-TT), and deploys functional modules on the user plane function (UPF): network-side TSN Translator (network side TSN translator, NW-TT) to adapt to the external TSN system.
  • UE user equipment
  • UPF user plane function
  • NW-TT network side TSN Translator
  • the process of realizing TSN time synchronization is that the TSN clock source sends time synchronization information (TSN Sync message) to the NW-TT, and the TSN Sync message carries the timing information of the TSN system.
  • NW-TT reads the current system time Tsi of the 5G system, and writes Tsi into the TSN Sync message.
  • UPF encapsulates the TSN Sync message into a common data plane message and sends it to DS-TT.
  • DS-TT receives the TSN Sync message, it reads the current system time Tse of the 5G system, and calculates the 5G system bridge residence time (5GS Virtual Bridge Residence Time) based on Tse and Tsi in the 5G system time.
  • 5GS Virtual Bridge Residence Time 5GS Virtual Bridge Residence Time
  • the TSN node can realize time synchronization with the TSN system according to the timing information of the TSN system, 5GS Virtual Bridge Residence Time and other necessary parameters.
  • the calculation process of 5GS Virtual Bridge Residence Time is bound to the TSN time synchronization process, that is, 5GS Virtual Bridge Residence Time needs to be calculated every time TSN time synchronization is performed. If for each TSN time domain, the TSN time synchronization process is executed every 30ms, which means that the 5GS Virtual Bridge Residence Time needs to be recalculated every 30 ms. When there are multiple TSN time domains, the calculation frequency of 5GS Virtual Bridge Residence Time will be higher, which makes the processing cost of the 5G system higher.
  • the present application provides a TSN time synchronization method and device, which are used to reduce the problem of high processing cost of the wireless communication system during TSN synchronization.
  • an embodiment of the present application provides a TSN time synchronization method.
  • the method includes: a first device receives first TSN time synchronization information from a second device.
  • the first device determines that the first TSN time synchronization information does not carry the first time, and the first time is the system time of the wireless communication system when the second device receives the first TSN time synchronization information.
  • the first device obtains the bridge residence time locally, writes the bridge residence time into the first TSN time synchronization information, and sends it.
  • the first device can store the bridge residence time locally, so that when the TSN time synchronization information does not carry the reception time of the second device, the bridge residence time is acquired locally, without the need to perform a new procedure. Calculation, which can reduce the frequency of calculating the residence time of the bridge, thereby reducing the calculation cost of the wireless communication system.
  • the TSN time synchronization information may not carry the receiving time of the second device, thereby reducing the operation of reading the system timestamp, thereby reducing the cost of hardware processing, and also reducing the read and write operations on the message.
  • the first device obtains the bridge residence time locally, thereby reducing the complexity of the TSN time synchronization process, thereby saving time.
  • the locally acquired bridge residence time can be the time value under the clock of the wireless communication system, or it can be the time value under the TSN system time.
  • the first device may receive the second TSN time synchronization information from the second device, and the second TSN time synchronization information carries the second time,
  • the second time is the system time of the wireless communication system when the second device receives the second TSN time synchronization information.
  • the first device determines the residence time of the bridge based on the second time, and obtains the first value.
  • the first device updates the locally recorded bridge residence time to the first value.
  • the first device can determine to recalculate the bridge residence time when the reception time of the second device is carried in the TSN time synchronization information, so that the locally stored bridge residence time can be updated in time, thereby improving TSN time synchronization Accuracy.
  • the first device may receive a data packet from the second device, wherein the quality of service (QoS) flow of the data packet is carried by the first device.
  • QoS quality of service
  • the QoS parameter is the same as the QoS parameter of the QoS flow carrying the TSN time synchronization information
  • the data message carries a third time, which is the system time of the wireless communication system when the second device receives the data message.
  • the first device determines the residence time of the bridge based on the third time, and obtains the second value.
  • the first device updates the locally recorded bridge residence time to the second value.
  • the first device can determine to recalculate the bridge residence time when the receiving time of the second device is carried in the data message, so that the locally stored bridge residence time can be updated in time, and the TSN time synchronization can be improved. accuracy.
  • an embodiment of the present application provides a TSN time synchronization method.
  • the method includes: a second device receives TSN time synchronization information or a data packet, wherein the QoS parameters of the QoS flow carrying the data packet are synchronized with the time of the bearer TSN The QoS parameters of the QoS flow of the information are the same; the second device sends TSN time synchronization information or data packets to the first device.
  • TSN time synchronization information or data packets carry the network access time is related to the timer; where the timer is used to record the network
  • the effective time of the bridge dwell time, and the network access time is the system time of the wireless communication system when the second device receives the TSN time synchronization information or the data message.
  • the method provided by the embodiment of the present application can reduce the operation of reading the system time stamp, thereby reducing the cost of hardware processing, and also reducing the read and write operations on the message.
  • the wireless communication network can obtain the bridge residence time locally, which can reduce the complexity of the TSN time synchronization process, thereby saving time.
  • the TSN time synchronization information or data message carries the network access time.
  • the first device can be triggered to recalculate the bridge residence time in time, thereby improving the accuracy of TSN time synchronization.
  • the second device may reset the timer.
  • the frequency of calculating the residence time of the bridge can be reduced by re-maintaining the timer.
  • the TSN time synchronization information or data message does not carry the network access time.
  • DS-TT can not recalculate the bridge residence time after receiving TSN time synchronization information or data packets, thereby reducing the frequency of calculating bridge residence time.
  • this application provides a TSN time synchronization device, which may be a communication device, or a chip or chipset in the communication device, where the communication device may be the first device or the second device.
  • the device may include a processing unit and a communication unit.
  • the processing unit may be a processor, and the communication unit may be a transceiver;
  • the device may also include a storage module, and the storage module may be a memory; the storage module is used to store instructions, and the processing unit
  • the instructions stored in the storage module are executed to enable the first device to perform the corresponding functions in the first aspect, or the processing unit executes the instructions stored in the storage module, so that the second device executes the corresponding functions in the second aspect. Function.
  • the processing unit may be a processor, and the communication unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage module to The first device is caused to execute the corresponding function in the foregoing first aspect, or the processing unit executes the instruction stored in the storage module, so that the second device executes the corresponding function in the foregoing second aspect.
  • the storage module may be a storage module (for example, register, cache, etc.) in the chip or chipset, or a storage module (for example, read-only memory, random access memory, etc.) located outside the chip or chipset in the network device. Fetch memory, etc.).
  • a TSN time synchronization device which includes a processor, a communication interface, and a memory.
  • the communication interface is used to transmit information, and/or messages, and/or data between the device and other devices.
  • the memory is used to store computer-executable instructions.
  • the processor executes the computer-executable instructions stored in the memory, so that the device executes any design or second aspect of the first aspect or the first aspect described above. Or the TSN time synchronization method described in any design of the second aspect.
  • this application also provides a computer-readable storage medium having instructions stored in the computer-readable storage medium, which when run on a computer, cause the computer to execute any one of the first aspect or the first aspect.
  • this application also provides a computer program product including instructions, which when run on a computer, causes the computer to execute any of the above-mentioned designs in the first aspect or the first aspect, the second aspect or the second aspect.
  • a design of the described TSN time synchronization method is also provided.
  • the present application also provides a wireless communication system.
  • the wireless communication system includes a first device and a second device.
  • the first device can perform the corresponding function in the first aspect, and the second device can perform the first device. Corresponding functions in the two aspects.
  • an embodiment of the present application provides a chip.
  • the chip includes a memory, at least one processor and a communication interface.
  • the processor is coupled with the memory and is used to read a computer program stored in the memory. The method described in the first aspect or any design in the first aspect, the second aspect or any design in the second aspect of the embodiments of the present application can be executed.
  • an embodiment of the present application provides a chip, including a communication interface and at least one processor, and the processor runs to execute any one of the first aspect or the first aspect, the second aspect, or the first aspect of the embodiment of the present application. Design the method described in either of the two aspects.
  • Coupled in the embodiments of the present application means that two components are directly or indirectly combined with each other.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of the architecture of a 5G system provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the architecture of a TSN system provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a 5GS Virtual TSN Bridge transmission process of Sync message according to an embodiment of the application
  • FIG. 5 is a schematic flowchart of a TSN time synchronization method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a process of calculating the residence time of a bridge in a wireless communication system according to an embodiment of the application;
  • FIG. 7 is a schematic flowchart of another wireless communication system calculating bridge residence time according to an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a TSN time synchronization device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a TSN time synchronization apparatus provided by an embodiment of the application.
  • the TSN time synchronization method provided in this application can be applied to a wireless communication system supporting TSN.
  • the architecture of the communication system can be as shown in Figure 1, including a wireless access network device 101 and a terminal device 102, and can also include a core network device 103, where the communication device 102 can be connected to TSN nodes, such as TSN end nodes, TSN bridges Wait.
  • the core network device 103 can be connected to TSN nodes, such as TSN clock sources, TSN bridges, and so on.
  • the communication system involved in the embodiments of this application may be various communication systems, for example, it may be a long term evolution (LTE), a fifth-generation (5G) communication system, or a hybrid of multiple communication systems.
  • LTE long term evolution
  • 5G fifth-generation
  • the architecture such as a hybrid architecture of LTE and 5G, can also be a new communication system that appears in the development of future communication.
  • the radio access network device 101 may be a common base station (such as Node B or eNB), may be a new radio controller (NR controller), or gNode B (gNB) or en in the 5G system.
  • -gNB it can be a centralized network element (centralized unit), it can be a new wireless base station, it can be a remote radio module, it can be a micro base station, it can be a relay, it can be a distributed unit It may be a reception point (transmission reception point, TRP) or transmission point (transmission point, TP) or any other wireless access device, but the embodiment of the present application is not limited thereto.
  • the communication device 102 may be a terminal device, or a relay site such as a customer premise equipment (CPE), or the communication device 102 may also be a function of a base station.
  • terminal equipment is also called user equipment (UE), which is a device that provides voice and/or data connectivity to users, such as handheld devices and vehicle-mounted devices with wireless connection functions.
  • UE user equipment
  • Common terminals include, for example, mobile phones, tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, such as smart watches, smart bracelets, and pedometers.
  • MID mobile internet devices
  • wearable devices such as smart watches, smart bracelets, and pedometers.
  • the embodiment of the present application collectively refers to the communication device 102 as Node-X.
  • the core network device 103 may be a user plane function (UPF).
  • UPF user plane function
  • the TSN system sends time service information through the TSN node to achieve the purpose of clock synchronization between the TSN nodes in the same time domain. Generally speaking, the clock time of each TSN node is the same.
  • the wireless communication system deploys a functional module: DS-TT in the UE and a functional module: NW-TT in the UPF to adapt to the external TSN system. Take the wireless communication system as the 5G system (5G system, 5GS) as an example, as shown in the figure 2 shown.
  • 5GS is used as TSN Bridge (TSN Bridge)
  • TSN Bridge TSN Bridge
  • 5GS Virtual TSN Bridge 5GS Virtual TSN Bridge
  • TSN Bridge A receives time synchronization information (Sync message) from the TSN clock source, which carries the current time of the TSN clock source as x.
  • Sync message time synchronization information
  • the current time of the TSN clock source carried in the Sync message is set to x+R_A+L_AB+R_B.
  • TSN Bridge A sends a Sync message to NW-TT, and the Sync message carries the current time of the TSN clock source x+R_A+L_AB.
  • NW-TT reads the current system time Tsi of the 5G system.
  • NW-TT writes Tsi into Sync message.
  • UPF encapsulates the Sync message into a common data plane message and sends it to DS-TT.
  • DS-TT When DS-TT receives the Sync message, it reads the current system time Tse of the 5G system.
  • A7, DS-TT converts the 5GS Virtual Bridge Residence Time within the 5GS system time to the 5GS Virtual Bridge Residence Time within the TSN system time.
  • DS-TT writes the converted 5GS Virtual Bridge Residence Time into the Sync message, that is, sets the current time of the TSN clock source carried in the Sync message to x+R_A+L_AB+R_B, deletes the Tsi, and sends it to TSN Bridge C .
  • 5GS Virtual Bridge Residence Time is bound to the TSN time synchronization process, that is, 5GS Virtual Bridge Residence Time needs to be calculated every time TSN time synchronization is performed. If for each TSN time domain, the TSN time synchronization process is executed every 30ms, which means that the 5GS Virtual Bridge Residence Time needs to be recalculated every 30 ms. When there are multiple TSN time domains, the calculation frequency of 5GS Virtual Bridge Residence Time will be higher. For example, if there are 2 TSN time domains, 5GS Virtual Bridge Residence Time needs to be recalculated once every 15ms on average, so that 5G The computational cost of the system is relatively high.
  • the message needs to be time stamped (for example, the time stamp Tsi is added to the Sync message in A2 above), and the time stamp is deleted (for example, the Tsi in the Sync message is deleted in A8).
  • the timestamp occupies 80 bits in length, 80 bits of read and write operations are added to the message.
  • the present application provides a TSN time synchronization method and device to solve the problem of high processing cost of the wireless communication system in the TSN time synchronization process in the prior art.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • At least one refers to one or more, and “multiple” refers to two or more than two.
  • “And/or” describes the association relationship of the associated object, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • “The following at least one (item)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c It can be single or multiple.
  • FIG. 5 is a schematic flowchart of a TSN time synchronization method provided by an embodiment of this application. This method can be applied to the wireless communication system shown in FIG. 1. The method specifically includes:
  • the second device receives data.
  • the data may be the first TSN time synchronization information or the first data packet, where the QoS parameters of the quality of service (QoS) flow carrying the first data packet are the same as those of the first data packet.
  • QoS quality of service
  • the QoS parameters of the QoS flow of the TSN time synchronization information are the same.
  • the following takes the first TSN time synchronization information as an example for description.
  • the TSN time synchronization process when the data is the first data message is similar to the TSN time synchronization process when the data is the first TSN time synchronization information.
  • the second device may receive the first TSN time synchronization information from the upstream TSN node.
  • the upstream TSN node of the wireless communication system is TSN Bridge A
  • the NW-TT that is, the second device
  • the upstream TSN node of the wireless communication system is the TSN clock source
  • the second device can receive the first TSN time synchronization information from the TSN clock source.
  • TSN time synchronization information can be named TSN Sync message or Sync message, of course, it can also be named other, and there is no specific limitation here.
  • the second device sends the first TSN time synchronization information to the first device.
  • whether the first TSN time synchronization information carries the first time is related to a timer.
  • the timer is used to record the effective time of the stay time of the bridge, and the network access time is the system time of the wireless communication system when the second device receives the first TSN time synchronization information.
  • the first TSN time synchronization information may not carry the first time. If the timer expires, the first TSN time synchronization information can carry the first time.
  • the second device may reset the timer after sending the first TSN time synchronization information to the first device.
  • the first device may refer to a device that sends time synchronization information to downstream TSN nodes (such as downstream TSN bridges, TSN end nodes, etc.) in the wireless communication system
  • the second device may refer to the receiver in the wireless communication system.
  • a device for sending time synchronization information from upstream TSN nodes such as upstream TSN bridges, TSN clock sources, etc.
  • the NW-TT receives the TSN time synchronization information from the upstream TSN node in the wireless communication system and sends it from the DS-TT to the downstream TSN node
  • the first device may be DS-TT
  • the second device may It is NW-TT.
  • the first device may be NW-TT
  • the second device It can be DS-TT.
  • the first DS-TT receives the TSN time synchronization information from the upstream TSN node in the wireless communication system
  • the first DS-TT transfers to the NW-TT
  • the NW-TT transfers to the second DS-TT in the wireless communication system.
  • the first device can be the second DS-TT
  • the second device can be the first DS-TT
  • the first DS-TT can It is deployed on the same communication device, or it can be deployed on different communication devices, and there is no specific limitation here.
  • NW-TT and DS-TT are only exemplary naming. In the future development of communications, NW-TT and DS-TT may also be named other, such as “NW-TT” A. If A can realize the function of "NW-TT” in the embodiment of this application, A can be understood as the “NW-TT” in the embodiment of this application. Another example is to name “DS-TT” as B. If B can realize the function of "DS-TT” in the embodiment of this application, B can be understood as "DS-TT” in the embodiment of this application.
  • NW-TT may be deployed in UPF, that is, NW-TT may be a functional module in UPF.
  • NW-TT can also be deployed outside the UPF.
  • the NW-TT when deployed outside the UPF, it can be connected to the UPF.
  • DS-TT can be deployed in terminal equipment, that is, DS-TT can be a functional module in terminal equipment. Alternatively, DS-TT can also be deployed outside the terminal device, which is not specifically limited here.
  • the first device determines that the first TSN time synchronization information does not carry the first time.
  • S504 The first device obtains the bridge residence time locally.
  • the bridge residence time can be understood as the time elapsed from the time a data plane message enters from the inbound interface of the bridge to the outbound interface of the bridge after the wireless communication system as a whole is regarded as a TSN bridge. That is, the time elapsed from the data plane message arriving at the second device to leaving the first device.
  • the bridge residence time may be referred to as 5GS Bridge Residence Time.
  • the locally stored bridge residence time may be the time value under the wireless communication system clock, or it may be the time value under the TSN system clock.
  • the first device may use the locally acquired bridge residence time from the time value under the wireless communication system clock Converted to the time value under the TSN system clock.
  • the first device may receive second TSN time synchronization information from the second device, and the second TSN time synchronization information carries the second time.
  • the second time is the system time of the wireless communication system when the second device receives the second TSN time synchronization information.
  • the first device may determine the bridge residence time based on the second time, obtain the first value, and update the locally recorded bridge residence time to the first value.
  • the second TSN time synchronization information and the first TSN time synchronization information may come from the same TSN clock source.
  • the QoS parameters of the QoS flow carrying the second TSN time synchronization information may be the same as the QoS parameters of the QoS flow carrying the first TSN time synchronization information.
  • the first device may determine the bridge residence time based on the second time in the following manner: the first device may receive the first device 2.
  • the TSN time synchronizes information, read the current system time of the wireless communication system, that is, the fourth time.
  • the first device calculates the time value of the bridge residence time under the clock of the wireless communication system based on the second time and the fourth time, that is, the first value.
  • the first device can determine the bridge residence time based on the second time in the following way: the first device can receive the second TSN time synchronization information Time, read the current system time of the wireless communication system, that is, the fourth time. The first device calculates the bridge residence time within the time of the wireless communication system based on the second time and the fourth time. The first device converts the time value of the bridge residence time under the wireless communication system clock into the time value under the TSN system clock, that is, the first value.
  • the first device obtains the time value of the bridge residence time under the clock of the wireless communication system by subtracting the second time from the fourth time.
  • the first device may also receive a second data packet from the second device, and the data packet carries the third time,
  • the third time is the system time of the wireless communication system when the second device receives the second data message.
  • the first device determines the bridge residence time based on the third time, obtains the second value, and updates the locally recorded bridge residence time to the second value.
  • the QoS parameters of the QoS flow carrying the second data packet may be the same as the QoS parameters of the QoS flow carrying the second TSN time synchronization information.
  • the QoS parameters of the QoS flow carrying the second data packet may be the same as the QoS parameters of the QoS flow carrying the first TSN time synchronization information.
  • the QoS parameters of the QoS flow carrying the second data packet may be the same as the QoS parameters of the QoS flow carrying the first data packet.
  • the manner in which the first device determines the bridge residence time based on the third time may be similar to the manner in which the first device determines the bridge residence time based on the second time, except that the first device determines the bridge residence time based on the second time.
  • the bridge residence time uses the time when the second device receives the second data packet (that is, the third time) and the time when the first device sends the second data packet.
  • the first device sends first TSN time synchronization information, where the first TSN time synchronization information carries network residence time.
  • the first device may send the first TSN time synchronization information to the downstream TSN node.
  • the downstream TSN node of the wireless communication system is TSN Bridge C
  • the first device ie DS-TT
  • the first device can send the first TSN time carrying the network residence time to TSN Bridge C Synchronization information.
  • the downstream TSN node of the wireless communication system is a TSN end node
  • the first device may send the first TSN time synchronization information carrying the network residence time to the TSN clock source.
  • the method provided by the embodiment of the present application can reduce the operation of reading the system time stamp, thereby reducing the cost of hardware processing, and also reducing the read and write operations on the message.
  • the wireless communication network can obtain the bridge residence time locally, which can reduce the complexity of the TSN time synchronization process, thereby saving time.
  • the first device may determine that the first TSN time synchronization information carries the first time.
  • the first device determines the bridge residence time based on the first time, obtains a third value, and updates the locally recorded bridge residence time to the third value.
  • the first device may send the first TSN time synchronization information carrying the bridge residence time as the third value.
  • the method that the first device determines the bridge residence time based on the first time is similar to the manner that the first device determines the bridge residence time based on the second time, except that the first device determines the bridge residence time based on the second time.
  • the bridge dwell time adopts the time when the second device receives the second TSN time synchronization information (that is, the second time), and the time when the first device receives the second TSN time synchronization information (that is, the fourth time), and the first device is based on
  • the time at which the second device receives the first TSN time synchronization information (that is, the first time) and the time at which the first device sends the first TSN time synchronization information are adopted.
  • the first device may delete the first time in the first TSN time synchronization information after writing the bridge residence time of the first value into the first TSN time synchronization information.
  • the NW-TT receives the TSN time synchronization information from the upstream TSN node in the wireless communication system, and the DS-TT sends it to the downstream TSN node as follows: For example, taking the first device as DS-TT and the second device as NW-TT as an example, the description will be given in combination with specific examples.
  • Example 1 As shown in Figure 6, the wireless communication system calculates the bridge dwell time as follows:
  • the NW-TT carries the Tsi in the Sync Message and sends it to the DS-TT.
  • the NW-TT can send the Sync Message to the terminal device via the data plane, and then the terminal device sends it to the DS-TT.
  • S603, DS-TT receives the Sync Message, reads the current time Tse of the wireless communication system, and calculates the bridge residence time according to Tsi and Tse.
  • the bridge residence time may be the time value under the wireless communication system clock, or may be the time value under the TSN system clock.
  • DS-TT can use Tse-Tsi to calculate the time value of the bridge residence time under the wireless communication system clock.
  • DS-TT can use Tse-Tsi to calculate the time value of the bridge residence time under the wireless communication system clock, and then set the bridge residence time The time value under the wireless communication system clock is converted to the time value under the TSN system clock.
  • the DS-TT stores the residence time of the bridge locally.
  • NW-TT does not recalculate the bridge residence time after receiving the Sync Message. It can be understood that the NW-TT forwards the Sync Message on the data plane after receiving the Sync Message without reading the wireless communication. The current system time of the system, and when sending a Sync Message to DS-TT, it is not necessary to carry the system time in the Sync Message. When DS-TT sends a Sync Message to the downstream TSN node, it obtains the bridge residence time locally.
  • Example 2 As shown in Figure 7, the wireless communication system calculates the bridge dwell time as follows:
  • steps S701 to S705 please refer to the above steps S601 to S605, and the repetition will not be repeated.
  • S706 When the timer expires (that is, when the timer expires), when the NW-TT receives the first data packet after the timer expires, the timer is reset, and the NW-TT and DS-TT recalculate the bridge station. Stay for time.
  • the QoS parameters of the QoS flow carrying the data message may be the same as the QoS parameters of the QoS flow carrying the TSN Sync Message.
  • the embodiment of the present application provides a TSN time synchronization device.
  • the structure of the device may be as shown in FIG. 8, including a processing unit 801 and a communication unit 802.
  • the TSN time synchronization device can be specifically used to implement the method executed by the first device in the embodiments of FIG. 5 to FIG. 7.
  • the device may be the first device itself, or the chip or the chip in the first device. A chip set or part of a chip used to perform related method functions.
  • the communication unit 802 is configured to receive the first TSN time synchronization information from the second device; the processing unit 801 is configured to determine that the first TSN time synchronization information does not carry the first time, and the first time is the second device receiving the first time synchronization information.
  • the TSN time synchronization information is the system time of the wireless communication system; and the bridge residence time is obtained locally; the communication unit 802 is also used to send the first TSN time synchronization information, the first TSN time synchronization information carries the network residence time.
  • the communication unit 802 may be further configured to: before the processing unit 801 obtains the bridge residence time locally, receive second TSN time synchronization information from the second device, the second TSN time synchronization information carrying the second time, the second time Is the system time of the wireless communication system when the second device receives the second TSN time synchronization information; the processing unit 801 may also be used to: determine the bridge residence time based on the second time to obtain the first value; The bridge residence time is updated to the first value.
  • the communication unit 802 may be further configured to: before the processing unit 801 obtains the bridge residence time locally, receive a data message from the second device, where the QoS parameters of the quality of service QoS flow carrying the data message and the bearer TSN The QoS parameters of the QoS flow of the time synchronization information are the same, and the data message carries a third time, which is the system time of the wireless communication system when the second device receives the data message; the processing unit 801 is further configured to: Time determines the bridge residence time to obtain the second value; and updates the locally recorded bridge residence time to the second value.
  • the TSN time synchronization device can be specifically used to implement the method executed by the second device in the embodiments of FIG. 5 to FIG. 7.
  • the device may be the second device itself or the chip in the second device. Or a part of the chipset or chip used to perform related method functions.
  • the communication unit 802 is used to communicate with other devices; the processing unit 801 is used to perform through the communication unit 802: receiving TSN time synchronization information or data packets, where the QoS parameters of the quality of service QoS flow carrying the data packets are the same as The QoS parameters of the QoS flows that carry TSN time synchronization information are the same; the TSN time synchronization information or data packet is sent to the first device.
  • the timer is used for recording
  • the effective time of the bridge residence time, and the network access time is the system time of the wireless communication system when the second device receives the TSN time synchronization information or the data message.
  • the TSN time synchronization information or data message carries the network access time.
  • the processing unit 801 may also be used to reset the timer after sending the TSN time synchronization information or data message to the first device.
  • the TSN time synchronization information or data message does not carry the network access time.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It can be understood that the function or implementation of each module in the embodiment of the present application may further refer to the related description of the method embodiment.
  • the TSN time synchronization device may be as shown in FIG. 9, and the device may be a communication device or a chip in a communication device, where the communication device may be the first device or the second device.
  • the device may include a processor 901, a communication interface 902, and a memory 903.
  • the processing unit 801 may be a processor 901.
  • the communication unit 802 may be a communication interface 902.
  • the processor 901 may be a central processing unit (central processing unit, CPU), or a digital processing unit, and so on.
  • the communication interface 902 may be a transceiver, an interface circuit such as a transceiver circuit, etc., or a transceiver chip, and so on.
  • the device further includes: a memory 903, configured to store a program executed by the processor 901.
  • the memory 903 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory (volatile memory), such as random access memory (random access memory). -access memory, RAM).
  • the memory 903 is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the processor 901 is configured to execute the program code stored in the memory 903, and is specifically configured to execute the actions of the above-mentioned processing unit 801, which will not be repeated in this application.
  • the communication interface 902 is specifically configured to perform the actions of the above-mentioned communication unit 802, which will not be repeated in this application.
  • the embodiment of the present application does not limit the specific connection medium between the communication interface 902, the processor 901, and the memory 903.
  • the memory 903, the processor 901, and the communication interface 902 are connected by a bus 904 in FIG. 9.
  • the bus is represented by a thick line in FIG. 9, and the connection modes between other components are only for schematic illustration. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present invention also provides a computer-readable storage medium for storing computer software instructions required to execute the above-mentioned processor, which contains a program required to execute the above-mentioned processor.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, SSD).
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种TSN时间同步方法及装置,用以降低TSN同步时无线通信系统处理成本较高的问题。该方法包括:第一装置接收来自第二装置的第一TSN时间同步信息。第一装置确定第一TSN时间同步信息不携带第一时间,第一时间为第二装置接收第一TSN时间同步信息时无线通信系统的系统时间。第一装置从本地获取网桥驻留时间,并将网桥驻留时间写入第一TSN时间同步信息后进行发送。通过该方案,第一装置可以在本地存储网桥驻留时间,从而在TSN时间同步信息中不携带第二装置的接收时间时,在本地获取网桥驻留时间,而不需要重新进行计算,从而可以降低网桥驻留时间的计算频率。

Description

一种时间敏感网络时间同步方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种时间敏感网络(time sensitive network,TSN)时间同步方法及装置。
背景技术
3GPP R16在讨论5G系统支持TSN。TSN系统通过5G系统给TSN节点发送授时信息,以实现在相同时间域的TSN节点达到时钟同步的目的,通俗来讲即每个TSN节点的时钟时间一致。5G系统通过在用户设备(user equipment,UE)部署功能模块:设备端TSN转换器(device side TSN translator,DS-TT),在用户面功能(user plane function,UPF)部署功能模块:网络端TSN转换器(network side TSN translator,NW-TT),以适配外部的TSN系统。
目前,实现TSN时间同步的过程为,TSN时钟源向NW-TT发送时间同步信息(TSN Sync message),该TSN Sync message携带TSN系统的授时信息。NW-TT读取5G系统的当前系统时间Tsi,并将Tsi写入TSN Sync message中。UPF将TSN Sync message封装为普通的数据面报文,送往DS-TT。DS-TT收到TSN Sync message时,读取5G系统的当前系统时间Tse,基于Tse和Tsi计算5G系统时间内的5G系统网桥驻留时间(5GS Virtual Bridge Residence Time)。DS-TT将5G系统时间内的5GS Virtual Bridge Residence Time转换为TSN系统时间内的5GS Virtual Bridge Residence Time,并将转换得到的5GS Virtual Bridge Residence Time写入TSN Sync message中,发送给下游的TSN节点。从而TSN节点可以根据TSN系统的授时信息、5GS Virtual Bridge Residence Time及其它必要参数实现与TSN系统的时间同步。
目前,5GS Virtual Bridge Residence Time的计算过程与TSN时间同步过程绑定,即每进行一次TSN时间同步就需要计算一次5GS Virtual Bridge Residence Time。如果对于每个TSN时间域,TSN时间同步过程每30ms执行一次,这就意味着每30ms就需要重新计算一次5GS Virtual Bridge Residence Time。当有多个TSN时间域存在时,5GS Virtual Bridge Residence Time的计算频率会更高,这样使得5G系统的处理成本较高。
发明内容
本申请提供一种TSN时间同步方法及装置,用以降低TSN同步时无线通信系统处理成本较高的问题。
第一方面,本申请实施例提供一种TSN时间同步方法,该方法包括:第一装置接收来自第二装置的第一TSN时间同步信息。第一装置确定第一TSN时间同步信息不携带第一时间,第一时间为第二装置接收第一TSN时间同步信息时无线通信系统的系统时间。第一装置从本地获取网桥驻留时间,并将网桥驻留时间写入第一TSN时间同步信息后进行发送。
本申请实施例中,第一装置可以在本地存储网桥驻留时间,从而在TSN时间同步信息中不携带第二装置的接收时间时,在本地获取网桥驻留时间,而不需要重新进行计算,从而可以降低网桥驻留时间的计算频率,进而可以降低无线通信系统的计算成本。并且,TSN 时间同步信息中可以不携带第二装置的接收时间,从而可以减少读取系统时间戳的操作,从而可以降低硬件处理的成本,还可以降低对报文的读写操作。此外,第一装置在本地获取网桥驻留时间,从而可以降低TSN时间同步过程的复杂度,进而可以节省时间。
在一种可能的设计中,本地获取的网桥驻留时间可以是无线通信系统时钟下的时间值,也可以是TSN系统时间下的时间值。
在一种可能的设计中,在第一装置从本地获取网桥驻留时间之前,第一装置可以接收来自第二装置的第二TSN时间同步信息,第二TSN时间同步信息携带第二时间,第二时间为第二装置接收第二TSN时间同步信息时无线通信系统的系统时间。第一装置基于第二时间确定网桥驻留时间,得到第一值。第一装置将本地记载的网桥驻留时间更新为第一值。
通过上述设计,第一装置可以在TSN时间同步信息中携带第二装置的接收时间时确定重新计算网桥驻留时间,从而可以及时更新本地存储的网桥驻留时间,进而可以提高TSN时间同步的准确性。
在一种可能的设计中,在第一装置从本地获取网桥驻留时间之前,第一装置可以接收来自第二装置的数据报文,其中,承载数据报文的服务质量(QoS)流的QoS参数与承载TSN时间同步信息的QoS流的QoS参数相同,且数据报文携带第三时间,第三时间为第二装置接收数据报文时无线通信系统的系统时间。第一装置基于第三时间确定网桥驻留时间,得到第二值。第一装置将本地记载的网桥驻留时间更新为第二值。
通过上述设计,第一装置可以在数据报文中携带第二装置的接收时间时确定重新计算网桥驻留时间,从而可以及时更新本地存储的网桥驻留时间,进而可以提高TSN时间同步的准确性。
第二方面,本申请实施例提供一种TSN时间同步方法,该方法包括:第二装置接收TSN时间同步信息或者数据报文,其中,承载数据报文的QoS流的QoS参数与承载TSN时间同步信息的QoS流的QoS参数相同;第二装置向第一装置发送TSN时间同步信息或者数据报文,TSN时间同步信息或者数据报文是否携带入网时间与计时器有关;其中,计时器用于记录网桥驻留时间的有效时间,入网时间为第二装置接收TSN时间同步信息或者数据报文时无线通信系统的系统时间。
本申请实施例中,通过维护一个计时器,在计时器为到期之前即使收到TSN时间同步信息也不会触发对网桥驻留时间的重计算,从而可以降低网桥驻留时间的计算频率,进而可以降低无线通信系统的计算成本。并且,通过本申请实施例提供的方法,可以减少读取系统时间戳的操作,从而可以降低硬件处理的成本,还可以降低对报文的读写操作。此外,在计时器未超时时,无线通信网络可以在本地获取网桥驻留时间,从而可以降低TSN时间同步过程的复杂度,进而可以节省时间。
在一种可能的设计中,若计时器超时,则TSN时间同步信息或者数据报文携带入网时间。上述设计中,通过在TSN时间同步信息或者数据报文携带入网时间,可以及时触发第一装置重新计算网桥驻留时间,从而可以提高TSN时间同步的准确性。
在一种可能的设计中,在第二装置向第一装置发送TSN时间同步信息或者数据报文之后,第二装置可以重置计时器。上述设计中,通过重新维护计时器计时,可以降低网桥驻留时间的计算频率。
在一种可能的设计中,若计时器未超时,则TSN时间同步信息或者数据报文不携带入网时间。通过上述设计,DS-TT收到TSN时间同步信息或者数据报文可以后不对网桥驻留 时间进行重计算,从而可以降低网桥驻留时间的计算频率。
第三方面,本申请提供一种TSN时间同步装置,该装置可以是通信设备,也可以是通信设备内的芯片或芯片组,其中,通信设备可以为第一装置也可以是第二装置。该装置可以包括处理单元和通信单元。当该装置是通信设备时,该处理单元可以是处理器,该通信单元可以是收发器;该装置还可以包括存储模块,该存储模块可以是存储器;该存储模块用于存储指令,该处理单元执行该存储模块所存储的指令,以使第一装置执行上述第一方面中相应的功能,或者,该处理单元执行该存储模块所存储的指令,以使第二装置执行上述第二方面中相应的功能。当该装置是通信设备内的芯片或芯片组时,该处理单元可以是处理器,该通信单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储模块所存储的指令,以使第一装置执行上述第一方面中相应的功能,或者,该处理单元执行存储模块所存储的指令,以使第二装置执行上述第二方面中相应的功能。该存储模块可以是该芯片或芯片组内的存储模块(例如,寄存器、缓存等),也可以是该网络设备内的位于该芯片或芯片组外部的存储模块(例如,只读存储器、随机存取存储器等)。
第四方面,提供了一种TSN时间同步装置,包括:处理器、通信接口和存储器。通信接口用于该装置与其他装置之间传输信息、和/或消息、和/或数据。该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一方面或第一方面中任一设计、第二方面或第二方面中任一设计所述的TSN时间同步方法。
第五方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面中任一设计、第二方面或第二方面中任一设计所述的TSN时间同步方法。
第六方面,本申请还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面中任一设计、第二方面或第二方面中任一设计所述的TSN时间同步方法。
第七方面,本申请还提供一种无线通信系统,该无线通信系统包括第一装置和第二装置,其中,第一装置可以执行上述第一方面中相应的功能,第二装置可以执行上述第二方面中相应的功能。
第八方面,本申请实施例提供的一种芯片,所述芯片包括存储器、至少一个处理器和通信接口,所述处理器与所述存储器耦合,用于读取所述存储器中存储的计算机程序以执行本申请实施例第一方面或第一方面中任一设计、第二方面或第二方面中任一设计所述的方法。
第九方面,本申请实施例提供一种芯片,包括通信接口和至少一个处理器,所述处理器运行以执行本申请实施例第一方面或第一方面中任一设计、第二方面或第二方面中任一设计所述的方法。
需要说明的是,本申请实施例中“耦合”是指两个部件彼此直接或间接地结合。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种5G系统的架构示意图;
图3为本申请实施例提供的一种TSN系统的架构示意图;
图4为本申请实施例提供的一种5GS Virtual TSN Bridge传输Sync message的过程示意图;
图5为本申请实施例提供的一种TSN时间同步方法的流程示意图;
图6为本申请实施例提供的一种无线通信系统计算网桥驻留时间的流程示意图;
图7为本申请实施例提供的另一种无线通信系统计算网桥驻留时间的流程示意图;
图8为本申请实施例提供的一种TSN时间同步装置的结构示意图;
图9为本申请实施例提供的一种TSN时间同步装置的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请提供的TSN时间同步方法可以应用于支持TSN的无线通信系统中。该通信系统的架构可以如图1所示,包括无线接入网设备101以及终端设备102,还可以包括核心网设备103,其中,通信设备102可以连接TSN节点,如TSN末端节点、TSN网桥等。核心网设备103可以连接TSN节点,如TSN时钟源、TSN网桥等。本申请实施例涉及的通信系统可以是各类通信系统,例如,可以是长期演进(long term evolution,LTE),也可以是第五代(5G)通信系统,还可以是多种通信系统的混合架构,如LTE与5G混合架构等,也可以是未来通信发展中出现的新的通信系统等。
其中,无线接入网设备101,可以是普通的基站(如Node B或eNB),可以是新无线控制器(new radio controller,NR controller),可以是5G系统中的gNode B(gNB)或en-gNB,可以是集中式网元(centralized unit),可以是新无线基站,可以是射频拉远模块,可以是微基站,可以是中继(relay),可以是分布式网元(distributed unit),可以是接收点(transmission reception point,TRP)或传输点(transmission point,TP)或者任何其它无线接入设备,但本申请实施例不限于此。
通信设备102,可以是终端设备,也可以是中继站点如客户前置设备(customer premise equipment,CPE),或者,通信设备102也可以是基站的一个功能。其中,终端设备又称之为用户设备(user equipment,UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。为了方便描述,本申请实施例将通信设备102统一称为Node-X。
核心网设备103,可以是用户面功能(user plane function,UPF)。
TSN系统通过TSN节点发送授时信息,以实现在相同时间域的TSN节点达到时钟同步的目的,通俗来讲即每个TSN节点的时钟时间一致。无线通信系统通过在UE部署功能模块:DS-TT,在UPF部署功能模块:NW-TT,以适配外部的TSN系统,以无线通信系统为5G系统(5G system,5GS)为例,如图2所示。5GS作为TSN网桥(TSN Bridge)时,可以称为5GS虚拟TSN网桥(5GS Virtual TSN Bridge)。
在3GPP TSN架构中,需要计算每个TSN网桥(TSN Bridge)(包括普通TSN Bridge及5GS Virtual TSN Bridge)的驻留时间(Residence Time)及链路时延(Link Propagation Delay),用于TSN的时间同步。如图3所示,假设有三个TSN Bridge分别记为A、B、C,其中A 与C是普通TSN Bridge,而B是5GS Virtual TSN Bridge。将三个TSN Bridge的TSN Bridge Residence Time分别记为R_A、R_B及R_C,将TSN Bridge A与TSN Bridge B之间的链路时间记为L_AB,将TSN Bridge B与TSN Bridge C之间的链路时间记为L_BC。如图3所示,在TSN时间同步过程中:
①,假设TSN Bridge A的入接口处收到来自TSN时钟源的时间同步信息(Sync message),其中携带TSN时钟源当前的时间为x。
②,在Sync message到达TSN Bridge A出接口时,Sync message中携带的TSN时钟源当前时间则为x+R_A。
③,Sync message从TSN Bridge A经过TSN BridgeA与TSN BridgeB之间的链路传输到TSN Bridge B的入接口(即NW-TT)时,Sync message中携带的TSN时钟源当前时间置为x+R_A+L_AB。
④,在Sync message到达TSN Bridge B的出接口(即DS-TT)时,Sync message中将携带的TSN时钟源当前时间置为x+R_A+L_AB+R_B。
以此类推。
以图3所示的TSN系统架构为例,5GS Virtual TSN Bridge传输Sync message的过程可以为,如图4所示:
A1,TSN Bridge A向NW-TT发送Sync message,该Sync message携带TSN时钟源当前时间x+R_A+L_AB。
A2,NW-TT读取5G系统的当前系统时间Tsi。
A3,NW-TT将Tsi写入Sync message中。
A4,UPF将Sync message封装为普通的数据面报文,送往DS-TT。
A5,DS-TT收到Sync message时,读取5G系统的当前系统时间Tse。
A6,DS-TT基于Tse和Tsi计算5G系统时间内的5GS Virtual Bridge Residence Time即R_B,其中,R_B=Tse-Tsi。
A7,DS-TT将5GS系统时间内的5GS Virtual Bridge Residence Time转换为TSN系统时间内的5GS Virtual Bridge Residence Time。
A8,DS-TT将转换得到的5GS Virtual Bridge Residence Time写入Sync message中,即将Sync message中携带的TSN时钟源当前时间置为x+R_A+L_AB+R_B,并删除Tsi,发送给TSN Bridge C。
目前,5GS Virtual Bridge Residence Time的计算过程与TSN时间同步过程绑定,即每进行一次TSN时间同步就需要计算一次5GS Virtual Bridge Residence Time。如果对于每个TSN时间域,TSN时间同步过程每30ms执行一次,这就意味着每30ms就需要重新计算一次5GS Virtual Bridge Residence Time。当有多个TSN时间域存在时,5GS Virtual Bridge Residence Time的计算频率会更高,例如,如果有2个TSN时间域存在,则平均15ms就需要重新计算一次5GS Virtual Bridge Residence Time,从而使得5G系统的计算成本较高。
并且,每次计算5GS Virtual Bridge Residence Time都需要调用专门的硬件来打时间戳(如Tsi、Tse),而频繁的5GS Virtual Bridge Residence Time计算会增加硬件处理的成本。
并且,每次计算5GS Virtual Bridge Residence Time需要向报文打上时间戳(如上述A2中向Sync message打上时间戳Tsi)、删除时间戳(如A8中删除Sync message中的Tsi),这样增加了对报文的读写操作,如若时间戳占用80bit长度,则增加了对报文进行80 bit 的读写操作。
此外,将5GS Virtual Bridge Residence Time的计算过程与TSN时间同步过程绑定,使得TSN时间同步过程变得复杂。
基于此,本申请提供一种TSN时间同步方法及装置,用以解决现有技术中TSN时间同步过程中无线通信系统的处理成本较高的问题。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
应理解,本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c可以是单个,也可以是多个。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序,也不代表个数。
下面结合附图对本申请提供的TSN时间同步方法进行具体说明。
参见图5所示,为本申请实施例提供的TSN时间同步方法的流程示意图。该方法可以应用为图1所示的无线通信系统。该方法具体包括:
S501,第二装置接收数据,该数据可以为第一TSN时间同步信息,也可以为第一数据报文,其中,承载第一数据报文的服务质量(QoS)流的QoS参数与承载第一TSN时间同步信息的QoS流的QoS参数相同。为了描述上的方便,下面以第一TSN时间同步信息为例进行说明,数据为第一数据报文时的TSN时间同步过程与数据为第一TSN时间同步信息时的TSN时间同步过程类似。
一种实现方式中,第二装置可以接收来自上游TSN节点的第一TSN时间同步信息。例如,在图3所示的TSN系统中,无线通信系统的上游TSN节点为TSN Bridge A,则NW-TT(即第二装置)可以接收来自TSN Bridge A的第一TSN时间同步信息。又例如,假设无线通信系统的上游TSN节点为TSN时钟源,则即第二装置可以接收来自TSN时钟源的第一TSN时间同步信息。
TSN时间同步信息可以命名为TSN Sync message,也可以命名为Sync message,当然也可以命名为其他,这里不做具体限定。
S502,第二装置向第一装置发送第一TSN时间同步信息。其中,第一TSN时间同步信息是否携带第一时间与计时器有关。其中,计时器用于记录网桥驻留时间的有效时间,入网时间为第二装置接收第一TSN时间同步信息时无线通信系统的系统时间。
其中,若计时器未超时,则第一TSN时间同步信息可以不携带第一时间。若计时器超时,则第一TSN时间同步信息可以携带第一时间。
进一步的,若计时器超时,第二装置在向第一装置发送第一TSN时间同步信息之后,可以重置计时器。
本申请实施例中,第一装置可以指无线通信系统中向下游的TSN节点(如下游的TSN 网桥、TSN末端节点等)发送时间同步信息的装置,第二装置可以指无线通信系统中接收上游的TSN节点(如上游的TSN网桥、TSN时钟源等)发送的时间同步信息的装置。例如,若无线通信系统中由NW-TT接收来自上游的TSN节点的TSN时间同步信息,并由DS-TT向下游的TSN节点进行发送,则第一装置可以是DS-TT,第二装置可以是NW-TT。又例如,若无线通信系统中由DS-TT接收来自上游的TSN节点的TSN时间同步信息,并由NW-TT向下游的TSN节点进行发送,则第一装置可以是NW-TT,第二装置可以是DS-TT。再例如,若无线通信系统中由第一DS-TT接收来自上游的TSN节点的TSN时间同步信息,第一DS-TT向NW-TT,由NW-TT向无线通信系统中的第二DS-TT进行转发,并由第二DS-TT向下游的TSN节点进行发送,则第一装置可以是第二DS-TT,第二装置可以是第一DS-TT,其中,第一DS-TT可以部署在同一个通信设备上,也可以部署在不同的通信设备上,这里不做具体限定。
应理解,“NW-TT”、“DS-TT”仅是一种示例性命名,在未来通信发展中也可以将NW-TT、DS-TT命名为其他,如将“NW-TT”命名为A,若A可以实现本申请实施例中“NW-TT”的功能,可以将A理解为本申请实施例中“NW-TT”。又如将“DS-TT”命名为B,若B可以实现本申请实施例中“DS-TT”的功能,可以将B理解为本申请实施例中“DS-TT”。
一种示例性说明中,NW-TT可以部署在UPF中,即NW-TT可以是UPF中的一个功能模块。或者,NW-TT也可以部署在UPF外。可选的,当NW-TT部署在UPF外时可以与UPF相连。
DS-TT可以部署在终端设备,即DS-TT可以是终端设备中的一个功能模块。或者,DS-TT也可以部署在终端设备外,这里不做具体限定。
S503,第一装置确定第一TSN时间同步信息不携带第一时间。
S504,第一装置从本地获取网桥驻留时间。
其中,网桥驻留时间可以理解为将无线通信系统整体视为一个TSN网桥之后,数据面报文从该网桥的入接口进入,到该网桥的出接口出去期间所经历的时间。即,数据面报文从到达第二装置起,到离开第一装置所经历的时间。示例性的,无线通信系统为5G系统时,可以将网桥驻留时间称为5GS Bridge Residence Time。
其中,本地存储的网桥驻留时间可以是无线通信系统时钟下的时间值,也可以是TSN系统时钟下的时间值。
进一步的,若本地存储的网桥驻留时间为无线通信系统时钟下的时间值,在步骤S504之后,第一装置可以将在本地获取的网桥驻留时间由无线通信系统时钟下的时间值转换成TSN系统时钟下的时间值。
在一种可能的实施方式中,在第一装置从本地获取网桥驻留时间之前,第一装置可以接收来自第二装置的第二TSN时间同步信息,第二TSN时间同步信息携带第二时间,第二时间为第二装置接收第二TSN时间同步信息时无线通信系统的系统时间。第一装置可以基于第二时间确定网桥驻留时间,得到第一值,并将本地记载的网桥驻留时间更新为第一值。
一种示例性说明中,第二TSN时间同步信息与第一TSN时间同步信息可以来自于同一个TSN时钟源。或者,承载第二TSN时间同步信息的QoS流的QoS参数可以与承载第一TSN时间同步信息的QoS流的QoS参数相同。
可选的,若本地存储的网桥驻留时间为无线通信系统时钟下的时间值,第一装置基于 第二时间确定网桥驻留时间可以通过如下方式实现:第一装置可以在收到第二TSN时间同步信息时,读取无线通信系统当前的系统时间,即第四时间。第一装置基于第二时间和第四时间计算网桥驻留时间在无线通信系统时钟下的时间值,即第一值。
若本地存储的网桥驻留时间为TSN系统时钟下的时间值,第一装置基于第二时间确定网桥驻留时间可以通过如下方式实现:第一装置可以在收到第二TSN时间同步信息时,读取无线通信系统当前的系统时间,即第四时间。第一装置基于第二时间和第四时间计算无线通信系统时间内的网桥驻留时间。第一装置将网桥驻留时间在无线通信系统时钟下的时间值转换为TSN系统时钟下的时间值,即第一值。
示例性的,网桥驻留时间在无线通信系统时钟下的时间值可以满足如下公式:网桥驻留时间在无线通信系统时钟下的时间值=第四时间-第二时间。或者,也可以理解为,第一装置通过用第四时间减去第二时间得到网桥驻留时间在无线通信系统时钟下的时间值。
在另一种可能的实施方式中,在第一装置从本地获取网桥驻留时间之前,第一装置还可以接收来自第二装置的第二数据报文,且数据报文携带第三时间,第三时间为第二装置接收第二数据报文时无线通信系统的系统时间。第一装置基于第三时间确定网桥驻留时间,得到第二值,并将本地记载的网桥驻留时间更新为第二值。
一种示例性说明中,承载第二数据报文的QoS流的QoS参数可以与承载第二TSN时间同步信息的QoS流的QoS参数相同。或者,承载第二数据报文的QoS流的QoS参数可以与承载第一TSN时间同步信息的QoS流的QoS参数相同。或者,承载第二数据报文的QoS流的QoS参数可以与承载第一数据报文的QoS流的QoS参数相同。
第一装置基于第三时间确定网桥驻留时间的方式可以与第一装置基于第二时间确定网桥驻留时间的方式类似,区别在于,第一装置基于第二时间确定网桥驻留时间时采用第二装置接收第二TSN时间同步信息的时间(即第二时间)、第一装置发送第二TSN时间同步信息的时间(即第四时间),而第一装置基于第三时间确定网桥驻留时间时采用第二装置接收第二数据报文的时间(即第三时间)、第一装置发送第二数据报文的时间。
S505,第一装置发送第一TSN时间同步信息,第一TSN时间同步信息携带网络驻留时间。
一种实现方式中,第一装置可以向下游TSN节点发送第一TSN时间同步信息。例如,在图3所示的TSN系统中,无线通信系统的下游TSN节点为TSN Bridge C,则第一装置(即DS-TT)可以向TSN Bridge C发送携带网络驻留时间的第一TSN时间同步信息。又例如,假设无线通信系统的下游TSN节点为TSN末端节点,则第一装置可以向TSN时钟源发送携带网络驻留时间的第一TSN时间同步信息。
本申请实施例中,通过维护一个计时器,在计时器为到期之前即使收到TSN时间同步信息也不会触发对网桥驻留时间的重计算,从而可以降低网桥驻留时间的计算频率,进而可以降低无线通信系统的计算成本。并且,通过本申请实施例提供的方法,可以减少读取系统时间戳的操作,从而可以降低硬件处理的成本,还可以降低对报文的读写操作。此外,在计时器未超时时,无线通信网络可以在本地获取网桥驻留时间,从而可以降低TSN时间同步过程的复杂度,进而可以节省时间。
在一些实施例中,若计时器超时,即步骤S502中发送的第一TSN时间同步信息携带第一时间,可以执行如下过程:第一装置可以确定第一TSN时间同步信息携带第一时间。第一装置基于该第一时间确定网桥驻留时间,得到第三值,并将本地记载的网桥驻留时间 更新为该第三值。
进一步的,第一装置可以发送携带网桥驻留时间为第三值的第一TSN时间同步信息。
一种举例说明中,第一装置基于第一时间确定网桥驻留时间的方式与第一装置基于第二时间确定网桥驻留时间的方式类似,区别在于,第一装置基于第二时间确定网桥驻留时间时采用第二装置接收第二TSN时间同步信息的时间(即第二时间)、第一装置接收第二TSN时间同步信息的时间(即第四时间),而第一装置基于第一时间确定网桥驻留时间时采用第二装置接收第一TSN时间同步信息的时间(即第一时间)、第一装置发送第一TSN时间同步信息的时间。
一种实施方式中,第一装置将第一值的网桥驻留时间写入第一TSN时间同步信息中后可以删除第一TSN时间同步信息中的第一时间。
为了更好的理解本申请实施例提供的方案,下面以无线通信系统中由NW-TT接收来自上游的TSN节点的TSN时间同步信息,并由DS-TT向下游的TSN节点进行发送的场景为例,即以第一装置是DS-TT,第二装置是NW-TT为例,结合具体示例进行说明。
示例一:如图6所示,无线通信系统计算网桥驻留时间的过程为:
S601,NW-TT初次收到Sync Message时,读取无线通信系统当前的系统时间Tsi,并启动计时器。
S602,NW-TT在Sync Message中携带Tsi向DS-TT进行发送。
一种实现方式中,NW-TT可以将Sync Message经数据面送到终端设备,再由终端设备发送给DS-TT。
S603,DS-TT接收Sync Message,并读取无线通信系统当前的时间Tse,并根据Tsi和Tse计算网桥驻留时间。
示例性的,网桥驻留时间可以为无线通信系统时钟下的时间值,也可以为TSN系统时钟下的时间值。
若本地存储的网桥驻留时间为无线通信系统时钟下的时间值,则DS-TT可以用Tse-Tsi计算网桥驻留时间在无线通信系统时钟下的时间值。
若本地存储的网桥驻留时间为TSN系统时钟下的时间值,则DS-TT可以用Tse-Tsi计算网桥驻留时间在无线通信系统时钟下的时间值,然后将网桥驻留时间由无线通信系统时钟下的时间值转换成TSN系统时钟下的时间值。
S604,DS-TT在本地存储网桥驻留时间。
S605,当计时器到期之前(即计时器未超时期间),NW-TT收到Sync Message后,NW-TT、DS-TT不对网桥驻留时间进行重计算。
一种示例性说明中,NW-TT收到Sync Message后不对网桥驻留时间进行重计算,可以理解为,NW-TT收到Sync Message后对Sync Message进行数据面转发,不用读取无线通信系统当前的系统时间,并且,在向DS-TT发送Sync Message时,不用在Sync Message携带该系统时间。DS-TT向下游的TSN节点发送Sync Message时,在本地获取网桥驻留时间。
S606,当计时器到期时(即计时器超时时),NW-TT在计时器超时后接收第一个TSN Sync Message时,重置计时器,NW-TT、DS-TT重新计算网桥驻留时间。
NW-TT、DS-TT重新计算网桥驻留时间的过程,具体可以参阅上述步骤S601~S603,重复之处不再赘述。
S607,DS-TT更新本地存储的网桥驻留时间。
示例二:如图7所示,无线通信系统计算网桥驻留时间的过程为:
步骤S701~S705,具体可以参阅上述步骤S601~S605,重复之处不再赘述。
S706,当计时器到期时(即计时器超时时),NW-TT在计时器超时后接收第一个数据报文时,重置计时器,NW-TT、DS-TT重新计算网桥驻留时间。其中,承载该数据报文的QoS流的QoS参数可以与承载TSN Sync Message的QoS流的QoS参数相同。
NW-TT、DS-TT重新计算网桥驻留时间的过程,具体可以参阅上述步骤S601~S603,重复之处不再赘述。
S707,DS-TT更新本地存储的网桥驻留时间。
基于与方法实施例的同一技术构思,本申请实施例提供一种TSN时间同步装置。该装置的结构可以如图8所示,包括处理单元801以及通信单元802。
一种实现方式中,TSN时间同步装置具体可以用于实现图5至图7的实施例中第一装置执行的方法,该装置可以是第一装置本身,也可以是第一装置中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,通信单元802,用于接收来自第二装置的第一TSN时间同步信息;处理单元801,用于确定第一TSN时间同步信息不携带第一时间,第一时间为第二装置接收第一TSN时间同步信息时无线通信系统的系统时间;并,从本地获取网桥驻留时间;通信单元802,还用于发送第一TSN时间同步信息,第一TSN时间同步信息携带网络驻留时间。
通信单元802,还可以用于:在处理单元801从本地获取网桥驻留时间之前,接收来自第二装置的第二TSN时间同步信息,第二TSN时间同步信息携带第二时间,第二时间为第二装置接收第二TSN时间同步信息时无线通信系统的系统时间;处理单元801,还可以用于:基于第二时间确定网桥驻留时间,得到第一值;并,将本地记载的网桥驻留时间更新为第一值。
通信单元802,还可以用于:在处理单元801从本地获取网桥驻留时间之前,接收来自第二装置的数据报文,其中,承载数据报文的服务质量QoS流的QoS参数与承载TSN时间同步信息的QoS流的QoS参数相同,且数据报文携带第三时间,第三时间为第二装置接收数据报文时无线通信系统的系统时间;处理单元801,还用于:基于第三时间确定网桥驻留时间,得到第二值;并,将本地记载的网桥驻留时间更新为第二值。
另一种实现方式中,TSN时间同步装置具体可以用于实现图5至图7的实施例中第二装置执行的方法,该装置可以是第二装置本身,也可以是第二装置中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,通信单元802,用于与其他装置通信;处理单元801,用于通过通信单元802执行:接收TSN时间同步信息或者数据报文,其中,承载数据报文的服务质量QoS流的QoS参数与承载TSN时间同步信息的QoS流的QoS参数相同;向第一装置发送TSN时间同步信息或者数据报文,TSN时间同步信息或者数据报文是否携带入网时间与计时器有关;其中,计时器用于记录网桥驻留时间的有效时间,入网时间为第二装置接收TSN时间同步信息或者数据报文时无线通信系统的系统时间。
示例性的,若计时器超时,则TSN时间同步信息或者数据报文携带入网时间。
若计时器超时,处理单元801,还可以用于:在向第一装置发送TSN时间同步信息或者数据报文之后,重置计时器。
示例性的,若计时器未超时,则TSN时间同步信息或者数据报文不携带入网时间。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中各个模块的功能或者实现可以进一步参考方法实施例的相关描述。
一种可能的方式中,TSN时间同步装置可以如图9所示,该装置可以是通信设备或者通信设备中的芯片,其中,通信设备可以为第一装置,也可以为第二装置。该装置可以包括处理器901,通信接口902,存储器903。其中,处理单元801可以为处理器901。通信单元802可以为通信接口902。
处理器901,可以是一个中央处理单元(central processing unit,CPU),或者为数字处理单元等等。通信接口902可以是收发器、也可以为接口电路如收发电路等、也可以为收发芯片等等。该装置还包括:存储器903,用于存储处理器901执行的程序。存储器903可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器903是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
处理器901用于执行存储器903存储的程序代码,具体用于执行上述处理单元801的动作,本申请在此不再赘述。通信接口902具体用于执行上述通信单元802的动作,本申请在此不再赘述。
本申请实施例中不限定上述通信接口902、处理器901以及存储器903之间的具体连接介质。本申请实施例在图9中以存储器903、处理器901以及通信接口902之间通过总线904连接,总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如SSD)等。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/ 或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种时间敏感网络TSN时间同步方法,其特征在于,所述方法包括:
    第一装置接收来自第二装置的第一TSN时间同步信息;
    所述第一装置确定所述第一TSN时间同步信息不携带第一时间,所述第一时间为所述第二装置接收所述第一TSN时间同步信息时无线通信系统的系统时间;
    所述第一装置从本地获取网桥驻留时间;
    所述第一装置发送所述第一TSN时间同步信息,所述第一TSN时间同步信息携带所述网络驻留时间。
  2. 如权利要求1所述的方法,其特征在于,在所述第一装置从本地获取网桥驻留时间之前,所述方法还包括:
    第一装置接收来自第二装置的第二TSN时间同步信息,所述第二TSN时间同步信息携带第二时间,所述第二时间为所述第二装置接收所述第二TSN时间同步信息时无线通信系统的系统时间;
    所述第一装置基于所述第二时间确定网桥驻留时间,得到第一值;
    所述第一装置将本地记载的网桥驻留时间更新为所述第一值。
  3. 如权利要求1或2所述的方法,其特征在于,在所述第一装置从本地获取网桥驻留时间之前,所述方法还包括:
    所述第一装置接收来自所述第二装置的数据报文,其中,承载所述数据报文的服务质量QoS流的QoS参数与承载所述TSN时间同步信息的QoS流的QoS参数相同,且所述数据报文携带第三时间,所述第三时间为所述第二装置接收所述数据报文时无线通信系统的系统时间;
    所述第一装置基于所述第三时间确定网桥驻留时间,得到第二值;
    所述第一装置将本地记载的网桥驻留时间更新为所述第二值。
  4. 一种时间敏感网络TSN时间同步方法,其特征在于,所述方法包括:
    第二装置接收TSN时间同步信息或者数据报文,其中,承载所述数据报文的服务质量QoS流的QoS参数与承载所述TSN时间同步信息的QoS流的QoS参数相同;
    所述第二装置向第一装置发送所述TSN时间同步信息或者所述数据报文,所述TSN时间同步信息或者所述数据报文是否携带入网时间与计时器有关;
    其中,所述计时器用于记录网桥驻留时间的有效时间,所述入网时间为所述第二装置接收所述TSN时间同步信息或者所述数据报文时无线通信系统的系统时间。
  5. 如权利要求4所述的方法,其特征在于,若所述计时器超时,则所述TSN时间同步信息或者所述数据报文携带所述入网时间。
  6. 如权利要求5所述的方法,其特征在于,在所述第二装置向第一装置发送所述TSN时间同步信息或者所述数据报文之后,所述方法还包括:
    所述第二装置重置所述计时器。
  7. 如权利要求4所述的方法,其特征在于,若所述计时器未超时,则所述TSN时间同步信息或者所述数据报文不携带所述入网时间。
  8. 一种时间敏感网络TSN时间同步装置,其特征在于,所述装置包括:
    通信单元,用于接收来自第二装置的第一TSN时间同步信息;
    处理单元,用于确定所述第一TSN时间同步信息不携带第一时间,所述第一时间为所述第二装置接收所述第一TSN时间同步信息时无线通信系统的系统时间;并,从本地获取网桥驻留时间;
    所述通信单元,还用于发送所述第一TSN时间同步信息,所述第一TSN时间同步信息携带所述网络驻留时间。
  9. 如权利要求8所述的装置,其特征在于,所述通信单元,还用于:在所述处理单元从本地获取网桥驻留时间之前,接收来自第二装置的第二TSN时间同步信息,所述第二TSN时间同步信息携带第二时间,所述第二时间为所述第二装置接收所述第二TSN时间同步信息时无线通信系统的系统时间;
    所述处理单元,还用于:基于所述第二时间确定网桥驻留时间,得到第一值;并,将本地记载的网桥驻留时间更新为所述第一值。
  10. 如权利要求8或9所述的装置,其特征在于,所述通信单元,还用于:在所述处理单元从本地获取网桥驻留时间之前,接收来自所述第二装置的数据报文,其中,承载所述数据报文的服务质量QoS流的QoS参数与承载所述TSN时间同步信息的QoS流的QoS参数相同,且所述数据报文携带第三时间,所述第三时间为所述第二装置接收所述数据报文时无线通信系统的系统时间;
    所述处理单元,还用于:基于所述第三时间确定网桥驻留时间,得到第二值;并,将本地记载的网桥驻留时间更新为所述第二值。
  11. 一种时间敏感网络TSN时间同步装置,其特征在于,所述装置包括:
    通信单元,用于与其他装置通信;
    处理单元,用于所述通过通信单元执行:
    接收TSN时间同步信息或者数据报文,其中,承载所述数据报文的服务质量QoS流的QoS参数与承载所述TSN时间同步信息的QoS流的QoS参数相同;
    向第一装置发送所述TSN时间同步信息或者所述数据报文,所述TSN时间同步信息或者所述数据报文是否携带入网时间与计时器有关;
    其中,所述计时器用于记录网桥驻留时间的有效时间,所述入网时间为所述第二装置接收所述TSN时间同步信息或者所述数据报文时无线通信系统的系统时间。
  12. 如权利要求11所述的装置,其特征在于,若所述计时器超时,则所述TSN时间同步信息或者所述数据报文携带所述入网时间。
  13. 如权利要求12所述的装置,其特征在于,所述处理单元,还用于:在向第一装置发送所述TSN时间同步信息或者所述数据报文之后,重置所述计时器。
  14. 如权利要求11所述的装置,其特征在于,若所述计时器未超时,则所述TSN时间同步信息或者所述数据报文不携带所述入网时间。
  15. 一种时间敏感网络TSN时间同步装置,其特征在于,包括:
    通信接口,用于与其它装置通信;
    存储器,用于存储计算机程序和数据;
    处理器,用于运行所述存储器中的计算机程序,读取所述存储器中的计算机程序,通过所述通信接口执行如权利要求1-7任一项所述的方法。
  16. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有计算机程序,当所述计算机程序被计算机执行时,使得所述计算机执行如权利要求1-7任一项所述的方 法。
PCT/CN2020/073919 2020-01-22 2020-01-22 一种时间敏感网络时间同步方法及装置 WO2021147044A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080059274.1A CN114270913B (zh) 2020-01-22 2020-01-22 一种时间敏感网络时间同步方法及装置
EP20916139.7A EP4072187A4 (en) 2020-01-22 2020-01-22 METHOD AND DEVICE FOR TIME-SENSITIVE NETWORK TIME SYNCHRONIZATION
PCT/CN2020/073919 WO2021147044A1 (zh) 2020-01-22 2020-01-22 一种时间敏感网络时间同步方法及装置
US17/868,510 US20220353834A1 (en) 2020-01-22 2022-07-19 Time-sensitive networking time synchronization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073919 WO2021147044A1 (zh) 2020-01-22 2020-01-22 一种时间敏感网络时间同步方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/868,510 Continuation US20220353834A1 (en) 2020-01-22 2022-07-19 Time-sensitive networking time synchronization method and apparatus

Publications (1)

Publication Number Publication Date
WO2021147044A1 true WO2021147044A1 (zh) 2021-07-29

Family

ID=76991997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073919 WO2021147044A1 (zh) 2020-01-22 2020-01-22 一种时间敏感网络时间同步方法及装置

Country Status (4)

Country Link
US (1) US20220353834A1 (zh)
EP (1) EP4072187A4 (zh)
CN (1) CN114270913B (zh)
WO (1) WO2021147044A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210144213A (ko) * 2020-05-21 2021-11-30 삼성전자주식회사 통신 시스템에서 동기화 정보를 전송하기 위한 장치 및 방법
CN117439956A (zh) * 2022-07-15 2024-01-23 中兴通讯股份有限公司 报文处理方法、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684731A (zh) * 2012-09-25 2014-03-26 现代摩比斯株式会社 时间同步方法
EP2800315A1 (de) * 2013-04-29 2014-11-05 Siemens Aktiengesellschaft Verfahren zur Zeitsynchronisation in einem Kommunikationsnetz
US10044524B1 (en) * 2015-09-18 2018-08-07 Aquantia Corp. Ethernet controller with integrated TSN/AVB control point and time slave
US20190253339A1 (en) * 2016-07-19 2019-08-15 Schneider Electric Industries Sas Time-Sensitive Software Defined Networking
CN110611924A (zh) * 2019-09-27 2019-12-24 腾讯科技(深圳)有限公司 实现时间敏感网络的数据传输的方法、相关设备及介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10484119B2 (en) * 2016-09-23 2019-11-19 Texas Instruments Incorporated Open real-time ethernet protocol
WO2018182688A1 (en) * 2017-03-31 2018-10-04 Intel Corporation Trigger-based deterministic access in time synchronized next generation wi-fi networks
EP3811695A4 (en) * 2018-06-21 2022-03-23 Nokia Technologies Oy TIME-SYNCHRONIZED RADIO CARRIER TO SUPPORT TIME SENSITIVE NETWORK (TSN) APPLICATIONS BASED ON PRECISION TIMING PROTOCOL (PTP)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684731A (zh) * 2012-09-25 2014-03-26 现代摩比斯株式会社 时间同步方法
EP2800315A1 (de) * 2013-04-29 2014-11-05 Siemens Aktiengesellschaft Verfahren zur Zeitsynchronisation in einem Kommunikationsnetz
US10044524B1 (en) * 2015-09-18 2018-08-07 Aquantia Corp. Ethernet controller with integrated TSN/AVB control point and time slave
US20190253339A1 (en) * 2016-07-19 2019-08-15 Schneider Electric Industries Sas Time-Sensitive Software Defined Networking
CN110611924A (zh) * 2019-09-27 2019-12-24 腾讯科技(深圳)有限公司 实现时间敏感网络的数据传输的方法、相关设备及介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Support of solution 28A in SA2", 3GPP DRAFT; R2-1906836 SUPPORT OF SOLUTION 28A IN SA2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, Nevada, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051730288 *
NOKIA, NOKIA SHANGHAI BELL: "TSN synchronization requirements evaluation", 3GPP DRAFT; R2-1814993 TSN SYNC EVALUATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chengdu, China; 20181008 - 20181012, 28 September 2018 (2018-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051524366 *
See also references of EP4072187A4 *

Also Published As

Publication number Publication date
EP4072187A1 (en) 2022-10-12
US20220353834A1 (en) 2022-11-03
CN114270913A (zh) 2022-04-01
CN114270913B (zh) 2024-08-09
EP4072187A4 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
JP7266617B2 (ja) 通信方法及び通信装置
KR20220034855A (ko) 데이터 전송 방법 및 관련된 장치
WO2021147044A1 (zh) 一种时间敏感网络时间同步方法及装置
CN110913506B (zh) 一种下行数据的缓存方法、upf实体及amf实体
JP7206390B2 (ja) データの送信方法およびデバイス
WO2018192527A1 (zh) 一种时间同步方法及装置
WO2021254056A1 (zh) 时延测量方法及装置
US20230291489A1 (en) Methods, systems and apparatuses for 5g time synchronization
CN116055023A (zh) 一种数据传输方法及装置
WO2019062151A1 (zh) 一种资源指示方法、通信装置及网络设备
TWI713340B (zh) 用於處理移動通信中的封包資料會聚協定複製的方法和裝置
WO2020082218A1 (zh) 无线通信的方法和网络设备
WO2018214762A1 (zh) 一种获取寻呼参数的方法及装置
JP2023517081A (ja) 通信方法および装置
CN110913505A (zh) 一种下行数据缓存方法、网络设备及upf实体
WO2023179238A1 (zh) 一种授时方法、通信装置及通信系统
WO2020171802A1 (en) Synchronization for 5gs time sensitive communications (tsc) using machine learning
WO2019100344A1 (zh) 双注册终端设备无线通信的方法、网络设备和终端设备
US20230042506A1 (en) Deterministic quality of service
WO2019028812A1 (zh) 一种路径转换方法及相关设备
WO2020147768A1 (zh) 处理数据的方法和处理数据的装置
WO2020221237A1 (zh) 调整时域资源边界的方法和通信装置
WO2017185368A1 (zh) 一种信令传输方法和设备
WO2020164114A1 (zh) 一种通信方法和装置
WO2022228476A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020916139

Country of ref document: EP

Effective date: 20220707

NENP Non-entry into the national phase

Ref country code: DE