WO2021133881A1 - Circular economy for plastic waste to polyethylene and chemicals via refinery crude unit - Google Patents
Circular economy for plastic waste to polyethylene and chemicals via refinery crude unit Download PDFInfo
- Publication number
- WO2021133881A1 WO2021133881A1 PCT/US2020/066792 US2020066792W WO2021133881A1 WO 2021133881 A1 WO2021133881 A1 WO 2021133881A1 US 2020066792 W US2020066792 W US 2020066792W WO 2021133881 A1 WO2021133881 A1 WO 2021133881A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fraction
- naphtha
- diesel
- pyrolysis
- refinery
- Prior art date
Links
- -1 polyethylene Polymers 0.000 title claims abstract description 91
- 239000004698 Polyethylene Substances 0.000 title claims abstract description 65
- 229920000573 polyethylene Polymers 0.000 title claims abstract description 65
- 239000000126 substance Substances 0.000 title claims description 14
- 239000013502 plastic waste Substances 0.000 title description 4
- 238000000197 pyrolysis Methods 0.000 claims abstract description 155
- 229920003023 plastic Polymers 0.000 claims abstract description 88
- 239000004033 plastic Substances 0.000 claims abstract description 88
- 239000002699 waste material Substances 0.000 claims abstract description 87
- 238000000034 method Methods 0.000 claims abstract description 74
- 230000008569 process Effects 0.000 claims abstract description 63
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000005977 Ethylene Substances 0.000 claims abstract description 48
- 239000004711 α-olefin Substances 0.000 claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 claims abstract description 28
- 239000004743 Polypropylene Substances 0.000 claims abstract description 27
- 229920001155 polypropylene Polymers 0.000 claims abstract description 27
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 10
- 229920000098 polyolefin Polymers 0.000 claims abstract description 10
- 239000001273 butane Substances 0.000 claims abstract description 9
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 9
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims abstract description 9
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000001294 propane Substances 0.000 claims abstract description 9
- 238000010924 continuous production Methods 0.000 claims abstract description 6
- 239000003921 oil Substances 0.000 claims description 83
- 239000000446 fuel Substances 0.000 claims description 54
- 239000003502 gasoline Substances 0.000 claims description 36
- 229930195733 hydrocarbon Natural products 0.000 claims description 22
- 150000002430 hydrocarbons Chemical class 0.000 claims description 22
- 239000000356 contaminant Substances 0.000 claims description 21
- 239000004215 Carbon black (E152) Substances 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 238000003786 synthesis reaction Methods 0.000 claims description 7
- 239000010779 crude oil Substances 0.000 claims description 3
- 239000000047 product Substances 0.000 description 57
- 239000001993 wax Substances 0.000 description 42
- 229920000642 polymer Polymers 0.000 description 22
- 239000007789 gas Substances 0.000 description 15
- 239000003054 catalyst Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000002283 diesel fuel Substances 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 238000004821 distillation Methods 0.000 description 11
- 239000012535 impurity Substances 0.000 description 11
- 238000004064 recycling Methods 0.000 description 11
- 238000009835 boiling Methods 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 8
- 229920001903 high density polyethylene Polymers 0.000 description 7
- 239000004700 high-density polyethylene Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229910052755 nonmetal Inorganic materials 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229920001684 low density polyethylene Polymers 0.000 description 6
- 239000004702 low-density polyethylene Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000012188 paraffin wax Substances 0.000 description 6
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 5
- 150000001336 alkenes Chemical class 0.000 description 5
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 5
- 229910052794 bromium Inorganic materials 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 239000003915 liquefied petroleum gas Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000012263 liquid product Substances 0.000 description 4
- 239000010687 lubricating oil Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229920013716 polyethylene resin Polymers 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229920000092 linear low density polyethylene Polymers 0.000 description 3
- 239000004707 linear low-density polyethylene Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000002199 base oil Substances 0.000 description 2
- 238000004517 catalytic hydrocracking Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 239000007792 gaseous phase Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 150000002843 nonmetals Chemical class 0.000 description 2
- 238000006384 oligomerization reaction Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229920013639 polyalphaolefin Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- 229910003294 NiMo Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002038 chemiluminescence detection Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- IAQWMWUKBQPOIY-UHFFFAOYSA-N chromium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Cr+4] IAQWMWUKBQPOIY-UHFFFAOYSA-N 0.000 description 1
- AYTAKQFHWFYBMA-UHFFFAOYSA-N chromium(IV) oxide Inorganic materials O=[Cr]=O AYTAKQFHWFYBMA-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000004231 fluid catalytic cracking Methods 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000010812 mixed waste Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000012934 organic peroxide initiator Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 235000019381 petroleum wax Nutrition 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000012776 robust process Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000004230 steam cracking Methods 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- 229910021654 trace metal Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/002—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/02—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
- C07C2/04—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
- C07C2/06—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
- C07C2/08—Catalytic processes
- C07C2/26—Catalytic processes with hydrides or organic compounds
- C07C2/30—Catalytic processes with hydrides or organic compounds containing metal-to-carbon bond; Metal hydrides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C4/00—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
- C07C4/02—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
- C07C4/04—Thermal processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/10—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G50/00—Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G57/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G73/00—Recovery or refining of mineral waxes, e.g. montan wax
- C10G73/02—Recovery of petroleum waxes from hydrocarbon oils; Dewaxing of hydrocarbon oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G73/00—Recovery or refining of mineral waxes, e.g. montan wax
- C10G73/42—Refining of petroleum waxes
- C10G73/44—Refining of petroleum waxes in the presence of hydrogen or hydrogen-generating compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/34—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
- C10G9/36—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
- C10B53/07—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1003—Waste materials
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1044—Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1081—Alkanes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/205—Metal content
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4006—Temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4012—Pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4018—Spatial velocity, e.g. LHSV, WHSV
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/02—Gasoline
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/08—Jet fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/22—Higher olefins
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/143—Feedstock the feedstock being recycled material, e.g. plastics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- U.S. Pat. No. 3,845,157 discloses cracking of waste or virgin polyolefins to form gaseous products such as ethylene/olefm copolymers which are further processed to produce synthetic hydrocarbon lubricants.
- U.S. Pat. No. 4,642,401 discloses the production of liquid hydrocarbons by heating pulverized polyolefin waste at temperatures of 150-500° C. and pressures of 20-300 bars.
- U.S. Pat. No. 5,849,964 discloses a process in which waste plastic materials are depolymerized into a volatile phase and a liquid phase.
- the volatile phase is separated into a gaseous phase and a condensate.
- the liquid phase, the condensate and the gaseous phase are refined into liquid fuel components using standard refining techniques.
- U.S. Pat. No. 6,143,940 discloses a procedure for converting waste plastics into heavy wax compositions.
- U.S. Pat. No. 6,150,577 discloses a process of converting waste plastics into lubricating oils.
- EP0620264 discloses a process for producing lubricating oils from waste or virgin polyolefins by thermally cracking the waste in a fluidized bed to form a waxy product, optionally using a hydrotreatment, then catalytically isomerizing and fractionating to recover a lubricating oil.
- waste plastics containing polyethylene and/or polypropylene are then selected. These waste plastics are then passed through a pyrolysis reactor to thermally crack at least a portion of the polyolefin waste and produce a pyrolyzed effluent.
- the pyrolyzed effluent is separated into offgas, a naphtha/diesel fraction, a heavy fraction, and char.
- the incorporation of the process with an oil refinery is an important aspect of the present process, and allows the creation of a circular economy with a single use waste plastic such as polyethylene.
- the naphtha/diesel fraction is passed to a crude unit in a refinery from which is recovered a straight run naphtha fraction (Cs-Cs).
- the straight run naphtha fraction is passed to a steam cracker for ethylene production.
- the refinery will generally have its own hydrocarbon feed flowing through the refinery units.
- the flow volume of naphtha/diesel generated from the pyrolysis of waste plastic to the refinery units can comprise any practical or accommodating volume % of the total flow to the refinery units.
- the flow of the naphtha/diesel fraction generated from the waste plastic pyrolysis for practical reasons, can be up to about 50 vol. % of the total flow, i.e., the refinery flow and the pyrolysis flow.
- the flow of the pyrolysis naphtha/diesel is an amount up to about 20 vol. % of the total flow.
- the pyrolyzed naphtha/diesel fraction is alternatively passed to a distillate treater, also known as a diesel hydrotreater for mild hydrotreating from which is recovered a light naphtha fraction (Cs-Cs).
- the light naphtha fraction is passed to a steam cracker for ethylene production.
- Normal alpha olefins are synthesized using ethylene recovered from the steam cracker and separated into several fractions, including a heavy fraction (C22+) of normal alpha olefins. This heavy fraction of normal alpha olefins is combined with the heavy fraction from the pyrolysis reactor. The combined heavy fraction and heavy fraction of normal alpha olefin stream is then passed to a wax hydrogenation zone to produce wax.
- a continuous process for converting waste plastic into recycle for polyethylene polymerization comprises selecting waste plastics containing polyethylene and/or polypropylene and passing the waste plastics through a pyrolysis reactor to thermally crack at least a portion of the polyolefin waste and produce a pyrolyzed effluent.
- the pyrolyzed effluent is separated into offgas, a naphtha/diesel fraction, a heavy fraction, and char.
- the naphtha/diesel fraction is passed to a crude unit distillation column in a refinery from which is recovered a portion of propane and butane (C3-C4) fraction from the distillation column.
- the C3-C4 fraction is then passed to a steam cracker for ethylene production.
- the ethylene is then passed to a normal alpha olefin (NAO) synthesis unit to produce valuable NAO chemicals in C4 to C22 + range with recycle contents.
- NAO normal alpha olefin
- a heavy fraction of normal alpha olefin stream (C22 + ) is recovered from the normal alpha olefin synthesis unit and combined with the heavy fraction from the pyrolysis reactor.
- the combined heavy fraction and heavy fraction of normal alpha olefin stream is passed to a wax hydrogenation zone to produce hydrogenated wax (slack wax or paraffin wax).
- FIG. 1 depicts the current practice of pyrolyzing waste plastics to produce fuel or wax (base case).
- FIG. 2 depicts a present process for establishing a circular economy for waste plastics.
- FIG. 3 depicts the plastic type classification for waste plastics recycling.
- Ethylene is the most produced petrochemical building block. Ethylene is produced in hundreds of millions tons per year via steam cracking.
- the steam crackers use either gaseous feedstocks (ethane, propane and/or butane) or liquid feed stocks (naphtha or gas oil). It is a noncatalytic cracking process operating at very high temperatures, up to 850° C.
- Polyethylene is used widely in various consumer and industrial products. Polyethylene is the most common plastic, over 100 million tons of polyethylene resins are produced annually. Its primary use is in packaging (plastic bags, plastic films, geomembranes, containers including bottles, etc.). Polyethylene is produced in three main forms: high-density polyethylene (HDPE, ⁇ 0.940-0.965 g/cm 3 ), linear low-density polyethylene (LLDPE, ⁇ 0.915- 0.940 g/cm 3 ) and low-density polyethylene (LDPE, ( ⁇ 0.930 g/cm 3 ), with the same chemical formula (C2H4)n but different molecular structure.
- HDPE high-density polyethylene
- LLDPE linear low-density polyethylene
- LDPE low-density polyethylene
- HDPE has a low degree of branching with short side chains while LDPE has a very high degree of branching with long side chains.
- LLDPE is a substantially linear polymer with significant numbers of short branches, commonly made by copolymerization of ethylene with short-chain alpha-olefins.
- LDPE Low density polyethylene
- HDPE High density polyethylene
- HDPE is manufactured at relatively low pressure (10-80 atm) and 80-150° C temperature in the presence of a catalyst.
- Ziegler-Natta organometallic catalysts titanium(III) chloride with an aluminum alkyl
- Phillips-type catalysts chromium(IV) oxide on silica
- Hydrogen is mixed with ethylene to control the chain length of the polymer.
- Manufacturing conditions of linear low-density polyethylene (LLDPE) are similar to those of HDPE except copolymerization of ethylene with short-chain alpha- olefins (1 -butene or 1 -hexene).
- FIG. 1 shows a diagram of pyrolysis of waste plastics fuel or wax that is generally operated in the industry today.
- polyethylene and polypropylene wastes are sorted together 1.
- the cleaned polyethylene/polypropylene waste 2 is converted in a pyrolysis unit 3 to offgas 4 and pyrolysis oil (liquid product).
- the offgas 4 from the pyrolysis unit is used as fuel to operate the pyrolysis unit 3, and only the pyrolysis unit is used for commercial purposes.
- An on-site distillation unit separates the pyrolysis oil to produce naphtha and diesel 5 products which are sold to fuel markets.
- the heavy pyrolysis oil fraction 6 is recycled back to the pyrolysis unit 3 to maximize the fuel yield.
- Char 7 is removed from the pyrolysis unit 3.
- the heavy fraction 6 is rich in long chain, linear hydrocarbons, and is very waxy (i.e., forms paraffinic wax upon cooling to ambient temperature). Wax can be separated from the heavy fraction 6 and sold to the wax markets.
- the present process converts pyrolyzed polyethylene and/or polypropylene waste plastic in large quantities by integrating the waste polymer pyrolysis product streams into an oil refinery operation.
- the resulting processes produce the feedstocks for the polymers (naphtha or C3-C4 for ethylene cracker), high quality gasoline and diesel fuel, and/or quality base oil.
- the present process provides a circular economy for polyethylene plants.
- Polyethylene is produced via polymerization of pure ethylene. Clean ethylene can be made using a steam cracker. Either naphtha or a C3-C4 stream can be fed to the steam cracker. The ethylene is then polymerized to create polyethylene.
- a pyrolysis unit produces poor quality products containing contaminants, such as calcium, magnesium, chlorides, nitrogen, sulfur, dienes, and heavy components, which products cannot be used in large quantity for blending in transportation fuels. It has been discovered that by having these products go through the refinery units, the contaminants can be captured in pre-treating units and their negative impacts diminished.
- the fuel components can be further upgraded with appropriate refinery units with chemical conversion processes, with the final transportation fuels produced by the integrated process being of higher quality and meeting the fuels quality requirements.
- the integrated process will generate much cleaner naphtha stream as steam cracker feedstock for ethylene generation and polyethylene production.
- FIG. 2 shows the present integrated process, integrating refinery operations with recycle for effective polyethylene production.
- mixed waste plastics are sorted together 21.
- the cleaned waste plastic 22 is converted in a pyrolysis unit 23 to offgas 24 and a pyrolysis oil (liquid product) and optionally wax (solid product at ambient temperature).
- the offgas 24 from the pyrolysis unit can be used as fuel to operate the pyrolysis unit 23.
- the pyrolysis oil is separated, generally at an on-site distillation unit, into a naphtha/diesel fraction 25, and a heavy faction 26.
- Char 27 is removed from the pyrolysis unit 23 after completion of the pyrolysis step.
- the pyrolysis unit can be located near the waste plastics collection site, which site could be away from a refinery, near a refinery, or within a refinery. If the pyrolysis unit is located away from the refinery, then pyrolysis oil (naphtha/diesel and heavies) can be transferred to the refinery by truck, barge, rail car or pipeline. It is preferred, however, that the pyrolysis unit is within the plastics collection site or the refinery.
- the preferred starting material for the present process is sorted waste plastics containing predominantly polyethylene and polypropylene (plastics recycle classification types 2, 4, and 5).
- the pre-sorted waste plastics are washed and shredded or pelleted to feed to a pyrolysis unit for thermal cracking.
- FIG. 3 depicts the plastic type classification for waste plastics recycling.
- Classification types 2, 4, and 5 are high density polyethylene, low density polyethylene and polypropylene, respectively. Any combination of the polyethylene and polypropylene waste plastics can be used.
- at least some polyethylene waste plastic is preferred.
- Plastics waste containing polyethylene terephthalate (plastics recycle classification type 1), polyvinyl chloride (plastics recycle classification type 3) and other polymers (plastics recycle classification type 7) need to be sorted out to less than 5%, preferably less than 1% and most preferably less than 0.1%.
- the present process can tolerate a moderate amount of polystyrene (plastics recycle classification type 6).
- Waste polystyrene needs to be sorted out to less than 30%, preferably less than 20% and most preferably less than 5%.
- Non- metal contaminants include contaminants coming from the Periodic Table Group IV, such as silica, contaminants from Group V, such as phosphorus and nitrogen compounds, contaminants from Group VI, such as sulfur compounds, and halide contaminants from Group VII, such as fluoride, chloride, and iodide.
- the residual metals, non-metal contaminants, and halides need to be removed to less than 50 ppm, preferentially less than 30ppm and most preferentially to less than 5ppm.
- the pyrolyzing is carried out by contacting a plastic material feedstock in a pyrolysis zone at pyrolysis conditions, where at least a portion of the feed(s) is cracked, thus forming a pyrolysis zone effluent comprising olefins and paraffins.
- Pyrolysis conditions include a temperature of from about 400° C to about 700° C, preferably from about 450° C to about 650° C.
- Conventional pyrolysis technology teaches operating conditions of above-atmospheric pressures.
- the pyrolysis pressure is sub-atmospheric.
- FIG. 2 shows the present integrated process where only the naphtha/diesel fraction 25 of the pyrolysis unit is sent to the crude unit desalter 28 to produce Cs-Cs naphtha, preferentially C5-C7 naphtha and most preferentially C5-C6 naphtha stream 29 that is used for the steam cracker 35 feed to generate ethylene.
- the ethylene is passed on to a polymerization unit 40, with the polyethylene polymer product used for polyethylene consumer products 41.
- the heavy naphtha/diesel/gas oil 30 is sent to appropriate refinery units 31 for upgrading into clean gasoline, diesel, or jet fuel.
- the refinery crude unit separates crude oil into multiple fractions such as liquefied petroleum gas (LPG), naphtha, kerosene, diesel and gas oil which will be further treated into useful petroleum products.
- the refinery crude unit has a crude treating section, commonly known as a desalter, and a crude oil distillation or fractionation section.
- the distillation section typically includes atmospheric distillation unit and vacuum distillation unit.
- the naphtha/diesel fraction from the pyrolysis unit is fed to the desalter which removes the salts and solids contained in the oil to protect downstream equipment from the harmful effects of the contaminants.
- water is mixed with the oil and typically heated to temperatures between about 215° F to about 280° F and allowed to separate in the desalter unit.
- the refinery will generally have its own hydrocarbon feed flowing through the refinery units.
- the flow volume of naphtha/diesel generated from the pyrolysis of waste plastic to the refinery units can comprise any practical or accommodating volume % of the total flow to the refinery units.
- the flow of the naphtha/diesel fraction generated from the waste plastic pyrolysis for practical reasons, can be up to about 50 vol. % of the total flow, i.e., the refinery flow and the pyrolysis flow.
- the flow of the pyrolysis naphtha/diesel is an amount up to about 20 vol. % of the total flow.
- the flow of the pyrolysis naphtha/diesel is an amount up to about 10 vol. % of the total flow. About 20 vol. % has been found to be an amount that is quite practical in its impact on the refinery while also providing excellent results and being an amount that can be accommodated.
- the amount of naphtha/diesel generated from the pyrolysis can of course be controlled so that the fraction passed to the refinery units provide the desired volume % of the flow.
- Desalted oil is sent to an atmospheric distillation unit heated to about 340-372° C (644- 700° F) at the bottom of the distillation column, and liquid is removed at various points of fractional distillation column to produce various fuels.
- the fuels from the crude units can be sent to various upgrading units in the refinery to remove impurities (nitrogen, sulfur) and to catalytically transform the fractions to improve the product properties, such as octane and cetane numbers.
- the bottom residue from the atmospheric distillation column also known as atmospheric residue, is sent to a vacuum distillation column to produce vacuum gas oil (650 - 1050° F) and vacuum residue.
- the vacuum gas oil may be used to produce base oil or further cracked to produce gasoline, jet and diesel fuel.
- the overall process produces LPG ( ⁇ 80° F), gasoline (80-400° F), jet fuel (360-500° F), and diesel fuel (300-700° F). The boiling points for these fractions are adjusted depending on the season and local specifications.
- the naphtha/diesel fraction is passed to a distillate hydrotreater, also known as diesel hydrotreater, for mild hydrotreating.
- the hydrotreating step saturates portions of olefins, dienes and aromatics to improve the quality of the fuel.
- Typical hydrotreating conditions which are employed to remove contaminants while avoiding cracking include temperatures ranging from about 190° C (374° F) to about 340° C (644° F), pressure ranging from about 400 psig to about 3000 psig, space velocities (LHSV) in the range of about 0.1 hr 1 to about 20 hr 1 , and hydrogen recycle rates ranging from about 400 to about 15,000 SCF/B.
- Hydrotreating catalysts include those conventionally used in hydrotreating units, containing metals such as Ni, Mo, Co, W and porous supports such alumina, silica, silica-alumina.
- a light naphtha fraction (Cs-Cs) can be recovered from the hydrotreater and then passed to a steam cracker for ethylene production.
- Normal alpha olefins are synthesized in the normal alpha olefin synthesis unit at 36 using ethylene recovered from the steam cracker 35. Various fractions of normal alpha olefins are recovered.
- the normal alpha olefin (NAO) manufacturing process converts ethylene into linear alpha olefins via oligomerization of ethylene.
- the most common Ziegler process uses triethyl aluminum as a catalyst, and excess ethylene are fed to a plug flow-reactor. The reaction is conducted at high pressure and high temperature. Excess ethylene is flashed off.
- the triethyl aluminum catalyst is washed out of the product with caustic and the linear alpha olefins are separated.
- the heavy, waxy fraction 26 of the pyrolysis oil from the pyrolysis unit is combined with a normal alpha olefin (NAO) unit product stream of heavy C22+ NAO 37 recovered from the NAO synthesis unit 36. Then the combined heavy NAO stream is hydrotreated 38 to produce wax, either slack wax or paraffin wax.
- NAO normal alpha olefin
- the ethylene polymerization unit is preferably located near the refinery so that the feedstock (propane, butane, naphtha) can be transferred via pipeline.
- the feedstock can be delivered via truck, barge, rail car, or pipeline.
- a C3-C4 fraction 32 is recovered from the refinery crude unit 28. This stream can also be fed to the steam cracker 35 for the production of ethylene. The ethylene is passed onto a polymerization unit 40, with the polyethylene product used for consumer polyethylene products 41.
- Example 1 Properties of Pyrolysis Oil and Wax From Commercial Sources
- Pyrolysis oil and wax samples were obtained from commercial sources and their properties are summarized in Table 1. These pyrolysis samples were prepared from waste plastics containing mostly polyethylene and polypropylene via thermal decomposition in a pyrolysis reactor at around 400-600° C, near atmospheric pressure without any added gas or a catalyst.
- a pyrolysis unit typically produces gas, liquid oil product, optionally wax product, and char.
- the pyrolysis unit ’s overhead gas stream containing thermally cracked hydrocarbon was cooled to collect condensate as pyrolysis oil (liquid at ambient temperature) and/or pyrolysis wax (solid at ambient temperature).
- the pyrolysis oil is the main product of the pyrolysis units. Some units produce pyrolysis wax as a separate product in addition to the pyrolysis oil. Table 1
- ASTM D4052 method was used for specific gravity measurements. Simulated boiling point distribution curve was obtained using ASTM D2887 method. Carlo-Erba analysis for carbon and hydrogen was based on ASTM D5291 method. Bromine number measurement was based on ASTM D1159 method. Hydrocarbon-type analysis was done using a high resolution magnetic mass spectrometer using the magnet scanned from 40 to 500 Daltons. Total sulfur was determined using XRF per ASTM D2622 method. The nitrogen was determined using a modified ASTM D5762 method using chemiluminescence detection. The total chloride content was measured using combustion ion chromatography instrument using modified ASTM 7359 method.
- the oxygen content in naphtha and distillate boiling range was estimated using GC by GC/MS measurements with electron ionization detector for m/Z range of 29-500. Trace metal and non-metal elements in oil were determined using inductively coupled plasma-atomic emission spectrometry (ICP-AES).
- ICP-AES inductively coupled plasma-atomic emission spectrometry
- Industrial pyrolysis process of sorted plastics sourced predominantly from polyethylene and polypropylene waste, produced quality hydrocarbon streams with specific gravity ranging 0.7 to 0.9, and a boiling range from 18 to 1100° F as in pyrolysis oil or pyrolysis wax.
- the pyrolysis product is rather pure hydrocarbon made of mostly carbon and hydrogen.
- the hydrogen to carbon molar ratio varies from 1.7 to near 2.0.
- the Bromine Number is in the range of 14 through 60 indicating varying degrees of unsaturation coming from olefins and aromatics.
- the aromatic content is in the range of 5 to 23 volume % with a higher severity unit producing more aromatics.
- the pyrolysis products show paraffinic content ranging from mid-20 vol. % to mid-50 vol. %.
- the pyrolysis product contains a substantial amount of olefins.
- Samples A and B pyrolysis oil produced under more severe conditions such as higher pyrolysis temperature and/or longer residence time, contain higher aromatic and lower paraffinic components, resulting H/C molar ratio of around 1.7 and high Bromine Number of 50-60.
- Samples C and D were produced at less severe conditions, and the pyrolysis oils are more paraffinic, resulting H/C molar ratio of close to 2.0 and Bromine Number around 40.
- Sample E pyrolysis wax, is mostly paraffinic, saturated hydrocarbon with a substantial amount of normal hydrocarbons (as opposed to branched hydrocarbons) with low Bromine Number of only 14.
- Example 2 Fractionation of Pyrolysis Oil for Evaluation As Transportation Fuel
- Sample D was distilled to produce hydrocarbon cuts representing gasoline (350° F ), jet (350 - 572° F), diesel (572 - 700° F) and the heavy (700° F + ) fractions.
- Table 2 summarizes the boiling point distribution and impurity distributions among the distilled product fractions.
- Example 3 Evaluation of Pyrolysis Oil Cut for Gasoline Fuel
- Sample F a pyrolysis oil cut for gasoline fuel boiling range, was evaluated to assess its potential to use as gasoline fuel.
- Sample F has the carbon number range of C5 - C12, typical of the gasoline fuel.
- Sample F a pyrolysis oil cut for gasoline fuel boiling range, cannot be used by itself as automotive gasoline fuel due to its poor quality.
- the gasoline fraction from the pyrolysis oil showed very poor oxidation stability in that Sample F failed only after 90 min compared to the target stability of longer than 1440 minutes.
- the pyrolysis gasoline exceeded the wash gum target of 4 mg/ 100 mL suggesting severe gum forming tendency.
- the pyrolysis gasoline has poor octane numbers compared to the reference gasoline. A premium unleaded gasoline was used as the reference gasoline.
- Example 4 Evaluation of Pyrolysis Oil Cut for Jet Fuel
- Sample G a pyrolysis oil cut for jet fuel boiling range, was evaluated to assess its potential to use as jet fuel.
- Sample G has the carbon number range of C9 - C18, typical of the jet fuel.
- Sample H a pyrolysis oil cut for diesel fuel boiling range, was evaluated to assess its potential to use as diesel fuel.
- Sample H has the carbon number range of C14 - C24, typical of the diesel fuel.
- Sample H contains a substantial amount of normal hydrocarbons. Since normal hydrocarbons tends to exhibit waxy characteristics, cold flow properties such as pour point (ASTM D5950-14) and cloud points (ASTM D5773) were considered as the most critical tests.
- Results from Table 1 showed that industrial pyrolysis process of sorted plastics, sourced predominantly from polyethylene and polypropylene waste, produced quality pyrolysis oil or pyrolysis wax made of mostly carbon and hydrogen. With good sorting and efficient pyrolysis unit operation, the nitrogen and sulfur impurities are at low enough levels that a modem refinery can handle cofeeding of pyrolysis feedstocks to their processing units with no detrimental impacts.
- pyrolysis oils or wax may still contain high amounts of metals (Ca, Fe, Mg) and other non-metals (P, Si, Cl, O) that could negatively affect the performance of conversion units in a refinery.
- metals Ca, Fe, Mg
- P, Si, Cl, O non-metals
- the pyrolysis oil By feeding the pyrolysis feedstock to a crude unit or to a desalter unit before the crude unit, the pyrolysis oil will be fractionated into multiple components and then converted in the subsequent conversion units including paraffin isomerization unit, jet hydrotreating unit, diesel hydrotreating unit, fluid catalytic cracking unit (FCC), alkylation unit, hydrocracking unit and/or coker unit to make gasoline, jet and diesel fuel with satisfactory product properties.
- the conversion units (FCC or hydrocracking unit) will also convert the heavy cut (corresponding to Sample I) into quality transportation fuels.
- Example 7 demonstrates the conversion of waste plastics pyrolysis oil into quality transportation fuel in a refinery conversion unit, using a FCC unit as an example.
- VGO Vacuum gas oil
- the FCC experiments were carried out on a Model C ACE (advanced cracking evaluation) unit fabricated by Kayser Technology Inc. using regenerated equilibrium catalyst (Ecat) from a refinery.
- the reactor was a fixed fluidized reactor using N2 as fluidization gas.
- Catalytic cracking experiments were carried out at the atmospheric pressure and 900° F reactor temperature. The cat/oil ratio was varied between 5 to 8 by varying the amount of the catalyst.
- a gas product was collected and analyzed using a refinery gas analyzer (RGA), equipped with GC with FID detector. In-situ regeneration of a spent catalyst was carried out in the presence of air at 1300° F, and the regeneration flue gas was passed through a LECO unit to determine the coke yield.
- RAA refinery gas analyzer
- the oxygen and nitrogen impurities in the fuel range were reduced substantially, from about 300- 1400 ppm N to about 30 ppm N and from about 250-540 ppm O to about 60-80 ppm O.
- the hydrocarbon composition of all these cofeeding products are well within the typical FCC gasoline range.
- the FCC runs of 100% pyrolysis oil showed substantial debits of Octane numbers by about 13-14 numbers. This shows that coprocessing of pyrolysis oil is preferred over processing of pure 100% pyrolysis oil.
- Example 8 Feedstocks of C3-C4 and/or Naphtha Generation via Waste Plastics Pyrolysis Product Cofeeding to Refinery Crude Unit
- the pyrolysis oil By feeding of the entire pyrolysis oil to a crude unit or to a desalter unit before the crude unit, the pyrolysis oil will be fractionated into multiple components. With the pyrolysis oil cofeeding, the refinery crude unit produces a substantial amounts of clean propane, butane, and naphtha streams, as well as other streams for refinery conversion units.
- Example 9 Feeding of Recycle C3-C4 and/or Naphtha to Steam Cracker for Ethylene Production, followeded by Productions of Circular Polyethylene Resin and Polyethylene Consumer Products
- the propane, butane and naphtha streams produced via cofeeding of pyrolysis products to a crude unit per Example 8 are good feedstock to cofeed to a steam cracker for production of ethylene with a recycle content. At least a portion of the streams, if not all, are fed to the steam cracker.
- the ethylene is processed in a polymerization unit to produce polyethylene resin containing some recycled-polyethylene/ polypropylene derived materials while the quality of the newly produced polyethylene is indistinguishable to the virgin polyethylene made entirely from virgin petroleum resources.
- the polyethylene resin with the recycled material is then further processed to produce various polyethylene products to fit the needs of consumer products.
- polyethylene consumer products now contains chemically recycled, circular polymer while quality of the polyethylene consumer products are indistinguishable from those made entirely from virgin polyethylene polymer.
- chemically recycled polymer products are different from the mechanically recycled polymer products whose qualities are inferior to the polymer products made from virgin polymers.
- Example 10 Production of Circular Normal Alpha Olefins and Petroleum Wax
- the propane, butane and naphtha streams produced via cofeeding of pyrolysis products to a crude unit per Example 8 are good feedstock to cofeed to a steam cracker for production of ethylene with a recycle content.
- the ethylene is processed in an ethylene oligomerization unit to make normal alpha olefins (NAO) with varying carbon chain lengths which contain some recycled-polyethylene/ polypropylene derived materials while the quality of the newly NAO is indistinguishable to the virgin NAO made entirely from virgin petroleum resources.
- NAO normal alpha olefins
- These normal alpha olefins with a recycle content are further converted to make various chemicals such as polyalpha olefins (PAO), copolymerization reagent, etc.
- PAO polyalpha olefins
- copolymerization reagent etc.
- Example 11 Production of Slack Wax and Paraffin Wax with Recycle Content
- the waste plastic pyrolysis wax (Sample E) is combined with the waxy heavy fraction of normal alpha olefin (C22 + ).
- the combined heavy fraction and heavy fraction of normal alpha olefin stream can then be passed to a wax hydrogenation zone to produce high quality wax.
- Sample E crude pyrolysis wax
- Sample J was vacuum distilled to produce 680° F + fraction to produce pyrolysis slack wax
- Sample J was hydrogenated in a continuous fixed bed unit containing a NiMo/ Alumina catalyst at 635° F reactor temperature and 1200 psig pressure.
- a liquid feed flow rate of 1.5 hr 1 relative to the catalyst bed volume and Fh/Flydrocarbon flow rate of 2500 scf/bbl were used to produce the hydrogenated product, Sample K, which is mostly wax.
- the hydrogenated product was vacuum distilled to produce 650° F + fraction as a hydrogenated pyrolysis paraffin wax, Sample L.
- Table 7 The results are summarized in Table 7.
- the word “comprises” or “comprising” is intended as an open- ended transition meaning the inclusion of the named elements, but not necessarily excluding other unnamed elements.
- the phrase “consists essentially of’ or “consisting essentially of’ is intended to mean the exclusion of other elements of any essential significance to the composition.
- the phrase “consisting of’ or “consists of’ is intended as a transition meaning the exclusion of all but the recited elements with the exception of only minor traces of impurities.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2022007306A MX2022007306A (en) | 2019-12-23 | 2020-12-23 | Circular economy for plastic waste to polyethylene and chemicals via refinery crude unit. |
JP2022538702A JP2023508355A (en) | 2019-12-23 | 2020-12-23 | Circular economy of waste plastics into polyethylene and chemicals via refineries and crude units |
BR112022011773A BR112022011773A2 (en) | 2019-12-23 | 2020-12-23 | CIRCULAR ECONOMY FOR PLASTIC WASTE FOR POLYETHYLENE AND CHEMICALS VIA REFINERY CRUDE UNIT |
CN202080089649.9A CN114867823B (en) | 2019-12-23 | 2020-12-23 | Recycling economy for converting plastic waste into polyethylene and chemicals by refinery crude unit |
KR1020227024460A KR20220119410A (en) | 2019-12-23 | 2020-12-23 | Circular Economy of Plastic Waste to Polyethylene and Chemicals through Refining Crude Oil |
EP20906532.5A EP4081616A4 (en) | 2019-12-23 | 2020-12-23 | Circular economy for plastic waste to polyethylene and chemicals via refinery crude unit |
CA3164217A CA3164217C (en) | 2019-12-23 | 2020-12-23 | Circular economy for plastic waste to polyethylene and chemicals via refinery crude unit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962952655P | 2019-12-23 | 2019-12-23 | |
US62/952,655 | 2019-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021133881A1 true WO2021133881A1 (en) | 2021-07-01 |
Family
ID=76438822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2020/066792 WO2021133881A1 (en) | 2019-12-23 | 2020-12-23 | Circular economy for plastic waste to polyethylene and chemicals via refinery crude unit |
Country Status (9)
Country | Link |
---|---|
US (2) | US11518943B2 (en) |
EP (1) | EP4081616A4 (en) |
JP (1) | JP2023508355A (en) |
KR (1) | KR20220119410A (en) |
CN (1) | CN114867823B (en) |
BR (1) | BR112022011773A2 (en) |
CA (1) | CA3164217C (en) |
MX (1) | MX2022007306A (en) |
WO (1) | WO2021133881A1 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220097279A1 (en) * | 2019-01-24 | 2022-03-31 | Sabic Global Technologies B.V. | Process for the preparation of polypropylenes from waste plastic feedstocks |
MX2022007132A (en) | 2019-12-23 | 2022-09-19 | Chevron Usa Inc | Circular economy for plastic waste to polypropylene via refinery fcc and alkylation units. |
MX2022007242A (en) | 2019-12-23 | 2022-10-27 | Chevron Usa Inc | Circular economy for plastic waste to polyethylene via refinery fcc and alkylation units. |
CA3164217C (en) * | 2019-12-23 | 2024-04-23 | Chevron U.S.A. Inc. | Circular economy for plastic waste to polyethylene and chemicals via refinery crude unit |
CN114846117B (en) | 2019-12-23 | 2023-12-12 | 雪佛龙美国公司 | Recycling economy for converting plastic waste into polypropylene and lube oils by refinery FCC and isomerization dewaxing units |
MX2022007240A (en) * | 2019-12-23 | 2022-10-27 | Chevron Usa Inc | Circular economy for plastic waste to polyethylene and lubricating oil via crude and isomerization dewaxing units. |
CA3164238A1 (en) | 2019-12-23 | 2021-07-01 | Chevron U.S.A. Inc. | Circular economy for plastic waste to polyethylene via refinery crude unit |
KR20220117899A (en) | 2019-12-23 | 2022-08-24 | 셰브런 유.에스.에이.인크. | Circular Economy of Plastic Waste to Polypropylene Through Refining FCC Units |
US11566182B2 (en) | 2020-03-30 | 2023-01-31 | Chevron U.S.A. Inc. | Circular economy for plastic waste to polyethylene via refinery FCC feed pretreater and FCC units |
US11306253B2 (en) | 2020-03-30 | 2022-04-19 | Chevron U.S.A. Inc. | Circular economy for plastic waste to polyethylene via refinery FCC or FCC/alkylation units |
CN115427535A (en) | 2020-04-22 | 2022-12-02 | 雪佛龙美国公司 | Cyclic economy of conversion of waste plastics to polyethylene via refinery by filtration and metal oxide treatment of pyrolysis oil |
CN115427536A (en) | 2020-04-22 | 2022-12-02 | 雪佛龙美国公司 | Recycle economics via refinery for converting waste plastics to polypropylene by filtration and metal oxide treatment of pyrolysis oil |
EP4146772A1 (en) | 2020-09-28 | 2023-03-15 | Chevron Phillips Chemical Company LP | Circular chemicals or polymers from pyrolyzed plastic waste and the use of mass balance accounting to allow for crediting the resultant products as circular |
US12084619B2 (en) | 2022-01-31 | 2024-09-10 | Saudi Arabian Oil Company | Processes and systems for producing fuels and petrochemical feedstocks from a mixed plastics stream |
US11692139B1 (en) | 2022-02-10 | 2023-07-04 | Saudi Arabian Oil Company | Method of producing pyrolysis products from a mixed plastics stream |
US11807815B2 (en) | 2022-02-16 | 2023-11-07 | Saudi Arabian Oil Company | Method of producing plastic pyrolysis products from a mixed plastics stream |
US20230348342A1 (en) * | 2022-04-01 | 2023-11-02 | Chevron U.S.A. Inc. | Circular economy for plastic waste to polyethylene and base oil via refinery hydrocracking unit |
WO2023192455A1 (en) * | 2022-04-01 | 2023-10-05 | Chevron U.S.A. Inc. | Circular economy for plastic waste to polypropylene and base oil via refinery crude unit |
WO2023192452A1 (en) * | 2022-04-01 | 2023-10-05 | Chevron U.S.A. Inc. | Circular economy for plastic waste to polyethylene and base oil via refinery crude unit |
WO2024013341A1 (en) * | 2022-07-14 | 2024-01-18 | Totalenergies Onetech | Oligomeric product made out of pyrolysis oil via a polymerization |
WO2024069637A1 (en) * | 2022-10-01 | 2024-04-04 | Hindustan Petroleum Corporation Limited | A process for production of naphtha and light olefins |
US11802250B1 (en) | 2022-11-10 | 2023-10-31 | Chevron Phillips Chemical Company Lp | Systems and processes for processing pyrolysis oil |
WO2024129372A1 (en) * | 2022-12-13 | 2024-06-20 | ExxonMobil Technology and Engineering Company | Co-processing pyoil through desalter and cracking furnace with integral vapor-liquid separator to generate circular products |
WO2024132595A1 (en) * | 2022-12-23 | 2024-06-27 | Sabic Global Technologies B.V. | Carbon-efficient recycling process for production of polymers from waste materials |
CN116426308B (en) * | 2023-03-29 | 2024-03-01 | 上海菲利科思新材料有限公司 | Method and device system for producing ethylene device steam pyrolysis raw oil and nano carbon material by waste plastics |
US11964315B1 (en) | 2023-03-31 | 2024-04-23 | Nexus Circular LLC | Hydrocarbon compositions derived from pyrolysis of post-consumer and/or post-industrial plastics and methods of making and use thereof |
US11952545B1 (en) | 2023-03-31 | 2024-04-09 | Nexus Circular LLC | Hydrocarbon compositions derived from pyrolysis of post-consumer and/or post-industrial plastics and methods of making and use thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6143940A (en) * | 1998-12-30 | 2000-11-07 | Chevron U.S.A. Inc. | Method for making a heavy wax composition |
US20020179493A1 (en) * | 1999-08-20 | 2002-12-05 | Environmental & Energy Enterprises, Llc | Production and use of a premium fuel grade petroleum coke |
US20070179326A1 (en) * | 2004-03-14 | 2007-08-02 | Garry Baker | Process and plant for conversion of waste material to liquid fuel |
US20150247096A1 (en) * | 2014-02-28 | 2015-09-03 | Honeywell International Inc. | Methods for converting plastic to wax |
US20160045841A1 (en) * | 2013-03-15 | 2016-02-18 | Transtar Group, Ltd. | New and improved system for processing various chemicals and materials |
US9809508B2 (en) * | 2011-01-19 | 2017-11-07 | Exxonmobil Chemical Patents Inc. | Method and apparatus for converting hydrocarbons into olefins |
US10233395B2 (en) * | 2014-02-25 | 2019-03-19 | Saudi Basic Industries Corporation | Process for converting mixed waste plastic (MWP) into valuable petrochemicals |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3845157A (en) | 1972-09-29 | 1974-10-29 | Exxon Research Engineering Co | Hydrocarbon lubricants from olefin polymers |
US4409409A (en) * | 1982-06-10 | 1983-10-11 | Exxon Research And Engineering Co. | Two stage olefin wax process |
DE3326284C2 (en) | 1983-07-21 | 1985-08-14 | Fried. Krupp Gmbh, 4300 Essen | Process for the production of liquid hydrocarbons |
DE4311034A1 (en) | 1993-04-03 | 1994-10-06 | Veba Oel Ag | Process for the extraction of chemical raw materials and fuel components from old or waste plastic |
GB9307652D0 (en) | 1993-04-14 | 1993-06-02 | Bp Chem Int Ltd | Lubricating oils |
US5981818A (en) | 1995-03-21 | 1999-11-09 | Stone & Webster Engineering Corp. | Integrated cracking and olefins derivative process utilizing dilute olefins |
US6150577A (en) | 1998-12-30 | 2000-11-21 | Chevron U.S.A., Inc. | Method for conversion of waste plastics to lube oil |
US6288296B1 (en) | 1998-12-30 | 2001-09-11 | Chevron U.S.A. Inc. | Process for making a lubricating composition |
US6774272B2 (en) | 2002-04-18 | 2004-08-10 | Chevron U.S.A. Inc. | Process for converting heavy Fischer Tropsch waxy feeds blended with a waste plastic feedstream into high VI lube oils |
US6822126B2 (en) | 2002-04-18 | 2004-11-23 | Chevron U.S.A. Inc. | Process for converting waste plastic into lubricating oils |
US7449612B2 (en) | 2006-04-11 | 2008-11-11 | Catalytic Distillation Technologies | Paraffin alkylation process |
US7834226B2 (en) | 2007-12-12 | 2010-11-16 | Chevron U.S.A. Inc. | System and method for producing transportation fuels from waste plastic and biomass |
US8088961B2 (en) | 2007-12-27 | 2012-01-03 | Chevron U.S.A. Inc. | Process for preparing a pour point depressing lubricant base oil component from waste plastic and use thereof |
US8344195B2 (en) * | 2009-10-16 | 2013-01-01 | Jumluck Srinakruang | Process for producing fuel from plastic waste material by using dolomite catalyst |
US8480880B2 (en) | 2011-01-18 | 2013-07-09 | Chevron U.S.A. Inc. | Process for making high viscosity index lubricating base oils |
US8404912B1 (en) | 2012-05-09 | 2013-03-26 | Chevron U.S.A. Inc. | Process for making high VI lubricating oils |
WO2016059565A2 (en) * | 2014-10-15 | 2016-04-21 | Sabic Global Technologies B.V. | Integrated crude oil refining and cracking |
WO2016142808A1 (en) | 2015-03-10 | 2016-09-15 | Sabic Global Technologies, B.V. | An integrated process for conversion of waste plastics to final petrochemical products |
ES2792049T3 (en) * | 2015-12-18 | 2020-11-06 | Solvay | Process for converting waste plastic into liquid gases, fuels and waxes by catalytic cracking |
CN108290806A (en) * | 2015-12-29 | 2018-07-17 | 沙特基础工业全球技术有限公司 | Fractionating system and method for straightαolefin production |
JP2019512586A (en) * | 2016-03-31 | 2019-05-16 | ソルヴェイ(ソシエテ アノニム) | Process for the conversion of plastics into waxes by decomposition and mixtures of hydrocarbons obtained thereby |
GB2549608B (en) * | 2016-03-31 | 2018-08-15 | Trifol Resources Ltd | Process for the preparation of a C20 to C60 wax from the selective thermal decomposition of plastic poyolefin polymer |
JP2019515060A (en) * | 2016-03-31 | 2019-06-06 | ソルヴェイ(ソシエテ アノニム) | Process for the conversion of plastics into waxes by catalytic cracking and mixtures of hydrocarbons obtained thereby |
ES2762959T3 (en) * | 2016-06-23 | 2020-05-26 | Suez Groupe | Procedure for the conversion of plastics into fuel |
US10513661B2 (en) | 2016-09-22 | 2019-12-24 | Sabic Global Technologies B.V. | Integrated process configuration involving the steps of pyrolysis, hydrocracking, hydrodealkylation and steam cracking |
US10927315B2 (en) * | 2016-10-11 | 2021-02-23 | Sabic Global Technologies B.V. | Maximizing high-value chemicals from mixed plastic using different steam-cracker configurations |
US20200115635A1 (en) * | 2016-11-20 | 2020-04-16 | Viro Group Inc. | Recycling and Recovering Method and System of Plastic Waste Product |
EP3565799B1 (en) * | 2017-01-05 | 2020-10-07 | SABIC Global Technologies B.V. | Conversion of waste plastic to propylene and cumene |
US10344234B1 (en) | 2018-02-19 | 2019-07-09 | Hemotek, Llc | Fuel including poly-oxygenated metal hydroxide |
US20220097279A1 (en) * | 2019-01-24 | 2022-03-31 | Sabic Global Technologies B.V. | Process for the preparation of polypropylenes from waste plastic feedstocks |
US11945998B2 (en) | 2019-10-31 | 2024-04-02 | Eastman Chemical Company | Processes and systems for making recycle content hydrocarbons |
CA3164238A1 (en) | 2019-12-23 | 2021-07-01 | Chevron U.S.A. Inc. | Circular economy for plastic waste to polyethylene via refinery crude unit |
CN114846117B (en) | 2019-12-23 | 2023-12-12 | 雪佛龙美国公司 | Recycling economy for converting plastic waste into polypropylene and lube oils by refinery FCC and isomerization dewaxing units |
CA3164217C (en) * | 2019-12-23 | 2024-04-23 | Chevron U.S.A. Inc. | Circular economy for plastic waste to polyethylene and chemicals via refinery crude unit |
MX2022007240A (en) | 2019-12-23 | 2022-10-27 | Chevron Usa Inc | Circular economy for plastic waste to polyethylene and lubricating oil via crude and isomerization dewaxing units. |
MX2022007242A (en) | 2019-12-23 | 2022-10-27 | Chevron Usa Inc | Circular economy for plastic waste to polyethylene via refinery fcc and alkylation units. |
KR20220117899A (en) | 2019-12-23 | 2022-08-24 | 셰브런 유.에스.에이.인크. | Circular Economy of Plastic Waste to Polypropylene Through Refining FCC Units |
-
2020
- 2020-12-23 CA CA3164217A patent/CA3164217C/en active Active
- 2020-12-23 CN CN202080089649.9A patent/CN114867823B/en active Active
- 2020-12-23 BR BR112022011773A patent/BR112022011773A2/en unknown
- 2020-12-23 KR KR1020227024460A patent/KR20220119410A/en unknown
- 2020-12-23 WO PCT/US2020/066792 patent/WO2021133881A1/en unknown
- 2020-12-23 EP EP20906532.5A patent/EP4081616A4/en active Pending
- 2020-12-23 JP JP2022538702A patent/JP2023508355A/en active Pending
- 2020-12-23 MX MX2022007306A patent/MX2022007306A/en unknown
- 2020-12-23 US US17/131,839 patent/US11518943B2/en active Active
-
2022
- 2022-10-30 US US18/051,000 patent/US11732197B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6143940A (en) * | 1998-12-30 | 2000-11-07 | Chevron U.S.A. Inc. | Method for making a heavy wax composition |
US20020179493A1 (en) * | 1999-08-20 | 2002-12-05 | Environmental & Energy Enterprises, Llc | Production and use of a premium fuel grade petroleum coke |
US20070179326A1 (en) * | 2004-03-14 | 2007-08-02 | Garry Baker | Process and plant for conversion of waste material to liquid fuel |
US9809508B2 (en) * | 2011-01-19 | 2017-11-07 | Exxonmobil Chemical Patents Inc. | Method and apparatus for converting hydrocarbons into olefins |
US20160045841A1 (en) * | 2013-03-15 | 2016-02-18 | Transtar Group, Ltd. | New and improved system for processing various chemicals and materials |
US10233395B2 (en) * | 2014-02-25 | 2019-03-19 | Saudi Basic Industries Corporation | Process for converting mixed waste plastic (MWP) into valuable petrochemicals |
US20150247096A1 (en) * | 2014-02-28 | 2015-09-03 | Honeywell International Inc. | Methods for converting plastic to wax |
Non-Patent Citations (1)
Title |
---|
See also references of EP4081616A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN114867823A (en) | 2022-08-05 |
CN114867823B (en) | 2024-02-13 |
KR20220119410A (en) | 2022-08-29 |
CA3164217A1 (en) | 2021-07-01 |
US11732197B2 (en) | 2023-08-22 |
US20230094207A1 (en) | 2023-03-30 |
MX2022007306A (en) | 2022-10-21 |
BR112022011773A2 (en) | 2022-08-30 |
US11518943B2 (en) | 2022-12-06 |
EP4081616A1 (en) | 2022-11-02 |
JP2023508355A (en) | 2023-03-02 |
US20210189250A1 (en) | 2021-06-24 |
CA3164217C (en) | 2024-04-23 |
EP4081616A4 (en) | 2024-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11732197B2 (en) | Circular economy for plastic waste to polyethylene and chemicals via refinery crude unit | |
US11174436B2 (en) | Circular economy for plastic waste to polyethylene via refinery crude unit | |
US11939527B1 (en) | Circular economy for plastic waste to polyethylene via refinery FCC feed pretreater and FCC units | |
US11739272B2 (en) | Circular economy for plastic waste to polyethylene and lubricating oil via crude and isomerization dewaxing units | |
US11306253B2 (en) | Circular economy for plastic waste to polyethylene via refinery FCC or FCC/alkylation units | |
US11905466B2 (en) | Circular economy for plastic waste to polyethylene via refinery FCC and alkylation units | |
US11639472B2 (en) | Circular economy for plastic waste to polyethylene via oil refinery with filtering and metal oxide treatment of pyrolysis oil | |
EP4081618A1 (en) | Circular economy for plastic waste to polypropylene via refinery fcc unit | |
WO2021201932A1 (en) | Circular economy for plastic waste to polyethylene via refinery fcc or fcc/alkylation units |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20906532 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3164217 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112022011773 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2022538702 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227024460 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020906532 Country of ref document: EP Effective date: 20220725 |
|
ENP | Entry into the national phase |
Ref document number: 112022011773 Country of ref document: BR Kind code of ref document: A2 Effective date: 20220614 |