WO2021128216A1 - 基于搅拌摩擦焊的直线电机感应板加工方法 - Google Patents

基于搅拌摩擦焊的直线电机感应板加工方法 Download PDF

Info

Publication number
WO2021128216A1
WO2021128216A1 PCT/CN2019/128885 CN2019128885W WO2021128216A1 WO 2021128216 A1 WO2021128216 A1 WO 2021128216A1 CN 2019128885 W CN2019128885 W CN 2019128885W WO 2021128216 A1 WO2021128216 A1 WO 2021128216A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motor
welding
plate
induction plate
conductive substrate
Prior art date
Application number
PCT/CN2019/128885
Other languages
English (en)
French (fr)
Inventor
邓永芳
肖顺
杨杰
唐宏
Original Assignee
赣州德业电子科技有限公司
江西理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赣州德业电子科技有限公司, 江西理工大学 filed Critical 赣州德业电子科技有限公司
Priority to PCT/CN2019/128885 priority Critical patent/WO2021128216A1/zh
Publication of WO2021128216A1 publication Critical patent/WO2021128216A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass

Definitions

  • the invention relates to the technical field of mechanical processing, in particular to a method for processing an induction plate of a linear motor based on friction stir welding.
  • Linear motors are often used in the power system of transportation vehicles such as magnetic levitation.
  • the induction plate of the rotor part of the linear motor plays a key role in the linear motor.
  • the linear motor induction plate processing method is an explosive welding technology. This welding method has high cost and low efficiency; it needs to consume explosives and waste resources; the operation process is dangerous, and the explosion generates noise and gas, which causes environmental pollution; welding is affected by the climate environment The impact is large, often resulting in poor process stability, poor product quality consistency and other shortcomings.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings in the prior art when the linear motor induction plate is processed by explosive welding.
  • the present invention provides a method for processing the linear motor induction plate based on friction stir welding to reduce the processing cost of the linear motor induction plate. Solving the problems of complicated operation and environmental pollution, the processing method of the present invention is efficient, green and pollution-free, simple in operation, and good in welding quality, and can solve the problems of complicated operation and environmental pollution in the explosive welding of linear motor induction plates.
  • a method for processing a linear motor induction plate based on friction stir welding includes the following steps:
  • the material of the stirring head is tool steel, die steel, tungsten, molybdenum, and iridium high-strength alloys, hard alloys, ceramics, nickel-based alloys, tungsten carbide cobalt alloys, Wo-Co alloy steels and polycrystalline cubic nitrogen Any one or more of boron oxide.
  • the shaft shoulder of the stirring head is any one of a flat surface, a concave surface, a scroll shape, and a double-ring shoulder, and the shaft shoulder diameter of the stirring head is in the range of 1-100 mm.
  • the structure of the stirring needle includes any one or more of a cylindrical shape, a conical shape, a three-plane structure, and a conical thread, and the length of the stirring needle ranges from 0.1 mm to 150 mm.
  • the material of the conductive plate and the magnetically conductive substrate includes any one or more of aluminum, copper, silver, gold, titanium, lead, and steel metal materials, the length ranges from 1 mm to 8000 mm, and the width ranges from 1 ⁇ 6000mm, the thickness range is 0.1mm ⁇ 150mm.
  • the preset welding route in step S3 includes "S" linear shape, "M” linear shape, “N” linear shape, “W” linear shape, “X” linear shape, “Z” linear shape, "one” shape, wave Any one or more of the morphological routes.
  • the welding process parameters in the step S3 include:
  • the rotation speed of the stirring head ranges from 1 rpm to 10000 rpm
  • the welding speed ranges from 1 mm/min to 6000 mm/min
  • the downward pressure ranges from 0 mm to 10 mm
  • the tilt angle ranges from 0° to 15°.
  • the preset welding route should ensure that the conductive plate and the magnetically conductive substrate can be completely welded, and the distance between two adjacent welds is 1 mm-100 mm.
  • the pressing position of the stirring pin in the step S3 penetrates the conductive plate and is inserted into the magnetically conductive substrate, and the depth of insertion of the magnetically conductive substrate is 0.1 mm-30 mm.
  • step S1 alcohol and/or acetone are used to remove oily impurities.
  • the friction stir welding-based linear motor induction plate processing method provided by the present invention is highly efficient, green and pollution-free, simple in operation, and good welding quality, and can solve the problems of complicated operation and environmental pollution in the explosive welding of linear motor induction plates. It can save energy, has low labor intensity, has the advantages of low cost, high welding joint strength, easy automation and good product consistency.
  • Fig. 1 is a schematic diagram of agitation welding of a conductive plate and a magnetically conductive substrate according to a preferred embodiment of the present invention
  • Fig. 2 is a schematic diagram of an S-shaped welding route of friction stir welding according to a preferred embodiment of the present invention
  • Fig. 3 is a schematic diagram of the welding area of two adjacent welded joints in a cross section of a stirring zone according to a preferred embodiment of the present invention.
  • orientation words used such as "up, down, top, bottom” usually refer to the directions shown in the drawings or refer to vertical, vertical, or vertical directions.
  • the present invention provides a method for processing induction plates of linear motors based on friction stir welding, which includes the following steps:
  • the material of the stirring head 3 is tool steel, die steel, tungsten, molybdenum, and iridium with high strength. Any one or more of alloys, hard alloys, ceramics, nickel-based alloys, tungsten carbide cobalt alloys, Wo-Co alloy steels and polycrystalline cubic boron nitride.
  • the friction stir welding platform is placed on the welding equipment in the order of the conductive plate 1 on top and the magnetic conductive substrate 2 on the bottom. Four or more points can be used for clamping to make the conductive plate 1 and the magnetic conductive substrate 2 not loose.
  • the shaft shoulder of the stirring head 3 is any one of flat, concave, scroll-shaped, and double-ring shoulder, and the shaft shoulder diameter of the stirring head 3 is in the range of 1 mm. ⁇ 100mm.
  • the stirring needle is inserted into the induction plate of the linear motor to be welded while rotating, and the stirring head 3 continuously rotates during the pressing stage.
  • the stirring needle penetrates the conductive plate 1 and inserts into the magnetic substrate 2, and the linear motor induces under the pressure Frictional heat is generated between the plate and the stirring head 3 to soften the surrounding materials.
  • the stirring head 3 is further pressed into the workpiece. When the stirring head is pressed down, the pressure of the stirring head 3 is maintained and the shaft shoulder of the stirring head 3 contacts the surface of the induction plate of the linear motor. Rotate for a certain time.
  • the structure of the stirring needle includes any one or more of a cylindrical shape, a conical shape, a three-plane structure, and a conical thread, and the length of the stirring needle ranges from 0.1 mm to 150 mm. .
  • the material of the conductive plate 1 and the magnetically conductive substrate 2 includes any one or more of aluminum, copper, silver, gold, titanium, lead, and steel.
  • the range is 1mm ⁇ 8000mm, the width range is 1 ⁇ 6000mm, and the thickness range is 0.1mm ⁇ 150mm.
  • the preset welding route 5 in step S3 includes "S" linear shape, "M” linear shape, “N” linear shape, “W” linear shape, “X” linear shape, "Z” Any one or more of linear, "one” shape, and wavy route.
  • the welding process parameters in step S3 include:
  • the rotation speed of the stirring head 3 ranges from 1 rpm to 10000 rpm, the welding speed ranges from 1 mm/min to 6000 mm/min, the downward pressure range is from 0 mm to 10 mm, and the inclination angle ranges from 0° to 15°.
  • the preset welding route 5 should ensure that the conductive plate 1 and the magnetically conductive substrate 2 can be completely welded, and there is no unwelded area and/or incomplete welded area, adjacent The distance between the two welds is 1mm ⁇ 100mm. Two adjacent welding joints are welded to form a stirring zone welding area 6 and an adjacent welding area 7, as shown in FIG. 3.
  • the stirring needle completes the welding of the conductive plate 1 and the magnetically conductive substrate 2 according to the preset welding route 5.
  • the design of the preset welding circuit 5 should ensure that the conductive plate 1 and the magnetically conductive substrate 2 are completely welded, and no unsoldered or incomplete soldering can be left
  • the stirring head 3 is withdrawn from the linear motor induction plate. After the welded linear motor induction plate is cooled, the clamping is removed, and the welded linear motor induction plate is cut as necessary to obtain a straight line of the required size Motor induction board.
  • the pressing position of the stirring needle in step S3 penetrates the conductive plate 1 and is inserted into the magnetically conductive substrate 2, and the depth of insertion into the magnetically conductive substrate 2 is 0.1 mm ⁇ 30mm.
  • step S1 alcohol and/or acetone are used to remove oily impurities.
  • the above-mentioned processing method based on friction stir welding linear motor induction plate is adopted, and the process parameters include: the material of the stirring head 3 is a nickel-based alloy, the shaft shoulder diameter of the stirring head 3 is 20mm, and the length of the stirring needle is 10mm.
  • the welding process The inclination angle of the middle stirring head 2 is 1.5°, the reduction amount of the stirring head 3 is 0.2 mm, the speed of the stirring head 3 is 1180 rpm, and the welding speed is 100 mm/min.
  • the material of the conductive plate 1 is pure aluminum 1050 aluminum plate
  • the material of the magnetically permeable substrate 2 is 45 steel steel plate
  • the size of the conductive plate 1 and the magnetically permeable substrate 2 are both 1250mm ⁇ 500mm, and the thickness is 9mm;
  • the process steps include:
  • the stirring needle is inserted into the induction plate of the linear motor to be welded while rotating.
  • the stirring head 3 continuously rotates.
  • the stirring needle penetrates the conductive plate 1 and is inserted into the magnetically permeable substrate 2 under pressure. Frictional heat is generated between the induction plate of the linear motor to be welded and the stirring head 3 to soften the surrounding materials.
  • the stirring head 3 is further pressed into the workpiece.
  • the pressing amount of the stirring head 3 is 0.2mm.
  • the stirring needle completes the welding of the conductive plate 1 and the magnetically conductive substrate 2 according to the S-shaped preset welding route 5.
  • the centerline spacing of the two welds is 16mm to ensure that there will be no unwelded or incompletely welded areas, and the welding is completed After that, the stirring head 3 is withdrawn from the linear motor induction plate, and the welded linear motor induction plate is cooled, and the clamping is removed.
  • the welded linear motor induction board is cut, and the cutting width in both the length direction and the width direction is 20mm to obtain a linear motor induction board with a required size of 1230mm ⁇ 480mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

一种基于搅拌摩擦焊的直线电机感应板加工方法,包括清理待焊接的导电板(1)和导磁基板(2),将导电板和导磁基板固定装夹,选择搅拌头(3)和焊接工艺参数,然后将搅拌针在旋转的同时插入待焊接的直线电机感应板中,搅拌头按照预设焊接路线(5)进行焊接,完成焊接后按照尺寸要求进行裁剪,完成整个加工过程。该方法基于搅拌摩擦技术对直线电机感应板进行加工,克服了爆炸焊接加工直线电机感应板的诸多不足,降低直线电机感应板的加工成本,解决了操作复杂危险和环境污染的问题,具有节约能源、绿色无污染、劳动强度小、成本低、易于实现自动化和产品一致性好的优点。

Description

基于搅拌摩擦焊的直线电机感应板加工方法 技术领域
本发明涉及机械加工技术领域,具体的涉及一种基于搅拌摩擦焊的直线电机感应板加工方法。
背景技术
直线电机常用于磁悬浮等运输工具的动力系统,作为直线电机转子部分的感应板,在直线电机中起着关键性的作用。现有技术中直线电机感应板加工方法为爆炸焊接技术,该焊接方法存在成本高、效率低;需要消耗炸药,浪费资源;操作过程危险,爆炸产生噪声和气体,导致环境污染;焊接受气候环境影响大,常导致工艺稳定性差,产品质量一致性差等缺点。
发明内容
本发明的目的是为了克服现有技术中爆炸焊接加工直线电机感应板时存在的上述缺点,本发明提供一种基于搅拌摩擦焊的直线电机感应板加工方法,降低直线电机感应板的加工成本,解决操作复杂危险,环境污染问题,本发明加工方法高效绿色无污染,操作简单,焊接质量良好,能够解决直线电机感应板爆炸焊接加工的操作复杂危险,环境污染等问题。
为了实现上述目的,本发明采用以下技术方案:
一种基于搅拌摩擦焊的直线电机感应板加工方法,包括以下步骤:
S1、将待焊的导电板和导磁基板的接触表面及周围清理干净,去除表面的氧化膜;
S2、在搅拌摩擦焊焊接平台上将所述导电板和所述导磁基板固定装夹;
S3、选择搅拌头和焊接工艺参数,然后将搅拌针在旋转的同时插入待焊接的直线电机感应板,同时通过施加顶端压力使得搅拌针穿透所述导电板并插入所述导磁基板中,在压力作用下待焊接的直线电机感应板与所述搅拌头之间产生摩擦热软化周围材料,所述搅拌头按照预设的焊接路线进行导电板和导磁基板的焊接;
S4、完成焊接后将所述搅拌头从直线电机感应板中退出,待直线电机感应板冷却后去除装夹,完成直线电机感应板的焊接;
S5、对焊接完成的直线电机感应板按照尺寸要求进行裁剪,完成整个加工过程。
优选地,所述搅拌头的材质为工具钢,模具钢,钨、钼、铱高强度合金,硬质合金,陶瓷、镍基合金,碳化钨钴合金,Wo-Co合金钢和多晶立方氮化硼中的任意一种或多种。
优选地,所述搅拌头的轴肩为平面、凹面、涡卷形、双圆环轴肩中的任意一种,所述搅拌头的轴肩直径范围为1-100mm。
优选地,所述搅拌针的结构包括圆柱形、圆锥形、三平面结构、圆锥螺纹中的任意一种或者多种,所述搅拌针的长度范围为0.1mm-150mm。
优选地,所述导电板和所述导磁基板的材质包括铝、铜、银、金、钛、铅、钢金属材料中的任意一种或者多种,长度范围为1mm~8000mm,宽度范围为1~6000mm,厚度范围为0.1mm~150mm。
优选地,所述步骤S3中的预设焊接路线包括“S”线形、“M”线形、“N”线形、“W”线形、“X”线形、“Z”线形、“一”字形、波浪形路线中的任意一种或多种。
优选地,所述步骤S3中的焊接工艺参数包括:
所述搅拌头旋转速度范围为1rpm~10000rpm,焊接速度范围为1mm/min~6000mm/min,下压量范围为0mm~10mm,倾角范围为0°~15°。
优选地,所述预设焊接路线应保证所述导电板和所述导磁基板能够完全焊接,相邻两焊缝之间的距离为1mm~100mm。
优选地,所述步骤S3中搅拌针的下压位置穿透所述导电板并插入所述导磁基板中,插入所述导磁基板的深度为0.1mm~30mm。
优选地,所述步骤S1中利用酒精和/或丙酮去除油污杂质。
通过上述技术方案,本发明提供的基于搅拌摩擦焊的直线电机感应板加工方法高效绿色无污染,操作简单,焊接质量良好,能够解决直线电机感应板爆炸焊接加工的操作复杂危险、环境污染等问题,能够节约能源,劳动强度小,具有成本低、焊接接头强度高、易于实现自动化和产品一致性好的优点。
附图说明
附图是用来提供对本发明实施方式的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施方式,但并不构成对本发明实施方式的限制。在附图中:
图1为根据本发明一种优选实施方式提供的导电板和导磁基板搅拌焊接示意图;
图2为根据本发明一种优选实施方式提供的搅拌摩擦焊S型焊接路线示意图;
图3为根据本发明一种优选实施方式提供的搅拌区横截面的两相邻焊接接头焊接区域示意图。
附图标记说明
1-导电板,2-导磁基板,3-搅拌头,4-装夹点,5-预设焊接路线,6-搅拌区焊接区域,7-相邻焊接区。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施方式,并不用于限制本发明实施方式。
在本申请实施方式中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的或者是针对竖直、垂直或重力方向上而言的各部件相互位置关系描述用词。
参阅图1-图3所示,本发明提供了一种基于搅拌摩擦焊的直线电机感应板加工方法,包括以下步骤:
S1、将待焊的导电板1和导磁基板2的接触表面及周围清理干净,去除表面的氧化膜;
S2、在搅拌摩擦焊焊接平台上将所述导电板1和所述导磁基板2固定装夹;
S3、选择搅拌头3和焊接工艺参数,然后将搅拌针在旋转的同时插入待焊接的直线电机感应板,同时通过施加顶端压力使得搅拌针穿透所述导电板1并插入所述导磁基板2中,在压力作用下待焊接的直线电机感应板与所述搅拌头3之间产生摩擦热软化周围材料,所述搅拌头3按照预设的焊接路线5进行导电板1和导磁基板2的焊接;
S4、完成焊接后将所述搅拌头3从直线电机感应板中退出,待直线电机感应板冷却后去除装夹,完成直线电机感应板的焊接;
S5、将焊接完成的直线电机感应板按照尺寸要求进行裁剪,完成整个加工过程。
选择合适的搅拌头3,使得搅拌头3具有较高的硬度和韧性,根据本发明的一种优选实施方式,所述搅拌头3的材质为工具钢,模具钢,钨、钼、铱高强度合金,硬质合金,陶瓷、镍基合金,碳化钨钴合金,Wo-Co合金钢和多晶立方氮化硼中的任意一种或多种。
在搅拌摩擦焊焊接平台上按照导电板1在上和导磁基板2在下的顺序放在焊接设备上,可利用四点或多点装夹使得导电板1和导磁基板2固定不松动。
根据本发明的一种优选实施方式,所述搅拌头3的轴肩为平面、凹面、涡卷形、双圆环轴肩中的任意一种,所述搅拌头3的轴肩直径 范围为1mm~100mm。
搅拌针在旋转的同时插入待焊直线电机感应板,在下压阶段搅拌头3不断旋转,通过施加顶端压力,搅拌针穿透导电板1并且插入导磁基板2中,在压力作用下直线电机感应板与搅拌头3之间产生摩擦热软化周围材料,搅拌头3进一步压入工件,当搅拌头完成下压后,保持搅拌头3压力并使搅拌头3轴肩接触直线电机感应板的表面继续旋转一定时间。
根据本发明的一种优选实施方式,所述搅拌针的结构包括圆柱形、圆锥形、三平面结构、圆锥螺纹中的任意一种或者多种,所述搅拌针的长度范围为0.1mm~150mm。
根据本发明的一种优选实施方式,所述导电板1和所述导磁基板2的材质包括铝、铜、银、金、钛、铅、钢金属材料中的任意一种或者多种,长度范围为1mm~8000mm,宽度范围为1~6000mm,厚度范围为0.1mm~150mm。
根据本发明的一种优选实施方式,所述步骤S3中的预设焊接路线5包括“S”线形、“M”线形、“N”线形、“W”线形、“X”线形、“Z”线形、“一”字形、波浪形路线中的任意一种或多种。
根据本发明的一种优选实施方式,所述步骤S3中的焊接工艺参数包括:
所述搅拌头3的旋转速度范围为1rpm~10000rpm,焊接速度范围为1mm/min~6000mm/min,下压量范围为0mm~10mm,倾角范围为0°~15°。
根据本发明的一种优选实施方式,所述预设焊接路线5应保证所述导电板1和所述导磁基板2能够完全焊接,无未焊到区域和/或未焊透区域,相邻两焊缝之间的距离为1mm~100mm。两相邻焊接接头焊接形成搅拌区焊接区域6和相邻焊接区7,参阅图3所示。
搅拌针按照预设焊接路线5完成导电板1和导磁基板2的焊接,预设焊接线路5的设计应保证导电板1与导磁基板2完全焊接,不能留下未焊到或未焊透区域,完成焊接后,搅拌头3从直线电机感应板中退出,待已焊的直线电机感应板冷却后去除装夹,将完成焊接的直线电机感应板进行必要的裁剪以得到所需尺寸的直线电机感应板。
根据本发明的一种优选实施方式,所述步骤S3中搅拌针的下压位置穿透所述导电板1并插入所述导磁基板2中,插入所述导磁基板2的深度为0.1mm~30mm。
根据本发明的一种优选实施方式,所述步骤S1中利用酒精和/或丙酮去除油污杂质。
以下结合实施例对本发明进一步详细说明。
实施例
本实施例中采用上述基于搅拌摩擦焊直线电机感应板的加工方法,其中工艺参数包括:搅拌头3的材质为镍基合金,搅拌头3轴肩直径为20mm,搅拌针长为10mm,焊接过程中搅拌头2的倾斜角为1.5°,搅拌头3压下量为0.2mm,搅拌头3转速为1180rpm、焊速为100mm/min。
导电板1的材质为纯铝1050铝板,导磁基板2的材质为45号钢钢板,导电板1和导磁基板2的尺寸大小均为1250mm×500mm,厚度均为9mm;
工艺步骤包括:
将待焊导电板1和导磁基板2接触表面及周围清理干净,去除表面的氧化膜,利用酒精或丙酮去除油污杂质;
在搅拌摩擦焊焊接平台上按照导电板1在上、导磁基板2在下的顺序放在搅拌摩擦焊接专机上,采用多点对称装夹,长度方向每间隔250mm设置一个装夹点4,共10个装夹点4,使得导电板1和导磁基板2固定不松动;
搅拌针在旋转的同时插入待焊接的直线电机感应板,在下压阶段,搅拌头3不断旋转,通过施加顶端压力,搅拌针穿透导电板1,并且插入导磁基板2中,在压力作用下待焊接的直线电机感应板与搅拌头3之间产生摩擦热,软化周围材料,搅拌头3进一步压入工件,搅拌头3压下量为0.2mm,当搅拌头3完成下压后,保持搅拌头3压力并使搅拌头3的轴肩接触待焊接的直线电机感应板表面,继续旋转一定时间;
搅拌针按照S型的预设焊接路线5完成导电板1和导磁基板2的焊接,两次焊接的焊缝中心线间距为16mm,保证不会出现未焊接或未焊透的区域,完成焊接后,搅拌头3从直线电机感应板中退出,待已焊的直线电机感应板冷却,去除装夹。
将焊接完成的直线电机感应板进行裁剪,在长度方向和宽度方向 的裁剪宽度都为20mm,得到所需尺寸为1230mm×480mm的直线电机感应板。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个具体技术特征以任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。但这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (10)

  1. 一种基于搅拌摩擦焊的直线电机感应板加工方法,其特征在于,包括以下步骤:
    S1、将待焊的导电板(1)和导磁基板(2)的接触表面及周围清理干净,去除表面的氧化膜;
    S2、在搅拌摩擦焊焊接平台上将所述导电板(1)和所述导磁基板(2)固定装夹;
    S3、选择搅拌头(3)和焊接工艺参数,然后将搅拌针在旋转的同时插入待焊接的直线电机感应板,同时通过施加顶端压力使得搅拌针穿透所述导电板(1)并插入所述导磁基板(2)中,在压力作用下待焊接的直线电机感应板与所述搅拌头(3)之间产生摩擦热软化周围材料,所述搅拌头(3)按照预设的焊接路线(5)进行导电板(1)和导磁基板(2)的焊接;
    S4、完成焊接后将所述搅拌头(3)从直线电机感应板中退出,待直线电机感应板冷却后去除装夹,完成直线电机感应板的焊接;
    S5、将焊接完成的直线电机感应板按照尺寸要求进行裁剪,完成整个加工过程。
  2. 根据权利要求1所述的直线电机感应板加工方法,其中,所述搅拌头(3)的材质为工具钢,模具钢,钨、钼、铱高强度合金,硬质合金,陶瓷、镍基合金,碳化钨钴合金,Wo-Co合金钢和多晶立方氮化硼中的任意一种或多种。
  3. 根据权利要求1所述的直线电机感应板加工方法,其中,所述搅拌头(3)的轴肩为平面、凹面、涡卷形和双圆环轴肩中的任意一种,所述搅拌头(3)的轴肩直径范围为1-100mm。
  4. 根据权利要求1所述的直线电机感应板加工方法,其中,所述搅拌针的结构包括圆柱形、圆锥形、三平面结构和圆锥螺纹中的任意一种或者多种,所述搅拌针的长度范围为0.1mm~150mm。
  5. 根据权利要求1所述的直线电机感应板加工方法,其中,所述导电板(1)和所述导磁基板(2)的材质包括铝、铜、银、金、钛、铅、钢金属材料中的任意一种或者多种,长度范围为1mm~8000mm,宽度范围为1~6000mm,厚度范围为0.1mm~150mm。
  6. 根据权利要求1所述的直线电机感应板加工方法,其中,所述步骤S3中预设的焊接路线(5)包括“S”线形、“M”线形、“N”线形、“W”线形、“X”线形、“Z”线形、“一”字形、波浪形路线中的任意一种或多种。
  7. 根据权利要求1所述的直线电机感应板加工方法,其中,所述步骤S3中的焊接工艺参数包括:
    所述搅拌头(3)旋转速度范围为1rpm~10000rpm,焊接速度范围为1mm/min~6000mm/min,下压量范围为0mm~10mm,倾角范围为0°~15°。
  8. 根据权利要求1或6所述的直线电机感应板加工方法,其中,所述焊接路线(5)能够使得所述导电板(1)和所述导磁基板(2)完全焊接,相邻两焊缝之间的距离为1mm~100mm。
  9. 根据权利要求1所述的直线电机感应板加工方法,其中,所述步骤S3中搅拌针的下压位置穿透所述导电板(1)并插入所述导磁基板(2)中,插入所述导磁基板(2)的深度为0.1mm~30mm。
  10. 根据权利要求1所述的直线电机感应板加工方法,其中,所述步骤S1中利用酒精和/或丙酮去除油污杂质。
PCT/CN2019/128885 2019-12-26 2019-12-26 基于搅拌摩擦焊的直线电机感应板加工方法 WO2021128216A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128885 WO2021128216A1 (zh) 2019-12-26 2019-12-26 基于搅拌摩擦焊的直线电机感应板加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128885 WO2021128216A1 (zh) 2019-12-26 2019-12-26 基于搅拌摩擦焊的直线电机感应板加工方法

Publications (1)

Publication Number Publication Date
WO2021128216A1 true WO2021128216A1 (zh) 2021-07-01

Family

ID=76573818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128885 WO2021128216A1 (zh) 2019-12-26 2019-12-26 基于搅拌摩擦焊的直线电机感应板加工方法

Country Status (1)

Country Link
WO (1) WO2021128216A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222925A (ja) * 2006-02-24 2007-09-06 Mitsubishi Heavy Ind Ltd 摩擦攪拌接合方法
CN103008897A (zh) * 2012-12-31 2013-04-03 中国科学院半导体研究所 一种结合激光和搅拌摩擦焊的复合焊接方法
CN108296628A (zh) * 2018-05-02 2018-07-20 吉林大学 一种搅拌摩擦制备大尺寸梯度功能材料方法
CN108687159A (zh) * 2018-05-14 2018-10-23 浙江众泰汽车制造有限公司 一种铝镁合金复合板材及其制备方法
CN110587111A (zh) * 2019-08-26 2019-12-20 东北大学秦皇岛分校 一种基于v型梯度界面焊接的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222925A (ja) * 2006-02-24 2007-09-06 Mitsubishi Heavy Ind Ltd 摩擦攪拌接合方法
CN103008897A (zh) * 2012-12-31 2013-04-03 中国科学院半导体研究所 一种结合激光和搅拌摩擦焊的复合焊接方法
CN108296628A (zh) * 2018-05-02 2018-07-20 吉林大学 一种搅拌摩擦制备大尺寸梯度功能材料方法
CN108687159A (zh) * 2018-05-14 2018-10-23 浙江众泰汽车制造有限公司 一种铝镁合金复合板材及其制备方法
CN110587111A (zh) * 2019-08-26 2019-12-20 东北大学秦皇岛分校 一种基于v型梯度界面焊接的方法

Similar Documents

Publication Publication Date Title
CN102120287B (zh) 一种嵌入式搅拌摩擦缝焊方法
CN103962715B (zh) 一种垂直补偿的搅拌摩擦焊接工艺方法
Fei et al. Effect of pre-hole offset on the property of the joint during laser-assisted friction stir welding of dissimilar metals steel and aluminum alloys
US20060006157A1 (en) Method and apparatus for repairing or building up surfaces on a workpiece while the workpiece is mounted on a machine tool
CN102581471A (zh) 一种轴肩固定且搅拌针旋转的超声波辅助半固态搅拌摩擦焊接方法
CN102267006A (zh) 接合方法及摩擦搅拌方法
CN113714622B (zh) 一种中厚板异质材料搅拌摩擦双面z型对接和搭接复合焊接方法
CN102500915A (zh) 一种采用t型填充块与无针搅拌头填充搅拌摩擦焊匙孔的方法
CN110524105B (zh) 一种用于摩擦焊的旋转焊具及焊接方法
JP2007175764A (ja) 摩擦攪拌接合工具及びこれを用いた接合方法
JP2000246465A (ja) 摩擦撹拌接合用ツール
CN103894726A (zh) 背部增厚消除弱连接且适应板厚变化的搅拌摩擦焊方法
CN103894725A (zh) 一种利用附加顶板产生余高的搅拌摩擦焊接的方法
CN102500900A (zh) 异种金属板材松衬的制备方法
CN106513981A (zh) 一种搅拌摩擦焊专用垫板和使用该垫板的焊接方法
CN109623132A (zh) 一种提高7系铝合金搅拌摩擦焊接头性能的装置和方法
US8220694B2 (en) Friction stir welding method and friction stir welded housing
Joshi et al. Studies on tool shoulder diameter of dissimilar friction stir welding copper to stainless steel
Koprivica et al. Analysis of welding of aluminium alloy AA6082-T6 by TIG, MIG and FSW processes from technological and economic aspect
WO2021128216A1 (zh) 基于搅拌摩擦焊的直线电机感应板加工方法
CN211305187U (zh) 一种用于摩擦焊的旋转焊具
Karimi-Dermani et al. A novel approach to dissimilar joining of AA7075 to AZ31B by friction stir soldering using Sn intermediate layer
CN110977360A (zh) 基于搅拌摩擦焊的直线电机感应板加工方法
JP2012236205A (ja) 金型の補修方法
Yusof et al. Ultra-thin Friction Stir Welding (FSW) between aluminum alloy and copper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957660

Country of ref document: EP

Kind code of ref document: A1