WO2021134811A1 - 一种共烧结制备碳化硅催化膜的方法 - Google Patents

一种共烧结制备碳化硅催化膜的方法 Download PDF

Info

Publication number
WO2021134811A1
WO2021134811A1 PCT/CN2020/071015 CN2020071015W WO2021134811A1 WO 2021134811 A1 WO2021134811 A1 WO 2021134811A1 CN 2020071015 W CN2020071015 W CN 2020071015W WO 2021134811 A1 WO2021134811 A1 WO 2021134811A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
powder
sintering
particle size
catalytic film
Prior art date
Application number
PCT/CN2020/071015
Other languages
English (en)
French (fr)
Inventor
邢卫红
仲兆祥
陈嘉豪
周荣飞
徐南平
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Publication of WO2021134811A1 publication Critical patent/WO2021134811A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • B01J35/59
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention belongs to the field of air pollution control, and specifically relates to a method for co-sintering to prepare a SiC catalytic film.
  • Industrial exhaust gas mainly contains ultra-fine dust, nitrogen oxides (NO x ), volatile organic compounds (VOCs) and other pollutants.
  • Industrial exhaust gas must be deeply treated to meet ultra-low emission standards.
  • dust removal and catalytic degradation of harmful components are completed by independent operation units, which makes equipment investment and operating costs high. If multifunctional filter materials such as catalytic membranes can be developed to achieve dust removal, denitrification, and VOCs removal in one operation unit, it will greatly simplify the process of removing industrial exhaust pollutants and have important significance for air pollution control.
  • the purpose of the present invention is to prepare a SiC catalytic film in one step, solve the problems of complicated preparation process and long working procedure of the SiC catalytic film, and use the prepared SiC catalytic film for the removal of ultrafine dust of industrial exhaust gas and the high-efficiency degradation of NOx and VOCs.
  • a method for preparing SiC catalytic film by co-sintering includes the following steps:
  • the perovskite precursor powder, the SiC powder of a certain particle size and the carbon powder are initially mixed according to a certain metering ratio, and then ball milled and blended for a certain period of time at a certain speed;
  • the metal carbonate and oxide powders of a certain particle size used in step (1) are strontium carbonate (particle size: 300-500nm), titanium dioxide (particle size: 20-30nm), and ferric oxide (particle size: 20 -30nm), nickel oxide (particle size: 30-60nm) and niobium pentoxide (particle size: 40-70nm);
  • strontium carbonate particle size: 300-500nm
  • titanium dioxide particle size: 20-30nm
  • ferric oxide particle size: 20 -30nm
  • nickel oxide particle size: 30-60nm
  • niobium pentoxide particle size: 40-70nm
  • the rotating speed of the ball mill used is Rpm
  • ball milling time is The drying temperature is
  • the average particle size of the SiC powder selected in step (2) is 200 ⁇ m, and the average particle size of the carbon powder is 20 ⁇ m; the mass ratio used is:
  • the ball mill speed is Rpm, ball milling time is
  • the binder used in step (4) is mass percentage
  • the ratio of the amount of polyvinyl alcohol (PVA) solution used to the mass of SiC powder is
  • step (4) The calcination procedure of step (4) is: from room temperature to /Min heating rate rises to And keep warm Then with The heating rate of degrees/minute rises to And keep warm Finally, the temperature naturally cools down.
  • the SiC catalytic film prepared by co-sintering of the present invention can be used for the deep treatment of industrial exhaust pollutants.
  • perovskite SrTiFeNiNbO 3 phase Utilizing the chemical inertness of SiC, metal oxides and strontium carbonate preferentially undergo solid-phase reaction at high temperatures to form the perovskite SrTiFeNiNbO 3 phase.
  • the formed perovskite phase flows to the SiC particle boundary through solid phase diffusion to form a neck connection.
  • the SiC catalytic film high mechanical strength and gas permeability.
  • the produced perovskite has better catalytic activity due to the presence of its B-site catalytically active components Ti, Fe, Ni and Nb.
  • the metal oxide powder in the perovskite raw material is used as a sintering aid to significantly reduce the sintering temperature of the SiC catalytic film. Burning the added carbon powder at 500-600°C is not only conducive to the formation of the pore structure, but the heat generated can reduce the sintering temperature of the pure perovskite phase by 40°C, thereby further reducing the sintering temperature of the SiC catalytic film.
  • the SiC catalytic membrane is prepared by a one-step method, eliminating the need for catalyst loading, drying, calcination and other steps, saving preparation time and energy consumption.
  • the prepared SiC catalytic film can simultaneously intercept dust and degrade nitrogen oxides and VOCs, and has a wide range of application prospects in the field of gas purification.
  • Figure 1 is an SEM image of the SiC catalytic film prepared as described in Example 1;
  • Example 2 is an EDX diagram of the SiC catalytic film prepared as described in Example 1;
  • Example 4 is a diagram of the pore size distribution of the SiC catalytic membrane prepared as described in Example 2.
  • the preparation steps are as follows:
  • Figure 1 is an SEM image of the prepared SiC catalytic film.
  • the black part is SiC particles, and the bright white part is the perovskite phase.
  • Figure 2 is an EDX diagram of a SiC catalytic film.
  • the perovskite phase is generated at the boundary between the SiC particles and the particles, and the generated perovskite phase acts as a binder to connect the SiC particles together to form a neck connection, which enhances the bending strength of SiC and gives the SiC film Catalytic performance.
  • FIG. 3 is an XRD pattern of the SiC catalytic film prepared in Example 2.
  • the prepared SiC catalytic film has the same peak as the SiC standard peak, indicating that the SiC maintains its crystal structure after the co-sintering is completed.
  • Fig. 4 is a pore size distribution diagram of the SiC catalytic membrane prepared as described in Example 2, and the average pore size is 34 ⁇ m. Due to the better retention of the SiC pore structure after calcination and the larger pore diameter, the gas flux is 1193.87 m 3 ⁇ m -2 ⁇ h -1 ⁇ KPa -1 and the porosity is 48%.
  • the prepared SiC catalytic membrane has good mechanical strength (22MPa), a good retention rate of dust, about 99.9%, and can maintain a low pressure drop (561Pa).
  • the prepared SiC catalytic film Under the conditions of 500 ppm toluene (typical VOCs gas) and 10.5% O 2 , the prepared SiC catalytic film has a toluene degradation rate of 98%, and also has a high dust rejection rate (99.9%).
  • the prepared SiC catalytic film has good degradation performance for NOx (72%) and good dust retention performance (99.9%).

Abstract

本发明涉及一种共烧结制备碳化硅催化膜的方法,该方法首先通过将碳酸锶,二氧化钛,三氧化二铁,氧化镍和五氧化二铌混合球磨制备钙钛矿前驱体粉体,接着将前驱体粉体,碳粉和SiC粉体球磨共混,然后在高温下原位固相烧结产生钙钛矿相,利用产生的钙钛矿将SiC颗粒粘结到一起,一步制备具有催化活性的SiC分离膜。该方法利用了钙钛矿原料中金属氧化物作为烧结助剂以及碳粉燃烧产生的热量,降低了SiC的烧结温度。制备的SiC催化膜能够同时截留粉尘和降解氮氧化物、VOCs,适合应用于大气污染治理领域。

Description

一种共烧结制备碳化硅催化膜的方法 技术领域
本发明属于大气污染治理领域,具体涉及一种共烧结制备SiC催化膜的方法。
背景技术
工业尾气中主要包含超细粉尘、氮氧化物(NO x)、挥发性有机物(VOCs)等污染物,必须对工业尾气进行深度治理以达到超低排放标准。已有的工业尾气净化系统中除尘和催化降解有害组分由独立的操作单元完成,这使得设备投资和运行成本都很高。如果能开发多功能过滤材料如催化膜,在一个操作单元里同时实现除尘和脱硝、脱VOCs,将大为简化工业尾气污染物脱除流程,对大气污染治理具有重要的意义。
用于气体净化的催化膜已经有了一些研究。中国发明专利CN109224874A报道了在不同膜材料上负载MnOx的催化膜。制得的催化膜比表面积大,低温下对NO x的催化活性优异,同时对粉尘有较好的截留性能;中国发明专利CN108404687A报道了在膜材料上先负载碳纳米管、线,构建多层次结构,然后包覆金属有机骨架的催化膜,该催化膜能够实现对超细粉尘和特定污染气体的高效吸附净化;中国发明专利CN104906946A报道了利用金属醇盐前驱体溶胶对陶瓷膜孔道进行修饰然后负载催化剂的催化膜,该催化膜能在截留颗粒污染物的同时有效去除气体污染物。虽然上述催化膜都能有效截留粉尘和降解特定气体污染物,但这些催化膜的制备一般都较繁琐,制备成本较高。
发明内容
本发明的目的在于一步制备SiC催化膜,解决SiC催化膜制备过程复杂、工序长等问题,并将制备的SiC催化膜用于工业尾气的超细粉尘脱除和NOx、VOCs的高效降解。
本发明通过以下技术方案实现:
一种共烧结制备SiC催化膜的方法,包括如下步骤:
(1)称取一定摩尔比的、一定粒径的金属碳酸盐和氧化物粉末,与无水乙醇溶液混合并置于球磨罐中,在一定转速下球磨搅拌一定时间,干燥后得到钙钛矿前驱体粉料;
(2)按一定计量比将钙钛矿前驱体粉料,一定粒径的SiC粉体和碳粉初混合,然后在一定转速下球磨共混一定时间;
(3)将球磨好的粉料用50-60目的筛子筛分,得到一定粒径的混合粉体;
(4)加入粘结剂与混合粉料混合搅拌,挤压成型后烧结得到SiC催化膜。
进一步的:
步骤(1)所用的一定粒径的金属碳酸盐和氧化物粉末分别为碳酸锶(粒径:300-500nm),二氧化钛(粒径:20-30nm),三氧化二铁(粒径:20-30nm),氧化镍(粒径:30-60nm)和五氧化二铌(粒径:40-70nm);其中
Figure PCTCN2020071015-appb-000001
Figure PCTCN2020071015-appb-000002
所用球磨机设置的转速为
Figure PCTCN2020071015-appb-000003
转/分钟,球磨时间为
Figure PCTCN2020071015-appb-000004
干燥温度为
Figure PCTCN2020071015-appb-000005
步骤(2)选用的SiC粉体的平均粒径为200μm,碳粉的平均粒径为20μm;所用的质量比为:
Figure PCTCN2020071015-appb-000006
球磨转速为
Figure PCTCN2020071015-appb-000007
转/分钟,球磨时间为
Figure PCTCN2020071015-appb-000008
步骤(4)所用的粘结剂为质量百分比
Figure PCTCN2020071015-appb-000009
的聚乙烯醇(PVA)溶液,所用的量与SiC粉体的质量比为
Figure PCTCN2020071015-appb-000010
步骤(4)的煅烧程序为:从室温以
Figure PCTCN2020071015-appb-000011
/分钟的升温速率升至
Figure PCTCN2020071015-appb-000012
并保温
Figure PCTCN2020071015-appb-000013
Figure PCTCN2020071015-appb-000014
然后以
Figure PCTCN2020071015-appb-000015
度/分钟的升温速率升至
Figure PCTCN2020071015-appb-000016
并保温
Figure PCTCN2020071015-appb-000017
最后自然降温。
本发明的一种共烧结制备SiC催化膜可用于工业尾气污染物的深度治理。
本发明的有益效果:
1.利用SiC的化学惰性,在高温下金属氧化物与碳酸锶优先发生固相反应形成钙钛矿SrTiFeNiNbO 3相,形成的钙钛矿相通过固相扩散流动到SiC颗粒边界形成颈部连接,赋予了SiC催化膜高的机械强度以及气体渗透性。此外,产生的钙钛矿由于其B位催化活性组分Ti,Fe,Ni和Nb的存在而具有较好的催化活性。
2.钙钛矿原料中的金属氧化物粉末作为烧结助剂显著降低了SiC催化膜的烧结温度。添加的碳粉在500~600℃燃烧不仅有利于孔结构的形成,产生的热量能使纯钙钛矿相的烧结温度降低40℃,从而进一步降低了SiC催化膜的烧结温度。
3.通过一步法制备SiC催化膜,省去催化剂的负载、烘干、煅烧等步骤,节约了制备时间和能源消耗。
4.制备的SiC催化膜能够同时截留粉尘和降解氮氧化物、VOCs,在气体净化领域具有广泛的应用前景。
附图说明
图1为实施例1所述制备的SiC催化膜的SEM图;
图2为实施例1所述制备的SiC催化膜的EDX图;
图3为实施例2所述制备的SiC催化膜的XRD图;
图4为实施例2所述制备的SiC催化膜的孔径分布图。
具体实施方式
在下面结合实施例对本发明作进一步详细的解释,下列实施例仅限于说明本发明,但本发明的实施方式不限于此。
实施例1
本实施例的共烧结制备SiC催化膜的制备方法,制备步骤如下:
(1)按碳酸锶∶二氧化钛∶三氧化二铁∶氧化镍∶五氧化二铌摩尔比为1∶0.65∶0.15∶0.15∶0.05称取相应质量的粉体。将称好的粉体倒入球磨罐中,同时加入乙醇溶液没过粉体,然后在200转/分钟转速下球磨4h。60℃干燥后得到钙钛矿前驱体粉体。
(2)按钙钛矿前驱体粉体∶碳粉∶SiC粉体质量比为1∶2∶7的比例称取对应质量的粉体并倒入球磨罐中,在200转/分钟转速下球磨4h。
(3)将球磨好的粉体倒出,并用50目的筛子筛分。
(4)按PVA∶SiC混合粉体质量比为1∶19称取6wt.%的PVA溶液。然后在8MPa下保压20s使混合粉体成型。
(5)将成型的混合粉末置于马弗炉中,从室温以1℃/min升至500℃,保温2h,然后以1℃/min升至1280℃,保温2h,最后自然降温得到SiC催化膜。
图1为制备的SiC催化膜的SEM图。黑色部分为SiC颗粒,亮白色部分为钙钛矿相。图2为SiC催化膜的EDX图。SiC颗粒与颗粒的边界处产生了钙钛矿相,并且产生的钙钛矿相作为粘结剂将SiC颗粒连接到一起,形成了颈部连接,增强了SiC的抗弯曲强度,赋予了SiC膜催化性能。
实施例2
(1)按碳酸锶∶二氧化钛∶三氧化二铁∶氧化镍∶五氧化二铌摩尔比为1∶0.65∶0.15∶0.15∶0.05称取相应质量的粉末。将称好的粉末倒入球磨罐中,同时加入乙醇溶 液并使其没过粉末,然后在250转/分钟的转速下球磨3h。60℃干燥后得到钙钛矿前驱体粉末。
(2)按钙钛矿前驱体粉末∶碳粉∶SiC粉体质量比为1∶2.5∶9的比例称取对应质量的粉末并倒入球磨罐中,在250转/分钟的转速下球磨3h。
(3)将球磨好的粉末倒出,并用60目的筛子对粉末进行筛分。
(4)按PVA∶SiC混合粉末质量比为1:19称取6wt.%的PVA溶液。然后在10MPa下保压15s使混合粉末成型。
(5)将成型的混合粉末置于马弗炉中,从室温以2℃/min升至500℃,保温3h,然后以1℃/min升至1280℃,保温2h,最后自然降温得到SiC催化膜。
图3为实施例2所述制备的SiC催化膜的XRD图,制备的SiC催化膜具有与SiC标准峰相同的峰,表明共烧结完成后SiC维持了其晶体结构。图4为实施例2所述制备的SiC催化膜的孔径分布图,其平均孔径为34μm。由于SiC孔道结构在煅烧后得到了较好的保留以及较大的孔道直径,其气通量为1193.87m m -2·h -1·KPa -1,孔隙率为48%。
实施例3
(1)按碳酸锶∶二氧化钛∶三氧化二铁∶氧化镍∶五氧化二铌摩尔比为1∶0.6∶0.15∶0.15∶0.1称取相应质量的粉末。将称好的粉末倒入球磨罐中,同时加入乙醇溶液并使其没过粉末,然后在300转/分钟的转速下球磨2h。80℃干燥后得到钙钛矿前驱体粉末。
(2)按钙钛矿前驱体粉末∶碳粉∶SiC粉体质量比为1∶2.5∶9的比例称取对应质量的粉末并倒入球磨罐中,在300转/分钟的转速下球磨3h。
(3)将球磨好的粉末倒出,并用60目的筛子对粉末进行筛分。
(4)按PVA∶SiC混合粉末质量比为1:11.5称取7wt.%的PVA溶液。然后在10MPa下保压20s使混合粉末成型。
(5)将成型的混合粉末置于马弗炉中,从室温以3℃/min升至550℃,保温3h,然后以2℃/min升至1300℃,保温3h,最后自然降温得到SiC催化膜。
制备的SiC催化膜具有很好的机械强度(22MPa),对粉尘具有较好的截留率,约为99.9%,同时能够维持较低的压降(561Pa)。
实施例4
(1)按碳酸锶∶二氧化钛∶三氧化二铁∶氧化镍∶五氧化二铌摩尔比为1∶0.6∶ 0.15∶0.15∶0.1称取相应质量的粉末。将称好的粉末倒入球磨罐中,同时加入乙醇溶液并使其没过粉末,然后在300转/分钟的转速下球磨3h。80℃干燥后得到钙钛矿前驱体粉末。
(2)按钙钛矿前驱体粉末∶碳粉∶SiC粉体质量比为1∶1.67∶5.67的比例称取对应质量的粉末并倒入球磨罐中,在300转/分钟的转速下球磨2h。
(3)将球磨好的粉末倒出,并用60目的筛子对粉末进行筛分。
(4)按PVA∶SiC混合粉末质量比为1:9称取8wt.%的PVA溶液。然后在12MPa下保压10s使混合粉末成型。
(5)将成型的混合粉末置于马弗炉中,从室温以1℃/min升至600℃保温2h,然后以3℃/min升至1300℃,保温4h,最后自然降温得到SiC催化膜。
在500ppm甲苯(典型的VOCs气体),10.5%O 2的条件下,制备的SiC催化膜对甲苯的降解率达98%,此外对粉尘具有高的截留率(99.9%)。
实施例5
(1)按碳酸锶∶二氧化钛∶三氧化二铁∶氧化镍∶五氧化二铌摩尔比为1∶0.5∶0.2∶0.2∶0.1称取相应质量的粉末。将称好的粉末倒入球磨罐中,同时加入乙醇溶液并使其没过粉末,然后在200转/分钟的转速下球磨4h。100℃干燥后得到钙钛矿前驱体粉末。
(2)按钙钛矿前驱体粉末∶碳粉∶SiC粉体质量比为1∶1.67∶5.67的比例称取对应质量的粉末并倒入球磨罐中,在300转/分钟的转速下球磨2h。
(3)将球磨好的粉末倒出,并用60目的筛子对粉末进行筛分。
(4)按PVA∶SiC混合粉末质量比为1:9称取8wt.%的PVA溶液。然后在12MPa下保压10s使混合粉末成型。
(5)将成型的混合粉末置于马弗炉中,从室温以2℃/min升至600℃,保温4h,然后以3℃/min升至1320℃,保温4h,最后自然降温得到SiC催化膜。
在300ppm NO,300ppm NH 3,8%O 2的条件下,制备的SiC催化膜对NOx具有很好的降解性能(72%)并且对粉尘具有很好的截留性能(99.9%)。

Claims (5)

  1. 一种共烧结制备SiC催化膜的方法,其特征在于,包括以下制备步骤:
    (1)称取一定摩尔比的、一定粒径的金属碳酸盐和氧化物粉末,与无水乙醇溶液混合并置于球磨罐中,在一定转速下球磨搅拌一定时间,干燥后得到钙钛矿前驱体粉料;
    (2)按一定计量比将钙钛矿前驱体粉料,一定粒径的SiC粉体和碳粉初混合,然后在一定转速下球磨共混一定时间;
    (3)将球磨好的粉料用50-60目的筛子筛分,得到一定粒径的混合粉体;
    (4)加入粘结剂与混合粉料混合搅拌,挤压成型后烧结得到SiC催化膜。
  2. 根据权利要求1所述的一种共烧结制备SiC催化膜的方法,其特征在于,步骤(1)所用的一定粒径的金属碳酸盐和氧化物粉末分别为碳酸锶(粒径:300-500nm),二氧化钛(粒径:20-30nm),三氧化二铁(粒径:20-30nm),氧化镍(粒径:30-60nm)和五氧化二铌(粒径:40-70nm);其中
    Figure PCTCN2020071015-appb-100001
    Figure PCTCN2020071015-appb-100002
    所用球磨机设置的转速为
    Figure PCTCN2020071015-appb-100003
    转/分钟,球磨时间为
    Figure PCTCN2020071015-appb-100004
    干燥温度为
    Figure PCTCN2020071015-appb-100005
  3. 根据权利要求1所述的一种共烧结制备SiC催化膜的方法,其特征在于,步骤(2)选用的SiC粉体的平均粒径为200μm,碳粉的平均粒径为20μm;所用的质量比为:
    Figure PCTCN2020071015-appb-100006
    球磨转速为
    Figure PCTCN2020071015-appb-100007
    Figure PCTCN2020071015-appb-100008
    转/分钟,球磨时间为
    Figure PCTCN2020071015-appb-100009
  4. 根据权利要求1所述的一种共烧结制备SiC催化膜的方法,其特征在于,步骤(4)所用的粘结剂为质量百分比
    Figure PCTCN2020071015-appb-100010
    的聚乙烯醇(PVA)溶液,所用的量与SiC粉体的质量比为
    Figure PCTCN2020071015-appb-100011
  5. 根据权利要求1所述的一种共烧结制备SiC催化膜的方法,其特征在于,步骤(4)的煅烧程序为:从室温以
    Figure PCTCN2020071015-appb-100012
    /分钟的升温速率升至
    Figure PCTCN2020071015-appb-100013
    并保温
    Figure PCTCN2020071015-appb-100014
    然后以
    Figure PCTCN2020071015-appb-100015
    度/分钟的升温速率升至
    Figure PCTCN2020071015-appb-100016
    并保温
    Figure PCTCN2020071015-appb-100017
    最后自然降温。
    权利要求1-5项任一项所述的SiC催化膜在大气污染治理领域的应用。
PCT/CN2020/071015 2020-01-03 2020-01-08 一种共烧结制备碳化硅催化膜的方法 WO2021134811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010004775.1 2020-01-03
CN202010004775.1A CN111167491B (zh) 2020-01-03 2020-01-03 一种共烧结制备碳化硅催化膜的方法

Publications (1)

Publication Number Publication Date
WO2021134811A1 true WO2021134811A1 (zh) 2021-07-08

Family

ID=70623870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071015 WO2021134811A1 (zh) 2020-01-03 2020-01-08 一种共烧结制备碳化硅催化膜的方法

Country Status (2)

Country Link
CN (1) CN111167491B (zh)
WO (1) WO2021134811A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700088A (zh) * 2022-03-23 2022-07-05 天津水泥工业设计研究院有限公司 一种将粉煤灰资源化利用制备的中低温脱硝催化剂及其制备方法与应用
CN115448726A (zh) * 2022-09-05 2022-12-09 南京工业大学 一种酸刻蚀增强碳化硅膜材料催化性能的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000088A1 (en) * 1988-06-28 1990-01-11 Matsushita Electric Industrial Co., Ltd. Catalytic assembly for use in cleaning exhaust gas
CN101913905A (zh) * 2010-08-31 2010-12-15 麦乔智 一种多孔性陶瓷组成物及其制备方法与应用
CN102574121A (zh) * 2009-09-28 2012-07-11 日本碍子株式会社 蜂窝状结构体
CN104649709A (zh) * 2013-11-17 2015-05-27 宋永法 一种多孔碳化硅陶瓷的制造方法
CN104774015A (zh) * 2014-01-14 2015-07-15 广州市香港科大霍英东研究院 一种形貌可控高孔隙率多孔陶瓷膜支撑体及其制备方法
CN105130441A (zh) * 2015-07-28 2015-12-09 江苏久吾高科技股份有限公司 一种碳化硅陶瓷膜及其制备方法
CN105214706A (zh) * 2015-10-28 2016-01-06 杭州正清环保科技有限公司 一种用于废气处理的催化陶瓷烧结环及制备方法
CN107930663A (zh) * 2017-12-14 2018-04-20 吴海 一种增韧型SiC陶瓷汽车尾气净化材料及其制备方法
CN110124708A (zh) * 2019-05-24 2019-08-16 中建材环保研究院(江苏)有限公司 一种水泥窑烟气scr脱硝用催化剂及脱硝系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316595A (zh) * 2012-03-18 2013-09-25 殷雄 一种不对称管式陶瓷膜及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000088A1 (en) * 1988-06-28 1990-01-11 Matsushita Electric Industrial Co., Ltd. Catalytic assembly for use in cleaning exhaust gas
CN102574121A (zh) * 2009-09-28 2012-07-11 日本碍子株式会社 蜂窝状结构体
CN101913905A (zh) * 2010-08-31 2010-12-15 麦乔智 一种多孔性陶瓷组成物及其制备方法与应用
CN104649709A (zh) * 2013-11-17 2015-05-27 宋永法 一种多孔碳化硅陶瓷的制造方法
CN104774015A (zh) * 2014-01-14 2015-07-15 广州市香港科大霍英东研究院 一种形貌可控高孔隙率多孔陶瓷膜支撑体及其制备方法
CN105130441A (zh) * 2015-07-28 2015-12-09 江苏久吾高科技股份有限公司 一种碳化硅陶瓷膜及其制备方法
CN105214706A (zh) * 2015-10-28 2016-01-06 杭州正清环保科技有限公司 一种用于废气处理的催化陶瓷烧结环及制备方法
CN107930663A (zh) * 2017-12-14 2018-04-20 吴海 一种增韧型SiC陶瓷汽车尾气净化材料及其制备方法
CN110124708A (zh) * 2019-05-24 2019-08-16 中建材环保研究院(江苏)有限公司 一种水泥窑烟气scr脱硝用催化剂及脱硝系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700088A (zh) * 2022-03-23 2022-07-05 天津水泥工业设计研究院有限公司 一种将粉煤灰资源化利用制备的中低温脱硝催化剂及其制备方法与应用
CN115448726A (zh) * 2022-09-05 2022-12-09 南京工业大学 一种酸刻蚀增强碳化硅膜材料催化性能的方法
CN115448726B (zh) * 2022-09-05 2024-02-06 南京工业大学 一种酸刻蚀增强碳化硅膜材料催化性能的方法

Also Published As

Publication number Publication date
CN111167491B (zh) 2022-07-29
CN111167491A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
CN103357406B (zh) 一种稀土元素掺杂的钙钛矿型负载钌氨合成催化剂
CN105195197A (zh) 一种大比表面积-可见光响应TiO2催化剂及其制备方法
EP2353713A1 (en) Composite oxide for exhaust-gas purification catalyst, process for producing same, coating material for exhaust-gas purification catalyst, and filter for diesel exhaust-gas purification
CN113754422A (zh) 一种多孔高熵铁酸稀土陶瓷材料及其制备方法与应用
CN109659575B (zh) 一种镍掺杂的碳化钼/钯复合材料及其制备和应用
WO2021134811A1 (zh) 一种共烧结制备碳化硅催化膜的方法
CN103374430B (zh) 一种高稳定性载氧体及其制备方法和应用
WO2023020495A1 (zh) 一种柴油车用整体式cDPF复合材料及其制备方法
JP2013129554A (ja) 複合酸化物、その製造法及び排ガス浄化用触媒
CN104193397B (zh) 钙钛矿结构多孔Ba0.5Sr0.5Co0.8Fe0.2O3-δ材料及其制备方法
CN105903458A (zh) 一种钙基吸附剂的制备方法及应用
KR102220265B1 (ko) 니켈이 도핑된 페로브스카이트계 금속산화물의 조성제어 및 후처리를 통한 막반응기용 고온안정성 나노 니켈입자 촉매 제조방법
CN106622351A (zh) 一种镍基纳米复合载体除焦油催化剂的制备方法
CN102188983B (zh) 纤维状纳米多孔v2o5-k2so4/复合载体催化剂及其应用
CN106179299B (zh) 负载纳米氧化钛的气凝胶光催化剂的制备设备
CN112573569B (zh) 一种具有高耐热性的稀土复合氧化物及其制备方法
CN113941338B (zh) 脱硝除尘一体化陶瓷管催化剂及其制备方法和烟气脱硝除尘的方法
CN113877568A (zh) 多孔耐高温催化剂及其制备方法
CN111138199B (zh) 一种共烧结制备水处理用碳化硅催化膜的方法
CN113737214A (zh) ABO3型高熵钙钛矿Bax(FeCoNiZrY)0.2O3-δ电催化材料及其制备
CN111495350A (zh) 一种纳米Co9S8-多孔碳纳米纤维氧还原催化剂及其制法
CN115448726B (zh) 一种酸刻蚀增强碳化硅膜材料催化性能的方法
CN113856696B (zh) 一种镍基甲烷二氧化碳重整制氢催化剂的制备方法
CN102716738B (zh) 一种纤维状纳米多孔催化剂及其制备方法和应用
WO2023065400A1 (zh) 一种多孔型多重掺杂钙钛矿催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908659

Country of ref document: EP

Kind code of ref document: A1