WO2021129675A1 - 加热器以及包含该加热器的烟具 - Google Patents

加热器以及包含该加热器的烟具 Download PDF

Info

Publication number
WO2021129675A1
WO2021129675A1 PCT/CN2020/138675 CN2020138675W WO2021129675A1 WO 2021129675 A1 WO2021129675 A1 WO 2021129675A1 CN 2020138675 W CN2020138675 W CN 2020138675W WO 2021129675 A1 WO2021129675 A1 WO 2021129675A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
electrode film
electrode
substrate
infrared
Prior art date
Application number
PCT/CN2020/138675
Other languages
English (en)
French (fr)
Inventor
武建
戚祖强
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Priority to EP20905047.5A priority Critical patent/EP4082361A4/en
Priority to US17/757,777 priority patent/US20230337737A1/en
Publication of WO2021129675A1 publication Critical patent/WO2021129675A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/46Heating elements having the shape of rods or tubes non-flexible heating conductor mounted on insulating base
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the embodiments of the present application relate to the technical field of smoking appliances, and in particular to a heater and a smoking appliance including the heater.
  • Smoking articles such as cigarettes and cigars burn tobacco during use to produce smoke. Attempts have been made to provide alternatives to these tobacco-burning articles by producing products that release compounds without burning. Examples of such products are so-called heat-not-burn products, which release compounds by heating the tobacco instead of burning the tobacco.
  • the existing low-temperature heating non-combustible smoking set is mainly coated with far-infrared coating and conductive coating on the outer surface of the substrate, and the far-infrared coating after energization emits far-infrared rays to penetrate the substrate and impact the aerosol in the substrate.
  • the substrate is formed for heating; since far infrared rays have strong penetrability, they can penetrate the periphery of the aerosol-forming substrate into the interior, so that the heating of the aerosol-forming substrate is more uniform.
  • the main problem with the above structure is that the conductive cross-sectional area of the far-infrared coating is small, and the electrothermal conversion rate of the far-infrared coating is low, which leads to a long preheating time for the aerosol-forming substrate and reduces the user experience.
  • the embodiments of the present application aim to provide a heater and a smoking set containing the heater, by increasing the conductive cross-sectional area of the infrared film layer, thereby increasing the electrothermal conversion rate of the infrared film layer, so as to shorten the preheating time of the aerosol forming substrate Therefore, the problem that the conductive cross-sectional area of the far-infrared coating of the existing smoking set is small is solved.
  • a technical solution adopted in the embodiments of the present application is to provide a heater for heating an aerosol-forming substrate, and volatilizing at least one component in the aerosol-forming substrate to form an aerosol for users to inhale.
  • the heater includes: a substrate having an inner surface and an outer surface; a first electrode film layer and an infrared film are sequentially formed on the outer surface of the substrate or the inner surface of the substrate along a direction perpendicular to the surface of the substrate Layer and a second electrode film layer; wherein the first electrode film layer and the second electrode film layer each have an electrical connection portion, and the electrical connection portion of the first electrode film layer and the second electrode film layer
  • the electrical connection parts are respectively electrically connected to the positive and negative electrodes of the power supply, so that the electrical power of the power supply is fed to the infrared film layer; the infrared film layer is used to receive the electrical power and generate heat under the action of the electrical power to generate The heat of at least in the form of infrared radiation heats the aerosol-forming substrate.
  • the first electrode film layer covers at least a part of the outer surface of the substrate, and the infrared film layer and the second electrode film layer cover a part of the outer surface of the first electrode film layer;
  • the electrical connection portion of an electrode film layer is formed on the outer surface portion of the first electrode film layer that is not covered by the infrared film layer and the second electrode film layer, and the electrical connection portion of the second electrode film layer is formed At any position on the outer surface of the second electrode film layer.
  • the length of the first electrode film layer along the longitudinal direction of the substrate is greater than the length of the infrared film layer along the longitudinal direction of the substrate, and the second electrode film layer is along the longitudinal direction of the substrate.
  • the length of is less than or equal to the length of the infrared film layer along the longitudinal direction of the substrate.
  • the first electrode film layer covers at least a part of the outer surface of the substrate, and extends along the outer surface of the substrate to the inner surface of the substrate, and the infrared film layer and the second electrode film layer cover A part of the outer surface of the first electrode film layer; the electrical connection portion of the first electrode film layer is formed in the portion of the first electrode film layer extending to the inner surface of the substrate, and the second electrode film layer The electrical connection portion is formed at any position on the outer surface of the second electrode film layer.
  • the first electrode film layer, the infrared film layer and the second electrode film layer are all continuous film layers.
  • the first electrode film layer is a discontinuous film layer.
  • the first electrode film layer is a patterned conductive track.
  • the first electrode film layer includes a current collecting portion and a finger-shaped electrode portion, at least a part of the current collecting portion forms an electrical connection portion of the first electrode film layer, and the electrode of the finger-shaped electrode portion Refers to generally extending longitudinally along the surface of the substrate.
  • the first electrode film layer includes a current collecting part and a mesh electrode part, and at least a part of the current collecting part forms an electrical connection part of the first electrode film layer.
  • the mesh shape of the mesh electrode part includes at least one of a square, a circle, a rhombus, a triangle, or an irregular pattern.
  • the first electrode film layer includes a first spiral electrode electrically connected to the inner surface of the infrared film layer, and the first spiral electrode spirally extends along the longitudinal direction of the substrate.
  • the first spiral electrode extends with an equal pitch along the longitudinal direction of the substrate.
  • the first spiral electrode extends with a variable pitch along the longitudinal direction of the substrate.
  • the first electrode film layer and/or the second electrode film layer include at least two parts that are electrically disconnected from each other, and divide the surface of the substrate into at least a first area and a second area; the first area The second zone and the second zone can be independently controlled to realize controllable heating of different zones.
  • the first electrode film layer and/or the second electrode film layer are separated into a first part electrode film layer and a second part electrode film layer along the longitudinal direction of the substrate, and are fed to the second electrode film layer through independent control.
  • the electric power of a part of the electrode film layer and/or the second part of the electrode film layer is used to realize the stepwise heating of the aerosol-forming substrate.
  • the first electrode film layer includes at least one of silver, gold, platinum, and copper,
  • the thickness of the first electrode film layer is less than 800 nanometers, preferably less than 700 nanometers, more preferably less than 500 nanometers, further preferably less than 300 nanometers, and even more preferably less than 100 nanometers.
  • the second electrode film layer includes at least one of gold, silver, aluminum, platinum, titanium, or indium tin oxide.
  • the first electrode film layer and the second electrode film layer are prepared by a physical vapor deposition method.
  • the substrate includes at least one of quartz glass, sapphire, silicon carbide, magnesium fluoride ceramics, yttrium oxide ceramics, magnesium aluminum spinel ceramics, yttrium aluminum garnet single crystals, and germanium single crystals.
  • the infrared film layer includes at least one of oxide, carbon material, carbide, and nitride.
  • a technical solution adopted in the embodiments of the present application is to provide a smoking set, the smoking set includes a housing assembly and the above-mentioned heater, and the heater is provided in the housing assembly.
  • the smoking set further includes a hollow heat-insulating pipe; the heat-insulating pipe is arranged on the periphery of the heater for at least partially preventing heat from being transferred from the heater to the housing assembly Conduction.
  • the beneficial effects of the embodiments of the present application are: a heater and a smoking set containing the heater are provided, and the first electrode film layer, the infrared film layer, and the first electrode film layer, the infrared film layer, and the first electrode film layer, the infrared film layer, and the second film layer formed on the surface of the substrate in a direction perpendicular to the surface
  • the two-electrode film layer increases the conductive cross-sectional area of the infrared film layer, improves the electrothermal conversion rate of the infrared film layer, shortens the preheating time of the aerosol forming substrate, and improves the user experience.
  • FIG. 1 is a schematic diagram of a heater provided in Embodiment 1 of the present application.
  • Fig. 2 is a schematic diagram of a substrate provided in the first embodiment of the present application.
  • Figure 3 is a schematic cross-sectional view of Figure 1;
  • FIG. 5 is an exploded schematic diagram of the current collecting part and the mesh electrode part provided in the first embodiment of the present application
  • Fig. 6 is a schematic diagram of a heater with spiral electrodes provided in the first embodiment of the present application.
  • FIG. 7 is another schematic diagram of the heater with spiral electrodes according to Embodiment 1 of the present application.
  • FIG. 8 is a schematic diagram of segmented heating provided by Embodiment 1 of the present application.
  • Fig. 9 is a schematic diagram of a smoking set provided in the second embodiment of the present application.
  • Fig. 10 is an exploded schematic diagram of the smoking set provided in the second embodiment of the present application.
  • a heater provided in the first embodiment of this application is used to heat an aerosol-forming substrate, and volatilize at least one component in the aerosol-forming substrate to form an aerosol for users to inhale; the heating
  • the device 1 includes a base 11, a first electrode film layer 12, an infrared film layer 13 and a second electrode film layer 14.
  • the base 11 is formed with a space for accommodating the aerosol-forming base, and the inner surface of the base 11 forms at least a part of the boundary of the space.
  • the base body 11 has opposite first and second ends.
  • the base body 11 extends in the longitudinal direction between the first end and the second end, and a cavity suitable for receiving an aerosol-forming substrate is formed in the hollow. 111.
  • the base 11 may be in the shape of a hollow cylinder, a prism or other cylindrical shapes.
  • the base 11 is preferably cylindrical, and the cavity 111 is a cylindrical hole penetrating the middle of the base 11. The inner diameter of the hole is slightly larger than the outer diameter of the aerosol-forming product or smoking product, which is convenient for placing the aerosol-forming product or smoking product in It is heated in the chamber 111.
  • the base 11 can be made of materials with high temperature resistance and high infrared transmittance, including but not limited to the following materials: quartz glass, sapphire, silicon carbide, magnesium fluoride ceramics, yttrium oxide ceramics, magnesium aluminum spinel ceramics , Yttrium aluminum garnet single crystal, germanium single crystal and so on.
  • the base 11 is made of quartz glass.
  • An aerosol-forming substrate is a substrate capable of releasing volatile compounds that can form an aerosol. Such volatile compounds can be released by heating the aerosol to form a matrix.
  • the aerosol-forming substrate can be solid or liquid or include solid and liquid components.
  • the aerosol-forming substrate can be adsorbed, coated, impregnated or otherwise loaded onto the carrier or support.
  • the aerosol-forming substrate may conveniently be part of an aerosol-generating article or smoking article.
  • the aerosol-forming substrate may include nicotine.
  • the aerosol-forming substrate may include tobacco, for example, may include a tobacco-containing material containing volatile tobacco flavor compounds that are released from the aerosol-forming substrate when heated.
  • a preferred aerosol-forming substrate may include a homogeneous tobacco material, such as deciduous tobacco.
  • the aerosol-forming substrate may include at least one aerosol-forming agent, and the aerosol-forming agent may be any suitable known compound or mixture of compounds. In use, the compound or mixture of compounds is conducive to the compactness and stability of the aerosol. It forms and is basically resistant to thermal degradation at the operating temperature of the aerosol generating system.
  • Suitable aerosol forming agents are well known in the art and include, but are not limited to: polyols, such as triethylene glycol, 1,3-butanediol, and glycerol; esters of polyols, such as glycerol mono-, di- or triacetate ; And fatty acid esters of mono-, di- or polycarboxylic acids, such as dimethyl dodecanedioate and dimethyltetradecanedioate.
  • Preferred aerosol forming agents are polyhydric alcohols or mixtures thereof, such as triethylene glycol, 1,3-butanediol and most preferably glycerol.
  • the first electrode film layer 12, the infrared film layer 13, and the second electrode film layer 14 are sequentially formed on the surface of the base 11 along the radial direction of the cylindrical base 11, and may be formed on the base 11
  • the outer surface of 11 may also be formed on the inner surface of the base 11.
  • the first electrode film layer 12, the infrared film layer 13 and the second electrode film layer 14 are sequentially formed on the outer surface of the base 11 along the radial direction of the cylindrical base 11.
  • the first electrode film layer 12 has an electrical connection portion 121
  • the second electrode film layer 14 has an electrical connection portion 141.
  • the electrical connection portion 121 and the electrical connection portion 141 are respectively electrically connected to the positive and negative electrodes of the power supply, for example: the first electrode film layer 12 is electrically connected to the positive electrode, and the second electrode film layer 14 is electrically connected to the negative electrode; or the first electrode film layer 12 is electrically connected to the negative electrode, and the second electrode film layer 14 is electrically connected to the positive electrode.
  • the first electrode film layer 12 and the second electrode film layer 14 feed the electric power of the power source to the infrared film layer 13.
  • the infrared film layer 13 can generate heat and can generate infrared rays of a certain wavelength, for example, infrared rays of 2 ⁇ m-24 ⁇ m.
  • the first electrode film layer 12 can be selected with good conductivity and low influence on infrared transmittance.
  • the material selection includes but not limited to silver, gold, platinum, and copper.
  • the thickness of the first electrode film layer 12 is less than 800 nanometers, preferably less than 700 nanometers, more preferably less than 500 nanometers, still more preferably less than 300 nanometers, and still more preferably less than 100 nanometers. Smaller thickness and high conductivity materials can be selected Under the condition of ensuring the conductivity, the blocking reflection of infrared rays by the first electrode film layer is reduced.
  • the second electrode film layer 14 can be made of materials with good conductivity and high infrared reflectivity, including but not limited to gold, silver, aluminum, platinum, titanium, and indium tin oxide.
  • Both the first electrode film layer 12 and the second electrode film layer 14 can be formed on the outer surface of the substrate 11 by using a physical vapor deposition method, a chemical vapor deposition method, or a spraying method.
  • a physical vapor deposition method is used to deposit on the outer surface of the substrate 11.
  • the first electrode film layer 12 covers the entire outer surface of the substrate 11, and the infrared film layer 13 and the second electrode film layer 14 cover a part of the outer surface of the first electrode film layer 12;
  • the electrical connection portion 121 of an electrode film layer 12 is formed on the outer surface portion of the first electrode film layer 12 that is not covered by the infrared film layer 13 and the second electrode film layer 14, and the electrical connection portion 141 of the second electrode film layer 14 is formed on Any position on the outer surface of the second electrode film layer 14.
  • the length of the first electrode film layer 12 along the longitudinal direction of the substrate 11 is greater than the length of the infrared film layer 13 along the longitudinal direction of the substrate 11, and the length of the second electrode film layer 14 along the longitudinal direction of the substrate 11 is equal to that of the infrared film layer 13 along the substrate 11 11 Length in the longitudinal direction.
  • the first electrode film layer 12 covers a part of the outer surface of the substrate 11, and the length of the second electrode film layer 14 along the longitudinal direction of the substrate 11 may also be less than the length of the infrared film layer 13 along the longitudinal direction of the substrate 11. length.
  • the first electrode film layer 12 covers at least a part of the outer surface of the base 11 and extends along the outer surface of the base 11 to the inner surface of the base 11, that is, the first electrode film 12 includes a portion covering the outer surface of the base 11 (may It is a part of the outer surface or the entire outer surface), the radial portion covering the base 11, and the inner surface portion (part of the inner surface) covering the base 11.
  • the infrared film layer 13 and the second electrode film layer 14 cover a part of the outer surface of the first electrode film layer 12;
  • the electrical connection portion 121 of the first electrode film layer 12 is formed on the inner surface portion of the covering base 11, and the electrical connection portion 141 of the second electrode film layer 14 is formed at any position on the outer surface of the second electrode film layer 14.
  • the first electrode film layer 12 and the second electrode film layer 14 are both surface electrodes, that is, the first electrode film layer 12 and the second electrode film layer 14 are both continuous film layers.
  • the first electrode film layer 12 covers the inner surface of the infrared film layer 13
  • the second electrode film layer 14 covers the outer surface of the infrared film layer 13.
  • the surface electrode increases the conductive cross-sectional area of the infrared film layer 13, improves the electrothermal conversion rate of the infrared film layer 13, shortens the preheating time of the aerosol forming substrate, and improves the user experience.
  • the first electrode film layer 12 may be a discontinuous film layer.
  • the first electrode film layer 12 includes a current collecting portion 122 and a finger-shaped electrode portion 123. At least a part of the current collecting portion 122 forms an electrical connection portion 121 of the first electrode film layer 12, and the finger-shaped electrode portion 123
  • the electrode fingers generally extend longitudinally along the surface of the substrate 11.
  • the first electrode film layer 12 includes a current collecting portion 122 and a mesh electrode portion 124, and at least a part of the current collecting portion 122 forms an electrical connection portion 121 of the first electrode film layer 12.
  • the mesh shape of the mesh electrode part 124 is a rhombus. It should be noted that the mesh shape of the mesh electrode portion 124 may also be square, circular, triangular, or irregular patterns, and so on.
  • the first electrode film layer 12 is a spiral electrode, and the spiral electrodes all extend along the longitudinal direction of the substrate 11 at an equal pitch.
  • the spiral electrode of this example can also increase the conductive cross-sectional area of the infrared film layer 13 and increase the electrothermal conversion rate of the infrared film layer 13.
  • the spiral electrode extends along the longitudinal direction of the base 11 with a variable pitch.
  • the outer surface of the infrared film layer 13 has a first area A and a second area B; the first area A is close to the downstream of the aerosol movement path (the dotted arrow in the figure), and the second area B is close to the upstream of the aerosol movement path.
  • the pitch of the spiral electrode located in the first area A is smaller than the pitch of the spiral electrode located in the second area B.
  • the first electrode film layer 12 is divided into a first part electrode film layer 121 and a second part electrode film layer 122 along the longitudinal direction of the substrate 11, and the second electrode film layer 14 runs along the longitudinal direction of the substrate 11.
  • the direction is divided into a first partial electrode film layer 141 and a second partial electrode film layer 142.
  • the current fed to the first part of the electrode film layer (121, 141) and/or the second part of the electrode film layer (122, 142) is independently controlled to realize the stepwise heating of the aerosol-forming substrate.
  • the first part of the electrode film (121, 141) and/or the second part of the electrode film (122, 142) can be controlled at the same time, or can be controlled in a time-sharing manner. Segmented heating can ensure the heating speed of the aerosol-generating substrate, the uniformity of fragrance volatilization, and the taste of smoking.
  • the length of the first partial electrode film layer 121 in the longitudinal direction of the base 11 is less than the length of the second partial electrode film 122 in the longitudinal direction of the base 11, and the length of the first partial electrode film 141 in the longitudinal direction of the base 11 is less than the first The length of the two parts of the electrode film layer 142 along the longitudinal direction of the base 11.
  • the first part of the electrode film layer (121, 141) is close to the downstream of the aerosol movement path, and the second part of the electrode film layer (122, 142) is close to the upstream of the aerosol movement path.
  • the number of separations between the first electrode film layer 12 and the second electrode film layer 14 is not limited here.
  • the first electrode film layer 12 is divided into a first part of the electrode film layer 121 and a second part of the electrode film layer 122, and the second electrode film layer 14 is not divided.
  • the first electrode film layer 12 Without separation, it is also feasible that the second electrode film layer 14 is divided into the first partial electrode film layer 141 and the second partial electrode film layer 142 along the longitudinal direction of the substrate 11.
  • first electrode film layer 12 and/or the second electrode film layer 14 are separated into at least two parts that are electrically disconnected along the circumferential direction of the substrate 11, for example: the left half of the electrode film layer and the right half of the electrode film layer.
  • the half of the electrode film layer, corresponding to the outer surface of the substrate 11 can be divided into a left half area and a right half area, and the left half area and the right half area can be independently controlled to achieve controllable heating of different areas.
  • the infrared film layer 13 can be made of materials with high infrared emissivity such as oxides, carbon materials, carbides, and nitrides. Specifically as follows:
  • Metal oxides and multi-component alloy oxides including: iron oxide, aluminum oxide, chromium oxide, indium oxide, lanthanum oxide, cobalt oxide, nickel oxide, and nickel oxide Antimony, antimony pentoxide, titanium dioxide, zirconium dioxide, manganese dioxide, ceria, copper oxide, zinc oxide, magnesium oxide, calcium oxide, molybdenum trioxide, etc.; it can also be two or more of the above metals A combination of oxides; it can also be a ceramic material with a unit cell structure such as spinel, perovskite, olivine, etc.
  • the emissivity of carbon materials is close to that of a black body, and it has a higher infrared emissivity.
  • Carbon materials including: graphite, carbon fiber, carbon nanotubes, graphene, diamond-like films, etc.
  • Carbides including: silicon carbide, silicon carbide has a high emissivity in a larger infrared wavelength range (2.3 ⁇ m-25 ⁇ m), and is a good near full-band infrared radiation material; in addition, there are tungsten carbide and iron carbide , Vanadium carbide, titanium carbide, zirconium carbide, manganese carbide, chromium carbide, niobium carbide, etc., all have high infrared emissivity (MeC phase does not have strict stoichiometric composition and chemical formula).
  • Nitrides including: metal nitrides and non-metal nitrides, where metal nitrides include: titanium nitride, titanium carbonitride, aluminum nitride, magnesium nitride, tantalum nitride, vanadium nitride, etc.; non-metal nitrides Including: boron nitride, phosphorus pentanitride, silicon nitride (Si3N4), etc.
  • inorganic non-metallic materials include: silicon dioxide, silicate (including phosphosilicate, borosilicate, etc.), titanate, aluminate, phosphate, boride, chalcogenide, etc.
  • the infrared film layer 13 can be formed on the outer surface of the substrate 11 by using a physical vapor deposition method, a chemical vapor deposition method, or a spraying method.
  • a physical vapor deposition method is used to deposit on the outer surface of the substrate 11.
  • the thickness of the infrared film layer 13 can be made very thin, and the resistance value of the infrared film layer 13 can also be adjusted to an appropriate range, such as 2 ⁇ .
  • the smoking set 100 provided in the second embodiment of the present application, which includes a housing assembly 6 and the above-mentioned heater 1, and the heater 1 is provided in the housing assembly 6.
  • the heater 1 of this embodiment includes a first electrode film layer 12, an infrared film layer 13, and a second electrode film layer 14 deposited on the outer surface of the substrate 11 by a physical vapor deposition method. Under the action of electric power, the infrared film layer 13 can generate heat and can generate infrared rays of a certain wavelength, and the aerosol-forming substrate in the cavity 111 of the substrate 11 is heated by infrared radiation.
  • the housing assembly 6 includes a shell 61, a fixed shell 62, a fixing piece 63, and a bottom cover 64.
  • the fixing shell 62 and the fixing piece 63 are all fixed in the housing 61.
  • the fixing piece 63 is used to fix the base 11, and the fixing piece 63 is arranged on the fixing Inside the shell 62, a bottom cover 64 is provided at one end of the shell 61 and covers the shell 61.
  • the fixing member 63 includes an upper fixing seat 631 and a lower fixing seat 632.
  • the upper fixing seat 631 and the lower fixing seat 632 are both provided in the fixing shell 62.
  • the first end and the second end of the base 11 are respectively fixed to the upper fixing seat.
  • the bottom cover 64 is protruded with an air inlet pipe 641, the end of the lower fixing seat 632 facing away from the upper fixing seat 631 is connected with the air inlet pipe 641, the upper fixing seat 631, the base 1, the lower fixing seat 632 and the inlet
  • the air pipe 641 is arranged coaxially, and the base 11 is sealed with the upper fixing seat 631 and the lower fixing seat 632.
  • the lower fixing seat 632 is also sealed with the air inlet pipe 641.
  • the air inlet pipe 641 communicates with the outside air so that the user can enter smoothly when inhaling. gas.
  • the smoking set 100 also includes a main control circuit board 3 and a battery 7.
  • the fixed shell 62 includes a front shell 621 and a rear shell 622, the front shell 621 and the rear shell 622 are fixedly connected, the main control circuit board 3 and the battery 7 are both arranged in the fixed shell 62, the battery 7 is electrically connected to the main control circuit board 3, and keys are 4 is protrudingly arranged on the housing 61, and by pressing the button 4, the infrared film layer 13 on the surface of the substrate 11 can be energized or de-energized.
  • the main control circuit board 3 is also connected to a charging interface 31, which is exposed on the bottom cover 64, and the user can charge or upgrade the smoking set 100 through the charging interface 31 to ensure the continuous use of the smoking set 100.
  • the smoking set 100 further includes a heat-insulating pipe 5, which is arranged in the fixed shell 62, and the heat-insulating pipe 5 is arranged on the periphery of the heater 1, and is used to at least partially prevent heat from being transferred from the heater 1 to the housing assembly 6 Conduction.
  • the thermal insulation pipe includes thermal insulation materials, which can be thermal insulation glue, aerogel, aerogel felt, asbestos, aluminum silicate, calcium silicate, diatomaceous earth, zirconia, etc.
  • the insulated pipe may also include a vacuum insulated pipe.
  • the heat-insulating tube 5 can prevent a large amount of heat from being transferred to the housing 61 and causing the user to feel hot.
  • the inner surface of the heat insulation tube 5 may also be coated with an infrared reflective coating to reflect the infrared rays emitted by the infrared film layer 13 on the substrate 11 back to the second electrode film layer 14 to improve heating efficiency.
  • the smoking set 100 also includes an NTC temperature sensor 2 for detecting the real-time temperature of the substrate 11 and transmitting the detected real-time temperature to the main control circuit board 3.
  • the main control circuit board 3 adjusts the temperature flowing through the infrared film 13 according to the real-time temperature. The magnitude of the current. Specifically, when the NTC temperature sensor 2 detects that the real-time temperature in the base 11 is low, for example, when it detects that the temperature inside the base 11 is less than 150°C, the main control circuit board 3 controls the battery 7 to output a higher voltage to the first
  • the electrode film layer 12 and the second electrode film layer 14 further increase the current fed into the infrared film layer 13, increase the heating power of the aerosol forming substrate, and reduce the waiting time for the user to suck the first mouth.
  • the main control circuit board 3 controls the battery 7 to output a normal voltage to the first electrode film layer 12 and the second electrode film layer 14.
  • the main control circuit board 3 controls the battery 7 to output a lower voltage to the first electrode film layer 12 and the second electrode film layer 14; when the NTC temperature When the sensor 2 detects that the temperature inside the substrate 11 is 250° C. or higher, the main control circuit board 3 controls the battery 7 to stop outputting voltage to the first electrode film layer 12 and the second electrode film layer 14.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)

Abstract

一种加热器以及包含该加热器的烟具,加热器包括基体(11),具有一表面;沿着垂直于基体(11)表面的方向依次形成在基体(11)表面上的第一电极膜层(12)、红外膜层(13)以及第二电极膜层(14);其中,第一电极膜层(12)和第二电极膜层(14)与电源电连接;红外膜层(13)用于在电功率作用下产生热量,并将产生的热量至少以红外线辐射的方式传递给气溶胶形成基质,以生成供吸食的气溶胶。通过沿着垂直于基体(11)表面的方向依次形成在基体(11)表面上的第一电极膜层(12)、红外膜层(13)以及第二电极膜层(14),增大了红外膜层(13)的导电截面面积,提高了红外膜层(13)的电热转换速率,缩短了气溶胶形成基质的预热时间,提升了用户体验。

Description

加热器以及包含该加热器的烟具
本申请要求于2019年12月23日提交中国专利局,申请号为201911336288.9,名称为“加热器以及包含该加热器的烟具”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及烟具技术领域,特别是涉及一种加热器以及包含该加热器的烟具。
背景技术
诸如香烟和雪茄的吸烟物品在使用期间燃烧烟草以产生烟雾。已经尝试通过产生在不燃烧的情况下释放化合物的产品来为这些燃烧烟草的物品提供替代物。此类产品的示例是所谓的加热不燃烧产品,其通过加热烟草而不是燃烧烟草来释放化合物。
现有的一种低温加热不燃烧的烟具,主要是在基体的外表面涂覆远红外涂层和导电涂层,通电后的远红外涂层发出远红外线穿透基体并对基体内的气溶胶形成基质进行加热;由于远红外线具有较强的穿透性,可以穿透气溶胶形成基质的外围进入内部,使得对气溶胶形成基质的加热较为均匀。
采用以上结构方式存在的主要问题是:远红外涂层的导电截面面积较小,远红外涂层的电热转换速率较低,导致气溶胶形成基质的预热时间偏长,降低了用户体验。
申请内容
本申请实施例旨在提供一种加热器以及包含该加热器的烟具,通过增大红外膜层的导电截面面积,从而提高红外膜层的电热转换速率,以缩短气溶胶形成基质的预热时间,从而解决现有烟具存在的远红外涂层的导电截面面积较小的问题。
为解决上述技术问题,本申请实施例采用的一个技术方案是:提供一种加热器,用于加热气溶胶形成基质,并挥发所述气溶胶形成基质中至少一种成分形成气溶胶供用户吸食;所述加热器包括:基体,具有内 表面和外表面;沿着垂直于所述基体表面的方向在所述基体外表面或所述基体内表面上依次形成的第一电极膜层、红外膜层以及第二电极膜层;其中,所述第一电极膜层和所述第二电极膜层均具有电连接部,所述第一电极膜层的电连接部和所述第二电极膜层的电连接部分别与电源的正负极电连接,以使所述电源的电功率馈送至红外膜层;所述红外膜层用于接受所述电功率并在所述电功率的作用下产生热量,产生的热量至少以红外线辐射的方式加热所述气溶胶形成基质。
可选地,所述第一电极膜层覆盖所述基体外表面的至少一部分,所述红外膜层和所述第二电极膜层覆盖所述第一电极膜层外表面的一部分;所述第一电极膜层的电连接部形成在所述第一电极膜层未被所述红外膜层和所述第二电极膜层覆盖的外表面部分,所述第二电极膜层的电连接部形成在所述第二电极膜层外表面的任意位置。
可选地,所述第一电极膜层沿着所述基体纵向方向的长度大于所述红外膜层沿着所述基体纵向方向的长度,所述第二电极膜层沿着所述基体纵向方向的长度小于或等于所述红外膜层沿着所述基体纵向方向的长度。
可选地,所述第一电极膜层覆盖所述基体外表面的至少一部分,且沿所述基体外表面延伸到所述基体内表面,所述红外膜层和所述第二电极膜层覆盖所述第一电极膜层外表面的一部分;所述第一电极膜层的电连接部形成在所述第一电极膜层延伸到所述基体内表面的部分,所述第二电极膜层的电连接部形成在所述第二电极膜层外表面的任意位置。
可选地,所述第一电极膜层、所述红外膜层以及所述第二电极膜层均是连续膜层。
可选地,所述第一电极膜层是非连续膜层。
可选地,所述第一电极膜层是图案化的导电轨迹。
可选地,所述第一电极膜层包括集流部和指形电极部,所述集流部的至少部分形成所述第一电极膜层的电连接部,所述指形电极部的电极指大体上沿所述基体表面纵向延伸。
可选地,所述第一电极膜层包括集流部和网状电极部,所述集流部的至少部分形成所述第一电极膜层的电连接部。
可选地,所述网状电极部的网孔形状包括方形、圆形、菱形、三角形或不规则图形中的至少一种。
可选地,所述第一电极膜层包括电连接所述红外膜层内表面的第一螺旋状电极,所述第一螺旋状电极沿着所述基体纵向方向螺旋延伸。
可选地,所述第一螺旋状电极沿着所述基体纵向方向等螺距地延 伸。
可选地,所述第一螺旋状电极沿着所述基体纵向方向变螺距地延伸。
可选地,所述第一电极膜层和/或所述第二电极膜层包括相互电断路的至少两部分,将所述基体表面分成至少第一区域和第二区域;所述第一区域和所述第二区域能够独立控制,以实现对不同区域的可控加热。
可选地,所述第一电极膜层和/或所述第二电极膜层沿所述基体纵向方向分隔为第一部分电极膜层和第二部分电极膜层,通过独立控制馈送至所述第一部分电极膜层和/或所述第二部分电极膜层的电功率以实现对所述气溶胶形成基质进行分段加热。
可选地,所述第一电极膜层包括银、金、铂、铜中的至少一种,
可选地,所述第一电极膜层的厚度小于800纳米,优选的为小于700纳米,更优选小于500纳米,进一步优选小于300纳米,再进一步优选小于100纳米。
可选地,所述第二电极膜层包括金、银、铝、铂、钛或氧化铟锡中的至少一种。
可选地,所述第一电极膜层和所述第二电极膜层通过物理气相沉积方法制备。
可选地,所述基体包括石英玻璃、蓝宝石、碳化硅、氟化镁陶瓷、氧化钇陶瓷、镁铝尖晶石陶瓷、钇铝石榴石单晶、锗单晶中的至少一种。
可选地,所述红外膜层包括氧化物、碳材料、碳化物、氮化物中的至少一种。
本申请实施例采用的一个技术方案是:提供一种烟具,所述烟具包括壳体组件、以及上述的加热器,所述加热器设于所述壳体组件内。
可选地,所述烟具还包括呈中空状的隔热管;所述隔热管设置在所述加热器的外围,用于至少部分的阻止热量由所述加热器向所述壳体组件的传导。
本申请实施例的有益效果是:提供了一种加热器以及包含该加热器的烟具,通过沿着垂直于基体表面的方向依次形成在基体表面上的第一电极膜层、红外膜层以及第二电极膜层,增大了红外膜层的导电截面面积,提高了红外膜层的电热转换速率,缩短了气溶胶形成基质的预热时间,提升了用户体验。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施方式一提供的加热器示意图;
图2是本申请实施方式一提供的基体示意图;
图3是图1的剖面示意图;
图4是本申请实施方式一提供的集流部和指形电极部的展开示意图;
图5是本申请实施方式一提供的集流部和网状电极部的展开示意图;
图6是本申请实施方式一提供的具有螺旋状电极的加热器示意图;
图7是本申请实施方式一提供的具有螺旋状电极的加热器另一示意图;
图8是本申请实施方式一提供的分段加热示意图;
图9是本申请实施方式二提供的烟具示意图;
图10是本申请实施方式二提供的烟具分解示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
此外,下面所描述的本申请各个实施例中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施方式一
如图1所示,为本申请实施方式一所提供一种加热器,用于加热气溶胶形成基质,并挥发所述气溶胶形成基质中至少一种成分形成气溶胶供用户吸食;所述加热器1包括基体11、第一电极膜层12、红外膜层13以及第二电极膜层14。
基体11形成有容纳气溶胶形成基质的空间,基体11的内表面形成该空间的至少一部分边界。
可参考图2进行理解,基体11具有相对的第一端和第二端,基体11沿第一端和第二端之间的纵向延伸并且内部中空形成有适于收容气溶胶形成基质的腔室111。基体11可以为中空的圆柱体状、棱柱体状或者其他柱体状。基体11优选为圆柱体状,腔室111即为贯穿基体11中部的圆柱体状孔,孔的内径略大于气溶胶形成制品或吸烟制品的外径,便于将气溶胶形成制品或吸烟制品置于腔室111内对其进行加热。
基体11可以选用耐高温且具有较高的红外线透过率的材料制成,包括但不限于以下材料:石英玻璃、蓝宝石、碳化硅、氟化镁陶瓷、氧化钇陶瓷、镁铝尖晶石陶瓷、钇铝石榴石单晶、锗单晶等等。优选的,基体11由石英玻璃制成。
气溶胶形成基质是一种能够释放可形成气溶胶的挥发性化合物的基质。这种挥发性化合物可通过加热该气溶胶形成基质而被释放出来。气溶胶形成基质可以是固体或液体或包括固体和液体组分。气溶胶形成基质可吸附、涂覆、浸渍或以其它方式装载到载体或支承件上。气溶胶形成基质可便利地是气溶胶生成制品或吸烟制品的一部分。
气溶胶形成基质可以包括尼古丁。气溶胶形成基质可以包括烟草,例如可以包括含有挥发性烟草香味化合物的含烟草材料,当加热时所述挥发性烟草香味化合物从气溶胶形成基质释放。优选的气溶胶形成基质可以包括均质烟草材料,例如落叶烟草。气溶胶形成基质可以包括至少一种气溶胶形成剂,气溶胶形成剂可为任何合适的已知化合物或化合物的混合物,在使用中,所述化合物或化合物的混合物有利于致密和稳定气溶胶的形成,并且对在气溶胶生成系统的操作温度下的热降解基本具有抗性。合适的气溶胶形成剂是本领域众所周知的,并且包括但不限于:多元醇,例如三甘醇,1,3-丁二醇和甘油;多元醇的酯,例如甘油单、二或三乙酸酯;和一元、二元或多元羧酸的脂肪酸酯,例如二甲基十二烷二酸酯和二甲基十四烷二酸酯。优选的气溶胶形成剂是多羟基醇或其混合物,例如三甘醇、1,3-丁二醇和最优选的丙三醇。
请结合图3进行理解,第一电极膜层12、红外膜层13以及第二电极膜层14沿着圆柱体状的基体11的径向方向依次形成在基体11的表 面上,可以形成在基体11的外表面上,也可以形成在基体11的内表面上。优选的将第一电极膜层12、红外膜层13以及第二电极膜层14沿着圆柱体状的基体11的径向方向依次形成在基体11的外表面上。
第一电极膜层12具有电连接部121,第二电极膜层14具有电连接部141,电连接部121和电连接部141分别与电源的正负极电连接,例如:第一电极膜层12与正极电连接、第二电极膜层14与负极电连接;或者第一电极膜层12与负极电连接、第二电极膜层14与正极电连接。
通过电连接部121和电连接部141,第一电极膜层12和第二电极膜层14将电源的电功率馈送至红外膜层13。在电功率作用下,红外膜层13可产生热量、并可生成一定波长的红外线,例如:2μm~24μm的红外线。
第一电极膜层12可以选用导电性好、并且要求对红外线透过率影响低,材料选择包括但不限于银、金、铂、铜。第一电极膜层12的厚度小于800纳米,优选的为小于700纳米,更优选小于500纳米,进一步优选小于300纳米,再进一步优选小于100纳米,较小的厚度和导电性高材料的选择可以在保证导电率的情况下,降低第一电极膜层对红外线的阻挡反射。
第二电极膜层14可以选用导电性好、红外线反射率高的材料,包括但不限于金、银、铝、铂、钛、氧化铟锡。
第一电极膜层12和第二电极膜层14均可采用物理气相沉积方法、化学气相沉积方法、喷涂方法形成在基体11的外表面上。优选的采用物理气相沉积方法沉积在基体11的外表面上。
请结合图3进行理解,在本示例中,第一电极膜层12覆盖基体11的整个外表面,红外膜层13和第二电极膜层14覆盖第一电极膜层12外表面的一部分;第一电极膜层12的电连接部121形成在第一电极膜层12未被红外膜层13和第二电极膜层14覆盖的外表面部分,第二电极膜层14的电连接部141形成在第二电极膜层14外表面的任意位置。第一电极膜层12沿着基体11纵向方向的长度大于红外膜层13沿着基体11纵向方向的长度,第二电极膜层14沿着基体11纵向方向的长度等于红外膜层13沿着基体11纵向方向的长度。
在其他示例中,第一电极膜层12覆盖基体11外表面的一部分也是可行的,第二电极膜层14沿着基体11纵向方向的长度也可小于红外膜层13沿着基体11纵向方向的长度。
在一示例中,第一电极膜层12覆盖基体11外表面的至少一部分、且沿基体11外表面延伸到基体11内表面,即第一电极膜层12包括覆 盖基体11的外表面部分(可以是部分外表面或者整个外表面)、覆盖基体11的径向部分以及覆盖基体11的内表面部分(部分内表面)。红外膜层13和第二电极膜层14覆盖第一电极膜层12外表面的一部分;
第一电极膜层12的电连接部121形成在覆盖基体11的内表面部分,第二电极膜层14的电连接部141形成在第二电极膜层14外表面的任意位置。
在本示例中,第一电极膜层12和第二电极膜层14均为面电极,即第一电极膜层12和第二电极膜层14均为连续膜层。具体地,第一电极膜层12包覆红外膜层13的内表面,第二电极膜层14包覆红外膜层13的外表面。面电极增大了红外膜层13的导电截面面积,提高了红外膜层13的电热转换速率,缩短了气溶胶形成基质的预热时间,提升了用户体验。
在一示例中,第一电极膜层12可以是非连续膜层。请参考图4所示,第一电极膜层12包括集流部122和指形电极部123,集流部122的至少部分形成第一电极膜层12的电连接部121,指形电极部123的电极指大体上沿基体11表面纵向延伸。
请参考图5所示,在一示例中,第一电极膜层12包括集流部122和网状电极部124,集流部122的至少部分形成第一电极膜层12的电连接部121,网状电极部124的网孔形状为菱形。需要说明的是,网状电极部124的网孔形状还可以为方形、圆形、三角形或不规则图形等等。
请参考图6所示,在一示例中,第一电极膜层12为螺旋状电极,螺旋状电极均沿着基体11纵向方向等螺距地延伸。该示例的螺旋状电极也可增大红外膜层13的导电截面面积,提高红外膜层13的电热转换速率。
请参考图7所示,在一示例中,与图6的示例所不同的是,螺旋状电极沿着基体11的纵向方向变螺距地延伸。其中,红外膜层13的外表面具有第一区域A和第二区域B;第一区域A靠近气溶胶移动路径(图中的虚线箭头)的下游,第二区域B靠近气溶胶移动路径的上游。位于第一区域A的螺旋状电极的螺距小于位于第二区域B的螺旋状电极的螺距。通过在红外膜层13的不同区域设置螺旋状电极的不同螺距,可提升下游区域的气溶胶生成基质的加热速度,达到快速出烟的效果,提升用户体验。
请参考图8所示,在一示例中,第一电极膜层12沿基体11纵向方向分隔为第一部分电极膜层121和第二部分电极膜层122,第二电极膜层14沿基体11纵向方向分隔为第一部分电极膜层141和第二部分电极 膜层142。通过独立控制馈送至第一部分电极膜层(121、141)和/或第二部分电极膜层(122、142)的电流以实现对气溶胶形成基质进行分段加热。第一部分电极膜层(121、141)和/或第二部分电极膜层(122、142)可以同时控制,也可以分时控制。分段加热可保证气溶胶生成基质的加热速度、香味挥发的均匀性以及吸食口感。
进一步地,第一部分电极膜层121沿基体11的纵向方向的长度小于第二部分电极膜层122沿基体11的纵向方向的长度,第一部分电极膜层141沿基体11的纵向方向的长度小于第二部分电极膜层142沿基体11的纵向方向的长度。第一部分电极膜层(121、141)靠近气溶胶移动路径的下游,第二部分电极膜层(122、142)靠近气溶胶移动路径的上游。通过在红外膜层13的不同区域设置不同长度的部分电极膜层,可提升下游区域的气溶胶生成基质的加热速度,达到快速出烟的效果,提升用户体验。
需要说明的是,第一电极膜层12和第二电极膜层14分隔的数量在此不作限定。在其他示例中,第一电极膜层12分隔为第一部分电极膜层121和第二部分电极膜层122,而第二电极膜层14不分隔也是可实现的;或者,第一电极膜层12不分隔,第二电极膜层14沿基体11纵向方向分隔为第一部分电极膜层141和第二部分电极膜层142,也是可行的。
还需要说明的是,第一电极膜层12和/或第二电极膜层14沿基体11周向方向分隔为相互电断路的至少两部分也是可行的,例如:左半部分电极膜层和右半部分电极膜层,与之对应的基体11的外表面可分成左半区域和右半区域,左半区域和右半区域能够独立控制,以实现对不同区域的可控加热。
红外膜层13可以选用氧化物、碳材料、碳化物、氮化物等具有较高红外辐射率的材料制成。具体地如下所示:
金属氧化物及多组分合金氧化物,包括:三氧化二铁、三氧化二铝、三氧化二铬、三氧化二铟、三氧化二镧、三氧化二钴、三氧化二镍、三氧化二锑、五氧化二锑、二氧化钛、二氧化锆、二氧化锰、二氧化铈、氧化铜、氧化锌、氧化镁、氧化钙、三氧化钼等;也可以是以上两种或两种以上金属氧化物的组合;还可以是具有尖晶石、钙钛矿、橄榄石等晶胞结构的陶瓷材料。
碳材料的发射率接近于黑体特性,具有较高的红外辐射率。碳材料,包括:石墨、碳纤维、碳纳米管、石墨烯、类金刚石薄膜等。
碳化物,包括:碳化硅,碳化硅在较大的红外线波长范围内(2.3 微米-25微米)具有高发射率,是较好的近全波段红外辐射材料;此外,还有碳化钨、碳化铁、碳化钒、碳化钛、碳化锆、碳化锰、碳化铬、碳化铌等,都具有较高的红外发射率(MeC相不具备严格的化学计算成分和化学式)。
氮化物,包括:金属氮化物和非金属氮化物,其中金属氮化物包括:氮化钛、碳氮化钛、氮化铝、氮化镁、氮化钽、氮化钒等;非金属氮化物包括:氮化硼、五氮化三磷、氮化硅(Si3N4)等。
其他无机非金属材料,包括:二氧化硅、硅酸盐(包括磷硅酸盐、硼硅酸盐等)、钛酸盐、铝酸盐、磷酸盐、硼化物、硫系化合物等。
红外膜层13可采用物理气相沉积方法、化学气相沉积方法、喷涂方法形成在基体11的外表面上。优选的采用物理气相沉积方法沉积在基体11的外表面上。
需要说明的是,由于红外膜层13的导电截面面积较大,红外膜层13的厚度可以做得很薄,红外膜层13的的电阻值也可以调到合适的范围,例如2Ω。
实施方式二
图9-图10是本申请实施方式二提供的一种烟具100,包括壳体组件6和上述的加热器1,加热器1设于壳体组件6内。本实施例的加热器1,包括通过物理气相沉积方法沉积在基体11的外表面上的第一电极膜层12、红外膜层13以及第二电极膜层14。在电功率作用下,红外膜层13可产生热量、并可生成一定波长的红外线,通过红外线辐射方式对基体11的腔室111内的气溶胶形成基质进行加热。
壳体组件6包括外壳61、固定壳62、固定件63以及底盖64,固定壳62、固定件63均固定于外壳61内,其中固定件63用于固定基体11,固定件63设置于固定壳62内,底盖64设于外壳61一端且盖设外壳61。具体的,固定件63包括上固定座631和下固定座632,上固定座631和下固定座632均设于固定壳62内,基体11的第一端和第二端分别固定在上固定座631和下固定座632上,底盖64上凸设有进气管641,下固定座632背离上固定座631的一端与进气管641连接,上固定座631、基体1、下固定座632以及进气管641同轴设置,且基体11与上固定座631、下固定座632之间密封,下固定座632与进气管641也密封,进气管641与外界空气连通以便于用户抽吸时可以顺畅进气。
烟具100还包括主控制电路板3和电池7。固定壳62包括前壳621与后壳622,前壳621与后壳622固定连接,主控制电路板3和电池7 均设置在固定壳62内,电池7与主控制电路板3电连接,按键4凸设在外壳61上,通过按压按键4,可以实现对基体11表面上的红外膜层13的通电或断电。主控制电路板3还连接有一充电接口31,充电接口31裸露于底盖64上,用户可以通过充电接口31对烟具100进行充电或升级,以保证烟具100的持续使用。
烟具100还包括隔热管5,隔热管5设置在固定壳62内,隔热管5设置在加热器1的外围,,用于至少部分的阻止热量由加热器1向壳体组件6的传导。隔热管包括隔热材料,隔热材料可以为隔热胶、气凝胶、气凝胶毡、石棉、硅酸铝、硅酸钙、硅藻土、氧化锆等。所述隔热管也可以包括真空隔热管。隔热管5可以避免大量的热量传递到外壳61上而导致用户觉得烫手。隔热管5内表面还可涂覆有红外线反射涂层,以将基体11上的红外膜层13发出的红外线反射回第二电极膜层14,提高加热效率。
烟具100还包括NTC温度传感器2,用于检测基体11的实时温度,并将检测的实时温度传输到主控制电路板3,主控制电路板3根据该实时温度调节流经红外膜层13上的电流的大小。具体的,当NTC温度传感器2检测到基体11内的实时温度较低时,譬如检测到基体11内侧的温度不到150℃时,主控制电路板3控制电池7输出较高的电压给第一电极膜层12和第二电极膜层14,进而提高红外膜层13中馈入的电流,提高气溶胶形成基质的加热功率,减少用户抽吸第一口所要等待的时间。当NTC温度传感器2检测到基体11的温度为150℃-200℃时,主控制电路板3控制电池7输出正常的电压给第一电极膜层12和第二电极膜层14。当NTC温度传感器2检测到基体11的温度在200℃-250℃时,主控制电路板3控制电池7输出较低的电压给第一电极膜层12和第二电极膜层14;当NTC温度传感器2检测到基体11内侧的温度在250℃及以上时,主控制电路板3控制电池7停止输出电压给第一电极膜层12和第二电极膜层14。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (23)

  1. 一种加热器,用于加热气溶胶形成基质,并挥发所述气溶胶形成基质中至少一种成分形成气溶胶供用户吸食;其特征在于,所述加热器包括:
    基体,具有内表面和外表面;
    沿着垂直于所述基体表面的方向在所述基体外表面或所述基体内表面上依次形成的第一电极膜层、红外膜层以及第二电极膜层;
    其中,所述第一电极膜层和所述第二电极膜层均具有电连接部,所述第一电极膜层的电连接部和所述第二电极膜层的电连接部分别与电源的正负极电连接,以使所述电源的电功率馈送至红外膜层;
    所述红外膜层用于接受所述电功率并在所述电功率的作用下产生热量,产生的热量至少以红外线辐射的方式加热所述气溶胶形成基质。
  2. 根据权利要求1所述的加热器,其特征在于,所述第一电极膜层覆盖所述基体外表面的至少一部分,所述红外膜层和所述第二电极膜层覆盖所述第一电极膜层外表面的一部分;
    所述第一电极膜层的电连接部形成在所述第一电极膜层未被所述红外膜层和所述第二电极膜层覆盖的外表面部分,所述第二电极膜层的电连接部形成在所述第二电极膜层外表面的任意位置。
  3. 根据权利要求2所述的加热器,其特征在于,所述第一电极膜层沿着所述基体纵向方向的长度大于所述红外膜层沿着所述基体纵向方向的长度,所述第二电极膜层沿着所述基体纵向方向的长度小于或等于所述红外膜层沿着所述基体纵向方向的长度。
  4. 根据权利要求1所述的加热器,其特征在于,所述第一电极膜层覆盖所述基体外表面的至少一部分,且沿所述基体外表面延伸到所述基体内表面,所述红外膜层和所述第二电极膜层覆盖所述第一电极膜层外表面的一部分;
    所述第一电极膜层的电连接部形成在所述第一电极膜层延伸到所述基体内表面的部分,所述第二电极膜层的电连接部形成在所述第二电极膜层外表面的任意位置。
  5. 根据权利要求2-4任一所述的加热器,其特征在于,所述第一电极膜层、所述红外膜层以及所述第二电极膜层均是连续膜层。
  6. 根据权利要求2-4任一所述的加热器,其特征在于,所述第一电极膜层是非连续膜层。
  7. 根据权利要求6所述的加热器,其特征在于,所述第一电极膜层是图案化的导电轨迹。
  8. 根据权利要求7所述的加热器,其特征在于,所述第一电极膜层包括集流部和指形电极部,所述集流部的至少部分形成所述第一电极膜层的电连接部,所述指形电极部的电极指大体上沿所述基体表面纵向延伸。
  9. 根据权利要求7所述的加热器,其特征在于,所述第一电极膜层包括集流部和网状电极部,所述集流部的至少部分形成所述第一电极膜层的电连接部。
  10. 根据权利要求9所述的加热器,其特征在于,所述网状电极部的网孔形状包括方形、圆形、菱形、三角形或不规则图形中的至少一种。
  11. 根据权利要求6所述的加热器,其特征在于,所述第一电极膜层包括电连接所述红外膜层内表面的第一螺旋状电极,所述第一螺旋状电极沿着所述基体纵向方向螺旋延伸。
  12. 根据权利要求11所述的加热器,其特征在于,所述第一螺旋状电极沿着所述基体纵向方向等螺距地延伸。
  13. 根据权利要求11所述的加热器,其特征在于,所述第一螺旋状电极沿着所述基体纵向方向变螺距地延伸。
  14. 根据权利要求1-6任一所述的加热器,其特征在于,所述第一电极膜层和/或所述第二电极膜层包括相互电断路的至少两部分,将所述基体表面分成至少第一区域和第二区域;
    所述第一区域和所述第二区域能够独立控制,以实现对不同区域的可控加热。
  15. 根据权利要求14所述的加热器,其特征在于,所述第一电极膜层和/或所述第二电极膜层沿所述基体纵向方向分隔为第一部分电极膜层和第二部分电极膜层,通过独立控制馈送至所述第一部分电极膜层和/或所述第二部分电极膜层的电功率以实现对所述气溶胶形成基质进行分段加热。
  16. 根据权利要求1-15任一所述的加热器,其特征在于,所述第一电极膜层包括银、金、铂、铜中的至少一种,
  17. 根据权利要求16所述的加热器,其特征在于,所述第一电极膜层的厚度小于800纳米,优选的为小于700纳米,更优选小于500纳米,进一步优选小于300纳米,再进一步优选小于100纳米。
  18. 根据权利要求1-17任一所述的加热器,其特征在于,所述第二电极膜层包括金、银、铝、铂、钛或氧化铟锡中的至少一种。
  19. 根据权利要求16-18任一所述的加热器,其特征在于,所述第一电极膜层和所述第二电极膜层通过物理气相沉积方法制备。
  20. 根据权利要求1-19任一项所述的加热器,其特征在于,所述基体包括石英玻璃、蓝宝石、碳化硅、氟化镁陶瓷、氧化钇陶瓷、镁铝尖晶石陶瓷、钇铝石榴石单晶、锗单晶中的至少一种。
  21. 根据权利要求1-20任一项所述的加热器,其特征在于,所述红外膜层包括氧化物、碳材料、碳化物、氮化物中的至少一种。
  22. 一种烟具,其特征在于,所述烟具包括壳体组件、以及权利要求1-21任一项所述的加热器,所述加热器设于所述壳体组件内。
  23. 根据权利要求22所述的烟具,其特征在于,还包括呈中空状的隔热管;
    所述隔热管设置在所述加热器的外围,用于至少部分的阻止热量由所述加热器向所述壳体组件的传导。
PCT/CN2020/138675 2019-12-23 2020-12-23 加热器以及包含该加热器的烟具 WO2021129675A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20905047.5A EP4082361A4 (en) 2019-12-23 2020-12-23 HEATER AND CIGARETTE UTENSIL INCLUDED
US17/757,777 US20230337737A1 (en) 2019-12-23 2020-12-23 Heater and cigarette utensil containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911336288.9A CN113080519B (zh) 2019-12-23 2019-12-23 加热器以及包含该加热器的烟具
CN201911336288.9 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021129675A1 true WO2021129675A1 (zh) 2021-07-01

Family

ID=76575678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138675 WO2021129675A1 (zh) 2019-12-23 2020-12-23 加热器以及包含该加热器的烟具

Country Status (4)

Country Link
US (1) US20230337737A1 (zh)
EP (1) EP4082361A4 (zh)
CN (1) CN113080519B (zh)
WO (1) WO2021129675A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113647691B (zh) * 2021-07-23 2024-08-02 深圳麦时科技有限公司 加热组件和气溶胶产生装置
CN114304750A (zh) * 2021-12-31 2022-04-12 深圳麦时科技有限公司 加热元件及电子雾化装置
CN114304749B (zh) * 2021-12-31 2024-08-09 深圳麦时科技有限公司 加热不燃烧气溶胶形成装置及其加热件
CN114788585A (zh) * 2022-03-22 2022-07-26 深圳麦时科技有限公司 加热组件及气溶胶生成装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160021930A1 (en) * 2010-05-15 2016-01-28 R.J. Reynolds Tobacco Company Vaporizer Related Systems, Methods, and Apparatus
US20180153213A1 (en) * 2016-12-06 2018-06-07 Porvair Plc Vaporizer Metal Foam Filter
CN108369041A (zh) * 2015-12-21 2018-08-03 联合工艺公司 电热热传递模块化堆垛
CN108431525A (zh) * 2015-12-21 2018-08-21 联合工艺公司 电热热传递系统
CN109674093A (zh) * 2019-01-25 2019-04-26 安徽中烟工业有限责任公司 一种内芯式红外辐射加热气雾生成系统
CN109832674A (zh) * 2019-02-28 2019-06-04 深圳市合元科技有限公司 低温烘烤烟具及其加热方法
CN208925253U (zh) * 2018-09-19 2019-06-04 深圳市子午线信息科技有限公司 基于纳米远红外分段加热装置及电子烟
CN109846093A (zh) * 2019-02-28 2019-06-07 深圳市合元科技有限公司 低温烘烤烟具
CN110384264A (zh) * 2019-07-15 2019-10-29 深圳市合元科技有限公司 加热器及低温加热烟具

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269295A (ja) * 2003-03-06 2004-09-30 Matsushita Electric Ind Co Ltd 酸素ポンプ素子および該素子を搭載した酸素ポンプ装置
SE530660C2 (sv) * 2006-10-17 2008-08-05 Conflux Ab Värmeelement
CN102036433B (zh) * 2010-12-21 2012-08-22 吕一诺 一种双膜层结构的红外电热膜加热管、其制备方法及其应用
CN106060980B (zh) * 2016-06-22 2019-10-22 佛山市顺德区美的电热电器制造有限公司 红外加热盘、加热设备和红外加热盘的制作方法
CN108338417B (zh) * 2017-01-25 2022-05-27 贵州中烟工业有限责任公司 基于微加热器的电加热吸烟系统
CN108338415B (zh) * 2017-01-25 2022-05-31 贵州中烟工业有限责任公司 外围式加热吸烟系统
CN110464052A (zh) * 2019-08-06 2019-11-19 深圳麦克韦尔科技有限公司 雾化组件、雾化器及电子雾化装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160021930A1 (en) * 2010-05-15 2016-01-28 R.J. Reynolds Tobacco Company Vaporizer Related Systems, Methods, and Apparatus
CN108369041A (zh) * 2015-12-21 2018-08-03 联合工艺公司 电热热传递模块化堆垛
CN108431525A (zh) * 2015-12-21 2018-08-21 联合工艺公司 电热热传递系统
US20180153213A1 (en) * 2016-12-06 2018-06-07 Porvair Plc Vaporizer Metal Foam Filter
CN208925253U (zh) * 2018-09-19 2019-06-04 深圳市子午线信息科技有限公司 基于纳米远红外分段加热装置及电子烟
CN109674093A (zh) * 2019-01-25 2019-04-26 安徽中烟工业有限责任公司 一种内芯式红外辐射加热气雾生成系统
CN109832674A (zh) * 2019-02-28 2019-06-04 深圳市合元科技有限公司 低温烘烤烟具及其加热方法
CN109846093A (zh) * 2019-02-28 2019-06-07 深圳市合元科技有限公司 低温烘烤烟具
CN110384264A (zh) * 2019-07-15 2019-10-29 深圳市合元科技有限公司 加热器及低温加热烟具

Also Published As

Publication number Publication date
CN113080519B (zh) 2023-03-14
US20230337737A1 (en) 2023-10-26
CN113080519A (zh) 2021-07-09
EP4082361A1 (en) 2022-11-02
EP4082361A4 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
WO2021129677A1 (zh) 加热器以及包含该加热器的烟具
WO2021129675A1 (zh) 加热器以及包含该加热器的烟具
WO2021129679A1 (zh) 加热器以及包括该加热器的烟具
WO2022048569A1 (zh) 气溶胶生成装置以及红外加热器
WO2021208883A1 (zh) 加热器以及包含该加热器的烟具
WO2022012678A1 (zh) 加热器以及包括该加热器的烟具
WO2021104471A1 (zh) 加热器以及包含该加热器的烟具
WO2021136420A1 (zh) 加热器以及包含该加热器的烟具
CN113080520A (zh) 加热器以及包括该加热器的烟具
WO2021104472A1 (zh) 加热器以及包括该加热器的烟具
WO2022095900A1 (zh) 气溶胶生成装置及其控制方法
CN219781579U (zh) 加热器及气溶胶生成装置
US20220279854A1 (en) Atomizing device and electronic cigarette
CN219182820U (zh) 加热组件以及气溶胶生成装置
CN212279881U (zh) 加热器以及包含该加热器的烟具
CN215347048U (zh) 气溶胶生成装置以及红外加热器
WO2022028430A1 (zh) 加热器以及含有该加热器的烟具
CN112841740B (zh) 加热器以及包含该加热器的烟具
WO2024120193A1 (zh) 加热器及其制作方法、气溶胶生成装置
WO2024120141A1 (zh) 加热器以及气溶胶生成装置
WO2024060982A1 (zh) 加热组件以及气溶胶生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020905047

Country of ref document: EP

Effective date: 20220725