WO2021132370A1 - 1,3-ブチレングリコール製品 - Google Patents

1,3-ブチレングリコール製品 Download PDF

Info

Publication number
WO2021132370A1
WO2021132370A1 PCT/JP2020/048235 JP2020048235W WO2021132370A1 WO 2021132370 A1 WO2021132370 A1 WO 2021132370A1 JP 2020048235 W JP2020048235 W JP 2020048235W WO 2021132370 A1 WO2021132370 A1 WO 2021132370A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
ppm
butylene glycol
weight
compound represented
Prior art date
Application number
PCT/JP2020/048235
Other languages
English (en)
French (fr)
Inventor
圓尾 且也
聡 草壁
浩稔 北村
知子 西村
清水 雅彦
陽二 鈴木
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to US17/788,809 priority Critical patent/US20230338248A1/en
Priority to CN202080090561.9A priority patent/CN114901624A/zh
Priority to JP2021567563A priority patent/JPWO2021132370A1/ja
Priority to KR1020227025874A priority patent/KR20220119715A/ko
Priority to EP20906589.5A priority patent/EP4083010A4/en
Publication of WO2021132370A1 publication Critical patent/WO2021132370A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/345Alcohols containing more than one hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/007Preparations for dry skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4205Reflux ratio control splitter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4211Regulation; Control of columns
    • B01D3/4216Head stream
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by elimination of -OH groups, e.g. by dehydration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • C07C29/84Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation by extractive distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • C07C31/2071,4-Butanediol; 1,3-Butanediol; 1,2-Butanediol; 2,3-Butanediol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof

Definitions

  • This disclosure relates to 1,3-butylene glycol products.
  • This application applies to Japanese Patent Application No. 2019-239974, Japanese Patent Application No. 2019-239975, Japanese Patent Application No. 2019-239996, Japanese Patent Application No. 2019-239977, Japanese Patent Application No. 2019-239978 and Japanese Patent Application No. 2019-239979, which were filed in Japan on December 28, 2019.
  • 1,3-butylene glycol is a colorless, transparent, odorless liquid, has properties such as low volatility, low toxicity, and high hygroscopicity, and has excellent chemical stability. For this reason, 1,3-butylene glycol has a wide range of uses, including raw materials for various synthetic resins and surfactants, as well as cosmetics, hygroscopic agents, high boiling point solvents, and antifreeze materials. Particularly in recent years, attention has been paid to the fact that 1,3-butylene glycol has excellent properties as a moisturizer, and the demand in the cosmetics industry is expanding.
  • the 1,3-butylene glycol obtained by the conventional production method has a problem that the acid concentration (acidity) increases when it is left in a water-containing state for a long period of time.
  • the cause of the increase in acid concentration was not clear, but it was thought to be related to the by-products contained in the crude 1,3-butylene glycol.
  • Cosmetics generally contain water, and it takes a long time from manufacture to actual use by general consumers.
  • the liquid properties of cosmetics are strictly adjusted from the viewpoint of storage stability and the like.
  • 1,3-butylene glycol obtained by a conventional method is used in cosmetics, the liquid balance of the cosmetics may be disturbed due to an increase in acid concentration, and the effect that should be exhibited may be lost.
  • 1,3-butylene glycol obtained by the conventional production method may have an odor due to the influence of by-products. Further, even if it is transparent immediately after production, it may be colored with time, which has been a problem when it is stored for a long period of time. For example, when using cosmetics or when storing them after use, the cosmetics are exposed to the air. Further, when manufacturing cosmetics, the work is generally performed in an air atmosphere, and the cosmetics may be heated for the purpose of sterilization or the like. When 1,3-butylene glycol obtained by a conventional method is used in cosmetics, coloring may progress due to the presence of air or the influence of heating. In order to solve such a problem, it has been required to remove by-products from the crude 1,3-butylene glycol to purify the 1,3-butylene glycol.
  • the 1,3-butylene glycol products obtained from these purification methods still contain by-products and have a problem of having an odor, a problem that an odor is generated over time even if there is no odor immediately after production, and water. If it is contained, there is a problem that the acid concentration increases with time, a problem of coloring, and a problem that coloring increases with time.
  • 1,3-butylene glycol for example, (1) reduction of acetoaldors (hydrogenation), (2) hydrolysis of 1,3-butylene oxide, (3) selective hydrocracking of erythritol, (4). Selective water addition to butadiene, (5) hydrogenation of n-butanol-3-one, (6) hydrogenation of 1-butanol-3-one, (7) hydrogenation of 3-hydroxy-1-butanoic acid , (8) Hydrogenation of ⁇ -butyrolactone, (9) Hydrogenation of diketen and the like.
  • a method of obtaining 1,3-butylene glycol by reduction (hydrogenation) of acetaldols is preferable.
  • a method of reducing acetaldols in a liquid phase is preferable in terms of yield.
  • the reason is that acetaldols have a high boiling point, acetaldols are heat-unstable, and easily undergo a dehydration reaction at high temperatures to become crotonaldehyde, etc., and further, dehydration reactions at high temperatures.
  • the reduction reaction (hydrogenation reaction) is due to the fact that the former reaction rate is high. That is, when reducing the gas phase of acetaldols, it is necessary to raise the temperature inside the reaction system.
  • 1,3-butylene glycol When producing 1,3-butylene glycol, by-products are generally produced in the production process.
  • 1,3-butylene glycol is produced by hydrogen reduction of acetaldehydes, a low boiling point substance (low boiling point compound) having an unsaturated bond such as acetaldehyde, butylaldehyde, crotonaldehyde, acetone, or methyl vinyl ketone, or These condensates (eg, a trimer of acetaldehyde), the hydride of the condensate, and the condensate of 1,3-butylene glycol and the low boiling point (eg, 1,3-butylene glycol and acetal aldol). Acetal form) etc.
  • acetal forms of crotonaldehyde and 1,3-butylene glycol, acetal forms of acetaldehyde and 1,3-butylene glycol, acetal forms of acetaldehyde and acetaldehyde and acetaldehyde trimeric hydrides are by-produced. ..
  • acetic acid contained as an impurity in acetoaldole as a raw material acetic acid used for neutralizing caustic soda used in the production of acetoaldole, and a condensate of 1,3-butylene glycol. (Ester form of acetic acid and 1,3-butylene glycol) is produced as a by-product. Then, these by-products may have properties as a color-causing substance, an odor-causing substance, and further as an acidic-causing substance.
  • the acetal body is a color-causing substance, an odor-causing substance, or an acidic-causing substance, and it is possible that the acetal body has all the properties, but it has a strong property as an odor-causing substance. it is conceivable that. Specifically, although the acetal body itself is unlikely to be an odor-causing substance, there is a possibility that an odor-causing substance may be generated due to aging or heating. In addition, the acetal form may generate acetaldol by hydrolysis, which can be said to be a coloring-causing substance because it is an odor-causing substance and has an oxidation (coloring) promoting action.
  • the color-causing substance is defined as including not only a substance that actually has a hue itself but also a substance that changes to a substance having a hue over time.
  • An odor-causing substance is defined as a substance that includes not only a substance that actually emits an odor but also a substance that changes into a substance that emits an odor over time.
  • An acid-causing substance is defined as a substance whose acid concentration increases with time when it contains water.
  • the ester is a color-causing substance, an odor-causing substance, or an acidic-causing substance, and it is possible that the ester has all properties, but both properties as an odor-causing substance and an acidic-causing substance. It is considered that the substance has a strong color. This is because acetic acid is generated when the ester is hydrolyzed by water.
  • 1,3-butylene glycol When 1,3-butylene glycol is produced, there are a wide variety of by-products in the production process, which correspond to coloring-causing substances, odor-causing substances, or acidic-causing substances, in addition to the acetal and ester forms. It is thought to contain by-products.
  • the above-mentioned acetaldehyde trimer hydride may correspond to any of a color-causing substance, an odor-causing substance, and an acidic-causing substance.
  • an object of the present disclosure is to provide a high-purity 1,3-butylene glycol product which is colorless and odorless (or almost colorless and odorless) and hardly generates or increases odor over time. ..
  • Another object of the present disclosure is colorless and odorless (or almost colorless and odorless), with almost no coloration or odor generation or increase over time, and / or acid concentration over time even in the presence of water.
  • An object of the present invention is to provide a high-purity 1,3-butylene glycol product that does not easily rise.
  • Still another object of the present disclosure is to provide a moisturizer and a cosmetic having excellent moisturizing performance and capable of maintaining high quality for a long period of time.
  • the inventors of the present disclosure have found that when a 1,3-butylene glycol product is stored for a long period of time, the coloration increases over time, the odor increases, and the odor increases over time. Quality deterioration such as a decrease in the initial distillate, an increase in the dry point, and a decrease in the potassium permanganate test value is observed, and the content of specific impurities contained in the 1,3-butylene glycol product exceeds a certain value.
  • the present disclosure is a 1,3-butylene glycol product containing 1,3-butylene glycol, which is acetaldehyde, crotonaldehyde, methyl vinyl ketone, acetone, formaldehyde, butylaldehyde, acetoaldole, 1-hydroxy-3-.
  • Butanone, 2-butanol a compound represented by the following formula (1), a compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4), A compound represented by the following formula (5), a compound represented by the following formula (6), a compound represented by the following formula (7), a compound represented by the following formula (8), and a compound represented by the following formula (9).
  • a 1,3-butylene glycol product in which the total content of the compound represented by the compound and the compound represented by the following formula (10) is less than 65 ppm.
  • the 1,3-butylene glycol product includes a compound represented by the formula (1), a compound represented by the formula (2), a compound represented by the formula (3), and the compound represented by the formula (4).
  • the total content of the compound represented by, the compound represented by the formula (5), the compound represented by the formula (6), and the compound represented by the formula (7) is less than 28 ppm. preferable.
  • the compound represented by the formula (1), the compound represented by the formula (2), and the compound represented by the formula (2) after being held at 180 ° C. for 3 hours in an air atmosphere.
  • the total content of the compounds is preferably less than 40 ppm.
  • the present disclosure also provides a moisturizer containing the above-mentioned 1,3-butylene glycol product.
  • the present disclosure provides cosmetics containing the above-mentioned moisturizer.
  • 1,3-butylene glycol product means that 1,3-butylene glycol occupies most of the constituents (for example, the 1,3-butylene glycol content is preferably 95% by weight or more). Means a composition (which is 98% by weight or more).
  • a high-purity 1,3-butylene glycol product which is colorless and odorless (or almost colorless and odorless) and has almost no generation or increase of odor over time. Further, according to the present disclosure, it is colorless and odorless (or almost colorless and odorless), and there is almost no generation or increase of coloring or odor with time, and / or acid concentration with time even in a state containing water.
  • a high-purity 1,3-butylene glycol product that does not easily rise is provided. Further, according to the present disclosure, a moisturizer and a cosmetic having excellent moisturizing performance and capable of maintaining high quality for a long period of time are provided.
  • the 1,3-butylene glycol product according to the present disclosure is a 1,3-butylene glycol product containing 1,3-butylene glycol, and is acetaldehyde, crotonaldehyde, methylvinyl ketone, acetone, formaldehyde, butylaldehyde, and acetoaldole.
  • 1-Hydroxy-3-butanone, 2-butanol a compound represented by the following formula (1), a compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4).
  • the total content of the compound represented by the following formula (9) and the compound represented by the following formula (10) is less than 65 ppm.
  • the compounds represented by the formulas (1) to (7) are cyclic acetal compounds, and the compounds represented by the formulas (8) to (10) are carboxylic acid 3-hydroxybutyl ester compounds. These compounds are also present as impurities during the production of 1,3-butylene glycol, but are impurities whose content increases with time when the 1,3-butylene glycol product is stored for a long period of time.
  • the cyclic acetal compound is hydrolyzed in the presence of water to produce the corresponding carbonyl compound.
  • the carbonyl compound thus produced is a reducing substance in itself and not only lowers the potassium permanganate test value, but also has high reactivity, and it is easy to generate various complex compounds by heat and oxygen, and it is colored.
  • the carboxylic acid thus produced can be an odor-causing substance or an acid-causing substance.
  • Acetaldehyde, crotonaldehyde, methyl vinyl ketone, acetone, formaldehyde, acetaldol, and 1-hydroxy-3-butanone are precursors of the cyclic acetal compound or the carboxylic acid 3-hydroxybutyl ester compound.
  • Butyraldehyde can also be a precursor of the cyclic acetal compound due to its structure.
  • these compounds are carbonyl compounds, which can easily form various complex compounds by heat or oxygen and can be color-causing substances, odor-causing substances or acidic-causing substances.
  • acetaldehyde, crotonaldehyde, methyl vinyl ketone, acetone, formaldehyde, butyraldehyde, acetaldehyde, 1-hydroxy-3-butanone, 2-butanol, and compounds represented by the formulas (1) to (10) are contained.
  • Large amounts of 1,3-butylene glycol products increase in odor over time. Even if it is odorless at the time of manufacture, odor is likely to be generated by long-term storage, for example.
  • acetaldehyde, crotonaldehyde, methyl vinyl ketone, acetone, formaldehyde, butyraldehyde, acetaldehyde, and 1-hydroxy are used in order to suppress the increase in odor and odor over time.
  • the total content of -3-butanone, 2-butanol and the compounds represented by the formulas (1) to (10) is less than 65 ppm, preferably 50 ppm or less, more preferably 45 ppm or less, 40 ppm or less, 35 ppm.
  • ppm or less is 30 ppm or less, 25 ppm or less, or 20 ppm or less, and more preferably 15 ppm or less, 13 ppm or less, 10 ppm or less, 8 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, or 2 ppm or less.
  • the total content of the compounds (cyclic acetal compounds) represented by the formulas (1) to (7) is preferably less than 28 ppm, more preferably 25 ppm. Below, it is 20 ppm or less or 15 ppm or less, and more preferably 12 ppm or less, 10 ppm or less, 8 ppm or less, 6 ppm or less, 4 ppm or less, 2 ppm or less or 1.4 ppm or less.
  • the total content of the compounds represented by the formulas (8) to (10) is preferably less than 6 ppm. It is more preferably 5 ppm or less, still more preferably 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, or 0.6 ppm or less.
  • the total content of the compounds represented by the formulas (1) to (10) is preferably less than 34 ppm, more preferably 30 ppm or less, still more preferably. 25 ppm or less, 20 ppm or less, 18 ppm or less, 16 ppm or less, 14 ppm or less, 12 ppm or less, 10 ppm or less, 8 ppm or less, 7 ppm or less, 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less or 2 ppm or less.
  • the acetaldehyde content is preferably less than 1.6 ppm, more preferably 1.5 ppm or less, 1.4 ppm or less, 1.2 ppm or less, 1.0 ppm or less. , 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, or 0.2 ppm or less.
  • the content of crotonaldehyde is preferably less than 1 ppm, more preferably 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, or 0.2 ppm or less.
  • the content of methyl vinyl ketone is preferably less than 6 ppm, more preferably 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm. It is as follows.
  • the content of acetone is preferably less than 5 ppm, more preferably 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm or less.
  • the formaldehyde content is preferably less than 1 ppm, more preferably 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
  • the content of butyraldehyde is preferably less than 5 ppm, more preferably 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm or less.
  • the content of acetaldol is preferably less than 6 ppm, more preferably 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.4 ppm or less, or 0.2 ppm or less.
  • the content of 1-hydroxy-3-butanone is preferably less than 6 ppm, more preferably 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less. Or 0.2 ppm or less.
  • the content of 2-butanol is preferably 0.3 ppm or less, more preferably less than 0.2 ppm.
  • the content of the compound represented by the formula (1) is preferably less than 2 ppm, more preferably 1.8 ppm or less, 1.6 ppm or less, 1.4 ppm or less, 1.2 ppm or less, 0.8 ppm or less, 0. It is 6 ppm or less, 0.4 ppm or less, or 0.2 ppm or less.
  • the content of the compound represented by the formula (2) is preferably less than 1 ppm, more preferably 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
  • the content of the compound represented by the formula (3) is preferably less than 4 ppm, more preferably 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm. It is as follows.
  • the content of the compound represented by the formula (4) is preferably less than 3 ppm, more preferably 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm or less. ..
  • the content of the compound represented by the formula (5) is preferably less than 6 ppm, more preferably 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0. It is 4 ppm or less or 0.2 ppm or less.
  • the content of the compound represented by the formula (6) is preferably less than 5 ppm, more preferably 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, or It is 0.2 ppm or less.
  • the content of the compound represented by the formula (7) is preferably less than 7 ppm, more preferably 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less. , 0.4 ppm or less or 0.2 ppm or less.
  • the content of the compound represented by the formula (8) is preferably less than 1 ppm, more preferably 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
  • the content of the compound represented by the formula (9) is preferably less than 4 ppm, more preferably 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm. It is as follows.
  • the content of the compound represented by the formula (10) is preferably less than 1 ppm, more preferably 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
  • acetaldehyde, crotonaldehyde, methyl vinyl ketone, acetone, formaldehyde, butyraldehyde, acetaldehyde, 1-hydroxy-3-butanone, 2-butanol, and the compounds represented by the formulas (1) to (10) are , Can be quantified by GC-MS analysis under the following conditions. In GC-MS analysis, even very small peaks are subjected to mass spectrometry to quantify each component. Since the analysis is performed on a specific mass, substances having different masses are not detected even if another impurity overlaps the peak, and the sensitivity is higher than that of the GC analysis described later.
  • the unit "ppm" of the content of each component by GC-MS analysis means “weight ppm”.
  • Analytical column A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 ⁇ m ⁇ length 30 m ⁇ inner diameter 0.25 mm)
  • Temperature rise conditions After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, raise the temperature to 160 ° C. at 2 ° C./min and hold for 2 minutes. Further, the temperature is raised to 230 ° C. at 10 ° C./min and held at 230 ° C. for 18 minutes.
  • Sample introduction temperature 250 ° C
  • Carrier gas Gas flow rate of helium column: 1 mL / min
  • Ion source temperature EI 230 ° C, CI 250 ° C Q pole temperature: 150 ° C
  • Sample Use as it is for analysis
  • the retention time of the peak of 1,3-butylene glycol is usually 5.5 minutes to 7 minutes.
  • the relative retention time of the peak of 1,3-butylene glycol is usually 0.3 to 0.5
  • the relative retention time of the peak of crotonaldehyde is 0.3 to 0.5.
  • the relative retention time is 0.3 to 0.5
  • the relative retention time of the methyl vinyl ketone peak is 0.3 to 0.5
  • the relative retention time of the acetone peak is 0.3 to 0.5.
  • the relative retention time of the peak of formaldehyde is 0.3 to 0.5
  • the relative retention time of the peak of butylaldehyde is 0.3 to 0.5
  • the relative retention time of the peak of acetaldehyde is 0.
  • the relative retention time of the peak of 1-hydroxy-3-butanone is 0.4 to 0.6
  • the relative retention time of the peak of 2-butanol is 0.3 to 0.5.
  • the relative retention time of the peak of the compound represented by the formula (1) is 1.3 to 1.7
  • the relative retention time of the peak of the compound represented by the formula (2) is 1.6 to 2.0.
  • the relative retention time of the peak of the compound represented by the formula (3) is 0.7 to 1.0
  • the relative retention time of the peak of the compound represented by the formula (4) is 0.4 to 0.6
  • the formula The relative retention time of the peak of the compound represented by (5) is 1.3 to 1.7
  • the relative retention time of the peak of the compound represented by the formula (6) is 1.6 to 2.0
  • the relative retention time of the peak of the compound represented by the formula (6) is 1.6 to 2.0.
  • the relative retention time of the peak of the compound represented by) is 0.6 to 0.8
  • the relative retention time of the peak of the compound represented by the formula (8) is 1.6 to 2.0
  • the relative retention time of the peak of the compound represented by the formula (9) is 1.6 to 2.0.
  • the relative retention time of the peak of the represented compound is 1.0 to 1.2
  • the relative retention time of the peak of the compound represented by the formula (10) is 1.6 to 2.0.
  • the compound represented by the above formula (1) is a compound produced by a reaction (acetalization reaction) between methyl vinyl ketone and 1,3-butylene glycol.
  • Methyl vinyl ketone is produced by the dehydration reaction of 1-hydroxy-3-butanone.
  • 1-Hydroxy-3-butanone is produced by the oxidation of 1,3-butylene glycol.
  • the compound represented by the formula (2) is a compound produced by a reaction (acetalization reaction) of 1-hydroxy-3-butanone and 1,3-butylene glycol.
  • the compound represented by the formula (3) is a compound produced by a reaction (acetalization reaction) between acetone and 1,3-butylene glycol.
  • the compound represented by the formula (4) is a compound produced by a reaction (acetalization reaction) between formaldehyde and 1,3-butylene glycol. Acetone and formaldehyde are produced by the decomposition of 1-hydroxy-3-butanone.
  • the compound represented by the formula (5) is a compound produced by a reaction (acetalization reaction) between crotonaldehyde and 1,3-butylene glycol. Crotonaldehyde is produced by the dehydration reaction of acetaldol. Acetoaldol is produced by the oxidation of 1,3-butylene glycol. Acetaldehyde is also produced by dimerization of acetaldehyde.
  • the compound represented by the formula (6) is a compound produced by a reaction (acetalization reaction) between acetaldol and 1,3-butylene glycol.
  • the compound represented by the formula (7) is a compound produced by a reaction (acetalization reaction) between acetaldehyde and 1,3-butylene glycol.
  • Acetaldehyde is produced by the decomposition of acetaldehyde.
  • the compound represented by the formula (8) is a compound produced by a reaction (esterification reaction) between crotonic acid and 1,3-butylene glycol. Crotonic acid is produced by the oxidation of crotonaldehyde.
  • the compound represented by the formula (9) is a compound produced by a reaction (esterification reaction) between acetic acid and 1,3-butylene glycol.
  • Acetic acid is produced by the oxidation of acetaldehyde.
  • the compound represented by the formula (10) is a compound produced by a reaction (esterification reaction) between 3-hydroxybutanoic acid and 1,3-butylene glycol.
  • 3-Hydroxybutanoic acid is produced by the oxidation of acetaldol.
  • formic acid is produced by the oxidation of formaldehyde
  • formic acid 2-hydroxypropyl ester is produced by the reaction between the formic acid and 1,3-butylene glycol (esterification reaction).
  • acetaldehyde, crotonaldehyde, methyl vinyl ketone, acetone, formaldehyde, butyraldehyde, acetaldehyde, and 1-hydroxy-3-butanone are precursors of the cyclic acetal compound or the carboxylic acid 3-hydroxybutyl ester compound. is there.
  • 1-hydroxy-3-butanone and acetaldol are precursors of various impurities. Therefore, it is desirable that these impurities be as small as possible in the 1,3-butylene glycol products of the present disclosure.
  • 31 ppm or less (preferably 30 ppm or less, 25 ppm or less, 20 ppm or less, 18 ppm or less, 16 ppm or less, 14 ppm or less, 13 ppm or less, 12 ppm or less, 11 pm or less, 10 ppm or less, 9 ppm or less, 8 ppm or less, 7 ppm or less, 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, or 1.5 ppm or less) is desirable.
  • the total content of acetaldol and 1-hydroxy-3-butanone is less than 12 ppm (preferably 10 ppm or less, 9 ppm or less, 8 ppm or less, 7 ppm or less, 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.5 ppm or less, or 0.4 ppm or less) is desirable.
  • the acid concentration is less than 6 ppm (for example, 5 ppm or less, preferably 4 ppm or less, more preferably 3 ppm or less, still more preferably 2 ppm or less, particularly preferably 1 ppm.
  • the following is preferable.
  • an increase in carboxylic acid 3-hydroxybutyl ester compound such as the compounds represented by the formulas (8) to (10) with time can be suppressed.
  • Carboxylic acid 3-hydroxybutyl ester compounds are hydrolyzed in the presence of water to produce the corresponding carboxylic acids.
  • the carboxylic acid thus produced can be an odor-causing substance or an acid-causing substance.
  • the 1,3-butylene glycol product of the present disclosure has an acid concentration (acetic acid equivalent) of less than 9 ppm (for example, 8 ppm or less, preferably 7 ppm or less, more preferably 6 ppm) after holding the 90 wt% aqueous solution at 100 ° C. for 1 week. Below, it is more preferably 5 ppm or less, particularly preferably 4 ppm or less, 3 ppm or less, 2 ppm or less, or 1 ppm or less).
  • the 90% by weight aqueous solution means an aqueous solution obtained by mixing a 1,3-butylene glycol product and water (for example, pure water) and adjusting the content to 90% by weight of the 1,3-butylene glycol product.
  • the 1,3-butylene glycol product of the present disclosure has a ratio of the acid concentration (in terms of acetic acid) of a 90 wt% aqueous solution to the acid concentration after holding at 100 ° C. for 1 week to the acid concentration before holding [(100 ° C. for 1 week).
  • the acid concentration after holding / (acid concentration before holding) ⁇ 100 (%)] is preferably 150% or less, more preferably 120% or less, still more preferably 110% or less.
  • the 1,3-butylene glycol product of the present disclosure has an APHA (Hazen color number) of, for example, 3 or less (preferably 2 or less, more preferably 1 or less).
  • the APHA after holding the 1,3-butylene glycol product at 100 ° C. for 75 days in an air atmosphere is, for example, 11 or less (preferably 10 or less, more preferably 8 or less, 7 or less or 6 or less, still more preferable. Is 5 or less, 4 or less, 3 or less, or 2 or less).
  • the ratio of APHA after holding at 100 ° C. for 75 days to APHA before holding [(APHA after holding at 100 ° C. for 75 days) / (APHA before holding)].
  • the 1,3-butylene glycol product of the present disclosure preferably has an initial distillation point of 204 ° C. or higher.
  • the initial distillation point is preferably 204.5 ° C. or higher, more preferably 205 ° C. or higher, still more preferably 206 ° C. or higher or 207 ° C., and particularly preferably 208 ° C. or higher.
  • 1,3-butylene glycol product of the present disclosure preferably has a dry point of less than 209 ° C (for example, 208.8 ° C or less).
  • the 1,3-butylene glycol product of the present disclosure preferably has a potassium permanganate test value (PMT) of 36 minutes or more.
  • the potassium permanganate test value (PMT) is more preferably 38 minutes or longer, still more preferably 40 minutes or longer, and particularly preferably 50 minutes or longer (particularly 60 minutes or longer).
  • the content of 1,3-butylene glycol is preferably 99.3% or more, for example.
  • the content of 1,3-butylene glycol indicates the peak area ratio (GC area ratio) of 1,3-butylene glycol in the gas chromatography analysis (GC analysis) under the following conditions.
  • Analytical column A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 ⁇ m ⁇ length 30 m ⁇ inner diameter 0.25 mm)
  • Temperature rise conditions After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, raise the temperature to 160 ° C.
  • Sample introduction temperature 250 ° C
  • Carrier gas Gas flow rate of helium column: 1 mL / min
  • Detector and detection temperature Hydrogen flame ionization detector (FID), 280 ° C
  • the "area ratio" of a peak means the ratio of the area of a specific peak to the sum of the areas of all the peaks appearing in the chart.
  • all peaks are, for example, peaks appearing when the relative retention time of the peak of 1,3-butylene glycol is 1.0 and the analysis is continuously stopped until the relative retention time is 7.8. Means everything.
  • the content of 1,3-butylene glycol in the 1,3-butylene glycol product is, for example, 98.6% or more, the basic characteristics inherent in 1,3-butylene glycol are guaranteed.
  • the content (GC area ratio) of 1,3-butylene glycol is preferably 99.4% or more, more preferably 99.5% or more, still more preferably 99.6% or more, and particularly preferably 99.7%. Above, especially 99.8% or more.
  • the total area ratio of the peak having a shorter retention time than the peak of 1,3-butylene glycol is preferably 0.09% or less, more preferably 0.08% or less, still more preferably 0.07%.
  • it is 0.04% or less, 0.03% or less, 0.02% or less, 0.01% or less or 0.007% or less, and particularly preferably 0.005% or less (for example, 0.003% or less).
  • the total area ratio of the peak having a longer retention time than the peak of 1,3-butylene glycol is preferably 0.7% or less, more preferably 0.6% or less, still more preferably 0.5%.
  • it is 0.4% or less, 0.3% or less, or 0.2% or less, and particularly preferably 0.1% or less.
  • the water content is preferably 0.2% by weight or less.
  • the water content is preferably 0.15% by weight or less, more preferably 0.1% by weight or less, still more preferably 0.07% by weight or less, 0.05% by weight or less, 0.03% by weight or less. It is 0.02% by weight or less or 0.01% by weight or less, and particularly preferably 0.005% by weight or less.
  • the water content can be quantified by a Karl Fischer water analyzer.
  • the 1,3-butylene glycol product according to the present disclosure has no or very little coloring or odor even after long-term storage.
  • the 1,3-butylene glycol product of the present disclosure has an extremely low content of impurities that can be a color-causing substance or an odor-causing substance even after long-term storage. For example, even after undergoing an accelerated test (a test in which a 1,3-butylene glycol product is held at 180 ° C. for 3 hours in an air atmosphere) assuming long-term storage of the 1,3-butylene glycol product, the color-causing substance in the product The content of impurities that can be odor-causing substances is extremely low.
  • acetaldehyde crotonaldehyde, methyl vinyl ketone, acetone, formaldehyde, butyraldehyde, acetaldol, 1-hydroxy- after holding at 180 ° C. for 3 hours in an air atmosphere.
  • the total content of 3-butanone, 2-butanol and the compounds represented by the formulas (1) to (10) is, for example, less than 70 ppm, preferably 65 ppm or less, 60 ppm or less, 55 ppm or less, 50 ppm or less, 45 ppm or less, It is 40 ppm or less, 35 ppm or less, 30 ppm or less, 25 ppm or less or 20 ppm or less, and more preferably 18 ppm or less, 15 ppm or less, 13 ppm or less, 10 ppm or less, 8 ppm or less, 5 ppm or less, 4 ppm or less or 3.5 ppm or less.
  • the compounds (cyclic acetal compounds) represented by the above formulas (1) to (7) are contained after being held at 180 ° C. for 3 hours in an air atmosphere.
  • the total amount is, for example, less than 40 ppm, preferably 35 ppm or less, more preferably 30 ppm or less, 25 ppm or less, 20 ppm or less, 15 ppm or less, 12 ppm or less, 10 ppm or less, 8 ppm or less, 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less. 2, 2 ppm or less or 1.4 ppm or less.
  • the compounds represented by the above formulas (8) to (10) (3-hydroxybutyl carboxylate) after being held at 180 ° C. for 3 hours in an air atmosphere.
  • the total content of the ester compound) is, for example, less than 18 ppm, preferably 16 ppm or less, more preferably 14 ppm or less, 13 ppm or less, 12 ppm or less, 11 pm or less, 10 ppm or less, 9 ppm or less, 8 ppm or less, 7 ppm or less, 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, or 0.6 ppm or less.
  • the total content of the compounds represented by the formulas (1) to (10) after being held at 180 ° C. for 3 hours in an air atmosphere is calculated.
  • it is 4 ppm or less, 3 ppm or less, or 2 ppm or less.
  • the 1,3-butylene glycol product according to the present disclosure has an acetaldehyde content of preferably less than 1 ppm, more preferably 0.9 ppm or less, after being held at 180 ° C. for 3 hours in an air atmosphere.
  • the content of crotonaldehyde is preferably less than 0.5 ppm, more preferably 0.4 ppm or less, 0.3 ppm or less, 0.2 ppm or less, or 0.1 ppm or less.
  • the content of methyl vinyl ketone is preferably less than 4 ppm, more preferably 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less or 0.2 ppm or less.
  • the content of acetone is preferably less than 2 ppm, more preferably 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
  • the formaldehyde content is preferably less than 0.5 ppm, more preferably 0.4 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
  • the content of butyraldehyde is preferably less than 3 ppm, more preferably 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm, 0.3 ppm or less, or 0.2 ppm or less.
  • the content of acetaldol is preferably less than 0.5 ppm, more preferably 0.4 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
  • the content of 1-hydroxy-3-butanone is preferably less than 0.5 ppm, more preferably 0.4 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
  • the content of 2-butanol is preferably less than 0.2 ppm.
  • the content of the compound represented by the formula (1) is preferably less than 6 ppm, more preferably 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0. It is 4 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
  • the content of the compound represented by the formula (2) is preferably less than 5 ppm, more preferably 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, It is 0.3 ppm or less or 0.2 ppm or less.
  • the content of the compound represented by the formula (3) is preferably less than 4 ppm, more preferably 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm. It is less than or equal to or less than 0.2 ppm.
  • the content of the compound represented by the formula (4) is preferably less than 5 ppm, more preferably 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, It is 0.3 ppm or less or 0.2 ppm or less.
  • the content of the compound represented by the formula (5) is preferably less than 7 ppm, more preferably 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less.
  • the content of the compound represented by the formula (6) is preferably less than 6 ppm, more preferably 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0. It is 4 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
  • the content of the compound represented by the formula (7) is preferably less than 8 ppm, more preferably 7 ppm or less, 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0. It is 6.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
  • the content of the compound represented by the formula (8) is preferably less than 6 ppm, more preferably 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0. It is 4 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
  • the content of the compound represented by the formula (9) is preferably less than 5 ppm, more preferably 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, It is 0.3 ppm or less or 0.2 ppm or less.
  • the content of the compound represented by the formula (10) is preferably less than 7 ppm, more preferably 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less. , 0.4 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
  • acetaldehyde, crotonaldehyde, methyl vinyl ketone, acetone, formaldehyde, butyraldehyde, acetaldehyde and 1- after holding at 180 ° C. for 3 hours in an air atmosphere.
  • the total content of hydroxy-3-butanone is, for example, less than 12 ppm, preferably 10 ppm or less, more preferably 8 ppm or less, 7 ppm or less, 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, or 1.6 ppm or less. is there.
  • the total content of acetaldol and 1-hydroxy-3-butanone after holding at 180 ° C. for 3 hours in an air atmosphere is, for example, less than 1 ppm. It is preferably 0.9 ppm or less, more preferably 0.8 ppm or less, 0.7 ppm or less, 0.6 ppm or less, 0.5 ppm or less, or 0 or 4 ppm or less.
  • the APHA after holding at 180 ° C. for 3 hours in an air atmosphere is less than 25 (preferably 20 or less, more preferably 18 or less, 15 or less, 14 or less). , 13 or less, 12 or less, 11 or less, 10 or less, 9 or less, 8 or less or 7 or less).
  • the 1,3-butylene glycol product according to the present disclosure preferably has an initial distillation point of 204 ° C. or higher and a dry point of less than 209 ° C. after being held at 180 ° C. for 3 hours in an air atmosphere. ..
  • the initial distillation point is preferably 205 ° C. or higher, more preferably 206 ° C. or higher, and even more preferably 207 ° C. or higher.
  • the 1,3-butylene glycol product according to the present disclosure preferably has a potassium permanganate test value (PMT) of more than 30 minutes after being held at 180 ° C. for 3 hours in an air atmosphere.
  • the potassium permanganate test value is more preferably 32 minutes or longer, further preferably 35 minutes or longer (for example, 40 minutes or longer), and particularly preferably 50 minutes or longer (particularly 60 minutes or longer).
  • the 1,3-butylene glycol product according to the present disclosure preferably has an acid concentration (acetic acid equivalent) of less than 8 ppm after being held at 180 ° C. for 3 hours in an air atmosphere.
  • the acid concentration (in terms of acetic acid) is more preferably 7 ppm or less, further preferably 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, and 1 ppm or less.
  • a 1,3-butylene glycol product having a content of 1,3-butylene glycol of a specific value or more and a specific substance content of a specific substance or less after a heating test under the above specific conditions has high purity. It is of high quality, and there is almost no deterioration in quality over time.
  • the 1,3-butylene glycol product according to the present disclosure is colorless and odorless (or almost colorless and odorless), and there is almost no generation or increase of odor over time. Therefore, it can be suitably used as a raw material for moisturizers and cosmetics.
  • the moisturizers of the present disclosure include the above 1,3-butylene glycol products. Therefore, it has excellent moisturizing performance.
  • the moisturizer of the present disclosure may contain a component other than the above-mentioned 1,3-butylene glycol product, for example, a moisturizer component other than the above-mentioned 1,3-butylene glycol product.
  • the content of the above 1,3-butylene glycol product is, for example, 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more, still more preferably 80% by weight or more. Particularly preferably, it is 90% by weight or more, and may be composed only of the above-mentioned 1,3-butylene glycol product.
  • the cosmetics disclosed in this disclosure include the above moisturizers.
  • the blending amount of the above 1,3-butylene glycol product in the cosmetics of the present disclosure may be an amount capable of exhibiting moisturizing performance according to the type and form of the cosmetics.
  • the blending amount of the 1,3-butylene glycol product in the cosmetics of the present disclosure is, for example, 0.01 to 40% by weight, preferably 0.1 to 30% by weight, more preferably 0.2 to 20% by weight, and further. It is preferably 0.5 to 15% by weight, particularly preferably 1 to 10% by weight.
  • the cosmetics of the present disclosure include, for example, other moisturizers; oils such as vegetable oils, hydrocarbon oils, higher fatty acids, higher alcohols, silicones; anionic surfactants, cationic surfactants.
  • Surfactants such as agents, amphoteric surfactants, nonionic surfactants; preservatives, metal ion blockers, thickeners, powders, UV absorbers, UV blockers, fragrances, pH adjusters; vitamins, It may contain a medicinal ingredient such as a skin activator, a blood circulation promoter, a whitening agent, an antibacterial agent, an anti-inflammatory agent, a physiologically active ingredient, and the like.
  • the cosmetics disclosed in the present disclosure can be skin cosmetics such as lotions, milky lotions, creams, gels, packs and masks, and hair cosmetics such as shampoos, conditioners and hair restorers. Further, it may be a sunscreen cosmetic, a make-up cosmetic, or the like. It can also be a drug or a quasi-drug containing a medical ingredient.
  • the cosmetics disclosed in the present disclosure can be manufactured by using a method well known in itself.
  • the 1,3-butylene glycol product of the present disclosure can be produced, for example, by the following method 1 for producing 1,3-butylene glycol or the following method 2 for producing 1,3-butylene glycol.
  • Method for producing 1,3-butylene glycol 1 A method for producing 1,3-butylene glycol, which is a method for obtaining purified 1,3-butylene glycol from a crude reaction solution containing 1,3-butylene glycol. It has a dehydration step of removing water by distillation, a dehigh boiling step of removing high boiling point components by distillation, and a product distillation step for obtaining purified 1,3-butylene glycol.
  • the acetaldehyde content is 500 ppm or less
  • the crotonaldehyde content is 200 ppm or less
  • the water content is 0.7% by weight or less
  • 1,3 by gas chromatography analysis under the following conditions.
  • Sample introduction temperature 250 ° C
  • Carrier gas Gas flow rate of helium column: 1 mL / min
  • Detector and detection temperature Hydrogen flame ionization detector (FID), 280 ° C
  • Method for producing 1,3-butylene glycol 2 A method for producing 1,3-butylene glycol, which is a method for obtaining purified 1,3-butylene glycol from a crude reaction solution containing 1,3-butylene glycol. It has a dehydration process that removes water by distillation and a de-high boiling process that removes high boiling point components by distillation.
  • the acetaldehyde content is 500 ppm or less
  • the crotonaldehyde content is 200 ppm or less
  • the water content is 3% by weight or less
  • the gas chromatography analysis under the following conditions 1
  • a method for producing 1,3-butylene glycol in which a charging liquid containing 1,3-butylene glycol having a 3-butylene glycol concentration of 96.7 area% or more is distilled under the condition of a reflux ratio of 0.03 or more. (Conditions for gas chromatography analysis) Same as the method 1 for producing 1,3-butylene glycol.
  • 1,3-butylene glycol production method 1 a reaction crude liquid containing 1,3-butylene glycol (1,3BG) (hereinafter, “crude 1”).
  • 3-Butylene glycol (sometimes referred to as "3-butylene glycol") is a method for producing 1,3-butylene glycol obtained from purified 1,3-butylene glycol, which is a dehydration step of removing water by distillation and a high boiling point component by distillation. It has a de-high boiling step to remove and a product distillation step to obtain purified 1,3-butylene glycol.
  • the acetaldehyde content is 500 ppm or less
  • the crotonaldehyde content is 200 ppm or less
  • the water content is 0.7% by weight or less
  • the gas chromatography analysis under the above conditions 1 3-Butylene glycol
  • the charged liquid having a concentration of 97.6 area% or more is distilled under the condition of a reflux ratio of 0.3 or more, and the low boiling point component is concentrated from above the charging stage.
  • the liquid is distilled off, and 1,3-butylene glycol is extracted from below the charging stage.
  • the 1,3-butylene glycol thus obtained is colorless and odorless (or almost colorless and odorless), is unlikely to cause coloring or odor generation or increase with time, and the acid concentration increases with time even in a state containing water. , Therefore, it can be a 1,3-butylene glycol product.
  • 1,3-butylene glycol production method 2 (hereinafter, may be simply referred to as "production method 2"), purified 1,3-butylene glycol is obtained from a reaction crude solution containing 1,3-butylene glycol 1 , 3-Butylene glycol is produced and has a dehydration step of removing water by distillation and a dehigh boiling step of removing high boiling point components by distillation. Then, in the dehigh boiling tower used in the dehigh boiling step, the acetaldehyde content is 500 ppm or less, the crotonaldehyde content is 200 ppm or less, the water content is 3% by weight or less, and the gas chromatography analysis under the above conditions is performed.
  • the charging liquid containing 1,3-butylene glycol having a concentration of 1,3-butylene glycol of 96.7 area% or more is distilled under the condition of a reflux ratio of 0.03 or more, and the purity is higher from above the charging stage.
  • the improved 1,3-butylene glycol is distilled off, and the liquid in which the high boiling point component is concentrated is extracted from below the charging stage.
  • the 1,3-butylene glycol thus obtained is colorless and odorless (or almost colorless and odorless), and it is unlikely that coloring or odor will be generated or increased with time, and even in a state containing water, it will change with time. Since it is unlikely that the acid concentration will increase, it can be a 1,3-butylene glycol product.
  • Examples of the crude 1,3-butylene glycol include (1) a reaction crude solution obtained by reducing (hydrogenating) acetoaldoles, and (2) a reaction crude solution obtained by hydrolyzing 1,3-butylene oxide. (3) Reaction crude solution obtained by selective hydrocracking of erythritol, (4) Reaction crude solution obtained by selective water addition to butadiene, (5) Obtained by hydrogenation of n-butanol-3-one.
  • the crude 1,3-butylene glycol may be one or a mixture of two or more of the above (1) to (9).
  • the crude 1,3-butylene glycol is preferably a reaction crude solution obtained by (1) reduction of acetaldols (particularly, liquid phase reduction).
  • the acetaldols used as a raw material in the hydrogenation step are not particularly limited as long as they are compounds that become 1,3-butylene glycol by hydrogen reduction.
  • Examples of the raw material acetaldols include acetaldol, paraaldol which is a cyclized dimer thereof, aldoxane which is a cyclic trimer of acetaldehyde, and a mixture thereof.
  • the method for producing acetaldols is not particularly limited, but for example, even those obtained by the aldol condensation reaction of acetaldehyde in the presence of a basic catalyst can be obtained by thermal decomposition of aldoxane or the like. It may be an aldol.
  • the step of producing acetaldehyde may be referred to as "acetaldehyde production step” or "acetaldehyde polymerization step".
  • reaction crude liquid containing acetaldols obtained by the above reaction may be neutralized with an acid and used for the production of 1,3-butylene glycol.
  • reaction crude liquids include acetaldehyde (AD), crotonaldehyde (CR), other aldehyde components, low boiling points, high boiling points such as aldehyde dimers and trimmers, water, salts and the like.
  • AD acetaldehyde
  • CR crotonaldehyde
  • other aldehyde components low boiling points
  • high boiling points such as aldehyde dimers and trimmers
  • water, salts and the like can be included.
  • a compound having a boiling point lower than 1,3-butylene glycol is a "low boiling point” or "low boiling point”
  • a compound having a boiling point higher than 1,3-butylene glycol is a "high boiling point”.
  • they may be referred to as "high boiling point”.
  • the crude reaction solution containing the above acetaldehydes is subjected to pretreatment such as dealcohol distillation, dehydration distillation, desalting, alkali treatment and dealkali treatment, decontamination, etc., if necessary, and unreacted acetaldehyde, crotonaldehyde, etc.
  • pretreatment method include distillation, adsorption, ion exchange, heating to a high boiling point, decomposition and the like.
  • various distillation methods such as reduced pressure, normal pressure, pressure, azeotrope, extraction, and reaction can be used.
  • the crude reaction solution containing acetaldehyde is subjected to simple evaporation, distillation, or hydrogenation to remove aldehydes such as acetaldehyde and crotonaldehyde, and then subjected to a hydrogenation step.
  • the content of acetaldols in the hydrogenated raw material is not particularly limited, but is, for example, 30% by weight or more (for example, 30 to 99% by weight), more preferably 40% by weight or more (for example, 40 to 98% by weight), 50% by weight. More than (for example, 50 to 97% by weight) or 60% by weight or more (for example, 60 to 95% by weight), more preferably 65 to 90% by weight, particularly preferably 70 to 90% by weight, and most preferably 75 to 90% by weight. %.
  • impurities contained in the reaction crude liquid containing 1,3-butylene glycol (crude 1,3-butylene glycol) tend to be reduced.
  • the hydrogenated raw material may or may not contain water, but it is preferable to contain it from the viewpoint of the purity of the 1,3-butylene glycol product.
  • the content of water in the hydrogenated raw material is not particularly limited, but is, for example, 2% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, and particularly preferably 15% by weight or more.
  • the upper limit may be, for example, 90% by weight, 80% by weight, 70% by weight, 60% by weight, 50% by weight, 40% by weight, 30% by weight or 20% by weight.
  • the acetal form of 1,3-butylene glycol and acetaldol contained in the obtained crude 1,3-butylene glycol is reduced, so that the finally obtained 1,
  • the purity of 3-butylene glycol products tends to be high. This is because the acetal form is hydrolyzed to 1,3-butylene glycol due to the hydrogenation raw material containing water to some extent, and the symbiotic acetaldol is reduced to 1,3-butylene glycol. Due to becoming.
  • the hydrogenated catalyst examples include Raney nickel and the like.
  • the hydrogenated catalyst can be used in a suspended state, or can be used by filling it in a reaction vessel.
  • the amount of the hydrogenated catalyst used is not particularly limited, but is preferably 1 to 30 parts by weight, more preferably 4 to 25 parts by weight, still more preferably 8 to 20 parts by weight, based on 100 parts by weight of the hydrogenated raw material. , Particularly preferably 12 to 18 parts by weight.
  • the amount of hydrogen used in the reduction reaction is not particularly limited, but is preferably 0.5 to 40 parts by weight, more preferably 1 to 30 parts by weight, still more preferably 4 to 20 parts by weight, based on 100 parts by weight of the hydrogenated raw material. It is by weight, particularly preferably 8 to 12 parts by weight.
  • the pressure (total pressure; gauge pressure) in the reaction system in the reduction reaction is not particularly limited, but is, for example, 9 to 70 MPa, preferably 10 to 40 MPa.
  • the hydrogen pressure (partial pressure of hydrogen) in the reaction system is not particularly limited, but is, for example, 7 to 60 MPa, preferably 10 to 30 MPa. From the viewpoint of reducing reducing substances such as acetaldehyde and crotonaldehyde, the hydrogen pressure in the reaction system is preferably increased, preferably 10 MPa or more, and may be 100 MPa.
  • the reaction temperature in the reduction reaction is not particularly limited, but is, for example, 40 to 150 ° C, preferably 50 to 140 ° C, and more preferably 60 to 130 ° C.
  • the reaction time (retention time) in the reduction reaction is not particularly limited, but is, for example, 10 to 500 minutes, preferably 20 to 400 minutes, more preferably 30 to 300 minutes, still more preferably 50 to 280 minutes, and particularly preferably 80 to 250 minutes. Minutes.
  • This reaction can be carried out in a batch system, a semi-batch system, or a continuous system.
  • the crude 1,3-butylene glycol thus obtained includes low-boiling substances (low-boiling compounds) having unsaturated bonds such as acetaldehyde (AD), butylaldehyde, crotonaldehyde (CR), acetone, and methyl vinyl ketone, and these.
  • a condensate of 1,3-butylene glycol and the above low boiling point for example, an acetal compound of 1,3-butylene glycol and acetaldehyde), alcohol such as ethanol, isopropyl alcohol, butanol, water (for example). It contains solvents, etc.), salts produced by neutralization, catalysts (when used in a suspended state), and the like.
  • a 1,3-butylene glycol product purified 1,3-butylene glycol
  • the production method 1 of the present disclosure includes at least a dehydration step of removing water by distillation, a dehigh boiling step of removing high boiling point components by distillation (dehigh boiling point distillation step), and purified 1,3-butylene glycol are obtained.
  • the production method 2 of the present disclosure includes at least a dehydration step of removing water by distillation and a dehigh boiling step (dehigh boiling point distillation step) of removing high boiling point components by distillation.
  • the order of the dehydration step and the de-high boiling step does not matter.
  • both the dehydration step and the dehigh boiling step are provided before the product distillation step.
  • the production method of the present disclosure may include a desalting step, an alkali reaction step (alkali treatment step), and a dealkali step.
  • a catalyst separation step, a neutralization step with alkali, and a de-alcoholization step (de-low boiling step) can be provided before the dehydration step.
  • Each of the above steps may be carried out in the order described in this manner, but the order of each step may be appropriately changed except that the dealkali step is provided after the alkali reaction step.
  • the de-alcoholization step (de-low boiling step), the desalting step, the alkali reaction step and the de-alkali step can be provided at appropriate positions, but are usually provided after the hydrogenation step.
  • the catalyst separation step, the neutralization step with alkali, the dealcoholization step (de-low boiling step), the desalination step, the alkali reaction step, and the dealkaliization step may be provided as necessary, and are not always required. It does not have to be provided.
  • FIG. 1 is a flowchart showing an example of a production method (purification method) for producing the 1,3-butylene glycol product of the present disclosure.
  • A is a dehydration tower and is related to the dehydration process.
  • B is a desalination tower and is related to the desalination process.
  • C is a dehigh boiling point distillation column (dehigh boiling column) and is related to a dehigh boiling point distillation step (dehigh boiling step).
  • D is an alkaline reactor and is related to the alkaline reaction step.
  • E is a dealkali tower and is related to the dealkali step.
  • F is a product distillation column (product column) and is related to the product distillation process.
  • A-1, B-1, C-1, E-1, and F-1 are capacitors.
  • A-2, C-2, and F-2 are reboilers.
  • an example of an embodiment of the above-mentioned method for producing 1,3-butylene glycol will be described using this
  • the crude 1,3-butylene glycol (corresponding to "X-1") obtained by hydrogenation of the hydrogenated raw material is supplied to the dehydration column A.
  • the crude 1,3-butylene glycol (corresponding to "X-1") is dehydrated after undergoing a dealcohol step (distillation step by a dealcohol column) for removing alcohol such as ethanol and low boiling point substances. It may be supplied to the tower A.
  • a charging liquid containing 1,3-butylene glycol and water is subjected to distillation, and water is poured from above the charging stage (preferably the top of the column).
  • a liquid containing a concentrated low boiling point component is distilled off (corresponding to "X-2" in FIG. 1).
  • a crude 1,3-butylene glycol flow containing 1,3-butylene glycol can be obtained from below the charging stage (preferably the bottom of the column).
  • distillation column for separating the dehydration column for example, a perforated plate column, a bubble bell tower, etc. can be used, but throughzer packing and Melapack (both are Sumitomo Heavy Industries, Ltd.).
  • a filling tower with low pressure loss filled with (trade name) or the like is more preferable. This is because 1,3-butylene glycol and impurities contained in a trace amount are thermally decomposed at a high temperature (for example, 150 ° C. or higher) to produce a low boiling point substance which is a coloring component, so that the distillation temperature is lowered. This is also because the same effect occurs when the heat history (residence time) of 1,3-butylene glycol is long.
  • the reboiler to be adopted is preferably one having a short residence time of the process side fluid, for example, a thin film evaporator such as a natural flow type thin film evaporator or a forced stirring type thin film evaporator.
  • the number of theoretical plates of the dehydration tower A is, for example, 1 to 100 stages, preferably 2 to 80 stages, 3 to 80 stages, 4 to 60 stages, 5 to 40 stages, 6 to 30 stages, or 7 to 20 stages, and more preferably. Is 8 to 15 steps.
  • the supply position of the charging liquid is, for example, 10 to 90%, preferably 20 to 80%, more preferably 30 to 70%, still more preferably 40 to 60% of the height of the tower from the top of the tower to the bottom. Is.
  • the pressure (absolute pressure) at the top of the column is, for example, 101 kPa or less, preferably 0.1 to 90 kPa, more preferably 0.5 to 70 kPa, still more preferably 1 to 50 kPa, 2 to 30 kPa, or It is 3 to 20 kPa, particularly preferably 4 to 10 kPa.
  • Distillation in the dehydration column A may be performed under pressure, and in that case, the pressure (gauge pressure) at the top of the column may be, for example, 0.2 MPaG or less, or 0.1 MPaG or less. Good.
  • the concentration of 1,3-butylene glycol in the liquid charged in the dehydration tower A is, for example, 9% by weight or more, preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 20% by weight or more, 25% by weight. % Or more, 30% by weight or more, 35% by weight or more, 40% by weight or more, 45% by weight or more, 50% by weight or more, 55% by weight or more or 60% or more, and particularly preferably 70% or more.
  • the upper limit of the concentration of 1,3-butylene glycol in the liquid charged in the dehydration column A is, for example, 90% by weight, 85% by weight, or 80% by weight.
  • the concentration of water in the liquid charged in the dehydration tower A is high.
  • the concentration of 1,3-butylene glycol in the liquid charged in the dehydration tower A is, for example, 1% by weight or more, 5% by weight or more, 10% by weight or more, 15% by weight or more, and 20% by weight. Even if it is 25% by weight or more, 30% by weight or more, 35% by weight or more, 40% by weight or more, 50% by weight or more, 60% by weight or more, 70% by weight or more, 80% by weight or more or 90% by weight or more. Good.
  • the concentration of 1,3-butylene glycol in the liquid charged in the dehydration tower A is, for example, 99% by weight or less, 95% by weight or more, 90% by weight or less, 85% by weight or less, 80% by weight or less, 75% by weight. Hereinafter, it may be 70% by weight or less, 65% by weight or less, 60% by weight or less, 55% by weight or less, 50% by weight or less, or 45% by weight or less.
  • the concentration of 1,3-butylene glycol in the liquid charged into the dehydration column A is required, for example, in the reaction conditions in the watering step (for example, the concentration of acetaldols used as a raw material) and in front of the dehydration column. The above range can be obtained by adjusting the distillation conditions of the de-alcohol column (de-low boiling column) provided accordingly.
  • the concentration (% by weight) of 1,3-butylene glycol the ratio of the peak area of 1,3-butylene glycol to the total peak area (GC area%) in the gas chromatography analysis under the following conditions was determined. It is a value calculated by the following formula.
  • the concentration (% by weight) of water in the liquid charged into the dehydration tower A is a value measured by a method (Karl Fischer method) described later.
  • Sample introduction temperature 250 ° C
  • Carrier gas Gas flow rate of helium column: 1 mL / min
  • Detector and detection temperature Hydrogen flame ionization detector (FID), 280 ° C
  • the content of acetaldehyde in the liquid charged into the dehydration column A is, for example, 1000 ppm or less, preferably 900 ppm or less, more preferably 800 ppm or less, 700 ppm or less, 600 ppm or less, or 500 ppm or less, and more preferably.
  • the content of crotonaldehyde in the liquid charged in the dehydration column A is, for example, 400 ppm or less, preferably 300 ppm or less, more preferably 200 ppm or less, still more preferably 150 ppm or less, 130 ppm or less, 117 ppm or less or 100 ppm or less, and 90 ppm or less. , 80 ppm or less, 70 ppm or less, 60 ppm or less, 50 ppm or less, 40 ppm or less, 30 ppm or less, 20 ppm or less, 10 ppm or less, 5 ppm or less, 3 ppm or less, 2 ppm or less, or 1 ppm or less.
  • a de-alcoholization tower (de-low boiling tower) is provided upstream of the dehydration tower A, and the de-alcohol tower (de-low boiling tower) is provided. It can be reduced by adjusting the distillation conditions. For example, the acetaldehyde content and the crotonaldehyde content in the liquid charged into the dehydration tower A can be reduced by increasing the reflux ratio, the number of stages, and the distillation rate of the de-alcohol tower (de-low boiling tower). ..
  • the acetaldehyde content and crotonaldehyde content in the liquid charged into the dehydration tower A can be quantified by GC-MS analysis (gas mass spectrometry).
  • the content of water in the liquid charged into the dehydration tower A is, for example, 90% by weight or less, 85% by weight or less, 80% by weight or less, 70% by weight or less, 60% by weight or less, 50% by weight. % Or less or 40% by weight or less, preferably 35% by weight or less, more preferably 30% by weight or less, still more preferably 25% by weight or less.
  • the lower limit of the content of water in the liquid charged into the dehydration tower A is, for example, 10% by weight or 15% by weight.
  • a de-alcohol tower (de-low boiling tower) is provided upstream of the dehydration tower A, and the distillation conditions of the de-alcohol tower (de-low boiling tower) are adjusted. It can be reduced by doing so.
  • the content of water in the liquid charged into the dehydration column A can be reduced by increasing the reflux ratio, the number of stages, and the distillation rate of the de-alcohol column (de-low boiling column).
  • the content of water in the liquid charged into the dehydration tower A can be quantified with a Karl Fischer titer.
  • the content of the low boiling point component (excluding water) in the liquid charged into the dehydration tower A is, for example, 20% or less, preferably 10% or less, more preferably 8% or less, still more preferably. It is 5% or less, particularly preferably 3% or less or 2% or less, and may be 1% or less, 0.5% or less or 0.1% or less.
  • the content of low boiling point components (also referred to as "low boiling point” or "low boiling point”) excluding water in the liquid charged to the dehydration tower A is 1, with respect to the total peak area in the gas chromatography analysis under the above conditions. It is the ratio (area%) of the total area of the peak having a shorter retention time than the peak of 3-butylene glycol.
  • the content of the low boiling point component (excluding water) in the liquid charged into the dehydration tower A is determined by, for example, providing a de-alcoholization tower (de-low boiling tower) upstream of the dehydration tower A and the de-alcoholization tower (de-lowering). It can be reduced by adjusting the distillation conditions of the boiling point). For example, by increasing the reflux ratio, the number of stages, and the distillation rate of the de-alcohol tower (de-low boiling tower), the concentration of low boiling point components (excluding water) in the liquid charged into the dehydration tower A is reduced. Can be done. Further, the concentration of the low boiling point component (excluding water) in the liquid charged into the dehydration tower A may be lowered depending on, for example, reaction conditions (for example, reaction temperature) in the hydrogenation step.
  • reaction conditions for example, reaction temperature
  • the content of the high boiling point component in the liquid charged in the dehydration column A is, for example, 20% or less, preferably 10% or less, more preferably 7% or less, 4% or less, 3% or less or 2% or less, and further. It is preferably 1% or less, 0.5% or less, 0.4% or less, 0.3% or less, 0.2% or less, 0.1% or less or 0.05% or less, and particularly preferably 0.01. % Or less.
  • the content of the high boiling point component in the liquid charged in the dehydration column A can be adjusted, for example, by the reaction conditions (for example, reaction temperature) in the hydrogenation step.
  • the content of the high boiling point component in the liquid charged in the dehydration tower A is the ratio of the total area of the peak having a retention time longer than the peak of 1,3 BG to the total peak area in the gas chromatography analysis under the above conditions. (Area%).
  • the recirculation ratio in the dehydration tower A [recirculation amount in the dehydration tower / distillation amount in the dehydration tower (discharge amount to the outside of the distillation tower)] is lower than the charging stage of the dehydration tower A (preferably the bottom of the column). ), For example, more than 0.3, preferably 0., from the viewpoint of reducing the content of low boiling point substances (including water) in the crude 1,3-butylene glycol stream containing 1,3-butylene glycol.
  • the reflux ratio in the dehydration column A is preferably 10 or more, more preferably 20 or more, still more preferably 30 or more, and particularly preferably 50 or more.
  • the upper limit of the reflux ratio is, for example, 100, preferably 50 from the viewpoint of energy cost.
  • the reflux ratio is, for example, 0.03 or more, sufficient separation is possible.
  • the condensed solution of the top vapor of the dehydration column is usually refluxed to the dehydration column, but a part or all of the reflux is made of a water-containing solution (for example, pure water). It may be replaced by the preparation in the dehydration tower.
  • the "dehydration tower recirculation amount” is the amount of the condensate of the dehydration tower top vapor returned to the dehydration tower and the amount of the water-containing liquid (for example, pure water) charged into the dehydration tower. It means sum.
  • the distillate rate in the dehydration tower A can be appropriately set according to the concentration of water in the liquid charged in the dehydration tower A. It is desirable that the distilling rate is a distilling rate sufficient to distill off the entire amount of water in the charging liquid.
  • the distillation rate in the dehydration tower A is preferably X% by weight or more. Therefore, the distillation rate in the dehydration tower A is, for example, 95% by weight or less, 90% by weight or less, 85% by weight or less, 80% by weight or less, 75% by weight or less, 70% by weight or less, 65% by weight or less, 60% by weight.
  • the distilling rate refers to the ratio (% by weight) of the amount of liquid extracted to the outside of the distillation column from above the charging stage of the dehydration column A (for example, the top of the column) with respect to the amount charged to the dehydration column A. ..
  • the 1,3BG recovery rate in the dehydration tower A is, for example, 99.3% or more.
  • the 1,3BG recovery rate in the dehydration tower A is a value (%) calculated by the following formula. ⁇ 1- [1,3 BG concentration in distillate (% by weight) x (distillate amount (parts) -recycled amount (parts))] / (1,3 BG concentration in distillate (% by weight) x charge amount (parts) )) ⁇ ⁇ 100
  • low boiling point substances and high boiling point substances may be hydrolyzed by water to produce 1,3 BG, while high boiling point substances may be produced by polymerization of 1,3 BG, and further, trace impurities may be generated. Since there is also disappearance, the mass balance in the dehydration tower may not always be obtained. This also applies to other distillation columns such as de-alcohol towers (de-low boiling towers), de-high boiling towers, and product towers.
  • a crude 1,3-butylene glycol stream containing 1,3-butylene glycol taken out from below the preparation stage of the dehydration column A (preferably the bottom of the column) is supplied to the desalting column B.
  • the desalting column B a crude 1,3-butylene glycol flow after desalting is obtained from the top of the column by distillation, and salts, high boiling point substances and the like are discharged as canned out liquid from the bottom of the column.
  • the can-out rate (%) of the desalting tower B [(de-salting tower can-out amount (parts) / desalting tower charging amount (parts)) ⁇ 100] is, for example, 0.1 to 40% by weight, preferably 1 to 1 to 40% by weight.
  • the canned liquid of the desalting tower may be recycled to the step before the desalting step.
  • the crude 1,3-butylene glycol flow after desalting is supplied to the desalting column C.
  • a high boiling point component high boiling point substance
  • a crude 1,3-butylene glycol flow (1,3-butylene glycol with improved purity) after the dehigh boiling point is obtained from above the charging stage.
  • the de-high boiling tower C for example, a perforated plate tower, a bubble bell tower, etc. can be used, but the pressure loss due to filling with slewer packing, Melapack (both are trade names of Sumitomo Heavy Industries, Ltd.), etc.
  • a lower filling tower is more preferred. This is because 1,3-butylene glycol and impurities contained in a trace amount are thermally decomposed at a high temperature (for example, 150 ° C. or higher) to produce a low boiling point substance which is a coloring component, so that the distillation temperature is lowered. This is also because the same effect occurs when the heat history (residence time) of 1,3-butylene glycol is long.
  • the reboiler to be adopted is preferably one having a short residence time of the process side fluid, for example, a thin film evaporator such as a natural flow type thin film evaporator or a forced stirring type thin film evaporator.
  • the number of stages of the de-high boiling tower C is, for example, 1 to 100 stages, preferably 2 to 90 stages, more preferably 3 to 80 stages, still more preferably 4 to 70 stages, 5 to 60 stages, and 8 to 50 stages. It is a step or 10 to 40 steps, and particularly preferably 15 to 30 steps.
  • the supply position of the charging liquid is, for example, 10 to 90%, preferably 20 to 80%, more preferably 30 to 70 steps, still more preferably 40, from the top of the de-high boiling tower to the bottom. It is in the position of ⁇ 60%.
  • the pressure (absolute pressure) at the top of the column is, for example, 0.01 to 50 kPa, preferably 0.1 to 30 kPa, more preferably 0.3 to 20 kPa, still more preferably 0.5. It is ⁇ 10 kPa.
  • the concentration of 1,3BG in the liquid charged into the de-high boiling column C is, for example, 95% or more, preferably 96% or more (for example, 96.7% or more), and more preferably 97. % Or more, more preferably 98% or more, and particularly preferably 99% or more.
  • the concentration of 1,3BG in the liquid charged into the de-high boiling column C is 96.7% or more, preferably 97% or more, more preferably 98% or more, still more preferable. Is 99% or more.
  • the concentration of 1,3BG in the liquid charged into the de-high boiling column C can be improved by adjusting the distillation conditions of the dehydration column A and the desalting column B.
  • the concentration of 1,3BG in the liquid charged into the dehydration column C can be increased.
  • the concentration of 1,3BG is the ratio (area%) of the peak area of 1,3BG to the total peak area in the gas chromatography analysis (GC analysis) under the following conditions.
  • Analytical column A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 ⁇ m ⁇ length 30 m ⁇ inner diameter 0.25 mm)
  • Temperature rise conditions After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, raise the temperature to 160 ° C.
  • Sample introduction temperature 250 ° C
  • Carrier gas Gas flow rate of helium column: 1 mL / min
  • Detector and detection temperature Hydrogen flame ionization detector (FID), 280 ° C
  • the content of the high boiling point component in the liquid charged in the dehigh boiling tower C is, for example, 4% or less, preferably 3% or less, more preferably 2% or less, still more preferably 1% or less, 0.5% or less. It is 0.4% or less, 0.3% or less, 0.2% or less, 0.1% or less or 0.05% or less, and particularly preferably 0.01% or less.
  • the content of the high boiling point component in the liquid charged in the de-high boiling column C is preferably 3% or less, more preferably 2% or less, still more preferably 1.5%.
  • the content of the high boiling point component in the liquid charged in the desalting column C can be reduced by adjusting the distillation conditions of the desalting column B. For example, by increasing the can-out rate of the desalting column B, the content of the high boiling point component in the liquid charged in the desalting column C can be decreased.
  • the content of the high boiling point component in the liquid charged in the dehigh boiling tower C is the total area of the peaks having a longer retention time than the peak of 1,3 BG with respect to the total peak area in the gas chromatography analysis under the above conditions. The ratio (area%) of.
  • the content of acetaldehyde in the liquid charged in the de-high boiling column C is, for example, 500 ppm or less, preferably 205 ppm or less (for example, 200 ppm or less), more preferably 100 ppm or less, still more preferably 90 ppm or less. It is 80 ppm or less, 70 ppm or less, 60 ppm or less, 50 ppm or less, 40 ppm or less, 30 ppm or less, 20 ppm or less or 10 ppm or less, particularly preferably 5 ppm or less, and may be less than 2 ppm or less than 1 ppm.
  • the content of crotonaldehyde in the liquid charged in the dehigh boiling column C is, for example, 200 ppm or less, preferably 110 ppm or less, more preferably 100 ppm or less, still more preferably 80 ppm or less, 70 ppm or less, 60 ppm or less, 50 ppm or less, 40 ppm or less. , 30 ppm or less, 20 ppm or less, 10 ppm or less, 5 ppm or less or 3 ppm or less, particularly preferably 2 ppm or less, and may be less than 1 ppm.
  • the acetaldehyde content and the crotonaldehyde content in the liquid charged into the de-high boiling tower C are determined by, for example, providing a de-alcohol tower (de-low boiling tower) or a dehydration tower upstream of the de-high boiling tower C. It can be reduced by adjusting the distillation conditions of (de-low boiling tower) and dehydration tower. For example, by increasing the reflux ratio, the number of stages, and the distillation rate of the de-alcohol tower (de-low boiling tower) and the dehydration tower, the acetaldehyde content and the crotonaldehyde content in the liquid charged into the de-high boiling tower C can be increased. Can be lowered.
  • the acetaldehyde content and crotonaldehyde content in the liquid charged into the de-high boiling tower C can be quantified by GC-MS analysis (gas mass spectrometry).
  • the content of water in the liquid charged into the de-high boiling tower C is, for example, 3% by weight or less, preferably 2% by weight or less, more preferably 1.2% by weight or less, still more preferably. 1.1% by weight or less, 1.0% by weight or less, 0.95% by weight or less, 0.9% by weight or less, 0.8% by weight or less, 0.7% by weight or less, 0.6% by weight or less, 0 It is 5.5% by weight or less, 0.4% by weight or less, 0.3% by weight or less, or 0.2% by weight or less, and particularly preferably 0.1% by weight or less.
  • the content of water in the liquid charged into the de-high boiling column C can be reduced by adjusting the distillation conditions of the dehydration column A.
  • the concentration of water in the liquid charged into the dehydration column C can be reduced.
  • the content of water in the liquid charged into the de-high boiling tower CF can be quantified with a Karl Fischer titer.
  • the content of water in the liquid charged into the de-high boiling tower C is 3% by weight or less, preferably 2% by weight or less, 1.2% by weight or less, and 0. It is 4% by weight or less, 0.3% by weight or less, or 0.2% by weight or less, and particularly preferably 0.1% by weight or less, 0.05% by weight or less, or 0.03% by weight or less.
  • the content of the low boiling point component (excluding water) in the liquid charged into the de-high boiling tower C is, for example, 1.8% or less, preferably 1.6% or less, more preferably 1. 0.4% or less, more preferably 1.2% or less, 1.1% or less, 1% or less, 0.9% or less, 0.8% or less, 0.7% or less, 0.6% or less, 0. It is 5% or less, 0.4% or less, 0.3% or less or 0.2% or less, and particularly preferably 0.1% or less.
  • the content of low boiling point components (also referred to as "low boiling point” or "low boiling point") excluding water in the liquid charged in the dehigh boiling tower C is based on the total peak area in the gas chromatography analysis under the above conditions.
  • the content of the low boiling point component (excluding water) in the liquid charged into the de-high boiling tower C is, for example, a de-alcoholization tower (de-low boiling tower) provided upstream of the de-high boiling tower C and the de-alcoholization. It can be reduced by adjusting the distillation conditions of the column (de-low boiling column). For example, by increasing the reflux ratio, the number of stages, and the distillation rate of the de-alcohol tower (de-low boiling tower), the concentration of low boiling point components (excluding water) in the liquid charged into the de-high boiling tower C is reduced. Can be made to.
  • the reflux ratio in the dehigh boiling column C [reflux amount in the dehigh boiling column / distillation amount in the dehigh boiling column (emission amount to the outside of the distillation column)] is the same as that of the 1,3-butylene glycol product. From the viewpoint of lowering the dry point, 0.03 or more, preferably 0.05 or more, more preferably 0.1 or more, still more preferably 0.2 or more, 0.3 or more, 0.4 or more, 0.5. Above, 0.6 or above, 0.7 or above, 0.8 or above, 0.9 or above, 1 or above, 1.2 or above, 1.5 or above, 2 or above, 3 or above, 4 or above, 5 or above or 10 or above Yes, especially preferably 20 or more.
  • the reflux ratio in the dehigh boiling tower C is preferably 0.1 or more, more preferably 0.2 or more, 0.3 or more, 0.4 or more, 0.5 or more. , 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, 1 or more, 1.2 or more, 1.5 or more, 2 or more, 3 or more, 4 or more, 5 or more or 10 or more. , Especially preferably 20 or more.
  • the upper limit of the reflux ratio is, for example, 100, preferably 50, from the viewpoint of energy cost. When the number of theoretical plates of the de-high boiling tower C is large, sufficient separation is possible even if the reflux ratio in the de-high boiling tower C is about 1 or less.
  • the can-out rate of the de-high boiling tower C is, for example, less than 30% by weight.
  • the canned liquid from the de-high boiling tower is distilled in a further distillation column to commercialize 1,3 BG after de-high boiling, and the final amount of the high boiling content extracted from the system is not limited to this. If it is suppressed to less than 30% by weight with respect to the amount charged in the de-high boiling column C, 1,3 BG can be obtained in a high yield.
  • the can-out rate is the amount of liquid extracted from below the charging stage of the de-high boiling tower C (for example, the bottom of the tower) with respect to the amount charged to the de-high boiling tower C (preliminary step of describing this liquid later).
  • it means the ratio (% by weight) of (including the amount of recycling).
  • the can-out rate of the dehigh boiling tower C is preferably 25% by weight or less, more preferably 20% by weight or less, still more preferably 15% by weight or less, and 10% by weight in terms of improving the recovery rate of 1,3BG. % Or less, 7% by weight or less, 5% by weight or less, 4% by weight or less, 3% by weight or less, or 2% by weight or less, and may be 1% by weight or less. Further, the can-out rate of the high boiling tower C is, for example, 0.01% by weight or more, preferably 0.1% by weight or more, 0.
  • At least a part of the liquid in which the high boiling component extracted from below the preparation stage of the dehigh boiling tower C is concentrated (hereinafter, may be referred to as "canned liquid") is put into the step before the dehigh boiling step. It may be recycled (dashed arrow shown at the bottom of the de-high boiling tower C in FIG. 1).
  • the recovery rate of 1,3 BG can be improved.
  • the recovery rate of 1,3 BG in the de-high boiling tower C is a value (%) calculated by the following formula.
  • the recovery rate of 1,3BG in the de-high boiling tower C is, for example, more than 80%, preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, and particularly preferably 99% or more.
  • Examples of the steps prior to the dehigh boiling step include an acetaldehyde polymerization step (acetaldehyde aldol condensation step), a reaction step (hydration step), a dealcoholization step (delow boiling step), a dehydration step, and a desalting step.
  • acetaldehyde polymerization step acetaldehyde aldol condensation step
  • reaction step hydrolysis step
  • dealcoholization step delow boiling step
  • dehydration step dehydration step
  • desalting step a desalting step.
  • 1,3BG is produced by hydrolysis of a high boiling point substance, it is preferable to recycle it in an acetaldehyde polymerization step (acetaldehyde aldol condensation step).
  • 1,3BG may be generated by hydrogenation reduction, and from that viewpoint, it may be recycled in the hydrogenation step.
  • the amount of recycled canned liquid to the process prior to the de-high boiling step can be appropriately selected within the range of the amount of canned liquid.
  • the amount of recycled canned liquid to the step prior to the de-high boiling step is, for example, less than 30% by weight, preferably 25% by weight or less, based on the amount charged in the de-high boiling tower C.
  • the amount of recycling is 20% by weight or less, 15% by weight or less, 10% by weight or less, 7% by weight or less, 5% by weight or less, 4% by weight or less, based on the amount charged to the de-high boiling tower C. It may be 3% by weight or less, 2% by weight or less, or 1% by weight or less.
  • the amount of recycled canned liquid to the process prior to the de-high boiling step is from the viewpoint of improving the 1,3 BG recovery rate in the de-high boiling tower and the yield throughout the 1,3 BG manufacturing process.
  • 0.01% by weight or more preferably 0.1% by weight or more, more preferably 2% by weight or more, 3% by weight or more, 4% by weight or more, and 5% by weight with respect to the amount charged to the dehigh boiling tower C. % Or more, 7% by weight or more, or 10% by weight or more, and particularly preferably 20% by weight or more.
  • the crude 1,3-butylene glycol flow taken out from above the charging stage of the de-high boiling tower C can be directly used as a 1,3-butylene glycol product in the production method 2 of the present disclosure. Further, the crude 1,3-butylene glycol stream taken out from above the preparation stage of the de-high boiling column C is subjected to alkali treatment in the alkali reactor D described later, and evaporated (or distilled) in the de-alkali column E. The distillate at the top of the de-alkali tower E can be a 1,3-butylene glycol product.
  • the acetaldehyde, crotonaldehyde and water contents in the de-high boiling tower charging liquid are set to a specific range, and the reflux ratio of the de-high boiling tower is set to a specific range, so that it is colorless and odorless.
  • high-purity 1,3-butylene glycol that is less likely to cause coloring or odor generation or increase over time, and is less likely to cause an increase in acid concentration over time even when it contains water. It can be manufactured efficiently.
  • the crude 1,3-butylene glycol flow taken out from above the charging stage of the de-high boiling column C is supplied to, for example, an alkaline reactor (for example, a flow tube type reactor) D.
  • base treatment alkali treatment
  • By-products contained in crude 1,3-butylene glycol can be decomposed by base treatment.
  • the base is added to the alkaline reactor D or the piping upstream of the alkaline reactor D.
  • the amount of the base added is, for example, 0.05 to 10% by weight, preferably 0.1 to 1.0% by weight, based on the crude 1,3-butylene glycol stream subjected to the alkali treatment.
  • the base may be precipitated in the distillation column, piping, etc., which may cause clogging.
  • a decomposition reaction of a high boiling point compound may occur, and by-products may be generated instead.
  • the amount of the base added is less than 0.05% by weight, the effect of decomposing the by-products is small.
  • the base added to the alkali reactor D or the piping upstream of the alkali reactor D is not particularly limited, but for example, an alkali metal compound is preferable.
  • the alkali metal compound include sodium hydroxide, potassium hydroxide, sodium (bicarbonate), and potassium (bicarbonate).
  • a basic ion exchange resin can also be used as the base.
  • sodium hydroxide and potassium hydroxide are preferable from the viewpoint of reducing by-products contained in the finally obtained 1,3-butylene glycol product.
  • a solid base may be added as it is, but it is preferable to add the base as an aqueous solution in order to promote the operation and contact with the liquid to be treated.
  • the above-mentioned bases may be used alone or in combination of two or more.
  • the reaction temperature in the alkaline reactor D is not particularly limited, but is preferably 90 to 140 ° C, more preferably 110 to 130 ° C, for example. If the reaction temperature is less than 90 ° C., a long reaction residence time is required, which increases the reactor capacity, which is uneconomical. If the reaction temperature exceeds 140 ° C., the coloration of the final 1,3-butylene glycol product may increase.
  • the reaction residence time is, for example, preferably 5 to 120 minutes, more preferably 10 to 30 minutes. If the reaction residence time is less than 5 minutes, the reaction may be insufficient and the quality of the finally obtained 1,3-butylene glycol product may be deteriorated. If the reaction residence time exceeds 120 minutes, a large reactor is required and the equipment cost increases, which is disadvantageous from the viewpoint of economy.
  • the reaction crude liquid flow is supplied to the de-alkali column (for example, a thin film evaporator) E as needed, and bases and the like are removed from the bottom of the column by evaporation.
  • a crude 1,3-butylene glycol flow after debasement in the production method 2 of the present disclosure, a 1,3-butylene glycol product is obtained
  • the evaporator used in the de-alkali column E a natural flow type thin film evaporator and a forced stirring type thin film evaporator having a short residence time are suitable for the purpose of suppressing the heat history to the process fluid.
  • a demister may be installed in a space above the charging position of the de-alkali tower (for example, a thin film evaporator) E to remove droplets such as bases. By doing so, it is possible to prevent the base and the like from being mixed into the 1,3-butylene glycol product.
  • the de-alkali tower for example, a thin film evaporator
  • the top of the column is evaporated under a reduced pressure of an absolute pressure of 20 kPa or less, preferably an absolute pressure of 0.5 to 10 kPa.
  • the temperature of the evaporator is preferably 90 to 120 ° C., for example.
  • a crude 1,3-butylene glycol stream containing a low boiling point distilled from the top of the column is supplied to the product distillation column (product column) F.
  • the distillate (corresponding to E-1) from the top of the de-alkali tower E can be a 1,3-butylene glycol product.
  • the alkali reactor D and the de-alkali column E are between the desalting column B and the de-high boiling column C, and between the dehydration column A and the desalting column B (in this case, the desalting column also serves as the de-alkali tower). It may be installed in front of the dehydration tower A. Further, without providing the alkali reactor D and the de-alkali column E, the base is charged into the de-high boiling column charging line, the dehydration column charging line, or added to the reaction solution after hydrogenation [then de-alkaline removal]. Alkaline treatment can also be performed by charging in a tower (de-low boiling tower).
  • a preparation liquid having a 1,3-butylene glycol concentration of, for example, 97.6 area% or more by GC analysis is distilled, and the boiling point is low from above the preparation stage.
  • the liquid in which the components are concentrated is distilled off (corresponding to "X-6" in FIG. 1), and 1,3-butylene glycol is extracted from below the charging stage (corresponding to "Y" in FIG. 1).
  • the extracted 1,3-butylene glycol can be a 1,3-butylene glycol product.
  • the product tower F for example, a perforated plate tower, a bubble bell tower, or the like can be used, but filling with low pressure loss filled with slewer packing, Melapack (both are trade names of Sumitomo Heavy Industries, Ltd.), etc. Towers are more preferred. This is because 1,3-butylene glycol and impurities contained in a trace amount are thermally decomposed at a high temperature (for example, 150 ° C. or higher) to produce a low boiling point substance which is a coloring component, so that the distillation temperature is lowered. This is also because the same effect occurs when the heat history (residence time) of 1,3-butylene glycol is long.
  • a high temperature for example, 150 ° C. or higher
  • the reboiler to be adopted is preferably one having a short residence time of the process side fluid, for example, a thin film evaporator such as a natural flow type thin film evaporator or a forced stirring type thin film evaporator.
  • the number of theoretical plates of the product tower F is, for example, 1 to 100 stages, preferably 2 to 90 stages, 3 to 80 stages, 4 to 70 stages, 5 to 60 stages, 8 to 50 stages, or 10 to 40 stages, and more preferably. Is 15 to 30 steps.
  • the supply position of the charging liquid is, for example, 10 to 90%, preferably 20 to 80%, more preferably 30 to 70%, still more preferably 40 to 60% of the height of the tower from the top of the tower to the bottom. Is.
  • the pressure (absolute pressure) at the top of the column is, for example, 20 kPa or less, preferably 0.1 to 10 kPa, more preferably 0.3 to 8 kPa, and further preferably 0.5 to 5 kPa. ..
  • the concentration of 1,3-butylene glycol in the charging liquid (1,3-butylene glycol charging liquid) in the product tower F is 97.6% or more, preferably 97.8% or more, and more preferably 98% or more. More preferably 98.2% or more (for example, 98.4% or more, 98.6% or more or 98.8% or more), and particularly preferably 99% or more (for example, 99.1% or more, 9.2% or more). 99.3% or more, 99.4% or more, 99.5% or more, 99.6% or more, 99.7% or more, 99.8% or more or 99.9% or more).
  • the distillation conditions of the dehydration column A may be adjusted, or a de-alcohol column (de-low boiling column) may be provided in front of the dehydration column A. It can be improved by adjusting the distillation condition or adjusting the distillation condition of the de-high boiling column C. For example, by increasing the reflux ratio of the de-alcohol tower (de-low boiling tower), the dehydration tower A, and / or the de-high boiling tower C, or by increasing the number of stages, 1, The purity of 3-butylene glycol can be increased.
  • the concentration of 1,3-butylene glycol in the liquid charged into the product tower F is the ratio of the peak area of 1,3-butylene glycol to the total peak area (area%) in the gas chromatography analysis under the following conditions. ).
  • Analytical column A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 ⁇ m ⁇ length 30 m ⁇ inner diameter 0.25 mm)
  • Temperature rise conditions After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, raise the temperature to 160 ° C. at 2 ° C./min and hold for 2 minutes. Further, the temperature is raised to 230 ° C.
  • Sample introduction temperature 250 ° C
  • Carrier gas Gas flow rate of helium column: 1 mL / min
  • Detector and detection temperature Hydrogen flame ionization detector (FID), 280 ° C
  • the content of acetaldehyde in the liquid charged into the product tower F is 500 ppm or less, preferably 205 ppm or less (for example, 200 ppm or less), more preferably 150 ppm or less, still more preferably 120 ppm or less. It is 100 ppm or less, 90 ppm or less, 80 ppm or less, 70 ppm or less, 60 ppm or less, 50 ppm or less, 40 ppm or less, 30 ppm or less, 20 ppm or less or 10 ppm or less, particularly preferably 5 ppm or less, and may be less than 2 ppm.
  • the content of crotonaldehyde in the liquid charged in the product tower F is 200 ppm or less, preferably 150 ppm or less, more preferably 130 ppm or less, still more preferably 110 ppm or less, 100 ppm or less, 80 ppm or less, 70 ppm or less, 60 ppm or less, It is 50 ppm or less, 40 ppm or less, 30 ppm or less, 20 ppm or less, 10 ppm or less, 5 ppm or less or 3 ppm or less, particularly preferably 2 ppm or less, and may be less than 1 ppm.
  • a de-alcohol tower (de-low boiling tower) or a dehydration tower is provided upstream of the product tower F, and the de-alcohol tower (de-low boiling) is provided. It can be reduced by adjusting the distillation conditions of the tower) and the dehydration tower. For example, by increasing the reflux ratio, the number of stages, and the distillation rate of the de-alcohol tower (de-low boiling tower) and the dehydration tower, the acetaldehyde content and the crotonaldehyde content in the liquid charged into the product tower F are reduced. be able to.
  • the acetaldehyde content and the crotonaldehyde content in the liquid charged into the product tower F can be adjusted by raising the reaction temperature, lengthening the residence time, or increasing the amount of the base added in the alkaline reaction step.
  • the acetaldehyde content and crotonaldehyde content in the liquid charged to F can be reduced.
  • the acetaldehyde content and crotonaldehyde content in the liquid charged into the product tower F can be quantified by GC-MS analysis (gas mass spectrometry).
  • the content of water in the liquid charged into the product tower F is 0.7% by weight or less, preferably 0.6% by weight or less, 0.5% by weight or less, 0. It is 4% by weight or less, 0.3% by weight or less, or 0.2% by weight or less, and particularly preferably 0.1% by weight or less.
  • the content of water in the liquid charged into the product column F can be reduced by adjusting the distillation conditions of the dehydration column A. For example, by increasing the reflux ratio, the number of stages, and the distillation rate of the dehydration tower A, the concentration of water in the liquid charged into the product tower F can be reduced.
  • the content of water in the liquid charged into the product tower F can be quantified with a Karl Fischer titer.
  • the content of the low boiling point component (excluding water) in the liquid charged in the product tower F is, for example, 1.8% or less, preferably 1.6% or less, more preferably 1.4% or less, still more preferably 1. .2% or less, 1.1% or less, 1% or less, 0.9% or less, 0.8% or less, 0.7% or less, 0.6% or less, 0.5% or less, 0.4% or less , 0.3% or less, 0.2% or less, and particularly preferably 0.1% or less.
  • the content of low boiling point components (also referred to as "low boiling point substances") in the liquid charged in the product tower F, excluding water, is the peak of 1,3-butylene glycol with respect to the total peak area in the gas chromatography analysis under the above conditions.
  • a de-alcohol tower (de-low boiling tower) is provided upstream of the product tower F, and the de-alcohol tower (de-lowering) is provided. It can be reduced by adjusting the distillation conditions of the boiling point). For example, by increasing the reflux ratio, the number of stages, and the distillation rate of the de-alcohol tower (de-low boiling tower), the concentration of low boiling point components (excluding water) in the liquid charged into the product tower F can be reduced. Can be done.
  • the content of the high boiling point component (excluding water) in the liquid charged in the product tower F is, for example, 1.8% or less, preferably 1.6% or less, more preferably 1.4% or less, still more preferably 1. .2% or less, 1.1% or less, 1% or less, 0.9% or less, 0.8% or less, 0.7% or less, 0.6% or less, 0.5% or less, 0.4% or less , 0.3% or less, 0.2% or less, and particularly preferably 0.1% or less.
  • the content of high boiling point components (also referred to as "high boiling point” or "high boiling point”) excluding water in the liquid charged in the product tower F is 1, with respect to the total peak area in the gas chromatography analysis under the above conditions.
  • the content of the high boiling point component (excluding water) in the liquid charged in the product column F can be reduced by, for example, adjusting the distillation conditions of the dehigh boiling column. For example, by increasing the reflux ratio, the number of stages, and the can-out rate of the de-high boiling column, the concentration of the high boiling point component (excluding water) in the liquid charged into the product column F can be reduced.
  • the reflux ratio in the product column F [recirculation amount in the product column / distillation amount in the product column (emission amount to the outside of the distillation column)] has a high initial distillation point of the 1,3-butylene glycol product. 0.3 or more, preferably 0.4 or more, more preferably 0.5 or more, 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 It is 10 or more, 20 or more, or 50 or more, and particularly preferably 400 or more (for example, 500 or more).
  • the upper limit of the reflux ratio of the product tower F is, for example, 700 or 1000 in terms of energy cost.
  • the distillate rate of the product tower F is, for example, less than 30% by weight, preferably 29% by weight or less, more preferably 28% by weight, from the viewpoint of improving the recovery rate of 1,3-butylene glycol. % Or less, more preferably 27% by weight or less, 26% by weight or less, 25% by weight or less, 24% by weight or less, 23% by weight or less, 22% by weight or less, 21% by weight or less, 20% by weight or less, 19% by weight or less.
  • the above-mentioned distillation rate is the amount of liquid extracted from above the charging stage of the product tower F (for example, the top of the column) with respect to the amount charged into the product tower F (recycled to the previous process described later). In the case, it means the ratio (% by weight) of (including the recycled amount).
  • distillate At least a part of the liquid (hereinafter, sometimes referred to as "distillate") in which the low boiling component extracted from above the preparation stage of the product tower F is concentrated is recycled to a process prior to the product distillation process. It may be (the dashed arrow shown on the right side of the product tower F in FIG. 1). By recycling at least a part of the distillate to a step prior to the product distillation step, the recovery rate of 1,3-butylene glycol can be improved.
  • Examples of the steps prior to the product distillation step include a dehydration step, a de-alcoholization step (de-low boiling step), and the like.
  • the de-alcoholization step (de-low boiling step) is preferably provided before the dehydration step.
  • the amount of the distillate recycled to the process prior to the product distillation step can be appropriately selected within the range of the amount of the distillate.
  • the amount of the distillate recycled to the process prior to the product distillation step is, for example, less than 30% by weight with respect to the amount charged to the product tower F. Further, the amount of the distillate recycled to the process prior to the product distillation step is the amount charged to the product tower F from the viewpoint of improving the 1,3 BG recovery rate in the product tower and the yield throughout the process.
  • 0.01% by weight or more preferably 0.05% by weight or more, more preferably 0.1% by weight or more, 0.5% by weight or more, 1% by weight or more, 1.5% by weight or more, It is 2% by weight or more, 3% by weight or more, 4% by weight or more, 5% by weight or more, 7% by weight or more or 10% by weight or more, and particularly preferably 20% by weight or more.
  • the content of acetaldehyde, crotonaldehyde and water in the liquid charged into the product tower F is set to a specific value or less, and the reflux ratio in the product tower F is set to a specific range to make the product colorless.
  • High-purity 1,3-butylene glycol that is odorless (or almost colorless and odorless), does not easily generate or increase coloration or odor over time, and does not easily increase acid concentration over time even when it contains water. It can be manufactured industrially efficiently.
  • the recovery rate of 1,3BG in the product tower F is, for example, more than 80%, preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, and particularly preferably 99% or more.
  • the recovery rate of 1,3BG in the product tower F is a value (%) calculated by the following formula. ⁇ 1- [GC area% of 1,3 BG in distillate x (distillate amount (parts) -recycled amount (parts))] / (GC area% of 1,3 BG in distillate x charge amount (parts)) ⁇ ⁇ 100
  • low boiling point substances and high boiling point substances may be hydrolyzed by water to produce 1,3 BG, while high boiling point substances may be produced by polymerization of 1,3 BG.
  • the mass balance in the tower may not always be taken.
  • the "part” used in the examples means a “part by weight” unless otherwise specified.
  • Gas chromatography analysis (GC analysis), measurement of the initial distillate point, and measurement of water content were carried out by the methods described below.
  • the acetaldehyde solution containing 30% by weight of water used as a raw material is obtained by stirring acetaldehyde and water in the presence of 100% by weight of NaOH at 30 ° C. and a residence time of 10 hours to distillate acetaldehyde.
  • Manufactured [acetaldehyde polymerization step (acetaldehyde aldol condensation step)].
  • Crude 1,3-butylene glycol (1) (corresponding to "X-1" in FIG. 1) was charged into the dehydration column A.
  • the concentration of 1,3-butylene glycol in the liquid charged into the dehydration column A was 56% by weight, the concentration of water was 40% by weight, the content of acetaldehyde (AD) was 130 ppm, and the content of crotonaldehyde (CR) was 89 ppm.
  • the total area ratio of the impurity peak having a shorter retention time (retention time; RT) than that of 1,3-butylene glycol is 3%, and the retention time of the impurity peak is longer than that of 1,3-butylene glycol.
  • the total area ratio was 1%.
  • distillation is performed under the conditions of a column top pressure of 10 kPa (absolute pressure) and a reflux ratio of 1, water is extracted from the column top, and 43 parts (distillation amount) is discharged to the outside of the system for every 100 parts of the charged liquid. It was removed (corresponding to "X-2" in FIG. 1). From the bottom of the tower, the concentration of 1,3-butylene glycol is 96.9 GC area%, water is 0.9% by weight, and the total area ratio of impurity peaks with a shorter retention time than 1,3-butylene glycol in the GC analysis described later.
  • crude 1,3-butylene glycol (2) was charged into the desalting tower B.
  • salt, a high boiling point substance, and a part of 1,3-butylene glycol were discharged as an evaporation residue from the bottom of the column (corresponding to "X-3" in FIG. 1).
  • the amount of the evaporation residue discharged was 5 parts with respect to 100 parts of the charged liquid amount.
  • crude 1,3-butylene glycol (3) containing 1,3-butylene glycol, a low boiling point substance, and a part of a high boiling point substance was obtained from the top of the column.
  • the reaction crude liquid discharged from the alkali reactor D was charged into the dealkali tower E.
  • the de-alkali column E caustic soda, a high boiling point substance, and a part of 1,3-butylene glycol were discharged from the bottom of the column (corresponding to "X-5" in FIG. 1).
  • the amount of discharge from the bottom of the tower was 10 parts with respect to 100 parts of the charged liquid amount.
  • 90 parts of crude 1,3-butylene glycol (5) containing 1,3-butylene glycol and a low boiling point substance was obtained from the top of the column.
  • crude 1,3-butylene glycol (5) was charged into the product tower F.
  • 10 parts of a low boiling point substance and a part of 1,3-butylene glycol were distilled from the top of the column with respect to 100 parts of the charged liquid (corresponding to “X-6” in FIG. 1). All the amount was discharged to the outside of the system.
  • the reflux ratio (reflux amount / distillation amount) was operated at 0.5, and 90 parts of 1,3-butylene glycol product was obtained from the bottom of the column (distillation amount was 10 parts) (in FIG. 1). Corresponds to "Y" in).
  • the initial distillate point was 203.3 ° C.
  • the dry point was 209 ° C.
  • the water content is 0.2% by weight
  • the area ratio of 1,3-butylene glycol is 99.2%
  • the total area ratio of impurity peaks having a shorter retention time than 1,3-butylene glycol is 0.08%, 1,3.
  • the potassium permanganate test value was 35 minutes.
  • the recovery rate of 1,3-butylene glycol in the product tower F was 90%.
  • Example 1 The same operation as in Comparative Example 5 was performed except that the reflux ratio of the dehydration tower A was changed to 50.
  • a 1,3-butylene glycol product was obtained from the bottom of the product column F. It should be noted that the quality of the product changed as a result of the change in the canning composition of the dehydration tower and the change in the composition of the charged liquid in the de-high boiling tower C and the product tower F due to the change in the conditions of the dehydration tower A.
  • the initial distillate As a result of measuring the initial distillate, measuring the water content, GC analysis and GC-MS analysis of the obtained 1,3-butylene glycol product, the initial distillate was 206.7 ° C. and the dry point was 208.9 ° C.
  • Moisture concentration is 0.1% by weight
  • 1,3-butylene glycol area ratio is 99.3%
  • total area ratio of impurity peaks with shorter retention time than 1,3-butylene glycol is 0.05%
  • 1 The total area ratio of the impurity peak having a longer retention time than 3-butylene glycol was 0.7%
  • the acetaldehyde content was 0.7 ppm
  • the crotonaldehyde content was 0.7 ppm.
  • the potassium permanganate test value was 45 minutes.
  • the recovery rate of 1,3-butylene glycol in the product tower F was 90%.
  • Examples 2-26 The dehydration tower A, the de-high boiling tower C, and the product tower F were operated under the conditions shown in Tables 1 and 2. In Examples 3 to 21 and 23 to 26, the distillate from the product tower F was completely recycled into a hydrogen reduction reactor. In Example 22, the product tower F was not used, and the distillate at the top of the dealkali tower E (a demister was installed in the space above the charging position) was a 1,3-butylene glycol product.
  • the concentration of the caustic soda aqueous solution in the alkaline reactor D was increased to 1.5 times, and the amount of the caustic soda aqueous solution added was reduced to half that of Example 1, so that the increase in water content due to the alkaline treatment was avoided as much as possible. If the alkali concentration of the caustic soda aqueous solution is too high, crystals will precipitate, so it is preferable to heat the caustic soda aqueous solution to 40 ° C. or higher.
  • Table 2 the composition and physical properties of the distillate at the top of the dealkalizing tower E are described in the column of “Product tower F canning” of Example 22.
  • Example 15 8 parts of the 10 parts of the de-high boiling tower canned liquid were recycled to the hydrogenation process, and 2 parts were discharged to the outside of the system. Further, in Example 24, the pressure of the hydrogenation reaction was lowered to 7 MPaG (gauge pressure). Therefore, the acetaldehyde content and the crotonaldehyde content in the dehydration column charging liquid are high. In Example 25, the reflux ratio of the dehydration column was lowered to 0.3, the purity of 1,3-butylene glycol in the liquid charged in the product column was decreased, and the reflux ratio of the product column was increased to 20. In Example 26, the pressure of the hydrogenation reaction was increased to 40 MPaG (gauge pressure) (the remaining conditions are the same as in Example 17).
  • the total area ratio of impurity peaks with a shorter retention time than 1,3-butylene glycol is 0.2%, and the total area ratio of impurity peaks with a longer retention time than 1,3-butylene glycol is 1.5%.
  • the acetaldehyde content was 5 ppm and the crotonaldehyde content was 4 ppm.
  • the potassium permanganate test value was 0 minutes.
  • the recovery rate of 1,3-butylene glycol in the product tower F was 80%.
  • the total area ratio of impurity peaks with a shorter retention time than 1,3-butylene glycol is 0.1%, and the total area ratio of impurity peaks with a longer retention time than 1,3-butylene glycol is 1.4%.
  • the acetaldehyde content was 4 ppm and the crotonaldehyde content was 2 ppm.
  • the potassium permanganate test value was 5 minutes.
  • the recovery rate of 1,3-butylene glycol in the product tower F was 80%.
  • the total area ratio of impurity peaks with a shorter retention time than 1,3-butylene glycol is 0.1%, and the total area ratio of impurity peaks with a longer retention time than 1,3-butylene glycol is 1.5%.
  • the acetaldehyde content was 2 ppm and the crotonaldehyde content was 1.3 ppm.
  • the potassium permanganate test value was 30 minutes.
  • the recovery rate of 1,3-butylene glycol in the product tower F was 70%.
  • the total area ratio of impurity peaks with a shorter retention time than 1,3-butylene glycol is 0.1%, and the total area ratio of impurity peaks with a longer retention time than 1,3-butylene glycol is 1.1%.
  • the acetaldehyde content was 2 ppm and the crotonaldehyde content was 1.3 ppm.
  • the potassium permanganate test value was 30 minutes.
  • the recovery rate of 1,3-butylene glycol in the product tower F was 80%.
  • Analyzer Shimadzu GC2010 Analytical column: A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 ⁇ m ⁇ length 30 m ⁇ inner diameter 0.25 mm) (“Agient J & W GC column-DB-1”, manufactured by Agilent Technologies, Ltd.) Temperature rise conditions: After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, raise the temperature to 160 ° C. at 2 ° C./min and hold for 2 minutes. Further, the temperature is raised to 230 ° C. at 10 ° C./min and held at 230 ° C. for 18 minutes.
  • potassium permanganate test value is a value measured according to the procedure of the visual colorimetric method of JIS K1351 (1993).
  • time-dependent coloring test 1 (coloring test 1)
  • the target 1,3-butylene glycol product was placed in a wide-mouthed bottle, sealed tightly, and kept in a constant temperature bath set at 180 ° C. for 3 hours.
  • a color difference meter (“ZE6000” manufactured by Nippon Denshoku Kogyo Co., Ltd.)
  • APHA Hazen color number
  • the Hazen color number (APHA) of the 1,3-butylene glycol product before the test was also measured in the same manner.
  • the content of each impurity in the 1,3-butylene glycol product before and after the time-dependent coloring test 1 was measured by the GC-MS analysis.
  • the initial distillate point, dry point, potassium permanganate test value, odor and acid content of the 1,3-butylene glycol product before and after the time-dependent coloring test 1 were measured.
  • Acid concentration (% by weight) titration (ml) x F x A x (100 / sample amount (g))
  • F 1.0 (factor of 0.01N sodium hydroxide aqueous solution)
  • 1,3BG products differ depending on the aldol condensation conditions, hydrogenation reaction conditions, and subsequent purification conditions, but are generally shown in Table 3 above.
  • Contains the indicated impurities For example, acetaldol, crotonaldehyde, various carbonyl compounds, and alcohols contained in 1,3BG products react with oxygen during long-term storage to produce peroxides.
  • aldehydes produce peroxides relatively more easily than ketones, alcohols and hydrocarbons. The peroxide produced based on the impurities reacts with the products 1,3BG and promotes oxidation from the top of the tree (1,3BG) (see the impurity generation route diagram).
  • Acetaldehyde is mainly produced by dimerization of acetaldehyde. Therefore, by reducing a series of impurities in the reaction system and purification system, the concentration of peroxide generated from the impurities during long-term storage is suppressed, and 1-hydroxy 3-butanone and aceto by oxidation of 1,3 BG are suppressed. It is possible to suppress the reaction of producing many impurities via additional impurities produced from aldol and / or compounds thereof.
  • the substances produced by reacting with oxygen during long-term storage in the presence of oxygen are 1-hydroxy-3-butanone, acetaldol, 2-butanol, and the formula (
  • the compound represented by 8), the compound represented by the formula (9), the compound represented by the formula (10), etc., and other impurities are 1-hydroxy-3-butanone or acetaldol and 1,3BG. And other impurities are present, and are produced in the presence of a small amount of water.
  • total content of the 19 kinds of impurities the more the degree of coloration (APHA), acidity, and odor (odor by humans and odor by odor sensor) of 1,3BG products. It is low and has excellent initial compounding point, dry point, and PMT. Moreover, the smaller the total content of the 19 types of impurities, the higher the degree of coloration (APHA), acidity, and odor (odor by humans and odor by odor sensor) after the heating test under specific conditions assuming long-term storage. It is low, and it can be seen that all of the initial distillate point, the dry point and the PMT are excellent.
  • the 1,3BG products obtained in Examples 6, 17 and 26 in which the total content of the 19 types of impurities is less than 65 ppm have an APHA of 2 or less and an acid content of 3 ppm.
  • the odor evaluation by a person and the odor evaluation by an odor sensor are both 1 or less, the initial distillation point is high, the dry point is low, the PMT is long, and the quality is high.
  • these 1,3BG products have APHA of 13 or less, acid content of 3 ppm or less, and both human odor evaluation and odor sensor odor evaluation of 1 or less even after undergoing a heating test assuming long-term storage. , Initial distillate, dry point, and PMT are almost unchanged.
  • the 1,3BG products of these examples are odorless immediately after production and do not generate odor even after the heating test.
  • these 1,3BG products do not change in acidity and odor even after undergoing a heating test in the presence of water.
  • the 1,3BG products obtained in Comparative Example 1, Comparative Example 2 and Comparative Example 5 in which the total content of the 19 types of impurities is 65 ppm or more have APHA of 4 or more and an acid content of 6 ppm or more.
  • the initial distillation point is low, the dry point is high, the PMT is short, and the quality is inferior.
  • the 1,3BG products of these comparative examples have an APHA of 25 or more and an acid content of 8 ppm or more when subjected to a heating test assuming long-term storage.
  • the odor evaluation by a human was 1 before the heating test, but the odor evaluation by the odor sensor was 2, and a difference in odor can be seen as compared with the examples.
  • the odor evaluation by humans was 2 and the odor evaluation by the odor sensor was 3, both of which deteriorated, and the difference in odor from the examples became clearer. ..
  • the acid content and odor of the 1,3BG products of these comparative examples are further deteriorated when they undergo a heating test in the presence of water.
  • a 1,3-butylene glycol product containing 1,3-butylene glycol which is an acetaldehyde, crotonaldehyde, methyl vinyl ketone, acetone, formaldehyde, butylaldehyde, acetoaldole, 1-hydroxy-3-butanone, 2 -Butanol, a compound represented by the following formula (1), a compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4), a compound represented by the following formula ( The compound represented by 5), the compound represented by the following formula (6), the compound represented by the following formula (7), the compound represented by the following formula (8), and the compound represented by the following formula (9).
  • the total content of the compound and the compound represented by the following formula (10) is less than 65 ppm (or 50 ppm or less, 45 ppm or less, 40 ppm or less, 35 ppm or less, 30 ppm or less, 25 ppm or less, 20 ppm or less, 15 ppm or less, 13 ppm or less, A 1,3-butylene glycol product of 10 ppm or less, 8 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less or 2 ppm or less).
  • the total content of the compounds represented by the formulas (1) to (7) is less than 28 ppm (or 25 ppm or less, 20 ppm or less, 15 ppm or less, 12 ppm or less, 10 ppm or less, 8 ppm or less, 6 ppm or less, The 1,3-butylene glycol product according to the above [1], which is 4 ppm or less, 2 ppm or less, or 1.4 ppm or less).
  • the total content of the compounds represented by the formulas (8) to (10) is less than 6 ppm (or 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, or 0.
  • the total content of the compounds represented by the formulas (1) to (10) is less than 34 ppm (or 30 ppm or less, 25 ppm or less, 20 ppm or less, 18 ppm or less, 16 ppm or less, 14 ppm or less, 12 ppm or less,
  • the content of acetaldehyde is less than 1.6 ppm (or 1.5 ppm or less, 1.4 ppm or less, 1.2 ppm or less, 1.0 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less. Or 0.2 ppm or less) and / or the content of crotonaldehyde is less than 1 ppm (or 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm or less), and / or methyl vinyl.
  • the ketone content is less than 6 ppm (or 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm or less), and / or ,
  • the acetone content is less than 5 ppm (or 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm or less), and / or formaldehyde.
  • Content is less than 1 ppm (or 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less or 0.2 ppm or less), and / or the content of butylaldehyde is less than 5 ppm (or Alternatively, the content of 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm or less) and / or acetardol is less than 6 ppm (or).
  • the content of the compound represented by 1.2 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm or less) and / or the compound represented by the formula (2) is less than 1 ppm (or).
  • the content of the compound represented by 3) is less than 4 ppm (or 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm or less), and / or ,
  • the content of the compound represented by the formula (4) is less than 3 ppm (or 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm or less), and / or ,
  • the content of the compound represented by the formula (5) is less than 6 ppm (or 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8
  • the content of the compound represented by the formula (7) is less than 7 ppm (or 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less,
  • the content of the compound represented by 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm or less) and / or the compound represented by the formula (8) is less than 1 ppm (or 0.8 ppm).
  • the content of the compound represented by 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less or 0.2 ppm or less) and / or the formula (9) is less than 4 ppm (or 3 ppm or less, 2 ppm or less).
  • the content of the compound represented by 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less or 0.2 ppm or less) and / or the compound represented by the formula (10) is less than 1 ppm (or 0).
  • the total content of acetaldehyde, crotonaldehyde, methyl vinyl ketone, acetone, formaldehyde, butyraldehyde, acetaldehyde and 1-hydroxy-3-butanone is 31 ppm or less (or 30 ppm or less, 25 ppm or less, 20 ppm or less, 18 ppm).
  • the total content of acetaldol and 1-hydroxy-3-butanone is less than 12 ppm (or 10 ppm or less, 9 ppm or less, 8 ppm or less, 7 ppm or less, 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less.
  • the 1,3-butylene glycol product according to any one of [1] to [8] above, which is 4 ppm or less, 3 ppm or less, 2 ppm or less, or 1 ppm or less).
  • the acid concentration (acetic acid equivalent) of the 90% by weight aqueous solution of the 1,3-butylene glycol product the ratio of the acid concentration after holding at 100 ° C. for 1 week to the acid concentration before holding [(100 ° C. for 1 week). Any of the above [1] to [9], wherein (acid concentration after retention) / (acid concentration before retention) ⁇ 100 (%)] is 150% or less (or 120% or less or 110% or less).
  • the content of 1,3-butylene glycol (GC area ratio under the following GC analysis conditions) is 99.3% or more (or 99.4% or more, 99.5% or more, 99.6% or more, The 1,3-butylene glycol product according to any one of the above [1] to [16], which is 99.7% or more or 99.8% or more).
  • GC gas chromatography
  • Analytical column A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 ⁇ m ⁇ length 30 m ⁇ inner diameter 0.25 mm)
  • Temperature rise conditions After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, raise the temperature to 160 ° C.
  • Water content is 0.2% by weight or less (or 0.15% by weight or less, 0.1% by weight or less, 0.07% by weight or less, 0.05% by weight or less, 0.03% by weight) % Or less, 0.02% by weight or less, 0.01% by weight or less, or 0.005% by weight or less), according to any one of the above [1] to [19]. .. [21] Acetaldehyde, crotonaldehyde, methyl vinyl ketone, acetone, formaldehyde, butyraldehyde, acetaldehyde, 1-hydroxy-3-butanone, 2-butanol and the formula (21) after holding at 180 ° C. for 3 hours in an air atmosphere.
  • the total content of the compounds represented by 1) to (10) is less than 70 ppm (or 65 ppm or less, 60 ppm or less, 55 ppm or less, 50 ppm or less, 45 ppm or less, 40 ppm or less, 35 ppm or less, 30 ppm or less, 25 ppm or less, 20 ppm or less, 18 ppm or less, 15 ppm or less, 13 ppm or less, 10 ppm or less, 8 ppm or less, 5 ppm or less, 4 ppm or less or 3.5 ppm or less).
  • 3-Butylene glycol product [22] The total content of the compounds represented by the formulas (1) to (7) after being held at 180 ° C.
  • the total content of the compounds represented by the formulas (8) to (10) after being held at 180 ° C. for 3 hours in an air atmosphere is less than 18 ppm (or 16 ppm or less, 14 ppm or less, 13 ppm).
  • the 1,3-butylene glycol product according to any one of [22].
  • the total content of the compounds represented by the formulas (1) to (10) after being held at 180 ° C. for 3 hours in an air atmosphere is less than 59 ppm (or 55 ppm or less, 50 ppm or less, 40 ppm).
  • the 1,3-butylene glycol product according to any one of. [25] After holding at 180 ° C. for 3 hours in an air atmosphere, the acetaldehyde content is less than 1 ppm (or 0.9 ppm or less, 0.8 ppm or less, 0.7 ppm or less, 0.6 ppm or less, 0.
  • croton aldehyde is less than 0.5 ppm (or 0.4 ppm or less, 0.3 ppm or less, 0.2 ppm) (Or 0.1 ppm or less) and / or the content of methyl vinyl ketone is less than 4 ppm (or 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0 .3 ppm or less or 0.2 ppm or less) and / or the acetone content is less than 2 ppm (or 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less or 0.
  • 0.2 ppm or less and / or the content of 2-butanol is less than 0.2 ppm and / or the content of the compound represented by the formula (1) is less than 6 ppm (or 5 ppm or less). 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less or 0.2 ppm or less), and / or represented by the formula (2).
  • the content of the compound is less than 5 ppm (or 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less or 0.2 ppm or less), and / Or, the content of the compound represented by the formula (3) is less than 4 ppm (or 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less.
  • the content of the compound represented by the formula (4) is less than 5 ppm (or 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm).
  • the content of the compound represented by 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less or 0.2 ppm or less) and / or the formula (5) is less than 7 ppm (or).
  • the content of the compound represented by (6) is less than 6 ppm (or 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.
  • 3 ppm or less or 0.2 ppm or less) and / or the content of the compound represented by the formula (7) is less than 8 ppm (or 7 ppm or less, 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less,
  • the content of the compound represented by 1 ppm or less, 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less or 0.2 ppm or less) and / or the compound represented by the formula (8) is less than 6 ppm (1 ppm or less), 0.8 ppm or less, 0.6 ppm or less, 0.4 ppm or less, 0.3 ppm or less or 0.2 ppm or less).
  • the total content of acetaldol and 1-hydroxy-3-butanone after holding at 180 ° C. for 3 hours in an air atmosphere is less than 1 ppm (or 0.9 ppm or less, 0.8 ppm or less, 0). 7.
  • APHA after holding at 180 ° C. for 3 hours in an air atmosphere is less than 25 (or 20 or less, 18 or less, 15 or less, 14 or less, 13 or less, 12 or less, 11 or less, 10 or less, 9 or less.
  • Potassium permanganate test value (PMT) after holding at 180 ° C. for 3 hours in an air atmosphere is more than 30 minutes (or 32 minutes or more, 35 minutes or more, 40 minutes or more, 50 minutes or more or 60 minutes).
  • the acid concentration (acetic acid equivalent) after holding at 180 ° C. for 3 hours in an air atmosphere is less than 8 ppm (or 7 ppm or less, 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less or 1 ppm or less).
  • the content of the 1,3-butylene glycol product according to any one of [1] to [32] is 10% by weight or more (or 30% by weight or more, 50% by weight or more, 80% by weight).
  • the moisturizer according to the above [33] which is the above, or 90% by weight or more).
  • the content of the 1,3-butylene glycol product according to any one of the above [1] to [32] is 0.01 to 40% by weight (or 0.1 to 30% by weight, 0.
  • the cosmetic according to the above [35] or [36] which is a skin cosmetic, a hair cosmetic, a sunscreen cosmetic, or a make-up cosmetic.
  • a method for producing 1,3-butylene glycol which comprises the 1,3-butylene glycol product according to any one of [1] to [32] above, from a crude reaction solution containing 1,3-butylene glycol.
  • the acetaldehyde content is 500 ppm or less (or 205 ppm or less, 200 ppm or less, 150 ppm or less, 120 ppm or less, 100 ppm or less, 90 ppm or less, 80 ppm or less, 70 ppm or less, 60 ppm or less, 50 ppm or less, 40ppm or less, 30ppm or less, 20ppm or less, 10ppm or less, 5ppm or less, or less than 2ppm), crotonaldehyde content of 200ppm or less (or 150ppm or less, 130ppm or less, 110ppm or less, 100ppm or less, 80ppm or less, 70ppm or less, 60ppm Below, 50 ppm or less, 40 ppm or less, 30 ppm or less, 20 ppm or less, 10 ppm or less, 5 ppm or less, 3 ppm or less, 2 ppm or less,
  • 1,3 by gas chromatography analysis under the following conditions -Butylene glycol concentration is 97.6 area% or more (or 97.8 area% or more, 98 area% or more, 98.2 area% or more, 98.4 area% or more, 98.6 area% or more, 98.8) Area% or more, 99 area% or more, 99.1 area% or more, 99.2 area% or more, 99.3 area% or more, 99.4 area% or more, 99.5 area% or more, 99.6 area% or more , 99.7 area% or more, 99.8 area% or more, or 99.9 area% or more), with a reflux ratio of 0.3 or more (or 0.4 or more).
  • a method for producing 1,3-butylene glycol which comprises the 1,3-butylene glycol product according to any one of [1] to [32] above, from a crude reaction solution containing 1,3-butylene glycol.
  • the content of acetaldehyde is 500 ppm or less (or 205 ppm or less, 200 ppm or less, 100 ppm or less, 90 ppm or less, 80 ppm or less, 70 ppm or less, 60 ppm or less, 50 ppm or less, 40 ppm or less, 30 ppm or less, 20 ppm or less, 10 ppm or less, 5 ppm or less, less than 2 ppm, or less than 1 ppm, and the content of crotonaldehyde is 200 ppm or less (or 110 ppm or less, 100 ppm or less, 80 ppm or less, 70 ppm or less, 60 ppm or less, 50 ppm or less, 40 ppm Below, 30 ppm or less, 20
  • the above 1,3-butylene glycol product is obtained by subjecting to distillation under the conditions of 1.2 or more, 1.5 or more, 2 or more, 3 or more, 4 or more, 5 or more, 10 or more, or 20 or more).
  • Method for producing 1,3-butylene glycol Conditions for gas chromatography analysis
  • Analytical column A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 ⁇ m ⁇ length 30 m ⁇ inner diameter 0.25 mm)
  • Temperature rise conditions After raising the temperature from 80 ° C.
  • Sample introduction temperature 250 ° C.
  • Carrier gas Gas flow rate of helium column: 1 mL / min
  • Detector and detection temperature Hydrogen flame ionization detector (FID), 280 ° C
  • the 1,3-butylene glycol product according to the present disclosure is high-purity, colorless and odorless (or almost colorless and odorless), and is unlikely to generate or increase coloration or odor over time, and / or. , The acid concentration does not easily increase with time even when it contains water.
  • This 1,3-butylene glycol product has excellent moisturizing performance and can be used as a raw material for moisturizers and cosmetics that can maintain high quality for a long period of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Cosmetics (AREA)

Abstract

無色・無臭(又は、ほぼ無色・無臭)であって、経時により着色や臭気が発生したり増大することが起きにくい、高純度の1,3-ブチレングリコール製品を得る。 1,3-ブチレングリコールを含む1,3-ブチレングリコール製品であって、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノン、2-ブタノール及び下記式(1)~(10)で表される化合物の含有量の総和が65ppm未満である1,3-ブチレングリコール製品。

Description

1,3-ブチレングリコール製品
 本開示は1,3-ブチレングリコール製品に関する。本願は、2019年12月28日に日本に出願した特願2019-239974、特願2019-239975、特願2019-239976、特願2019-239977、特願2019-239978及び特願2019-239979、2020年1月20日に日本に出願した特願2020-006660、並びに2020年2月6日に日本に出願した特願2020-018910の優先権を主張し、その内容をここに援用する。
 1,3-ブチレングリコールは無色透明、無臭の液体であり、低揮発性、低毒性、高吸湿性等の性質を備え、化学的安定性に優れる。このため、1,3-ブチレングリコールの用途は各種の合成樹脂、界面活性剤の原料をはじめ、化粧品、吸湿剤、高沸点溶剤、不凍液の素材等の多岐にわたっている。特に近年では、1,3-ブチレングリコールは保湿剤として優れた性質を有することが注目されており、化粧品業界での需要が拡大している。
 従来の製造方法で得られる1,3-ブチレングリコールは、水を含有した状態に長期間置くと酸濃度(酸性度)が上昇するという問題があった。酸濃度が上昇する原因は定かではなかったが、粗1,3-ブチレングリコールに含まれる副産物に関係すると考えられていた。化粧品は水を含むことが一般的であり、製造から一般消費者が実際に使用するまでに長い期間を要する。また、化粧品は保存安定性等の観点から液性が厳密に調整されている。従来の方法で得られた1,3-ブチレングリコールを化粧品に使用する場合、酸濃度の上昇により化粧品の液性バランスが崩れ、本来発揮されるべき効果が失われる可能性がある。また、化粧品の酸濃度の上昇により、使用者の肌荒れ等が発生する可能性もある。また、水を含まない化粧品であっても、使用時や保管時に吸湿することにより、その酸濃度が上昇することもあった。このため、粗1,3-ブチレングリコールから副産物を除去し、1,3-ブチレングリコールを高純度化することが求められていた。
 また、従来の製造方法で得られる1,3-ブチレングリコールは、副産物の影響により臭気を有することがあった。また、製造直後には透明なものであっても経時により着色が生じることもあり、長期間貯蔵する際に問題となっていた。例えば、化粧品を使用する際や使用後の保管時は、その化粧品は空気にさらされることになる。また、化粧品を製造する際は、空気雰囲気下で作業が行われることが一般的であり、さらに滅菌等の目的で加熱することもある。従来の方法で得られた1,3-ブチレングリコールを化粧品に使用する場合、空気の存在や加熱の影響により着色が進行することがあった。この様な問題を解決するため、粗1,3-ブチレングリコールから副産物を除去し、1,3-ブチレングリコールを高純度化することが求められていた。
 純度の高い1,3-ブチレングリコールを得る方法として、アセトアルドール類の水素還元により得られた粗1,3-ブチレングリコールに対し、苛性ソーダを添加して蒸留を行う方法が提案されている。また、高沸点物を除いた粗1,3-ブチレングリコールにアルカリ金属塩基を添加して加熱処理した後、1,3-ブチレングリコールを留出させアルカリ金属化合物及び高沸点物を残渣として分離し、続いて1,3-ブチレングリコール留分から低沸点物を留去する方法等が提案されている(特許文献1~6)。このように、純度の高い1,3-ブチレングリコールを得るために様々な1,3-ブチレングリコールの精製方法が提案されてきた。
特開平7-258129号公報 国際公開第00/07969号 特開2001-213822号公報 特開2001-213824号公報 特開2001-213825号公報 特開2001-213828号公報
 しかしながら、これらの精製方法から得られる1,3-ブチレングリコール製品も依然として副産物が含まれており、臭気を有するという問題、製造直後には臭気が無くても経時により臭気が生じるという問題、水を含むと経時により酸濃度が上昇するという問題、着色という問題、経時により着色が増大するという問題があった。
 1,3-ブチレングリコールは、例えば、(1)アセトアルドール類の還元(水添)、(2)1,3-ブチレンオキサイドの加水分解、(3)エリスリトールの選択的水素化分解、(4)ブタジエンへの選択的水付加、(5)n-ブタナール-3-オンの水素化、(6)1-ブタノール-3-オンの水素化、(7)3-ヒドロキシ-1-ブタン酸の水素化、(8)β-ブチロラクトンの水素化、(9)ジケテンの水素化などの方法により製造される。
 上記の製造方法のうち、(1)アセトアルドール類の還元(水添)により1,3ーブチレングリコールを得る方法が好ましい。なかでも、収率の点で、アセトアルドール類を液相で還元する方法が好ましい。その理由は、アセトアルドール類が高沸点であることと、アセトアルドール類が熱に不安定であって、高温では容易に脱水反応を起こしてクロトンアルデヒド等になること、さらに、高温における脱水反応と還元反応(水添反応)は前者の反応速度が速いこと等にある。すなわち、アセトアルドール類を気相還元する場合には反応系内を高温とする必要があるが、アセトアルドール類を高温に付すと脱水反応を起こしてクロトンアルデヒド等が生じ、その後の還元反応によりブタノール等の副産物が生じる。このため、目的とする1,3-ブチレングリコールの収率が相対的に低下することとなる。したがって、高純度の1,3-ブチレングリコール製品を得るためには、気相還元よりも液相還元を行うことが好ましい。
 1,3-ブチレングリコールを製造する場合、一般にその製造過程において副産物が産生する。例えば、アセトアルドール類の水素還元により1,3-ブチレングリコールを製造する場合、アセトアルデヒド、ブチルアルデヒド、クロトンアルデヒド、アセトン、メチルビニルケトン等の不飽和結合を有する低沸点物(低沸点化合物)や、これらの縮合物(例えば、アセトアルデヒドの三量体)、前記縮合物の水素化物、1,3-ブチレングリコールと上記低沸点物との縮合物(例えば、1,3-ブチレングリコールとアセトアルドールとのアセタール体)等が副生する。また、クロトンアルデヒドと1,3-ブチレングリコールのアセタール体、アセトアルデヒドと1,3-ブチレングリコールとのアセタール体、アセトアルドールやアセトアルデヒドとアセトアルデヒドの三量体の水素化物とのアセタール体等が副生する。また、他にも、原料となるアセトアルドール類に不純物として含まれる酢酸や、アセトアルドール類の製造において使用した苛性ソーダを中和するために使用される酢酸と、1,3-ブチレングリコールの縮合物(酢酸と1,3-ブチレングリコールとのエステル体)が副生する。そして、これらの副産物は着色原因物質や臭気原因物質、さらには酸性原因物質としての性質を有し得る。
 上記アセタール体は、着色原因物質、臭気原因物質、及び酸性原因物質のいずれであるかは確かではなく、全ての性質を有することも考えられるが、臭気原因物質としての性質を色濃く有するものであると考えられる。具体的には、上記アセタール体そのものは臭気原因物質である可能性は低いものの、経時変化や加熱により臭気原因物質が発生する可能性がある。また、上記アセタール体は加水分解でアセトアルドールが発生することがあるが、これは臭気原因物質であるとともに酸化(着色)促進作用を有するものであるため、着色原因物質であるともいえる。ここで、着色原因物質とは、それ自身が現に色相を有している物質だけでなく、経時的に色相を有するものに変化する物質も含むものとして定義される。臭気原因物質とは、それ自身が現に臭気を発している物質だけでなく、経時的に臭気を発するものに変化する物質も含むものとして定義される。酸性原因物質とは、水を含むと経時により酸濃度が上昇する物質と定義される。
 上記エステル体は、着色原因物質、臭気原因物質、及び酸性原因物質のいずれであるかは確かではなく、全ての性質を有することも考えられるが、臭気原因物質と酸性原因物質としての両方の性質を色濃く有するものであると考えられる。これは、上記エステル体が水により加水分解されると、酢酸が発生するためである。
 なお、1,3-ブチレングリコールを製造する場合、その製造過程における副産物には、上記アセタール体やエステル体以外にも、着色原因物質、臭気原因物質、又は酸性原因物質に相当する、多種多様な副産物が含まれると考えられる。例えば、上述のアセトアルデヒドの三量体の水素化物は、着色原因物質、臭気原因物質、及び酸性原因物質のいずれにも相当する可能性があると考えられる。
 上記の副産物は、従来の蒸留等の精製手段を用いても完全に取り除くことは難しい。これは、粗1,3-ブチレングリコールの精製段階において、粗1,3-ブチレングリコールが高温条件に付されることや、アルカリ処理に付されることにより、新たな副産物が産生するためであると考えられる。こうした理由により、上述の通り、特許文献1~6の1,3-ブチレングリコール製品は多種多様の副産物を含むために臭気を有し、経時により着色が生じ、さらに水を含む状態において経時による酸濃度の上昇が生じることとなる。
 従って、本開示の目的は、無色・無臭(又は、ほぼ無色・無臭)であって、経時による臭気の発生や増大がほとんどない、高純度の1,3-ブチレングリコール製品を提供することにある。
 本開示の他の目的は、無色・無臭(又は、ほぼ無色・無臭)であって、経時による着色や臭気の発生又は増大がほとんどない、及び/又は、水を含む状態においても経時による酸濃度上昇を生じにくい、高純度の1,3-ブチレングリコール製品を提供することにある。
 また、本開示のさらに他の目的は、優れた保湿性能を有するとともに、高い品質を長期間保持できる保湿剤及び化粧料を提供することにある。
 本開示の発明者らは、上記目的を達成するため鋭意検討した結果、1,3-ブチレングリコール製品を長期間保存すると、経時的に着色が増大したり、臭気が増大したり、経時的に初留点の低下、乾点の上昇、過マンガン酸カリウム試験値の低下などの品質低下が見られること、1,3-ブチレングリコール製品中に含まれる特定の不純物の含有量が一定値以上になると、当該1,3-ブチレングリコール製品の品質(着色、臭気、初留点、乾点、過マンガン酸カリウム試験値、酸濃度など)を低下させるだけでなく、該製品の長期間保存時における上記品質のさらなる低下をもたらすことを見出した。そして、前記特定の不純物の含有量をできる限り低減できる1,3-ブチレングリコールの製造方法を見出した。本開示はこれらの知見に基づき、さらに検討を加えて完成させたものである。
 すなわち、本開示は、1,3-ブチレングリコールを含む1,3-ブチレングリコール製品であって、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノン、2-ブタノール、下記式(1)で表される化合物、下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物、下記式(5)で表される化合物、下記式(6)で表される化合物、下記式(7)で表される化合物、下記式(8)で表される化合物、下記式(9)で表される化合物及び下記式(10)で表される化合物の含有量の総和が65ppm未満である1,3-ブチレングリコール製品を提供する。
Figure JPOXMLDOC01-appb-C000002
 前記1,3-ブチレングリコール製品において、空気雰囲気下、180℃で3時間保持した後の、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノン、2-ブタノール、前記式(1)で表される化合物、前記式(2)で表される化合物、前記式(3)で表される化合物、前記式(4)で表される化合物、前記式(5)で表される化合物、前記式(6)で表される化合物、前記式(7)で表される化合物、前記式(8)で表される化合物、前記式(9)で表される化合物及び前記式(10)で表される化合物の含有量の総和が70ppm未満であることが好ましい。
 また、前記1,3-ブチレングリコール製品は、前記式(1)で表される化合物、前記式(2)で表される化合物、前記式(3)で表される化合物、前記式(4)で表される化合物、前記式(5)で表される化合物、前記式(6)で表される化合物及び前記式(7)で表される化合物の含有量の総和が28ppm未満であることが好ましい。
 さらに、前記1,3-ブチレングリコール製品において、空気雰囲気下、180℃で3時間保持した後の、前記式(1)で表される化合物、前記式(2)で表される化合物、前記式(3)で表される化合物、前記式(4)で表される化合物、前記式(5)で表される化合物、前記式(6)で表される化合物及び前記式(7)で表される化合物の含有量の総和が40ppm未満であることが好ましい。
 また、本開示は、前記の1,3-ブチレングリコール製品を含む保湿剤を提供する。
 さらに、本開示は、前記の保湿剤を含む化粧料を提供する。
 なお、本開示において、「1,3-ブチレングリコール製品」とは、1,3-ブチレングリコールが構成成分の大部分を占める(例えば、1,3-ブチレングリコール含有量が95重量%以上、好ましくは98重量%以上である)組成物を意味する。
 本開示によれば、無色・無臭(又は、ほぼ無色・無臭)であって、経時による臭気の発生又は増大がほとんどない、高純度の1,3-ブチレングリコール製品が提供される。
 また、本開示によれば、無色・無臭(又は、ほぼ無色・無臭)であって、経時による着色や臭気の発生又は増大がほとんどない、及び/又は、水を含む状態においても経時による酸濃度上昇を生じにくい、高純度の1,3-ブチレングリコール製品が提供される。
 また、本開示によれば、優れた保湿性能を有するとともに、高い品質を長期間保持できる保湿剤及び化粧料が提供される。
本開示の1,3-ブチレングリコール製品を製造するための製造方法(精製方法)の一例を示すフローチャートである。 比較例5における1,3-ブチレングリコール製品のガスクロマトグラフィー分析のチャートである。 実施例11における1,3-ブチレングリコール製品のガスクロマトグラフィー分析のチャートである。 比較例2における1,3-ブチレングリコール製品のガスクロマトグラフィー分析のチャートである。
[1,3-ブチレングリコール製品]
 本開示に係る1,3-ブチレングリコール製品は、1,3-ブチレングリコールを含む1,3-ブチレングリコール製品であって、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノン、2-ブタノール、下記式(1)で表される化合物、下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物、下記式(5)で表される化合物、下記式(6)で表される化合物、下記式(7)で表される化合物、下記式(8)で表される化合物、下記式(9)で表される化合物及び下記式(10)で表される化合物の含有量の総和が65ppm未満である。
Figure JPOXMLDOC01-appb-C000003
 前記式(1)~(7)で表される化合物は環状アセタール化合物であり、式(8)~(10)で表される化合物はカルボン酸3-ヒドロキシブチルエステル化合物である。これらの化合物は、1,3-ブチレングリコールの製造時にも不純物として存在するが、1,3-ブチレングリコール製品を長期間保存した場合、経時的にその含有量が増加する不純物である。前記環状アセタール化合物は、水分の存在下で加水分解して、対応するカルボニル化合物を生成する。このように生成したカルボニル化合物は、それ自体還元性物質であり過マンガン酸カリウム試験値を低下させるだけでなく、反応性が高く、熱や酸素により、様々な複雑な化合物を生成しやすく、着色原因物質、臭気原因物質又は酸性原因物質になり得る。また、前記カルボン酸3-ヒドロキシブチルエステル化合物は、水分の存在下で加水分解して、対応するカルボン酸を生成する。このように生成したカルボン酸は、臭気原因物質、酸性原因物質になり得る。
 アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノンは、前記環状アセタール化合物又はカルボン酸3-ヒドロキシブチルエステル化合物の前駆物質である。また、ブチルアルデヒドもその構造から前記環状アセタール化合物の前駆物質となりうる。加えて、これらの化合物はカルボニル化合物であり、熱や酸素により様々な複雑な化合物を生成しやすく、着色原因物質、臭気原因物質又は酸性原因物質になり得る。
 そして、特に、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノン、2-ブタノール、式(1)~(10)で表される化合物の含有量の多い1,3-ブチレングリコール製品は、経時により臭気が増大する。例え製造時に無臭であったとしても、例えば長期間の保管により臭気が発生しやすい。したがって、本開示の1,3-ブチレングリコール製品においては、臭気及び経時的な臭気の増大を抑制するため、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノン、2-ブタノール及び式(1)~(10)で表される化合物の含有量の総和は、65ppm未満であり、好ましくは50ppm以下、より好ましくは、45ppm以下、40ppm以下、35ppm以下、30ppm以下、25ppm以下又は20ppm以下であり、さらに好ましくは、15ppm以下、13ppm以下、10ppm以下、8ppm以下、5ppm以下、4ppm以下、3ppm以下又は2ppm以下である。
 また、本開示の1,3-ブチレングリコール製品において、前記式(1)~(7)で表される化合物(環状アセタール化合物)の含有量の総和は、好ましくは28ppm未満、より好ましくは、25ppm以下、20ppm以下又は15ppm以下であり、さらに好ましくは12ppm以下、10ppm以下、8ppm以下、6ppm以下、4ppm以下、2ppm以下又は1.4ppm以下である。
 また、本開示の1,3-ブチレングリコール製品において、前記式(8)~(10)で表される化合物(カルボン酸3-ヒドロキシブチルエステル化合物)の含有量の総和は、好ましくは6ppm未満、より好ましくは5ppm以下、さらに好ましくは、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下又は0.6ppm以下である。
 さらに、本開示の1,3-ブチレングリコール製品において、前記式(1)~(10)で表される化合物の含有量の総和は、好ましくは34ppm未満、より好ましくは30ppm以下、さらに好ましくは、25ppm以下、20ppm以下、18ppm以下、16ppm以下、14ppm以下、12ppm以下、10ppm以下、8ppm以下、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下又は2ppm以下である。
 また、本開示の1,3-ブチレングリコール製品において、アセトアルデヒドの含有量は、好ましくは1.6ppm未満、より好ましくは、1.5ppm以下、1.4ppm以下、1.2ppm以下、1.0ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下又は0.2ppm以下である。クロトンアルデヒドの含有量は、好ましくは1ppm未満、より好ましくは、0.8ppm以下、0.6ppm以下、0.4ppm以下又は0.2ppm以下である。メチルビニルケトンの含有量は、好ましくは6ppm未満、より好ましくは、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下又は0.2ppm以下である。アセトンの含有量は、好ましくは5ppm未満、より好ましくは、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下又は0.2ppm以下である。ホルムアルデヒドの含有量は、好ましくは1ppm未満、より好ましくは、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。ブチルアルデヒドの含有量は、好ましくは5ppm未満、より好ましくは、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下又は0.2ppm以下である。アセトアルドールの含有量は、好ましくは6ppm未満、より好ましくは、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.4ppm以下又は0.2ppm以下である。1-ヒドロキシ-3-ブタノンの含有量は、好ましくは6ppm未満、より好ましくは、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下又は0.2ppm以下である。2-ブタノールの含有量は、好ましくは0.3ppm以下、より好ましくは0.2ppm未満である。式(1)で表される化合物の含有量は、好ましくは2ppm未満、より好ましくは、1.8ppm以下、1.6ppm以下、1.4ppm以下、1.2ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下又は0.2ppm以下である。式(2)で表される化合物の含有量は、好ましくは1ppm未満、より好ましくは、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。式(3)で表される化合物の含有量は、好ましくは4ppm未満、より好ましくは、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下又は0.2ppm以下である。式(4)で表される化合物の含有量は、好ましくは3ppm未満、より好ましくは、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下又は0.2ppm以下である。式(5)で表される化合物の含有量は、好ましくは6ppm未満、より好ましくは、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下又は0.2ppm以下である。式(6)で表される化合物の含有量は、好ましくは5ppm未満、より好ましくは、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下又は0.2ppm以下である。式(7)で表される化合物の含有量は、好ましくは7ppm未満、より好ましくは、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下又は0.2ppm以下である。式(8)で表される化合物の含有量は、好ましくは1ppm未満、より好ましくは、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。式(9)で表される化合物の含有量は、好ましくは4ppm未満、より好ましくは、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下又は0.2ppm以下である。式(10)で表される化合物の含有量は、好ましくは1ppm未満、より好ましくは、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。
 前記アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノン、2-ブタノール、式(1)~(10)で表される化合物の各含有量は、下記条件のGC-MS分析により定量できる。GC-MS分析では、非常に小さなピークでもすべて質量分析にかけ、各成分を定量する。特定の質量について分析するため、別の不純物がピークに重なっていても質量の異なる物質は検知されず、後述するGC分析よりも感度が高い。本明細書において、GC-MS分析による各成分の含有量の単位「ppm」は「重量ppm」を意味する。
(GC-MS分析の条件)
 分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
 昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
 試料導入温度:250℃
 キャリアガス:ヘリウム
 カラムのガス流量:1mL/分
 イオン源温度: EI 230℃、CI 250℃
 Qポール温度:150℃
 サンプル: そのまま分析に供する
 上記分析条件において、1,3-ブチレングリコールのピークの保持時間は、通常5.5分~7分である。上記分析条件において、1,3-ブチレングリコールのピークの相対保持時間を1.0としたとき、通常、アセトアルデヒドのピークの相対保持時間は0.3~0.5であり、クロトンアルデヒドのピークの相対保持時間は0.3~0.5であり、メチルビニルケトンのピークの相対保持時間は0.3~0.5であり、アセトンのピークの相対保持時間は0.3~0.5であり、ホルムアルデヒドのピークの相対保持時間は0.3~0.5であり、ブチルアルデヒドのピークの相対保持時間は0.3~0.5であり、アセトアルドールのピークの相対保持時間は0.4~0.6であり、1-ヒドロキシ-3-ブタノンのピークの相対保持時間は0.4~0.6であり、2-ブタノールのピークの相対保持時間は0.3~0.5であり、前記式(1)で表される化合物のピークの相対保持時間は1.3~1.7、式(2)で表される化合物のピークの相対保持時間は1.6~2.0、式(3)で表される化合物のピークの相対保持時間は0.7~1.0、式(4)で表される化合物のピークの相対保持時間は0.4~0.6、式(5)で表される化合物のピークの相対保持時間は1.3~1.7、式(6)で表される化合物のピークの相対保持時間は1.6~2.0、式(7)で表される化合物のピークの相対保持時間は0.6~0.8、式(8)で表される化合物のピークの相対保持時間は1.6~2.0、式(9)で表される化合物のピークの相対保持時間は1.0~1.2、式(10)で表される化合物のピークの相対保持時間は1.6~2.0である。
 なお、前記式(1)で表される化合物は、メチルビニルケトンと1,3-ブチレングリコールとの反応(アセタール化反応)により生成する化合物である。メチルビニルケトンは、1-ヒドロキシ-3-ブタノンの脱水反応により生成する。1-ヒドロキシ-3-ブタノンは、1,3-ブチレングリコールの酸化によって生成する。前記式(2)で表される化合物は、1-ヒドロキシ-3-ブタノンと1,3-ブチレングリコールとの反応(アセタール化反応)により生成する化合物である。前記式(3)で表される化合物は、アセトンと1,3-ブチレングリコールとの反応(アセタール化反応)により生成する化合物である。前記式(4)で表される化合物は、ホルムアルデヒドと1,3-ブチレングリコールとの反応(アセタール化反応)により生成する化合物である。アセトン及びホルムアルデヒドは、1-ヒドロキシ-3-ブタノンの分解によって生成する。前記式(5)で表される化合物は、クロトンアルデヒドと1,3-ブチレングリコールとの反応(アセタール化反応)により生成する化合物である。クロトンアルデヒドは、アセトアルドールの脱水反応によって生成する。アセトアルドールは、1,3-ブチレングリコールの酸化によって生成する。また、アセトアルドールは、アセトアルデヒドの二量化によっても生成する。前記式(6)で表される化合物は、アセトアルドールと1,3-ブチレングリコールとの反応(アセタール化反応)により生成する化合物である。前記式(7)で表される化合物は、アセトアルデヒドと1,3-ブチレングリコールとの反応(アセタール化反応)により生成する化合物である。アセトアルデヒドはアセトアルドールの分解によって生成する。前記式(8)で表される化合物は、クロトン酸と1,3-ブチレングリコールとの反応(エステル化反応)により生成する化合物である。クロトン酸はクロトンアルデヒドの酸化によって生成する。前記式(9)で表される化合物は、酢酸と1,3-ブチレングリコールとの反応(エステル化反応)により生成する化合物である。酢酸はアセトアルデヒドの酸化によって生成する。前記式(10)で表される化合物は、3-ヒドロキシブタン酸と1,3-ブチレングリコールとの反応(エステル化反応)により生成する化合物である。3-ヒドロキシブタン酸はアセトアルドールの酸化によって生成する。また、ホルムアルデヒドの酸化によってギ酸が生成し、そのギ酸と1,3-ブチレングリコールとの反応(エステル化反応)により、ギ酸2-ヒドロキシプロピルエステルが生成する。そして、ギ酸2-ヒドロキシプロピルエステルの脱炭酸により2-ブタノールが生成する。下に各化合物(不純物)の推定生成経路(「不純物生成経路図」と称する場合がある)を示す。下記式中、「1,3BG」は1,3-ブチレングリコールを示す。
Figure JPOXMLDOC01-appb-C000004
 前述したように、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノンは、前記環状アセタール化合物又はカルボン酸3-ヒドロキシブチルエステル化合物の前駆物質である。特に、1-ヒドロキシ-3-ブタノン及びアセトアルドールは種々の不純物の前駆物質である。したがって、本開示の1,3-ブチレングリコール製品において、これらの不純物はできる限り少ないことが望ましい。このような観点から、本開示の1,3-ブチレングリコール製品において、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール及び1-ヒドロキシ-3-ブタノンの総含有量は、31ppm以下(好ましくは30ppm以下、25ppm以下、20ppm以下、18ppm以下、16ppm以下、14ppm以下、13ppm以下、12ppm以下、11pm以下、10ppm以下、9ppm以下、8ppm以下、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下又は1.5ppm以下)であることが望ましい。また、本開示の1,3-ブチレングリコール製品において、アセトアルドール及び1-ヒドロキシ-3-ブタノンの総含有量は、12ppm未満(好ましくは10ppm以下、9ppm以下、8ppm以下、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.5ppm以下又は0.4ppm以下)であることが望ましい。
 さらにまた、本開示の1,3-ブチレングリコール製品において、酸濃度(酢酸換算)が6ppm未満(例えば5ppm以下、好ましくは4ppm以下、より好ましくは3ppm以下、さらに好ましくは2ppm以下、特に好ましくは1ppm以下)であることが好ましい。1,3-ブチレングリコール製品における酸濃度を低くすることにより、例えば、前記式(8)~(10)で表される化合物等のカルボン酸3-ヒドロキシブチルエステル化合物の経時的増加を抑制できる。カルボン酸3-ヒドロキシブチルエステル化合物は、水分の存在下で加水分解して、対応するカルボン酸を生成する。このようにして生成したカルボン酸は、臭気原因物質、酸性原因物質になり得る。
 本開示の1,3-ブチレングリコール製品は、その90重量%水溶液を100℃で1週間保持した後の酸濃度(酢酸換算)が9ppm未満(例えば8ppm以下、好ましくは7ppm以下、より好ましくは6ppm以下、さらに好ましくは5ppm以下、特に好ましくは4ppm以下、3ppm以下、2ppm以下又は1ppm以下)であることが好ましい。なお、90重量%水溶液とは、1,3-ブチレングリコール製品と水(例えば純水)とを混合し、1,3-ブチレングリコール製品が90重量%となるように調整した水溶液を意味する。1,3-ブチレングリコール製品における酸の前駆物質の濃度を低くすることにより、前記式(8)~(10)で表される化合物等のカルボン酸3-ヒドロキシブチルエステル化合物の経時的増加を抑制できる。
 本開示の1,3-ブチレングリコール製品は、90重量%水溶液の酸濃度(酢酸換算)について、100℃で1週間保持した後の酸濃度の保持前の酸濃度に対する比率[(100℃1週間保持後の酸濃度)/(保持前の酸濃度)×100(%)]は、150%以下が好ましく、より好ましくは120%以下、さらに好ましくは110%以下である。
 本開示の1,3-ブチレングリコール製品は、APHA(ハーゼン色数)が例えば3以下(好ましくは2以下、より好ましくは1以下)である。また、該1,3-ブチレングリコール製品を空気雰囲気下、100℃で75日保持した後のAPHAは、例えば11以下(好ましくは10以下、より好ましくは8以下、7以下又は6以下、さらに好ましくは5以下、4以下、3以下又は2以下)である。
 本開示の1,3-ブチレングリコール製品のAPHAについて、100℃で75日間保持した後のAPHAの保持前のAPHAに対する比率[(100℃75日間保持後のAPHA)/(保持前のAPHA)]は、特に限定されないが、3未満が好ましく、より好ましくは2.5以下、さらに好ましくは2以下、特に好ましくは1.5以下(例えば、1.2以下)である。
 また、本開示の1,3-ブチレングリコール製品は、初留点が204℃以上であることが好ましい。前記初留点は、好ましくは204.5℃以上、より好ましくは205℃以上、さらに好ましくは206℃以上又は207℃であり、特に好ましくは208℃以上である。
 また、本開示の1,3-ブチレングリコール製品は、乾点が209℃未満(例えば208.8℃以下)であることが好ましい。
 さらに、本開示の1,3-ブチレングリコール製品は、過マンガン酸カリウム試験値(PMT)が36分以上であることが好ましい。前記過マンガン酸カリウム試験値(PMT)は、より好ましくは38分以上、さらに好ましくは40分以上、特に好ましくは50分以上(とりわけ60分以上)である。
 本開示の1,3-ブチレングリコール製品において、1,3-ブチレングリコールの含有量は、例えば99.3%以上であることが好ましい。前記1,3-ブチレングリコールの含有量は下記条件のガスクロマトグラフィー分析(GC分析)において、1,3-ブチレングリコールのピークの面積率(GC面積率)を示す。
(ガスクロマトグラフィー分析の条件)
 分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
 昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
 試料導入温度:250℃
 キャリアガス:ヘリウム
 カラムのガス流量:1mL/分
 検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
 本開示において、ピークの「面積率」とは、チャートに現れる全てのピークの面積の和に対する特定のピークの面積の割合を意味するものである。また、全てのピークとは、例えば、1,3-ブチレングリコールのピークの相対保持時間を1.0としたとき、相対保持時間が7.8まで分析を継続して停止した場合に現れるピークの全てを意味する。1,3-ブチレングリコール製品中の1,3-ブチレングリコール含有量が、例えば98.6%以上であることにより、1,3-ブチレングリコールが本来有する基本的特性が保証される。
 上記1,3-ブチレングリコールの含有量(GC面積率)は、好ましくは99.4%以上、より好ましくは99.5%以上、さらに好ましくは99.6%以上、特に好ましくは99.7%以上、とりわけ99.8%以上である。
 前記GC分析において、1,3-ブチレングリコールのピークよりも保持時間が短いピークの総面積率は、好ましくは0.09%以下、より好ましくは0.08%以下、さらに好ましくは0.07%以下、0.04%以下、0.03%以下、0.02%以下、0.01%以下又は0.007%以下であり、特に好ましくは0.005%以下(例えば0.003%以下)である。
 前記GC分析において、1,3-ブチレングリコールのピークよりも保持時間が長いピークの総面積率は、好ましくは0.7%以下、より好ましくは0.6%以下、さらに好ましくは0.5%以下、0.4%以下、0.3%以下又は0.2%以下であり、特に好ましくは0.1%以下である。
 本開示に係る1,3-ブチレングリコール製品においては、水の含有量が0.2重量%以下であることが好ましい。前記水の含有量は、好ましくは0.15重量%以下、より好ましくは0.1重量%以下、さらに好ましくは0.07重量%以下、0.05重量%以下、0.03重量%以下、0.02重量%以下又は0.01重量%以下であり、特に好ましくは0.005重量%以下である。なお、水の含有量はカールフィッシャー水分分析装置により定量できる。
 本開示に係る1,3-ブチレングリコール製品は、長期間保存後にも着色や臭気が全く無い、或いは極めて少ない。そして、本開示の1,3-ブチレングリコール製品は、長期間保存後においても、着色原因物質や臭気原因物質になり得る不純物の含有量は極めて少ない。例えば、1,3-ブチレングリコール製品の長期保存を想定した加速試験(1,3-ブチレングリコール製品を空気雰囲気下、180℃で3時間保持する試験)を経た後でも、製品中の着色原因物質や臭気原因物質になり得る不純物の含有量は極めて少ない。
 本開示に係る1,3-ブチレングリコール製品において、空気雰囲気下、180℃で3時間保持した後の、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノン、2-ブタノール及び式(1)~(10)で表される化合物の含有量の総和は、例えば70ppm未満、好ましくは、65ppm以下、60ppm以下、55ppm以下、50ppm以下、45ppm以下、40ppm以下、35ppm以下、30ppm以下、25ppm以下又は20ppm以下であり、さらに好ましくは、18ppm以下、15ppm以下、13ppm以下、10ppm以下、8ppm以下、5ppm以下、4ppm以下又は3.5ppm以下である。
 また、本開示に係る1,3-ブチレングリコール製品において、空気雰囲気下、180℃で3時間保持した後の、前記式(1)~(7)で表される化合物(環状アセタール化合物)の含有量の総和は、例えば40ppm未満、好ましくは35ppm以下、さらに好ましくは、30ppm以下、25ppm以下、20ppm以下、15ppm以下、12ppm以下、10ppm以下、8ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下又は1.4ppm以下である。
 また、本開示に係る1,3-ブチレングリコール製品において、空気雰囲気下、180℃で3時間保持した後の、前記式(8)~(10)で表される化合物(カルボン酸3-ヒドロキシブチルエステル化合物)の含有量の総和は、例えば18ppm未満、好ましくは16ppm以下、さらに好ましくは、14ppm以下、13ppm以下、12ppm以下、11pm以下、10ppm以下、9ppm以下、8ppm以下、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下又は0.6ppm以下である。
 さらに、本開示に係る1,3-ブチレングリコール製品において、空気雰囲気下、180℃で3時間保持した後の、前記式(1)~(10)で表される化合物の含有量の総和は、例えば59ppm未満、好ましくは55ppm以下、さらに好ましくは、50ppm以下、40ppm以下、30ppm以下、20ppm以下、18ppm以下、16ppm以下、14ppm以下、12ppm以下、10ppm以下、8ppm以下、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下又は2ppm以下である。
 さらにまた、本開示に係る1,3-ブチレングリコール製品は、空気雰囲気下、180℃で3時間保持した後において、アセトアルデヒドの含有量は、好ましくは1ppm未満、より好ましくは、0.9ppm以下、0.8ppm以下、0.7ppm以下、0.6ppm以下、0.5ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。クロトンアルデヒドの含有量は、好ましくは0.5ppm未満、より好ましくは、0.4ppm以下、0.3ppm以下、0.2ppm以下又は0.1ppm以下である。メチルビニルケトンの含有量は、好ましくは4ppm未満、より好ましくは、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。アセトンの含有量は、好ましくは2ppm未満、より好ましくは、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。ホルムアルデヒドの含有量は、好ましくは0.5ppm未満、より好ましくは、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。ブチルアルデヒドの含有量は、好ましくは3ppm未満、より好ましくは、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm、0.3ppm以下又は0.2ppm以下である。アセトアルドールの含有量は、好ましくは0.5ppm未満、より好ましくは、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。1-ヒドロキシ-3-ブタノンの含有量は、好ましくは0.5ppm未満、より好ましくは、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。2-ブタノールの含有量は、好ましくは0.2ppm未満である。式(1)で表される化合物の含有量は、好ましくは6ppm未満、より好ましくは、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。式(2)で表される化合物の含有量は、好ましくは5ppm未満、より好ましくは、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。式(3)で表される化合物の含有量は、好ましくは4ppm未満、より好ましくは、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。式(4)で表される化合物の含有量は、好ましくは5ppm未満、より好ましくは、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。式(5)で表される化合物の含有量は、好ましくは7ppm未満、より好ましくは、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。式(6)で表される化合物の含有量は、好ましくは6ppm未満、より好ましくは、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。式(7)で表される化合物の含有量は、好ましくは8ppm未満、より好ましくは、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。式(8)で表される化合物の含有量は、好ましくは6ppm未満、より好ましくは、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。式(9)で表される化合物の含有量は、好ましくは5ppm未満、より好ましくは、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。式(10)で表される化合物の含有量は、好ましくは7ppm未満、より好ましくは、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下又は0.2ppm以下である。
 また、本開示に係る1,3-ブチレングリコール製品において、空気雰囲気下、180℃で3時間保持した後の、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール及び1-ヒドロキシ-3-ブタノンの含有量の総和は、例えば12ppm未満、好ましくは10ppm以下、さらに好ましくは8ppm以下、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下又は1.6ppm以下である。
 また、本開示に係る1,3-ブチレングリコール製品において、空気雰囲気下、180℃で3時間保持した後の、アセトアルドール及び1-ヒドロキシ-3-ブタノンの含有量の総和は、例えば1ppm未満、好ましくは0.9ppm以下、さらに好ましくは0.8ppm以下、0.7ppm以下、0.6ppm以下、0.5ppm以下又は0、4ppm以下である。
 また、本開示に係る1,3-ブチレングリコール製品において、空気雰囲気下、180℃で3時間保持した後のAPHAは、25未満(好ましくは20以下、さらに好ましくは18以下、15以下、14以下、13以下、12以下、11以下、10以下、9以下、8以下又は7以下)であることが望ましい。
 また、本開示に係る1,3-ブチレングリコール製品は、空気雰囲気下、180℃で3時間保持した後において、初留点が204℃以上が好ましく、乾点が209℃未満であることが好ましい。前記初留点は、好ましくは205℃以上、より好ましくは206℃以上、さらに好ましくは207℃以上である。
 さらに、本開示に係る1,3-ブチレングリコール製品は、空気雰囲気下、180℃で3時間保持した後の過マンガン酸カリウム試験値(PMT)が30分超であることが好ましい。前記過マンガン酸カリウム試験値は、より好ましくは32分以上、さらに好ましくは35分以上(例えば40分以上)、特に好ましくは50分以上(とりわけ60分以上)である。
 また、本開示に係る1,3-ブチレングリコール製品は、空気雰囲気下、180℃で3時間保持した後の酸濃度(酢酸換算)が8ppm未満であることが好ましい。前記酸濃度(酢酸換算)は、より好ましくは7ppm以下、さらに好ましくは6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下である。
 1,3-ブチレングリコールの含有量が特定値以上であり、且つ上記特定条件下の加熱試験後における特定物質の含有量が特定値以下であるような1,3-ブチレングリコール製品は、高純度で高品質であり、しかも品質の経時的低下がほとんどない。特に、本開示に係る1,3-ブチレングリコール製品は、無色・無臭(又は、ほぼ無色・無臭)であって、経時による臭気の発生や増大がほとんどない。そのため、保湿剤や化粧料の原料として好適に使用できる。
[保湿剤及び化粧料]
 本開示の保湿剤は、上記の1,3-ブチレングリコール製品を含む。そのため、保湿性能に優れる。本開示の保湿剤は、上記の1,3-ブチレングリコール製品以外の成分、例えば、上記の1,3-ブチレングリコール製品以外の保湿剤成分などを含んでいてもよい。本開示の保湿剤において、上記の1,3-ブチレングリコール製品の含有量は、例えば10重量%以上、好ましくは30重量%以上、より好ましくは50重量%以上、さらに好ましくは80重量%以上、特に好ましくは90重量%以上であり、上記の1,3-ブチレングリコール製品のみで構成されていてもよい。
 本開示の化粧料は上記の保湿剤を含む。本開示の化粧料における上記1,3-ブチレングリコール製品の配合量は、化粧品の種類や形態に応じて、保湿性能が発揮できる量であればよい。本開示の化粧料における上記1,3-ブチレングリコール製品の配合量は、例えば0.01~40重量%、好ましくは0.1~30重量%、より好ましくは0.2~20重量%、さらに好ましくは0.5~15重量%、特に好ましくは1~10重量%である。
 本開示の化粧料は、上記1,3-ブチレングリコール製品以外に、例えば、他の保湿剤;植物油、炭化水素油、高級脂肪酸、高級アルコール、シリコーンなどの油剤;アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤などの界面活性剤;防腐剤、金属イオン封鎖剤、増粘剤、粉体、紫外線吸収剤、紫外線遮断剤、香料、pH調整剤;ビタミン剤、皮膚賦活剤、血行促進剤、美白剤、抗菌剤、抗炎症剤などの薬効成分や生理活性成分などを含んでいてもよい。
 本開示の化粧料は、化粧水、乳液、クリーム、ジェル、パック、マスク等の皮膚化粧料、シャンプー、リンス、育毛剤等の頭髪化粧料とすることができる。また、日焼け止め化粧料、メイクアップ化粧料などであってもよい。また、医療用成分を配合した医薬品、医薬部外品とすることもできる。
 本開示の化粧料は、それ自体周知の方法を利用することにより製造できる。
[1,3-ブチレングリコールの製造方法]
 前記本開示の1,3-ブチレングリコール製品は、例えば、下記の1,3-ブチレングリコールの製造方法1や、下記の1,3-ブチレングリコールの製造方法2によって製造できる。
 1,3-ブチレングリコールの製造方法1:
 1,3-ブチレングリコールを含む反応粗液から精製1,3-ブチレングリコールを得る1,3-ブチレングリコールの製造方法であって、
 蒸留により水を除去する脱水工程、蒸留により高沸点成分を除去する脱高沸工程、及び精製1,3-ブチレングリコールを得るための製品蒸留工程を有しており、
 前記製品蒸留工程で用いる製品塔において、アセトアルデヒドの含有量が500ppm以下、クロトンアルデヒドの含有量が200ppm以下、水の含有量が0.7重量%以下、下記条件のガスクロマトグラフィー分析による1,3-ブチレングリコール濃度が97.6面積%以上である1,3-ブチレングリコール仕込液を、還流比が0.3以上の条件で蒸留に付す1,3-ブチレングリコールの製造方法。
(ガスクロマトグラフィー分析の条件)
 分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
 昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
 試料導入温度:250℃
 キャリアガス:ヘリウム
 カラムのガス流量:1mL/分
 検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
 1,3-ブチレングリコールの製造方法2:
 1,3-ブチレングリコールを含む反応粗液から精製1,3-ブチレングリコールを得る1,3-ブチレングリコールの製造方法であって、
 蒸留により水を除去する脱水工程及び蒸留により高沸点成分を除去する脱高沸工程を有しており、
 前記脱高沸工程で用いる脱高沸塔において、アセトアルデヒドの含有量が500ppm以下、クロトンアルデヒドの含有量が200ppm以下、水の含有量が3重量%以下、下記条件のガスクロマトグラフィー分析による1,3-ブチレングリコール濃度が96.7面積%以上である1,3-ブチレングリコールを含む仕込液を、還流比0.03以上の条件で蒸留に付す1,3-ブチレングリコールの製造方法。
(ガスクロマトグラフィー分析の条件)
 前記1,3-ブチレングリコールの製造方法1と同じ。
 上記1,3-ブチレングリコールの製造方法1(以下、単に「製造方法1」と称する場合がある)では、1,3-ブチレングリコール(1,3BG)を含む反応粗液(以下、「粗1,3-ブチレングリコール」と称する場合がある)から精製1,3-ブチレングリコールを得る1,3-ブチレングリコールの製造方法であって、蒸留により水を除去する脱水工程、蒸留により高沸点成分を除去する脱高沸工程、及び精製1,3-ブチレングリコールを得るための製品蒸留工程を有している。そして、前記製品蒸留工程で用いる製品塔において、アセトアルデヒドの含有量が500ppm以下、クロトンアルデヒドの含有量が200ppm以下、水の含有量が0.7重量%以下、上記条件のガスクロマトグラフィー分析による1,3-ブチレングリコール濃度が97.6面積%以上である1,3-ブチレングリコール仕込液を、還流比が0.3以上の条件で蒸留に付し、仕込み段より上から低沸点成分が濃縮された液を留出させ、仕込み段より下から1,3-ブチレングリコールを抜き取る。こうして得られる1,3-ブチレングリコールは、無色・無臭(又は、ほぼ無色・無臭)であり、経時による着色や臭気の発生若しくは増大が起きにくく、しかも水を含む状態においても経時による酸濃度上昇を生じにくいため、1,3-ブチレングリコール製品とすることができる。
 上記1,3-ブチレングリコールの製造方法2(以下、単に「製造方法2」と称する場合がある)では、1,3-ブチレングリコールを含む反応粗液から精製1,3-ブチレングリコールを得る1,3-ブチレングリコールの製造方法であって、蒸留により水を除去する脱水工程及び蒸留により高沸点成分を除去する脱高沸工程を有している。そして、前記脱高沸工程で用いる脱高沸塔において、アセトアルデヒドの含有量が500ppm以下、クロトンアルデヒドの含有量が200ppm以下、水の含有量が3重量%以下、上記条件のガスクロマトグラフィー分析による1,3-ブチレングリコール濃度が96.7面積%以上である1,3-ブチレングリコールを含む仕込液を、還流比0.03以上の条件で蒸留に付し、仕込み段より上から、より純度の向上した1,3-ブチレングリコールを留出させ、仕込み段より下から高沸点成分が濃縮された液を抜き取る。こうして得られる1,3-ブチレングリコールは、無色・無臭(又は、ほぼ無色・無臭)であり、経時により着色や臭気が発生したり増大することが起きにくく、しかも水を含む状態においても経時による酸濃度上昇を生じにくいため、1,3-ブチレングリコール製品とすることができる。
[粗1,3-ブチレングリコール]
 粗1,3-ブチレングリコールとしては、例えば、(1)アセトアルドール類の還元(水添)で得られる反応粗液、(2)1,3-ブチレンオキサイドの加水分解で得られる反応粗液、(3)エリスリトールの選択的水素化分解で得られる反応粗液、(4)ブタジエンへの選択的水付加で得られる反応粗液、(5)n-ブタナール-3-オンの水素化で得られる反応粗液、(6)1-ブタノール-3-オンの水素化で得られる反応粗液、(7)3-ヒドロキシ-1-ブタン酸の水素化で得られる反応粗液、(8)β-ブチロラクトンの水素化で得られる反応粗液、及び(9)ジケテンの水素化で得られる反応粗液が挙げられる。本開示において、粗1,3-ブチレングリコールとしては、上記(1)~(9)のうちの一種又は二種以上の混合物であってもよい。粗1,3-ブチレングリコールとしては、前記(1)アセトアルドール類の還元(特に、液相還元)で得られる反応粗液であることが好ましい。
 以下、粗1,3-ブチレングリコールとして、アセトアルドール類の還元(水添)で得られる反応粗液を用いる場合について主に説明する。なお、アセトアルドール類を還元(水添)する工程を、「水添工程」と称する場合がある。
 水添工程において原料として用いるアセトアルドール類は、水素還元により1,3-ブチレングリコールとなる化合物であれば特に限定されない。原料アセトアルドール類としては、例えば、アセトアルドール、その環化二量体であるパラアルドール、アセトアルデヒドの環状三量体であるアルドキサン、及びこれらの混合物等が挙げられる。
 アセトアルドール類(例えば、アセトアルドールやパラアルドール)の製造方法は特に限定されないが、例えば、塩基性触媒の存在下におけるアセトアルデヒドのアルドール縮合反応により得られたものでも、アルドキサンの熱分解等で得られたものであってもよい。なお、アセトアルドール類を製造する工程を、「アセトアルドール類製造工程」又は「アセトアルデヒド重合工程」と称する場合がある。
 上記の反応により得られたアセトアルドール類を含む反応粗液を酸により中和して、1,3-ブチレングリコールの製造に使用してもよい。この様な反応粗液は、アセトアルドール類以外にも、アセトアルデヒド(AD)、クロトンアルデヒド(CR)、他のアルデヒド成分、低沸点物、アルデヒドダイマーやトリマー等の高沸点物、水、塩等が含まれ得る。なお、本明細書において、1,3-ブチレングリコールよりも沸点の低い化合物を「低沸点物」又は「低沸物」、1,3-ブチレングリコールよりも沸点の高い化合物を「高沸点物」又は「高沸物」とそれぞれ称する場合がある。
 上記アセトアルドール類を含む反応粗液は、必要に応じて、脱アルコール蒸留、脱水蒸留、脱塩、アルカリ処理と脱アルカリ処理、脱不純物等の前処理に付し、未反応アセトアルデヒドやクロトンアルデヒド等の副産物を除去したものを使用してもよい。前処理の方法としては、蒸留、吸着、イオン交換、加熱高沸点物化、分解等が挙げられる。蒸留は、減圧、常圧、加圧、共沸、抽出、反応等の種々の蒸留方法が使用できる。特に、アセトアルドール類を含む反応粗液を単蒸発や蒸留、水素添加に付して、アセトアルデヒドやクロトンアルデヒド等のアルデヒドを除去した後、水添工程に付すことが好ましい。
 水添原料におけるアセトアルドール類の含有量は特に限定されないが、例えば、30重量%以上(例えば30~99重量%)、より好ましくは40重量%以上(例えば40~98重量%)、50重量%以上(例えば50~97重量%)又は60重量%以上(例えば60~95重量%)であり、さらに好ましくは65~90重量%、特に好ましくは70~90重量%、最も好ましくは75~90重量%である。アセトアルドール類の含有量が上記範囲内であることにより、1,3-ブチレングリコールを含む反応粗液(粗1,3-ブチレングリコール)に含まれる不純物が低減される傾向がある。
 水添原料は水を含んでいてもよいし、含まなくてもよいが、1,3-ブチレングリコール製品の純度の観点からは含んでいることが好ましい。水添原料における水の含有量は特に限定されないが、例えば、2重量%以上が好ましく、より好ましくは5重量%以上、さらに好ましくは10重量%以上、特に好ましくは15重量%以上である。なお、その上限値は、例えば90重量%、80重量%、70重量%、60重量%、50重量%、40重量%、30重量%又は20重量%であってもよい。水の含有量が上記範囲内である場合、得られる粗1,3-ブチレングリコールに含まれる1,3-ブチレングリコールとアセトアルドールとのアセタール体が低減されるため、最終的に得られる1,3-ブチレングリコール製品の純度が高くなる傾向がある。これは、水添原料に水がある程度含まれていることにより、上記アセタール体が加水分解されて1,3-ブチレングリコールになるとともに、共生したアセトアルドールが還元されて1,3-ブチレングリコールとなることに起因する。
 水添触媒としては、例えば、ラネーニッケル等が挙げられる。水添触媒は、懸濁させた状態で使用することもできるし、反応容器に充填して用いることもできる。使用する水添触媒の量は特に限定されないが、水添原料100重量部に対して、例えば、1~30重量部が好ましく、より好ましくは4~25重量部、さらに好ましくは8~20重量部、特に好ましくは12~18重量部である。還元反応に使用する水素量は特に限定されないが、水添原料100重量部に対して、例えば、0.5~40重量部が好ましく、より好ましくは1~30重量部、さらに好ましくは4~20重量部、特に好ましくは8~12重量部である。還元反応における反応系内の圧力(全圧;ゲージ圧)は特に限定されないが、例えば9~70MPa、好ましくは10~40MPaである。反応系内の水素圧(水素の分圧)は特に限定されないが、例えば7~60MPa、好ましくは10~30MPaである。なお、アセトアルデヒドやクロトンアルデヒドなどの還元性物質を低減させるという観点からは、反応系内の水素圧を高くするのがよく、10MPa以上が好ましく、100MPaであってもよい。還元反応における反応温度は特に限定されないが、例えば40~150℃、好ましくは50~140℃、より好ましくは60~130℃である。還元反応における反応時間(滞留時間)は特に限定されないが、例えば10~500分間、好ましくは20~400分間、より好ましくは30~300分間、さらに好ましくは50~280分間、特に好ましくは80~250分間である。本反応は、回分式、半回分式、又は連続式のいずれでも行うことができる。
 こうして得られる粗1,3-ブチレングリコールには、アセトアルデヒド(AD)、ブチルアルデヒド、クロトンアルデヒド(CR)、アセトン、メチルビニルケトン等の不飽和結合を有する低沸点物(低沸点化合物)や、これらの縮合物、1,3-ブチレングリコールと上記低沸点物との縮合物(例えば、1,3-ブチレングリコールとアセトアルドールとのアセタール体等)、エタノール、イソプロピルアルコール、ブタノール等のアルコール、水(溶媒等)、中和処理等で生成する塩、触媒(懸濁状態で用いた場合)などが含まれている。精製工程でこれらの不純物を除去することにより、1,3-ブチレングリコール製品(精製1,3-ブチレングリコール)を得ることができる。
[粗1,3-ブチレングリコールの精製]
 本開示の製造方法1では、少なくとも、蒸留により水を除去する脱水工程、蒸留により高沸点成分を除去する脱高沸工程(脱高沸点物蒸留工程)、及び精製1,3-ブチレングリコールを得るための製品蒸留工程を有している。本開示の製造方法2では、少なくとも、蒸留により水を除去する脱水工程及び蒸留により高沸点成分を除去する脱高沸工程(脱高沸点物蒸留工程)を有している。
 本開示の製造方法において、脱水工程と脱高沸工程の順序は問わない。製造方法1では、前記脱水工程と脱高沸工程はいずれも製品蒸留工程の前に設ける。本開示の製造方法では、これらの工程のほか、脱塩工程、アルカリ反応工程(アルカリ処理工程)、脱アルカリ工程を有していてもよい。また、脱水工程の前に、触媒分離工程、アルカリによる中和工程、脱アルコール工程(脱低沸工程)を設けることもできる。前記各工程は、この記載の順序で行ってもよいが、脱アルカリ工程はアルカリ反応工程の後に設けることを除き、各工程の順序を適宜変更してもよい。例えば、脱アルコール工程(脱低沸工程)、脱塩工程、アルカリ反応工程及び脱アルカリ工程は適宜な箇所に設けることができるが、通常は、水添工程の後に設ける。なお、上記工程のうち、触媒分離工程、アルカリによる中和工程、脱アルコール工程(脱低沸工程)、脱塩工程、アルカリ反応工程、脱アルカリ工程は、必要に応じて設ければよく、必ずしも設けなくてもよい。
 図1は本開示の1,3-ブチレングリコール製品を製造するための製造方法(精製方法)の一例を示すフローチャートである。Aは脱水塔であり、脱水工程に関連する。Bは脱塩塔であり脱塩工程に関連する。Cは脱高沸点物蒸留塔(脱高沸塔)であり脱高沸点物蒸留工程(脱高沸工程)に関連する。Dはアルカリ反応器でありアルカリ反応工程に関連する。Eは脱アルカリ塔であり脱アルカリ工程に関連する。Fは製品蒸留塔(製品塔)であり製品蒸留工程に関連する。A-1、B-1、C-1、E-1、F-1はコンデンサーである。A-2、C-2、F-2はリボイラーである。以下、本フローシートを用いて上記1,3-ブチレングリコールの製造方法の実施態様の一例を説明する。
 水添原料の水素還元により得られた粗1,3-ブチレングリコール(「X-1」に相当)は、脱水塔Aに供給される。なお、上記粗1,3-ブチレングリコール(「X-1」に相当)は、エタノール等のアルコールや低沸点物を除去するための脱アルコール工程(脱アルコール塔による蒸留工程)を経た後、脱水塔Aに供給してもよい。
 本開示の製造方法では、脱水工程で用いる脱水塔Aにおいて、例えば、1,3-ブチレングリコール及び水を含む仕込液を蒸留に付し、仕込み段より上(好ましくは、塔頂部)から水を含む低沸点成分が濃縮された液を留出させる(図1の「X-2」に相当する)。また、仕込み段より下(好ましくは、塔底部)より1,3-ブチレングリコールを含む粗1,3-ブチレングリコール流が得られる。
 脱水塔A及びその他1,3-ブチレングリコールを分離する蒸留塔としては、例えば、多孔板塔、泡鐘塔等を用いることができるが、スルーザー・パッキング、メラパック(共に住友重機械工業(株)の商品名)等を充填した圧力損失の低い充填塔がより好ましい。これは、1,3-ブチレングリコールや微量に含まれる不純物は高温(例えば150℃以上)で熱分解し、着色成分である低沸点物が生成することから、蒸留温度を低くするためである。また、1,3-ブチレングリコールにかかる熱履歴(滞留時間)が長い場合も同様に影響が出るためである。従って、採用されるリボイラーはプロセス側流体の滞留時間が短いもの、例えば、自然流下型薄膜蒸発器、強制攪拌型薄膜蒸発器等の薄膜蒸発器が好ましい。
 脱水塔Aの理論段数は、例えば1~100段、好ましくは2~80段、3~80段、4~60段、5~40段、6~30段又は7~20段であり、さらに好ましくは8~15段である。仕込液の供給位置は、塔頂部から下方に向かって、塔の高さの例えば10~90%、好ましくは20~80%、より好ましくは30~70%、さらに好ましくは40~60%の位置である。脱水塔Aでの蒸留において、塔頂部の圧力(絶対圧)は、例えば101kPa以下、好ましくは0.1~90kPa、より好ましくは0.5~70kPa、さらに好ましくは1~50kPa、2~30kPa又は3~20kPaであり、特に好ましくは4~10kPaである。なお、脱水塔Aでの蒸留は、加圧下で行ってもよく、その場合、塔頂部の圧力(ゲージ圧)は、例えば0.2MPaG以下であってもよく、0.1MPaG以下であってもよい。
 脱水塔Aへの仕込液中の1,3-ブチレングリコールの濃度は、例えば9重量%以上、好ましくは10重量%以上、より好ましくは15重量%以上、さらに好ましくは20重量%以上、25重量%以上、30重量%以上、35重量%以上、40重量%以上、45重量%以上、50重量%以上、55重量%以上又は60%以上であり、特に好ましくは70%以上である。脱水塔Aへの仕込液中の1,3-ブチレングリコールの濃度の上限は、例えば90重量%、85重量%又は80重量%である。しかし、脱水工程より前の工程での水素添加反応等を考慮すると、前記脱水塔Aへの仕込液中の水の濃度が高い方がよい場合がある。これらのことを総合すると、脱水塔Aへの仕込液中の1,3-ブチレングリコールの濃度は、例えば1重量%以上、5重量%以上、10重量%以上、15重量%以上、20重量%以上、25重量%以上、30重量%以上、35重量%以上、40重量%以上、50重量%以上、60重量%以上、70重量%以上、80重量%以上又は90重量%以上であってもよい。また、脱水塔Aへの仕込液中の1,3-ブチレングリコールの濃度は、例えば99重量%以下、95重量%以上、90重量%以下、85重量%以下、80重量%以下、75重量%以下、70重量%以下、65重量%以下、60重量%以下、55重量%以下、50重量%以下又は45重量%以下であってもよい。脱水塔Aへの仕込液中の1,3-ブチレングリコールの濃度は、例えば、水添工程での反応条件(例えば、原料として用いるアセトアルドール類の濃度など)や、脱水塔の前に必要に応じて設けられる脱アルコール塔(脱低沸塔)の蒸留条件を調整することにより上記範囲とすることができる。
 なお、上記1,3-ブチレングリコールの濃度(重量%)は、下記条件のガスクロマトグラフィー分析における、全ピーク面積に対する1,3-ブチレングリコールのピークの面積の割合(GC面積%)を求め、下記式により求めた値である。なお、脱水塔Aへの仕込液中の水の濃度(重量%)は後述の方法(カールフィッシャー法)により測定した値である。
 脱水塔Aへの仕込液中の1,3-ブチレングリコールの濃度(重量%)
 =(1-脱水塔Aへの仕込液中の水の濃度(重量%)/100)×上記1,3-ブチレングリコールのGC面積%
(ガスクロマトグラフィー分析の条件)
 分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
 昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
 試料導入温度:250℃
 キャリアガス:ヘリウム
 カラムのガス流量:1mL/分
 検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
 本開示の製造方法において、脱水塔Aへの仕込液中のアセトアルデヒドの含有量は、例えば1000ppm以下、好ましくは900ppm以下、より好ましくは800ppm以下、700ppm以下、600ppm以下又は500ppm以下であり、さらに好ましくは400ppm以下、300ppm以下、200ppm以下、155ppm以下又は140ppm以下であり、100ppm以下、90ppm以下、80ppm以下、70ppm以下、60ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下、10ppm以下、5ppm以下、3ppm以下、2ppm以下又は1ppm以下であってもよい。
 脱水塔Aへの仕込液中のクロトンアルデヒドの含有量は、例えば400ppm以下、好ましくは300ppm以下、より好ましくは200ppm以下、さらに好ましくは150ppm以下、130ppm以下、117ppm以下又は100ppm以下であり、90ppm以下、80ppm以下、70ppm以下、60ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下、10ppm以下、5ppm以下、3ppm以下、2ppm以下又は1ppm以下であってもよい。
 脱水塔Aへの仕込液中のアセトアルデヒド含有量及びクロトンアルデヒド含有量は、例えば、脱水塔Aの上流に脱アルコール塔(脱低沸塔)を設け、該脱アルコール塔(脱低沸塔)の蒸留条件を調整することにより低減できる。例えば、前記脱アルコール塔(脱低沸塔)の還流比や段数、留出率を増加させることにより、脱水塔Aへの仕込液中のアセトアルデヒド含有量及びクロトンアルデヒド含有量を低下させることができる。さらに、水添工程での水素添加反応の条件により調整することもでき、完全に水素添加を行った場合は、アセトアルデヒド及びクロトンアルデヒドの濃度を検出限界以下まで下げることもできるが、反応圧力が高くなったり、反応槽が大きくなる等の不利益が生じる。
 なお、脱水塔Aへの仕込液中のアセトアルデヒド含有量及びクロトンアルデヒド含有量は、GC-MS分析(ガスマス分析)により定量できる。
 本開示の製造方法において、脱水塔Aへの仕込液中の水の含有量は、例えば90重量%以下、85重量%以下、80重量%以下、70重量%以下、60重量%以下、50重量%以下又は40重量%以下であり、好ましくは35重量%以下、より好ましくは30重量%以下、さらに好ましくは25重量%以下である。脱水塔Aへの仕込液中の水の含有量の下限は、例えば10重量%又は15重量%である。なお、水添工程における水素添加反応を考慮した場合、水濃度が高く粘性が低い方が、液中の水素の溶解度や分散度が上昇するため、水素添加反応に有利に働く。脱水塔Aへの仕込液中の水の含有量は、例えば、脱水塔Aの上流に脱アルコール塔(脱低沸塔)を設け、該脱アルコール塔(脱低沸塔)の蒸留条件を調整することにより低減できる。例えば、前記脱アルコール塔(脱低沸塔)の還流比や段数、留出率を増加させることにより、脱水塔Aへの仕込液中の水の含有量を低下させることができる。なお、脱水塔Aへの仕込液中の水の含有量は、カールフィッシャー水分測定器で定量できる。
 本開示の製造方法において、脱水塔Aへの仕込液中の低沸点成分(水を除く)の含有量は、例えば20%以下、好ましくは10%以下、より好ましくは8%以下、さらに好ましくは5%以下、特に好ましくは3%以下又は2%以下であり、1%以下、0.5%以下又は0.1%以下であってもよい。脱水塔Aへの仕込液中の水を除く低沸点成分(「低沸点物」又は「低沸物」とも言う)の含有量は、上記条件のガスクロマトグラフィー分析における、全ピーク面積に対する1,3-ブチレングリコールのピークより保持時間の短いピークのトータルの面積の割合(面積%)である。前記脱水塔Aへの仕込液中の低沸点成分(水を除く)の含有量は、例えば、脱水塔Aの上流に脱アルコール塔(脱低沸塔)を設け、該脱アルコール塔(脱低沸塔)の蒸留条件を調整することにより低減できる。例えば、前記脱アルコール塔(脱低沸塔)の還流比や段数や留出率を増加させることにより、脱水塔Aへの仕込液中の低沸点成分(水を除く)の濃度を低下させることができる。また、脱水塔Aへの仕込液中の低沸点成分(水を除く)の濃度は、例えば、水添工程における反応条件(例えば、反応温度など)等により低下できるものもある。
 脱水塔Aへの仕込液中の高沸点成分の含有量は、例えば20%以下、好ましくは10%以下、より好ましくは7%以下、4%以下、3%以下又は2%以下であり、さらに好ましくは1%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下、0.1%以下又は0.05%以下であり、特に好ましくは0.01%以下である。脱水塔Aへの仕込液中の高沸点成分の含有量は、例えば、水添工程における反応条件(例えば、反応温度など)等により調整できる。なお、上記脱水塔Aへの仕込液中の高沸点成分の含有量は、上記条件のガスクロマトグラフィー分析における、全ピーク面積に対する1,3BGのピークより保持時間の長いピークのトータルの面積の割合(面積%)である。
 本開示の製造方法において、脱水塔Aにおける還流比[脱水塔還流量/脱水塔留出量(蒸留塔外への排出量)]は、脱水塔Aの仕込み段より下(好ましくは、塔底部)より取り出される1,3-ブチレングリコールを含む粗1,3-ブチレングリコール流中の低沸点物(水を含む)の含有量を低減させるという観点から、例えば0.3超、好ましくは0.4以上、0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、1以上、1.1以上、1.2以上、1.3以上、1.4以上、1.5以上、1.6以上、1.7以上、1.8以上、1.9以上、2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上、10以上、15以上、20以上又は25以上であり、より好ましくは30以上(例えば40以上)である。特に、本開示の製造方法2においては、脱水塔Aにおける還流比は、好ましくは10以上、より好ましくは20以上、さらに好ましくは30以上、特に好ましくは50以上である。還流比の上限は、エネルギーコストの点から、例えば100、好ましくは50である。脱水塔Aの理論段数が十分大きい場合は、前記還流比は、例えば0.03以上であれば、十分な分離が可能である。なお、脱水塔Aへの還流においては、通常、脱水塔塔頂ベーパーの凝縮液を当該脱水塔に還流させるが、その還流の一部又は全部を、水含有液(例えば、純水等)の当該脱水塔への仕込みで置き換えてもよい。その場合、前記「脱水塔還流量」は、脱水塔塔頂ベーパーの凝縮液の当該脱水塔への還流量と、前記水含有液(例えば、純水等)の当該脱水塔への仕込量の総和を意味する。
 本開示の製造方法において、脱水塔Aにおける留出率は、脱水塔Aへの仕込液中の水の濃度に応じて適宜設定できる。前記留出率は、仕込液中の水を全量留出させるに十分な留出率であることが望ましい。例えば、脱水塔Aへの仕込液中の水の濃度がX重量%の場合は、脱水塔Aにおける留出率をX重量%以上とするのが好ましい。したがって、脱水塔Aにおける留出率は、例えば95重量%以下、90重量%以下、85重量%以下、80重量%以下、75重量%以下、70重量%以下、65重量%以下、60重量%以下、55重量%以下、50重量%以下、45重量%以下、40重量%以下、35重量%以下、30重量%以下、25重量%以下、20重量%以下、15重量%以下、10重量%以下又は5重量%以下である。なお、上記留出率とは、脱水塔Aへの仕込量に対する脱水塔Aの仕込段より上(例えば、塔頂部)から蒸留塔外に抜き出される液の量の割合(重量%)をいう。
 本開示の製造方法において、前記脱水塔Aにおける1,3BG回収率は、例えば、99.3%以上である。なお、本明細書において、脱水塔Aにおける1,3BG回収率は下記式により求めた値(%)である。
 {1-[留出液における1,3BG濃度(重量%)×(留出量(部)-リサイクル量(部))]/(仕込液における1,3BG濃度(重量%)×仕込量(部))}×100
 なお、低沸点物、高沸点物は水により加水分解されて1,3BGが生成する場合がある一方、1,3BGの重合により高沸点物が生成する場合もあり、さらには微量不純物の生成や消失もあるため、脱水塔における物質収支は、必ずしもとれない場合がある。このことは、脱アルコール塔(脱低沸塔)、脱高沸塔、製品塔など他の蒸留塔にも言える。
 次いで、前記脱水塔Aの仕込み段より下(好ましくは、塔底部)より取り出される1,3-ブチレングリコールを含む粗1,3-ブチレングリコール流は脱塩塔Bに供給される。脱塩塔Bでは蒸留により塔頂部から脱塩後の粗1,3-ブチレングリコール流が得られ、塔底部から塩や高沸点物等が缶出液として排出される。脱塩塔Bの缶出率(%)[(脱塩塔缶出量(部)/脱塩塔仕込量(部))×100]は、例えば0.1~40重量%、好ましくは1~35重量%、より好ましくは2~30重量%、さらに好ましくは3~25重量%、特に好ましくは5~20重量%であり、7~15重量%であってもよい。なお、脱塩塔の缶出液の少なくとも一部を脱塩工程より前の工程にリサイクルしてもよい。
 上記の脱塩後の粗1,3-ブチレングリコール流は脱高沸塔Cに供給される。脱高沸塔Cでは、仕込み段より下から(好ましくは、塔底部から)高沸点成分(高沸点物)が排出される。一方、仕込み段より上から脱高沸点物後の粗1,3-ブチレングリコール流(より純度の向上した1,3-ブチレングリコール)が得られる。
 脱高沸塔Cとしては、例えば、多孔板塔、泡鐘塔等を用いることができるが、スルーザー・パッキング、メラパック(共に住友重機械工業(株)の商品名)等を充填した圧力損失の低い充填塔がより好ましい。これは、1,3-ブチレングリコールや微量に含まれる不純物は高温(例えば150℃以上)で熱分解し、着色成分である低沸点物が生成することから、蒸留温度を低くするためである。また、1,3-ブチレングリコールにかかる熱履歴(滞留時間)が長い場合も同様に影響が出るためである。従って、採用されるリボイラーはプロセス側流体の滞留時間が短いもの、例えば、自然流下型薄膜蒸発器、強制攪拌型薄膜蒸発器等の薄膜蒸発器が好ましい。
 脱高沸塔Cの段数は、理論段数として、例えば1~100段、好ましくは2~90段、より好ましくは3~80段、さらに好ましくは4~70段、5~60段、8~50段又は10~40段であり、特に好ましくは15~30段である。仕込液の供給位置は、脱高沸塔の塔頂部から下方に向かって、塔の高さの例えば10~90%、好ましくは20~80%、より好ましくは30~70段、さらに好ましくは40~60%の位置である。脱高沸塔Cでの蒸留において、塔頂部の圧力(絶対圧)は、例えば0.01~50kPa、好ましくは0.1~30kPa、より好ましくは0.3~20kPa、さらに好ましくは0.5~10kPaである。
 本開示の製造方法1において、脱高沸塔Cへの仕込液中の1,3BGの濃度は、例えば95%以上、好ましくは96%以上(例えば、96.7%以上)、より好ましくは97%以上、さらに好ましくは98%以上、特に好ましくは99%以上である。本開示の製造方法2においては、脱高沸塔Cへの仕込液中の1,3BGの濃度は、96.7%以上であり、好ましくは97%以上、より好ましくは98%以上、さらに好ましくは99%以上である。脱高沸塔Cへの仕込液中の1,3BGの濃度は、前記脱水塔A及び脱塩塔Bの蒸留条件を調整することにより向上させることができる。例えば、脱水塔Aの還流比を上げたり、脱塩塔Bの缶出率を上げることにより、脱高沸塔Cへの仕込液中の1,3BGの濃度を高くすることができる。なお、上記1,3BGの濃度は、下記条件のガスクロマトグラフィー分析(GC分析)における、全ピーク面積に対する1,3BGのピークの面積の割合(面積%)である。
(ガスクロマトグラフィー分析の条件)
 分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
 昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
 試料導入温度:250℃
 キャリアガス:ヘリウム
 カラムのガス流量:1mL/分
 検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
 脱高沸塔Cへの仕込液中の高沸点成分の含有量は、例えば4%以下、好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下、0.1%以下又は0.05%以下であり、特に好ましくは0.01%以下である。特に、本開示の製造方法2においては、脱高沸塔Cへの仕込液中の高沸点成分の含有量は、好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1.5%以下、1%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下、0.1%以下又は0.05%以下であり、特に好ましくは0.01%以下である。脱高沸塔Cへの仕込液中の高沸点成分の含有量は、前記脱塩塔Bの蒸留条件を調整することにより低減できる。例えば、脱塩塔Bの缶出率を上げることにより、脱高沸塔Cへの仕込液中の高沸点成分の含有量を低下させることができる。なお、上記脱高沸塔Cへの仕込液中の高沸点成分の含有量は、上記条件のガスクロマトグラフィー分析における、全ピーク面積に対する1,3BGのピークより保持時間の長いピークのトータルの面積の割合(面積%)である。
 本開示の製造方法では、脱高沸塔Cへの仕込液中のアセトアルデヒドの含有量は、例えば500ppm以下、好ましくは205ppm以下(例えば200ppm以下)、より好ましくは100ppm以下、さらに好ましくは90ppm以下、80ppm以下、70ppm以下、60ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下又は10ppm以下であり、特に好ましくは5ppm以下であり、2ppm未満又は1ppm未満であってもよい。脱高沸塔Cへの仕込液中のクロトンアルデヒドの含有量は、例えば200ppm以下、好ましくは110ppm以下、より好ましくは100ppm以下、さらに好ましくは80ppm以下、70ppm以下、60ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下、10ppm以下、5ppm以下又は3ppm以下であり、特に好ましくは2ppm以下であり、1ppm未満であってもよい。脱高沸塔Cへの仕込液中のアセトアルデヒド含有量及びクロトンアルデヒド含有量は、例えば、脱高沸塔Cの上流に脱アルコール塔(脱低沸塔)や脱水塔を設け、該脱アルコール塔(脱低沸塔)や脱水塔の蒸留条件を調整することにより低減できる。例えば、前記脱アルコール塔(脱低沸塔)や脱水塔の還流比や段数、留出率を増加させることにより、脱高沸塔Cへの仕込液中のアセトアルデヒド含有量及びクロトンアルデヒド含有量を低下させることができる。なお、脱高沸塔Cへの仕込液中のアセトアルデヒド含有量及びクロトンアルデヒド含有量は、GC-MS分析(ガスマス分析)により定量できる。
 本開示の製造方法において、脱高沸塔Cへの仕込液中の水の含有量は、例えば3重量%以下、好ましくは2重量%以下、より好ましくは1.2重量%以下、さらに好ましくは1.1重量%以下、1.0重量%以下、0.95重量%以下、0.9重量%以下、0.8重量%以下、0.7重量%以下、0.6重量%以下、0.5重量%以下、0.4重量%以下、0.3重量%以下又は0.2重量%以下であり、特に好ましくは0.1重量%以下である。脱高沸塔Cへの仕込液中の水の含有量は、前記脱水塔Aの蒸留条件を調整することにより低減できる。例えば、前記脱水塔Aの還流比や段数、留出率を増加させることにより、脱高沸塔Cへの仕込液中の水の濃度を低下させることができる。なお、脱高沸塔CFへの仕込液中の水の含有量は、カールフィッシャー水分測定器で定量できる。なお、本開示の製造方法2では、脱高沸塔Cへの仕込液中の水の含有量は、3重量%以下であり、好ましくは2重量%以下、1.2重量%以下、0.4重量%以下、0.3重量%以下又は0.2重量%以下であり、特に好ましくは0.1重量%以下、0.05重量%以下又は0.03重量%以下である。
 本開示の製造方法において、脱高沸塔Cへの仕込液中の低沸点成分(水を除く)の含有量は、例えば1.8%以下、好ましくは1.6%以下、より好ましくは1.4%以下、さらに好ましくは1.2%以下、1.1%以下、1%以下、0.9%以下、0.8%以下、0.7%以下、0.6%以下、0.5%以下、0.4%以下、0.3%以下又は0.2%以下であり、特に好ましくは、0.1%以下である。脱高沸塔Cへの仕込液中の水を除く低沸点成分(「低沸点物」又は「低沸物」とも言う)の含有量は、上記条件のガスクロマトグラフィー分析における、全ピーク面積に対する1,3-ブチレングリコールのピークより保持時間の短いピークのトータルの面積の割合(面積%)である。前記脱高沸塔Cへの仕込液中の低沸点成分(水を除く)の含有量は、例えば、脱高沸塔Cの上流に脱アルコール塔(脱低沸塔)を設け、該脱アルコール塔(脱低沸塔)の蒸留条件を調整することにより低減できる。例えば、前記脱アルコール塔(脱低沸塔)の還流比や段数や留出率を増加させることにより、脱高沸塔Cへの仕込液中の低沸点成分(水を除く)の濃度を低下させることができる。
 本開示の製造方法では、脱高沸塔Cにおける還流比[脱高沸塔還流量/脱高沸塔留出量(蒸留塔外への排出量)]は、1,3-ブチレングリコール製品の乾点を低くするという観点から、0.03以上、好ましくは0.05以上、より好ましくは0.1以上、さらに好ましくは0.2以上、0.3以上、0.4以上、0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、1以上、1.2以上、1.5以上、2以上、3以上、4以上、5以上又は10以上であり、特に好ましくは20以上である。特に、本開示の製造方法2においては、脱高沸塔Cにおける還流比は、好ましくは0.1以上、より好ましくは0.2以上、0.3以上、0.4以上、0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、1以上、1.2以上、1.5以上、2以上、3以上、4以上、5以上又は10以上であり、特に好ましくは20以上である。なお、上記還流比の上限は、エネルギーコストの点から、例えば100、好ましくは50である。脱高沸塔Cの理論段数が大きい場合は、脱高沸塔Cにおける還流比は1程度又はそれ以下であっても十分な分離が可能である。
 本開示の製造方法では、脱高沸塔Cにおける還流比を上記の範囲とすることにより、高沸点成分の含有量が非常に少なく、乾点が低い高純度の1,3BGを高い回収率で製造することができる。
 本開示の製造方法において、脱高沸塔Cの缶出率は、例えば30重量%未満である。ただ、脱高沸塔の缶出液をさらなる蒸留塔で蒸留して脱高沸した後の1,3BGを製品化する場合は、その限りではなく、最終の高沸含有物の系外抜き取り量を脱高沸塔Cへの仕込量に対し30重量%未満に抑えれば、高収率で1,3BGを得ることができる。なお、上記缶出率とは、脱高沸塔Cへの仕込量に対する脱高沸塔Cの仕込段より下(例えば、塔底部)から抜き出される液の量(この液を後述する前工程へリサイクルする場合は、リサイクル量も含む)の割合(重量%)をいう。なお、この液を後述する前工程へリサイクルする場合、系外排出率が少ないほど、1,3BGの回収率が向上する。
 上記脱高沸塔Cの缶出率は、1,3BGの回収率を向上させるという点で、好ましくは25重量%以下、より好ましくは20重量%以下、さらに好ましくは15重量%以下、10重量%以下、7重量%以下、5重量%以下、4重量%以下、3重量%以下又は2重量%以下であり、1重量%以下とすることもできる。また、上記高沸塔Cの缶出率は、1,3-ブチレングリコール製品の乾点を低くするという観点から、例えば、0.01重量%以上、好ましくは0.1重量%以上、0.5重量%以上又は1重量%以上であり、さらに好ましくは2重量%以上、3重量%以上、4重量%以上、5重量%以上、6重量%以上、7重量%以上、8重量%以上、9重量%以上、10重量%以上又は15重量%以上であり、特に好ましくは20重量%以上である。
 脱高沸塔Cの仕込み段より下から抜き取られた高沸成分が濃縮された液(以下、「缶出液」と称する場合がある)の少なくとも一部を脱高沸工程より前の工程にリサイクルさせてもよい(図1の脱高沸塔Cの下部に示す破線の矢印)。上記缶出液の少なくとも一部を脱高沸工程より前の工程にリサイクルさせることにより、1,3BGの回収率を向上させることができる。なお、本明細書において、脱高沸塔Cにおける1,3BGの回収率は下記式により求めた値(%)である。
 {1-[缶出液における1,3BGのGC面積%×(缶出量(部)-リサイクル量(部))]/(仕込液における1,3BGのGC面積%×仕込量(部))}×100
 なお、低沸点物、高沸点物は水により加水分解されて1,3BGが生成する場合がある一方、1,3BGの重合により高沸点物が生成する場合もあり、さらには微量不純物の生成や消失もあるため、脱高沸塔における物質収支は、必ずしもとれない場合がある。
 脱高沸塔Cにおける1,3BGの回収率は、例えば80%超、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは99%以上である。
 上記脱高沸工程より前の工程としては、例えば、アセトアルデヒド重合工程(アセトアルデヒドのアルドール縮合工程)、反応工程(水添工程)、脱アルコール工程(脱低沸工程)、脱水工程、脱塩工程などが挙げられる。これらの中でも、高沸点物の加水分解により1,3BGが生成することから、アセトアルデヒド重合工程(アセトアルデヒドのアルドール縮合工程)にリサイクルさせることが好ましい。また、水素添加還元により1,3BGが生成する場合もあり、その観点からは、水素添加工程にリサイクルさせてもよい。
 上記缶出液の脱高沸工程より前の工程へのリサイクル量は、缶出液の量の範囲内で適宜選択できる。上記缶出液の脱高沸工程より前の工程へのリサイクル量は、脱高沸塔Cへの仕込量に対して、例えば30重量%未満、好ましくは25重量%以下である。なお、上記リサイクル量は、脱高沸塔Cへの仕込量に対して、20重量%以下、15重量%以下、10重量%以下、7重量%以下、5重量%以下、4重量%以下、3重量%以下、2重量%以下又は1重量%以下としてもよい。また、上記缶出液の脱高沸工程より前の工程へのリサイクル量は、脱高沸塔での1,3BG回収率及び1,3BG製造プロセス全体を通しての収率を向上させるという観点から、脱高沸塔Cへの仕込量に対して、例えば0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは2重量%以上、3重量%以上、4重量%以上、5重量%以上、7重量%以上又は10重量%以上であり、特に好ましくは20重量%以上である。なお、缶出量を極限に絞る場合は、前工程へリサイクルしなくても高収率で1,3BGを回収することができる。
 脱高沸塔Cの仕込み段より上から取り出された粗1,3-ブチレングリコール流は、本開示の製造方法2では、そのまま1,3-ブチレングリコール製品とすることができる。また、脱高沸塔Cの仕込み段より上から取り出された粗1,3-ブチレングリコール流を、後述のアルカリ反応器Dでアルカリ処理を施し、脱アルカリ塔Eで蒸発させて(又は蒸留して)、脱アルカリ塔Eの塔頂留出液を1,3-ブチレングリコール製品とすることができる。
 本開示の製造方法2によれば、脱高沸塔仕込液中のアセトアルデヒド、クロトンアルデヒド及び水含有量を特定の範囲とし、脱高沸塔の還流比を特定の範囲としたので、無色・無臭(又は、ほぼ無色・無臭)で、経時による着色や臭気の発生又は増大が起きにくく、しかも水を含む状態においても経時による酸濃度上昇を生じにくい、高純度の1,3-ブチレングリコールを工業的に効率よく製造することができる。
 本開示の製造方法1では、前記脱高沸塔Cの仕込み段より上から取り出された粗1,3-ブチレングリコール流は、例えば、アルカリ反応器(例えば流通式管型反応器)Dに供給され、塩基処理(アルカリ処理)される。塩基処理により粗1,3-ブチレングリコール中に含まれている副産物を分解することができる。塩基は、アルカリ反応器D又はその上流の配管等に添加される。塩基の添加量は、アルカリ処理に付される粗1,3-ブチレングリコール流に対して、例えば0.05~10重量%、好ましくは0.1~1.0重量%である。塩基の添加量が10重量%を超えると、蒸留塔、配管等で塩基が析出し、閉塞の原因となる場合がある。また、高沸点化合物の分解反応が起こることもあり、かえって副産物が発生する場合がある。塩基の添加量が0.05重量%未満の場合は、副産物を分解する効果が小さい。
 アルカリ反応器D又はその上流の配管等に添加される塩基としては、特に限定されないが、例えば、アルカリ金属化合物が好ましい。アルカリ金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、(重)炭酸ナトリウム、(重)炭酸カリウムが挙げられる。また、前記塩基として、塩基性イオン交換樹脂を用いることもできる。塩基としては、最終的に得られる1,3-ブチレングリコール製品に含まれる副産物を低減する観点から、水酸化ナトリウム、水酸化カリウムが好ましい。塩基は固体状のものをそのまま加えてもよいが、操作上及び被処理液との接触を促進するため水溶液で添加することが好ましい。なお、上記の塩基は1種を単独で用いてもよいし、2種以上を同時に使用してもよい。
 アルカリ反応器Dでの反応温度は特に限定されないが、例えば、90~140℃が好ましく、より好ましくは110~130℃である。反応温度が90℃未満である場合は長い反応滞留時間が必要になるため、反応器容量が大きくなり不経済である。反応温度が140℃を超えると最終的に得られる1,3-ブチレングリコール製品の着色が増加することがある。反応滞留時間は、例えば、5~120分が好ましく、より好ましくは10~30分である。反応滞留時間が5分未満である場合は反応が不十分となり、最終的に得られる1,3-ブチレングリコール製品の品質が悪化する場合がある。反応滞留時間が120分を超えると大きな反応器が必要になり設備費が高くなるため、経済性の観点から不利である。
 アルカリ反応器Dを出た後、反応粗液流は、必要に応じて、脱アルカリ塔(例えば、薄膜蒸発器)Eに供給され、蒸発により塩基等が塔底部から除去される。一方、脱アルカリ塔Eの塔頂部からは脱塩基後の粗1,3-ブチレングリコール流(本開示の製造方法2では、1,3-ブチレングリコール製品となる)が得られる。脱アルカリ塔Eに用いられる蒸発器は、プロセス流体への熱履歴を抑制する目的で、滞留時間の短い自然流下型薄膜蒸器、強制攪拌型薄膜蒸発器が適当である。なお、脱アルカリ塔(例えば、薄膜蒸発器)Eの仕込み位置より上の空間部にデミスターを設置して塩基等の飛沫を除去してもよい。こうすることで、1,3-ブチレングリコール製品へ塩基等が混入することを防止できる。
 脱アルカリ塔Eに用いられる蒸発器において、例えば、塔頂部は絶対圧20kPa以下、好ましくは絶対圧0.5~10kPaの減圧下で蒸発が行われる。蒸発器の温度は、例えば、90~120℃が好ましい。塔頂部から留出した低沸点物を含む粗1,3-ブチレングリコール流が製品蒸留塔(製品塔)Fへ供給される。なお、前述のように、本開示の製造方法2では、脱アルカリ塔Eの塔頂部からの留出液(E-1に相当)を1,3-ブチレングリコール製品とすることができる。
 なお、アルカリ反応器D及び脱アルカリ塔Eは、脱塩塔Bと脱高沸塔Cの間、脱水塔Aと脱塩塔Bの間(この場合、脱塩塔は脱アルカリ塔を兼ねてもよい)、あるいは脱水塔Aの前に設置してもよい。また、アルカリ反応器D及び脱アルカリ塔Eを設けることなく、塩基を脱高沸塔仕込ラインに仕込んだり、脱水塔仕込ラインに仕込んだり、あるいは水添後の反応液に加える[その後、脱アルコール塔(脱低沸塔)に仕込む]ことで、アルカリ処理を行うこともできる。
 本開示の製造方法1では、製品蒸留工程で用いる製品塔Fにおいて、GC分析による1,3-ブチレングリコール濃度が例えば97.6面積%以上の仕込液を蒸留し、仕込み段より上から低沸点成分が濃縮された液を留出させ(図1の「X-6」に相当する)、仕込み段より下から1,3-ブチレングリコールを抜き取る(図1の「Y」に相当する)。抜き取られた1,3-ブチレングリコールは1,3-ブチレングリコール製品とすることができる。
 製品塔Fとしては、例えば、多孔板塔、泡鐘塔等を用いることができるが、スルーザー・パッキング、メラパック(共に住友重機械工業(株)の商品名)等を充填した圧損失の低い充填塔がより好ましい。これは、1,3-ブチレングリコールや微量に含まれる不純物は高温(例えば150℃以上)で熱分解し、着色成分である低沸点物が生成することから、蒸留温度を低くするためである。また、1,3-ブチレングリコールにかかる熱履歴(滞留時間)が長い場合も同様に影響が出るためである。従って、採用されるリボイラーはプロセス側流体の滞留時間が短いもの、例えば、自然流下型薄膜蒸発器、強制攪拌型薄膜蒸発器等の薄膜蒸発器が好ましい。
 製品塔Fの理論段数は、例えば1~100段、好ましくは2~90段、3~80段、4~70段、5~60段、8~50段又は10~40段であり、さらに好ましくは15~30段である。仕込液の供給位置は、塔頂部から下方に向かって、塔の高さの例えば10~90%、好ましくは20~80%、より好ましくは30~70%、さらに好ましくは40~60%の位置である。製品蒸留塔Fでの蒸留において、塔頂部の圧力(絶対圧)は、例えば20kPa以下、好ましくは0.1~10kPa、より好ましくは0.3~8kPa、さらに好ましくは0.5~5kPaである。
 図1では、製品塔Fへの仕込みは、脱アルカリ塔Eの塔頂ベーパーをコンデンサーE-1で凝縮した液をフィードしているが、脱アルカリ塔Eからの塔頂ベーパーを直接製品塔Fへフィードしてもよい。
 製品塔Fへの仕込液(1,3-ブチレングリコール仕込液)中の1,3-ブチレングリコールの濃度は97.6%以上であり、好ましくは97.8%以上、より好ましくは98%以上、さらに好ましくは98.2%以上(例えば、98.4%以上、98.6%以上又は98.8%以上)、特に好ましくは99%以上(例えば、99.1%以上、9.2%以上、99.3%以上、99.4%以上、99.5%以上、99.6%以上、99.7%以上、99.8%以上又は99.9%以上)である。
 製品塔Fへの仕込液中の1,3-ブチレングリコールの濃度は、例えば、脱水塔Aの蒸留条件を調整したり、脱水塔Aの前に脱アルコール塔(脱低沸塔)を設け、その蒸留条件を調整したり、脱高沸塔Cの蒸留条件を調整することにより向上させることができる。例えば、前記脱アルコール塔(脱低沸塔)、脱水塔A、及び/又は 脱高沸塔Cの還流比を上げたり、段数を増加させることにより、製品塔Fへの仕込液中の1,3-ブチレングリコールの純度を高くすることができる。
 なお、上記製品塔Fへの仕込液中の1,3-ブチレングリコールの濃度は、下記条件のガスクロマトグラフィー分析における、全ピーク面積に対する1,3-ブチレングリコールのピークの面積の割合(面積%)である。
(ガスクロマトグラフィー分析の条件)
 分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
 昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
 試料導入温度:250℃
 キャリアガス:ヘリウム
 カラムのガス流量:1mL/分
 検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
 本開示の製造方法1において、製品塔Fへの仕込液中のアセトアルデヒドの含有量は、500ppm以下であり、好ましくは205ppm以下(例えば200ppm以下)、より好ましくは150ppm以下、さらに好ましくは120ppm以下、100ppm以下、90ppm以下、80ppm以下、70ppm以下、60ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下又は10ppm以下であり、特に好ましくは5ppm以下であり、2ppm未満であってもよい。製品塔Fへの仕込液中のクロトンアルデヒドの含有量は、200ppm以下であり、好ましくは150ppm以下、より好ましくは130ppm以下、さらに好ましくは110ppm以下、100ppm以下、80ppm以下、70ppm以下、60ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下、10ppm以下、5ppm以下又は3ppm以下であり、特に好ましくは2ppm以下であり、1ppm未満であってもよい。製品塔Fへの仕込液中のアセトアルデヒド含有量及びクロトンアルデヒド含有量は、例えば、製品塔Fの上流に脱アルコール塔(脱低沸塔)や脱水塔を設け、該脱アルコール塔(脱低沸塔)や脱水塔の蒸留条件を調整することにより低減できる。例えば、前記脱アルコール塔(脱低沸塔)や脱水塔の還流比や段数、留出率を増加させることにより、製品塔Fへの仕込液中のアセトアルデヒド含有量及びクロトンアルデヒド含有量を低下させることができる。また、製品塔Fへの仕込液中のアセトアルデヒド含有量及びクロトンアルデヒド含有量は、アルカリ反応工程において、反応温度を上げたり、滞留時間を長くしたり、塩基の添加量を増やすことにより、製品塔Fへの仕込液中のアセトアルデヒド含有量及びクロトンアルデヒド含有量を低下させることができる。なお、製品塔Fへの仕込液中のアセトアルデヒド含有量及びクロトンアルデヒド含有量は、GC-MS分析(ガスマス分析)により定量できる。
 本開示の製造方法1において、製品塔Fへの仕込液中の水の含有量は、0.7重量%以下であり、好ましくは0.6重量%以下、0.5重量%以下、0.4重量%以下、0.3重量%以下又は0.2重量%以下であり、特に好ましくは0.1重量%以下である。製品塔Fへの仕込液中の水の含有量は、前記脱水塔Aの蒸留条件を調整することにより低減できる。例えば、前記脱水塔Aの還流比や段数、留出率を増加させることにより、製品塔Fへの仕込液中の水の濃度を低下させることができる。なお、製品塔Fへの仕込液中の水の含有量は、カールフィッシャー水分測定器で定量できる。
 製品塔Fへの仕込液中の低沸点成分(水を除く)の含有量は、例えば1.8%以下、好ましくは1.6%以下、より好ましくは1.4%以下、さらに好ましくは1.2%以下、1.1%以下、1%以下、0.9%以下、0.8%以下、0.7%以下、0.6%以下、0.5%以下、0.4%以下、0.3%以下又は0.2%以下であり、特に好ましくは、0.1%以下である。製品塔Fへの仕込液中の水を除く低沸点成分(「低沸点物」とも言う)の含有量は、上記条件のガスクロマトグラフィー分析における、全ピーク面積に対する1,3-ブチレングリコールのピークより保持時間の短いピークのトータルの面積の割合(面積%)である。前記製品塔Fへの仕込液中の低沸点成分(水を除く)の含有量は、例えば、製品塔Fの上流に脱アルコール塔(脱低沸塔)を設け、該脱アルコール塔(脱低沸塔)の蒸留条件を調整することにより低減できる。例えば、前記脱アルコール塔(脱低沸塔)の還流比や段数や留出率を増加させることにより、製品塔Fへの仕込液中の低沸点成分(水を除く)の濃度を低下させることができる。
 製品塔Fへの仕込液中の高沸点成分(水を除く)の含有量は、例えば1.8%以下、好ましくは1.6%以下、より好ましくは1.4%以下、さらに好ましくは1.2%以下、1.1%以下、1%以下、0.9%以下、0.8%以下、0.7%以下、0.6%以下、0.5%以下、0.4%以下、0.3%以下又は0.2%以下であり、特に好ましくは、0.1%以下である。製品塔Fへの仕込液中の水を除く高沸点成分(「高沸点物」又は「高沸物」とも言う)の含有量は、上記条件のガスクロマトグラフィー分析における、全ピーク面積に対する1,3-ブチレングリコールのピークより保持時間の長いピークのトータルの面積の割合(面積%)である。前記製品塔Fへの仕込液中の高沸点成分(水を除く)の含有量は、例えば、脱高沸塔の蒸留条件を調整することにより低減できる。例えば、前記脱高沸塔の還流比や段数や缶出率を増加させることにより、製品塔Fへの仕込液中の高沸点成分(水を除く)の濃度を低下させることができる。
 本開示の製造方法1では、製品塔Fにおける還流比[製品塔還流量/製品塔留出量(蒸留塔外への排出量)]は、1,3-ブチレングリコール製品の初留点を高くするという観点から、0.3以上、好ましくは0.4以上、より好ましくは0.5以上、1以上、2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上、10以上、20以上又は50以上であり、特に好ましくは400以上(例えば500以上)である。製品塔Fの還流比の上限は、エネルギーコストの点から、例えば700又は1000である。
 本開示の製造方法1において、製品塔Fの留出率は、1,3-ブチレングリコールの回収率を向上させる点から、例えば30重量%未満、好ましくは29重量%以下、より好ましくは28重量%以下、さらに好ましくは27重量%以下、26重量%以下、25重量%以下、24重量%以下、23重量%以下、22重量%以下、21重量%以下、20重量%以下、19重量%以下、18重量%以下、17重量%以下、16重量%以下、15重量%以下、12重量%以下、10重量%以下、8重量%以下、5重量%以下、3重量%以下、2重量%以下、1重量%以下、0.8重量%以下又は0.6重量%以下であり、特に好ましくは0.4重量%以下である。なお、上記留出率とは、製品塔Fへの仕込量に対する製品塔Fの仕込段より上(例えば、塔頂部)から蒸留塔外に抜き出される液の量(後述する前工程へリサイクルする場合は、リサイクル量も含む)の割合(重量%)をいう。
 製品塔Fの仕込み段より上から抜き取られた低沸成分が濃縮された液(以下、「留出液」と称する場合がある)の少なくとも一部を製品蒸留工程より前の工程にリサイクルさせてもよい(図1の製品塔Fの右側に示す破線の矢印)。上記留出液の少なくとも一部を製品蒸留工程より前の工程にリサイクルさせることにより、1,3-ブチレングリコールの回収率を向上させることができる。
 上記製品蒸留工程より前の工程としては、例えば、脱水工程、脱アルコール工程(脱低沸工程)などが挙げられる。なお、脱アルコール工程(脱低沸工程)は前記脱水工程の前に設けることが好ましい。
 上記留出液の製品蒸留工程より前の工程へのリサイクル量は、留出液の量の範囲内で適宜選択できる。上記留出液の製品蒸留工程より前の工程へのリサイクル量は、製品塔Fへの仕込量に対して、例えば30重量%未満である。また、上記留出液の製品蒸留工程より前の工程へのリサイクル量は、製品塔での1,3BG回収率及びプロセス全体を通しての収率を向上させるという観点から、製品塔Fへの仕込量に対して、例えば0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上、0.5重量%以上、1重量%以上、1.5重量%以上、2重量%以上、3重量%以上、4重量%以上、5重量%以上、7重量%以上又は10重量%以上であり、特に好ましくは20重量%以上である。
 本開示の製造方法1では、製品塔Fへの仕込液中のアセトアルデヒド、クロトンアルデヒド及び水の含有量を特定の値以下とし、製品塔Fにおける還流比を特定の範囲とすることにより、無色・無臭(又は、ほぼ無色・無臭)で、経時による着色や臭気の発生又は増大が起きにくく、しかも水を含む状態においても経時による酸濃度上昇を生じにくい、高純度の1,3-ブチレングリコールを工業的に効率よく製造することができる。
 製品塔Fにおける1,3BGの回収率は、例えば80%超、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは99%以上である。
 なお、本明細書において、製品塔Fにおける1,3BGの回収率は下記式により求めた値(%)である。
 {1-[留出液における1,3BGのGC面積%×(留出量(部)-リサイクル量(部))]/(仕込液における1,3BGのGC面積%×仕込量(部))}×100
 なお、上述したように、低沸点物、高沸点物は水により加水分解されて1,3BGが生成する場合がある一方、1,3BGの重合により高沸点物が生成する場合もあるので、製品塔における物質収支は、必ずしもとれない場合がある。
 なお、本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。また、各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。
 以下、実施例により本開示をさらに具体的に説明する。なお、実施例で用いている「部」は、特別の説明が無い限り「重量部」を意味する。ガスクロマトグラフィー分析(GC分析)、初留点の測定、水分の測定は後述の方法により行った。
[比較例5]
 図1を用いて1,3-ブチレングリコールの製造方法を説明する。
 原料として30重量%の水を含むアセトアルドール溶液100部(アセトアルドール69部と水29部の混合溶液、低沸、高沸不純物を合計2部含む、Na塩は0.1部未満)に対し、水素10部を液相水素還元用反応器に仕込み、触媒としてラネーニッケルを15部加え、該反応器を120℃、10MPa(ゲージ圧)に保持して液相水素還元を行った。反応後の液は触媒を分離した後、苛性ソーダで中和し、低沸不純物、水を含有する粗1,3-ブチレングリコール(1)を得た。
 なお、原料として用いた30重量%の水を含むアセトアルドール溶液は、アセトアルデヒドと水を、100重量ppmのNaOH存在下に30℃、滞留時間10時間で撹拌して、アセトアルデヒドを2量化させることにより製造した[アセトアルデヒド重合工程(アセトアルデヒドのアルドール縮合工程)]。
 粗1,3-ブチレングリコール(1)(図1中における「X-1」に相当)を脱水塔Aに仕込んだ。脱水塔Aへの仕込液中の1,3-ブチレングリコールの濃度は56重量%、水の濃度は40重量%、アセトアルデヒド(AD)の含有量は130ppm、クロトンアルデヒド(CR)の含有量は89ppm、後述のGC分析において1,3-ブチレングリコールよりも保持時間(リテンションタイム;RT)の短い不純物ピークの総面積率は3%、1,3-ブチレングリコールのピークよりも保持時間が長い不純物ピークの総面積率は1%であった。脱水塔Aでは、塔頂圧力10kPa(絶対圧)、還流比1の条件で蒸留し、塔頂部より水を抜き出し、仕込液量100部に対して43部(留出量)を系外に排出除去した(図1中における「X-2」に相当)。塔底部より、1,3-ブチレングリコールの濃度が96.9GC面積%、水が0.9重量%、後述のGC分析において1,3-ブチレングリコールよりも保持時間の短い不純物ピークの総面積率が0.8%、1,3-ブチレングリコールのピークよりも保持時間が長いピークの総面積率が2.3%、アセトアルデヒドの含有量が18ppm、クロトンアルデヒドの含有量が17ppmである粗1,3-ブチレングリコール(2)が得られた。
 次に、粗1,3-ブチレングリコール(2)を脱塩塔Bに仕込んだ。脱塩塔Bでは、塔底部より、塩、高沸点物、及び1,3-ブチレングリコールの一部が蒸発残分として排出された(図1中における「X-3」に相当)。蒸発残分の排出量は、仕込液量100部に対して5部であった。一方、塔頂部からは、1,3-ブチレングリコール、低沸点物、及び高沸点物の一部を含む粗1,3-ブチレングリコール(3)が得られた。
 次に、粗1,3-ブチレングリコール(3)を脱高沸塔Cに仕込んだ。脱高沸塔Cでは、塔頂圧力5kPa(絶対圧)、還流比0.05の条件で蒸留し、塔底部から、高沸点物及び1,3-ブチレングリコールの一部が排出された(図1中における「X-4」に相当)。塔底排出量は、仕込液量100部に対して20部であった。一方、塔頂部からは、低沸点物を含む粗1,3-ブチレングリコール(4)が留出液として80部得られた。
 次に、粗1,3-ブチレングリコール(4)をアルカリ反応器Dに仕込んだ。この際、仕込液に対する苛性ソーダの濃度が0.1重量%となるように、20重量%苛性ソーダ水溶液を添加した。アルカリ反応器Dでの反応温度を120℃に維持し、滞留時間20分で反応を行った。
 次に、アルカリ反応器Dから出た反応粗液を脱アルカリ塔Eに仕込んだ。脱アルカリ塔Eでは、塔底部から、苛性ソーダ、高沸点物、及び1,3-ブチレングリコールの一部が排出された(図1中における「X-5」に相当)。塔底排出量は、仕込液量100部に対して10部であった。一方、塔頂部からは、1,3-ブチレングリコール及び低沸点物を含む粗1,3-ブチレングリコール(5)が90部得られた。1,3-ブチレングリコール及び低沸点物を含む粗1,3-ブチレングリコール(5)について、水分の測定、GC分析及びGC-MS分析を行った結果、水分濃度は1重量%、1,3-ブチレングリコールの面積率は99%、1,3-ブチレングリコールよりも保持時間の短い不純物ピークの総面積率は0.4%、1,3-ブチレングリコールよりも保持時間の長い不純物ピークの総面積率は0.6%、アセトアルデヒドの含有量は20ppm、クロトンアルデヒドの含有量は9ppmであった。
 次に、粗1,3-ブチレングリコール(5)を製品塔Fへ仕込んだ。製品塔Fでは、仕込液量100部に対して、塔頂部から低沸点物及び1,3-ブチレングリコールの一部が10部留出され(図1中における「X-6」に相当)、全量系外に排出した。その際の還流比(還流量/留出量)を0.5で運転し、塔底部からは1,3-ブチレングリコール製品が90部得られた(留出量は10部)(図1中における「Y」に相当)。
 得られた1,3-ブチレングリコール製品について、初留点の測定、水分の測定、GC分析及びGC-MS分析を行った結果、初留点は203.3℃、乾点は209℃、水分濃度は0.2重量%、1,3-ブチレングリコールの面積率は99.2%、1,3-ブチレングリコールよりも保持時間の短い不純物ピークの総面積率は0.08%、1,3-ブチレングリコールよりも保持時間の長い不純物ピークの総面積率は0.7%、アセトアルデヒドの含有量は1.5ppm、クロトンアルデヒドの含有量は0.9ppmであった。また、過マンガン酸カリウム試験値は35分であった。製品塔Fでの1,3-ブチレングリコール回収率は90%であった。
 [実施例1]
 脱水塔Aの還流比を50に変更した以外は、比較例5と同様の操作を行った。製品塔Fの塔底部から1,3-ブチレングリコール製品を得た。なお、脱水塔Aの条件変更により、脱水塔缶出組成が変化し、脱高沸塔C、製品塔Fの仕込液組成がそれぞれ変化した結果、製品の品質が変化した。
 得られた1,3-ブチレングリコール製品について、初留点の測定、水分の測定、GC分析及びGC-MS分析を行った結果、初留点は206.7℃、乾点は208.9℃、水分濃度は0.1重量%、1,3-ブチレングリコールの面積率は99.3%、1,3-ブチレングリコールよりも保持時間の短い不純物ピークの総面積率は0.05%、1,3-ブチレングリコールよりも保持時間の長い不純物ピークの総面積率は0.7%、アセトアルデヒドの含有量は0.7ppm、クロトンアルデヒドの含有量は0.7ppmであった。また、過マンガン酸カリウム試験値は45分であった。製品塔Fでの1,3-ブチレングリコール回収率は90%であった。
 [実施例2~26]
 表1及び表2に示す条件により脱水塔A、脱高沸塔C及び製品塔Fの運転を行った。なお、実施例3~21、23~26では、製品塔Fの留出液を水素還元用反応器に全量リサイクルした。実施例22では、製品塔Fは用いず、脱アルカリ塔E(仕込み位置より上の空間部にデミスターを設置)の塔頂留出液を1,3-ブチレングリコール製品とした。その際、アルカリ反応器Dでの苛性ソーダ水溶液の濃度を1.5倍とし、苛性ソーダ水溶液の添加量を実施例1の半分とすることで、アルカリ処理による水分上昇を極力避けた。なお、苛性ソーダ水溶液のアルカリ濃度が高すぎると、結晶が析出するため、40℃以上に加熱するのが好ましい。表2において、実施例22の「製品塔F缶出」の欄には、脱アルカリ塔Eの塔頂留出液の組成及び物性が記載されている。なお、実施例15では、脱高沸塔缶出液10部の内、8部を水添工程にリサイクルし、2部を系外に排出した。また、実施例24では、水素添加反応の圧力を7MPaG(ゲージ圧)に下げた。そのため、脱水塔仕込液中のアセトアルデヒド含有量及びクロトンアルデヒド含有量が高い。実施例25では、脱水塔の還流比を0.3に下げ、製品塔仕込液中の1,3ーブチレングリコールの純度を低下させ、製品塔の還流比を20に上昇させた。実施例26では、水素添加反応の圧力を40MPaG(ゲージ圧)に上げた(残りの条件は実施例17と同様である)。
[比較例1]
 脱水塔Aの還流比を0.5、留出量を42部に変更し、脱高沸塔Cの還流比を0.02、製品塔Fの還流比を0.05、留出量を20部に変更した以外は、比較例5と同様の方法により、製品塔Fの塔底部から1,3-ブチレングリコール製品80部を得た。得られた1,3-ブチレングリコール製品の初留点は193.2℃、乾点は210.3℃、水分濃度は0.6重量%、1,3-ブチレングリコールの面積率は98.3%、1,3-ブチレングリコールよりも保持時間の短い不純物ピークの総面積率は0.2%、1,3-ブチレングリコールよりも保持時間の長い不純物ピークの総面積率は1.5%、アセトアルデヒドの含有量は5ppm、クロトンアルデヒドの含有量は4ppmであった。また、過マンガン酸カリウム試験値は0分であった。製品塔Fでの1,3-ブチレングリコール回収率は80%であった。
[比較例2]
 脱水塔Aの仕込組成を変更し、還流比を0.5、留出量を32部に変更し、脱高沸塔Cの還流比を0.02、製品塔Fの還流比を0.05、留出量を20部に変更した以外は、比較例5と同様の方法により、製品塔Fの塔底部から1,3-ブチレングリコール製品80部を得た。得られた1,3-ブチレングリコール製品の初留点は199.0℃、乾点は210.1℃、水分濃度は0.4重量%、1,3-ブチレングリコールの面積率は98.5%、1,3-ブチレングリコールよりも保持時間の短い不純物ピークの総面積率は0.1%、1,3-ブチレングリコールよりも保持時間の長い不純物ピークの総面積率は1.4%、アセトアルデヒドの含有量は4ppm、クロトンアルデヒドの含有量は2ppmであった。また、過マンガン酸カリウム試験値は5分であった。製品塔Fでの1,3-ブチレングリコール回収率は80%であった。
[比較例3]
 脱水塔Aの仕込組成を変更し、還流比を0.5、留出量を32部に変更し、脱高沸塔Cの還流比を0.02、製品塔Fの還流比を0.05、留出量を30部に変更した以外は、比較例5と同様の方法により、製品塔Fの塔底部から1,3-ブチレングリコール製品70部を得た。得られた1,3-ブチレングリコール製品の初留点は203.0℃、乾点は210.2℃、水分濃度は0.2重量%、1,3-ブチレングリコールの面積率は98.4%、1,3-ブチレングリコールよりも保持時間の短い不純物ピークの総面積率は0.1%、1,3-ブチレングリコールよりも保持時間の長い不純物ピークの総面積率は1.5%、アセトアルデヒドの含有量は2ppm、クロトンアルデヒドの含有量は1.3ppmであった。また、過マンガン酸カリウム試験値は30分であった。製品塔Fでの1,3-ブチレングリコール回収率は70%であった。
[比較例4]
 脱水塔Aの仕込組成を変更し、留出量を23部に変更し、脱高沸塔Cの還流比を0.02、製品塔Fの還流比を0.1、留出量を20部に変更した以外は、比較例5と同様の方法により、製品塔Fの塔底部から1,3-ブチレングリコール製品80部を得た。得られた1,3-ブチレングリコール製品の初留点は203.1℃、乾点は209.5℃、水分濃度は0.2重量%、1,3-ブチレングリコールの面積率は98.8%、1,3-ブチレングリコールよりも保持時間の短い不純物ピークの総面積率は0.1%、1,3-ブチレングリコールよりも保持時間の長い不純物ピークの総面積率は1.1%、アセトアルデヒドの含有量は2ppm、クロトンアルデヒドの含有量は1.3ppmであった。また、過マンガン酸カリウム試験値は30分であった。製品塔Fでの1,3-ブチレングリコール回収率は80%であった。
[ガスクロマトグラフィー分析]
 以下の条件で、対象となる1,3-ブチレングリコール製品のガスクロマトグラフィー分析を行った。比較例5における1,3-ブチレングリコール製品のガスクロマトグラフィー分析のチャートを図2に示す。実施例11における1,3-ブチレングリコール製品のガスクロマトグラフィー分析のチャートを図3に示す。また、比較例2における1,3-ブチレングリコール製品のガスクロマトグラフィー分析のチャートを図4に示す。
(ガスクロマトグラフィー分析の条件)
 分析装置:島津 GC2010
 分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)(「Agilent J&W GC カラム - DB-1」、アジレント・テクノロジー株式会社製)
 昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
 試料導入及び温度:スプリット試料導入法、250℃
 スプリットのガス流量及びキャリアガス:23mL/分、ヘリウム
 カラムのガス流量及びキャリアガス:1mL/分、ヘリウム
 検出器及び温度:水素炎イオン化検出器(FID)、280℃
 注入試料:0.2μLの80重量%1,3-ブチレングリコール製品水溶液
[初留点及び乾点の測定]
 JIS K2254「石油製品-蒸留試験方法」の常圧蒸留試験方法に規定される試験方法に従って行った。
[水分の測定]
 カールフィッシャー水分測定装置により行った。
[GC-MS分析]
 分析装置: Agilent 6890A-GC/5973A-MSD
 分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
 昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
 試料導入温度:250℃
 キャリアガス:ヘリウム
 カラムのガス流量:1mL/分
 イオン源温度: EI 230℃、CI 250℃
 Qポール温度:150℃
 サンプル: そのまま分析に供する
[過マンガン酸カリウム試験]
 本明細書において、過マンガン酸カリウム試験値(PMT)は、JIS K1351(1993)の目視比色法の手順に準じて測定した値である。
[経時着色試験1(着色試験1)]
 対象となる1,3-ブチレングリコール製品を広口瓶に入れて密栓し、180℃に設定した恒温槽に3時間保持した。色差計(日本電色工業社製「ZE6000」)を用い、光路長10mmの石英セルを使用して、180℃で3時間保持後の1,3-ブチレングリコール製品のハーゼン色数(APHA)を測定した。また、試験前の1,3-ブチレングリコール製品のハーゼン色数(APHA)も同様に測定した。さらに、経時着色試験1前後の1,3-ブチレングリコール製品中の各不純物含有量を前記GC-MS分析により測定した。また、経時着色試験1前後の1,3-ブチレングリコール製品の初留点、乾点、過マンガン酸カリウム試験値、臭気及び酸分を測定した。
[経時着色試験2(着色試験2)]
 対象となる1,3-ブチレングリコール製品を広口瓶に入れて密栓し、100℃に設定した恒温槽に75日保持した。色差計(日本電色工業社製「ZE6000」)を用い、光路長10mmの石英セルを使用して、100℃で75日保持後の1,3-ブチレングリコール製品のハーゼン色数(APHA)を測定した。
[水分添加加熱試験(酸濃度分析)]
 対象となる1,3-ブチレングリコール製品を90重量%の水溶液に調整し、100℃で1週間保持した後のものをサンプルとして、以下の手法により酸濃度分析を行った。また、試験前の1,3-ブチレングリコール製品についても、以下の手法により酸濃度分析を行った。
(酸濃度分析)
 電位差自動滴定装置(京都電子工業製AT-510)を用いて電位差滴定法によって測定した。サンプル50gを蒸留水50gで希釈し、撹拌しながら0.01Nの水酸化ナトリウム水溶液を自動終点停止するまでビュレットから滴定した。次いで、下記式に基づいて酢酸換算の酸濃度(酸分)を算出した。
 酸濃度(重量%)=滴定量(ml)×F×A×(100/サンプル量(g))
F:1.0(0.01N水酸化ナトリウム水溶液のファクター)
A:0.0006(1mlの水酸化ナトリウム水溶液に相当する酢酸のグラム数)
[臭気試験(人による)]
 対象となる1,3-ブチレングリコール製品(100ml)を広口試薬瓶(内容積:100ml)に入れ、密栓し室温にてしばらく(約120分)静置した後、栓を開け、300ml広口ビーカーに移し、その中に純水を100ml入れて合計200mlとし、手で揺らしてかき混ぜた後、速やかに臭いを嗅ぎ、以下の評価にて点数を付けた。また、上記経時着色試験1を行った後のサンプル、及び上記水分添加加熱試験を行った後のサンプルについても同様の臭気試験を行った。
 1:臭いを感じない
 2:僅かに臭気がある
 3:明らかに臭いを感じる
[臭気試験(臭いセンサーによる)]
 対象となる1,3-ブチレングリコール製品に対し、WO2019/035476に記載された、臭気と相関のある蛍光強度変化率(蛍光輝度変化量)を測定した。すなわち、臭気測定装置(臭いセンサー;株式会社香味発酵製)を用いて蛍光輝度変化量を測定し、得られた比較例1の蛍光輝度変化量を臭気ランク4として、以下の通り6つのランク(0、1、2、3、4又は5)に臭気を評価した。また、上記経時着色試験1を行った後のサンプルについても同様の臭気試験を行った。

   蛍光輝度変化量     臭気ランク
   3.4未満         0
  3.4以上3.5未満     1
  3.5以上3.7未満     2
  3.7以上3.9未満     3
  3.9以上4.1未満     4
   4.1以上         5  
 なお、上記の経時着色試験1、2、及び水分添加加熱試験は、1,3BG製品の長期保存を想定した加速試験である。
[結果の考察]
 上記比較例と実施例の結果を表1、表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 1,3BG製造プロセスにおいて、多くの不純物が生成するため、1,3BG製品中には、アルドール縮合の条件、水素添加反応の条件や、その後の精製条件によっても異なるが、一般に、前記表3に示される不純物が含まれている。1,3BG製品に含まれている例えばアセトアルドールやクロトンアルデヒド、各種カルボニル化合物、アルコールは、長期保存の際に酸素と反応し、過酸化物を生成する。特に、アルデヒド類は、ケトン、アルコール、炭化水素よりも比較的容易に過酸化物を生成する。不純物をもとに生成した過酸化物は、製品1,3BGと反応し、ツリーの最上位(1,3BG)から、酸化を促進させる(前記不純物生成経路図参照)。なお、アセトアルドールはアセトアルデヒドの二量化で主に生成している。よって、反応系や精製系において一連の不純物を低減させることで、長期保存の際の不純物から生成する過酸化物の濃度を抑制し、もって1,3BGの酸化による1-ヒドロキシ3-ブタノン、アセトアルドール、及びそれら両方の化合物から生成する更なる不純物を経由する多くの不純物の生成反応を抑制することができる。例えば、前記表3に示される不純物のうち、酸素存在下での長期保存の際、酸素と反応することで生成する物質は、1-ヒドロキシ-3-ブタノン、アセトアルドール、2-ブタノール、式(8)で表される化合物、式(9)で表される化合物、式(10)で表される化合物などであり、他の不純物は、1-ヒドロキシ-3-ブタノン又はアセトアルドールと1,3BG及び他の不純物が存在し、少量の水が存在すれば生成する。
 比較例及び実施例の結果より、1,3BG製品中のアセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノン、2-ブタノール、式(1)で表される化合物、式(2)で表される化合物、式(3)で表される化合物、式(4)で表される化合物、式(5)で表される化合物、式(6)で表される化合物、式(7)で表される化合物、式(8)で表される化合物、式(9)で表される化合物及び式(10)で表される化合物の含有量の総和(以下、「前記19種の不純物の総含有量」と称する場合がある)が少ないほど、1,3BG製品の着色度(APHA)、酸分、臭気(人による臭気及び臭いセンサーによる臭気)が低く、初留点、乾点、PMTも優れている。しかも、前記19種の不純物の総含有量が少ないほど、長期保存を想定した特定条件下での加熱試験後における着色度(APHA)、酸分、臭気(人による臭気及び臭いセンサーによる臭気)も低く、初留点、乾点及びPMTのいずれも優れていることが分かる。
 より具体的には、前記19種の不純物の総含有量が65ppm未満である実施例6、実施例17及び実施例26で得られた1,3BG製品は、APHAが2以下、酸分が3ppm以下、人による臭気評価及び臭いセンサーによる臭気評価が共に1以下であり、初留点が高く、乾点が低く、PMTも長く、高品質である。また、これらの1,3BG製品は、長期保存を想定した加熱試験を経た後においても、APHAは13以下、酸分は3ppm以下、人による臭気評価及び臭いセンサーによる臭気評価は共に1以下であり、初留点、乾点、PMTもほとんど変化しない。特に、これらの実施例の1,3BG製品は、製造直後は無臭であり、加熱試験後も臭気の発生はない。また、これらの1,3BG製品は、水存在下での加熱試験を経ても、酸分及び臭気は変化しない。
 これに対して、前記19種の不純物の総含有量が65ppm以上である比較例1、比較例2及び比較例5で得られた1,3BG製品は、APHAが4以上、酸分が6ppm以上であり、初留点は低く、乾点は高く、PMTは短く、品質に劣る。また、これらの比較例の1,3BG製品は、長期保存を想定した加熱試験を経ると、APHAは25以上、酸分は8ppm以上となる。また、比較例5の1,3BG製品では、加熱試験前において、人による臭気評価では1であるものの、臭いセンサーによる臭気評価では2であり、実施例と比較して臭気に差が見られる。また、比較例5の1,3BG製品では、加熱試験後においては、人による臭気評価が2、臭いセンサーによる臭気評価が3と、いずれも悪化し、実施例との臭気の差がよりはっきりする。また、これらの比較例の1,3BG製品は、水存在下での加熱試験を経ると、酸分及び臭気はさらに悪化する。
 以上のまとめとして、本開示の構成及びそのバリエーションを以下に付記する。
[1]1,3-ブチレングリコールを含む1,3-ブチレングリコール製品であって、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノン、2-ブタノール、下記式(1)で表される化合物、下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物、下記式(5)で表される化合物、下記式(6)で表される化合物、下記式(7)で表される化合物、下記式(8)で表される化合物、下記式(9)で表される化合物及び下記式(10)で表される化合物の含有量の総和が65ppm未満(又は、50ppm以下、45ppm以下、40ppm以下、35ppm以下、30ppm以下、25ppm以下、20ppm以下、15ppm以下、13ppm以下、10ppm以下、8ppm以下、5ppm以下、4ppm以下、3ppm以下若しくは2ppm以下)である1,3-ブチレングリコール製品。
Figure JPOXMLDOC01-appb-C000008
[2]前記式(1)~(7)で表される化合物の含有量の総和が、28ppm未満(又は、25ppm以下、20ppm以下、15ppm以下、12ppm以下、10ppm以下、8ppm以下、6ppm以下、4ppm以下、2ppm以下若しくは1.4ppm以下)である、前記[1]記載の1,3-ブチレングリコール製品。
[3]前記式(8)~(10)で表される化合物の含有量の総和が、6ppm未満(又は、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下若しくは0.6ppm以下)である、前記[1]又は[2]記載の1,3-ブチレングリコール製品。
[4]前記式(1)~(10)で表される化合物の含有量の総和が、34ppm未満(又は、30ppm以下、25ppm以下、20ppm以下、18ppm以下、16ppm以下、14ppm以下、12ppm以下、10ppm以下、8ppm以下、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下若しくは2ppm以下)である、前記[1]~[3]のいずれか1つに記載の1,3-ブチレングリコール製品。
[5]アセトアルデヒドの含有量が、1.6ppm未満(又は、1.5ppm以下、1.4ppm以下、1.2ppm以下、1.0ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下若しくは0.2ppm以下)、及び/又は、クロトンアルデヒドの含有量が、1ppm未満(又は、0.8ppm以下、0.6ppm以下、0.4ppm以下若しくは0.2ppm以下)、及び/又は、メチルビニルケトンの含有量が、6ppm未満(又は、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下若しくは0.2ppm以下)、及び/又は、アセトンの含有量が、5ppm未満(又は、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下若しくは0.2ppm以下)、及び/又は、ホルムアルデヒドの含有量が、1ppm未満(又は、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、ブチルアルデヒドの含有量が、5ppm未満(又は、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下若しくは0.2ppm以下)、及び/又は、アセトアルドールの含有量が、6ppm未満(又は、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.4ppm以下若しくは0.2ppm以下)、及び/又は、1-ヒドロキシ-3-ブタノンの含有量が、6ppm未満(又は、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下又は0.2ppm以下)、及び/又は、2-ブタノールの含有量が、0.3ppm以下(又は、0.2ppm未満)、及び/又は、式(1)で表される化合物の含有量が、2ppm未満(又は、1.8ppm以下、1.6ppm以下、1.4ppm以下、1.2ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下若しくは0.2ppm以下)、及び/又は、式(2)で表される化合物の含有量が、1ppm未満(又は、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、式(3)で表される化合物の含有量が、4ppm未満(又は、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下若しくは0.2ppm以下)、及び/又は、式(4)で表される化合物の含有量が、3ppm未満(又は、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下若しくは0.2ppm以下)、及び/又は、式(5)で表される化合物の含有量が、6ppm未満(又は、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下若しくは0.2ppm以下)、及び/又は、式(6)で表される化合物の含有量が、5ppm未満(又は、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下若しくは0.2ppm以下)、及び/又は、式(7)で表される化合物の含有量が、7ppm未満(又は、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下若しくは0.2ppm以下)、及び/又は、式(8)で表される化合物の含有量が、1ppm未満(又は、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、式(9)で表される化合物の含有量が、4ppm未満(又は、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下若しくは0.2ppm以下)、及び/又は、式(10)で表される化合物の含有量が、1ppm未満(又は、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)である、前記[1]~[4]のいずれか1つに記載の1,3-ブチレングリコール製品。
[6]アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール及び1-ヒドロキシ-3-ブタノンの総含有量が、31ppm以下(又は、30ppm以下、25ppm以下、20ppm以下、18ppm以下、16ppm以下、14ppm以下、13ppm以下、12ppm以下、11pm以下、10ppm以下、9ppm以下、8ppm以下、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下若しくは1.5ppm以下)である、前記[1]~[5]のいずれか1つに記載の1,3-ブチレングリコール製品。
[7]アセトアルドール及び1-ヒドロキシ-3-ブタノンの総含有量が、12ppm未満(又は、10ppm以下、9ppm以下、8ppm以下、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.5ppm以下若しくは0.4ppm以下)である、前記[1]~[6]のいずれか1つに記載の1,3-ブチレングリコール製品。
[8]酸濃度(酢酸換算)が6ppm未満(又は、5ppm以下、4ppm以下、3ppm以下、2ppm以下若しくは1ppm以下)である、前記[1]~[7]のいずれか1つに記載の1,3-ブチレングリコール製品。
[9]当該1,3-ブチレングリコール製品の90重量%水溶液を100℃で1週間保持した後の酸濃度(酢酸換算)が、9ppm未満(又は、8ppm以下、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下若しくは1ppm以下)である、前記[1]~[8]のいずれか1つに記載の1,3-ブチレングリコール製品。
[10]当該1,3-ブチレングリコール製品の90重量%水溶液の酸濃度(酢酸換算)について、100℃で1週間保持した後の酸濃度の保持前の酸濃度に対する比率[(100℃1週間保持後の酸濃度)/(保持前の酸濃度)×100(%)]が、150%以下(又は、120%以下若しくは110%以下)である、前記[1]~[9]のいずれか1つに記載の1,3-ブチレングリコール製品。
[11]APHA(ハーゼン色数)が、3以下(又は、2以下若しくは1以下)である、前記[1]~[10]のいずれか1つに記載の1,3-ブチレングリコール製品。
[12]空気雰囲気下、100℃で75日保持した後のAPHAが、11以下(又は、10以下、8以下、7以下、6以下、5以下、4以下、3以下若しくは2以下)である、前記[1]~[11]のいずれか1つに記載の1,3-ブチレングリコール製品。
[13]当該1,3-ブチレングリコール製品のAPHAについて、100℃で75日間保持した後のAPHAの保持前のAPHAに対する比率[(100℃75日間保持後のAPHA)/(保持前のAPHA)]が、3未満(又は、2.5以下、2以下、1.5以下若しくは1.2以下)である、前記[1]~[12]のいずれか1つに記載の1,3-ブチレングリコール製品。
[14]初留点が204℃以上(又は、204.5℃以上、205℃以上、206℃以上、207℃以上若しくは208℃以上)である、前記[1]~[13]のいずれか1つに記載の1,3-ブチレングリコール製品。
[15]乾点が209℃未満(又は、208.8℃以下)である、前記[1]~[14]のいずれか1つに記載の1,3-ブチレングリコール製品。
[16]過マンガン酸カリウム試験値(PMT)が36分以上(又は、38分以上、40分以上、50分以上若しくは60分以上)である、前記[1]~[15]のいずれか1つに記載の1,3-ブチレングリコール製品。
[17]1,3-ブチレングリコールの含有量(下記GC分析条件におけるGC面積率)が、99.3%以上(又は、99.4%以上、99.5%以上、99.6%以上、99.7%以上若しくは99.8%以上)である、前記[1]~[16]のいずれか1つに記載の1,3-ブチレングリコール製品。
 <ガスクロマトグラフィー(GC)分析の条件>
 分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
 昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
 試料導入温度:250℃
 キャリアガス:ヘリウム
 カラムのガス流量:1mL/分
 検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
[18]前記GC分析において、1,3-ブチレングリコールのピークよりも保持時間が短いピークの総面積率が、0.09%以下(又は、0.08%以下、0.07%以下、0.04%以下、0.03%以下、0.02%以下、0.01%以下、0.007%以下、0.005%以下若しくは0.003%以下)である、前記[1]~[17]のいずれか1つに記載の1,3-ブチレングリコール製品。
[19]前記GC分析において、1,3-ブチレングリコールのピークよりも保持時間が長いピークの総面積率が、0.7%以下(又は、0.6%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下若しくは0.1%以下)である、前記[1]~[18]のいずれか1つに記載の1,3-ブチレングリコール製品。
[20]水の含有量が、0.2重量%以下(又は、0.15重量%以下、0.1重量%以下、0.07重量%以下、0.05重量%以下、0.03重量%以下、0.02重量%以下、0.01重量%以下若しくは0.005重量%以下)である、前記[1]~[19]のいずれか1つに記載の1,3-ブチレングリコール製品。
[21]空気雰囲気下、180℃で3時間保持した後の、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノン、2-ブタノール及び式(1)~(10)で表される化合物の含有量の総和が、70ppm未満(又は、65ppm以下、60ppm以下、55ppm以下、50ppm以下、45ppm以下、40ppm以下、35ppm以下、30ppm以下、25ppm以下、20ppm以下、18ppm以下、15ppm以下、13ppm以下、10ppm以下、8ppm以下、5ppm以下、4ppm以下若しくは3.5ppm以下)である、前記[1]~[20]のいずれか1つに記載の1,3-ブチレングリコール製品。
[22]空気雰囲気下、180℃で3時間保持した後の、前記式(1)~(7)で表される化合物の含有量の総和が、40ppm未満(又は、35ppm以下、30ppm以下、25ppm以下、20ppm以下、15ppm以下、12ppm以下、10ppm以下、8ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下若しくは1.4ppm以下)である、前記[1]~[21]のいずれか1つに記載の1,3-ブチレングリコール製品。
[23]空気雰囲気下、180℃で3時間保持した後の、前記式(8)~(10)で表される化合物の含有量の総和が、18ppm未満(又は、16ppm以下、14ppm以下、13ppm以下、12ppm以下、11pm以下、10ppm以下、9ppm以下、8ppm以下、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下若しくは0.6ppm以下)である、前記[1]~[22]のいずれか1つに記載の1,3-ブチレングリコール製品。
[24]空気雰囲気下、180℃で3時間保持した後の、前記式(1)~(10)で表される化合物の含有量の総和が、59ppm未満(又は、55ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下、18ppm以下、16ppm以下、14ppm以下、12ppm以下、10ppm以下、8ppm以下、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下若しくは2ppm以下)である、前記[1]~[23]のいずれか1つに記載の1,3-ブチレングリコール製品。
[25]空気雰囲気下、180℃で3時間保持した後において、アセトアルデヒドの含有量が、1ppm未満(又は、0.9ppm以下、0.8ppm以下、0.7ppm以下、0.6ppm以下、0.5ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、クロトンアルデヒドの含有量が、0.5ppm未満(又は、0.4ppm以下、0.3ppm以下、0.2ppm以下若しくは0.1ppm以下)、及び/又は、メチルビニルケトンの含有量が、4ppm未満(又は、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、アセトンの含有量が、2ppm未満(又は、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、ホルムアルデヒドの含有量が、0.5ppm未満(又は、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、ブチルアルデヒドの含有量が、3ppm未満(又は、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm、0.3ppm以下若しくは0.2ppm以下)、及び/又は、アセトアルドールの含有量が、0.5ppm未満(又は、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、1-ヒドロキシ-3-ブタノンの含有量が、0.5ppm未満(又は、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、2-ブタノールの含有量が、0.2ppm未満、及び/又は、式(1)で表される化合物の含有量が、6ppm未満(又は、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、式(2)で表される化合物の含有量が、5ppm未満(又は、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、式(3)で表される化合物の含有量が、4ppm未満(又は、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、式(4)で表される化合物の含有量が、5ppm未満(又は、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、式(5)で表される化合物の含有量が、7ppm未満(又は、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、式(6)で表される化合物の含有量が、6ppm未満(又は、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、式(7)で表される化合物の含有量が、8ppm未満(又は、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、式(8)で表される化合物の含有量が、6ppm未満(又は、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、式(9)で表される化合物の含有量が、5ppm未満(又は、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)、及び/又は、式(10)で表される化合物の含有量が、7ppm未満(又は、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.8ppm以下、0.6ppm以下、0.4ppm以下、0.3ppm以下若しくは0.2ppm以下)である、前記[1]~[24]のいずれか1つに記載の1,3-ブチレングリコール製品。
[26]空気雰囲気下、180℃で3時間保持した後の、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール及び1-ヒドロキシ-3-ブタノンの含有量の総和が、12ppm未満(又は、10ppm以下、8ppm以下、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下若しくは1.6ppm以下)である、前記[1]~[25]のいずれか1つに記載の1,3-ブチレングリコール製品。
[27]空気雰囲気下、180℃で3時間保持した後の、アセトアルドール及び1-ヒドロキシ-3-ブタノンの含有量の総和が、1ppm未満(又は、0.9ppm以下、0.8ppm以下、0.7ppm以下、0.6ppm以下、0.5ppm以下若しくは0、4ppm以下)である、前記[1]~[26]のいずれか1つに記載の1,3-ブチレングリコール製品。
[28]空気雰囲気下、180℃で3時間保持した後のAPHAが、25未満(又は、20以下、18以下、15以下、14以下、13以下、12以下、11以下、10以下、9以下、8以下若しくは7以下)である、前記[1]~[27]のいずれか1つに記載の1,3-ブチレングリコール製品。
[29]空気雰囲気下、180℃で3時間保持した後の初留点が204℃以上(又は、205℃以上、206℃以上若しくは207℃以上)である、前記[1]~[28]のいずれか1つに記載の1,3-ブチレングリコール製品。
[30]空気雰囲気下、180℃で3時間保持した後の乾点が209℃未満である、前記[1]~[29]のいずれか1つに記載の1,3-ブチレングリコール製品。
[31]空気雰囲気下、180℃で3時間保持した後の過マンガン酸カリウム試験値(PMT)が30分超(又は、32分以上、35分以上、40分以上、50分以上若しくは60分以上)である、前記[1]~[30]のいずれか1つに記載の1,3-ブチレングリコール製品。
[32]空気雰囲気下、180℃で3時間保持した後の酸濃度(酢酸換算)が、8ppm未満(又は、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下若しくは1ppm以下)である、前記[1]~[31]のいずれか1つに記載の1,3-ブチレングリコール製品。
[33]前記[1]~[32]のいずれか1つに記載の1,3-ブチレングリコール製品を含む保湿剤。
[34]前記[1]~[32]のいずれか1つに記載の1,3-ブチレングリコール製品の含有量が10重量%以上(又は、30重量%以上、50重量%以上、80重量%以上、若しくは90重量%以上)である前記[33]記載の保湿剤。
[35]前記[33]又は[34]記載の保湿剤を含む化粧料。
[36]前記[1]~[32]のいずれか1つに記載の1,3-ブチレングリコール製品の含有量が0.01~40重量%(又は、0.1~30重量%、0.2~20重量%、0.5~15重量%、若しくは1~10重量%)である前記[35]記載の化粧料。
[37]皮膚化粧料、頭髪化粧料、日焼け止め化粧料又はメイクアップ化粧料である前記[35]又は[36]記載の化粧料。
[38]1,3-ブチレングリコールを含む反応粗液から、前記[1]~[32]のいずれか1つに記載の1,3-ブチレングリコール製品を得る1,3-ブチレングリコールの製造方法であって、
 蒸留により水を除去する脱水工程、蒸留により高沸点成分を除去する脱高沸工程、及び精製1,3-ブチレングリコール(1,3-ブチレングリコール製品)を得るための製品蒸留工程を有しており、
 前記製品蒸留工程で用いる製品塔において、アセトアルデヒドの含有量が500ppm以下(又は、205ppm以下、200ppm以下、150ppm以下、120ppm以下、100ppm以下、90ppm以下、80ppm以下、70ppm以下、60ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下、10ppm以下、5ppm以下、若しくは2ppm未満)、クロトンアルデヒドの含有量が200ppm以下(又は、150ppm以下、130ppm以下、110ppm以下、100ppm以下、80ppm以下、70ppm以下、60ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下、10ppm以下、5ppm以下、3ppm以下、2ppm以下、若しくは1ppm未満)、水の含有量が0.7重量%以下(又は、0.6重量%以下、0.5重量%以下、0.4重量%以下、0.3重量%以下、0.2重量%以下、若しくは0.1重量%以下)、下記条件のガスクロマトグラフィー分析による1,3-ブチレングリコール濃度が97.6面積%以上(又は、97.8面積%以上、98面積%以上、98.2面積%以上、98.4面積%以上、98.6面積%以上、98.8面積%以上、99面積%以上、99.1面積%以上、99.2面積%以上、99.3面積%以上、99.4面積%以上、99.5面積%以上、99.6面積%以上、99.7面積%以上、99.8面積%以上、若しくは99.9面積%以上)である1,3-ブチレングリコール仕込液を、還流比が0.3以上(又は、0.4以上、0.5以上、1以上、2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上、10以上、20以上、50以上、400以上、若しくは500以上)の条件で蒸留に付すことにより、前記1,3-ブチレングリコール製品を得る1,3-ブチレングリコールの製造方法。
(ガスクロマトグラフィー分析の条件)
 分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
 昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
 試料導入温度:250℃
 キャリアガス:ヘリウム
 カラムのガス流量:1mL/分
 検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
[39]1,3-ブチレングリコールを含む反応粗液から、前記[1]~[32]のいずれか1つに記載の1,3-ブチレングリコール製品を得る1,3-ブチレングリコールの製造方法であって、
 蒸留により水を除去する脱水工程及び蒸留により高沸点成分を除去する脱高沸工程を有しており、
 前記脱高沸工程で用いる脱高沸塔において、アセトアルデヒドの含有量が500ppm以下(又は、205ppm以下、200ppm以下、100ppm以下、90ppm以下、80ppm以下、70ppm以下、60ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下、10ppm以下、5ppm以下、2ppm未満、若しくは1ppm未満)、クロトンアルデヒドの含有量が200ppm以下(又は、110ppm以下、100ppm以下、80ppm以下、70ppm以下、60ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下、10ppm以下、5ppm以下、3ppm以下、2ppm以下、若しくは1ppm未満)、水の含有量が3重量%以下(又は、2重量%以下、1.2重量%以下、0.4重量%以下、0.3重量%以下、0.2重量%以下、0.1重量%以下、0.05重量%以下、若しくは0.03重量%以下)、下記条件のガスクロマトグラフィー分析による1,3-ブチレングリコール濃度が96.7面積%以上(又は、97%以上、98%以上、若しくは99%以上)である1,3-ブチレングリコールを含む仕込液を、還流比0.03以上(又は、0.1以上、0.2以上、0.3以上、0.4以上、0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、1以上、1.2以上、1.5以上、2以上、3以上、4以上、5以上、10以上、若しくは20以上)の条件で蒸留に付すことにより、前記1,3-ブチレングリコール製品を得る1,3-ブチレングリコールの製造方法。
(ガスクロマトグラフィー分析の条件)
 分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
 昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
 試料導入温度:250℃
 キャリアガス:ヘリウム
 カラムのガス流量:1mL/分
 検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
 本開示に係る1,3-ブチレングリコール製品は、高純度且つ無色・無臭(又は、ほぼ無色・無臭)であって、経時により着色や臭気が発生したり増大することが起きにくい、及び/又は、水を含む状態においても経時による酸濃度上昇を生じにくい。この1,3-ブチレングリコール製品は、優れた保湿性能を有するとともに、高い品質を長期間保持できる保湿剤及び化粧料の原料として使用できる。
A:脱水塔
B:脱塩塔
C:脱高沸点物蒸留塔(脱高沸塔)
D:アルカリ反応器
E:脱アルカリ塔
F:製品蒸留塔(製品塔)
A-1、B-1、C-1、E-1、F-1:コンデンサー
A-2、C-2、F-2:リボイラー
X-1:粗1,3-ブチレングリコール
X-2:水(排水)
X-3:塩、高沸点物、及び1,3-ブチレングリコールの一部
X-4:高沸点物及び1,3-ブチレングリコールの一部
X-5:苛性ソーダ、高沸点物、及び1,3-ブチレングリコールの一部
X-6:低沸点物及び1,3-ブチレングリコールの一部
Y:1,3-ブチレングリコール製品

Claims (6)

  1.  1,3-ブチレングリコールを含む1,3-ブチレングリコール製品であって、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノン、2-ブタノール、下記式(1)で表される化合物、下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物、下記式(5)で表される化合物、下記式(6)で表される化合物、下記式(7)で表される化合物、下記式(8)で表される化合物、下記式(9)で表される化合物及び下記式(10)で表される化合物の含有量の総和が65ppm未満である1,3-ブチレングリコール製品。
    Figure JPOXMLDOC01-appb-C000001
  2.  空気雰囲気下、180℃で3時間保持した後の、アセトアルデヒド、クロトンアルデヒド、メチルビニルケトン、アセトン、ホルムアルデヒド、ブチルアルデヒド、アセトアルドール、1-ヒドロキシ-3-ブタノン、2-ブタノール、前記式(1)で表される化合物、前記式(2)で表される化合物、前記式(3)で表される化合物、前記式(4)で表される化合物、前記式(5)で表される化合物、前記式(6)で表される化合物、前記式(7)で表される化合物、前記式(8)で表される化合物、前記式(9)で表される化合物及び前記式(10)で表される化合物の含有量の総和が70ppm未満である、請求項1記載の1,3-ブチレングリコール製品。
  3.  前記式(1)で表される化合物、前記式(2)で表される化合物、前記式(3)で表される化合物、前記式(4)で表される化合物、前記式(5)で表される化合物、前記式(6)で表される化合物及び前記式(7)で表される化合物の含有量の総和が28ppm未満である、請求項1又は2記載の1,3-ブチレングリコール製品。
  4.  空気雰囲気下、180℃で3時間保持した後の、前記式(1)で表される化合物、前記式(2)で表される化合物、前記式(3)で表される化合物、前記式(4)で表される化合物、前記式(5)で表される化合物、前記式(6)で表される化合物及び前記式(7)で表される化合物の含有量の総和が40ppm未満である、請求項1~3のいずれか1項に記載の1,3-ブチレングリコール製品。
  5.  請求項1~4のいずれか1項に記載の1,3-ブチレングリコール製品を含む保湿剤。
  6.  請求項5記載の保湿剤を含む化粧料。
PCT/JP2020/048235 2019-12-28 2020-12-23 1,3-ブチレングリコール製品 WO2021132370A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/788,809 US20230338248A1 (en) 2019-12-28 2020-12-23 1,3-butylene glycol product
CN202080090561.9A CN114901624A (zh) 2019-12-28 2020-12-23 1,3-丁二醇制品
JP2021567563A JPWO2021132370A1 (ja) 2019-12-28 2020-12-23
KR1020227025874A KR20220119715A (ko) 2019-12-28 2020-12-23 1, 3-부틸렌 글리콜 제품
EP20906589.5A EP4083010A4 (en) 2019-12-28 2020-12-23 1,3-BUTYLENE GLYCOL PRODUCT

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2019-239976 2019-12-28
JP2019239979 2019-12-28
JP2019-239974 2019-12-28
JP2019-239975 2019-12-28
JP2019239977 2019-12-28
JP2019239976 2019-12-28
JP2019239975 2019-12-28
JP2019-239978 2019-12-28
JP2019-239979 2019-12-28
JP2019239978 2019-12-28
JP2019-239977 2019-12-28
JP2019239974 2019-12-28
JP2020006660 2020-01-20
JP2020-006660 2020-01-20
JP2020-018910 2020-02-06
JP2020018910 2020-02-06

Publications (1)

Publication Number Publication Date
WO2021132370A1 true WO2021132370A1 (ja) 2021-07-01

Family

ID=76573032

Family Applications (9)

Application Number Title Priority Date Filing Date
PCT/JP2020/048232 WO2021132369A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコール製品
PCT/JP2020/048220 WO2021132360A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品
PCT/JP2020/048211 WO2021132354A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品
PCT/JP2020/048235 WO2021132370A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコール製品
PCT/JP2020/048182 WO2021132340A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコール製品、及び1,3-ブチレングリコールの製造方法
PCT/JP2020/048230 WO2021132368A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコールの製造方法
PCT/JP2020/048186 WO2021132343A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品
PCT/JP2020/048221 WO2021132361A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品
PCT/JP2020/048185 WO2021132342A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/JP2020/048232 WO2021132369A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコール製品
PCT/JP2020/048220 WO2021132360A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品
PCT/JP2020/048211 WO2021132354A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品

Family Applications After (5)

Application Number Title Priority Date Filing Date
PCT/JP2020/048182 WO2021132340A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコール製品、及び1,3-ブチレングリコールの製造方法
PCT/JP2020/048230 WO2021132368A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコールの製造方法
PCT/JP2020/048186 WO2021132343A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品
PCT/JP2020/048221 WO2021132361A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品
PCT/JP2020/048185 WO2021132342A1 (ja) 2019-12-28 2020-12-23 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品

Country Status (6)

Country Link
US (9) US20230035233A1 (ja)
EP (9) EP4083008A4 (ja)
JP (9) JPWO2021132361A1 (ja)
KR (9) KR20220119717A (ja)
CN (9) CN114901244A (ja)
WO (9) WO2021132369A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228448A1 (ja) * 2022-05-23 2023-11-30 Khネオケム株式会社 製品1,3-ブチレングリコール

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112390705B (zh) * 2019-08-14 2022-11-01 中国科学院青岛生物能源与过程研究所 一种1,3-丁二醇脱味的纯化方法
JP7079874B1 (ja) * 2021-05-18 2022-06-02 Khネオケム株式会社 製品1,3-ブチレングリコール
WO2023058687A1 (ja) * 2021-10-06 2023-04-13 Khネオケム株式会社 高純度1,3-ブチレングリコールの製造方法
CN115400706A (zh) * 2022-08-29 2022-11-29 山东海科新源材料科技股份有限公司 一种化妆品级1,3-丁二醇提纯除味装置和方法
KR20240041226A (ko) 2022-09-22 2024-03-29 주식회사 엘지화학 분리막 열 수축률 평가 장치 및 평가 방법

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258129A (ja) 1994-03-17 1995-10-09 Daicel Chem Ind Ltd 1,3−ブチレングリコ−ルの精製方法
WO2000007969A1 (fr) 1998-08-07 2000-02-17 Daicel Chemical Industries, Ltd. 1,3-butylene-glycol tres pur et son procede de production
JP2001213824A (ja) 2000-02-04 2001-08-07 Daicel Chem Ind Ltd 精製1,3−ブチレングリコールの製造方法
JP2001213828A (ja) 2000-02-04 2001-08-07 Daicel Chem Ind Ltd 1,3−ブチレングリコールの精製方法
JP2001213825A (ja) 2000-02-04 2001-08-07 Daicel Chem Ind Ltd 高純度1,3−ブチレングリコール
JP2001213822A (ja) 2000-02-04 2001-08-07 Daicel Chem Ind Ltd 1,3−ブチレングリコールの製造方法
WO2001056963A1 (en) * 2000-02-04 2001-08-09 Daicel Chemical Industries, Ltd. High-purity 1,3-butylene glycol, process for producing 1,3-butylene glycol, and process for producing by-product butanol and butyl acetate
WO2019035476A1 (ja) 2017-08-17 2019-02-21 株式会社香味醗酵 匂いの定量方法、それに用いる細胞及びその細胞の製造方法
JP2020006660A (ja) 2018-07-12 2020-01-16 ファナック株式会社 射出成形機
JP2020018910A (ja) 2019-11-06 2020-02-06 株式会社三洋物産 遊技機
JP6804601B1 (ja) * 2019-09-05 2020-12-23 株式会社ダイセル 1,3−ブチレングリコール製品
JP6804602B1 (ja) * 2019-09-05 2020-12-23 株式会社ダイセル 1,3−ブチレングリコール製品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580518A (en) 1982-12-13 1986-04-08 General Motors Corporation Transmission shift indicator with adjustment mechanism
JPS6165834A (ja) * 1984-09-07 1986-04-04 Daicel Chem Ind Ltd 1,3−ブチレングリコ−ルの精製法
JPH07116081B2 (ja) * 1986-12-22 1995-12-13 ダイセル化学工業株式会社 1,3−ブチレングリコ−ルの精製法
JP3285439B2 (ja) 1993-03-24 2002-05-27 ダイセル化学工業株式会社 反応粗液の製造法および1,3−ブチレングリコ−ルの製造法
JP2001288131A (ja) * 2000-02-04 2001-10-16 Daicel Chem Ind Ltd 精製1,3−ブチレングリコールの製造方法
JP2001213823A (ja) * 2000-02-04 2001-08-07 Daicel Chem Ind Ltd 副生ブタノール及び酢酸ブチルの製造方法
JP3998440B2 (ja) * 2001-07-17 2007-10-24 三菱化学株式会社 1,4−ブタンジオールの製造方法
JP2013043883A (ja) * 2011-08-26 2013-03-04 Mitsubishi Chemicals Corp 1,4−ブタンジオールの精製方法
CN109574803A (zh) * 2012-06-05 2019-04-05 基因组股份公司 1,4-丁二醇的制造方法
CN105585448B (zh) * 2016-03-09 2019-11-05 辽宁科隆精细化工股份有限公司 一种合成化妆品级1,3-丁二醇的方法
CN114341090A (zh) * 2019-09-05 2022-04-12 株式会社大赛璐 1,3-丁二醇制品

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258129A (ja) 1994-03-17 1995-10-09 Daicel Chem Ind Ltd 1,3−ブチレングリコ−ルの精製方法
WO2000007969A1 (fr) 1998-08-07 2000-02-17 Daicel Chemical Industries, Ltd. 1,3-butylene-glycol tres pur et son procede de production
JP2001213824A (ja) 2000-02-04 2001-08-07 Daicel Chem Ind Ltd 精製1,3−ブチレングリコールの製造方法
JP2001213828A (ja) 2000-02-04 2001-08-07 Daicel Chem Ind Ltd 1,3−ブチレングリコールの精製方法
JP2001213825A (ja) 2000-02-04 2001-08-07 Daicel Chem Ind Ltd 高純度1,3−ブチレングリコール
JP2001213822A (ja) 2000-02-04 2001-08-07 Daicel Chem Ind Ltd 1,3−ブチレングリコールの製造方法
WO2001056963A1 (en) * 2000-02-04 2001-08-09 Daicel Chemical Industries, Ltd. High-purity 1,3-butylene glycol, process for producing 1,3-butylene glycol, and process for producing by-product butanol and butyl acetate
WO2019035476A1 (ja) 2017-08-17 2019-02-21 株式会社香味醗酵 匂いの定量方法、それに用いる細胞及びその細胞の製造方法
JP2020006660A (ja) 2018-07-12 2020-01-16 ファナック株式会社 射出成形機
JP6804601B1 (ja) * 2019-09-05 2020-12-23 株式会社ダイセル 1,3−ブチレングリコール製品
JP6804602B1 (ja) * 2019-09-05 2020-12-23 株式会社ダイセル 1,3−ブチレングリコール製品
JP2020018910A (ja) 2019-11-06 2020-02-06 株式会社三洋物産 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4083010A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228448A1 (ja) * 2022-05-23 2023-11-30 Khネオケム株式会社 製品1,3-ブチレングリコール

Also Published As

Publication number Publication date
EP4083005A4 (en) 2024-06-19
US20230055591A1 (en) 2023-02-23
CN114901622A (zh) 2022-08-12
JPWO2021132340A1 (ja) 2021-07-01
CN114901243A (zh) 2022-08-12
WO2021132340A1 (ja) 2021-07-01
US20230087989A1 (en) 2023-03-23
KR20220119716A (ko) 2022-08-30
WO2021132342A1 (ja) 2021-07-01
WO2021132361A1 (ja) 2021-07-01
EP4083006A1 (en) 2022-11-02
KR20220119712A (ko) 2022-08-30
US20230338248A1 (en) 2023-10-26
EP4083002A1 (en) 2022-11-02
EP4083004A4 (en) 2024-06-26
EP4083003A4 (en) 2024-04-17
JPWO2021132360A1 (ja) 2021-07-01
CN114901625A (zh) 2022-08-12
KR20220119717A (ko) 2022-08-30
WO2021132369A1 (ja) 2021-07-01
KR20220119714A (ko) 2022-08-30
CN114901624A (zh) 2022-08-12
US20230048638A1 (en) 2023-02-16
WO2021132360A1 (ja) 2021-07-01
EP4083008A1 (en) 2022-11-02
JPWO2021132370A1 (ja) 2021-07-01
JPWO2021132369A1 (ja) 2021-07-01
CN114901620A (zh) 2022-08-12
EP4083003A1 (en) 2022-11-02
CN114901244A (zh) 2022-08-12
EP4083009A1 (en) 2022-11-02
US20220354760A1 (en) 2022-11-10
EP4083010A1 (en) 2022-11-02
US20230035233A1 (en) 2023-02-02
US20230098112A1 (en) 2023-03-30
CN114867706A (zh) 2022-08-05
KR20220119713A (ko) 2022-08-30
KR20220119718A (ko) 2022-08-30
WO2021132343A1 (ja) 2021-07-01
WO2021132368A1 (ja) 2021-07-01
JPWO2021132354A1 (ja) 2021-07-01
EP4083010A4 (en) 2024-03-13
JPWO2021132342A1 (ja) 2021-07-01
JPWO2021132361A1 (ja) 2021-07-01
JPWO2021132343A1 (ja) 2021-07-01
KR20220119715A (ko) 2022-08-30
US20230033469A1 (en) 2023-02-02
EP4083007A4 (en) 2024-06-26
EP4083007A1 (en) 2022-11-02
CN114901621A (zh) 2022-08-12
KR20220119719A (ko) 2022-08-30
EP4083009A4 (en) 2024-03-20
EP4083002A4 (en) 2024-07-24
JPWO2021132368A1 (ja) 2021-07-01
CN114901623A (zh) 2022-08-12
US20230046811A1 (en) 2023-02-16
EP4083005A1 (en) 2022-11-02
WO2021132354A1 (ja) 2021-07-01
EP4083004A1 (en) 2022-11-02
EP4083008A4 (en) 2024-06-12
EP4083006A4 (en) 2024-08-14
KR20220119711A (ko) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2021132370A1 (ja) 1,3-ブチレングリコール製品
KR102682294B1 (ko) 1,3-부틸렌 글리콜 제품
JP6804602B1 (ja) 1,3−ブチレングリコール製品
JP6890709B2 (ja) 1,3−ブチレングリコール製品
JP6979473B2 (ja) 1,3−ブチレングリコール製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567563

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227025874

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020906589

Country of ref document: EP

Effective date: 20220728