WO2021134602A1 - 低硫柴油堵塞抑制剂及其制备方法和应用 - Google Patents

低硫柴油堵塞抑制剂及其制备方法和应用 Download PDF

Info

Publication number
WO2021134602A1
WO2021134602A1 PCT/CN2019/130789 CN2019130789W WO2021134602A1 WO 2021134602 A1 WO2021134602 A1 WO 2021134602A1 CN 2019130789 W CN2019130789 W CN 2019130789W WO 2021134602 A1 WO2021134602 A1 WO 2021134602A1
Authority
WO
WIPO (PCT)
Prior art keywords
inhibitor
low
vegetable oil
sulfur diesel
clogging
Prior art date
Application number
PCT/CN2019/130789
Other languages
English (en)
French (fr)
Inventor
李澜鹏
曹长海
程瑾
李秀峥
王宜迪
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司大连石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司大连石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to EP19958128.1A priority Critical patent/EP4083011B1/en
Priority to JP2022539658A priority patent/JP7494304B2/ja
Priority to BR112022013145A priority patent/BR112022013145A2/pt
Priority to ES19958128T priority patent/ES2973156T3/es
Priority to KR1020227026475A priority patent/KR20220119734A/ko
Priority to PCT/CN2019/130789 priority patent/WO2021134602A1/zh
Priority to US17/758,282 priority patent/US11912657B2/en
Priority to CA3166335A priority patent/CA3166335A1/en
Publication of WO2021134602A1 publication Critical patent/WO2021134602A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/74Unsaturated compounds containing —CHO groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/353Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/487Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/38Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
    • C10M129/40Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/86Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
    • C10M129/92Carboxylic acids
    • C10M129/93Carboxylic acids having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/14Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by isomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/08Inhibitors
    • C10L2230/083Disinfectants, biocides, anti-microbials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the invention belongs to the field of bio-based clogging inhibitors, and specifically relates to a compound that can be used as a vegetable oil-based clogging inhibitor, a preparation method thereof, a vegetable oil-based clogging inhibitor, a preparation method and application thereof, and a low-temperature compound containing the vegetable oil-based clogging inhibitor. Sulfur diesel blocking inhibitor and low-sulfur diesel using the blocking inhibitor.
  • anti-wear agents are usually added to diesel.
  • the anti-wear agents on the market mainly include unsaturated fatty acids and their unsaturated fatty acid esters, amide derivatives, etc.
  • acid-type anti-wear agents account for about 70% of the market
  • ester-type and amide-type anti-wear agents The agent accounts for about 30% of the market.
  • Adding vegetable oleic acid to low-sulfur diesel can also solve the problem of diesel lubricity. But usually, most vegetable oleic acid contains a certain amount of saturated fatty acids with a higher freezing point.
  • the existing separation methods, such as freezing and pressing, distillation refining, etc. are difficult to completely separate the saturated fatty acids of vegetable oleic acid due to the close boiling point.
  • the freezing point of vegetable oleic acid on the market is generally higher than -8°C, which cannot reach the use standard of acid clogging inhibitor freezing point ⁇ -12°C specified in the Q/SHCG 57-2014 standard.
  • the above-mentioned anti-wear agents cannot well solve the problem of insufficient fuel supply due to clogged engine filter nozzles, which in turn leads to wear of the fuel injectors and engine failures, resulting in a reduction in the life of the diesel pump. Therefore, it is necessary to further research and develop a clogging inhibitor product suitable for low-sulfur diesel.
  • the present invention provides a vegetable oil-based blockage inhibitor and a preparation method and application thereof.
  • the vegetable oil-based clogging inhibitor prepared by the invention has the advantages of low freezing point, low acid value, low blending ratio, good lubricity and the like. After being blended, the clogging inhibitor product can meet the national V lubricity standard and freezing point requirements.
  • the present invention provides a compound represented by formula (I):
  • n 12.
  • x and y are each independently 0 or 1.
  • the values of x and y are the same or different.
  • R 1 and R 2 are each selected from H, methyl or ethyl.
  • R 1 and R 2 are the same or different.
  • the second aspect of the present invention provides the use of the above-mentioned compound as a vegetable oil-based blockage inhibitor.
  • the present invention provides a method for preparing a vegetable oil-based blockage inhibitor, characterized in that the method includes the following steps:
  • step (2) The product obtained in step (1) contact reaction is acidified, washed with water, and then separated into an aqueous phase to obtain modified vegetable oil fatty acid;
  • the non-conjugated vegetable oil described in step (1) is a vegetable oil with non-conjugated carbon-carbon double bonds, linolenic acid content not greater than 0.6%, iodine value not less than 60mgKOH/g, preferably not less than 85mgKOH/g; Preferably, it is one or more of corn oil, cottonseed oil, peanut oil, sesame oil, and aronia oil.
  • the alkali in step (1) is potassium hydroxide and/or sodium hydroxide, and the amount used is 0.5-0.6 times the mass of the non-conjugated vegetable oil;
  • the alcohol is a saturated diol, and preferably has 2 carbon atoms.
  • the saturated diol of -5 is more preferably at least one of ethylene glycol, 1,3-propanediol, and 1,4-butanediol.
  • the amount of the alcohol is 2.5-3.5 times the mass of the non-conjugated vegetable oil.
  • the conditions of the isomerization reaction in step (1) include a temperature of 180-220° C. and a time of 3-5 h.
  • the unsaturated dibasic aldehyde in step (2) is an unsaturated dibasic aldehyde with 4-12 carbon atoms, preferably 2-butene dialdehyde, 2-pentene dialdehyde, 2-hexene dialdehyde One or more of aldehyde, 3-hexene dialdehyde, 2-heptene dialdehyde, 3-heptene dialdehyde, 2-octene dialdehyde, 3-octene dialdehyde, 4-octene dialdehyde
  • the molar ratio of unsaturated dialdehyde to vegetable oil fatty acid is 0.5:1 to 3:1, preferably 0.8:1 to 2:1.
  • the contact time in step (2) is 0.5-2h, and the temperature is preferably 190-210°C.
  • the method of removing unreacted raw materials includes subjecting the mixture obtained by contacting to vacuum distillation at a pressure of 30-150 Pa, preferably 65-120 Pa, and a temperature of 180-220°C, preferably 195-205°C.
  • the present invention also provides a vegetable oil-based clogging inhibitor prepared by the method for preparing a vegetable oil-based clogging inhibitor and a low-sulfur diesel fuel clogging inhibitor composition containing the vegetable oil-based clogging inhibitor.
  • the low-sulfur diesel blockage inhibitor composition contains 70-90% by weight of vegetable oil-based blockage inhibitor, 0.2-2% by weight of antioxidant, 8-29% by weight of aromatic solvent oil.
  • the low-sulfur diesel plugging inhibitor composition is composed of a vegetable oil-based clogging inhibitor, an antioxidant and an aromatic solvent oil.
  • the present invention also provides a low-sulfur diesel with improved clogging inhibitory properties, which contains low-sulfur diesel and a clogging inhibitor, and the clogging inhibitor is the above-mentioned vegetable oil-based clogging inhibitor or a low-sulfur diesel clogging inhibitor composition .
  • the content of the vegetable oil-based blockage inhibitor ie, the compound represented by formula (I) or a combination of two or more thereof
  • the content of the vegetable oil-based blockage inhibitor is 0.008-0.01 parts by weight.
  • the present invention also provides a method for improving the clogging inhibition of low-sulfur diesel, which method comprises adding the above-mentioned compound or vegetable oil-based clogging inhibitor or low-sulfur diesel clogging inhibitor composition to low-sulfur diesel.
  • the content of the vegetable oil-based blockage inhibitor ie, the compound represented by formula (I) or a combination of two or more thereof
  • the content of the vegetable oil-based blockage inhibitor is 0.008-0.01 parts by weight.
  • the present invention uses vegetable oil as raw material to first obtain modified vegetable oil fatty acid, and then introduces polar groups of unsaturated dibasic aldehyde with a certain chain length into the modified vegetable oil fatty acid molecular chain, so that the obtained product can better solve the engine problem.
  • the problem of filter nozzle clogging can reduce the number of engine failures and increase the life of the engine, and the amount of clogging inhibitors is lower.
  • the reason may be that there are two aldehyde groups and one carboxyl group in the molecule at the same time, which not only increases the polarity of the molecule, but also the aliphatic ring structure is conducive to reducing the intramolecular binding effect and can solve the problem of bacteria breeding in diesel fuel.
  • the compound also has lubricity. Compared with the existing acid-type low-sulfur diesel antiwear agent, this product has a lower freezing point and acid value, and has a better lubricating effect, reducing the blending ratio and avoiding Corrosion to diesel engines is especially suitable for cold regions.
  • the performance of the vegetable oil-based blockage inhibitor prepared by the invention such as freezing point, flash point, metal content, low-temperature storage stability, and other indicators, all meet the national V lubricity standard.
  • the invention has the characteristics of simple and convenient process, easy-to-obtain raw materials, low cost, easy industrial production and the like.
  • Fig. 1 and Fig. 2 are H NMR spectra of the modified soybean oil fatty acid obtained in step (1) of Example 1 of the present invention and the blockage inhibitor product obtained in step (2), respectively.
  • step (3) and 4 are the infrared spectra of the modified soybean oil fatty acid obtained in step (1) of Example 1 of the present invention and the blockage inhibitor product obtained in step (2), respectively.
  • Figure 5 is a TOF mass spectrum of the blocking inhibitor prepared in Example 1.
  • Figure 6 is a nuclear magnetic carbon spectrum ( 13 C-NMR) of the blocking inhibitor prepared in Example 1.
  • Figure 7 shows the proton nuclear magnetic spectrum ( 1 H-NMR) of the blocking inhibitor prepared in Example 1.
  • non-conjugated vegetable oil refers to a vegetable oil containing non-conjugated double bonds, which contains various saturated fatty acids and unsaturated fatty acids, such as linear or branched fatty acids with 12-22 carbon atoms.
  • the content of unsaturated fatty acid is not less than 70% by weight, preferably not less than 75% by weight.
  • the saturated fatty acid is, for example, stearic acid and/or palmitic acid.
  • the unsaturated fatty acid refers to a fatty acid containing unsaturated double bonds.
  • the number of unsaturated double bonds can be one, two, three or more.
  • the amount of unsaturated double bonds in the non-conjugated vegetable oil is 2-5, such as one or more of oleic acid, linoleic acid, and linolenic acid.
  • the content of fatty acids with two or more unsaturated double bonds is not less than 40% by weight, more preferably the content of linoleic acid is 40-70% by weight, more preferably 45 -65% by weight.
  • the content of conjugated double bond unsaturated fatty acids such as ⁇ -tungoleic acid is less than 60% by weight, preferably less than 50% by weight, and more preferably less than 40% by weight.
  • the contents of various saturated fatty acids and unsaturated fatty acids are measured by gas chromatography.
  • the content of oleic acid, linoleic acid, stearic acid, etc. can be determined by subjecting non-conjugated vegetable oil to gas chromatography and comparing it with standard samples such as oleic acid, linoleic acid, and stearic acid, and Combine the number of unsaturated double bonds of different fatty acids to further determine the number of unsaturated double bonds.
  • the iodine value of the non-conjugated vegetable oil is 60-155 mg(I 2 )(100g) -1 , preferably 85-130 mg(I 2 )(100g) -1 .
  • the acid value of the non-conjugated vegetable oil is 180-210 mg (KOH) g -1 , preferably 190-200 mg (KOH) g -1 .
  • the acid value and iodine value of the non-conjugated vegetable oil are measured by the methods of GB/T 5530-2005 and GB/T 5532-2008, respectively.
  • the molecular weight of the non-conjugated vegetable oil is 700-1000, preferably 850-950.
  • the fatty acid composition of the non-conjugated vegetable oil can be obtained by obtaining the gas chromatograms of various fatty acid standard samples in advance, and then comparing the non-conjugated vegetable oils with the gas chromatograms of various fatty acid standard samples to obtain the fatty acid composition of the non-conjugated vegetable oils. (Average) molecular weight.
  • the present invention adopts this method to obtain the molecular weight of the non-conjugated vegetable oil.
  • the non-conjugated vegetable oil is preferably one or more of corn oil, cottonseed oil, peanut oil, sesame oil, and aronia oil.
  • the base in step (1) can be various alkaline substances that can provide an isomerization reaction environment, preferably potassium hydroxide and/or sodium hydroxide.
  • the amount of the alkali is preferably 0.5-0.6 times the mass of the non-conjugated vegetable oil.
  • the non-conjugated vegetable oil can be directly subjected to the isomerization reaction in the presence of alkali.
  • the base is used in the form of an alcohol solution of the base.
  • the alcohol is a saturated diol, more preferably a saturated diol with a carbon number of 2-7, more preferably 2-4, specifically preferably ethylene glycol, 1,3-propanediol, 1,4-butane At least one of diols.
  • the amount of the alcohol is preferably 2.5-3.5 times the mass of the non-conjugated vegetable oil.
  • step (1) after mixing the non-conjugated vegetable oil, the inorganic base and the optionally contained glycol, the reaction is stirred at 160-180° C. for 3-5 h.
  • the stirring rate is preferably 100-500 rpm, more preferably 300-400 rpm.
  • the reactor may be a conventionally used reactor with stirring, and preferably the temperature, pressure, stirring speed, etc. are automatically controlled.
  • the acidification in step (1) preferably uses inorganic acid, for example, it can be at least one of hydrochloric acid, sulfuric acid, nitric acid, etc., acidified to a pH of 2-3.
  • the water washing preferably uses distilled water, deionized water, etc., and the water is washed until the washing water becomes neutral, and the water phase is separated after standing for layering.
  • step (1) at least part of the non-conjugated double bonds in the non-conjugated unsaturated fatty acids in the non-conjugated vegetable oil can be isomerized and converted into conjugated double bonds.
  • the occurrence of this reaction can be proved by nuclear magnetic resonance and infrared detection methods.
  • the unsaturated dibasic aldehyde described in step (2) is an unsaturated dibasic aldehyde with 4-12 carbon atoms, preferably 2-butenedial, 2-pentenedial, and 2-hexene
  • 2-butenedial preferably 2-butenedial
  • 2-pentenedial preferably 2-pentenedial
  • 2-hexene preferably 2-butenedial
  • 2-pentenedial preferably 2-pentenedial
  • 2-hexene preferably 2-butenedial, 2-pentenedial, and 2-hexene
  • the above-mentioned unsaturated dibasic aldehydes are commercially available, or they can be prepared by known methods.
  • 2-pentanedial can use cyanogen bromide to act on the pyridine ring to convert the nitrogen atom on the ring from trivalent to 5 Valence, the pyridine ring undergoes a hydrolysis reaction to generate glutenedialdehyde; sulfoxylate can also be used to react with chloramine T to generate oxygen chloride, and then react with isonicotinic acid to generate glutenedialdehyde after hydrolysis (see Chen Huizhu et al. And spectrophotometric determination of thiocyanate content in dairy products", Chinese Journal of Health Inspection, 2012(08):46-48).
  • 3-hexene dialdehyde can be prepared by oxidation of 3-hexene-1,6-diol (commercially available) over a copper catalyst.
  • 4-octenedial can be obtained from 1,5-cyclooctadiene through oxidation. The above-mentioned specific methods are well known to those skilled in the art, and will not be repeated here.
  • the molar ratio of unsaturated dibasic aldehydes to vegetable oil fatty acids is 0.5:1 to 3:1, preferably 0.8:1 to 2:1 .
  • step (2) the modified vegetable oil fatty acid and the unsaturated dibasic aldehyde are put into the reactor, and reacted at 180-220°C, preferably 190-210°C, for 0.5-2h.
  • the contact in step (2) is performed under ultrasonic conditions, and preferably the whole process of the contact in step (2) is performed under ultrasonic conditions.
  • the ultrasonic power is preferably 100W-600W, preferably 200-300W.
  • step (2) the conjugated unsaturated double bond in the unsaturated fatty acid and the unsaturated bond in the unsaturated dibasic aldehyde undergo a Diels-Alder addition reaction, and cyclization is carried out to obtain the compound containing the above formula (I) Show the structure of the compound.
  • the formation/existence of the compound represented by formula (I) can be verified by gas chromatography, TOFF mass spectrometry, infrared, proton nuclear magnetic resonance spectrum and carbon spectrum analysis.
  • the formation of new characteristic peaks in gas chromatography can explain the occurrence of the reaction, and combined with TOFF mass spectrometry, the molecular weight information of the new compound formed by the reaction can be obtained; infrared analysis can infer the reaction mechanism and the specific functional group of the new compound formed by the reaction; Using the molecular weight information of TOFF mass spectrometry analysis and the functional group information of infrared analysis, combined with the results of nuclear magnetic carbon spectroscopy and hydrogen spectroscopy, the molecular structure of the product of the new compound formed by the reaction can be known.
  • the unreacted raw materials in the reaction mixture obtained in step (2) can be removed in various ways, preferably by means of vacuum distillation.
  • the pressure of the vacuum distillation is 30-150 Pa, preferably 65-120 Pa, and the temperature is 180-220°C, preferably 195-205°C.
  • the pressure means absolute pressure.
  • the compound represented by formula (I) or the vegetable oil-based blocking inhibitor is a mixture of two isomers.
  • the present invention also provides a low-sulfur diesel plugging inhibitor containing the above-mentioned vegetable oil-based clogging inhibitor, which mainly includes 70-90% by weight of the above-mentioned vegetable oil-based clogging inhibitor, 0.2-2% by weight of antioxidant, 8- 29% by weight aromatic solvent oil.
  • the antioxidants can be various substances with antioxidant properties that are suitable for diesel blockage inhibitors, and phenolic antioxidants are usually selected.
  • the phenolic antioxidant can be monophenol, bisphenol, diphenol and polyphenol, or a mixture of them in any ratio.
  • low-sulfur diesel refers to diesel with a sulfur content of less than 10 ppm.
  • the compound of formula (I) provided by the present invention when used to improve the clogging inhibition of low-sulfur diesel, it can be directly added to the low-sulfur diesel base oil, or it can be compounded with other additives such as antioxidants to form a clogging inhibitor. After the formulation (composition) is added to low-sulfur diesel, low-sulfur diesel with improved clogging inhibition is obtained.
  • the diesel before and after the clogging inhibitor is added are respectively referred to as low-sulfur diesel and low-sulfur diesel with improved clogging inhibition.
  • the improvement in clogging inhibition means that the clogging inhibition of diesel is improved compared to diesel before the clogging inhibitor is added, regardless of the magnitude of the increase.
  • the acid value of the clogging inhibitor product prepared by the present invention is measured according to the GB/T 7304 method, the freezing point is measured according to the GB/T 510 method, and the wear scar diameter (corresponding to the lubricity) of the low-sulfur diesel is measured according to the SH/T 0765 method.
  • the conversion rate of vegetable oil fatty acids A (m 1 -m 2 )/m 1 ⁇ 100%.
  • m 1 is the mass of the vegetable oil fatty acid fed in the second step reaction
  • m 2 is the mass of the vegetable oil fatty acid separated after the reaction.
  • the equipment model and analysis conditions used in the gas chromatography test of the present invention are as follows:
  • the sample preparation refers to GB/T17376 "Preparation of animal and vegetable fats and fatty acid methyl esters"; the instrument adopts Thermo DSQ II, and the chromatographic column adopts Aglient DB-1HT; the conditions are as follows: The starting temperature is 170°C, keep for 1 min, heat up to 350°C at a rate of 5°C/min, hold for 5 minutes, the injection port temperature is 260°C, the detector temperature is 280°C, the split ratio is 20:1, and the sample volume is 1 ⁇ L.
  • device model analysis and IR analysis conditions employed as follows:
  • the instrument uses Thermo NICOLET 6700; conditions CaF 2 film, scan range 400-4000 cm -1, resolution of 4cm -1, scan number 32 times.
  • the equipment model and analysis conditions used in the hydrogen NMR spectrum analysis of the present invention are as follows:
  • the instrument adopts Bruker AVANCE III 500; the conditions are the test temperature 300K, the resonance frequency (SFO1) 500MHz, the solvent deuterated chloroform, and the internal standard tetramethylsilane , Spectral width (SWH) 10000Hz, pulse width (P1) 10 ⁇ s, sampling time 3.27s, sampling times (NS) 64 times, delay time (D1) 10s.
  • the equipment model and analysis conditions used in the NMR analysis of the present invention are as follows:
  • the instrument adopts Bruker AVANCE III 500; the conditions are the test temperature 300K, the resonance frequency (SFO1) 125MHz, the solvent deuterated chloroform, and the internal standard tetramethylsilane , Spectral width (SWH) 10000Hz, pulse width (P1) 10 ⁇ s, sampling time 3.27s, sampling times (NS) 64 times, delay time (D1) 10s.
  • the equipment model and analysis conditions used in the TOF mass spectrometry analysis of the present invention are as follows:
  • the instrument adopts Bruker microfex matrix-assisted laser desorption ionization time-of-flight mass spectrometer; the conditions are dithranol 20mg/ml, sodium trifluoroacetate (10mg /ml) dissolved in tetrahydrofuran and prepared as a solvent for later use.
  • the matrix is ⁇ -cyano-4-hydroxycinnamic acid (HCCA). Dissolve HCCA in a solvent ultrasonically to prepare a saturated solution and centrifuge for later use.
  • HCCA ⁇ -cyano-4-hydroxycinnamic acid
  • Figure 1 and Figure 2 are the gas chromatograms of modified corn oil fatty acids and unseparated products after the cycloaddition reaction. It can be seen that after the cycloaddition reaction, the characteristic peak of the target product appeared at 14.04min. At the same time, At about 7.8 minutes, the characteristic peak representing modified corn oil fatty acid has basically disappeared, which proves that the Diels-Alder addition reaction has occurred in the system.
  • Figure 3 and Figure 4 are the infrared spectra of modified corn oil fatty acid and the separated product respectively.
  • the absorption peak at 985 cm -1 is the characteristic peak of carbon-carbon conjugated double bonds
  • the absorption peak at 2751 cm -1 is aldehyde It can be judged that the product has an aldehyde functional group after the reaction.
  • the characteristic peak of the carbon-carbon conjugated double bond has basically disappeared, which proves that the aldehyde group was successfully introduced into the reformer through the Diels-Alder addition reaction.
  • Figure 5 shows the TOF mass spectrum of the blockage inhibitor prepared. It can be judged that the molecular weight of the product is 364. Combining the acid value of the product with 122.5mgKOH/g and the molecular weight of the product, it can be determined that there is a carboxyl functional group in the product molecule.
  • the absorption peak intensity the number of aldehyde groups in the product molecule is twice that of carboxyl groups, and the number of carbon-carbon double bonds is the same as that of carboxyl groups.
  • the product contains 2 aldehyde groups and 1 carbon-carbon double bond.
  • the preparation process and operating conditions are the same as in Example 1, except that cottonseed oil (iodine value of 108 mgKOH/g) is used as the reaction raw material to obtain the blockage inhibitor product.
  • the conversion rate of cottonseed oil fatty acid is 45.3%
  • the acid value of the product is 122.4mgKOH/g
  • the freezing point is -26.8°C.
  • the preparation process and operating conditions are the same as those in Example 1, except that peanut oil (iodine value: 95 mgKOH/g) is used as the reaction raw material to obtain the blockage inhibitor product.
  • peanut oil (iodine value: 95 mgKOH/g) is used as the reaction raw material to obtain the blockage inhibitor product.
  • the conversion rate of peanut oil fatty acid is 25.5%
  • the acid value of the product is 122.0mgKOH/g
  • the freezing point is -26.8°C.
  • the preparation process and operating conditions are the same as those of Example 1, except that aronia citrinopileus oil (iodine value 116mgKOH/g) is used as the reaction raw material to obtain the blocking inhibitor product.
  • aronia citrinopileus oil (iodine value 116mgKOH/g) is used as the reaction raw material to obtain the blocking inhibitor product.
  • the conversion rate of the fatty acid of Aronia glutinosa oil is 39.5%
  • the acid value of the product is 122.2mgKOH/g
  • the freezing point is -26.8°C.
  • the preparation process and operating conditions are the same as those in Example 1, except that 50.8 g of 2-pentenedialdehyde is used as the reaction raw material to obtain the clogging inhibitor product.
  • the conversion rate of corn oil fatty acid is 44.2%, the acid value of the product is 119.6mgKOH/g, and the freezing point is -25.8°C.
  • the preparation process and operating conditions are the same as in Example 1, except that 57.2 g of 3-hexenedial is used as the reaction raw material to obtain the blockage inhibitor product.
  • the conversion rate of corn oil fatty acid is 42.5%
  • the acid value of the product is 117.4mgKOH/g
  • the freezing point is -24.3°C.
  • the preparation process and operating conditions are the same as in Example 1, except that 70.0 g of 4-octenedial is used as the reaction raw material to obtain the blockage inhibitor product.
  • the conversion rate of corn oil fatty acid is 30.5%
  • the acid value of the product is 115.7mgKOH/g
  • the freezing point is -20.3°C.
  • the preparation process and operating conditions are the same as in Example 1, except that 1,3-propanediol is used instead of ethylene glycol to obtain a clogging inhibitor product.
  • the conversion rate of corn oil fatty acid is 44.1%
  • the acid value of the product is 122.4mgKOH/g
  • the freezing point is -26.3°C.
  • the preparation process and operating conditions are the same as in Example 1, except that 1,4-butanediol is used instead of ethylene glycol to obtain a clogging inhibitor product.
  • the conversion rate of corn oil fatty acid is 40.2%, the acid value of the product is 122.2 mgKOH/g, and the freezing point is -26.5°C.
  • the preparation process and operating conditions are the same as in Example 1, except that palm oil with an iodine value of 49 mgKOH/g is used as the reaction raw material to prepare the clogging inhibitor.
  • the conversion rate of palm oil fatty acid is less than 6.4%, and the conversion rate of the blocking inhibitor is too low, which does not have economic benefits.
  • the preparation process and operating conditions are the same as in Example 1, except that vegetable oil and unsaturated dibasic aldehyde are directly used for reaction, and no reaction occurs, and the product cannot be synthesized.
  • the preparation process and operating conditions are the same as those in Example 1, except that tung oil with conjugated double bonds is used, the reaction system undergoes cross-linking side reactions, the conversion rate of tung oil fatty acids is 51.2%, and the product freezing point is -9°C. The freezing point is too high to meet the requirements for use.
  • Low-sulfur diesel (low-sulfur diesel-1) with a sulfur content of less than 10 ppm and hydrorefined diesel (low-sulfur diesel-2) with a wear scar diameter greater than 580 ⁇ m were used for testing.
  • the specific properties are shown in Table 2.
  • the clogging inhibitors prepared in the foregoing examples and comparative examples were added to the foregoing low-sulfur diesel for product performance testing.
  • the test results are shown in Table 3 and Table 4.
  • the lubrication effect of low-sulfur diesel oil is not good when vegetable oil is used directly or the products of step (1) are used.
  • the improver precipitates.
  • the modified vegetable oil fatty acid of the present invention significantly improves the lubricity of low-sulfur diesel.
  • the addition amount is 80ppm or 100ppm
  • the blended low-sulfur diesel can meet the lubricity of National V diesel (wear scar diameter ⁇ 460 ⁇ m) Requirement, and no precipitation at -20°C or -30°C. It shows that the prepared clogging inhibitor product has a significant lubricating effect, and has a low freezing point and a small amount.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Lubricants (AREA)
  • Fats And Perfumes (AREA)

Abstract

一种式(I)所示的低硫柴油堵塞抑制剂及其制备方法和应用。式(I)中,x和y各自为0-4之间的整数;m和n各自为3-9之间的整数,且10≤m+n≤14;R 1、R 2各自选自H、C1-C6的直链或支链的烷基或C3-C6的环烷基。以植物油为原料,首先得到改性植物油脂肪酸,然后将具有一定链长的不饱和二元醛的极性基团引入到改性植物油脂肪酸分子链中,所得产品能够较好的解决发动机过滤网喷嘴堵塞的问题,减少发动机故障次数,提高发动机的寿命,而且堵塞抑制剂的用量较低。

Description

[根据细则37.2由ISA制定的发明名称] 低硫柴油堵塞抑制剂及其制备方法和应用 技术领域
本发明属于生物基堵塞抑制剂领域,具体涉及一种可用作植物油基堵塞抑制剂的化合物及其制备方法和植物油基堵塞抑制剂及其制备方法和应用以及含有该植物油基堵塞抑制剂的低硫柴油堵塞抑制剂以及使用该堵塞抑制剂的低硫柴油。
背景技术
随着柴油机的广泛使用,柴油的消耗量正逐年增长。然而柴油的大量消耗也必然会导致车辆排放有害物质的进一步加剧。由于排放对生态环境、人类健康和经济发展有着严重影响,各国政府相继制定了严格的排放法规,限制柴油车辆的有害排放。随着我国柴油国Ⅴ标准的实施,柴油的硫含量将降到10ppm以下,脱硫柴油已在国内炼厂实施。目前国内采取加氢处理和加氢裂化等降硫技术,使燃油硫含量大大减少,导致柴油中极性化合物的含量过低,从而大大降低了柴油的润滑性,出现大量柴油泵的磨损损坏现象,而且经常出现发动机过滤网喷嘴堵塞的问题,降低了柴油泵的使用寿命。
为了解决柴油泵的磨损损坏问题,通常向柴油中加入抗磨剂。目前,市场上的抗磨剂主要有不饱和脂肪酸类及其不饱和脂肪酸酯、酰胺类的衍生物等,其中酸型抗磨剂约占市场的70%左右,酯型和酰胺型抗磨剂约占市场的30%左右。
向低硫柴油中添加植物油酸也能够较好地解决柴油的润滑性问题。但通常,植物油酸大多含有一定量的凝点较高的饱和脂肪酸,采用现有分离手段,如冷冻压榨法、蒸馏精制法等,因沸点接近,均难以完全分离植物油酸的饱和脂肪酸,从而导致市场上的植物油酸凝点普遍高于-8℃,无法达到Q/SHCG 57-2014标准中规定的酸型堵塞抑制剂凝点≯-12℃的使用标准。
而且,上述抗磨剂并不能很好的解决发动机过滤网喷嘴堵塞导致供油不足,进而导致磨损喷油器和导致发动机故障,导致降低柴油泵寿命的问题。因此,有必要进一步研究开发一种适用于低硫柴油的堵塞抑制剂产品。
发明内容
针对现有技术的不足,本发明提供了一种植物油基堵塞抑制剂及其制备方法和应用。本发明所制备的植物油基堵塞抑制剂具有凝点低、酸值低、调和比例低、润滑性好等优点,调和后可使堵塞抑制剂产品满足国V润滑性标准和凝点要求。
第一方面,本发明提供了一种式(I)所示的化合物:
Figure PCTCN2019130789-appb-000001
其中,x和y各自为0-4之间的整数;m和n各自为3-9之间的整数,且10≤m+n≤14;R 1、R 2各自选自H、C1-C6的直链或支链的烷基或C3-C6的环烷基。
优选地,m=4或m=5,且m+n=12。
优选地,x和y各自独立的为0或1。x和y的取值相同或不同。
优选地,R 1、R 2各自选自H、甲基或乙基。R 1、R 2相同或不同。
本发明第二方面提供了上述化合物作为植物油基堵塞抑制剂的应用。
第三方面,本发明提供了一种植物油基堵塞抑制剂的制备方法,其特征在于,该方法包括如下步骤:
(1)在异构化反应条件下,将非共轭植物油与碱或碱的醇溶液进行接触反应;
(2)将步骤(1)接触反应所得的产物经酸化、水洗后分离出水相,得到改性植物油脂肪酸;
(3)在迪尔斯-阿尔德加成反应条件下,将改性植物油脂肪酸与不饱和二元醛进行接触;
(4)除去未反应的原料,得到植物油基堵塞抑制剂。
优选地,步骤(1)所述的非共轭植物油为具有非共轭碳碳双键,且亚麻酸含量不大于0.6%、碘值不小于60mgKOH/g优选为不小于85mgKOH/g的植物油;优选为玉米油、棉籽油、花生油、芝麻油、文冠果油中的一种或多种。
优选地,步骤(1)所述的碱为氢氧化钾和/或氢氧化钠,用量为非共轭植物油质量 的0.5-0.6倍;所述醇为饱和二元醇,优选碳原子数为2-5的饱和二元醇,进一步优选为乙二醇、1,3-丙二醇、1,4-丁二醇中的至少一种。所述醇的用量为非共轭植物油质量的2.5-3.5倍。
优选地,步骤(1)所述异构化反应的条件包括温度180-220℃,时间为3-5h。
优选地,步骤(2)所述不饱和二元醛为碳原子数为4-12的不饱和二元醛,优选为2-丁烯二醛、2-戊烯二醛、2-己烯二醛、3-己烯二醛、2-庚烯二醛、3-庚烯二醛、2-辛烯二醛、3-辛烯二醛、4-辛烯二醛中的一种或多种,优选地,不饱和二元醛与植物油脂肪酸的摩尔比为0.5:1-3:1,优选为0.8:1-2:1。
优选地,步骤(2)所述接触的时间为0.5-2h,优选温度为190-210℃。
优选地,所述除去未反应的原料的方式包括将接触所得的混合物在压力为30-150Pa优选为65-120Pa、温度为180-220℃优选为195-205℃下进行减压蒸馏。
第四方面,本发明还提供了由上述植物油基堵塞抑制剂的制备方法制得的植物油基堵塞抑制剂以及含有该植物油基堵塞抑制剂的低硫柴油堵塞抑制剂组合物。
优选地,以低硫柴油堵塞抑制剂组合物的总量为基准,该低硫柴油堵塞抑制剂组合物含有70-90重量%的植物油基堵塞抑制剂,0.2-2重量%的抗氧剂,8-29重量%的芳烃溶剂油。优选低硫柴油堵塞抑制剂组合物由植物油基堵塞抑制剂、抗氧剂和芳烃溶剂油组成。
第五方面,本发明还提供了一种堵塞抑制性提高的低硫柴油,含有低硫柴油和堵塞抑制剂,所述堵塞抑制剂为上述植物油基堵塞抑制剂或者低硫柴油堵塞抑制剂组合物。
优选地,相对于100重量份的低硫柴油,所述的植物油基堵塞抑制剂(即式(I)所示化合物或其中两种以上的组合)的含量为0.008-0.01重量份。
第六方面,本发明还提供了一种提高低硫柴油堵塞抑制性的方法,该方法包括将上述化合物或植物油基堵塞抑制剂或低硫柴油堵塞抑制剂组合物加入到低硫柴油中。
优选地,相对于100重量份的低硫柴油,所述植物油基堵塞抑制剂(即式(I)所示化合物或其中两种以上的组合)的含量为0.008-0.01重量份。
本发明以植物油为原料,首先得到改性植物油脂肪酸,然后将具有一定链长的不饱和二元醛的极性基团引入到改性植物油脂肪酸分子链中,使得所得产品能够较好的解决发动机过滤网喷嘴堵塞的问题,减少发动机故障次数,提高发动机的寿命,而且堵塞抑制剂的用量较低。究其原因一方面可能是因为分子中同时存在两个醛基和一个羧基,不 仅增加了分子极性,而且脂肪环结构有利于降低分子间内结合作用,能够解决柴油燃料中滋生细菌的问题,避免柴油长期存储滋生细菌及造成排泄物阻塞过滤器的现象。而且该化合物还兼具润滑性,相比于现有酸型低硫柴油抗磨剂,本产品具有更低的凝点和酸值,且具有更佳的润滑效果,降低了调和比例,避免了对柴油机的腐蚀,特别适用于寒冷地域。
本发明所制备植物油基堵塞抑制剂的性能如凝点、闪点、金属含量、低温存储稳定性等指标均满足国V润滑性标准。本发明具有工艺简便、原料易得、成本低廉,易于工业化生产等特点。
附图说明
图1和图2分别是本发明实施例1步骤(1)得到的改性大豆油脂肪酸和步骤(2)所得堵塞抑制剂产品的H核磁图谱。
图3和图4分别是本发明实施例1步骤(1)得到的改性大豆油脂肪酸和步骤(2)所得堵塞抑制剂产品的红外图谱。
图5为实施例1所制备堵塞抑制剂的TOF质谱图。
图6为实施例1所制备堵塞抑制剂的核磁碳谱( 13C-NMR)。
图7为实施例1所制备堵塞抑制剂的核磁氢谱( 1H-NMR)。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明中,非共轭植物油是指含有非共轭双键的植物油,其中含有各种饱和脂肪酸和不饱和脂肪酸,例如碳原子数为12-22的直链或支链脂肪酸。优选地,以非共轭植物油的总量为基准,不饱和脂肪酸的含量不低于70重量%,优选不低于75重量%。所述饱和脂肪酸例如为硬脂酸和/或软脂酸。所述不饱和脂肪酸是指含有不饱和双键的脂肪酸,不饱和双键的数量可以为一个、两个、三个或更多个,优选地,所述非共轭植物油中不饱和双键的数量为2-5个,例如油酸、亚油酸、亚麻酸中的一种或多种。优选地,以非 共轭植物油的总量为基准,不饱和双键为两个以上的脂肪酸的含量不低于40重量%,进一步优选亚油酸的含量为40-70重量%,更优选45-65重量%。进一步优选地,以非共轭植物油的总量为基准,共轭双键不饱和脂肪酸比如α-桐油酸的含量低于60重量%优选低于50重量%进一步优选低于40重量%。
本发明中,各种饱和脂肪酸和不饱和脂肪酸的含量通过气相色谱方法测得。
本发明中,可以通过将非共轭植物油进行气相色谱,并与油酸、亚油酸、硬脂酸等标准样品进行比较,确定其中油酸、亚油酸、硬脂酸等的含量,并结合不同脂肪酸的不饱和双键数,进一步确定不饱和双键的数量。
优选地,所述非共轭植物油的碘值为60-155mg(I 2)(100g) -1,优选为85-130mg(I 2)(100g) -1
优选地,所述非共轭植物油的酸值为180-210mg(KOH)g -1,优选为190-200mg(KOH)g -1
本发明中,所述非共轭植物油的酸值和碘值分别通过GB/T 5530-2005和GB/T 5532-2008方法测得。
优选地,所述非共轭植物油的分子量为700-1000,优选为850-950。
由于植物油脂肪酸的类型在自然界中是已知的,而且人们已经很透彻的分离出不同的脂肪酸。可以通过预先获得各种脂肪酸标样的气相色谱图,然后将非共轭植物油与各种脂肪酸标样的气相色谱图进行对比,来获知非共轭植物油的脂肪酸组成,进而得到非共轭植物油的(平均)分子量。本发明采用该方法获得所述非共轭植物油的分子量。
本发明中,所述非共轭植物油优选为玉米油、棉籽油、花生油、芝麻油、文冠果油中的一种或多种。
本发明中,步骤(1)所述碱可以是各种能够提供异构化反应环境的碱性物质,优选为氢氧化钾和/或氢氧化钠。所述碱的用量优选为非共轭植物油质量的0.5-0.6倍。
本发明中,可以直接将非共轭植物油在碱存在下进行异构化反应。根据本发明的一种优选实施方式,所述碱以碱的醇溶液形式使用。优选地,所述醇为饱和二元醇,进一步优选为碳原子数为2-7更优选2-4的饱和二元醇,具体优选乙二醇、1,3-丙二醇、1,4-丁二醇中的至少一种。所述醇的用量优选为非共轭植物油质量的2.5-3.5倍。
步骤(1)中将非共轭植物油、无机碱以及选择性含有的二元醇混合后,在160-180℃搅拌反应3-5h。搅拌速率优选为100-500rpm,进一步优选为300-400rpm。所述反应器 可以为常规使用的带搅拌的反应器,优选自动控制温度、压力、搅拌速度等。
本发明中,步骤(1)所述酸化优选采用无机酸,例如可以是盐酸、硫酸、硝酸等中的至少一种,酸化至pH为2-3。
本发明中,水洗优选采用蒸馏水、去离子水等,水洗至洗涤水呈中性,经静置分层后分离出水相。
通过步骤(1),能够使非共轭植物油中的非共轭不饱和脂肪酸中的至少部分非共轭双键异构化转变为共轭双键。通过核磁共振和红外检测方法可以证明该反应的发生。
本发明中,步骤(2)所述不饱和二元醛为碳原子数为4-12的不饱和二元醛,优选为2-丁烯二醛、2-戊烯二醛、2-己烯二醛、3-己烯二醛、2-庚烯二醛、3-庚烯二醛、2-辛烯二醛、3-辛烯二醛、4-辛烯二醛中的一种或多种。
上述不饱和二元醛可以商购得到,也可以采用已知的方法制备得到,例如,2-戊烯二醛可以采用溴化氰作用于吡啶环,使环上氮原子由3价转变于5价,吡啶环发生水解反应生成戊烯二醛;也可以采用硫氧酸根与氯胺T反应生成氯化氧,再与异烟酸作用,经水解后生成戊烯二醛(参见陈惠珠等“乳与乳制品中硫氰酸盐含量的分光光度法测定”,中国卫生检验杂志,2012(08):46-48)。3-己烯二醛可通过3-己烯-1,6-二醇(市售)经铜催化剂氧化制备得到。4-辛烯二醛可由1,5-环辛二烯,经氧化得到。上述具体方法已为本领域技术人员所公知,在此不再赘述。
根据本发明的一种优选实施方式,不饱和二元醛与植物油脂肪酸(不饱和脂肪酸和饱和脂肪酸的总量)的摩尔比为0.5:1-3:1,优选为0.8:1-2:1。
本发明中,步骤(2)将改性植物油脂肪酸、不饱和二元醛投入到反应器中,在180-220℃优选190-210℃反应0.5-2h。
优选地,步骤(2)所述接触在超声波条件下进行,优选步骤(2)所述接触的全过程在超声波条件下进行。超声波功率优选为100W-600W,优选200-300W。
在步骤(2)中,不饱和脂肪酸中的共轭不饱和双键与不饱和二元醛中的不饱和键发生迪尔斯-阿尔德加成反应,环化得到含有上述式(I)所示结构的化合物。通过气相色谱、TOFF质谱、红外、核磁共振氢谱及碳谱分析可以验证式(I)所示结构的化合物的生成/存在。例如,气相色谱中新特征峰的形成能够说明反应的发生,并结合TOFF质谱,能够获知反应形成新化合物的分子量信息;红外分析能够推断获知反应机理以及反应形成的新化合物所具有的特定官能团;利用TOFF质谱分析的分子量信息、红外分 析的官能团信息,并结合核磁碳谱和氢谱的结果,能够获知反应形成新化合物的产品分子结构。
本发明可以通过各种方式除去步骤(2)所得反应后混合物中的未反应的原料中,优选通过减压蒸馏的方式。优选地,所述减压蒸馏的压力为30-150Pa,优选为65-120Pa,温度为180-220℃,优选为195-205℃。本发明中,除非另有说明,所述压力是指绝对压力。
需要说明的是,由于迪尔斯-阿尔德加成反应具有较高的立体选择性,因此通过上述方法获得的是两种异构体的混合物,这两种异构体的化学位移相近,极性也比较相近,且分子量相同,因此通常以混合物形式存在。本发明中,除非另有说明,式(I)所示的化合物或植物油基堵塞抑制剂正是两种异构体的混合物。
第三方面,本发明还提供了含有上述植物油基堵塞抑制剂的低硫柴油堵塞抑制剂,主要包括70-90重量%上述植物油基堵塞抑制剂,0.2-2重量%的抗氧剂,8-29重量%的芳烃溶剂油。
所述抗氧剂可以是各种适用于柴油堵塞抑制剂的具有抗氧化性能的物质,通常选用酚型抗氧剂。
所述酚型抗氧剂可以是单酚、双酚、二酚和多酚,也可以是它们任意比例的混合物。如邻叔丁基苯酚、对叔丁基苯酚、2-叔丁基-4-甲基苯酚、6-叔丁基-2-甲基苯酚、6-叔丁基-3-甲基苯酚;4-叔丁基-2,6-二甲基苯酚、6-叔丁基-2,4-二甲基苯酚;2,4-二叔丁基苯酚、2,5-二叔丁基苯酚、2,6-二叔丁基苯酚;2,5-二叔丁基-4-甲基苯酚、2,6-二叔丁基-4-甲基苯酚(BHT,抗氧剂T501)、4,6-二叔丁基-2-甲基苯酚;2,4,6-三叔丁基苯酚、2-烯丙基-4-甲基-6-叔丁基苯酚、2-仲丁基-4-叔丁基苯酚、4-仲丁基-2,6-二叔丁基苯酚、4-壬基-2,6-二叔丁基苯酚、2,6-二叔丁基-4-乙基苯酚(抗氧剂DBEP)、2,6-二叔丁基-4-正丁基苯酚(抗氧剂678);叔丁基羟基茴香醚(BHA)、2,6-二叔丁基-α-甲氧基-对甲酚(BHT-MO)、4-羟甲基-2,6-二叔丁基苯酚(抗氧剂754)、2,6-二叔丁基-α-二甲氨基-对甲酚(抗氧剂703)、4,4’-异丙叉双酚(双酚A)、2,2’-双-(3-甲基-4羟基苯基)丙烷(双酚C)、4,4’-二羟基联苯(抗氧剂DOD)、4,4’-二羟基-3,3’,5,5’-四-叔丁基联苯(抗氧剂712)、2,2’-亚甲基-双-(4-甲基-6-叔丁基苯酚)(抗氧剂双酚2246)、4,4’-亚甲基-双-(2-甲基-6-叔丁基苯酚)(抗氧剂甲叉736)、2,2’-亚甲基-双-(4-乙基-6-叔丁基苯酚)(抗氧剂425)、2,2’-亚甲基-双-(4-甲基-6-环己基苯酚)(抗氧剂ZKF)、2,2’-亚甲基-双[4- 甲基-6-(α-甲基环己基)苯酚](抗氧剂WSP)、2,2’-亚甲基-双-(6-α-甲基苄基对甲酚)、4,4’-亚甲基-双-(2,6-二叔丁基苯酚)(抗氧剂T511)、4,4’-亚甲基-双-(2-叔丁基苯酚)(抗氧剂702)、2,2’-亚乙基-双-(4-甲基-6-叔丁基苯酚)、4,4’-亚乙基-双-(2-甲基-6-叔丁基苯酚)、4,4’-亚乙基-双-(2,6-二叔丁基苯酚)、4,4’-亚丁基-双-(6-叔丁基-间甲酚)(抗氧剂BBM、抗氧剂TCA)、4,4’-亚异丁基-双-(2,6-二叔丁基苯酚)等。
本发明中,低硫柴油是指硫含量低于10ppm的柴油。
本发明提供的上述式(I)化合物用于提高低硫柴油堵塞抑制性时,既可以直接加入低硫柴油基础油中,也可以先与其他助剂如抗氧剂等复配形成堵塞抑制剂配方(组合物)后再加入低硫柴油中,得到堵塞抑制性改善的低硫柴油。
本发明中,为区别起见,将加入堵塞抑制剂之前和之后的柴油分别称为低硫柴油和堵塞抑制性改善的低硫柴油。所述堵塞抑制性改善是指与加入堵塞抑制剂之前的柴油相比,柴油的堵塞抑制性提高了,不管提高幅度的大小。
下面通过实施例来进一步说明本发明植物油基低硫柴油堵塞抑制剂及其制备方法和应用效果。实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
以下实施例中的实验方法,如无特殊说明,均为本领域常规方法。所用试剂均为市售品或者通过常规方法制备得到。
本发明所制备堵塞抑制剂产品的酸值按照GB/T 7304方法测定,凝点按照GB/T 510方法测定,低硫柴油的磨斑直径(与润滑性对应)按照SH/T 0765方法测定。
植物油脂肪酸的转化率A=(m 1-m 2)/m 1×100%。其中,m 1为第二步反应中投料的植物油脂肪酸的质量;m 2为反应后分离出植物油脂肪酸的质量。
本发明中气相色谱测试所采用的设备型号及分析条件具体如下:样品制备参照GB/T17376《动植物油脂、脂肪酸甲酯制备》;仪器采用Thermo DSQ II,色谱柱采用Aglient DB-1HT;条件为起始温度170℃,保持1min,以5℃/min的速率升温至350℃,保持5min,进样口温度260℃,检测器温度280℃,分流比20:1,进样量1μL。
本发明中,红外分析所采用的设备型号及分析条件具体如下:仪器采用Thermo NICOLET 6700;条件为CaF 2涂膜,扫描范围400-4000cm -1,分辨率4cm -1,扫描次数32次。
本发明中核磁氢谱分析所采用的设备型号及分析条件具体如下:仪器采用Bruker  AVANCE III 500型;条件为测试温度300K,共振频率(SFO1)500MHz,溶剂氘代氯仿,内标四甲基硅烷,谱宽(SWH)10000Hz,脉冲宽度(P1)10μs,采样时间3.27s,采样次数(NS)64次,延迟时间(D1)10s。
本发明中核磁碳谱分析所采用的设备型号及分析条件具体如下:仪器采用Bruker AVANCE III 500型;条件为测试温度300K,共振频率(SFO1)125MHz,溶剂氘代氯仿,内标四甲基硅烷,谱宽(SWH)10000Hz,脉冲宽度(P1)10μs,采样时间3.27s,采样次数(NS)64次,延迟时间(D1)10s。
本发明中TOF质谱分析所采用的设备型号及分析条件具体如下:仪器采用Bruker microfex基质辅助激光解吸电离飞行时间质谱仪;条件为将蒽三酚(dithranol 20mg/ml),三氟乙酸钠(10mg/ml)溶解于四氢呋喃中配置成溶剂备用。基质为α-氰基-4-羟基肉桂酸(HCCA),将HCCA溶解到溶剂中超声溶解配制为饱和溶液并离心待用,将待测样品溶于溶剂中(10mg/ml),取等体积的多肽溶液和基质溶液上清液混合均匀,然后将1μL混合溶液滴加到样品板上自然干燥结晶。之后送入质谱仪进行分析。采用正离子反射模式检测,反射电压为19kV。累计200次单次扫描的信号得到质谱图,利用自带的分析软件进行基线校正和标峰。
实施例1
(1)将1000g玉米油(碘值为125mgKOH/g,其他性质如下表1所示)、3500g乙二醇、600g的KOH投入到反应器中混合均匀,在160℃搅拌反应5h,产物经盐酸酸化至pH为2.5,水洗至中性,经静置分层分离出水相,得到改性玉米油脂肪酸。
(2)取100g改性玉米油脂肪酸、44.5g 2-丁烯二醛(又称順丁烯二醛,上海金锦乐实业有限公司,纯度99%,以下相同)加入到超声波反应器中,反应温度为130℃,超声波功率为200W,300rpm搅拌反应1h,结束反应;待反应体系降至室温后,减压蒸馏,收集压力65Pa的200℃馏分,得到堵塞抑制剂产品。玉米油脂肪酸的转化率为48.2%,产品酸值122.5mgKOH/g,凝点-26.5℃。
图1和图2分别为改性玉米油脂肪酸和环加成反应后未分离产物的气相色谱图,可以看出经环加成反应后,在14.04min出现了目标产物的特征峰,同时,在7.8min左右代表改性玉米油脂肪酸的特征峰已基本消失,证明了体系内发生了迪尔斯-阿尔德加成反应。
图3和图4分别为改性玉米油脂肪酸和经分离后产物的红外谱图,其中在985cm -1的吸收峰为碳碳共轭双键的特征峰,在2751cm -1的吸收峰为醛基的特征峰,可以判定反应后产物具有醛基官能团,同时,碳碳共轭双键的特征峰已基本消失,证明了通过迪尔斯-阿尔德加成反应,成功将醛基引入到改性玉米油脂肪酸的分子链上。
图5为所制备堵塞抑制剂的TOF质谱图,可以判断产品的分子量为364。结合产品酸值122.5mgKOH/g,以及产物分子量,可以判定产品分子内有一个羧基官能团。
图6为所制备堵塞抑制剂的核磁碳谱( 13C-NMR),其中,化学位移δ=178ppm为羧基中的碳;化学位移δ=204ppm为醛基中的碳;化学位移δ=132ppm为碳碳双键中的碳。根据吸收峰强度可知,产品分子中醛基数量为羧基的2倍,碳碳双键的数量与羧基相同。
由于产品分子内有一个羧基官能团,因此产品中含2个醛基、1个碳碳双键。
图7为所制备堵塞抑制剂的核磁氢谱( 1H-NMR),其中,化学位移δ=9.7ppm、δ=5.9ppm、δ=2.7ppm、δ=2.2ppm、δ=1.3ppm、δ=0.9ppm分别归属于
Figure PCTCN2019130789-appb-000002
-HC=CH-、不同化学环境的
Figure PCTCN2019130789-appb-000003
-CH 2-、-CH 3,并结合裂分数量,可推导出产品结构式为
Figure PCTCN2019130789-appb-000004
的混合物。
通过上述谱图并结合原料可知,通过改性反应,已在植物油脂肪酸分子链上成功引入脂肪环结构和醛基极性官能团,得到的堵塞抑制剂产品为式(I)所示结构的化合物,其中x=0、y=0、m=5、n=7,R 1、R 2各自为H,以及和x=0、y=0、m=4、n=8,R 1、R 2各自为H的混合物。
实施例2
(1)将1000g玉米油、2500g乙二醇、500g的KOH投入到反应器中混合均匀,在180℃搅拌反应3h,产物经盐酸酸化至pH为2,水洗至中性后,经静置分层分离出水相,得到改性玉米油脂肪酸。
(2)取100g改性玉米油脂肪酸、58.8g 2-丁烯二醛加入到超声波反应器中,反应温度为110℃,超声波功率为100W,300rpm搅拌反应2h,结束反应;待反应体系降至室温后,减压蒸馏,收集压力65Pa的200℃馏分,得到堵塞抑制剂产品。玉米油脂肪酸 的转化率为47.2%,产品酸值122.1mgKOH/g,凝点-26.3℃。
核磁、红外、色谱和质谱表明其为式(I)所示结构的化合物,其中x=0、y=0、m=5、n=7,R 1、R 2各自为H,以及和x=0、y=0、m=4、n=8,R 1、R 2各自为H的混合物。
实施例3
(1)将1000g玉米油、3000g乙二醇、550gKOH投入反应器中混合均匀后,在170℃搅拌反应4h,产物经盐酸酸化至pH为3,水洗至中性后,经静置分层分离出水相,得到改性玉米油脂肪酸。
(2)取100g改性玉米油脂肪酸、24.7g 2-丁烯二醛加入到超声波反应器中,反应温度为150℃,超声波功率为300W,300rpm搅拌反应0.5h,结束反应;待反应体系降至室温后,减压蒸馏,收集压力65Pa的200℃馏分,得到堵塞抑制剂产品。玉米油脂肪酸的转化率为49.3%,产品酸值121.7mgKOH/g,凝点-27.0℃。
核磁、红外、色谱和质谱表明其为式(I)所示结构的化合物,其中x=0、y=0、m=5、n=7,R 1、R 2各自为H,以及和x=0、y=0、m=4、n=8,R 1、R 2各自为H的混合物。
实施例4
制备工艺及操作条件同实施例1,不同在于采用棉籽油(碘值为108mgKOH/g)作为反应原料,得到堵塞抑制剂产品。棉籽油脂肪酸的转化率为45.3%,产品酸值122.4mgKOH/g,凝点-26.8℃。
核磁、红外、色谱和质谱表明其为式(I)所示结构的化合物,其中x=0、y=0、m=5、n=7,R 1、R 2各自为H,以及和x=0、y=0、m=4、n=8,R 1、R 2各自为H的混合物。
实施例5
制备工艺及操作条件同实施例1,不同在于采用花生油(碘值为95mgKOH/g)作为反应原料,得到堵塞抑制剂产品。花生油脂肪酸的转化率为25.5%,产品酸值122.0mgKOH/g,凝点-26.8℃。
核磁、红外、色谱和质谱表明其为式(I)所示结构的化合物,其中x=0、y=0、m=5、n=7,R 1、R 2各自为H,以及和x=0、y=0、m=4、n=8,R 1、R 2各自为H的混合物。
实施例6
制备工艺及操作条件同实施例1,不同在于采用文冠果油(碘值为116mgKOH/g)作为反应原料,得到堵塞抑制剂产品。文冠果油脂肪酸的转化率为39.5%,产品酸值122.2mgKOH/g,凝点-26.8℃。
核磁、红外、色谱和质谱表明其为式(I)所示结构的化合物,其中x=0、y=0、m=5、n=7,R 1、R 2各自为H,以及和x=0、y=0、m=4、n=8,R 1、R 2各自为H的混合物。
实施例7
制备工艺及操作条件同实施例1,不同在于采用50.8g 2-戊烯二醛作为反应原料,得到堵塞抑制剂产品。玉米油脂肪酸的转化率为44.2%,产品酸值119.6mgKOH/g,凝点-25.8℃。
核磁、红外、色谱和质谱表明其为式(I)所示结构的化合物,其中x=0、y=1、m=5、n=7,R 1、R 2各自为H,以及和x=0、y=1、m=4、n=8,R 1、R 2各自为H的混合物。。
实施例8
制备工艺及操作条件同实施例1,不同在于采用57.2g 3-己烯二醛作为反应原料,得到堵塞抑制剂产品。玉米油脂肪酸的转化率为42.5%,产品酸值117.4mgKOH/g,凝点-24.3℃。
核磁、红外、色谱和质谱表明其为式(I)所示结构的化合物,其中x=1、y=1、m=5、n=7,R 1、R 2各自为H,以及和x=1、y=1、m=4、n=8,R 1、R 2各自为H的混合物。。
实施例9
制备工艺及操作条件同实施例1,不同在于采用70.0g 4-辛烯二醛作为反应原料,得到堵塞抑制剂产品。玉米油脂肪酸的转化率为30.5%,产品酸值115.7mgKOH/g,凝点-20.3℃。
核磁、红外、色谱和质谱表明其为式(I)所示结构的化合物,其中x=2、y=2、m=5、n=7,R 1、R 2各自为H,以及和x=2、y=2、m=4、n=8,R 1、R 2各自为H的混合物。。
实施例10
制备工艺及操作条件同实施例1,不同在于采用1,3-丙二醇代替乙二醇,得到堵塞抑制剂产品。玉米油脂肪酸的转化率为44.1%,产品酸值122.4mgKOH/g,凝点-26.3℃。
实施例11
制备工艺及操作条件同实施例1,不同在于采用1,4-丁二醇代替乙二醇,得到堵塞抑制剂产品。玉米油脂肪酸的转化率为40.2%,产品酸值122.2 mgKOH/g,凝点-26.5℃。
对比例1
制备工艺及操作条件同实施例1,不同在于采用碘值为49mgKOH/g的棕榈油作为反应原料制备堵塞抑制剂。棕榈油脂肪酸的转化率<6.4%,堵塞抑制剂转化率过低,不具有经济效益。
对比例2
制备工艺及操作条件同实施例1,不同在于直接采用植物油和不饱和二元醛进行反应,未发生反应,无法合成产品。
对比例3
制备工艺及操作条件同实施例1,不同在于采用具有共轭双键的桐油,反应体系发生交联副反应,桐油脂肪酸的转化率为51.2%,产品凝点为-9℃。凝点过高,不满足使用要求。
表1
Figure PCTCN2019130789-appb-000005
测试例1
使用硫含量小于10ppm的低硫柴油(低硫柴油-1)和磨斑直径大于580μm的加氢精制柴油(低硫柴油-2)进行测试,其具体性质如表2所示。将上述实施例和对比例制备的堵塞抑制剂加入到上述低硫柴油中,进行产品性能测试,测试结果如表3、表4所示。
表2
Figure PCTCN2019130789-appb-000006
表3
Figure PCTCN2019130789-appb-000007
Figure PCTCN2019130789-appb-000008
表4
Figure PCTCN2019130789-appb-000009
Figure PCTCN2019130789-appb-000010
从表3和表4可以看出,直接采用植物油、或者采用步骤(1)产物共对低硫柴油的润滑效果不佳,低硫柴油的润滑性不满足国V柴油润滑性要求,且在-20℃或-30℃存在改进剂析出。经本发明改性后植物油脂肪酸,对低硫柴油的润滑性有显著改善,当添加量为80ppm或100ppm时,调和后的低硫柴油即可满足国V柴油润滑性(磨斑直径≯460μm)要求,且在-20℃或-30℃无析出。说明所制备堵塞抑制剂产品具有显著的润滑效果,并且凝点低,用量少。
测试例2
为说明本发明产品具有堵塞抑制性能,分别取低硫柴油-1产品各1L,加20ml水剧烈摇晃后,存储于密闭空间内,对比是否添加实施例产品和对比例产品后柴油样品的总污染物(总污染物主要包括柴油中滋生的细菌及其排泄物,总污染物含量过高将导致过滤器阻塞),总污染物的检测按照GB/T 33400测定,结果如表5所示:
表5
Figure PCTCN2019130789-appb-000011
Figure PCTCN2019130789-appb-000012
5由表5可知,对于未加剂柴油,随着放置时间延长,总污染物含量增多;而添加产品对低硫柴油的抗菌性有显著改善,当添加量为80ppm时,调和后的低硫柴油放置6个月后,总污染物含量基本保持不变。

Claims (17)

  1. 式(I)所示的化合物:
    Figure PCTCN2019130789-appb-100001
    其中,x和y各自为0-4之间的整数;m和n各自为3-9之间的整数,且10≤m+n≤14;R 1、R 2各自选自H、C1-C6的直链或支链的烷基或C3-C6的环烷基。
  2. 根据权利要求1所述的化合物,其中,m为4或5;
    优选地,x和y各自为0或1;
    优选地,m+n=12;
    优选地,R 1、R 2各自选自H、甲基或乙基。
  3. 权利要求1-2中任意一项所述的化合物作为低硫柴油堵塞抑制剂的应用。
  4. 一种植物油基堵塞抑制剂的制备方法,其特征在于,该方法包括如下步骤:
    (1)在异构化反应条件下,将非共轭植物油与碱或碱的醇溶液进行接触反应;
    (2)将接触反应所得产物经酸化、水洗后分离出水相,得到改性植物油脂肪酸;
    (3)在迪尔斯-阿尔德加成反应条件下,将改性植物油脂肪酸与不饱和二元醛进行接触;
    (4)将步骤(3)接触所得产物除去未反应的原料。
  5. 根据权利要求4所述的方法,其中,步骤(1)所述的非共轭植物油为具有非共轭碳碳双键、且亚麻酸含量不大于0.6%、碘值不小于60mgKOH/g优选为不小于85mgKOH/g的植物油;优选为玉米油、棉籽油、花生油、芝麻油、文冠果油中的一种或多种。
  6. 根据权利要求4或5所述的方法,其中,步骤(1)所述的碱为氢氧化钾和/或氢氧化钠,用量为非共轭植物油质量的0.5-0.6倍;所述醇为饱和二元醇,优选为乙二醇、1,3-丙二醇、1,4-丁二醇中的至少一种,用量为非共轭植物油质量的2.5-3.5倍。
  7. 根据权利要求4-6中任意一项所述的方法,其中,步骤(1)所述异构化反应条 件包括温度为180-220℃,时间为3-5h。
  8. 根据权利要求4-7中任意一项所述的方法,其中,步骤(2)所述不饱和二元醛的碳原子数为4-12,优选为2-丁烯二醛、2-戊烯二醛、2-己烯二醛、3-己烯二醛、2-庚烯二醛、3-庚烯二醛、2-辛烯二醛、3-辛烯二醛、4-辛烯二醛中的一种或多种,优选地,不饱和二元醛与植物油脂肪酸的摩尔比为0.5:1-3:1,优选为0.8:1-2:1。
  9. 根据权利要求4-8中任意一项所述的方法,其中,步骤(2)所述迪尔斯-阿尔德加成反应条件包括温度为190-210℃,时间为0.5-2h。
  10. 根据权利要求4-9中任意一项所述的方法,其中,步骤(4)所述除去未反应的原料的方式包括将接触所得的混合物在压力为30-150Pa优选为65-120Pa、温度为180-220℃优选为195-205℃下进行减压蒸馏。
  11. 由权利要求4-10中任意一项所述的制备方法制得的植物油基堵塞抑制剂。
  12. 含有权利要求1-2中任意一项所述的化合物和权利要求11所述的植物油基堵塞抑制剂的低硫柴油堵塞抑制剂组合物。
  13. 根据权利要求12所述的低硫柴油堵塞抑制剂组合物,其中,以低硫柴油堵塞抑制剂组合物的总量为基准,该低硫柴油堵塞抑制剂组合物含有70-90重量%的植物油基堵塞抑制剂,0.2-2重量%的抗氧剂,8-29重量%的芳烃溶剂油。
  14. 一种堵塞抑制性提高的低硫柴油,含有低硫柴油和堵塞抑制剂,其特征在于,所述堵塞抑制剂为权利要求1-2中任意一项所述的化合物或权利要求11所述的植物油基堵塞抑制剂或者权利要求12或13所述的低硫柴油堵塞抑制剂组合物。
  15. 根据权利要求14所述的低硫柴油,其中,所述堵塞抑制剂为权利要求1-2中任意一项所述的化合物,相对于100重量份的低硫柴油基础油,所述堵塞抑制剂的含量为0.008-0.01重量份;所述堵塞抑制剂为权利要求11所述的植物油基堵塞抑制剂,相对于100重量份的低硫柴油基础油,所述植物油基堵塞抑制剂的含量为0.008-0.01重量份;所述堵塞抑制剂为权利要求12或13所述的低硫柴油堵塞抑制剂组合物,相对于100重量份的低硫柴油基础油,以所述植物油基堵塞抑制剂计的低硫柴油堵塞抑制剂组合物的含量为0.008-0.01重量份。
  16. 一种提高低硫柴油堵塞抑制性的方法,其特征在于,该方法包括将权利要求1-2中任意一项所述的化合物或权利要求11所述的植物油基堵塞抑制剂或者权利要求12或13所述的低硫柴油堵塞抑制剂加入到低硫柴油中。
  17. 根据权利要求16所述的方法,其中,所述堵塞抑制剂为权利要求1-2中任意一项所述的化合物,相对于100重量份的低硫柴油基础油,所述堵塞抑制剂的含量为0.008-0.01重量份;所述堵塞抑制剂为权利要求11所述的植物油基堵塞抑制剂,相对于100重量份的低硫柴油基础油,所述植物油基堵塞抑制剂的含量为0.008-0.01重量份;或者所述堵塞抑制剂为权利要求12或13所述的低硫柴油堵塞抑制剂组合物,相对于100重量份的低硫柴油,以所述堵塞抑制剂计的低硫柴油堵塞抑制剂组合物的含量为0.008-0.01重量份。
PCT/CN2019/130789 2019-12-31 2019-12-31 低硫柴油堵塞抑制剂及其制备方法和应用 WO2021134602A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP19958128.1A EP4083011B1 (en) 2019-12-31 2019-12-31 Low sulfur diesel blockage inhibitor, preparation method therefor and use thereof
JP2022539658A JP7494304B2 (ja) 2019-12-31 2019-12-31 低硫黄ディーゼル用目詰まり抑制剤、その製造方法及び使用
BR112022013145A BR112022013145A2 (pt) 2019-12-31 2019-12-31 Inibidor de bloqueio de diesel com baixo teor enxofre, método de preparação e uso do mesmo
ES19958128T ES2973156T3 (es) 2019-12-31 2019-12-31 Inhibidor de obstrucción de diésel con bajo contenido de azufre, método de preparación del mismo y uso del mismo
KR1020227026475A KR20220119734A (ko) 2019-12-31 2019-12-31 저황 디젤 막힘 억제제 및 이의 제조 방법과 응용
PCT/CN2019/130789 WO2021134602A1 (zh) 2019-12-31 2019-12-31 低硫柴油堵塞抑制剂及其制备方法和应用
US17/758,282 US11912657B2 (en) 2019-12-31 2019-12-31 Low sulfur diesel blockage inhibitor, preparation method therefor and use thereof
CA3166335A CA3166335A1 (en) 2019-12-31 2019-12-31 Low sulfur diesel blockage inhibitor, preparation method therefor and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130789 WO2021134602A1 (zh) 2019-12-31 2019-12-31 低硫柴油堵塞抑制剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021134602A1 true WO2021134602A1 (zh) 2021-07-08

Family

ID=76687236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130789 WO2021134602A1 (zh) 2019-12-31 2019-12-31 低硫柴油堵塞抑制剂及其制备方法和应用

Country Status (8)

Country Link
US (1) US11912657B2 (zh)
EP (1) EP4083011B1 (zh)
JP (1) JP7494304B2 (zh)
KR (1) KR20220119734A (zh)
BR (1) BR112022013145A2 (zh)
CA (1) CA3166335A1 (zh)
ES (1) ES2973156T3 (zh)
WO (1) WO2021134602A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2112732C (en) * 1993-01-07 2004-02-24 Bernd Wenderoth Low-sulfur mineral diesel fuels
CN103666603A (zh) * 2013-12-19 2014-03-26 关平 环保型低硫柴油抗磨剂
CN108219874A (zh) * 2017-12-13 2018-06-29 四川大学 一种超低硫柴油用妥尔油脂肪酸复配抗磨剂
CN109486537A (zh) * 2017-09-09 2019-03-19 中国石油化工股份有限公司 一种低硫柴油抗磨剂及其制备方法
CN109486538A (zh) * 2017-09-09 2019-03-19 中国石油化工股份有限公司 一种提高低硫柴油润滑性的改进剂及其制备方法
CN109576063A (zh) * 2017-09-28 2019-04-05 中国石油化工股份有限公司 一种一步法合成低硫柴油抗磨剂的方法
CN109576021A (zh) * 2017-09-28 2019-04-05 中国石油化工股份有限公司 一种改善低硫柴油润滑性的改进剂及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239298B1 (en) * 1998-05-26 2001-05-29 International Lubricants Inc. Fuel lubricity additives
EP1960500B1 (en) 2005-11-04 2013-08-21 The Lubrizol Corporation Fuel additive concentrate composition and fuel composition and method thereof
CA2642697C (en) * 2007-11-01 2016-05-03 University Of Saskatchewan Fuel additive composition to improve fuel lubricity
US20100005706A1 (en) 2008-07-11 2010-01-14 Innospec Fuel Specialties, LLC Fuel composition with enhanced low temperature properties
US20200095514A1 (en) * 2018-09-20 2020-03-26 The United States Of America, As Represented By The Secretary Of Agriculture Compositions Containing Diesel and Fatty Acid Methyl Ester/Maleic Anhydride/Esters (FAME/MA/Esters) and the Use of FAME/MA/Esters to Improve the Lubricity of Diesel
TW202136484A (zh) * 2020-03-30 2021-10-01 大陸商中國石油化工科技開發有限公司 燃油潤滑性改進劑及其用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2112732C (en) * 1993-01-07 2004-02-24 Bernd Wenderoth Low-sulfur mineral diesel fuels
CN103666603A (zh) * 2013-12-19 2014-03-26 关平 环保型低硫柴油抗磨剂
CN109486537A (zh) * 2017-09-09 2019-03-19 中国石油化工股份有限公司 一种低硫柴油抗磨剂及其制备方法
CN109486538A (zh) * 2017-09-09 2019-03-19 中国石油化工股份有限公司 一种提高低硫柴油润滑性的改进剂及其制备方法
CN109576063A (zh) * 2017-09-28 2019-04-05 中国石油化工股份有限公司 一种一步法合成低硫柴油抗磨剂的方法
CN109576021A (zh) * 2017-09-28 2019-04-05 中国石油化工股份有限公司 一种改善低硫柴油润滑性的改进剂及其制备方法
CN108219874A (zh) * 2017-12-13 2018-06-29 四川大学 一种超低硫柴油用妥尔油脂肪酸复配抗磨剂

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN HUI-ZHU ET AL.: "Determination of thiocyanate in milk and dairy products by spectrophotometry", CHINESE JOURNAL OF HEALTH LABORATORY TECHNOLOGY, 2012, pages 46 - 48
JIN YULIN; FANG XINXIANG; FAN YUECHAO; ZHOU HUA: "The influence of three anti-wear agents on the total number of bacterial colonies in 0# diesel oil", CHINA PETROCHEM, no. 12, 30 June 2017 (2017-06-30), CN, pages 211 - 212, XP009529329, ISSN: 1674-5167 *
NURMUHAMMAD WUMARJAN ELI, LIU YUANFENG, TAO MINFANG: "SYNTHESIS OF C22-CARBOXYLIC ACID", SPECIALITY PETROCHEMICALS, 東京, vol. 23, no. 2, 1 January 2009 (2009-01-01), 東京, pages 25 - 27, XP055827966 *
See also references of EP4083011A4
ZHU LINFENG, LU XIAO-YI;TIAN YU;DONG ZHI-XIONG;LV SONG: "Research and Control the Fouling of Fuel Oil Pipeline", AN HUI HUA GONG = ANHUI CHEMICAL INDUSTRY, CN, vol. 39, no. 6, 1 December 2013 (2013-12-01), CN, pages 30 - 32, XP055827961, ISSN: 1008-553X, DOI: 10.3969/j.issn.1008-553X.2013.06.009 *

Also Published As

Publication number Publication date
EP4083011B1 (en) 2024-02-07
JP2023509413A (ja) 2023-03-08
EP4083011A1 (en) 2022-11-02
EP4083011A4 (en) 2023-01-18
ES2973156T3 (es) 2024-06-18
US20230039122A1 (en) 2023-02-09
CA3166335A1 (en) 2021-07-08
KR20220119734A (ko) 2022-08-30
JP7494304B2 (ja) 2024-06-03
US11912657B2 (en) 2024-02-27
BR112022013145A2 (pt) 2022-09-06

Similar Documents

Publication Publication Date Title
CN103374454B (zh) 燃气发动机油组合物及其制造方法
US20070204505A1 (en) Gasoline fuel compositions having increased oxidative stability
CN109576021B (zh) 一种改善低硫柴油润滑性的改进剂及其制备方法
CN101768484B (zh) 一种柴油组合物
WO2021134602A1 (zh) 低硫柴油堵塞抑制剂及其制备方法和应用
CN113121336B (zh) 化合物及堵塞抑制剂及其制备方法和堵塞抑制性低硫柴油及提高低硫柴油堵塞抑制性的方法
CN101768483B (zh) 一种柴油组合物
JP3945768B2 (ja) 無鉛ガソリン組成物およびその製造方法
RU2804547C1 (ru) Ингибитор засорения низкосернистого дизельного топлива, способ его получения и его применение
CN109486538B (zh) 一种提高低硫柴油润滑性的改进剂及其制备方法
CN111349037B (zh) 一种单酸型航空燃料抗磨剂及其制备方法
CN109574846B (zh) 一种利用超声波制备低硫柴油润滑性改进剂的方法
RU2738610C1 (ru) Состав экологически чистого дизельного топлива
CN111349483B (zh) 一种植物油基低硫柴油抗磨剂及其制备方法
CN111349489B (zh) 一种低硫柴油润滑性改进剂及其合成方法和应用
CN111349493B (zh) 一种清净型低硫柴油润滑性改进剂及其制备方法
US20240093111A1 (en) Fuel composition with lubricity modifier
CN109486504A (zh) 一种提高低硫柴油润滑性的改进剂及其合成方法
CN111349485B (zh) 一种低硫柴油润滑性改进剂及其合成方法
CN111349490B (zh) 一种利用微波制备低硫柴油润滑性改进剂的方法
CN111349482B (zh) 一种抑菌型柴油润滑性改进剂及其制备方法
Vukeya The use of model compounds to investigate the influence of fuel composition on the thermo-oxidative stability of fame/diesel blends
JP2005054103A (ja) ガソリン
US9982212B2 (en) Metal detergent and preparation method thereof and lubricant oil containing metal detergent
CN111349484A (zh) 一种低硫柴油改性剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539658

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3166335

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022013145

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227026475

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019958128

Country of ref document: EP

Effective date: 20220729

ENP Entry into the national phase

Ref document number: 112022013145

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220630