WO2021139530A1 - 一种低成本纳米复合永磁导电触头及其制造方法 - Google Patents

一种低成本纳米复合永磁导电触头及其制造方法 Download PDF

Info

Publication number
WO2021139530A1
WO2021139530A1 PCT/CN2020/138491 CN2020138491W WO2021139530A1 WO 2021139530 A1 WO2021139530 A1 WO 2021139530A1 CN 2020138491 W CN2020138491 W CN 2020138491W WO 2021139530 A1 WO2021139530 A1 WO 2021139530A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
core
composite
prepared
conductive contact
Prior art date
Application number
PCT/CN2020/138491
Other languages
English (en)
French (fr)
Inventor
张敬敏
Original Assignee
山东光韵智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东光韵智能科技有限公司 filed Critical 山东光韵智能科技有限公司
Publication of WO2021139530A1 publication Critical patent/WO2021139530A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/098Mandrels; Formers

Definitions

  • the invention relates to the technical field of electrical devices, in particular to a low-cost nano-composite permanent magnetic conductive contact and a manufacturing method thereof.
  • Nanocomposite permanent magnetic materials are composed of nano-scale soft magnetic phases and hard magnetic phases, and theoretically have a high maximum magnetic energy product, and at the same time, the material has a low rare earth content. It is expected to develop into a new generation of low-cost high-performance permanent magnetic materials. However, this kind of material is widely used in high-cost rare earth-poor Nd, etc., and the cost is relatively high and it is difficult to popularize and apply.
  • NdFeB magnets with abundant rare earth elements such as La, Ce, and Y can effectively reduce material costs and promote the balance and efficient utilization of rare earth resources.
  • Related research results have been industrialized in sintered magnets and bonded magnets. However, magnets based on the full amount of rare earth elements La, Ce, and Y permanent magnet alloys are still in the research stage due to their performance needs to be improved.
  • the invention aims to provide a low-cost method for manufacturing a low-cost nano-composite permanent magnetic conductive contact that uses only abundant rare earths, high magnetic energy product, and rapid shaping.
  • the present invention adopts the following technical solution: a method for manufacturing a low-cost nanocomposite permanent magnetic conductive contact, including the following steps:
  • auxiliary materials prepare a sufficient amount of a mixture of concentrated sulfuric acid and concentrated nitric acid with a volume ratio of 3:1, a sufficient amount of 10% solute mass fraction of hydrochloric acid aqueous solution, and a sufficient amount of argon;
  • step 2 the lanthanum, cerium, ferroboron FeB22C0.05 and yttrium prepared in stage 1) are mixed uniformly and then remelted and smelted by electroslag, and then cooled to Make a primary alloy billet at room temperature;
  • the primary alloy billet obtained in step 1 is ball-milled into alloy powder of 500 mesh to 1000 mesh.
  • the alloy powder is used as a raw material
  • a cylindrical silica container is used as a mold
  • a vacuum induction melting furnace integrated with electromagnetic stirring equipment is used to smelt and smelt.
  • the process is: before heating up, vacuum to 1 ⁇ 10-2Pa-1 ⁇ 10-3Pa, when the raw material starts to melt when the temperature reaches the temperature, start the electromagnetic stirring at the stirring rate of 100rpm/min-250rpm/min, and keep it warm for 20min-23min. Stop heating and use nitrogen for rapid cooling, then release the mold from the furnace to obtain a rough magnetic core;
  • the rough magnetic core obtained in step 2 is annealed at a temperature of 730°C-750°C under a vacuum degree of 1 ⁇ 10-2Pa-1 ⁇ 10-3Pa, and then the cylindrical surface of the rough magnetic core obtained after annealing and two The end faces are mechanically polished to remove the thickness of 0.3mm-0.5mm to obtain a regular magnetic core;
  • step 1 Completely immerse the carbon fiber aluminum core composite wire prepared in step 1) in step 1 into the mixed solution of concentrated sulfuric acid and concentrated nitric acid prepared in step 2, and use 200W-250W ultrasonic treatment for 3.5h-4h to obtain carboxylated passivated composite wire , And then rinse the composite wire with clean water;
  • step 2 Immerse the carboxylated and passivated composite wire obtained in step 1 into the hydrochloric acid aqueous solution prepared in step 2, immerse the hydrochloric acid aqueous solution in an ice bath at -5°C ⁇ -10°C, and turn it on at a rate of 120rpm/min-150rpm/min Stir, then put in the aniline prepared in step 1), and finally put the ammonium persulfate initiator prepared in step 1 into the reaction solution at a mass rate of 10%/min.
  • Stir for 40min-50min take out the reaction solution and remove it. Place it in a refrigerator at -5°C ⁇ -10°C for 0.5 days to 1 day, filter out the solidified material, and rinse with ethanol and water until it is clean to obtain a modified composite wire;
  • stage 2 Put the final magnetic core obtained in stage 2) as a movable structure in the fixed sleeve prepared in stage 1), and then cut off the head and tail ends of the modified composite wire obtained in stage 3) and wind it in the fixed sleeve
  • the inner surface of the barrel ensures that the modified composite wire does not contact the surface of the final magnetic core, and a composite core structure is obtained.
  • the composite core structure is the required low-cost nano composite permanent magnetic conductive contact.
  • a low-cost nano-composite permanent magnetic conductive contact is composed of three parts: a fixed sleeve, a core and a coil.
  • the core is 6-8 parts by weight of lanthanum and 3.5 parts by cerium.
  • a composite core obtained by mixing -4.5 parts, boron iron FeB22C0.05 100 parts -110 parts, and 5-7 parts yttrium as raw materials as the core and pure copper as the shell.
  • the composite core is set in the fixed sleeve In; the coil is wound by the aniline modified carbon fiber aluminum core composite wire wound on the surface of the core body, and the coil is wound on the inner surface of the fixed sleeve.
  • the present invention has the following advantages: (1) The present invention is different from the current mainstream research of La, Ce, Y as substitute elements in Nd-Fe-B.
  • the interaction between rare earth elements is used to improve the hard magnetic properties and temperature stability of the alloy.
  • the structure of the alloy is further optimized and the coercivity of the alloy is improved.
  • Based on the obtained high magnetic energy product ternary and multi-element alloy compositions, using small batches of fast-quenched nanocrystalline magnetic powders, La, Ce, and Y-based rare earth permanent magnets without key rare earth elements are prepared.
  • the present invention also gradually improves the comprehensive magnetic performance of the magnet through the optimization of the composition and the process. Finally, the coercive force of the magnet is greatly improved by using the technology of grain boundary diffusion addition.
  • (3) The present invention actually obtains the contact of the surface layer of pure copper and the integral permanent magnet, which has high magnetic induction and a good conductor.
  • the permanent magnet is used as the core and the pure copper is the shell, which not only obtains excellent magnetic properties, It avoids the stress-sensitive defects of nano-permanent magnetic materials, and at the same time, the surface layer is toughened and impact resistant, and the surface contact area is large.
  • the present invention refers to the finger contact rather than the bridge contact, so there is no metal fatigue problem, only impact damage and wear need to be considered.
  • the present invention is not in the conventional technology, and the surface of the hard core is added
  • the relatively soft permanent magnetic pure copper not only ensures that the magnetic core will not be deformed due to insufficient core strength, but also protects the impacted surface from damage. It also builds a relatively flexible buffer between the two hard bodies. The contact surface is improved, so the invention has strong anti-fatigue ability.
  • All the materials used in the present invention are resistant to high temperature. Because there is no curing material that is not resistant to high temperature such as soldering or resin, the non-flammable carbon fiber and the non-corrosive aluminum core are passivated and protected against aniline adhesion.
  • the present invention has the characteristics of low cost, only use of abundant rare earths, high magnetic energy product, and rapid shaping.
  • a low-cost nano-composite permanent magnetic conductive contact is composed of three parts: a fixed sleeve, a core and a coil.
  • the core is 7g lanthanum, 4.2g cerium, and iron boron in parts by weight.
  • a composite core obtained by mixing FeB22C0.05 107g and 5.8g of yttrium as raw materials as the core and pure copper as the shell.
  • the composite core is set in a fixed sleeve; the coil is modified by aniline wound on the surface of the core.
  • the carbon fiber aluminum core composite wire is wound, and the coil is wound on the inner surface of the fixed sleeve; the manufacturing method of the permanent magnetic conductive contact includes the following steps:
  • auxiliary materials prepare a sufficient amount of a mixture of concentrated sulfuric acid and concentrated nitric acid with a volume ratio of 3:1, a sufficient amount of 10% solute mass fraction of hydrochloric acid aqueous solution, and a sufficient amount of argon;
  • step 2 the lanthanum, cerium, ferroboron FeB22C0.05 and yttrium prepared in stage 1) are mixed uniformly and then remelted and smelted by electroslag, and then cooled to Make a primary alloy billet at room temperature;
  • the primary alloy billet obtained in step 1 is ball-milled into alloy powder of 500 mesh to 1000 mesh.
  • the alloy powder is used as a raw material
  • a cylindrical silica container is used as a mold
  • a vacuum induction melting furnace integrated with electromagnetic stirring equipment is used to smelt and smelt.
  • the process is: before heating up, vacuum to 1 ⁇ 10-2Pa-1 ⁇ 10-3Pa, when the raw material starts to melt when the temperature reaches the temperature, start the electromagnetic stirring at the stirring rate of 100rpm/min-250rpm/min, and keep it warm for 20min-23min. Stop heating and use nitrogen for rapid cooling, then release the mold from the furnace to obtain a rough magnetic core;
  • the rough magnetic core obtained in step 2 is annealed at a temperature of 730°C-750°C under a vacuum degree of 1 ⁇ 10-2Pa-1 ⁇ 10-3Pa, and then the cylindrical surface of the rough magnetic core obtained after annealing and two The end faces are mechanically polished to remove the thickness of 0.3mm-0.5mm to obtain a regular magnetic core;
  • step 1 Completely immerse the carbon fiber aluminum core composite wire prepared in step 1) in step 1 into the mixed solution of concentrated sulfuric acid and concentrated nitric acid prepared in step 2, and use 200W-250W ultrasonic treatment for 3.5h-4h to obtain carboxylated passivated composite wire , And then rinse the composite wire with clean water;
  • step 2 Immerse the carboxylated and passivated composite wire obtained in step 1 into the hydrochloric acid aqueous solution prepared in step 2, immerse the hydrochloric acid aqueous solution in an ice bath at -5°C ⁇ -10°C, and turn it on at a rate of 120rpm/min-150rpm/min Stir, then put in the aniline prepared in step 1), and finally put the ammonium persulfate initiator prepared in step 1 into the reaction solution at a mass rate of 10%/min.
  • Stir for 40min-50min take out the reaction solution and remove it. Place it in a refrigerator at -5°C ⁇ -10°C for 0.5 days to 1 day, filter out the solidified material, and rinse with ethanol and water until it is clean to obtain a modified composite wire;
  • stage 2 Put the final magnetic core obtained in stage 2) as a movable structure in the fixed sleeve prepared in stage 1), and then cut off the head and tail ends of the modified composite wire obtained in stage 3) and wind it in the fixed sleeve
  • the inner surface of the barrel ensures that the modified composite wire does not contact the surface of the final magnetic core, and a composite core structure is obtained.
  • the composite core structure is the required low-cost nano composite permanent magnetic conductive contact.
  • Raw materials pure copper powder 6g, metal lanthanum 8g, cerium 4.5g, boron iron FeB22C0.05 110g, yttrium 7g, ammonium persulfate initiator 0.5g;
  • Raw materials pure copper powder 8g, metal lanthanum 6g, cerium 3.5g, boron iron FeB22C0.05 100g, yttrium 5g, ammonium persulfate initiator 0.2g;
  • the present invention also gradually improves the comprehensive magnetic properties of the magnet through the optimization of composition and process. Finally, the coercive force of the magnet is greatly improved by using the technology of grain boundary diffusion addition.
  • the present invention actually obtains the contact of pure copper on the surface and integral permanent magnet, which has both high magnetic induction and good conductor.
  • the permanent magnet is used as the core and the pure copper is the shell, which not only obtains excellent magnetic properties, It avoids the stress-sensitive defects of nano-permanent magnetic materials, and at the same time, the surface layer is toughened and impact resistant, and the surface contact area is large.
  • the present invention refers to the finger contact instead of the bridge contact, so there is no metal fatigue problem, only impact damage and wear need to be considered.
  • the present invention is not in the conventional technology, and the surface of the hard core is added
  • the relatively soft permanent magnetic pure copper not only ensures that the magnetic core will not be deformed due to insufficient core strength, but also protects the impacted surface from damage. It also builds a relatively flexible buffer between the two hard bodies. The contact surface is improved, so the invention has strong anti-fatigue ability.
  • All the materials used in the present invention are resistant to high temperature. Since there is no curing material that is not resistant to high temperature such as soldering or resin, the non-flammable carbon fiber and the non-corrosive aluminum core are passivated and protected against aniline adhesion.
  • the present invention has the characteristics of low cost, only use of abundant rare earths, high magnetic energy product, and rapid shaping.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种低成本纳米复合永磁导电触头及其制造方法,该永磁导电触头由三部分组成:固定套筒、芯体和线圈,其中芯体为以按重量份计镧6份-8份、铈3.5份-4.5份、硼铁FeB22C0.05 100份-110份、钇5份-7份为原料混炼成的合金为芯,以纯铜为壳获得的复合芯体,复合芯体套装在固定套筒中;线圈由卷绕在芯体表面的苯胺改性碳纤维铝芯复合导线绕制而成,线圈卷绕在固定套筒的内表面。本方案低成本、仅使用丰量稀土、高磁能积、快整成型。

Description

一种低成本纳米复合永磁导电触头及其制造方法 技术领域
本发明涉及电气装置技术领域,尤其涉及一种低成本纳米复合永磁导电触头及其制造方法。
背景技术
纳米复合永磁材料由纳米尺度的软磁相和硬磁相组成,理论上具有高的最大磁能积,同时材料稀土含量低,有望发展为新一代低成本高性能永磁材料。但这种材料大量应用高成本的贫稀土Nd等,成本较高且难以推广应用。
技术问题
利用La、Ce、Y等丰量稀土元素部分替代NdFeB磁体中的Nd可以有效降低材料成本,促进稀土资源平衡和高效利用。相关的研究成果已经在烧结磁体和粘结磁体中实现了产业化。而基于全丰量稀土元素La、Ce、Y永磁合金的磁体由于性能有待提高,目前还处于研究阶段。
因此,市面上急需一种低成本、仅使用丰量稀土、高磁能积、快整成型的低成本纳米复合永磁导电触头及其制造方法。
技术解决方案
本发明旨在提供一种低成本、仅使用丰量稀土、高磁能积、快整成型的低成本纳米复合永磁导电触头制造方法。
为了实现上述目的,本发明采用以下技术方案:一种低成本纳米复合永磁导电触头的制造方法,包括以下步骤:
1)原料准备
①原材料准备:按重量份准备纯铜粉6份-8份、金属镧6份-8份、铈3.5份-4.5份、硼铁FeB22C0.05 100份-110份、钇5份-7份、固定套筒、足量碳纤维铝芯复合导线、足量苯胺、过硫酸铵引发剂0.2份-0.5份;
②辅材准备:准备足量按体积比3:1配比的浓硫酸与浓硝酸的混合液,足量10%溶质质量分数的盐酸水溶液,足量氩气;
2)芯体准备
①在阶段1)步骤②准备的足量氩气保护下,将阶段1)步骤①准备的镧、铈、硼铁FeB22C0.05、钇混合均匀后经电渣重熔冶炼,然后随炉冷却至室温,制成一次合金坯;
②将步骤①获得的一次合金坯球磨成500目-1000目的合金粉末,以该合金粉末为原料,以圆柱形二氧化硅容器为模具,采用集成有电磁搅拌设备的真空感应熔炼炉熔炼,熔炼工艺为:升温前抽真空至1×10-2Pa-1×10-3Pa,待到温后原料开始熔化时计时,开启100rpm/min-250rpm/min搅拌速率的电磁搅拌,并保温20min-23min后停止加热并采用氮气速冷,然后出炉脱模,获得粗糙磁芯;
③将步骤②获得的粗糙磁芯在1×10-2Pa-1×10-3Pa真空度下,以730℃-750℃的温度退火处理,再将退火后获得的粗糙磁芯圆柱表面及两个端面均机械抛光去除0.3mm-0.5mm的厚度,获得规则磁芯;
④将阶段1)步骤①准备的纯铜粉加热至熔化后,采用超声速火焰喷涂方式均匀喷涂在步骤③获得的规则磁芯表面,然后机械抛光获得复合材料的两个端面,获得所需终制磁芯;
3)导线制备
①将阶段1)步骤①准备的碳纤维铝芯复合导线完全浸入阶段1)步骤②准备的浓硫酸与浓硝酸的混合液,采用200W-250W超声波处理3.5h-4h,获得羧化钝化复合导线,然后采用清水将复合导线漂洗干净;
②将步骤①获得的羧化钝化复合导线浸入阶段1)步骤②准备的盐酸水溶液中,将盐酸水溶液浸入-5℃~-10℃的冰浴,以120rpm/min-150rpm/min的速率开启搅拌,然后投入阶段1)步骤①准备的苯胺,最后以10%/min的质量速率在反应液中投入阶段1)步骤①准备的过硫酸铵引发剂,搅拌40min-50min,取出反应液将其在-5℃~-10℃冰箱内静置0.5天-1天,滤出固化物,并采用乙醇与水分别漂洗至漂洗干净,获得改性复合导线;
4)导电触头成型
①将阶段2)获得的终制磁芯作为可移动结构套装在阶段1)步骤①准备的固定套筒中,再将阶段3)获得的改性复合导线剪去首尾端后卷绕在固定套筒内表面,保证改性复合导线与终制磁芯表面不相接触,获得复合芯体结构,该复合芯体结构即为所需低成本纳米复合永磁导电触头。
  一种低成本纳米复合永磁导电触头,该永磁导电触头由三部分组成:固定套筒、芯体和线圈,其中芯体为以按重量份计镧6份-8份、铈3.5份-4.5份、硼铁FeB22C0.05 100份-110份、钇5份-7份为原料混炼成的合金为芯,以纯铜为壳获得的复合芯体,复合芯体套装在固定套筒中;线圈由卷绕在芯体表面的苯胺改性碳纤维铝芯复合导线绕制而成,线圈卷绕在固定套筒的内表面。
有益效果
本发明具有以下优点:(1)本发明与现在主流的研究La、Ce、Y作为Nd-Fe-B中的替代元素不同,我们从三元La-Fe-B、Ce-Fe-B和Y-Fe-B合金入手,通过成分优化,利用稀土元素之间的交互作用,改善了合金的硬磁性能和温度稳定性。借助微量元素添加,进一步优化了合金的组织、提高了合金的矫顽力。基于获得的高磁能积三元和多元合金成分,利用小批量生产的快淬纳米晶磁粉,制备了不含关键稀土元素的La、Ce、Y基稀土永磁磁体。(2)本发明还通过成分和工艺优化,逐步改善了磁体的综合磁性能。最后,利用晶界扩散添加技术大幅度提高了磁体的矫顽力。(3)本发明实际获得了表层纯铜、整体永磁体的触头,既有高的磁感、又是良导体,以永磁体为芯、纯铜为壳,既获得了优良的磁性能,又回避了纳米永磁材料对应力敏感的缺陷,同时表层韧化抗冲击、表面接触面积大。(4)本发明是指形触头而不是桥形触头,因此不存在金属疲劳的问题,仅需考虑冲击损坏和磨损,而本发明不中于常规技术,在硬质芯体表面增加了相对柔软的永磁性的纯铜,既保证了磁芯不会由于芯体强度不够导致变形,又保护了被撞击面不受损坏,还在两个硬质体间建设了相对柔性的缓冲,同时提升了接触面,因此本发明抗疲劳能力强。(5)本发明采用的所有材料均耐高温,由于没有采用锡焊或树脂等不耐高温的固化材料,同时对不耐燃的碳纤维和不耐蚀的铝芯进行了钝化和苯胺附着防护及与芯体间的绝缘处理,同时由于苯胺的原因,还获得了感觉线圈自憎水的性能,扩大了应用范围,降低了表面防护难度。因此,本发明具有低成本、仅使用丰量稀土、高磁能积、快整成型的特性。
本发明的实施方式
实施例1:
一种低成本纳米复合永磁导电触头,该永磁导电触头由三部分组成:固定套筒、芯体和线圈,其中芯体为以按重量份计镧7g、铈4.2g、硼铁FeB22C0.05 107g、钇5.8g为原料混炼成的合金为芯,以纯铜为壳获得的复合芯体,复合芯体套装在固定套筒中;线圈由卷绕在芯体表面的苯胺改性碳纤维铝芯复合导线绕制而成,线圈卷绕在固定套筒的内表面;该永磁导电触头的制造方法包括以下步骤:
1)原料准备
①原材料准备:按重量份准备纯铜粉7g、金属镧7g、铈4.2g、硼铁FeB22C0.05 107g、钇5.8g、固定套筒、足量碳纤维铝芯复合导线、足量苯胺、过硫酸铵引发剂0.2g-0.5g;
②辅材准备:准备足量按体积比3:1配比的浓硫酸与浓硝酸的混合液,足量10%溶质质量分数的盐酸水溶液,足量氩气;
2)芯体准备
①在阶段1)步骤②准备的足量氩气保护下,将阶段1)步骤①准备的镧、铈、硼铁FeB22C0.05、钇混合均匀后经电渣重熔冶炼,然后随炉冷却至室温,制成一次合金坯;
②将步骤①获得的一次合金坯球磨成500目-1000目的合金粉末,以该合金粉末为原料,以圆柱形二氧化硅容器为模具,采用集成有电磁搅拌设备的真空感应熔炼炉熔炼,熔炼工艺为:升温前抽真空至1×10-2Pa-1×10-3Pa,待到温后原料开始熔化时计时,开启100rpm/min-250rpm/min搅拌速率的电磁搅拌,并保温20min-23min后停止加热并采用氮气速冷,然后出炉脱模,获得粗糙磁芯;
③将步骤②获得的粗糙磁芯在1×10-2Pa-1×10-3Pa真空度下,以730℃-750℃的温度退火处理,再将退火后获得的粗糙磁芯圆柱表面及两个端面均机械抛光去除0.3mm-0.5mm的厚度,获得规则磁芯;
④将阶段1)步骤①准备的纯铜粉加热至熔化后,采用超声速火焰喷涂方式均匀喷涂在步骤③获得的规则磁芯表面,然后机械抛光获得复合材料的两个端面,获得所需终制磁芯;
3)导线制备
①将阶段1)步骤①准备的碳纤维铝芯复合导线完全浸入阶段1)步骤②准备的浓硫酸与浓硝酸的混合液,采用200W-250W超声波处理3.5h-4h,获得羧化钝化复合导线,然后采用清水将复合导线漂洗干净;
②将步骤①获得的羧化钝化复合导线浸入阶段1)步骤②准备的盐酸水溶液中,将盐酸水溶液浸入-5℃~-10℃的冰浴,以120rpm/min-150rpm/min的速率开启搅拌,然后投入阶段1)步骤①准备的苯胺,最后以10%/min的质量速率在反应液中投入阶段1)步骤①准备的过硫酸铵引发剂,搅拌40min-50min,取出反应液将其在-5℃~-10℃冰箱内静置0.5天-1天,滤出固化物,并采用乙醇与水分别漂洗至漂洗干净,获得改性复合导线;
4)导电触头成型
①将阶段2)获得的终制磁芯作为可移动结构套装在阶段1)步骤①准备的固定套筒中,再将阶段3)获得的改性复合导线剪去首尾端后卷绕在固定套筒内表面,保证改性复合导线与终制磁芯表面不相接触,获得复合芯体结构,该复合芯体结构即为所需低成本纳米复合永磁导电触头。
实施例2:
整体与实施例1一致,差异之处在于:
原材料:纯铜粉6g、金属镧8g、铈4.5g、硼铁FeB22C0.05 110g、钇7g、过硫酸铵引发剂0.5g;
实施例3:
整体与实施例1一致,差异之处在于:
原材料:纯铜粉8g、金属镧6g、铈3.5g、硼铁FeB22C0.05 100g、钇5g、过硫酸铵引发剂0.2g;
工业实用性
(1)本发明还通过成分和工艺优化,逐步改善了磁体的综合磁性能。最后,利用晶界扩散添加技术大幅度提高了磁体的矫顽力。(2)本发明实际获得了表层纯铜、整体永磁体的触头,既有高的磁感、又是良导体,以永磁体为芯、纯铜为壳,既获得了优良的磁性能,又回避了纳米永磁材料对应力敏感的缺陷,同时表层韧化抗冲击、表面接触面积大。(3)本发明是指形触头而不是桥形触头,因此不存在金属疲劳的问题,仅需考虑冲击损坏和磨损,而本发明不中于常规技术,在硬质芯体表面增加了相对柔软的永磁性的纯铜,既保证了磁芯不会由于芯体强度不够导致变形,又保护了被撞击面不受损坏,还在两个硬质体间建设了相对柔性的缓冲,同时提升了接触面,因此本发明抗疲劳能力强。(4)本发明采用的所有材料均耐高温,由于没有采用锡焊或树脂等不耐高温的固化材料,同时对不耐燃的碳纤维和不耐蚀的铝芯进行了钝化和苯胺附着防护及与芯体间的绝缘处理,同时由于苯胺的原因,还获得了感觉线圈自憎水的性能,扩大了应用范围,降低了表面防护难度。因此,本发明具有低成本、仅使用丰量稀土、高磁能积、快整成型的特性。
序列表自由内容
对所公开的实施例的上述说明,仅为了使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (2)

  1. 一种低成本纳米复合永磁导电触头的制造方法,其特征在于包括以下步骤:
    1)原料准备
    ①原材料准备:按重量份准备纯铜粉6份-8份、金属镧6份-8份、铈3.5份-4.5份、硼铁FeB22C0.05 100份-110份、钇5份-7份、固定套筒、足量碳纤维铝芯复合导线、足量苯胺、过硫酸铵引发剂0.2份-0.5份;
    ②辅材准备:准备足量按体积比3:1配比的浓硫酸与浓硝酸的混合液,足量10%溶质质量分数的盐酸水溶液,足量氩气;
    2)芯体准备
    ①在阶段1)步骤②准备的足量氩气保护下,将阶段1)步骤①准备的镧、铈、硼铁FeB22C0.05、钇混合均匀后经电渣重熔冶炼,然后随炉冷却至室温,制成一次合金坯;
    ②将步骤①获得的一次合金坯球磨成500目-1000目的合金粉末,以该合金粉末为原料,以圆柱形二氧化硅容器为模具,采用集成有电磁搅拌设备的真空感应熔炼炉熔炼,熔炼工艺为:升温前抽真空至1×10-2Pa-1×10-3Pa,待到温后原料开始熔化时计时,开启100rpm/min-250rpm/min搅拌速率的电磁搅拌,并保温20min-23min后停止加热并采用氮气速冷,然后出炉脱模,获得粗糙磁芯;
    ③将步骤②获得的粗糙磁芯在1×10-2Pa-1×10-3Pa真空度下,以730℃-750℃的温度退火处理,再将退火后获得的粗糙磁芯圆柱表面及两个端面均机械抛光去除0.3mm-0.5mm的厚度,获得规则磁芯;
    ④将阶段1)步骤①准备的纯铜粉加热至熔化后,采用超声速火焰喷涂方式均匀喷涂在步骤③获得的规则磁芯表面,然后机械抛光获得复合材料的两个端面,获得所需终制磁芯;
    3)导线制备
    ①将阶段1)步骤①准备的碳纤维铝芯复合导线完全浸入阶段1)步骤②准备的浓硫酸与浓硝酸的混合液,采用200W-250W超声波处理3.5h-4h,获得羧化钝化复合导线,然后采用清水将复合导线漂洗干净;
    ②将步骤①获得的羧化钝化复合导线浸入阶段1)步骤②准备的盐酸水溶液中,将盐酸水溶液浸入-5℃~-10℃的冰浴,以120rpm/min-150rpm/min的速率开启搅拌,然后投入阶段1)步骤①准备的苯胺,最后以10%/min的质量速率在反应液中投入阶段1)步骤①准备的过硫酸铵引发剂,搅拌40min-50min,取出反应液将其在-5℃~-10℃冰箱内静置0.5天-1天,滤出固化物,并采用乙醇与水分别漂洗至漂洗干净,获得改性复合导线;
    4)导电触头成型
    ①将阶段2)获得的终制磁芯作为可移动结构套装在阶段1)步骤①准备的固定套筒中,再将阶段3)获得的改性复合导线剪去首尾端后卷绕在固定套筒内表面,保证改性复合导线与终制磁芯表面不相接触,获得复合芯体结构,该复合芯体结构即为所需低成本纳米复合永磁导电触头。
  2. 一种低成本纳米复合永磁导电触头,其特征在于:该永磁导电触头由三部分组成:固定套筒、芯体和线圈,其中芯体为以按重量份计镧6份-8份、铈3.5份-4.5份、硼铁FeB22C0.05 100份-110份、钇5份-7份为原料混炼成的合金为芯,以纯铜为壳获得的复合芯体,复合芯体套装在固定套筒中;线圈由卷绕在芯体表面的苯胺改性碳纤维铝芯复合导线绕制而成,线圈卷绕在固定套筒的内表面。
     
PCT/CN2020/138491 2020-01-08 2020-12-23 一种低成本纳米复合永磁导电触头及其制造方法 WO2021139530A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010016378.6A CN111986907A (zh) 2020-01-08 2020-01-08 一种低成本纳米复合永磁导电触头及其制造方法
CN202010016378.6 2020-01-08

Publications (1)

Publication Number Publication Date
WO2021139530A1 true WO2021139530A1 (zh) 2021-07-15

Family

ID=73442171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138491 WO2021139530A1 (zh) 2020-01-08 2020-12-23 一种低成本纳米复合永磁导电触头及其制造方法

Country Status (2)

Country Link
CN (1) CN111986907A (zh)
WO (1) WO2021139530A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111986907A (zh) * 2020-01-08 2020-11-24 山东光韵智能科技有限公司 一种低成本纳米复合永磁导电触头及其制造方法
CN111986933A (zh) * 2020-01-16 2020-11-24 山东光韵智能科技有限公司 一种低成本软硬双相纳米复合永磁导电触头及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149851A (ja) * 2002-10-30 2004-05-27 Dowa Mining Co Ltd 永久磁石合金
CN104254894A (zh) * 2013-03-22 2014-12-31 Tdk株式会社 R-t-b系永久磁铁
CN106887323A (zh) * 2017-03-07 2017-06-23 北京科技大学 一种晶界扩散制备高矫顽力钕铁硼磁体的方法
CN108242303A (zh) * 2017-12-26 2018-07-03 钢铁研究总院 一种混合稀土永磁材料及其制备方法
CN208077889U (zh) * 2018-03-19 2018-11-09 贵州天义技术有限公司 一种带快速端子的高压继电器
CN110534279A (zh) * 2019-08-23 2019-12-03 华南理工大学 一种纯高丰度稀土Ce,La,Y基多元纳米晶永磁合金及制备
CN111986933A (zh) * 2020-01-16 2020-11-24 山东光韵智能科技有限公司 一种低成本软硬双相纳米复合永磁导电触头及其制造方法
CN111986907A (zh) * 2020-01-08 2020-11-24 山东光韵智能科技有限公司 一种低成本纳米复合永磁导电触头及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149851A (ja) * 2002-10-30 2004-05-27 Dowa Mining Co Ltd 永久磁石合金
CN104254894A (zh) * 2013-03-22 2014-12-31 Tdk株式会社 R-t-b系永久磁铁
CN106887323A (zh) * 2017-03-07 2017-06-23 北京科技大学 一种晶界扩散制备高矫顽力钕铁硼磁体的方法
CN108242303A (zh) * 2017-12-26 2018-07-03 钢铁研究总院 一种混合稀土永磁材料及其制备方法
CN208077889U (zh) * 2018-03-19 2018-11-09 贵州天义技术有限公司 一种带快速端子的高压继电器
CN110534279A (zh) * 2019-08-23 2019-12-03 华南理工大学 一种纯高丰度稀土Ce,La,Y基多元纳米晶永磁合金及制备
CN111986907A (zh) * 2020-01-08 2020-11-24 山东光韵智能科技有限公司 一种低成本纳米复合永磁导电触头及其制造方法
CN111986933A (zh) * 2020-01-16 2020-11-24 山东光韵智能科技有限公司 一种低成本软硬双相纳米复合永磁导电触头及其制造方法

Also Published As

Publication number Publication date
CN111986907A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2019223431A1 (zh) 一种低成本扩散源合金和晶界扩散磁体及其制备方法
WO2021139530A1 (zh) 一种低成本纳米复合永磁导电触头及其制造方法
CN109680210B (zh) 一种μ=150~250铁硅铝软磁磁粉芯的制备方法
CN110911077A (zh) 一种高矫顽力钕铈铁硼磁体的制备方法
CN108122653B (zh) 一种高性能含镝钕铁硼磁材及其制备方法
WO2021143475A1 (zh) 一种低成本软硬双相纳米复合永磁导电触头及其制造方法
CN104851545A (zh) 一种具有晶界扩散层的永磁材料制备方法
CN112447350A (zh) 一种稀土永磁体及其制备方法
WO2021139531A1 (zh) 一种自韧化纳米复合永磁导电触头及其制造方法
CN112008075A (zh) 一种稀土永磁体及其制备方法
CN109243797A (zh) 一种含Ce的纳米晶稀土永磁材料的制备方法
WO2021143476A1 (zh) 一种冷变形组织调整纳米复合永磁导电触头及其制造方法
WO2021258280A1 (zh) 一种无重稀土高性能钕铁硼永磁材料及其制备方法
CN105427988A (zh) 一种耐高温钐钴永磁体及其制备方法
CN112071543A (zh) 一种高矫顽力稀土永磁体及其制备方法
CN110093546B (zh) 一种AlFeMoNbZr核包壳高熵合金材料及其制备方法
CN113838620A (zh) 一种稀土永磁材料及其制备方法
CN111748783A (zh) 一种用于磁性材料镀膜的多元系重稀土金属靶材
CN114171276B (zh) 一种静磁耦合高强复合钕铁硼磁体及其制备方法
CN111986908A (zh) 一种低成本强制组装永磁导电触头及其制造方法
CN102296228A (zh) 一种添加碳的永磁合金块体及制备方法
CN111986940A (zh) 一种低成本强制组装软硬双相永磁导电触头及其制造方法
CN107425614A (zh) 一种永磁电机用永磁材料及其制备方法
CN110136947B (zh) 一种具有耐高温的烧结钕铁硼磁体的制备方法
CN103794355A (zh) 一种具有高居里点的钕铁硼磁体的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911993

Country of ref document: EP

Kind code of ref document: A1