WO2021143903A1 - 一种挂车电机控制方法以及相应的交通工具 - Google Patents

一种挂车电机控制方法以及相应的交通工具 Download PDF

Info

Publication number
WO2021143903A1
WO2021143903A1 PCT/CN2021/072499 CN2021072499W WO2021143903A1 WO 2021143903 A1 WO2021143903 A1 WO 2021143903A1 CN 2021072499 W CN2021072499 W CN 2021072499W WO 2021143903 A1 WO2021143903 A1 WO 2021143903A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
accelerator pedal
pedal opening
threshold
speed
Prior art date
Application number
PCT/CN2021/072499
Other languages
English (en)
French (fr)
Inventor
韩维
Original Assignee
长沙智能驾驶研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙智能驾驶研究院有限公司 filed Critical 长沙智能驾驶研究院有限公司
Publication of WO2021143903A1 publication Critical patent/WO2021143903A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D53/00Tractor-trailer combinations; Road trains
    • B62D53/04Tractor-trailer combinations; Road trains comprising a vehicle carrying an essential part of the other vehicle's load by having supporting means for the front or rear part of the other vehicle
    • B62D53/06Semi-trailers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to the field of vehicle technology, in particular to a method for controlling a trailer motor and a corresponding vehicle.
  • the present invention proposes a trailer motor control method, which includes: obtaining a vehicle state signal; judging the vehicle operating mode according to the vehicle state signal and/or its derivative signal; and at least according to the The vehicle operating mode and the vehicle state signal determine the torque value output by the trailer motor.
  • the vehicle state signal includes one or more of a vehicle speed signal, an accelerator pedal signal, a brake pedal signal, a gear position signal, a vehicle start switch signal, a steering wheel rotation signal, and a battery power signal.
  • the derivative signal includes one or more of an accelerator pedal opening degree, an accelerator pedal opening degree change rate, a vehicle acceleration, and a brake pedal opening degree.
  • judging the operating mode of the vehicle according to the vehicle state signal further includes judging whether the vehicle has an acceleration intention.
  • judging whether the vehicle has an acceleration intention includes: obtaining an accelerator pedal signal; calculating an accelerator pedal opening change rate according to the accelerator pedal signal; and when the accelerator pedal opening change rate is greater than the accelerator pedal opening change with acceleration intention When the rate threshold, it is determined that the vehicle has an intention to accelerate.
  • judging whether the vehicle has an intention to accelerate includes: obtaining the accelerator pedal signal; calculating the accelerator pedal opening degree according to the accelerator pedal signal; judging whether the accelerator pedal opening degree is greater than the accelerator pedal opening threshold value; obtaining the vehicle speed signal; calculating according to the vehicle speed signal Vehicle acceleration; and when the accelerator pedal opening is greater than the accelerator pedal opening threshold and the vehicle acceleration is greater than the acceleration threshold with the intention of accelerating, it is determined that the vehicle has the intention of accelerating.
  • judging the operating mode of the vehicle includes: judging whether the accelerator pedal opening is equal to zero; judging whether the brake pedal opening is greater than zero; and judging whether the vehicle speed is equal to zero; when the accelerator pedal opening is equal to zero, the brake pedal opening is greater than zero. When it is zero and the vehicle speed is equal to zero, it is determined that the vehicle is in the parking mode.
  • the judging of the vehicle operating mode includes: judging whether the vehicle start switch is ON, and whether the vehicle gear is D or R; judging whether the vehicle speed is zero; and judging whether the accelerator pedal opening is greater than zero; When the vehicle start switch is in ON gear and the vehicle gear is in D gear or R gear, the vehicle speed is zero and the accelerator pedal opening is greater than zero, it is determined that the vehicle is in the starting mode.
  • the judging of the vehicle operation mode includes: judging whether there is an acceleration intention; and judging whether the vehicle speed is greater than the idling speed; when there is an acceleration intention and the vehicle speed is greater than the idling speed, determining that the vehicle is in an acceleration mode.
  • determining the operating mode of the vehicle includes: determining whether there is no acceleration intention; and determining whether the accelerator pedal opening is greater than zero; when there is no acceleration intention and the accelerator pedal opening is greater than zero, determining that the vehicle is in a constant speed cruise mode .
  • the judging of the vehicle operation mode includes: judging whether there is an intention to accelerate; judging whether the vehicle speed is greater than the overtaking speed threshold; and judging whether the accelerator pedal opening is greater than the overtaking accelerator pedal opening threshold; when there is an intention to accelerate and the vehicle speed is greater than the overtaking
  • the speed threshold and the accelerator pedal opening is greater than the overtaking accelerator pedal opening threshold it is determined that the vehicle is in a high-speed overtaking mode.
  • the judging of the vehicle operation mode includes: judging whether the accelerator pedal opening is equal to zero; and judging whether the brake pedal opening is greater than zero; when the accelerator pedal opening is equal to zero and the brake pedal opening is greater than zero, determining all The vehicle is in braking mode.
  • determining the output torque value of the trailer motor includes: determining whether the current battery power is greater than the dischargeable threshold; and when the vehicle has an intention to accelerate and the current battery power is greater than the dischargeable threshold, Determine the drive torque value output by the trailer motor at least according to the current accelerator pedal opening and the maximum motor drive torque value at the current vehicle speed.
  • determining the output torque value of the trailer motor in response to determining that the vehicle is in the acceleration mode, includes: determining whether the current battery power is greater than the dischargeable threshold; determining whether the vehicle speed is less than the low-speed assist threshold; and the current battery power is greater than the dischargeable threshold And when the vehicle speed is less than the low-speed assist threshold, the drive torque value output by the trailer motor is determined at least according to the current accelerator pedal opening and the maximum drive torque value of the motor at the current vehicle speed.
  • determining the output torque value of the trailer motor includes: determining whether the current battery power is greater than the dischargeable threshold; determining whether the steering wheel angle is less than the auxiliary driving angle threshold; and the current battery power is greater than
  • the drive torque value of the trailer motor is determined at least according to the maximum drive torque value of the motor at the current vehicle speed.
  • determining the output torque value of the trailer motor includes: determining whether the current battery power is less than the rechargeable threshold; determining whether the vehicle speed is greater than the auxiliary braking threshold; and the current battery power is less than the rechargeable threshold.
  • the braking torque value output by the trailer motor is determined at least according to the current brake pedal opening and the maximum braking torque value of the motor at the current vehicle speed.
  • a trailer controller including: a control module; and a communication module, which is electrically connected to the control module and configured to communicate with a tractor; wherein the control module is configured to perform the above-mentioned method.
  • a vehicle comprising: a trailer configured to provide auxiliary power to a tractor, including a power battery, a motor, and a drive bridge coupled with the motor; according to the trailer controller described above; and the trailer controller Coupled battery controller and motor controller.
  • the vehicle as described above also includes a tractor connected to the trailer.
  • a computer-readable storage medium is provided with a computer program stored thereon, and the computer program implements the above method when executed by a processor.
  • the trailer of the present application can change according to different operating conditions of the vehicle during the driving process, can provide suitable auxiliary torque at the right time, and has the advantages of high control accuracy and good robustness.
  • the solution of this application has no restrictions on the power type, brand and model of the tractor and trailer, and can be used in random combination.
  • Figure 2 is a flowchart of a motor control method according to an embodiment of the present invention.
  • Fig. 3 is a flowchart of a method for identifying acceleration intentions according to an embodiment of the present invention
  • Fig. 4 is a diagram showing a change of a vehicle operating mode according to an embodiment of the present invention.
  • Fig. 5B is a flowchart of a method for determining an acceleration mode according to an embodiment of the present invention.
  • 5C is a flowchart of a method for determining a constant speed cruise mode according to an embodiment of the present invention
  • 5D is a flowchart of a method for determining a high-speed overtaking mode according to an embodiment of the present invention
  • Figure 5E is a flowchart of a method for determining a braking mode according to an embodiment of the present invention.
  • 5F is a flowchart of a method for determining a parking mode according to an embodiment of the present invention.
  • 6A is a flowchart of a method for outputting torque in a starting mode according to an embodiment of the present invention
  • 6B is a flowchart of a method for outputting torque in acceleration mode according to an embodiment of the present invention.
  • 6C is a flowchart of a method for outputting torque in a high-speed overtaking mode according to an embodiment of the present invention
  • 6D is a flowchart of a method for outputting torque in braking mode according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a trailer controller module according to an embodiment of the present invention.
  • the trailer has an independent controller, so it is not affected by the tractor's controller and has relative independence.
  • the trailer motor control method provided by the present application can accurately recognize the state change of the vehicle during the driving process, can provide auxiliary driving and auxiliary braking for the fuel vehicle head at the most appropriate time, and has high control accuracy and good robustness.
  • Fig. 1 is a schematic diagram of a trailer module according to an embodiment of the present invention.
  • the trailer module includes: a trailer controller 110, a battery controller 120, a power battery 130, a motor controller 140, a motor 145, and an electric drive axle 150.
  • the battery controller 120 is electrically connected to the trailer controller 110 and the power battery 130 respectively;
  • the motor controller 140 is electrically connected to the trailer controller 110.
  • the motor controller 140 is electrically connected to the power battery 130.
  • the motor controller 140 is electrically connected to the electric drive bridge 150 through the motor 145.
  • the trailer controller 110 can receive various vehicle status signals from the tractor for determining the operating mode of the vehicle.
  • the trailer controller 110 can also coordinate the requirements between the battery controller 120, the motor controller 140, and the entire vehicle. Specifically, after the trailer controller 110 determines the operating mode of the vehicle, it requests the motor controller 140 to output a corresponding torque, and at the same time requests the battery controller 120 to control the power battery 130 to output a corresponding current.
  • the trailer controller 110 can also coordinate the demand and output of the vehicle to protect the safety of the vehicle and various key components.
  • the battery controller 120 is used to control the power battery 130 to output electric energy, and can also monitor and protect the battery system. For example, the battery controller 120 can monitor the remaining power of the power battery 130, and when the power is lower than the discharge threshold, an alarm is issued and the power battery 130 is prohibited from continuing to output electrical energy.
  • the power battery 130 is used to provide high-voltage electrical energy to the motor controller 140. Part of the electric energy in the power battery 130 comes from the braking force on the wheels, which can realize the recovery of braking energy.
  • the motor controller 140 is used to control the output driving force of the motor 145 to be transmitted to the wheels through the electric drive axle 150, and may also transmit the braking force on the wheels to the motor 145 through the electric drive axle 150.
  • the motor controller 140 converts the DC power from the power battery 130 into three-phase AC power to provide electrical energy to the motor 145; when the vehicle is braking, the motor controller 140 converts the three-phase AC power from the motor 145 into The DC power charges the power battery 130.
  • the motor controller 140 can also monitor the operating status of the motor system.
  • Fig. 2 is a flowchart of a motor control method according to an embodiment of the present invention.
  • a vehicle state signal is acquired.
  • the vehicle status signal may include one or more of a vehicle speed signal, an accelerator pedal signal, a brake pedal signal, a gear position signal, a start switch signal, a steering wheel rotation signal, and a battery power signal.
  • the vehicle status signal can include the signal from the tractor or the signal from the trailer.
  • the trailer controller 110 may be connected with the tractor through, for example, a CAN bus, and the high-speed transmission speed of the CAN bus can reach 1 Mbps, which ensures that the trailer controller 110 can obtain the vehicle status signal in time.
  • the vehicle speed signal includes the speed of the vehicle, which includes the operating speed of the tractor and/or trailer, in km/h.
  • the accelerator pedal opening degree can be obtained through logical calculation of the accelerator pedal signal, which can represent the degree of acceleration of the accelerator pedal by 0-100%, and the larger the value, the faster the acceleration.
  • a position sensor is installed on the accelerator pedal to collect the position signal of the accelerator pedal, and the processor of the tractor converts the signal of the position sensor into the accelerator pedal opening percentage and sends it to the trailer controller 110.
  • a position sensor is also installed at the brake pedal to collect the position signal of the brake pedal.
  • the gear signal includes one or more of a D gear signal, an R gear signal, a P gear signal, and an N gear signal.
  • the start switch signal includes an ON signal and an OFF signal.
  • ON means that the vehicle is in a state that can be turned on;
  • OFF means that the vehicle is in a closed state.
  • the battery power signal can be either the battery power from the tractor or the battery power from the trailer, which is not limited here.
  • the battery power mentioned here refers to the power battery power.
  • vehicle status signal may also include other types of signals, and is not limited to the vehicle status signals listed above.
  • the vehicle operating mode is determined based on the vehicle state signal and/or its derivative signal.
  • the vehicle operation mode may include parking mode, start mode, acceleration mode, constant speed cruise mode, high speed overtaking mode, and braking mode.
  • Different vehicle operating modes have different characteristics of vehicle status signals. Judging conditions are set for various vehicle status signals. If the conditions are met, the operating mode is determined, otherwise the operating mode is excluded. The specific definitions of these modes will be introduced in detail in the following paragraphs.
  • step 230 the torque value output by the trailer motor is determined at least according to the vehicle operating mode and the vehicle state signal.
  • the torque may be the torque output by the motor, which includes driving torque and braking torque.
  • the trailer controller can calculate the appropriate torque value according to the vehicle operating mode, quickly increase the vehicle speed or rapidly reduce the vehicle speed, and improve the vehicle's response ability. Among them, the greater the torque value, the greater the output driving force or braking force.
  • the torque value is determined according to one or more of the accelerator pedal signal, the brake pedal signal, the maximum motor output torque at the current vehicle speed, and the current remaining battery power.
  • the starting mode and acceleration mode tractors have a large load, a large energy loss of the tractor, and poor emission performance.
  • the trailer can provide appropriate auxiliary power, it can quickly get out of the secondary working condition, reduce the load of the tractor, and achieve good performance. Release.
  • the constant speed cruise mode is an economical operation mode when the vehicle is moving at a constant speed, and does not require the trailer to provide auxiliary power.
  • the high-speed overtaking mode is that the vehicle is in the overtaking stage, which is a relatively dangerous working condition and needs to complete the overtaking in a relatively short time.
  • the trailer must provide the maximum auxiliary driving force at this time to further increase the vehicle speed and quickly complete overtaking.
  • the vehicle In the braking mode, the vehicle is in the braking stage, and the trailer provides appropriate auxiliary braking force, which converts the braking force into electric energy and stores it in the power battery, which is beneficial to improve the braking performance.
  • the battery controller before controlling the trailer to provide corresponding torque, it can be determined whether the power battery meets the conditions for providing auxiliary driving or braking. Specifically, in order to ensure the safety of the power battery, when the battery controller detects that the remaining power is lower than the set discharge threshold, it is not allowed to continue to discharge; when the remaining power is higher than the set charging threshold, it is not allowed to continue to charge .
  • This application provides a motor control method, which can provide appropriate auxiliary driving or auxiliary braking to the tractor at an appropriate time when the trailer meets the conditions, so that the entire vehicle runs more balanced.
  • the tractor and the trailer Even if the brand and model do not match, the method of this application can be used to achieve mutual power coordination between the two.
  • Fig. 3 is a flowchart of a method for identifying an acceleration intention according to an embodiment of the present invention. As shown in the figure, this application uses method one and method two to determine whether the vehicle has an acceleration intention, and provides a basis for further determining the operating mode of the vehicle.
  • step 310 an accelerator pedal signal is acquired
  • step 320 Calculate the rate of change of accelerator pedal opening
  • step 330 determine whether the rate of change of the accelerator pedal opening is greater than the threshold of the accelerator pedal opening rate of acceleration with an intention to accelerate;
  • step 350 In response to the accelerator pedal opening change rate being greater than the accelerator pedal opening change rate threshold with an acceleration intention, go to step 350 to determine that there is an acceleration intention;
  • step 340 In response to the accelerator pedal opening change rate being less than or equal to the accelerator pedal opening change rate threshold with an acceleration intention, the process proceeds to step 340, and it is determined that there is no acceleration intention.
  • the trailer controller obtains the accelerator pedal signal through the CAN bus, where the accelerator pedal signal may be the accelerator pedal opening percentage.
  • the trailer controller calculates the percentage of accelerator pedal opening through differential calculation to obtain the rate of change of accelerator pedal opening.
  • the accelerator opening change rate is greater than the accelerator pedal opening change rate threshold with an acceleration intention (for example, 12.5%/s), it is considered that there is an acceleration intention, otherwise it is considered that there is no acceleration intention.
  • the threshold of the rate of change of accelerator pedal opening with acceleration intention is the minimum value of the rate of change of accelerator pedal opening with acceleration intention of the vehicle.
  • step 310 an accelerator pedal signal is acquired
  • step 320a the accelerator pedal opening is calculated
  • step 330a it is judged whether the accelerator pedal opening degree is greater than the accelerator pedal opening degree threshold with acceleration intention
  • step 340a a vehicle speed signal is acquired
  • the process proceeds to step 340 and it is determined that there is no acceleration intention.
  • the accelerator pedal opening threshold with the acceleration intention is the minimum value of the accelerator pedal opening with the acceleration intention of the vehicle.
  • step 350a calculate the vehicle acceleration
  • step 360a it is determined whether the acceleration of the vehicle is greater than the acceleration threshold with an acceleration intention
  • step 350 is entered to determine that there is an acceleration intention; in response to the acceleration of the vehicle being less than or equal to the acceleration threshold with an acceleration intention, step 340 is entered to determine that there is no acceleration intent.
  • the acceleration threshold with acceleration intention is the minimum acceleration of the vehicle with acceleration intention.
  • the trailer controller receives the accelerator opening percentage signal and the vehicle speed signal through the CAN bus, and when it is judged that the accelerator opening percentage exceeds the accelerator pedal opening threshold with acceleration intention (such as 10%), the vehicle speed is differentiated to obtain the vehicle acceleration
  • the acceleration threshold with acceleration intention for example, 0.3m/s 2
  • the acceleration threshold with acceleration intention for example, 0.3m/s 2
  • steps 340a, 350a, and 360a can also be executed first, and when the acceleration is greater than the acceleration threshold with acceleration intention, step 320a is executed to calculate the accelerator pedal opening degree, and step 330a is to determine that the accelerator pedal opening degree is greater than There is an intention to accelerate when the accelerator pedal opening threshold is determined to have an intention to accelerate.
  • method one can be used to determine whether the vehicle has an intention to accelerate; method two can be used to determine whether the vehicle has an intention to accelerate; methods one and two can also be used at the same time to determine whether the vehicle has an intention to accelerate.
  • method two can be used to determine whether the vehicle has an intention to accelerate; methods one and two can also be used at the same time to determine whether the vehicle has an intention to accelerate.
  • Fig. 4 is a change diagram of a vehicle operating mode according to an embodiment of the present invention
  • Figs. 5A-F are flowcharts of a method for determining a vehicle operating mode according to an embodiment of the present invention.
  • Figure 4 shows all the operating modes of the vehicle from static parking to driving.
  • the driving modes include acceleration mode, constant-speed cruise mode and high-speed overtaking mode, and the three can be changed with each other.
  • Figures 5A-F are flowcharts of methods for determining the start mode, acceleration mode, constant cruise mode, high-speed overtaking mode, braking mode, and parking mode, respectively.
  • the method for determining the operating mode of the vehicle will be described in detail below in conjunction with FIGS. 4 and 5A-F.
  • Fig. 5A is a flowchart of a method for determining a start mode according to an embodiment of the present invention. Referring to FIG. 4, when the vehicle meets the condition N1, it enters the start mode.
  • step 510a it is determined whether the vehicle start switch is in the ON position, and the vehicle gear is the D gear or the R gear;
  • step 520a it is determined whether the vehicle speed is zero;
  • step 530a it is determined whether the accelerator pedal opening degree is greater than zero;
  • step 540a determines that the vehicle is in the starting mode; otherwise, it proceeds to step 550a to determine that the vehicle is in the non-starting mode.
  • Fig. 5B is a flowchart of a method for determining an acceleration mode according to an embodiment of the present invention. Referring to FIG. 4, when the vehicle meets the condition N2, it enters the acceleration mode.
  • step 510b it is determined whether the vehicle has an acceleration intention.
  • the acceleration intention can be determined according to the method shown in FIG. 3, and of course, it can also be determined according to other known methods;
  • when the vehicle has an intention to accelerate it is determined that the vehicle is in an acceleration mode. Specifically, when judging whether the vehicle has an intention to accelerate, it is possible to judge whether the vehicle has an intention to accelerate only based on the rate of change of the accelerator pedal opening.
  • step 520b it is possible to continue to determine whether the vehicle speed is greater than the idle speed
  • step 530b is entered to determine that the vehicle is in an acceleration mode; otherwise, step 540b is entered to determine that the vehicle is in a non-accelerating mode.
  • idle speed refers to the speed of the engine when the vehicle is in neutral.
  • Fig. 5C is a flowchart of a method for determining a constant speed cruise mode according to an embodiment of the present invention. Referring to Figure 4, when the vehicle meets the condition N3, it enters the constant speed cruise mode.
  • step 510c it is judged whether the vehicle has no acceleration intention.
  • the acceleration intention can be determined according to the method shown in FIG. 3, of course, it can also be determined according to other known methods;
  • step 520c it is determined that the accelerator pedal opening is greater than zero;
  • step 530c is entered to determine that the vehicle is in a constant-speed cruise mode, otherwise, step 540c is entered to determine that the vehicle is in a non-uniform-speed cruise mode.
  • Fig. 5D is a flowchart of a method for determining a high-speed overtaking mode according to an embodiment of the present invention. Referring to Figure 4, when the vehicle meets the condition N6, it enters the high-speed overtaking mode.
  • step 510d it is judged whether the vehicle has an acceleration intention.
  • the acceleration intention can be determined according to the method shown in FIG. 3, of course, it can also be determined according to other known methods;
  • step 530d it is determined whether the accelerator pedal opening is greater than the overtaking accelerator pedal opening threshold
  • step 540d is entered to determine that the vehicle is in a high-speed overtaking mode; otherwise, step 550d is entered to determine that the vehicle is in a non-high-speed overtaking mode.
  • the overtaking speed threshold is the minimum overtaking speed (for example, 80km/h);
  • the overtaking accelerator pedal opening threshold is the minimum overtaking accelerator pedal opening (for example, 90%).
  • Fig. 5E is a flowchart of a method for determining a braking mode according to an embodiment of the present invention. Referring to FIG. 4, when the vehicle meets the condition N7, it enters the braking mode.
  • step 510e it is determined whether the accelerator pedal opening is equal to zero;
  • step 520e it is determined whether the brake pedal opening is greater than zero;
  • step 530e In response to the vehicle meeting the above two conditions at the same time, enter step 530e to determine that the vehicle is in the braking mode, otherwise enter 540e to determine that the vehicle is in the non-braking mode.
  • the vehicle when the vehicle is in the braking mode, after meeting the conditions N2, N3 or N6, it can also enter the acceleration mode, constant speed cruise mode or high-speed overtaking mode again.
  • Fig. 5F is a flowchart of a method for determining a parking mode according to an embodiment of the present invention. Referring to Figure 4, when the vehicle meets the condition N8, it enters the parking mode.
  • step 510f determine whether the accelerator pedal opening is equal to zero;
  • step 520f determine whether the brake pedal opening is greater than zero
  • step 530f it is determined whether the vehicle speed is equal to zero;
  • step 540f is entered to determine that the vehicle is in the parking mode; otherwise, it enters 550f to determine that the vehicle is in the non-parking mode.
  • auxiliary driving or auxiliary braking After determining the vehicle operating mode, determine whether the trailer needs to provide auxiliary driving or auxiliary braking. Further, before providing auxiliary driving or auxiliary braking, it is necessary to determine whether the trailer meets the conditions of auxiliary driving or auxiliary braking. For details, refer to FIGS. 6A-D.
  • Fig. 6A is a flowchart of a method for outputting torque in a starting mode according to an embodiment of the present invention.
  • step 610a it is judged whether there is an acceleration intention.
  • the acceleration intention can be determined according to the method shown in FIG. 3, of course, it can also be determined according to other known methods;
  • step 620b it is determined whether the current battery power of the vehicle is greater than the dischargeable threshold
  • step 630a is entered, and the trailer motor drive torque value is determined and output; otherwise, step 640a is entered, and the motor does not output torque.
  • the dischargeable threshold value is the minimum allowable dischargeable power of the battery (for example, 30%).
  • the battery controller determines that the power of the power battery is less than the dischargeable threshold, discharging is prohibited. By setting the dischargeable threshold, the battery can be protected from power loss.
  • the dischargeable threshold can be adjusted according to the actual use of the power battery, and is not limited here.
  • the driving torque value is determined at least according to the current accelerator pedal opening and the motor's maximum driving torque value at the current vehicle speed.
  • the motor output torque may be: the product of the current accelerator pedal opening and the current vehicle speed motor maximum driving torque value.
  • Fig. 6B is a flowchart of a method for outputting torque in an acceleration mode according to an embodiment of the present invention.
  • step 610b it is determined whether the current battery power is greater than the discharge threshold
  • step 620b it is determined whether the vehicle speed is less than the low-speed assist threshold
  • step 630b is entered to determine and output the trailer motor drive torque value; otherwise, step 640b is entered, and the motor does not output torque.
  • the low-speed assist threshold is the maximum value of the vehicle's low-speed assisted vehicle speed (for example, 50km/h). Those skilled in the art should understand that the low-speed assist threshold can be adjusted according to the actual use of the powered vehicle and is not limited here.
  • the driving torque value is determined at least according to the current accelerator pedal opening and the motor's maximum driving torque value at the current vehicle speed.
  • the motor output torque value may be: the product of the current accelerator pedal opening and the current vehicle speed motor maximum driving torque value.
  • Fig. 6C is a flowchart of a method for outputting torque in a high-speed overtaking mode according to an embodiment of the present invention.
  • step 610c it is determined whether the current battery power is greater than the dischargeable threshold
  • step 620c it is determined whether the steering wheel angle is less than the auxiliary driving angle threshold
  • step 630c is entered to determine and output the trailer motor drive torque value; otherwise, step 640c is entered, and the motor does not output torque.
  • the auxiliary driving angle threshold is the maximum value of the auxiliary driving angle of the steering wheel (for example, ⁇ 10°). If the turning angle of the vehicle steering wheel is too large, it is very dangerous to overtake at high speed when the vehicle is turning. Therefore, the present application needs to determine the rotation angle of the steering wheel before providing auxiliary power for high-speed overtaking, so as to avoid accidents and improve driving safety.
  • a position sensor is installed at the steering wheel, which can monitor the rotation angle of the vehicle steering wheel. When the vehicle goes straight, the angle is 0°, the left turn is the positive angle, and the right turn is the negative angle.
  • the auxiliary driving angle threshold can be adjusted according to the actual driving situation of the vehicle, which is not limited here.
  • the driving torque value is determined at least according to the maximum driving torque value of the motor at the current vehicle speed.
  • the motor output drive torque value may be: the motor output maximum torque value at the current vehicle speed.
  • Fig. 6D is a flowchart of a method for outputting torque in a braking mode according to an embodiment of the present invention.
  • step 610d it is determined whether the current battery power is less than the rechargeable threshold
  • step 620d it is determined whether the vehicle speed is greater than the auxiliary braking threshold
  • step 630d is entered to determine and output the trailer motor braking torque value; otherwise, step 640d is entered, and the motor does not output braking torque.
  • the rechargeable threshold is the maximum rechargeable power of the battery (for example, 80%).
  • the auxiliary braking threshold is the minimum vehicle speed that can assist braking (for example, 7km/h). Those skilled in the art should understand that the rechargeable threshold and the auxiliary braking threshold can be adjusted according to the actual situation of the vehicle, which is not limited here.
  • the trailer's motor will not provide auxiliary braking torque. Determine whether the current battery power is greater than the rechargeable threshold, which can protect the power battery from being overcharged and improve the service life of the battery.
  • the braking torque value is determined at least according to the current brake pedal opening and the maximum braking torque value of the motor at the current vehicle speed.
  • the braking torque value provided may be: the product of the brake pedal opening and the maximum braking torque value of the motor at the current vehicle speed.
  • the opening degree of the brake pedal can reflect the emergency degree of the vehicle braking. The larger the opening degree of the brake pedal, the more urgent the braking situation. Therefore, appropriate braking torque is provided according to the urgency of braking, which can ensure that the vehicle achieves auxiliary braking during safe and stable driving.
  • the motor in response to the battery power allowing charging, the motor can convert the braking force into electrical energy and store it in the battery to achieve energy recovery.
  • the above embodiments are suitable for tractor heads equipped with various powers, such as traditional diesel engines, gasoline engines or natural gas engines. To a certain extent, they are also suitable for carrying pure electric, hybrid electric and fuel. Battery-powered tractor head.
  • the type of trailer in each of the above embodiments can be a full trailer or a semi-trailer, and the semi-trailer is not limited to a dump semi-trailer, a low-bed semi-trailer, a warehouse-type semi-trailer, a container semi-trailer, a tank semi-trailer, a van semi-trailer, Oil transport semi-trailer, light semi-trailer, vehicle transport semi-trailer, powder material transport semi-trailer, chemical liquid transport semi-trailer, railing semi-trailer, gooseneck semi-trailer, skeleton type container semi-trailer, 17m 5 low flat semi-trailer Multi-axle and single-axle semi-trailers such as trailers and bulk cement tank
  • the above method is suitable for providing corresponding auxiliary power when the vehicle is in acceleration, high-speed overtaking or braking mode in various working conditions during the forward movement of the vehicle.
  • this application is also applicable to various working conditions of the vehicle during reversing.
  • the torque in the opposite direction is provided to assist various operating modes during the reversing process.
  • Fig. 7 is a schematic diagram of a trailer controller module according to an embodiment of the present invention.
  • the motor control device 700 includes a control module 710, a communication module 720, and a storage module 730.
  • the control module 710 is electrically connected to the communication module 720 and the storage module 730, respectively.
  • the control module 710 can include one or more central processing unit (CPU), graphics processing unit (GPU), application specific integrated circuit (ASIC), field programmable gate array (FPGA), or a combination thereof.
  • the control module 710 can execute software or computer readable instructions stored in the storage module 730 to perform the methods or operations described herein.
  • the control module 710 can be implemented in several different ways.
  • the control module 710 can include one or more embedded processors, processor cores, microprocessors, logic circuits, hardware finite state machines (FSM), digital signal processors (DSP), or combinations thereof.
  • the control module is configured to determine the vehicle operating mode according to the vehicle state signal; and control the trailer motor to provide corresponding torque according to the vehicle operating mode.
  • the communication module 720 can include one or more wired or wireless communication interfaces.
  • communication interface network interface card wireless modem or cable modem.
  • the communication module 720 can be a WiFi modem.
  • the communication module 720 can be a 3G modem, a 4G modem, an LTE modem, a Bluetooth component, a radio frequency receiver, an antenna, or a combination thereof.
  • the communication module 720 is configured to communicate with the tractor.
  • the storage module 730 can store software, data, logs, or a combination thereof.
  • the storage module 730 can be an internal memory or an external memory.
  • the memory can be volatile memory or non-volatile memory, such as non-volatile random access memory (NVRAM), flash memory, disk storage, or non-volatile memory such as static random access memory (SRAM). ) Of volatile memory.
  • the storage module 730 also includes an algorithm program for judging the operating mode of the vehicle and providing auxiliary driving or auxiliary braking.
  • a vehicle which mainly includes a trailer.
  • the trailer is configured to provide auxiliary power to the tractor, which includes a power battery and a motor, and a drive bridge coupled with the motor; a trailer controller; and a battery controller and a motor controller coupled with the trailer controller.
  • the trailer controller is electrically connected to the tractor and the trailer respectively, and executes the steps in the above-mentioned method embodiments to determine the auxiliary power and control the output of the trailer.
  • a computer-readable storage medium is provided, and a computer program is stored thereon, and the computer program is executed by a processor to implement the steps in the foregoing method embodiments.
  • the application also provides a vehicle, which includes a trailer or a tractor. Both the tractor and the trailer include independent power systems.
  • the trailer can change according to the different states of the vehicle during driving, can provide suitable auxiliary torque at the right time, and has the advantages of high control accuracy and good robustness.
  • the scheme of this application has no restrictions on the power type, brand and model of tractors and trailers, and can be used in random combination. It has simple structure and low modification cost, and can realize the use of a single pure electric trailer for multiple fuel tractor heads. The scene provides great convenience for the fast loading and unloading process in the logistics transportation process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种挂车电机控制方法,包括:获取车辆状态信号;根据车辆状态信号和/或其衍生信号判断车辆运行模式;以及至少根据车辆运行模式和车辆状态信号确定挂车电机(145)输出的扭矩值。挂车可以根据车辆在行驶过程中的不同工况变化,能够在恰当的时机提供合适的辅助扭矩,具有控制精度高和鲁棒性好的优点,此方法对牵引车和挂车的动力类型、品牌和型号均没有限制,能够实现随机搭配使用的情况

Description

一种挂车电机控制方法以及相应的交通工具 技术领域
本发明涉及车辆技术领域,特别地涉及一种挂车电机控制方法以及相应的交通工具。
背景技术
挂式车辆一般包括牵引车和挂车两大部分,其中牵引车可以包括柴油牵引车、汽油牵引车和天然气牵引车。进一步地,牵引车还可以包括纯电动牵引车、油电混合动力牵引车和燃料电池动力牵引车。挂车可以包括电池、电机控制器、挂车电机、电驱桥。
但是,传统的挂式车辆要求牵引车与挂车相匹配,一旦牵引车与挂车的品牌或者型号不匹配时,整个动力系统将无法完成最佳的动力分配,甚至挂车彻底无法提供辅助动力,只能以牵引车提供动力驱动车辆。
发明内容
针对现有技术中存在的技术问题,本发明提出了一种挂车电机控制方法,包括:获取车辆状态信号;根据所述车辆状态信号和/或其衍生信号判断车辆运行模式;以及至少根据所述车辆运行模式和所述车辆状态信号确定挂车电机输出的扭矩值。
如上所述的方法,其中车辆状态信号包括车速信号、加速踏板信号、制动踏板信号、档位信号、车辆启动开关信号、方向盘转动信号、电池电量信号中的一者或多者。
如上所述的方法,其中所述衍生信号包括加速踏板开度、加速踏板开度变化率、车辆加速度、制动踏板开度中的一者或多者。
如上所述的方法,其中车辆运行模式包括驻车模式、起步模式、加速模式、匀速巡航模式、高速超车模式和制动模式。
如上所述的方法,其中根据车辆状态信号判断车辆运行模式进一步包括判断车辆是否有加速意图。
如上所述的方法,判断车辆是否有加速意图包括:获取加速踏板信号;根据加速踏板信号计算加速踏板开度变化率;以及当所述加速踏板开度变化率大于有加速意图加速踏板开度变化率阈值时,确定车辆有加速意图。
如上所述的方法,判断车辆是否有加速意图包括:获取加速踏板信号;根据加速踏板信号计算加速踏板开度;判断加速踏板开度是否大于加速踏板开度阈值;获取车速信号;根据车速信号计算车辆加速度;以及当加速踏板开度大于加速踏板开度阈值且车辆加速度大于有加速意图的加速度阈值时,确定所述车辆有加速意图。
如上所述的方法,其中判断车辆运行模式包括:判断加速踏板开度是否等于零;判断制动踏板开度是否大于零;以及判断车速是否等于零;当加速踏板开度等于零、制动踏板开度大于零且车速等于零时,确定所述车辆处于驻车模式。
如上所述的方法,其中判断车辆运行模式包括:判断车辆启动开关是否处于ON,并且车辆档位是否为D挡或R挡;判断车速是否为零;以及判断加速踏板开度是否大于零;当车辆启动开关处于ON挡并且车辆档位为D挡或R挡、车速为零且加速踏板开度大于零时,确定所述车辆处于起步模式。
如上所述的方法,其中判断车辆运行模式包括:判断是否有加速意图;以及判断车速是否大于怠速;当有加速意图且车速大于怠速时,确定所述车辆处于加速模式。
如上所述的方法,其中判断车辆运行模式包括:判断是否无加速意图;以及判断加速踏板开度是否大于零;当无加速意图且加速踏板开度大于零时,确定所述车辆处于匀速巡航模式。
如上所述的方法,其中判断车辆运行模式包括:判断是否有加速意图;判断车速是否大于超车速度阈值;以及判断加速踏板开度是否大于超车加速踏板开度阈值;当有加速意图、车速大于超车速度阈值且加速踏板开度大于超车加速踏板开度阈值时,确定所述车辆处于高速超车模式。
如上所述的方法,其中判断车辆运行模式包括:判断加速踏板开度是否等于零;以及判断制动踏板开度是否大于零;当加速踏板开度等于零且制动踏板开度大于零时,确定所述车辆处于制动模式。
如上所述的方法,其中相应于确定车辆处于起步模式时,确定挂车电机输出扭矩值包括:判断当前电池电量是否大于可放电阈值;以及当车辆有加速意图且当前电池电量大于可放电阈值时,至少根据当前加速踏板开度和当前车速下电机最大驱动扭矩值确定挂车电机输出的驱动扭矩值。
如上所述的方法,其中响应于确定车辆处于加速模式时,确定挂车电机输出扭矩值包括:判断当前电池电量是否大于可放电阈值;判断车速是否小于低速助力阈值;以及当前电池电量大于可放电阈值且车速小于低速助力阈值时,至少根据当前加速踏板开度和当前车速下电机最大驱动扭矩值确定挂车电机输出的驱动扭矩值。
如上所述的方法,其中响应于确定车辆处于高速超车模式时,确定挂车电机输出扭矩值包括:判断当前电池电量是否大于可放电阈值;判断方向盘转角是否小于辅助驱动转角阈值;以及当前电池电量大于可放电阈值且方向盘转角小于辅助驱动转角阈值时,至少根据当前车速下电机最大驱动扭矩值确定挂车电机输出的驱动扭矩值。
如上所述的方法,其中响应于确定车辆处于制动模式时,确定挂车电机输 出扭矩值包括:判断当前电池电量是否小于可充电阈值;判断车速是否大于辅助制动阈值;以及当前电池电量小于可充电阈值且车速大于辅助制动阈值时,至少根据当前制动踏板开度和当前车速下电机最大制动扭矩值确定挂车电机输出的制动扭矩值。
根据本发明的另一方面,提出一种挂车控制器,包括:控制模块;以及通信模块,其与控制模块电连接,配置为与牵引车通信;其中,控制模块经配置以执行上述的方法。
一种交通工具,包括:挂车,配置为给牵引车提供辅助动力,其包括动力电池和电机,以及与所述电机耦合的驱动电桥;根据上述的挂车控制器;以及与所述挂车控制器耦合的电池控制器和电机控制器。
如上所述的交通工具,还包括与所述挂车连接的牵引车。
根据本发明的另一方面,提出一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述方法。
本申请的挂车可以根据车辆在行驶过程中的不同工况变化,能够在恰当的时机提供合适的辅助扭矩,具有控制精度高和鲁棒性好等优点。本申请的方案对牵引车和挂车的动力类型、品牌和型号均没有限制,能够实现随机搭配使用的情况。
附图说明
下面,将结合附图对本发明的优选实施方式进行进一步详细的说明,其中:
图1是根据本发明的一个实施例挂车模块示意图;
图2是根据本发明的一个实施例电机控制方法流程图;
图3为根据本发明的一个实施例识别加速意图方法流程图;
图4是根据本发明的一个实施例车辆运行模式变化图;
图5A是根据本发明的一个实施例确定起步模式方法流程图;
图5B是根据本发明的一个实施例确定加速模式方法流程图;
图5C是根据本发明的一个实施例确定匀速巡航模式方法流程图;
图5D是根据本发明的一个实施例确定高速超车模式方法流程图;
图5E是根据本发明的一个实施例确定制动模式方法流程图;
图5F是根据本发明的一个实施例确定驻车模式方法流程图;
图6A是根据本发明的一个实施例起步模式下输出扭矩方法流程图;
图6B是根据本发明的一个实施例加速模式下输出扭矩方法流程图;
图6C是根据本发明的一个实施例高速超车模式下输出扭矩方法流程图;
图6D是根据本发明的一个实施例制动模式下输出扭矩方法流程图;以及
图7是根据本发明的一个实施例挂车控制器模块示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在以下的详细描述中,可以参看作为本申请一部分用来说明本申请的特定实施例的各个说明书附图。在附图中,相似的附图标记在不同图式中描述大体上类似的组件。本申请的各个特定实施例在以下进行了足够详细的描述,使得具备本领域相关知识和技术的普通技术人员能够实施本申请的技术方案。应当理解,还可以利用其它实施例或者对本申请的实施例进行结构、逻辑或者电性的改变。
本申请提供的挂车电机控制系统中,挂车有独立的控制器,因此不受牵引车的控制器影响,有相对独立性。
其次,只需要接收传统燃油车头的加速踏板信号、制动踏板信号、档位信号、车速信号以及其他车辆的原始状态信号的CAN通讯信号就可以完成辅助驱动和辅助制动功能,结构简单,改装成本低,突破了牵引车与挂车之间品牌和型号的对应性限制,对物流运输过程中的快速装卸货过程提供了极大的便利。
本申请提供的挂车电机控制方法能够精确识别车辆在行驶过程中的状态变化,能够在最恰当的时机为燃油车头提供辅助驱动和辅助制动,控制精度高,鲁棒性好。
图1是根据本发明的一个实施例挂车模块示意图。其中,挂车模块包括:挂车控制器110、电池控制器120、动力电池130、电机控制器140、电机145和电驱动桥150。其中电池控制器120分别与挂车控制器110和动力电池130进行电连接;电机控制器140与挂车控制器110电连接。电机控制器140与动力电池130电连接。电机控制器140通过电机145与电驱动桥150电连接。
根据一个实施例,挂车控制器110能够接收来自牵引车的各种车辆状态信号,用于判断出车辆的运行模式。另外,挂车控制器110还可以协调电池控制器120、电机控制器140和整个车辆之间的需求。具体而言,挂车控制器110在判断车辆的运行模式后,请求电机控制器140输出相应的扭矩,同时请求电池控制器120控制动力电池130输出相应的电流。在另一些实施例,挂车控制器110在监控电池系统和电机系统安全的同时,还可以协调车辆的需求和输出,保护车辆和各个关键零部件的安全。
根据一个实施例,电池控制器120用于控制动力电池130输出电能,还可以监控和保护电池系统。举例而言,电池控制器120能够监控动力电池130剩余电量,当电量低于放电阈值,则发出警报并禁止动力电池130继续输出电能。动力电池130用于给电机控制器140提供高压电能。其中动力电池130中的部分电能来自车轮上的制动力,能够实现制动能量回收。
根据一个实施例,电机控制器140用于控制电机145输出驱动力通过电驱动桥150传递给车轮,还可以将车轮上的制动力通过电驱动桥150传递给电机145。当车辆向前驱动时,电机控制器140将来自动力电池130的直流电转换为三相交流电,给电机145提供电能;当车辆制动时,电机控制器140将来自电机145的三相交流电转换为直流电给动力电池130进行充电。在另一些实施例中,电机控制器140还可以监控电机系统的运行状态。
图2是根据本发明的一个实施例电机控制方法流程图。如图所示,在步骤210,获取车辆状态信号。其中,车辆状态信号可以包括车速信号、加速踏板信号、制动踏板信号、档位信号、启动开关信号、方向盘转动信号、电池电量信号中的一者或多者。车辆状态信号既可以包括来自牵引车的信号,也可以包括来自挂车的信号。在一些实施例中,挂车控制器110可以与牵引车通过例如CAN总线连接,CAN总线的高速传输速度能够达到1Mbps,保证挂车控制器110能够及时获取的车辆状态信号。
根据一个实施例,车速信号包括车辆的速度,其包括牵引车和/或挂车的运行速度,单位是km/h。
根据一个实施例,加速踏板信号通过逻辑计算可以得到加速踏板开度,其可以用0-100%表示加速踏板的加速程度,数值越大,加速越快。具体而言,在加速踏板安装位置传感器用于采集加速踏板的位置信号,牵引车的处理器将位置传感器的信号转化为加速踏板开度百分比并发送至挂车控制器110。
根据一个实施例,类似的,制动踏板处也安装有位置传感器用于采集制动踏板的位置信号。
根据一个实施例,档位信号包括D挡信号、R挡信号、P挡信号和N挡信号中的一者或多者。
根据一个实施例,启动开关信号包括ON信号和OFF信号。其中ON表示车辆处于可开启状态;OFF表示车辆处于关闭状态。
根据一个实施例,方向盘转动信号包括方向盘转动角度信号。
根据一个实施例,电池电量信号既可以是来自牵引车的电池电量,又可以来自挂车的电池电量,在此不做限制。这里所述的电池电量指的是动力电池电量。
本领域的技术人员应当理解,车辆状态信号还可以包括其他类型的信号,不局限于上述列举的车辆状态信号。
在步骤220,根据车辆状态信号和/或其衍生信号判断车辆运行模式。其中,车辆运行模式可以包括驻车模式、起步模式、加速模式、匀速巡航模式、高速超车模式和制动模式。不同的车辆运行模式对应的车辆状态信号特点不同,对各种车辆状态信号设定判断条件,符合条件则确定运行模式,否则排除该运行模式。关于这些模式的具体定义将在后面的段落中详细介绍。
值得注意的是,这里的各种模式,是挂车控制器根据牵引车的一项或多项车辆最基本的状态信号经过判断确定的,并不需要对牵引车的控制系统进行任何改变。这使得即便是例如不具有操作系统的传统燃油牵引车也可以与本申请中的挂车配合使用,并实现节能的效果。其中,衍生信号可以包括加速踏板开度、加速踏板开度变化率、车辆加速度、制动踏板开度中的一者或多者。衍生信号即通过车辆状态信号通过各种逻辑计算得到,方便判断车辆运行状态。
在步骤230,至少根据车辆运行模式和车辆状态信号确定挂车电机输出的扭矩值。
扭矩可以是电机输出的转矩,其包括驱动扭矩和制动扭矩。挂车控制器可以根据车辆运行模式计算出适当的扭矩值,迅速提高车辆速度或者迅速降低车辆速度,提高车辆的反应能力。其中,扭矩值越大,输出的驱动力或制动力越大。在一些实施例中,其中扭矩值根据加速踏板信号、制动踏板信号、当前车速下电机输出扭矩最大值和当前电池剩余电量中的一者或多者确定。
其中,起步模式和加速模式牵引车负荷大,损耗牵引车较大能量,排放性 能差,此时挂车若能够提供适当的辅助动力,能够快速脱离次工况,减少牵引车的负荷,性能得到良好的释放。
匀速巡航模式为车辆处于匀速运动过程中,一般是属于经济的运行模式,不需要挂车提供辅助动力。
高速超车模式为车辆处于超车阶段,其属于一种比较危险的工况,需要在较短的时间内完成超车。挂车此时要提供最大的辅助驱动力,将车辆速度进一步提高,迅速完成超车。
制动模式为车辆处于刹车阶段,挂车提供适当的辅助制动力,将制动力转化为电能储存在动力电池中,并有利于提高制动性能。
在一些实施例中,在控制挂车以提供相应的扭矩之前,可以判断动力电池是否符合提供辅助驱动或制动的条件。具体而言,为了保证动力电池的使用安全,当电池控制器检测到剩余电量低于设定的放电阈值,则不允许继续放电;当剩余电量高于设定的充电阈值,则不允许继续充电。
本申请提供了一种电机控制方法,当挂车满足条件的情况下,能够在适当时机给牵引车提供恰当的辅助驱动或者辅助制动,使得整车运行更加均衡。并且,牵引车与挂车之间并没有任何限制,即使品牌和型号不相匹配,也可以利用本申请的方法,实现二者动力相互配合。
图3为根据本发明的一个实施例识别加速意图方法流程图。如图所示,本申请分别通过方法一和方法二两种方式判断车辆是否有加速意图,给进一步判断车辆的运行模式提供依据。
方法一:
在步骤310,获取加速踏板信号;
在步骤320:计算加速踏板开度变化率;
在步骤330:判断加速踏板开度变化率是否大于有加速意图加速踏板开度变化率阈值;
响应于加速踏板开度变化率大于有加速意图加速踏板开度变化率阈值,进入步骤350,确定有加速意图;
响应于加速踏板开度变化率小于或等于有加速意图加速踏板开度变化率阈值,进入步骤340,确定无加速意图。
具体而言,挂车控制器通过CAN总线获取加速踏板信号,其中加速踏板信号可以是加速踏板开度百分比。挂车控制器将加速踏板开度百分比经过微分计算得到加速踏板开度变化率。当加速踏板开度变化率大于有加速意图加速踏板开度变化率阈值(比如12.5%/s),则认为有加速意图,否则认为没有加速意图。其中有加速意图加速踏板开度变化率阈值为车辆有加速意图加速踏板开度变化率最小值。
方法二:
在步骤310,获取加速踏板信号;
在步骤320a,计算加速踏板开度;
在步骤330a,判断加速踏板开度是否大于有加速意图加速踏板开度阈值;
在步骤340a,获取车速信号;
响应于加速踏板开度小于或等于有加速意图加速踏板开度阈值,进入步骤340,确定无加速意图。其中,有加速意图加速踏板开度阈值为车辆有加速意图加速踏板开度最小值。
在步骤350a,计算车辆加速度;
在步骤360a,判断车辆加速度是否大于有加速意图加速度阈值;
响应于车辆加速度大于有加速意图加速度阈值,进入步骤350,确定有加速意图;响应于车辆加速度小于或等于有加速意图加速度阈值,进入步骤340,确定无加速意图。其中,有加速意图加速度阈值为车辆有加速意图加速度最小值。
具体而言,挂车控制器通过CAN总线接收油门开度百分比信号和车速信 号,当判断油门开度百分比超过有加速意图加速踏板开度阈值(比如10%)时,并且将车辆速度微分得到车辆加速度,当车辆加速度大于有加速意图加速度阈值(比如0.3m/s 2)时,确定车辆有加速意图;否则确定车辆无加速意图。本领域的技术人员应当理解,上述有加速意图加速踏板开度变化率阈值、有加速意图加速踏板开度阈值和有加速意图加速度阈值具体数字可根据实际情况进行调整,在此不做限制。
根据其他的实施例,在方法二中也可以先执行步骤340a,350a,360a,而在加速度大于有加速意图加速度阈值时,执行步骤320a计算加速踏板开度,以及步骤330a判断加速踏板开度大于有加速意图加速踏板开度阈值时确定有加速意图。
在一些实施例中,可以方法一判断车辆是否有加速意图;可以利用方法二判断车辆是否有加速意图;还可以同时利用方法一和方法二判断车辆是否有加速意图。本领域的技术人员应当理解,具体使用何种方式确定是否有加速意图,可以根据车辆类型、驾驶状况而进行调整。
图4是根据本发明的一个实施例车辆运行模式变化图;图5A-F是根据本发明的一个实施例确定车辆运行模式方法流程图。图4为车辆从静态驻车到行驶过程中全部的运行模式,其中驱动模式包括加速模式、匀速巡航模式和高速超车模式,三者可以相互变化。图5A-F为分别确定起步模式、加速模式、匀速巡航模式、高速超车模式、制动模式和驻车模式的方法流程图。以下结合图4与图5A-F详细介绍车辆运行模式的确定方法。
图5A是根据本发明的一个实施例确定起步模式方法流程图。参考图4,当车辆满足条件N1进入起步模式。
在步骤510a,判断车辆启动开关是否在ON档,且车辆档位为D档或R档;
在步骤520a,判断车速是否为零;
在步骤530a,判断加速踏板开度是否大于零;
响应于车辆同时满足上述三个条件,进入步骤540a,确定车辆为起步模式;否则进入步骤550a,确定车辆为非起步模式。
图5B是根据本发明的一个实施例确定加速模式方法流程图。参考图4,当车辆满足条件N2进入加速模式。
在步骤510b,判断车辆是否有加速意图,加速意图可以是根据图3所示的方法确定的,当然也可以根据其他已知的方法确定;
在一些实施例中,当车辆有加速意图,确定车辆处在加速模式。具体而言,在判断车辆是否有加速意图时,只根据加速踏板开度变化率就可以判断车辆是否有加速意图。
当然可选择的,在步骤510b后,在步骤520b,可以继续判断车速是否大于怠速;
响应于车辆同时满足上述两个条件,进入步骤530b,确定车辆为加速模式;否则进入步骤540b,确定车辆为非加速模式。
其中,判断车辆是否有加速意图参考图3中的方法。其中,怠速指的是车辆处于空挡的状态时发动机的转速。
图5C是根据本发明的一个实施例确定匀速巡航模式方法流程图。参考图4,当车辆满足条件N3进入匀速巡航模式。
在步骤510c,判断车辆是否无加速意图,加速意图可以是根据图3所示的方法确定的,当然也可以根据其他已知的方法确定;
在步骤520c,判断加速踏板开度大于零;
响应于车辆同时满足上述两个条件,进入步骤530c,确定车辆为匀速巡航模式,否则进入步骤540c,确定车辆为非匀速巡航模式。
图5D是根据本发明的一个实施例确定高速超车模式方法流程图。参考图4,当车辆满足条件N6进入高速超车模式。
在步骤510d,判断车辆是否有加速意图,加速意图可以是根据图3所示的方法确定的,当然也可以根据其他已知的方法确定;
在步骤520d,判断车速是否大于超车速度阈值;
在步骤530d,判断加速踏板开度是否大于超车加速踏板开度阈值;
响应于车辆同时满足上述三个条件,进入步骤540d,确定车辆为高速超车模式;否则进入步骤550d,确定车辆为非高速超车模式。
其中,超车速度阈值为超车速度最小值(比如80km/h);超车加速踏板开度阈值为超车加速踏板开度最小值(比如,90%)。本领域的技术人员应当理解,上述阈值均可以根据实际车辆情况进行调整,在此不做限制。
图5E是根据本发明的一个实施例确定制动模式方法流程图。参考图4,当车辆满足条件N7进入制动模式。
在步骤510e,判断加速踏板开度是否等于零;
在步骤520e,判断制动踏板开度是否大于零;
响应于车辆同时满足上述两个条件,进入步骤530e,确定车辆处于制动模式,否则进入540e,确定车辆为非制动模式。
其中,当车辆处于制动模式时,在符合条件N2、N3或N6后,还可以再次进入加速模式、匀速巡航模式或者高速超车模式。
图5F是根据本发明的一个实施例确定驻车模式方法流程图。参考图4,当车辆满足条件N8进入驻车模式。
在步骤510f:判断加速踏板开度是否等于零;
在步骤520f:判断制动踏板开度是否大于零;
在步骤530f,判断车速是否等于零;
响应于车辆同时满足上述三个条件,进入步骤540f,确定车辆为驻车模式,否则进入550f,确定车辆为非驻车模式。
在确定车辆运行模式后,判断是否需要挂车提供辅助驱动或者辅助制动。 进一步地,在提供辅助驱动或者辅助制动前,需要判断挂车是否满足辅助驱动或者辅助制动的条件,具体内容参考图6A-D。
图6A是根据本发明的一个实施例起步模式下输出扭矩方法流程图。
在步骤610a,判断是否有加速意图,加速意图可以是根据图3所示的方法确定的,当然也可以根据其他已知的方法确定;
在步骤620b,判断车辆当前电池电量是否大于可放电阈值;
响应于车辆同时满足上述两个条件,进入步骤630a,确定并输出挂车电机驱动扭矩值;否则进入步骤640a,电机不输出扭矩。其中,可放电阈值为电池允许可放电电量的最小值(比如,30%)。电池控制器当判断动力电池的电量小于可放电阈值时,则禁止放电。通过设置可放电阈值,能够保护电池避免出现亏电的问题。本领域的技术人员应当理解,可放电阈值可根据动力电池的实际使用情况进行调整,在此不做限制。
在一些实施例中,起步模式时,驱动扭矩值至少根据当前加速踏板开度和当前车速下电机最大驱动扭矩值确定。具体而言,电机输出扭矩大小可以是:当前加速踏板开度与当前车速电机最大驱动扭矩值的乘积。针对起步模式,给牵引车提供适当的辅助驱动力,能够减小发动机负荷,缩短起步时间。
图6B是根据本发明的一个实施例加速模式下输出扭矩方法流程图。
在步骤610b,判断当前电池电量是否大于放电阈值;
在步骤620b,判断车速是否小于低速助力阈值;
响应于车辆同时满足上述两个条件,进入步骤630b,确定并输出挂车电机驱动扭矩值;否则进入步骤640b,电机不输出扭矩。
低速助力阈值为车辆低速助力车速最大值(比如50km/h),本领域的技术人员应当理解,低速助力阈值可根据动力车辆的实际使用情况进行调整,在此不做限制。
在一些实施例中,加速模式时,驱动扭矩值至少根据当前加速踏板开度和 当前车速下电机最大驱动扭矩值确定。具体而言,电机输出扭矩值可以是:当前加速踏板开度与当前车速电机最大驱动扭矩值的乘积。针对加速模式,给牵引车提供适当的辅助驱动力,能够迅速提高车辆的速度。
图6C是根据本发明的一个实施例高速超车模式下输出扭矩方法流程图。
在步骤610c,判断当前电池电量是否大于可放电阈值;
在步骤620c,判断方向盘转角是否小于辅助驱动转角阈值;
响应于车辆同时满足上述两个条件,进入步骤630c,确定并输出挂车电机驱动扭矩值;否则进入步骤640c,电机不输出扭矩。其中,辅助驱动转角阈值为方向盘辅助驱动转角最大值(比如±10°)。若车辆方向盘转动角度过大,车辆处于转弯时,高速超车会非常危险。因此本申请在给高速超车提供辅助动力之前,需要判断方向盘的转动角度,避免出现意外情况,提高行驶的安全性。
在一些实施例中,在方向盘处安装位置传感器,其能够监测车辆方向盘转动角度。以车辆直行时,角度为0°,左转为正向角度,右转为负向角度。本领域的技术人员应当理解,辅助驱动转角阈值可以根据车辆的实际驾驶情况进行调整,在此不做限制。
在一些实施例中,高速超车模式时,驱动扭矩值至少根据当前车速下电机最大驱动扭矩值确定。具体而言,电机输出驱动扭矩值可以是:当前车速下电机输出最大扭矩值。高速超车模式是一种比较危险的运行工况,需要在尽可能短的时间内完成超车。因此,需要挂车的电机输出最大驱动扭矩,给车辆提供最大的辅助动力,缩短超车时间,提高驾驶安全性。
图6D是根据本发明的一个实施例制动模式下输出扭矩方法流程图。
在步骤610d,判断当前电池电量是否小于可充电阈值;
在步骤620d,判断车速是否大于辅助制动阈值;
响应于车辆同时满足上述两个条件,进入步骤630d,确定并输出挂车电机制动扭矩值;否则进入步骤640d,电机不输出制动扭矩。其中,可充电阈值为 电池可充电电量最大值(比如80%)。辅助制动阈值为可辅助制动车速最小值(比如7km/h)。本领域的技术人员应当理解,可充电阈值和辅助制动阈值可以根据车辆的实际情况进行调整,在此不做限制。
在制动模式下,当车辆速度过小时,根本不需要挂车提供辅助制动驱动,依靠牵引车的制动力完全可以实现制动的目的。因此,当车辆速度不符合要求时,挂车的电机也不会提供辅助制动扭矩。判断当前电池电量是否大于可充电阈值,能够保护动力电池不被过度充电,提高电池的使用寿命。
在一些实施例中,制动模式时,制动扭矩值至少根据当前制动踏板开度和当前车速下电机最大制动扭矩值确定。具体而言,提供制动扭矩值可以是:制动踏板开度与当前车速下电机最大制动扭矩值的乘积。制动踏板开度能够反映车辆制动的紧急程度,制动踏板开度越大,制动情况越紧急。因此,根据制动的紧急程度提供适当的制动扭矩,能够保证车辆在安全平稳的行驶中实现辅助制动。并且,响应于电池电量允许充电的情况下,电机可以将制动力转化为电能存储在电池中,实现能量回收。
应该理解的是,虽然图3-6的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图3-6中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
需要说明的是,上述各个实施例适配于搭载各种动力的牵引车头,如传统的柴油发动机、汽油发动机或者天然气发动机,在一定程度上也适配于搭载纯电动、油电混合动力和燃料电池动力的牵引车头。上述各个实施例的挂车种类可以是全挂车或半挂车,半挂车不限于自卸式半挂车、低平板半挂车、仓栅式 半挂车、集装箱半挂车、罐式半挂车、厢式半挂车、运油半挂车、轻型半挂车、车辆运输半挂车、粉粒物料运输半挂车、化工液体运输半挂车、栏板式半挂车、鹅颈式半挂车、骨架式集装箱半挂车、17米5低平板半挂车、散装水泥罐运输半挂车等多轴和单轴半挂车。
需要说明的是,上述方法适用于车辆在向前行驶过程中各种工况中,在车辆进行加速、高速超车或制动模式中提供相应的辅助动力。本领域的技术人员应当理解,本申请也适用于车辆在倒车过程中的各种工况中。响应于挂车控制器识别出车辆处于倒车过程中,提供反方向的扭矩以辅助倒车过程中的多种运行模式。
图7是根据本发明的一个实施例挂车控制器模块示意图。如图所示,控制电机装置700包括控制模块710、通信模块720和存储模块730。其中控制模块710分别与通信模块720和存储模块730电连接。
控制模块710能够包括一个或多个中央处理单元(CPU)、图形处理单元(GPU)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或它们的组合。控制模块710能够执行存储在存储模块730中的软件或计算机可读指令以执行本文描述的方法或操作。控制模块710能够以若干不同的方式来实施。例如,控制模块710能够包括一个或多个嵌入式处理器、处理器核心、微型处理器、逻辑电路、硬件有限状态机(FSM)、数字信号处理器(DSP)或它们的组合。在一些实施例中,控制模块经配置以根据车辆状态信号判断车辆运行模式;以及根据车辆运行模式控制挂车的电机以提供相应的扭矩。
通信模块720能够包括一个或多个有线或无线通信接口。例如,通信接口网络接口卡、无线调制解调器或有线调制解调器。在一种应用中,通信模块720能够是WiFi调制解调器。在另一些应用中,通信模块720能够是3G调制解调器、4G调制解调器、LTE调制解调器、蓝牙组件、射频接收器、天线或它们的组合。在一些实施例中,通信模块720经配置以与牵引车通信。
存储模块730能够存储软件、数据、日志或它们的组合。存储模块730能够是内部存储器或者外部存储器。例如,存储器能够是易失性存储器或非易失性存储器,诸如非易失性随机存取存储器(NVRAM)、闪存、磁盘存储器的非易失性存储器,或者是诸如静态随机存取存储器(SRAM)的易失性存储器。在一些实施中,存储模块730还包括判断车辆运行模式和提供辅助驱动或辅助制动的算法程序。
在一个实施例中,提供了一种交通工具,其主要包括挂车。其中挂车配置为给牵引车提供辅助动力,其包括动力电池和电机,以及与所述电机耦合的驱动电桥;挂车控制器;以及与所述挂车控制器耦合的电池控制器和电机控制器。其中挂车控制器分别与牵引车和挂车电连接,执行上述各个方法实施例中的步骤确定辅助动力并控制挂车输出。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述各个方法实施例中的步骤。
本申请还提供了一种交通工具,其包括挂车,也可以包括牵引车。牵引车和挂车均包括独立的动力系统,挂车可以根据车辆在行驶过程中的不同状态变化,能够在恰当的时机提供合适的辅助扭矩,具有控制精度高和鲁棒性好等优点。本申请的方案对牵引车和挂车的动力类型、品牌和型号均没有限制,能够实现随机搭配使用的情况,具有结构简单、改装成本低,可实现单个纯电动挂车对多个燃油牵引车头的使用场景,对物流运输过程中的快速装卸货过程提供了极大的便利。
上述实施例仅供说明本发明之用,而并非是对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明范围的情况下,还可以做出各种变化和变型,因此,所有等同的技术方案也应属于本发明公开的范畴。

Claims (21)

  1. 一种挂车电机控制方法,包括:
    获取车辆状态信号;
    根据所述车辆状态信号和/或其衍生信号判断车辆运行模式;以及
    至少根据所述车辆运行模式和所述车辆状态信号确定挂车电机输出的扭矩值。
  2. 根据权利要求1所述的方法,其中车辆状态信号包括车速信号、加速踏板信号、制动踏板信号、档位信号、车辆启动开关信号、方向盘转动信号、电池电量信号中的一者或多者。
  3. 根据权利要求2所述的方法,其中所述衍生信号包括加速踏板开度、加速踏板开度变化率、车辆加速度、制动踏板开度中的一者或多者。
  4. 根据权利要求3所述的方法,其中车辆运行模式包括驻车模式、起步模式、加速模式、匀速巡航模式、高速超车模式和制动模式。
  5. 根据权利要求4所述的方法,其中根据车辆状态信号判断车辆运行模式进一步包括判断车辆是否有加速意图。
  6. 根据权利要求5所述的方法,判断车辆是否有加速意图包括:
    获取加速踏板信号;
    根据加速踏板信号计算加速踏板开度变化率;以及
    当所述加速踏板开度变化率大于有加速意图加速踏板开度变化率阈值时,确定车辆有加速意图。
  7. 根据权利要求5所述的方法,判断车辆是否有加速意图包括:
    获取加速踏板信号;
    根据加速踏板信号计算加速踏板开度;
    判断加速踏板开度是否大于加速踏板开度阈值;
    获取车速信号;
    根据车速信号计算车辆加速度;以及
    当加速踏板开度大于加速踏板开度阈值且车辆加速度大于有加速意图的加速度阈值时,确定所述车辆有加速意图。
  8. 根据权利要求5所述的方法,其中判断车辆运行模式包括:
    判断加速踏板开度是否等于零;
    判断制动踏板开度是否大于零;以及
    判断车速是否等于零;
    当加速踏板开度等于零、制动踏板开度大于零且车速等于零时,确定所述车辆处于驻车模式。
  9. 根据权利要求5所述的方法,其中判断车辆运行模式包括:
    判断车辆启动开关是否处于ON,并且车辆档位是否为D挡或R挡;
    判断车速是否为零;以及
    判断加速踏板开度是否大于零;
    当车辆启动开关处于ON挡并且车辆档位为D挡或R挡、车速为零且加速踏板开度大于零时,确定所述车辆处于起步模式。
  10. 根据权利要求5所述的方法,其中判断车辆运行模式包括:
    判断是否有加速意图;以及
    判断车速是否大于怠速;
    当有加速意图且车速大于怠速时,确定所述车辆处于加速模式。
  11. 根据权利要求5所述的方法,其中判断车辆运行模式包括:
    判断是否无加速意图;以及
    判断加速踏板开度是否大于零;
    当无加速意图且加速踏板开度大于零时,确定所述车辆处于匀速巡航模式。
  12. 根据权利要求5所述的方法,其中判断车辆运行模式包括:
    判断是否有加速意图;
    判断车速是否大于超车速度阈值;以及
    判断加速踏板开度是否大于超车加速踏板开度阈值;
    当有加速意图、车速大于超车速度阈值且加速踏板开度大于超车加速踏板开度阈值时,确定所述车辆处于高速超车模式。
  13. 根据权利要求5所述的方法,其中判断车辆运行模式包括:
    判断加速踏板开度是否等于零;以及
    判断制动踏板开度是否大于零;
    当加速踏板开度等于零且制动踏板开度大于零时,确定所述车辆处于制动模式。
  14. 根据权利要求9所述的方法,其中响应于确定车辆处于起步模式时,确定挂车电机输出扭矩值包括:
    判断当前电池电量是否大于可放电阈值;以及
    当车辆有加速意图且当前电池电量大于可放电阈值时,至少根据当前加速踏板开度和当前车速下电机最大驱动扭矩值确定挂车电机输出的驱动扭矩值。
  15. 根据权利要求10所述的方法,其中响应于确定车辆处于加速模式时,确定挂车电机输出扭矩值包括:
    判断当前电池电量是否大于可放电阈值;
    判断车速是否小于低速助力阈值;以及
    当前电池电量大于可放电阈值且车速小于低速助力阈值时,至少根据当前加速踏板开度和当前车速下电机最大驱动扭矩值确定挂车电机输出的驱动扭矩值。
  16. 根据权利要求12所述的方法,其中响应于确定车辆处于高速超车模式时,确定挂车电机输出扭矩值包括:
    判断当前电池电量是否大于可放电阈值;
    判断方向盘转角是否小于辅助驱动转角阈值;以及
    当前电池电量大于可放电阈值且方向盘转角小于辅助驱动转角阈值时,至少根据当前车速下电机最大驱动扭矩值确定挂车电机输出的驱动扭矩值。
  17. 根据权利要求13所述的方法,其中响应于确定车辆处于制动模式时,确定挂车电机输出扭矩值包括:
    判断当前电池电量是否小于可充电阈值;
    判断车速是否大于辅助制动阈值;以及
    当前电池电量小于可充电阈值且车速大于辅助制动阈值时,至少根据当前制动踏板开度和当前车速下电机最大制动扭矩值确定挂车电机输出的制动扭矩值。
  18. 一种挂车控制器,包括:
    控制模块;以及
    通信模块,其与控制模块电连接,配置为与牵引车通信;
    其中,控制模块经配置以执行权利要求1-17中任一所述的方法。
  19. 一种交通工具,包括:
    挂车,配置为给牵引车提供辅助动力,其包括
    动力电池和电机,以及与所述电机耦合的驱动电桥;
    根据权利要求18中的挂车控制器;以及
    与所述挂车控制器耦合的电池控制器和电机控制器。
  20. 根据权利要求19的交通工具,还包括与所述挂车连接的牵引车。
  21. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-17中任一项所述方法。
PCT/CN2021/072499 2020-01-17 2021-01-18 一种挂车电机控制方法以及相应的交通工具 WO2021143903A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010052353.1 2020-01-17
CN202010052353.1A CN113135095B (zh) 2020-01-17 2020-01-17 电机控制方法、装置、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021143903A1 true WO2021143903A1 (zh) 2021-07-22

Family

ID=76808298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072499 WO2021143903A1 (zh) 2020-01-17 2021-01-18 一种挂车电机控制方法以及相应的交通工具

Country Status (2)

Country Link
CN (1) CN113135095B (zh)
WO (1) WO2021143903A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113938079A (zh) * 2021-09-26 2022-01-14 三一汽车起重机械有限公司 电机转速控制方法、装置、系统和作业机械
CN113978392A (zh) * 2021-08-12 2022-01-28 东风汽车集团股份有限公司 一种踏板信号的处理方法及装置
CN114084084A (zh) * 2021-11-17 2022-02-25 一汽解放汽车有限公司 挂车连接状态判断方法、装置计算机设备和存储介质
CN114274791A (zh) * 2022-01-07 2022-04-05 江铃汽车股份有限公司 一种纯电动汽车行驶方向前进与倒退切换的扭矩控制方法
CN116118525A (zh) * 2023-04-03 2023-05-16 成都赛力斯科技有限公司 电机扭矩过零控制方法、装置、电子设备及新能源汽车
EP4306377A1 (en) * 2022-07-14 2024-01-17 Gogoro Inc. Vehicle control method and vehicle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113561850A (zh) * 2021-08-05 2021-10-29 天津工程机械研究院有限公司 双电机纯电动装载机能量管理控制方法及控制系统
CN113561794B (zh) * 2021-08-05 2022-07-12 天津工程机械研究院有限公司 双电机纯电动装载机的驱动控制方法及装置
CN115111358B (zh) * 2021-12-29 2024-07-23 长城汽车股份有限公司 用于混动车的换挡控制方法、装置、车辆及存储介质
CN114435146B (zh) * 2022-03-01 2023-11-14 一汽解放汽车有限公司 车辆控制方法、装置、计算机设备和存储介质
CN115059752A (zh) * 2022-07-20 2022-09-16 潍柴动力股份有限公司 一种车辆空档滑行状态下的控制方法及装置
CN115384321A (zh) * 2022-09-28 2022-11-25 徐工集团工程机械股份有限公司科技分公司 一种纯电动装载机多工况作业模式控制方法及系统
CN117755306B (zh) * 2024-02-05 2024-06-14 盐城工业职业技术学院 一种农用拖拉机驱动桥智能控制系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184584A (ja) * 2012-03-08 2013-09-19 Daimler Ag 連結車両の制御装置
CN104787150A (zh) * 2014-01-22 2015-07-22 福特全球技术公司 牵引电池车辆的测试挂车
CN107298133A (zh) * 2017-06-08 2017-10-27 深圳市海梁科技有限公司 挂式车辆及挂车
CN108263199A (zh) * 2018-03-16 2018-07-10 中国矿业大学 一种重型运输车分布式混合动力系统及动力切换方法
CN207790922U (zh) * 2017-12-26 2018-08-31 长沙智能驾驶研究院有限公司 智能车辆、智能半挂车及智能半挂车的控制系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160090005A1 (en) * 2014-03-10 2016-03-31 Dean Drako Distributed Torque Generation System and Method of Control
CN106240497B (zh) * 2016-08-29 2019-01-22 广州汽车集团股份有限公司 一种驾驶性工况识别方法
CN108081899A (zh) * 2016-11-11 2018-05-29 郑州宇通客车股份有限公司 一种车辆超车急加速状态判断及空调控制的方法和装置
CN208069852U (zh) * 2018-04-20 2018-11-09 长沙智能驾驶研究院有限公司 半挂车以及混合动力车辆
CN109878348B (zh) * 2019-02-14 2021-12-31 同济大学 一种用于前后轴分布式驱动电动车的运动控制系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184584A (ja) * 2012-03-08 2013-09-19 Daimler Ag 連結車両の制御装置
CN104787150A (zh) * 2014-01-22 2015-07-22 福特全球技术公司 牵引电池车辆的测试挂车
CN107298133A (zh) * 2017-06-08 2017-10-27 深圳市海梁科技有限公司 挂式车辆及挂车
CN207790922U (zh) * 2017-12-26 2018-08-31 长沙智能驾驶研究院有限公司 智能车辆、智能半挂车及智能半挂车的控制系统
CN108263199A (zh) * 2018-03-16 2018-07-10 中国矿业大学 一种重型运输车分布式混合动力系统及动力切换方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113978392A (zh) * 2021-08-12 2022-01-28 东风汽车集团股份有限公司 一种踏板信号的处理方法及装置
CN113978392B (zh) * 2021-08-12 2023-04-25 东风汽车集团股份有限公司 一种踏板信号的处理方法及装置
CN113938079A (zh) * 2021-09-26 2022-01-14 三一汽车起重机械有限公司 电机转速控制方法、装置、系统和作业机械
CN113938079B (zh) * 2021-09-26 2023-11-24 三一汽车起重机械有限公司 电机转速控制方法、装置、系统和作业机械
CN114084084A (zh) * 2021-11-17 2022-02-25 一汽解放汽车有限公司 挂车连接状态判断方法、装置计算机设备和存储介质
CN114084084B (zh) * 2021-11-17 2023-12-26 一汽解放汽车有限公司 挂车连接状态判断方法、装置计算机设备和存储介质
CN114274791A (zh) * 2022-01-07 2022-04-05 江铃汽车股份有限公司 一种纯电动汽车行驶方向前进与倒退切换的扭矩控制方法
CN114274791B (zh) * 2022-01-07 2023-12-12 江铃汽车股份有限公司 一种纯电动汽车行驶方向前进与倒退切换的扭矩控制方法
EP4306377A1 (en) * 2022-07-14 2024-01-17 Gogoro Inc. Vehicle control method and vehicle
CN116118525A (zh) * 2023-04-03 2023-05-16 成都赛力斯科技有限公司 电机扭矩过零控制方法、装置、电子设备及新能源汽车
CN116118525B (zh) * 2023-04-03 2023-06-23 成都赛力斯科技有限公司 电机扭矩过零控制方法、装置、电子设备及新能源汽车

Also Published As

Publication number Publication date
CN113135095B (zh) 2022-12-16
CN113135095A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
WO2021143903A1 (zh) 一种挂车电机控制方法以及相应的交通工具
US11926223B2 (en) Range prediction in electric vehicles
JP5507284B2 (ja) 電気自動車の制御装置
CN102490598B (zh) 一种机动车电子四驱系统及其控制方法
CN103373357B (zh) 用于全轮电驱动车辆的扭矩控制的系统和方法
WO2022142133A1 (zh) 一种制动能量回收与辅助驱动的控制方法及控制系统
WO2010139275A1 (zh) 四驱混合动力汽车的驱动系统及其驱动管理方法
US20080174174A1 (en) Passive Truck Trailer Braking Regeneration and Propulsion System and Method
JP6439722B2 (ja) ハイブリッド自動車
CN107206888B (zh) 用于车辆的电力推进系统
CN106740820A (zh) 一种四驱混合动力系统的防打滑控制方法及装置
JPH11341608A (ja) 電気自動車
CN110466361B (zh) 两轮轮毂电机驱动纯电动汽车整车控制器及控制方法
CN110481329A (zh) 电动公交车制动能量回收控制方法
CN107458371B (zh) 用于控制混合动力车辆的转矩减少的方法
JP2012126304A (ja) セミトレーラ式のハイブリッド車両
CN111231966A (zh) 一种重卡动力系统驱动模式切换控制系统及控制方法
JP5605165B2 (ja) 車両充電システム、車両充電装置、車両充電方法、プログラム、媒体
CN214164722U (zh) 一种轻卡专用混动装置
CN105835868B (zh) 驱动控制装置
CN111483453B (zh) 一种中重卡双bsg弱混系统及控制方法
CN201116074Y (zh) 由轮毂电机前驱动发动机后驱动的混合动力车
US20240166002A1 (en) Interchangeable trailer system with battery-powered drive mechanism
WO2024062554A1 (ja) 車両の走行駆動制御装置
WO2024140802A1 (zh) 一种放电控制方法、装置、系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21740913

Country of ref document: EP

Kind code of ref document: A1