WO2021140606A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2021140606A1
WO2021140606A1 PCT/JP2020/000429 JP2020000429W WO2021140606A1 WO 2021140606 A1 WO2021140606 A1 WO 2021140606A1 JP 2020000429 W JP2020000429 W JP 2020000429W WO 2021140606 A1 WO2021140606 A1 WO 2021140606A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive member
rotor
tubular conductive
electric machine
tubular
Prior art date
Application number
PCT/JP2020/000429
Other languages
English (en)
French (fr)
Inventor
聖悟 井口
亮宏 佐久間
貴裕 水田
一将 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020542034A priority Critical patent/JP6771708B1/ja
Priority to PCT/JP2020/000429 priority patent/WO2021140606A1/ja
Publication of WO2021140606A1 publication Critical patent/WO2021140606A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotary electric machine using a rotor in which a permanent magnet is provided on the outer peripheral portion of the rotor core.
  • a force for peeling the permanent magnet from the rotor core is applied by the centrifugal force generated during rotation. Therefore, in order to prevent the permanent magnet from peeling off from the rotor core, a structure may be adopted in which the rotor core and the permanent magnet are collectively covered with a fiber reinforced plastic holding member from the outside of the permanent magnet.
  • a harmonic magnetic flux of a carrier frequency component is generated, so that a vortex current is generated in the rotor core and the permanent magnet. Will occur and the rotor will generate heat.
  • PWM pulse width modulation
  • Patent Document 1 proposes a rotor in which a rotor core and a permanent magnet are wound with a tubular conductive member having a higher conductivity than the rotor core and the permanent magnet in order to suppress heat generation in the rotor. ing.
  • the rotor disclosed in Patent Document 1 reduces the harmonic flux reaching the permanent magnet by interlinking the harmonic flux of the carrier frequency component generated in the stator with the tubular conductive member, and reduces the harmonic flux reaching the permanent magnet. Suppresses demagnetization.
  • the rotor disclosed in Patent Document 1 is effective in suppressing the eddy current loss caused by the harmonics of the carrier frequency component, it is generated by the slot harmonics generated by the fluctuation of the magnetoresistance of the stator slot opening. Eddy current loss occurs in the tubular conductive member.
  • the eddy current loss caused by the harmonics of the carrier frequency component is referred to as a carrier harmonic loss.
  • the eddy current loss caused by the slot harmonic is called the slot harmonic loss.
  • the slot harmonic loss decreases as the gap between the stator and rotor increases.
  • the gap between the stator and the rotor is set large, so that the slot harmonic loss is smaller than the carrier harmonic loss.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a rotary electric machine capable of simultaneously reducing carrier harmonic loss and slot harmonic loss.
  • the present invention has a rotor and a stator in order to solve the above-mentioned problems and achieve the object.
  • the rotor includes a columnar rotor core, a plurality of permanent magnets arranged on the outer peripheral surface of the rotor core at intervals in the circumferential direction of the rotor core, and a rotor core and a plurality of permanent magnets.
  • the stator has a tubular shape that surrounds the rotor at intervals in the radial direction of the rotor core, and has a plurality of slots on the inner peripheral surface.
  • defective portions in which the conductive material is partially defective are formed along the circumferential direction of the rotor core at equal intervals of the same number as the slots, and are composed of a plurality of defective portions. A group of defects is provided.
  • the rotary electric machine according to the present invention has the effect of simultaneously reducing carrier harmonic loss and slot harmonic loss.
  • Sectional drawing which includes the rotating shaft of the rotary electric machine which concerns on Embodiment 1.
  • the figure which shows the state which the carrier harmonic flux is interlinked with the rotor which concerns on Embodiment 1.
  • Enlarged view of the portion where the rotor and the stator of the rotary electric machine according to the comparative example of the first embodiment face each other.
  • FIG. 1 is a cross-sectional view perpendicular to the rotation axis of the rotary electric machine according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view including a rotating shaft of the rotating electric machine according to the first embodiment.
  • FIG. 2 shows a cross section along the line II-II in FIG.
  • the rotary electric machine 1 has a rotor 2 and a tubular stator 3 that surrounds the rotor 2.
  • the rotor 2 has a shaft 21, a permanent magnet 22, a tubular conductive member 23, and a holding member 24.
  • the stator 3 is a magnetic material and has a tubular stator core 4 and a stator coil 5.
  • the rotor 2 and the stator 3 are arranged coaxially.
  • each of the rotor 2 and the stator 3 share the central axis ⁇ as shown in FIG.
  • each of the rotor 2 and the stator 3 has an axis orthogonal line ⁇ orthogonal to the central axis ⁇ at the center position of the stator core 4 in the axial direction along the central axis ⁇ . It is symmetrical.
  • the rotor 2 is rotatably supported around the central axis ⁇ by a bearing (not shown).
  • the stator core 4 has a tubular back yoke 41 and a plurality of teeth 42 protruding inward in the radial direction from the inner peripheral portion of the back yoke 41.
  • Each of the teeth 42 is arranged so as to be spaced apart from each other in the circumferential direction of the rotary electric machine 1.
  • a slot 43 which is a space opened inward in the radial direction of the stator 3, is formed between each of the teeth 42.
  • the stator coil 5 is arranged in the slot 43. As shown in FIG. 2, the stator coil 5 has a coil end 5a protruding from the stator core 4 in the axial direction. A current is supplied to the stator coil 5 by PWM control using an inverter (not shown) that controls the rotary electric machine 1. A rotating magnetic field is generated in the stator 3 by supplying power to the stator coil 5.
  • FIG. 3 is an enlarged view of a portion where the rotor and the stator of the rotary electric machine according to the first embodiment face each other.
  • FIG. 4 is a perspective view of the tubular conductive member of the rotary electric machine according to the first embodiment.
  • the rotor 2 is a tubular tubular shape that collectively surrounds the shaft 21 that also serves as the rotor core, a plurality of permanent magnets 22 arranged on the outer peripheral portion of the shaft 21, and the shaft 21 and the plurality of permanent magnets 22 from the outer peripheral side. It has a conductive member 23, a shaft 21, a plurality of permanent magnets 22, and a sheet-shaped holding member 24 that collectively surrounds the tubular conductive member 23 from the outer peripheral side.
  • the shaft 21 is columnar.
  • the shaft 21 is formed by using a magnetic material.
  • the plurality of permanent magnets 22 are arranged at intervals from each other in the circumferential direction of the rotor 2. As shown in FIG. 1, in the rotary electric machine 1 according to the first embodiment, four permanent magnets 22 are arranged at equal intervals in the circumferential direction of the rotor 2. Each of the permanent magnets 22 is a segment magnet having an arcuate cross section along the outer peripheral surface of the shaft 21. Rare earth magnets or ferrite magnets can be applied to the permanent magnets 22, but the permanent magnets 22 are not limited to these.
  • An inter-magnet region 25 is formed between the permanent magnets 22 adjacent to each other in the circumferential direction of the rotor 2. The inter-magnet region 25 may be air, or the inter-magnet region 25 may be provided with an interpole member made of a resin material or an iron-based material.
  • the tubular conductive member 23 covers the permanent magnet 22 and the inter-magnet region 25 in a state of being overlapped with the outer peripheral surfaces of the permanent magnets 22. That is, the tubular conductive member 23 is arranged at a position closer to the stator 3 than each of the shaft 21 and the permanent magnet 22. As a result, the tubular conductive member 23 is arranged between each of the permanent magnet 22 and the inter-magnet region 25 and the holding member 24.
  • the conductivity of the tubular conductive member 23 is higher than that of the permanent magnet 22.
  • the tubular conductive member 23 can be formed using copper or aluminum as a material, but is not limited thereto.
  • a hole 231 which is a defective portion in which the conductive material is partially defective is a stator along the circumferential direction of the shaft 21.
  • a group of defective portions composed of a plurality of holes 231 is provided.
  • the hole 231 has a rectangular shape with four corners rounded as shown in FIG. By rounding the four corners of the rectangle, the stress generated at the corners of the four corners can be reduced, and damage to the tubular conductive member 23 can be suppressed.
  • the holding member 24 As shown in FIG. 1, in a state where the holding member 24 overlaps the outer peripheral surface of the tubular conductive member 23, the shaft 21, the plurality of permanent magnets 22, and the tubular conductive member 23 are placed in the circumferential direction of the rotor 2. It covers the entire circumference. Therefore, it is possible to prevent the permanent magnet 22 from scattering from the shaft 21 due to centrifugal force when the rotor 2 rotates at high speed.
  • the holding member 24 is formed using a non-magnetic material. As the material of the holding member 24, carbon fiber reinforced plastic (Carbon Fiber Reinforced Plastics, CFRP), glass fiber reinforced plastic (Glass Fiber Reinforced Plastics, GFRP), titanium or stainless steel can be applied, but the material is not limited thereto.
  • the current supplied to the stator coil 5 by PWM control includes carrier harmonic components due to the carrier frequency.
  • a current including a carrier harmonic component is supplied to the stator coil 5, in addition to the fundamental wave magnetic flux that contributes to torque, a carrier harmonic flux due to the carrier harmonic component is also generated in the stator 3.
  • the magnetic flux generated by the stator coil 5 passes through the back yoke 41 and the teeth 42 and interlinks with the rotor 2.
  • teeth 42 having high magnetic permeability and slots 43 having low magnetic permeability are alternately arranged, and when the rotor 2 rotates, fluctuations in magnetic resistance occur and slot harmonics occur.
  • the magnetic flux interlinks with the rotor 2.
  • FIG. 5 is a diagram showing a state in which carrier harmonic flux is interlinked with the rotor according to the first embodiment.
  • the carrier harmonic flux P1 generated by the stator 3 interlinks with the tubular conductive member 23.
  • an eddy current C is generated in the tubular conductive member 23.
  • the magnetic flux due to the eddy current is generated in the direction of canceling the carrier harmonic flux P1.
  • the carrier harmonic flux P1 interlinking with the shaft 21 and the permanent magnet 22 is reduced, and the heat generated by the shaft 21 and the permanent magnet 22 is reduced.
  • the tubular conductive member 23 generates heat due to the generation of an eddy current C, but since the conductivity of the tubular conductive member 23 is higher than that of the permanent magnet 22, the carrier harmonic magnetic flux P1 is chained with the permanent magnet 22. The heat generated by the tubular conductive member 23 is smaller than the heat generated by the permanent magnet 22 when crossed. As a result, the overall heat generation of the rotor 2 is reduced.
  • the carrier harmonic flux P1 is indicated by an arrow.
  • the eddy current C flowing from the back side to the front side of the paper surface is indicated by a symbol with a black circle in the white circle
  • the eddy current C flowing from the front side to the back side of the paper surface is indicated by the white circle. It is indicated by a symbol with a cross inside.
  • FIG. 6 is an enlarged view of a portion where the rotor and the stator of the rotary electric machine according to the comparative example of the first embodiment face each other.
  • FIG. 6 shows a portion where the rotor 102 and the stator 103 face each other in a plane.
  • an arbitrary point of the rotor 102 is set as a point A, and points B to E are provided at equal intervals from the point A.
  • the magnetic flux interlinking between the rotor 102 and the stator 103 is indicated by an arrow.
  • the teeth 142 move in parallel with the tubular conductive member 123, eddy currents are generated in the portions of the tubular conductive member 123 in front of and behind the teeth 142 in the rotational direction.
  • the magnetic flux of the stator coil 105 is canceled at the place where the eddy current is generated. Since the portion where the eddy current is generated moves due to the movement of the teeth 142, the portion where the magnetic flux of the stator coil 105 passes through the tubular conductive member 123 also moves.
  • the amount of magnetic flux interlinking changes with the change in time between other points, and an eddy current is generated. Therefore, a slot harmonic loss occurs in the tubular conductive member 123.
  • the magnetic flux interlinking between the rotor 102 and the stator 103 is indicated by an arrow.
  • the eddy current C flowing from the back side to the front side of the paper surface is indicated by a symbol with a black circle in the white circle, and the eddy current C flowing from the front side to the back side of the paper surface is indicated by the white circle. It is indicated by a symbol with a cross inside.
  • FIG. 7 is an enlarged view of a portion where the rotor and the stator of the rotary electric machine according to the first embodiment face each other.
  • FIG. 7 shows a portion where the rotor 2 and the stator 3 face each other in a plane.
  • an arbitrary point of the rotor 2 is set as a point A, and points B and C are provided at the same interval as the interval from the point A to the teeth 42.
  • the magnetic flux interlinking in the region between the rotor 2 and the stator 3 is indicated by an arrow. Since the teeth 42 are provided at equal intervals, when one tooth 42 moves away from each point of the tubular conductive member 23, another tooth 42 approaches by the same amount.
  • the rotary electric machine 1 according to the first embodiment does not generate an eddy current in the tubular conductive member 123. Therefore, the rotor 2 according to the first embodiment can suppress the occurrence of slot harmonic loss in the tubular conductive member 23.
  • the slot harmonic loss increases, and the permanent magnet 122 is more likely to generate heat than the rotor 2 according to the first embodiment.
  • the rotor 2 according to the first embodiment can prevent the permanent magnet 22 from generating heat by simultaneously suppressing the carrier harmonic loss and the slot harmonic loss. Therefore, the rotor 2 according to the first embodiment can suppress the demagnetization of the permanent magnet 22.
  • the axial dimension La of the tubular conductive member 23 is the same as the axial dimension Lm of the permanent magnet 22, but the axial direction of the tubular conductive member 23.
  • the dimension La may be longer than the axial dimension Lm of the permanent magnet 22.
  • FIG. 8 is a developed view of a cylindrical conductive member of a rotor according to a second embodiment of the present invention.
  • FIG. 9 is a perspective view showing a state in which the tubular conductive member of the rotary electric machine according to the second embodiment is rolled into a tubular shape.
  • the rotor 2 according to the second embodiment is the same as the rotor 2 according to the first embodiment, except that the structure of the tubular conductive member 23 is different.
  • the shaft 21 which is a rotor core, a plurality of permanent magnets 22 provided on the outer peripheral portion of the shaft 21, the shaft 21 and the plurality of permanent magnets 22 are collectively arranged on the outer peripheral side. It has a tubular conductive member 23 that surrounds the tubular conductive member 23, a shaft 21, a plurality of permanent magnets 22, and a sheet-shaped holding member 24 that collectively surrounds the tubular conductive member 23 from the outer peripheral side.
  • the tubular conductive member 23 has a rectangular sheet shape in the unfolded state. As shown in FIG. 9, in the tubular conductive member 23, holes 231 having a number one less than the number of slots of the stator 3 are formed at equal intervals in the circumferential direction in a state of being rolled into a tubular shape. There is.
  • both ends of the tubular conductive member 23 in the circumferential direction form a first facing portion 232 and a second facing portion 233 facing each other in the circumferential direction, and the first facing portion 232 and the second facing portion 232 and the second facing portion 232 and the second facing portion 233.
  • the space between the portion 233 and the portion 233 forms a slit 26 straddling the entire tubular conductive member 23 in the axial direction of the tubular conductive member 23.
  • the shaft 21, the plurality of permanent magnets 22, and the tubular conductive member 23 are wound together by the sheet-shaped holding member 24 from the outer peripheral side of the tubular conductive member 23.
  • the outer circumference of the tubular conductive member 23 is covered with the holding member 24, and the rotor 2 is completed.
  • the tubular conductive member 23 can be incorporated into the rotor 2 simply by winding the shaft 21 and the plurality of permanent magnets 22 together with the tubular conductive member 23. Therefore, not only the shape of the tubular conductive member 23 can be simplified, but also the work of attaching the tubular conductive member 23 to the rotor 2 can be facilitated. Therefore, the rotor 2 according to the second embodiment can be easily manufactured.
  • FIG. 10 is a perspective view of a cylindrical conductive member of a rotor according to a third embodiment of the present invention.
  • the tubular conductive member 23 of the rotor 2 according to the third embodiment is different from the rotor 2 according to the first embodiment in that a skew is provided in the hole 231.
  • the size of the skew of the hole 231 is one slot of the stator 3 in the axial direction. That is, in the hole 231 which is a defective portion, the position in the circumferential direction of the shaft 21 is deviated by one slot between one end portion and the other end portion in the axial direction of the shaft 21 which is the rotor core.
  • the fluctuation of the slot harmonic flux P2 interlinking the hole 231 can be further suppressed, and the slot harmonic loss can be reduced.
  • FIG. 11 is a developed view of the tubular conductive member according to the modified example of the third embodiment.
  • FIG. 12 is a diagram showing a state in which the tubular conductive member according to the modified example of the third embodiment is rolled into a tubular shape.
  • the tubular conductive member 23 is made into a parallelogram so that the first facing portion 232 and the first facing portion 232 and the second are provided.
  • a skew can also be provided in the slit 26 between the two facing portions 233.
  • the fluctuation of the slot harmonic flux P2 interlinking the holes 231 and the slits 26 can be further suppressed, and the slot harmonic loss can be reduced. ..
  • FIG. 13 is an enlarged view of a portion where the stator and the rotor of the rotary electric machine according to the fourth embodiment of the present invention face each other.
  • the rotary electric machine 1 according to the fourth embodiment is different from the rotary electric machine 1 according to the second embodiment in that it has a hole 231 of the tubular conductive member 23 and a filler 32 filled in the slit 26.
  • the filler 32 is an electrical insulating material.
  • the filler 32 may or may not be filled in the inter-magnet region 25. Further, the filler 32 may be filled between the tubular conductive member 23 and the holding member 24, or may not be filled between the tubular conductive member 23 and the holding member 24.
  • the filler 32 encloses the shaft 21 and the plurality of permanent magnets 22 together in a state of being overlapped with the outer peripheral surfaces of the plurality of permanent magnets 22. Therefore, the tubular conductive member 23 is electrically insulated from the permanent magnet 22 by the filler 32.
  • the rotary electric machine 1 By electrically insulating the permanent magnet 22 and the tubular conductive member 23, it is possible to prevent an eddy current from flowing between the tubular conductive member 23 and the permanent magnet 22. Therefore, the rotary electric machine 1 according to the fourth embodiment can suppress the eddy current loss and heat generation in the rotor 2, and can suppress the demagnetization of the permanent magnet 22.
  • the contact resistance is high at the interface between the tubular conductive member 23 and the permanent magnet 22. Therefore, when an eddy current flows at the interface between the tubular conductive member 23 and the permanent magnet 22, a large eddy current resistance is generated, and the effect of reducing the harmonic magnetic flux due to the magnetic flux due to the eddy current is reduced. Further, heat is easily generated at the interface between the tubular conductive member 23 and the permanent magnet 22, and the permanent magnet 22 is easily demagnetized.
  • the eddy current in the rotor 2 is prevented.
  • Current loss and heat generation can be suppressed, and demagnetization of the permanent magnet 22 can be further reduced.
  • the filler 32 electrically insulates between the tubular conductive member 23 and the inter-magnet region 25. As a result, the filler 32 prevents the eddy current from flowing between the tubular conductive member 23 and the inter-magnet region 25, and the demagnetization of the permanent magnet 22 can be further reduced.
  • the filler 32 may be the adhesive that adheres and fixes the tubular conductive member 23 to the outer peripheral surface of the permanent magnet 22.
  • the adhesive is preferably an epoxy resin-based adhesive or a silicon resin-based adhesive having excellent electrical insulation performance, but is not limited thereto.
  • the filler 32 is arranged over the entire range of the tubular conductive member 23 in the axial direction. That is, it is preferable that the axial dimension of the filler 32 and the axial dimension La of the tubular conductive member 23 are equal to each other.
  • the filler 32 of the electrical insulating material is arranged in the hole 231 and the slit 26, the filler 32 can support the holding member 24 in the hole 231 and the slit 26. Therefore, the stress concentration on the holding member 24 can be relaxed and the holding member 24 can be prevented from being damaged as compared with the case where the filler 32 is not provided.
  • the difference in specific gravity between the filler 32 and the tubular conductive member 23 is large, stress concentration may occur in the holding member 24 due to the difference in centrifugal force during rotation of the rotor 2. Therefore, in order to avoid stress concentration, it is preferable that the difference in specific gravity between the filler 32 and the tubular conductive member 23 is small. If the specific gravity of the filler 32 and the specific gravity of the tubular conductive member 23 are the same, it is possible to prevent the occurrence of stress concentration due to the difference in specific gravity.
  • FIG. 14 is a diagram showing the relationship between the ratio of the conductive portion on the outer peripheral surface of the tubular conductive member of the rotary electric machine according to the fifth embodiment of the present invention and the rotor loss.
  • four polygonal lines are shown by changing the thickness of the tubular conductive member 23.
  • the structure of the rotor 2 according to the fifth embodiment is the same as that of the rotor 2 according to the first embodiment, except that the ratio of the conductive portion on the outer peripheral surface of the tubular conductive member 23 is specified.
  • the conductive portion of the tubular conductive member 23 is a portion where a conductive material exists.
  • the outer peripheral surface of the tubular conductive member 23 is an area obtained by combining the area of the portion where the conductive material exists and the area of the defective portion group.
  • the ratio of the conductive portions 1 1
  • the electrical resistivity of the tubular conductive member 23 is ⁇
  • the magnetic permeability of the tubular conductive member 23 is ⁇
  • the carrier frequency of the inverter that drives the rotary electric machine 1 is ⁇ c
  • the value t / d obtained by dividing the thickness t of the tubular conductive member 23 by the skin depth d represented by the above formula (1) is changed, and the ratio of the conductive portion and the rotor in each t / d are changed. It shows the relationship of loss.
  • the value standardized by the loss when there is no hole 231 is used as the vertical axis. That is, the vertical axis in FIG. 14 uses a value standardized by the loss when the ratio of the conductive portion is 1.
  • the rotor loss decreases. That is, the rotor loss decreases as the area of the hole 231 increases. This is because the slot harmonic loss is reduced by forming the hole 231. Further, when the area of the hole 231 increases, the rotor loss starts to increase. This is because the slot harmonic loss is reduced by reducing the area of the conductive portion of the tubular conductive member 23, but the carrier harmonic loss is increased. It can be seen that there is a ratio c of the conductive portion that minimizes the loss at each t / d. The larger the t / d, the more dominant the slot harmonic loss.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

回転電機(1)は、回転子(2)及び固定子(3)を有し、回転子(2)は、柱状で回転子コアを兼ねるシャフト(21)と、シャフト(21)の周方向において互いに間隔を空けて、シャフト(21)の外周面に配置された複数の永久磁石(22)と、シャフト(21)及び複数の永久磁石(22)を外周側から囲む筒状の筒型導電性部材(23)と、シャフト(21)、複数の永久磁石(22)及び筒型導電性部材(23)を外周側から囲む筒状の保持部材(24)とを備え、固定子(3)は、シャフト(21)の径方向において、間隔を空けて回転子(2)を囲む筒状であり、内周面に複数のスロット(43)を備え、筒型導電性部材(23)は、導電性材料が部分的に欠損している穴(231)が、シャフト(21)の周方向に沿ってスロット(43)と同数等間隔で形成されて、複数の欠損部で構成される欠損部群が設けられている。

Description

回転電機
 本発明は、回転子コアの外周部に永久磁石が設けられている回転子を用いた回転電機に関する。
 従来、回転子コアの外周部に永久磁石を設置した回転子では、回転時に発生する遠心力により、回転子コアから永久磁石を剥離させる力が加わる。このため、永久磁石が回転子コアから剥離することを防止するために、永久磁石の外側から回転子コア及び永久磁石を繊維強化プラスチックの保持部材でまとめて覆う構造が取られることがある。
 また、高速回転用の回転電機では、インバータを用いたパルス幅変調(Pulse Width Modulation, PWM)制御が行われると、キャリア周波数成分の高調波磁束が生じるため、回転子コア及び永久磁石に渦電流が発生し、回転子が発熱してしまう。回転子が発熱すると、永久磁石の温度が上昇して、永久磁石が発生させる磁束が減少する。
 特許文献1には、回転子での発熱を抑制するために、回転子コア及び永久磁石を、回転子コア及び永久磁石よりも導電率が高い筒型導電性部材で巻き込んだ回転子が提案されている。特許文献1に開示される回転子は、固定子で発生したキャリア周波数成分の高調波磁束を筒型導電性部材と鎖交させることにより、永久磁石に達する高調波磁束を低減し、永久磁石の減磁を抑制している。
特許第6328349号公報
 しかしながら、特許文献1に開示される回転子は、キャリア周波数成分の高調波により生じる渦電流損の抑制に効果がある一方、固定子スロット開口部の磁気抵抗の変動によって発生するスロット高調波により生じる渦電流損が筒型導電性部材に生じる。以下、キャリア周波数成分の高調波により生じる渦電流損をキャリア高調波損という。また、スロット高調波により生じる渦電流損をスロット高調波損という。
 スロット高調波損は、固定子と回転子とのギャップが大きいほど小さくなる。高速回転する回転電機においては、固定子と回転子とのギャップは大きく設定されているため、スロット高調波損は、キャリア高調波損に比べて小さい値となる。しかし、さらなる高速化を実現するためには、固定子巻線の巻き数を低下させる必要があるため、モータインダクタンスが小さくなり、キャリア高調波損が増大する。キャリア高調波損の増大を抑えるためには、筒型導電性部材を厚くする必要があるが、筒型導電性部材を厚くすると固定子と回転子とのギャップが小さくなるため、スロット高調波損が増大してしまう。このように、筒型導電性部材を備える構造の回転子においては、キャリア高調波損とスロット高調波損とを同時に低減することは困難であった。
 本発明は、上記に鑑みてなされたものであって、キャリア高調波損とスロット高調波損とを同時に低減できる回転電機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、回転子及び固定子を有する。回転子は、柱状の回転子コアと、回転子コアの周方向において互いに間隔を空けて、回転子コアの外周面に配置された複数の永久磁石と、回転子コア及び複数の永久磁石を外周側から囲み、永久磁石よりも導電率が高い導電性材料で構成された筒状の筒型導電性部材と、回転子コア、複数の永久磁石及び筒型導電性部材を外周側から囲む筒状の保持部材とを備える。固定子は、回転子コアの径方向において、間隔を空けて回転子を囲む筒状であり、内周面に複数のスロットを備える。筒型導電性部材には、導電性材料が部分的に欠損している欠損部が、回転子コアの周方向に沿ってスロットと同数等間隔で形成されて、複数の欠損部で構成される欠損部群が設けられている。
 本発明に係る回転電機は、キャリア高調波損とスロット高調波損とを同時に低減できるという効果を奏する。
本発明の実施の形態1に係る回転電機の回転軸に垂直な断面図 実施の形態1に係る回転電機の回転軸を含む断面図 実施の形態1に係る回転電機の回転子と固定子とが対向する部分の拡大図 実施の形態1に係る回転電機の筒型導電性部材の斜視図 実施の形態1に係る回転子にキャリア高調波磁束が鎖交している状態を示す図 実施の形態1の比較例に係る回転電機の回転子と固定子とが対向する部分の拡大図 実施の形態1に係る回転電機の回転子と固定子とが対向する部分の拡大図 本発明の実施の形態2に係る回転子の筒型導電性部材の展開図 実施の形態2に係る回転電機の筒型導電性部材を筒状に丸めた状態を示す斜視図 本発明の実施の形態3に係る回転子の筒型導電性部材の斜視図 実施の形態3の変形例にかかる筒型導電性部材の展開図 実施の形態3の変形例に係る筒型導電性部材を筒状に丸めた状態を示す図 本発明の実施の形態4に係る回転電機の固定子と回転子とが対向する部分の拡大図 本発明の実施の形態5に係る回転電機の筒型導電性部材の外周面における導電部の割合と、回転子損失との関係を示す図
 以下に、本発明の実施の形態に係る回転電機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る回転電機の回転軸に垂直な断面図である。図2は、実施の形態1に係る回転電機の回転軸を含む断面図である。図2は、図1中のII-II線に沿った断面を示している。回転電機1は、回転子2と、回転子2を取り囲む筒状の固定子3とを有する。回転子2は、シャフト21と、永久磁石22と、筒型導電性部材23と、保持部材24とを有する。固定子3は、磁性体であり筒状の固定子コア4と、固定子コイル5とを有する。回転子2及び固定子3は、同軸に配置されている。したがって、回転子2及び固定子3は、図2に示すように中心軸αを共有している。図2に示すように、中心軸αに沿った方向である軸線方向における固定子コア4の中心位置において中心軸αに直交する軸線直交線βに関して、回転子2及び固定子3の各々は、対称形である。回転子2は、不図示のベアリングによって、中心軸αを中心に回転可能に支持されている。
 固定子コア4は、筒状のバックヨーク41と、バックヨーク41の内周部から径方向内側へ突出する複数のティース42とを有する。ティース42の各々は、回転電機1の周方向について互いに間隔を置いて配置されている。ティース42の各々の間には、固定子3の径方向内側へ開放された空間であるスロット43が形成されている。
 固定子コイル5は、スロット43に配置されている。固定子コイル5は、図2に示すように、軸線方向において固定子コア4から突出するコイルエンド5aを有している。固定子コイル5には、回転電機1を制御する不図示のインバータを用いたPWM制御によって電流が供給される。固定子3には、固定子コイル5への給電により回転磁界が生じる。
 図3は、実施の形態1に係る回転電機の回転子と固定子とが対向する部分の拡大図である。図4は、実施の形態1に係る回転電機の筒型導電性部材の斜視図である。回転子2は、回転子コアを兼ねるシャフト21と、シャフト21の外周部に配置された複数の永久磁石22と、シャフト21及び複数の永久磁石22をまとめて外周側から囲む筒状の筒型導電性部材23と、シャフト21、複数の永久磁石22及び筒型導電性部材23をまとめて外周側から囲むシート状の保持部材24とを有する。
 シャフト21は、柱状である。シャフト21は、磁性材料を用いて形成されている。
 複数の永久磁石22は、回転子2の周方向において互いに間隔を空けて配置されている。図1に示すように、実施の形態1に係る回転電機1では、四つの永久磁石22が回転子2の周方向において等間隔で配置されている。永久磁石22の各々は、シャフト21の外周面に沿った円弧状の断面を持つセグメント磁石である。永久磁石22は、希土類磁石又はフェライト磁石を適用できるが、これに限定されない。回転子2の周方向において互いに隣り合う永久磁石22同士の間には、磁石間領域25が形成されている。磁石間領域25は、空気であってもよいし、磁石間領域25に樹脂材料又は鉄系材料の極間部材が設けられていてもよい。
 図1に示すように、筒型導電性部材23は、永久磁石22の各々の外周面に重なった状態で永久磁石22及び磁石間領域25を覆っている。すなわち、筒型導電性部材23は、シャフト21及び永久磁石22の各々よりも固定子3に近い位置に配置されている。これにより、筒型導電性部材23は、永久磁石22及び磁石間領域25のそれぞれと保持部材24との間に配置されている。筒型導電性部材23の導電率は、永久磁石22の導電率よりも高い。筒型導電性部材23は、銅又はアルミニウムを材料に用いて形成できるが、これに限定はされない。
 また、図3及び図4に示すように、筒型導電性部材23には、導電性材料が部分的に欠損している欠損部である穴231が、シャフト21の周方向に沿って固定子3のスロット43と同数等間隔で形成されることにより、複数の穴231で構成される欠損部群が設けられている。以下、複数の欠損部全体を指す場合には、欠損部群という。実施の形態1において、穴231は、図4に示すように四隅が丸められた矩形状である。矩形の四隅を丸めることにより、四隅の角部に発生する応力を軽減し、筒型導電性部材23の破損を抑制することができる。
 図1に示すように、保持部材24は、筒型導電性部材23の外周面に重なった状態で、シャフト21、複数の永久磁石22及び筒型導電性部材23を回転子2の周方向の全周にわたって覆っている。したがって、回転子2の高速回転時に永久磁石22が遠心力でシャフト21から飛散することは防止される。保持部材24は、非磁性材料を用いて形成されている。保持部材24の材料には、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics, CFRP)、ガラス繊維強化プラスチック(Glass Fiber Reinforced Plastics, GFRP)、チタン又はステンレス鋼を適用できるが、これらに限定はされない。
 次に、回転子2を組み立てる手順について説明する。シャフト21の外周部に複数の永久磁石22を取り付けた後、シャフト21及び複数の永久磁石22の外周に筒状の筒型導電性部材23を被せる。これにより、複数の永久磁石22の外周が筒型導電性部材23で覆われる。次に、シャフト21、複数の永久磁石22及び筒型導電性部材23を、筒型導電性部材23の径方向外側からシート状の保持部材24でまとめて巻く。これにより、筒型導電性部材23の外周が保持部材24で覆われ、回転子2が完成する。
 次に、回転電機1の動作について説明する。不図示のインバータからPWM制御により固定子コイル5に電流が供給されると、固定子3に回転磁界が生じる。固定子3に回転磁界が生じると、回転子2が中心軸αを中心に回転する。
 PWM制御によって固定子コイル5に供給される電流は、キャリア周波数に起因するキャリア高調波成分を含んでいる。キャリア高調波成分を含む電流が固定子コイル5に供給されると、トルクに寄与する基本波磁束に加えて、キャリア高調波成分によるキャリア高調波磁束も固定子3で発生する。
 また、固定子コイル5が作る磁束は、バックヨーク41及びティース42を通り、回転子2に鎖交する。固定子3の内周面は、透磁率の高いティース42と透磁率の低いスロット43とが交互に配置されており、回転子2が回転した際、磁気抵抗の変動が発生し、スロット高調波磁束が回転子2に鎖交する。
 次に、キャリア高調波損失を抑制する作用について説明する。図5は、実施の形態1に係る回転子にキャリア高調波磁束が鎖交している状態を示す図である。固定子3で発生したキャリア高調波磁束P1が筒型導電性部材23と鎖交すると、筒型導電性部材23に渦電流Cが発生する。筒型導電性部材23に渦電流Cが発生すると、渦電流による磁束がキャリア高調波磁束P1を打ち消す方向へ発生する。これにより、シャフト21及び永久磁石22と鎖交するキャリア高調波磁束P1が低減され、シャフト21及び永久磁石22での発熱が低減される。筒型導電性部材23は、渦電流Cの発生によって発熱するが、筒型導電性部材23の導電率が永久磁石22の導電率よりも高いため、キャリア高調波磁束P1が永久磁石22と鎖交した場合の永久磁石22の発熱に比べて、筒型導電性部材23の発熱は小さい。これにより、回転子2の全体の発熱が低減される。なお、図5においては、キャリア高調波磁束P1を矢印で示している。また、図5においては、紙面の奥側から手前側に向けて流れる渦電流Cを白丸内に黒丸印を付した記号で示し、紙面の手前側から奥側に向けて流れる渦電流Cを白丸内に×印を付した記号で示している。
 次に、スロット高調波損失の抑制メカニズムについて、実施の形態1に係る回転子2と比較例にかかる回転子102とを比較して検討する。比較例に係る回転子102は、筒型導電性部材123に穴が形成されていない点で、実施の形態1に係る回転子2と相違する。図6は、実施の形態1の比較例に係る回転電機の回転子と固定子とが対向する部分の拡大図である。図6は、回転子102と固定子103とが向かい合う部分を平面上に展開して示している。なお、説明の便宜上、回転子102の任意の点を点Aとし、点Aから等間隔で点Bから点Eを設けている。また、図6においては、回転子102と固定子103との間で鎖交する磁束を矢印で示している。ティース142が筒型導電性部材123に対して平行に移動することにより、筒型導電性部材123のうち回転方向においてティース142よりも前方及び後方の部分に渦電流が発生する。渦電流が発生している箇所では、固定子コイル105の磁束は打ち消される。ティース142が移動することにより、渦電流が発生する箇所は移動するため、固定子コイル105の磁束が筒型導電性部材123を通過する箇所も移動する。
 時刻t1において点Aと点Bとの間を鎖交する磁束量P21と、時刻t2において点Aと点Bとの間を鎖交する磁束量P22とを比較するとP21<P22である。また、時刻t1において点Bと点Cとの間を鎖交する磁束量P21と、時刻t2において点Bと点Cとの間を鎖交する磁束量P22とを比較するとP21>P22である。
 他の点間においても同様に、時刻の変化に伴い鎖交する磁束量が変化し、渦電流が生じる。このため、筒型導電性部材123には、スロット高調波損失が発生する。なお、図6においては、回転子102と固定子103との間で鎖交する磁束を矢印で示している。また、図6においては、紙面の奥側から手前側に向けて流れる渦電流Cを白丸内に黒丸印を付した記号で示し、紙面の手前側から奥側に向けて流れる渦電流Cを白丸内に×印を付した記号で示している。
 図7は、実施の形態1に係る回転電機の回転子と固定子とが対向する部分の拡大図である。図7は、回転子2と固定子3とが向かい合う部分を平面上に展開して示している。なお、説明の便宜上、回転子2の任意の点を点Aとし、点Aからティース42の間隔と同じ間隔で点B及び点Cを設けている。また、図7においては、回転子2と固定子3との間の領域で鎖交する磁束を矢印で示している。ティース42は等間隔で設けられているため、筒型導電性部材23の各点からあるティース42が遠ざかると、別のティース42が同じだけ近づく。このため、時刻t1において点Aと点Bとの間を鎖交する磁束量P21と、時刻t2において点Aと点Bとの間を鎖交する磁束量P22とを比較すると、P21≒P22である。また、時刻t1において点Bと点Cとの間を鎖交する磁束量P21と、時刻t2において点Bと点Cとの間を鎖交する磁束量P22とを比較すると、P21≒P22である。他の点間においても同様の検討をすると比較例に係る回転電機とは異なり、実施の形態1に係る回転電機1では、筒型導電性部材123に渦電流が発生しない。したがって、実施の形態1に係る回転子2は、筒型導電性部材23にスロット高調波損失が発生することを抑制できる。
 以上の検討から、比較例に係る回転子102においては、スロット高調波損失が増大し、実施の形態1に係る回転子2よりも永久磁石122が発熱しやすいことが分かる。実施の形態1に係る回転子2は、キャリア高調波損失とスロット高調波損失とを同時に抑制することで、永久磁石22が発熱しにくくすることができる。したがって、実施の形態1に係る回転子2は、永久磁石22の減磁を抑制することができる。
 なお、図2に示した回転子2は、筒型導電性部材23の軸線方向の寸法Laが、永久磁石22の軸線方向の寸法Lmと同じであるが、筒型導電性部材23の軸線方向の寸法Laを永久磁石22の軸線方向の寸法Lmよりも長くしてもよい。筒型導電性部材23の軸線方向の寸法Laを永久磁石22の軸線方向の寸法Lmよりも長くすることにより、筒型導電性部材23に生じる渦電流の経路をさらに長くすることができ、キャリア高調波磁束P1を低減させる効果をさらに高めることができる。
実施の形態2.
 図8は、本発明の実施の形態2に係る回転子の筒型導電性部材の展開図である。図9は、実施の形態2に係る回転電機の筒型導電性部材を筒状に丸めた状態を示す斜視図である。実施の形態2に係る回転子2は、筒型導電性部材23の構造が異なる他は、実施の形態1に係る回転子2と同様である。実施の形態2に係る回転子2は、回転子コアであるシャフト21と、シャフト21の外周部に設けられている複数の永久磁石22と、シャフト21及び複数の永久磁石22をまとめて外周側から囲む筒型導電性部材23と、シャフト21、複数の永久磁石22及び筒型導電性部材23をまとめて外周側から囲むシート状の保持部材24とを有する。
 図8に示すように、筒型導電性部材23は、展開状態では矩形のシート状である。図9に示すように、筒型導電性部材23には、固定子3のスロット数よりも一つ少ない数の穴231が、筒状に丸めた状態での周方向に等間隔で形成されている。
 実施の形態2に係る回転子2を組み立てる手順について説明する。シャフト21の外周部に複数の永久磁石22を取り付けた後、シャフト21及び複数の永久磁石22の外周に筒型導電性部材23を巻き付ける。これにより、複数の永久磁石22の外周が筒状の筒型導電性部材23で覆われる。筒型導電性部材23の周方向の両端部は、周方向に互いに離して対向させる。これにより、筒型導電性部材23の周方向の両端部は、周方向に互いに対向する第1の対向部232及び第2の対向部233をなし、第1の対向部232と第2の対向部233との間の空間は、筒型導電性部材23の軸方向において筒型導電性部材23全体に跨がるスリット26をなす。スリット26の数と穴231の数とを合わせると、筒状に丸めた筒型導電性部材23は、固定子3のスロット数と同数の欠損部で構成される欠損部群を備える。次に、シャフト21、複数の永久磁石22及び筒型導電性部材23を、筒型導電性部材23の外周側からシート状の保持部材24でまとめて巻く。これにより、筒型導電性部材23の外周が保持部材24で覆われ、回転子2が完成する。
 実施の形態2に係る回転子2は、シャフト21及び複数の永久磁石22をまとめて筒型導電性部材23で巻くだけで、筒型導電性部材23を回転子2に組み込むことができる。したがって、筒型導電性部材23の形状を単純にできるだけでなく、筒型導電性部材23の回転子2への取り付け作業をも容易にすることもできる。このため、実施の形態2に係る回転子2は、容易に製造できる。
実施の形態3.
 図10は、本発明の実施の形態3に係る回転子の筒型導電性部材の斜視図である。実施の形態3に係る回転子2の筒型導電性部材23は、穴231にスキューが設けられている点で実施の形態1に係る回転子2と相違する。穴231のスキューの大きさは、軸線方向に対して固定子3のスロット一つ分である。すなわち、欠損部である穴231は、回転子コアであるシャフト21の軸方向の一端部と他端部との間で、シャフト21の周方向の位置がスロット一つ分ずれている。
 筒型導電性部材23の穴231にスキューを設けることにより、穴231を鎖交するスロット高調波磁束P2の変動をさらに抑制し、スロット高調波損失を低減することができる。
 図11は、実施の形態3の変形例にかかる筒型導電性部材の展開図である。図12は、実施の形態3の変形例に係る筒型導電性部材を筒状に丸めた状態を示す図である。実施の形態2のようにシート状の筒型導電性部材23の穴231にスキューを設ける場合には、筒型導電性部材23を平行四辺形にすることにより、第1の対向部232と第2の対向部233との間のスリット26にもスキューを設けることができる。筒型導電性部材23の穴231及びスリット26にスキューを設けることにより、穴231及びスリット26を鎖交するスロット高調波磁束P2の変動をさらに抑制し、スロット高調波損失を低減することができる。
実施の形態4.
 図13は、本発明の実施の形態4に係る回転電機の固定子と回転子とが対向する部分の拡大図である。実施の形態4に係る回転電機1は、筒型導電性部材23の穴231及びスリット26に充填された充填材32を有する点で、実施の形態2に係る回転電機1と相違する。充填材32は、電気絶縁材である。
 充填材32は、磁石間領域25に充填されてもよいし、磁石間領域25には充填されなくてもよい。また、充填材32は、筒型導電性部材23と保持部材24との間に充填されてもよいし、筒型導電性部材23と保持部材24との間には充填されなくてもよい。
 充填材32は、複数の永久磁石22の各々の外周面に重なった状態で、シャフト21及び複数の永久磁石22をまとめて囲んでいる。したがって、筒型導電性部材23は、充填材32により、永久磁石22と電気的に絶縁されている。
 永久磁石22と筒型導電性部材23とを電気的に絶縁することにより、筒型導電性部材23と永久磁石22との間に渦電流が流れることを防止することができる。したがって、実施の形態4に係る回転電機1は、回転子2における渦電流損失及び発熱を抑制することができ、永久磁石22の減磁を抑制することができる。
 筒型導電性部材23が永久磁石22に接触している場合、筒型導電性部材23と永久磁石22との界面では、接触抵抗が高くなっている。したがって、筒型導電性部材23と永久磁石22との界面に渦電流が流れると、大きな渦電流抵抗が生じ、渦電流による磁束によって高調波磁束を低減させる効果が小さくなってしまう。また、筒型導電性部材23と永久磁石22との界面で発熱しやすくなり、永久磁石22が減磁されやすくなる。これに対して、実施の形態4に係る回転電機1は、筒型導電性部材23と永久磁石22との間で渦電流が流れることを充填材32によって防止するため、回転子2での渦電流損失及び発熱を抑制でき、永久磁石22の減磁をさらに低減できる。
 なお、磁石間領域25に金属材料等の筒型導電性部材23が配置されている場合は、筒型導電性部材23と磁石間領域25との間を充填材32が電気的に絶縁することにより、筒型導電性部材23と磁石間領域25との間で渦電流が流れることを充填材32によって防止し、永久磁石22の減磁をさらに低減できる。
 実施の形態4において、永久磁石22の外周面に筒型導電性部材23を接着固定する接着剤が充填材32であってもよい。接着剤は、電気絶縁性能に優れたエポキシ樹脂系又はシリコン樹脂系の接着剤が好ましいが、これらに限定はされない。
 充填材32は、軸線方向において筒型導電性部材23の全範囲にわたって配置されることが好ましい。すなわち、充填材32の軸線方向の寸法と筒型導電性部材23の軸線方向の寸法Laとが等しいことが好ましい。
 実施の形態4に係る回転電機1は、穴231及びスリット26に電気絶縁材の充填材32が配置されているため、穴231及びスリット26では充填材32が保持部材24を支えることができる。したがって、充填材32が無い場合と比べて、保持部材24への応力集中を緩和でき、保持部材24の破損を防止できる。
 なお、充填材32と筒型導電性部材23との比重差が大きい場合には、回転子2の回転時の遠心力の違いから保持部材24に応力集中が生じてしまう可能性がある。したがって、応力集中を避けるためには、充填材32と筒型導電性部材23との比重差が小さいほど好ましい。充填材32の比重と筒型導電性部材23の比重とが同じであれば、比重差に起因する応力集中の発生を防止することができる。
実施の形態5.
 図14は、本発明の実施の形態5に係る回転電機の筒型導電性部材の外周面における導電部の割合と、回転子損失との関係を示す図である。図14においては、筒型導電性部材23の厚さを変えて四つの折れ線を示している。実施の形態5に係る回転子2の構造は、筒型導電性部材23の外周面における導電部の割合が規定されていることを除いて実施の形態1に係る回転子2と同様である。なお、筒型導電性部材23の導電部とは、導電性材料が存在する部分である。また、筒型導電性部材23の外周面とは、導電性材料が存在する部分の面積と欠損部群の面積とを合わせた面積である。図14において、導電部の割合が1であることは、欠損部が存在せず、筒型導電性部材23の外周面が全て導電部であることを意味している。筒型導電性部材23の電気抵抗率をρ、筒型導電性部材23の透磁率をμ、回転電機1を駆動させるインバータのキャリア周波数をωとすると、キャリア高調波磁束に反応した渦電流が筒型導電性部材23に流れる時の筒型導電性部材23の表皮深さdは、下記式(1)で定義される。
 d=√(2ρ/ωμ) ・・・(1)
 図14においては、上記式(1)で示した表皮深さdで筒型導電性部材23の厚みtを割った値t/dを変更し、各t/dにおける導電部の割合と回転子損失の関係を示している。図14における縦軸は、穴231がない時の損失で規格化した値を縦軸に用いている。つまり、図14における縦軸は、導電部の割合が1の時の損失で規格化した値を用いている。横軸である導電部の割合cは、筒型導電性部材23の外周面における導電部の面積をa、穴231の面積をbとした時に下記式(2)で定義される。
 c=a/(a+b) ・・・(2)
 図14に示すように、各t/dで導電部の割合cが減少するにつれて、回転子損失が低減する。すなわち穴231の面積が増加するにつれて回転子損失が低減する。これは、穴231を形成することによりスロット高調波損失が低減するためである。さらに穴231の面積が増加すると回転子損失は増加に転じる。これは筒型導電性部材23の導電部の面積が減少することでスロット高調波損失は低減するものの、キャリア高調波損失は増加するためである。各t/dで損失が最小となる導電部の割合cが存在していることが分かる。t/dが大きいほどスロット高調波損失が支配的となるため、導電部の割合cが小さい値で回転子損失が最小となっており、t/dが小さいほどキャリア高調波損失が支配的となるため、導電部の割合cが大きい値で回転子損失が最小となっている。
 図14においてどのt/dにおいても、0.2<c<1の領域において、穴231が無い場合であるc=1よりも損失が小さくなっている。したがって、0.2<c<1に設定することで、穴231を形成しない場合よりも損失を小さくすることができる。つまり、筒型導電性部材23の外周面において欠損部群が占める面積の割合を0%よりも大きくかつ80%以下とすることで、損失を小さくすることができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 回転電機、2,102 回転子、3,103 固定子、4 固定子コア、5,105 固定子コイル、5a コイルエンド、21 シャフト、22,122 永久磁石、23,123 筒型導電性部材、24 保持部材、25 磁石間領域、26 スリット、32 充填材、41 バックヨーク、42,142 ティース、43 スロット、231 穴、232 第1の対向部、233 第2の対向部。

Claims (7)

  1.  回転子及び固定子を有し、
     前記回転子は、
     柱状の回転子コアと、
     前記回転子コアの周方向において互いに間隔を空けて、前記回転子コアの外周面に配置された複数の永久磁石と、
     前記回転子コア及び複数の前記永久磁石を外周側から囲み、前記永久磁石よりも導電率が高い導電性材料で構成された筒状の筒型導電性部材と、
     前記回転子コア、複数の前記永久磁石及び前記筒型導電性部材を外周側から囲む筒状の保持部材とを備え、
     前記固定子は、前記回転子コアの径方向において、間隔を空けて前記回転子を囲む筒状であり、内周面に複数のスロットを備え、
     前記筒型導電性部材には、前記導電性材料が部分的に欠損している欠損部が、前記回転子コアの周方向に沿って前記スロットと同数等間隔で形成されて、複数の前記欠損部で構成される欠損部群が設けられていることを特徴とする回転電機。
  2.  前記欠損部群は、前記筒型導電性部材に形成された前記スロットと同数の穴を含むことを特徴とする請求項1に記載の回転電機。
  3.  前記筒型導電性部材には、前記筒型導電性部材の軸方向において前記筒型導電性部材全体に跨がるスリットが一つ設けられており、
     前記欠損部群は、前記筒型導電性部材に形成された前記スロットの数よりも1少ない穴、及び前記スリットを含むことを特徴とする請求項1に記載の回転電機。
  4.  複数の前記欠損部の各々は、前記回転子コアの周方向に対して斜め方向に延びており、
     複数の前記欠損部の各々の一端部と他端部とは、前記回転子コアの周方向の位置が前記スロット一つ分ずれていることを特徴とする請求項2又は3に記載の回転電機。
  5.  複数の前記永久磁石と前記筒型導電性部材との間に充填された充填材を有し、
     前記充填材は、電気絶縁性を有することを特徴とする請求項1から3のいずれか1項に記載の回転電機。
  6.  複数の前記永久磁石同士の間及び前記欠損部の少なくとも一方に充填された充填材を有することを特徴とする請求項1から3のいずれか1項に記載の回転電機。
  7.  前記筒型導電性部材の外周面において前記欠損部群が占める面積の割合は、0%よりも大きくかつ80%以下であることを特徴とする請求項1から6のいずれか1項に記載の回転電機。
PCT/JP2020/000429 2020-01-09 2020-01-09 回転電機 WO2021140606A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020542034A JP6771708B1 (ja) 2020-01-09 2020-01-09 回転電機
PCT/JP2020/000429 WO2021140606A1 (ja) 2020-01-09 2020-01-09 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000429 WO2021140606A1 (ja) 2020-01-09 2020-01-09 回転電機

Publications (1)

Publication Number Publication Date
WO2021140606A1 true WO2021140606A1 (ja) 2021-07-15

Family

ID=72829257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000429 WO2021140606A1 (ja) 2020-01-09 2020-01-09 回転電機

Country Status (2)

Country Link
JP (1) JP6771708B1 (ja)
WO (1) WO2021140606A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7507716B2 (ja) 2021-03-31 2024-06-28 三菱重工業株式会社 電動機用ロータ、及び電動機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308150A (ja) * 1996-05-10 1997-11-28 Toshiba Corp 永久磁石回転電機
JP2011125106A (ja) * 2009-12-09 2011-06-23 Kawasaki Heavy Ind Ltd 電動機
JP2016039774A (ja) * 2014-08-05 2016-03-22 株式会社リコー 永久磁石型モータ、位置推定装置及びモータ駆動制御装置
WO2017047253A1 (ja) * 2015-09-16 2017-03-23 三菱電機株式会社 回転電機の回転子、及び回転電機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308150A (ja) * 1996-05-10 1997-11-28 Toshiba Corp 永久磁石回転電機
JP2011125106A (ja) * 2009-12-09 2011-06-23 Kawasaki Heavy Ind Ltd 電動機
JP2016039774A (ja) * 2014-08-05 2016-03-22 株式会社リコー 永久磁石型モータ、位置推定装置及びモータ駆動制御装置
WO2017047253A1 (ja) * 2015-09-16 2017-03-23 三菱電機株式会社 回転電機の回転子、及び回転電機

Also Published As

Publication number Publication date
JP6771708B1 (ja) 2020-10-21
JPWO2021140606A1 (ja) 2021-07-15

Similar Documents

Publication Publication Date Title
US10680502B2 (en) Magnetically geared apparatus and a pole piece for such apparatus
JP4349089B2 (ja) アキシャルギャップ回転電機
JP5851365B2 (ja) 回転電機
JP4148647B2 (ja) 軸方向磁束を有する多極電動発電機
JP5268711B2 (ja) 電動機及び圧縮機及び空気調和機及び電気掃除機
JP5436525B2 (ja) 電動機
WO2017047253A1 (ja) 回転電機の回転子、及び回転電機
JP2016010176A (ja) モータ
JP5851432B2 (ja) 回転電機
JP2012228104A (ja) 永久磁石埋込型電動機
JP5365074B2 (ja) アキシャルギャップ型回転電機
JP5696694B2 (ja) 回転電機のステータ
WO2021131163A1 (ja) 固定子および回転電機
JP2012100518A (ja) 回転電機
JP5267751B1 (ja) 回転電機
JP2018098914A (ja) 回転電機およびロボット装置
WO2021140606A1 (ja) 回転電機
JP2017050918A (ja) 同期リラクタンスモータ
JP2006025486A (ja) 回転電機
JP5740250B2 (ja) 永久磁石式回転電機
JP5894414B2 (ja) 発電機
JP7162777B1 (ja) 回転電機、およびその回転電機を備えた航空機
KR102182353B1 (ko) 회전 전기 기계
WO2022054302A1 (ja) 回転電機
US20230073761A1 (en) Rotary machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020542034

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912226

Country of ref document: EP

Kind code of ref document: A1