WO2021135316A1 - 一种应用于折弯机器人折弯同步跟随的速度规划方法 - Google Patents

一种应用于折弯机器人折弯同步跟随的速度规划方法 Download PDF

Info

Publication number
WO2021135316A1
WO2021135316A1 PCT/CN2020/111838 CN2020111838W WO2021135316A1 WO 2021135316 A1 WO2021135316 A1 WO 2021135316A1 CN 2020111838 W CN2020111838 W CN 2020111838W WO 2021135316 A1 WO2021135316 A1 WO 2021135316A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending
coordinate system
follow
bending machine
speed
Prior art date
Application number
PCT/CN2020/111838
Other languages
English (en)
French (fr)
Inventor
赵德杰
王杰高
Original Assignee
南京埃斯顿机器人工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京埃斯顿机器人工程有限公司 filed Critical 南京埃斯顿机器人工程有限公司
Publication of WO2021135316A1 publication Critical patent/WO2021135316A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/02Bending sheet metal along straight lines, e.g. to form simple curves on press brakes without making use of clamping means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization

Definitions

  • the invention relates to a bending synchronous following method of a bending robot, in particular to a speed planning method applied to the bending synchronous following of a bending robot.
  • the bending process of the bending machine means that the die on the bending machine starts to move from the clamping point and stops after moving to the bottom dead center. During this process, the sheet material is deformed under pressure, and the sheet material is finally formed with a certain angle and width . Bending following is the core technical difficulty of bending robots, and the synchronization performance of bending following is an important factor to ensure the final bending angle of sheet metal parts. In the bending process of the bending machine, the bending follow-up process of the bending robot must be coordinated with the bending process of the bending machine.
  • the bending machine and the bending robot are two independent control systems, the bending machine There is a delay in the communication with the bending robot, and there is inevitably a synchronization problem of starting, and the following position will be advanced or lagging during the bending follow-up process.
  • the main problems existing in the existing bending follow-up are as follows: 1.
  • the suction position of the suction cup on the sheet material sometimes slips during the bend-following process. Following the lead will cause the sheet to be pushed by the gripper during bending, and the following lag will cause the sheet to be pulled by the gripper during bending. Following the lead and lag will cause the suction cup to slide on the sheet, and the follower is seriously lagging behind. It will cause the suction cup and the sheet to separate.
  • 2. The repeat positioning accuracy of the bending following stop position When the bending robot is in the automatic continuous operation mode, the same bending of the same sheet can not guarantee the same stop position following the bending, and the position lags or advances, which affects the consistency of the sheet processing effect.
  • the problem to be solved by the present invention is to overcome the defects of the prior art and propose a speed planning method applied to the synchronous follow-up of bending.
  • the method of the present invention sends a bending follow-up start signal a certain time in advance before the bending robot sends the work advance signal to the bending machine, or in the bending robot After the press brake is issued, the work advance signal is delayed for a certain time, and then the bending follow start signal is issued.
  • the bending follow needs to be started in advance or delayed start can be based on the observation of whether the sheet material starts to be deformed under pressure, whether it is convex deformation or concave deformation To decide, if it is a convex deformation, it means that the start of the bending follower is ahead, and it needs to be delayed for a certain time before starting the follow. If it is a concave deformation, it means that the start of the bending follower is lagging, and it needs a certain time to start the follower.
  • the speed planning method for synchronous follow-up of bending proposed by the present invention has the following steps:
  • Step 1 Use the three-point method to teach the user coordinate system of the bending machine on the lower mold of the bending machine.
  • the teaching steps are as follows:
  • a point on the right side of P1 is selected as a point P2 on the X axis of the user coordinate system of the bending machine;
  • the lower mold parameters V width (Width), lower mold height (Height), chamfer radius (Radius), V port angle (Angle) calculate the user coordinate system BenderFrame of the bending machine.
  • the X-axis of the coordinate system Frame taught by the three-point method is located on the outer edge of the upper plane notch of the lower mold, and needs to be translated.
  • the X-axis of the final user coordinate system of the bending machine BenderFrame is located on the bottom surface of the lower mold and is located at the bending line Right below, the translation transformation matrix T is:
  • Step 2 Determine the moving distance Dz of the upper die in a bending.
  • Dz is determined by the bending angle BendingAngle and the lower mold parameters.
  • the calculation method of Dz is:
  • Step 3 Determine the tensile length Dy of the sheet material under compression.
  • Dy is determined by factors such as the material of the sheet, Thickness, and BendingAngle.
  • the calculation method of Dy is:
  • Step 4 Determine the follow time Time of a bend.
  • the bending following speed adopts a three-stage trapezoidal planning.
  • the bending following speed parameters are: acceleration Acc, speed V, deceleration Dec, where the speed V is the same as the working speed set by the bending machine.
  • the calculation method of Time is:
  • Step 5 The synchronous follow-up of the bending machine can be regarded as the user coordinate system of the bending machine moving in three directions.
  • the user coordinate system of the bending machine has dropped by Dz mm in the negative direction of the Z axis. It translates Dy mm along the positive direction of its Y-axis, and rotates Rot degrees around its X-axis.
  • the calculation method of Rot is:
  • the bending follow task refresh cycle of the bending robot controller is T ms, and the current Dz(t), Dy(t), Rot(t) can be calculated for each refresh cycle T within the following time Time.
  • the coordinate value of the Tcp point at the end of the bending robot remains unchanged in the user coordinate system of the bending machine, but the coordinate in the world coordinate system is changed.
  • the real-time transformation matrix M followed by bending is:
  • the present invention proposes to advance or delay a certain time according to the deformation direction of the sheet material, and then start the bending follower, which solves the problem of synchronous start of the bending follower;
  • the bending follower adopts the method of tracking the user coordinate system of the bending machine.
  • the bending user coordinate system is transformed in the direction, and the following speed adopts three-stage trapezoidal planning, which solves the position leading or lagging problem in the bending follow process; accurately calculates the follow time of a bend, and solves the problem of following the stop position.
  • the speed V can be the same as the working feed speed set by the bending machine, which solves the problem of difficult to determine the following speed of the bending command setting.
  • the key point of the present invention is that when the bending robot follows the bending synchronously, its speed is divided into three stages: acceleration, uniform speed, and deceleration.
  • the bending follow can quickly start, the middle process is stable, and the slow stop.
  • the speed of the entire bending follow process can be adjusted.
  • the trajectory is supple.
  • Figure 1 is a flow chart of the synchronous follow-up of bending.
  • Figure 2 is a schematic diagram of the user coordinate system of the teaching bending machine.
  • Figure 3 is a schematic diagram of the three-stage trapezoidal planning of the bending following speed and the S-shaped planning of the upper mold moving distance Dz.
  • Figure 4 is a schematic diagram of the user coordinate system transformation of the bending machine during bending follow-up.
  • Step 1 The schematic diagram of teaching the user coordinate system of the bending machine is shown in Figure 2.
  • the taught P1 point position is (2200, 0, 900)
  • the P2 point position is (2200, -200, 900)
  • the P3 point position is (2210, -100, 900,)
  • the width of the V port of the lower mold of the bending machine The width is 5.5mm
  • the height is 140mm
  • the chamfer radius is 0.5mm
  • the angle of the V port is 28 degrees.
  • the coordinate system Frame calculated according to the taught three points P1, P2, P3 is (2200,0,900,0,0,-90), after the translation transformation matrix T:
  • the finally calculated user coordinate system BenderFrame of the bending machine is (2203.14,0,760,0,0,-90).
  • Step 2 When the bending angle BendingAngle is 90 degrees, using the lower mold parameters in step 1, the calculated upper mold movement distance Dz is 2.93mm.
  • Step 3 When the thickness of the sheet is 1.5mm and the bending angle is 90 degrees, the calculated tensile length Dy of the sheet is 1.5mm.
  • Step 4 See Figure 3 for the schematic diagram of the three-stage trapezoidal planning of bending following speed.
  • the following speed parameters are: acceleration Acc is 50mm/s 2 , speed V is 3mm/s, deceleration Dec is 25mm/s 2 , the bending follow-up time Time calculated from the moving distance Dz of the upper die and the following speed parameters is 1.068s.
  • Step 5 According to the three-stage trapezoidal planning of the bending following speed, the curve of the upper mold moving distance Dz is S-shaped, as shown in Figure 3, and RotDeg(t) rotating around the X axis is also S-shaped.
  • the user coordinate system of the bending machine dropped 2.93mm along the negative direction of its Z axis, translated 1.5mm along the positive direction of its Y axis, and rotated 45 degrees around its X axis, and the bending followed See Figure 4 for a schematic diagram of coordinate system transformation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

本发明公开了一种应用于折弯机器人折弯同步跟随的速度规划方法,折弯跟随采用的是追踪折弯机用户坐标系的方式,精确计算一道折弯中上模具移动距离、板料的受压拉伸长度、折弯的跟随时间,跟随速度采用三段式梯形规划,在三个方向上对折弯用户坐标系进行变换。该方法的折弯跟随速度响应快,同步性能好,跟随轨迹柔顺,能满足实际折弯对折弯成型角度的精度要求。

Description

一种应用于折弯机器人折弯同步跟随的速度规划方法 技术领域
本发明涉及一种折弯机器人折弯同步跟随方法,具体说是一种应用于折弯机器人折弯同步跟随的速度规划方法。
背景技术
折弯机的折弯过程是指折弯机上模具从夹紧点开始运动,运动至下死点后停止运动,在此过程中板料受压变形,板料最终成形为具有一定的角度和宽度。折弯跟随是折弯机器人的核心技术难点,折弯跟随的同步性能是保证钣金件最终折弯成形角度的重要因素。在折弯机的折弯过程中,折弯机器人的折弯跟随过程要保证与折弯机的折弯过程协同匹配,由于折弯机和折弯机器人是两个独立的控制系统,折弯机与折弯机器人之间的通信又存在着延时,不可避免地存在着启动的同步问题,而且在折弯跟随过程中也会发生跟随位置超前或滞后的问题。
现有折弯跟随存在的主要问题有:1.在折弯跟随过程中吸盘在板料上的吸取位置有时会发生滑动。跟随超前会导致板料在折弯时受抓手的推力,跟随滞后会导致板料在折弯时受抓手的拉力,跟随超前和滞后都会导致吸盘在板料上发生滑动,其中跟随严重滞后时会导致吸盘和板料脱离。2.折弯跟随停止位置的重复定位精度问题。折弯机器人在自动连续运行模式时,相同板料的同一道折弯不能保证折弯跟随的停止位置相同,发生位置滞后或超前,影响板料加工效果的一致性。3.折弯指令设置的跟随速度难以确定。目前为了保证视觉上的跟随同步,跟随指令设置的跟随速度需要经过多次调试才能确定下来。
发明内容
本发明所要解决的问题在于,克服现有技术存在的缺陷,提出一种应用于折弯同步跟随的速度规划方法。针对于折弯跟随过程中发生的跟随位置超前或滞后问题,本发明方法在折弯机器人给折弯机下发工进信号前提前一定的时间下发折弯跟随启动信号,或者在折弯机器人给折弯机下发工进信号后延迟一定的时间再下发折弯跟随启动信号,折弯跟随需要提前启动还是滞后启动可以根据观察板料开始受压变形时是上凸变形还是下凹变形来决定,如果是上凸变形说明是折弯跟随启动超前了,需要再延迟一定的时间再启动跟随,如果是下凹变形说明是折弯跟随启动滞后了,需要提前一定的时间再启动跟随。
本发明提出的一种应用于折弯同步跟随的速度规划方法,其步骤如下:
步骤1.利用三点法在折弯机下模具上示教折弯机用户坐标系,示教步骤如下:
1)在下模具槽口外沿选取一点作为折弯机用户坐标系的原点P1;
2)在下模具槽口外沿,P1点的右侧选取一点作为折弯机用户坐标系X轴上的一点P2;
3)在下模具上平面内侧上选取一点作为折弯机用户坐标系XY平面上的一点P3;
4)根据当前模具的参数下模具参数:V口宽度(Width)、下模具高度(Height)、倒角半径(Radius)、V口角度(Angle)计算出折弯机用户坐标系BenderFrame。
三点法示教出来的坐标系Frame的X轴位于下模具上平面槽口外沿,还需要经过平移变换,最终的折弯机用户坐标系BenderFrame的X轴位于下模具底面,且位于折弯线正下方,平移变换矩阵T为:
Figure PCTCN2020111838-appb-000001
步骤2.确定一道折弯中上模具移动距离Dz。Dz由折弯成型角度BendingAngle和下模具参数确定,Dz的计算方法为:
Dz=tan(90-BendingAngle/2)*(Width/2+Radius*(tan(45-Angle/4)-tan(45-BendingAngle/4))))
步骤3.确定板料的受压拉伸长度Dy。Dy由板料的材质、厚度Thickness和折弯成型角度BendingAngle等因素决定,Dy的计算方法为:
Dy=(Thickness+1.5)*((90-BendingAngle/2)/45) 2/2
步骤4.确定一道折弯的跟随时间Time。折弯跟随速度采用三段式梯形规划,折弯跟随的速度参数为:加速度Acc、速度V、减速度Dec,其中速度V和折弯机设置的工进速度相同。Time的计算方法为:
Time=V/Acc+V/Dec+(Dz-V 2/(2*Acc)-V 2/(2*Dec))/V
步骤5.折弯的同步跟随可以看做折弯机用户坐标系在三个方向上运动,在一道折弯的时间Time内,折弯机用户坐标系沿其Z轴负方向下降了Dz mm,沿其Y轴正方向平移了Dy mm,绕其X轴旋转了Rot度,Rot的计算方法为:
Rot=90-BendingAngle/2
折弯机器人控制器的折弯跟随任务刷新周期为T ms,在跟随时间Time内的每个刷新周期T都可以计算出当前的Dz(t)、Dy(t)、Rot(t)。在折弯跟随过程中,折弯机器人末端Tcp点在折弯机用户坐标系中的坐标值保持不变,但在世界坐标系中的坐标却是变化的。折弯跟随的实时变换矩阵M为:
Figure PCTCN2020111838-appb-000002
其中绕X轴旋转Rot(t)为
Rot(t)=ATAN(2*Dz(t)/Width)
本发明提出根据板料受压变形方向,提前或延迟一定的时间再启动折弯跟随,解决了折 弯跟随的同步启动问题;折弯跟随采用追踪折弯机用户坐标系的方式,在三个方向上对折弯用户坐标系进行变换,跟随速度采用三段式梯形规划,解决了在折弯跟随过程中发生的位置超前或滞后问题;准确计算一道折弯的跟随时间,解决了跟随停止位置的重复定位精度问题;速度V可以和折弯机设置的工进速度相同,解决了难以确定折弯指令设置的跟随速度问题。
本发明的关键点在于折弯机器人折弯同步跟随时其速度分为加速、匀速、减速三段,折弯跟随能快速启动,中间过程平稳,缓慢停止,整个折弯跟随过程速度可调节,跟随轨迹柔顺。
附图说明
图1是折弯同步跟随流程图。
图2是示教折弯机用户坐标系示意图。
图3是折弯跟随速度的三段式梯形规划和上模具移动距离Dz的S形规划示意图。
图4是折弯跟随时折弯机用户坐标系变换示意图。
具体实施方式
下面结合具体实施例和附图,对本发明方法作进一步详细说明。
整个折弯同步跟随的流程图见附图1。
步骤1:示教折弯机用户坐标系的示意图见附图2。示教的P1点位置为(2200,0,900),P2点位置为(2200,-200,900),P3点位置为(2210,-100,900,),折弯机下模具V口宽度Width为5.5mm,高度Height为140mm,倒角半径Radius为0.5mm,V口角度Angle为28度。根据示教的三点P1、P2、P3计算出来的坐标系Frame为(2200,0,900,0,0,-90),经过平移变换矩阵T:
Figure PCTCN2020111838-appb-000003
最终计算出的折弯机用户坐标系BenderFrame为(2203.14,0,760,0,0,-90)。
步骤2:当折弯成型角度BendingAngle为90度,使用步骤1中的下模具参数,计算出的上模具移动距离Dz为2.93mm。
2.93=tan(90-90/2)*(5.5/2+0.5*(tan(45-28/4)-tan(45-90/4))))
步骤3:当板料厚度Thickness为1.5mm,折弯成型角度BendingAngle为90度时,计算出的板料受压拉伸长度Dy为1.5mm。
1.5=(1.5+1.5)*((90-90/2)/45) 2/2
步骤4:折弯跟随速度的三段式梯形规划示意图见附图3。跟随的速度参数为:加速度Acc为50mm/s 2、速度V为3mm/s、减速度Dec为25mm/s 2,由上模具移动距离Dz和跟随的速度参数计算出的折弯跟随时间Time为1.068s。
1.068=3/50+3/25+(2.93-3 2/(2*50)-3 2/(2*25))/3
步骤5:根据折弯跟随速度的三段式梯形规划得到的上模具移动距离Dz的曲线是S形的,见附图3,而绕X轴旋转RotDeg(t)也是S形的。在一道折弯的时间1.068s内,折弯机用户坐标系沿其Z轴负方向下降了2.93mm,沿其Y轴正方向平移了1.5mm,绕其X轴旋转了45度,折弯跟随坐标系变换的示意图见附图4。

Claims (1)

  1. 一种应用于折弯机器人折弯同步跟随的速度规划方法,其步骤如下:
    步骤1.利用三点法在折弯机下模具上示教折弯机用户坐标系:
    1)在下模具槽口外沿选取一点作为折弯机用户坐标系的原点P1;
    2)在下模具槽口外沿选取另外一点作为折弯机用户坐标系X轴上的一点P2;
    3)在下模具上平面内侧上选取一点作为折弯机用户坐标系XY平面上的一点P3;
    4)根据当前模具的参数计算出折弯机用户坐标系(BenderFrame),下模具参数为:V口宽度(Width)、下模具高度(Height)、倒角半径(Radius)、V口角度(Angle);
    三点法示教出来的折弯机用户坐标系的X轴位于下模具上平面槽口外沿,经过平移变换,最终的折弯机用户坐标系的X轴位于下模具底面,且位于折弯线正下方,平移变换矩阵T为:
    Figure PCTCN2020111838-appb-100001
    步骤2.由折弯成型角度BendingAngle和下模具参数确定一道折弯中上模具移动距离Dz;
    步骤3.确定板料的受压拉伸长度Dy。Dy由板料的材质、厚度Thickness和折弯成型角度BendingAngle等因素决定;
    步骤4.在折弯跟随指令中设置跟随的速度参数:加速度Acc、速度V、减速度Dec;折弯跟随速度规划采用三段式梯形规划,其中速度V和折弯机设置的工进速度相同;由上模具移动距离Dz和跟随的速度参数确定一道折弯的跟随时间Time:
    Time=V/Acc+V/Dec+(Dz-V 2/(2*Acc)-V 2/(2*Dec))/V。
    步骤5.折弯的同步跟随可以看做折弯机用户坐标系在三个方向上运动,在一道折弯的时间Time内,折弯机用户坐标系沿其Z轴负方向下降了Dz mm,沿其Y轴正方向平移了Dy mm,绕其X轴旋转了Rot度,Rot的计算方法为:
    Rot=90-BendingAngle/2
    折弯机器人控制器的折弯跟随任务刷新周期为T ms,在跟随时间Time内的每个刷新周期T都可以计算出当前的Dz(t)、Dy(t)、Rot(t)。在折弯跟随过程中,折弯机器人末端Tcp点在折弯机用户坐标系中的坐标值保持不变,但在世界坐标系中的坐标却是变化的。折弯跟随的实时变换矩阵M为:
    Figure PCTCN2020111838-appb-100002
    其中绕X轴旋转Rot(t)为
    Rot(t)=ATAN(2*Dz(t)/Width)。
PCT/CN2020/111838 2019-12-30 2020-08-27 一种应用于折弯机器人折弯同步跟随的速度规划方法 WO2021135316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911388526.0A CN111069359B (zh) 2019-12-30 2019-12-30 一种应用于折弯机器人折弯同步跟随的速度规划方法
CN201911388526.0 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021135316A1 true WO2021135316A1 (zh) 2021-07-08

Family

ID=70319463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111838 WO2021135316A1 (zh) 2019-12-30 2020-08-27 一种应用于折弯机器人折弯同步跟随的速度规划方法

Country Status (2)

Country Link
CN (1) CN111069359B (zh)
WO (1) WO2021135316A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111069359B (zh) * 2019-12-30 2021-06-01 南京埃斯顿机器人工程有限公司 一种应用于折弯机器人折弯同步跟随的速度规划方法
CN111842556B (zh) * 2020-07-14 2022-04-26 深圳市汇川技术股份有限公司 折弯机主轴速度控制方法、折弯机及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128877A (en) * 1990-06-08 1992-07-07 Ford Motor Company Method of draw forming analytically determined binder wrap blank shape
CN103707299A (zh) * 2013-12-18 2014-04-09 南京埃斯顿机器人工程有限公司 一种实现折弯机器人折弯实时跟随的方法
CN104475504A (zh) * 2014-11-04 2015-04-01 上海新时达电气股份有限公司 机器人折弯实时跟随方法及其装置
CN108132648A (zh) * 2017-12-29 2018-06-08 南京埃斯顿机器人工程有限公司 一种基于板料拉伸变形的机器人折弯精度补偿方法
CN111069359A (zh) * 2019-12-30 2020-04-28 南京埃斯顿机器人工程有限公司 一种应用于折弯机器人折弯同步跟随的速度规划方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090447A (ja) * 2005-09-27 2007-04-12 Amada Co Ltd ロボットシステム
JP4562648B2 (ja) * 2005-12-05 2010-10-13 本田技研工業株式会社 ヘミング加工装置
CN105215096B (zh) * 2015-10-10 2017-04-26 山东斯诺自动化设备有限公司 一种具有定位、输料、折弯一体化的折弯系统及方法
CN105538318B (zh) * 2016-03-17 2020-03-17 东莞市豪斯特热冲压技术有限公司 一种冲压产品用搬运机械手装置
CN108380706B (zh) * 2018-01-17 2020-02-07 南京邮电大学 一种自动化钣金折弯生产线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128877A (en) * 1990-06-08 1992-07-07 Ford Motor Company Method of draw forming analytically determined binder wrap blank shape
CN103707299A (zh) * 2013-12-18 2014-04-09 南京埃斯顿机器人工程有限公司 一种实现折弯机器人折弯实时跟随的方法
CN104475504A (zh) * 2014-11-04 2015-04-01 上海新时达电气股份有限公司 机器人折弯实时跟随方法及其装置
CN108132648A (zh) * 2017-12-29 2018-06-08 南京埃斯顿机器人工程有限公司 一种基于板料拉伸变形的机器人折弯精度补偿方法
CN111069359A (zh) * 2019-12-30 2020-04-28 南京埃斯顿机器人工程有限公司 一种应用于折弯机器人折弯同步跟随的速度规划方法

Also Published As

Publication number Publication date
CN111069359B (zh) 2021-06-01
CN111069359A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2021135316A1 (zh) 一种应用于折弯机器人折弯同步跟随的速度规划方法
CN104128396B (zh) 工件校直机及其校直方法
CA3054697C (en) Machines to roll-form variable component geometries
US20160257002A1 (en) Robot system having robot operated in synchronization with bending machine
CN204108101U (zh) 一种汽车座椅高度调节齿板的连续精冲模具
CN105234213A (zh) 一种机器人折弯自由插补方法
CN105436302B (zh) 一种数控铜棒加工一体机
CN109248919A (zh) 一种冷连轧带钢动态剪切控制方法
CN105665612A (zh) 螺丝打头机
CN113714362B (zh) 多道次滚压式板材柔性翻边成形方法
CN207386250U (zh) 一种中空铝条的折弯工装
CN104307975B (zh) 多孔位工业铝型材卧式液压冲床
CN204953671U (zh) 一种新型板材折弯装置
CN104722614A (zh) 全机械手智能折弯机
CN205436708U (zh) 柔性线轮弯头铝合金外圆围板自动化生产设备
EP2683504B1 (en) Procedure for the dynamic correction of the bending angle of sheet metal on a panel bender machine
CN201394606Y (zh) 一种控制斜三通壁厚减薄率的装置
US10857581B2 (en) Machine for bending metal including an adjustable backgauge
CN113714359B (zh) 多道次机器人柔性翻边全模成形方法
CN105397493A (zh) 一种矫平剪板机及其控制方法
CN112620903B (zh) 一种液压支架结构件y形坡口零件加工方法
CN210175979U (zh) 一种数字化冲压工件自动加工流水线
CN202570987U (zh) 一种弧形钣金件加工用复合模
CN205380437U (zh) 一种大型金属板材机械伺服数控双角成型加工机
CN206779328U (zh) 一种检拾机器人的承托移动定位平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908905

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20908905

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 17/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20908905

Country of ref document: EP

Kind code of ref document: A1