WO2021125864A1 - 방향성 전기강판 및 그의 제조방법 - Google Patents

방향성 전기강판 및 그의 제조방법 Download PDF

Info

Publication number
WO2021125864A1
WO2021125864A1 PCT/KR2020/018618 KR2020018618W WO2021125864A1 WO 2021125864 A1 WO2021125864 A1 WO 2021125864A1 KR 2020018618 W KR2020018618 W KR 2020018618W WO 2021125864 A1 WO2021125864 A1 WO 2021125864A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
grain
annealing
electrical steel
oriented electrical
Prior art date
Application number
PCT/KR2020/018618
Other languages
English (en)
French (fr)
Inventor
고현석
정홍욱
박세민
서진욱
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP20902524.6A priority Critical patent/EP4079873A4/en
Priority to US17/787,111 priority patent/US20220389532A1/en
Priority to CN202080089003.0A priority patent/CN114867872A/zh
Priority to JP2022538348A priority patent/JP2023508029A/ja
Publication of WO2021125864A1 publication Critical patent/WO2021125864A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • It relates to a grain-oriented electrical steel sheet and a method for manufacturing the same. Specifically, by including a plurality of cold rolling and decarburization annealing process, it relates to a grain-oriented electrical steel sheet having improved magnetism and a method of manufacturing the same.
  • the grain-oriented electrical steel sheet is a soft magnetic material with excellent magnetic properties in the rolling direction, which is made up of grains having a so-called Goss orientation in which the crystal orientation of the steel sheet is ⁇ 110 ⁇ 001>.
  • the grain-oriented electrical steel sheet is manufactured by heating the slab and then rolling to a final thickness through hot rolling, hot rolling sheet annealing, and cold rolling, and then performing primary recrystallization annealing and high temperature annealing to form secondary recrystallization.
  • the secondary recrystallization annealing process of grain-oriented electrical steel sheet requires a low temperature increase rate and a long period of purifying annealing at high temperature, so it can be said that it is a process that consumes a lot of energy. Since the grain-oriented electrical steel sheet having excellent magnetic properties is manufactured by forming secondary recrystallization through this extreme process, the following difficulties occur in the process.
  • a method of manufacturing a grain-oriented electrical steel sheet comprises the steps of: manufacturing a hot-rolled steel sheet by hot rolling a slab; annealing the hot-rolled steel sheet; First cold-rolling the hot-rolled steel sheet annealed by the hot-rolled sheet; Primary decarburization annealing of the primary cold-rolled steel sheet; Secondary cold rolling of the decarburization annealing is completed; Secondary decarburization annealing of the steel sheet on which the secondary cold rolling has been completed; and continuously annealing the secondary decarburization-annealed steel sheet.
  • a temperature range of 950 to 1000° C. may be heated at a rate of 10° C./sec or less.
  • the slab is in wt%, Si: 1.0% to 4.0%, C: 0.1% to 0.4%, and the balance may include Fe and unavoidable impurities.
  • the slab may further include Mn: 0.1 wt% or less and S: 0.005 wt% or less.
  • the annealing of the hot-rolled sheet may be annealed at a temperature of 850° C. to 1000° C. and a dew point temperature of 70° C. or less.
  • the primary decarburization annealing may be annealed at a temperature of 850°C to 1000°C and a dew point temperature of 50°C to 70°C.
  • the primary decarburization annealing may be annealed in an austenite single phase region or a region in which a composite phase of ferrite and austenite exists.
  • the average diameter of the crystal grains may be 150 to 250 ⁇ m.
  • the first decarburization annealing step and the second cold rolling step may be repeated two or more times.
  • the secondary decarburization annealing may be annealed at a temperature of 850°C to 1000°C and a dew point temperature of 50°C to 70°C.
  • Secondary decarburization annealing may be annealed for 30 seconds to 5 minutes.
  • the continuous annealing may be annealed at a temperature of 1000°C to 1200°C and a dew point temperature of -20°C or less.
  • Continuous annealing may be annealed for 30 seconds to 5 minutes.
  • the continuous annealing may include primary annealing at 1000° C. to 1100° C. and secondary annealing at 1130 to 1200° C.
  • the fraction of crystal grains having a grain size of 50 ⁇ m to 5000 ⁇ m among all crystal grains may be 80% or more.
  • the ⁇ 100> direction may be 30% or less of the crystal grains forming an angle of 10 to 15 ⁇ with the rolling direction (RD direction) of the steel sheet.
  • Grain-oriented electrical steel sheet according to an embodiment of the present invention by weight, Si: 1.0% to 4.0%, C: 0.005% or less (excluding 0%) and the remainder may include Fe and unavoidable impurities.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention may further include Mn: 0.1 wt% or less and S: 0.005 wt% or less.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention can form a plurality of grains in the ⁇ 100> direction parallel to the rolling direction (RD direction) of the steel sheet while using normal crystal growth, and has excellent sharpness of 5° or less. It has excellent magnetic properties due to the high fraction of crystal grains.
  • the purification annealing time may be relatively shortened, and productivity may be improved.
  • FIG. 1 is a photograph of the surface of the grain-oriented electrical steel sheet prepared in Inventive Material 10 analyzed by EBSD.
  • first, second and third are used to describe, but are not limited to, various parts, components, regions, layers and/or sections. These terms are used only to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first part, component, region, layer or section described below may be referred to as a second part, component, region, layer or section without departing from the scope of the present invention.
  • % means weight %, and 1 ppm is 0.0001 weight %.
  • the meaning of further including the additional element means that the remaining iron (Fe) is included by replacing the additional amount of the additional element.
  • a method of manufacturing a grain-oriented electrical steel sheet comprises the steps of: manufacturing a hot-rolled steel sheet by hot rolling a slab; annealing the hot-rolled steel sheet; First cold-rolling the hot-rolled steel sheet annealed by the hot-rolled sheet; Primary decarburization annealing of the primary cold-rolled steel sheet; Secondary cold rolling of the decarburization annealing is completed; Secondary decarburization annealing of the steel sheet on which the secondary cold rolling has been completed; and continuously annealing the secondary decarburization-annealed steel sheet.
  • the slab is hot rolled.
  • Silicon (Si) improves the iron loss by lowering the magnetic anisotropy of the electrical steel sheet and increasing the specific resistance.
  • Si content is less than 1.0% by weight, iron loss is inferior, and when it is more than 4.0% by weight, brittleness increases. Therefore, the content of Si in the grain-oriented electrical steel sheet after the slab and final annealing step may be 1.0 to 4.0 wt%. More specifically, the content of Si may be 1.5 to 3.5 wt%.
  • the C content of the slab may be 0.1 to 0.4 wt% . More specifically, the content of C in the slab may be 0.15 to 0.3 wt%.
  • the carbon content in the grain-oriented electrical steel sheet finally manufactured after the continuous annealing step in which decarburization is completed may be 0.0050 wt % or less. More specifically, it may be 0.002 wt% or less.
  • Mn and S form MnS precipitates and prevent the growth of Goss grains that diffuse to the center during the decarburization process. Therefore, it is preferable that Mn and S are not added.
  • Mn and S in the grain-oriented electrical steel sheet after the slab and final annealing step can be controlled to Mn: 0.1 wt% or less, S: 0.005 wt% or less.
  • the balance contains Fe and unavoidable impurities.
  • the unavoidable impurities are impurities that are mixed in the steelmaking step and the manufacturing process of the grain-oriented electrical steel sheet, which are widely known in the art, and thus a detailed description thereof will be omitted.
  • components such as Al, N, Ti, Mg, and Ca react with oxygen in the steel to form oxides, so it is necessary to strongly suppress them, so it can be managed at 0.005 wt% or less for each component.
  • the addition of elements other than the alloy components described above is not excluded, and may be included in various ways within the scope of not impairing the technical spirit of the present invention. When additional elements are included, they are included by replacing the remainder of Fe.
  • the slab is in weight %, Si: 1.0% to 4.0%, C: 0.1% to 0.4%, and the balance may be made of Fe and unavoidable impurities.
  • the slab can be heated before hot rolling.
  • Slab heating temperature may be 1100 °C to 1350 °C higher than the normal heating temperature.
  • the hot-rolled structure is coarsened, which adversely affects the magnetism.
  • the carbon content of the slab is relatively high, so even if the slab reheating temperature is high, the hot-rolled structure is not coarsened, and by reheating at a higher temperature than usual, when hot rolling more advantageous
  • Hot rolling can be manufactured into a hot-rolled sheet having a thickness of 1.5 to 4.0 mm by hot rolling so that it can be manufactured to a final product thickness by applying an appropriate rolling rate in the final cold rolling step.
  • the hot-rolling temperature or cooling temperature is not particularly limited, but as an example of excellent magnetic properties, the hot-rolling end temperature is 950° C. or less, and the cooling is quenched by water to be wound at 600° C. or less.
  • the hot-rolled steel sheet is annealed.
  • the hot-rolled sheet annealing may include a decarburization process. Specifically, hot-rolled sheet annealing may be annealed at a temperature of 850 °C to 1000 °C and a dew point temperature of 70 °C or less. After the annealing described above, it may be further annealed at a temperature of 1000 to 1200 °C and a dew point temperature of 0 °C or less. It can be pickled after hot-rolled sheet annealing.
  • a cold-rolled steel sheet is manufactured by performing primary cold rolling.
  • the ⁇ 100> direction of the surface layer generated by decarburization annealing and cold rolling without using abnormal grain growth of Goss orientation grains is the rolling direction (RD direction) of the steel sheet.
  • RD direction rolling direction
  • a plurality of Goss textures may be formed in the surface layer portion. More specifically, it may be 55% to 65%.
  • the cold-rolled steel sheet is subjected to primary decarburization annealing.
  • the step of decarburization annealing may be performed in an austenite single phase region or a region in which a composite phase of ferrite and austenite exists. Specifically, it may be annealed at a temperature of 850 °C to 1000 °C and a dew point temperature of 50 °C to 70 °C.
  • the atmosphere may be a mixed gas atmosphere of hydrogen and nitrogen.
  • the amount of decarburization during decarburization annealing may be 0.0300 wt% to 0.0600 wt%. After the annealing described above, it may be further annealed at a temperature of 1000 to 1200 °C and a dew point temperature of 0 °C or less.
  • the size of the crystal grains on the surface of the electrical steel sheet grows coarsely, but the crystal grains inside the electrical steel sheet remain as a fine structure.
  • the average diameter of the grains may be 150 ⁇ m to 250 ⁇ m.
  • the crystal grains are surface ferrite grains.
  • the diameter of the crystal grain means a diameter of the circle assuming an imaginary circle having the same area as the crystal grain.
  • the reference plane is a plane parallel to the rolling plane (ND plane).
  • the above-described primary decarburization annealing and secondary cold rolling may be repeated two or more times. By repeating two or more times, a plurality of textures in which the ⁇ 100> direction is parallel to the rolling direction (RD direction) of the steel sheet may be formed in the surface layer portion.
  • the secondary decarburization annealing is annealed at a temperature of 850°C to 1000°C and a dew point temperature of 50°C to 70°C.
  • the cold-rolled sheet before the secondary annealing is in a state in which the carbon content is 40% to 60% of the carbon weight of the slab due to decarburization annealing. Therefore, in the second decarburization annealing step, the crystal grains formed in the surface layer are diffused to the inside as carbon escapes.
  • decarburization may be performed so that the amount of carbon in the steel sheet is 0.005 wt% or less.
  • Secondary decarburization annealing may be annealed for 30 seconds to 5 minutes. Decarburization can be sufficiently achieved in the time range described above.
  • a temperature range of 950 to 1000° C. may be heated at a rate of 10° C./sec or less.
  • the temperature increase rate By controlling the temperature increase rate to be low in this way, there is an effect of increasing the selectivity of the orientation for easy crystal growth in the crystal growth process after the decarburization annealing is finished. The reason is that, when a high temperature increase rate is applied, sufficient time for selective growth due to the specificity of the crystal orientation of each crystal grain cannot be given due to the rapid supply of thermal energy, so that all crystal grains of various orientations grow. .
  • the components of the present invention it is easy to grow crystal grains in the ⁇ 100> direction parallel to the rolling direction (RD direction) of the steel sheet, so an appropriate temperature increase rate for the selective growth is required.
  • a plurality of grains having a deviation of 5° or less among grains whose ⁇ 100> direction is parallel to the rolling direction (RD direction) of the steel sheet may be formed.
  • relatively few grains forming an angle of 10 to 15° among the ⁇ 100>//RD grains may be formed.
  • a temperature range of 950 to 1000° C. may be heated at a rate of 3 to 8° C./sec.
  • the continuous annealing may be annealed at a temperature of 1000°C to 1200°C and a dew point temperature of -20°C or less.
  • the purpose of the continuous annealing step is to decarburize the carbon in the steel and then grow the crystal grains to a certain size or more. This is because the fraction of grains whose ⁇ 100> direction is parallel to the rolling direction (RD direction) of the steel sheet continuously increases through the process of decarburization and grain growth immediately thereafter.
  • the ⁇ 100> direction may be sufficiently achieved to grow crystal grains parallel to the rolling direction (RD direction) of the steel sheet.
  • the continuous annealing may include primary annealing at 1000° C. to 1100° C. and secondary annealing at 1130 to 1200° C.
  • the first annealing step and the second annealing step may be performed for 30 seconds to 2 minutes, respectively.
  • the two-step cracking temperature to the continuous annealing step, there is an advantage in lowering the average temperature increase rate.
  • the ⁇ 100> direction is changed at the time when the selective growth of grains in the ⁇ 100> direction due to decarburization annealing is parallel to the rolling direction (RD direction) of the steel sheet.
  • RD direction rolling direction
  • the ratio (D2/D1) of the diameter (D1) of the circumscribed circle to the diameter (D2) of the inscribed circle among all the crystal grains is 90% or more. This is because, as described above, the secondary decarburization annealing and continuous annealing were performed for a short time. In the case of annealing for 1 hour or more through batch annealing as in the prior art, the diameter D1 of the circumscribed circle is significantly larger than that of the inscribed circle D2, and the ratio cannot be more than 0.4.
  • the circumscribed circle means the smallest circle among the virtual circles surrounding the outside of the crystal grain
  • the inscribed circle means the largest circle among the virtual circles included in the inside of the crystal grain.
  • the ratio (D2/D1) of the diameter (D1) of the circumscribed circle to the diameter (D2) of the inscribed circle among all the crystal grains may be 95% or more of the crystal grains of 0.4 or more. More specifically, 95% to 99% of grains having a ratio (D2/D1) of a diameter (D1) of a circumscribed circle and a diameter (D2) of an inscribed circle of 0.4 or more among all crystal grains.
  • a plurality of crystal grains having the ⁇ 100> orientations accurately arranged may be formed, thereby contributing to the improvement of magnetism. More specifically, the ⁇ 100> orientation may be 15% to 30% of the grains parallel to the rolling direction (RD direction) of the steel sheet by 5° or less. The ⁇ 100> orientation may be 5% to 30% or less of grains forming an angle of 10 to 15° with the rolling direction (RD direction) of the steel sheet.
  • the area fraction of crystal grains having a grain size of 50 ⁇ m to 5000 ⁇ m among all grains may be 80% or more. This is because, as described above, the secondary decarburization annealing and continuous annealing were performed for a short time. When annealing for 1 hour or longer through batch annealing as in the prior art, the average grain size increases by 5 mm or more, and is completely different from the grain size distribution of the grain-oriented electrical steel sheet according to an embodiment of the present invention. More specifically, the fraction of crystal grains having a grain size of 50 ⁇ m to 5000 ⁇ m among all crystal grains may be 90% or more. More specifically, the fraction of crystal grains having a grain size of 50 ⁇ m to 5000 ⁇ m among all crystal grains may be 90% to 99%.
  • the number of grains parallel to the rolling direction (RD direction) of the steel sheet by 5° or less is 15% or more.
  • the ⁇ 100> orientation may be 30% or less of crystal grains forming an angle of 10 to 15° with the rolling direction (RD direction) of the steel sheet.
  • the fraction of crystal grains having a grain size of 50 ⁇ m to 5000 ⁇ m among all crystal grains may be 80% or more.
  • the electrical steel sheet may further include Mn: 0.1 wt% or less and S: 0.005 wt% or less.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention has excellent magnetic properties due to a high fraction of grains having excellent sharpness of 5° or less.
  • the magnetic flux density (B 8 ) may be 1.83T or more. More specifically, the magnetic flux density (B 8 ) may be 1.85 to 2.00T. More specifically, it may be 1.87 to 1.95T.
  • the magnetic flux density B8 is the magnetic flux density induced in a magnetic field of 800 A/m.
  • a slab containing Si:2.0%, C:0.20% by weight and the remainder Fe and unavoidable impurities was heated at a temperature of 1250°C and then hot-rolled, followed by annealing of a hot-rolled sheet at an annealing temperature of 950°C and a dew point temperature of 60°C. did After cooling the steel sheet, pickling was performed, and cold rolling was performed at a reduction ratio of 50% to produce a cold rolled sheet having a thickness of 1.4 mm.
  • the cold-rolled sheet was again subjected to decarburization annealing (primary), followed by pickling and cold rolling at a reduction ratio of 54% to produce a 0.65 mm cold-rolled sheet. Thereafter, decarburization annealing (secondary) was performed in a wet mixed gas atmosphere of hydrogen and nitrogen at a temperature of 950° C. (a dew point temperature of 60° C.), followed by cold rolling again to prepare a cold-rolled sheet having a thickness of 0.282 mm.
  • the ratio (D2/D1) of the diameter (D1) of the circumscribed circle to the diameter (D2) of the inscribed circle is 0.4 or more and the area fraction of the crystal grains having a grain size of 50 ⁇ m to 5000 ⁇ m are analyzed by EBSD and summarized in Table 1 below. did.
  • FIG. 1 shows a photograph of the surface of the grain-oriented electrical steel sheet prepared in Inventive Material 10 analyzed by EBSD. Crystal grains whose ⁇ 100> direction is parallel to the rolling direction of the steel sheet were classified at intervals of 5° using each color.
  • the cold-rolled sheet was subjected to decarburization annealing (primary) in a wet mixed gas atmosphere of hydrogen and nitrogen (dew point temperature of 60°C) at a temperature of 950° C., and then cold-rolled again to prepare a cold-rolled sheet with a thickness of 0.35 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법은 슬라브를 열간 압연하여 열연 강판을 제조하는 단계; 열연 강판을 열연판 소둔하는 단계; 열연판 소둔된 열연 강판을 1차 냉간 압연하는 단계; 1차 냉간 압연된 강판을 1차 탈탄 소둔하는 단계; 탈탄 소둔이 완료된 강판을 2차 냉간 압연하는 단계; 2차 냉간 압연이 완료된 강판을 2차 탈탄 소둔하는 단계; 및 2차 탈탄 소둔된 강판을 연속 소둔하는 단계를 포함한다.

Description

방향성 전기강판 및 그의 제조방법
방향성 전기강판 및 그의 제조방법에 관한 것이다. 구체적으로, 복수의 냉간 압연 및 탈탄 소둔 공정을 포함함으로써, 자성을 향상시킨 방향성 전기강판 및 그 제조 방법에 관한 것이다.
방향성 전기강판은 강판의 결정방위가 {110}<001>인 일명 고스(Goss) 방위를 갖는 결정립들로 이루어진 압연방향의 자기적 특성이 뛰어난 연자성 재료이다.
이러한 방향성 전기강판은 슬라브 가열 후 열간 압연, 열연판 소둔, 냉간 압연을 통하여 최종두께로 압연된 다음, 1차 재결정 소둔과 2차 재결정 형성을 위하여 고온소둔을 거쳐 제조된다.
통상 방향성 전기강판의 2차 재결정 소둔 공정은 낮은 승온율 및 고온에서의 장시간 순화소둔이 필요하여 에너지 소모가 심한 공정이라고 할 수 있다. 이러한 극한의 공정을 거치면서 2차 재결정을 형성하여 우수한 자기적 특성을 가지는 방향성 전기강판을 제조하기 때문에 공정상의 다음과 같은 어려움이 발생하게 된다.
첫째, 코일상태에서의 열처리로 인한 코일의 외권부와 내권부 온도 편차가 발생하여 각 부분에서 동일한 열처리 패턴을 적용할 수 없어 외권부와 내권부의 자성편차가 발생한다. 둘째, 탈탄 소둔 후 MgO를 표면에 코팅하고 고온소둔 중 Base coating을 형성하는 과정에서 다양한 표면 결함이 발생하기 때문에 실수율을 떨어뜨리게 된다. 셋째, 탈탄 소둔이 끝난 탈탄판을 코일형태로 감은 후 고온소둔 후 다시 평탄화소둔을 거쳐 절연코팅을 하기 때문에 생산공정이 3단계로 나누어지게 됨으로써 실수율이 떨어지는 문제점이 발생한다.
이러한 공정상의 제약을 극복하고자 탈탄소둔 및 냉간압하율을 조절하여 2차 재결정 현상을 이용하지 않고, 정상결정성장을 이용하는 기술이 제안된 바 있다. 그러나, 연속소둔을 통하여서는 수분의 짧은 열처리 시간으로 인하여 결정방위가 {110}<001>와 정확히 일치하는 exact 고스 방위 입자가 다수 형성되지 못하였고, 철손개선에 한계가 존재하였다.
방향성 전기강판 및 그의 제조방법을 제공한다. 구체적으로, 복수의 냉간 압연 및 탈탄 소둔 공정을 포함함으로써, 자성을 향상시킨 방향성 전기강판 및 그 제조 방법을 제공한다.
본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법은 슬라브를 열간 압연하여 열연 강판을 제조하는 단계; 열연 강판을 열연판 소둔하는 단계; 열연판 소둔된 열연 강판을 1차 냉간 압연하는 단계; 1차 냉간 압연된 강판을 1차 탈탄 소둔하는 단계; 탈탄 소둔이 완료된 강판을 2차 냉간 압연하는 단계; 2차 냉간 압연이 완료된 강판을 2차 탈탄 소둔하는 단계; 및 2차 탈탄 소둔된 강판을 연속 소둔하는 단계를 포함한다.
2차 탈탄 소둔하는 단계 이후 및 연속 소둔하는 단계 이전의 승온 단계에서 950 내지 1000℃의 온도 범위를 10℃/초 이하의 속도로 가열할 수 있다.
슬라브는 중량%로, Si:1.0% 내지 4.0%, C:0.1% 내지 0.4% 및 잔부는 Fe 및 불가피한 불순물을 포함할 수 있다.
슬라브는 Mn: 0.1 중량% 이하 및 S: 0.005 중량% 이하 더 포함할 수 있다.
열연판 소둔하는 단계에서 탈탄과정을 포함할 수 있다.
열연판 소둔하는 단계는 850℃ 내지 1000℃ 온도 및 이슬점 온도 70℃ 이하에서 소둔할 수 있다.
1차 탈탄 소둔하는 단계는 850℃ 내지 1000℃ 온도 및 이슬점 온도 50℃ 내지 70℃에서 소둔할 수 있다.
1차 탈탄 소둔하는 단계는 오스테나이트 단상영역 또는 페라이트 및 오스테나이트의 복합상이 존재하는 영역에서 소둔할 수 있다.
1차 탈탄 소둔하는 단계 이후, 결정립의 평균 직경이 150 내지 250㎛일 수 있다.
1차 탈탄 소둔하는 단계 및 2차 냉간 압연하는 단계는 2회 이상 반복되는 것일 수 있다.
2차 탈탄 소둔하는 단계는 850℃ 내지 1000℃ 온도 및 이슬점 온도 50℃ 내지 70℃에서 소둔할 수 있다.
2차 탈탄 소둔하는 단계는 30초 내지 5분 동안 소둔할 수 있다.
연속 소둔하는 단계는 1000℃ 내지 1200℃ 온도 및 이슬점 온도 -20℃ 이하에서 소둔할 수 있다.
연속 소둔하는 단계는 30초 내지 5분 동안 소둔할 수 있다.
연속 소둔하는 단계는 1000℃ 내지 1100℃에서 1차 소둔하는 단계 및 1130 내지 1200℃에서 2차 소둔하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 전체 결정립 중 외접원의 지름(D1)과 내접원의 지름(D2)의 비(D2/D1)가 0.4 이상인 결정립이 90% 이상이고, <100> 결정 방향이 강판의 압연 방향(RD 방향)과 5 ˚ 이하로 평행한 결정립이 15% 이상이다.
전체 결정립 중 결정립 입경이 50㎛ 내지 5000㎛인 결정립의 분율이 80% 이상일 수 있다.
<100> 방향이 강판의 압연 방향(RD 방향)과 10 내지 15˚의 각도를 이루는 결정립이 30% 이하일 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 중량%로, Si:1.0% 내지 4.0%, C:0.005% 이하(0%를 제외함) 및 잔부는 Fe 및 불가피한 불순물을 포함할 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 Mn: 0.1 중량% 이하 및 S: 0.005 중량% 이하 더 포함할 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 정상 결정 성장을 이용하면서, <100> 방향이 강판의 압연 방향(RD 방향)과 평행한 결정립을 다수 형성할 수 있고, 5°이하의 sharpness가 우수한 결정립의 분율이 높아 자기적 특성이 뛰어나다.
또한, 결정립 성장 억제제로 AlN 및 MnS를 사용하지 않으므로 1300℃ 이상의 고온으로 슬라브를 가열할 필요가 없다.
또한, 석출물인 N, S를 제거하는 것이 필요 없어, 순화소둔 시간이 상대적으로 짧아질 수 있으며, 생산성이 향상될 수 있다.
또한, 폭 방향으로 균열한 자기적 특성을 가지는 방향성 전기강판을 제공할 수 있다.
도 1은 발명재 10에서 제조한 방향성 전기강판의 표면을 EBSD로 분석한 사진이다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 “포함하는”의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
또한, 특별히 언급하지 않는 한 %는 중량%를 의미하며, 1ppm 은 0.0001중량%이다.
본 발명의 일 실시예에서 추가 원소를 더 포함하는 것의 의미는 추가 원소의 추가량 만큼 잔부인 철(Fe)을 대체하여 포함하는 것을 의미한다.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법은 슬라브를 열간 압연하여 열연 강판을 제조하는 단계; 열연 강판을 열연판 소둔하는 단계; 열연판 소둔된 열연 강판을 1차 냉간 압연하는 단계; 1차 냉간 압연된 강판을 1차 탈탄 소둔하는 단계; 탈탄 소둔이 완료된 강판을 2차 냉간 압연하는 단계; 2차 냉간 압연이 완료된 강판을 2차 탈탄 소둔하는 단계; 및 2차 탈탄 소둔된 강판을 연속 소둔하는 단계를 포함한다.
이하에서는 각 단계별로 구체적으로 설명한다.
먼저, 슬라브를 열간압연 한다.
슬라브는 중량%로, Si:1.0% 내지 4.0%, C:0.1% 내지 0.4% 및 잔부는 Fe 및 불가피한 불순물을 포함할 수 있다.
조성을 한정한 이유는 하기와 같다.
실리콘(Si)는 전기강판의 자기이방성을 낮추고 비저항을 증가시켜 철손을 개선한다. Si 함량이 1.0 중량% 미만인 경우에는 철손이 열위하게 되며, 4.0 중량% 초과인 경우 취성이 증가한다. 따라서, 슬라브 및 최종 소둔 단계 이후 방향성 전기강판에서의 Si의 함량은 1.0 내지 4.0 중량% 일 수 있다. 더욱 구체적으로 Si의 함량은 1.5 내지 3.5 중량%일 수 있다.
탄소(C)는 중간 탈탄소둔 및 최종 탈탄소둔중에 표층부의 Goss 결정립이 중심부로 확산하기 위하여 중심부의 C가 표층부로 빠져 나오는 과정이 필요하기 때문에 슬라브 중 C의 함량은 0.1 내지 0.4 중량% 일 수 있다. 더욱 구체적으로 슬라브 중 C의 함량은 0.15 내지 0.3 중량% 일 수 있다. 또한, 탈탄이 완료된 연속 소둔 단계 이후 최종 제조된 방향성 전기강판에서의 탄소량은 0.0050 중량% 이하일 수 있다. 더욱 구체적으로 0.002 중량% 이하일 수 있다.
슬라브는 Mn: 0.1 중량% 이하 및 S: 0.005 중량% 이하 더 포함할 수 있다.
Mn 및 S 는 MnS 석출물을 형성하여 탈탄 과정 중 중심부로 확산하는 Goss 결정립의 성장을 방해한다. 따라서 Mn, S 는 첨가되지 않는 것이 바람직하다. 그러나 제강 공정 중 불가피하게 혼입되는 양을 고려하여 슬라브 및 최종 소둔 단계 이후 방향성 전기강판에서의 Mn, S 는 Mn: 0.1 중량% 이하, S: 0.005 중량%이하로 각각 제어할 수 있다.
잔부는 Fe 및 불가피한 불순물을 포함한다. 불가피한 불순물에 대해서는 제강 단계 및 방향성 전기강판의 제조 공정 과정에서 혼입되는 불순물이며, 이는 해당 분야에서 널리 알려져 있으므로, 구체적인 설명은 생략한다. 구체적으로, Al, N, Ti, Mg, Ca 같은 성분들은 강중에서 산소와 반응하여 산화물을 형성하게 되므로 강력 억제하는 것이 필요함에 따라서 각각의 성분별로 0.005 중량% 이하로 관리할 수 있다. 본 발명의 일 실시예예서 전술한 합금 성분 외에 원소의 추가를 배제하는 것은 아니며, 본 발명의 기술 사상을 해치지 않는 범위 내에서 다양하게 포함될 수 있다. 추가 원소를 더 포함하는 경우 잔부인 Fe를 대체하여 포함한다.
더욱 구체적으로, 슬라브는 중량%로, Si:1.0% 내지 4.0%, C:0.1% 내지 0.4% 및 잔부는 Fe 및 불가피한 불순물로 이루어질 수 있다.
슬라브를 열간압연하기 전에 슬라브를 가열 할 수 있다. 슬라브 가열 온도는 통상의 가열 온도보다 높은 1100℃ 내지 1350℃일 수 있다. 슬라브 가열시 온도가 높을 경우 열연 조직이 조대화되어 자성에 악영향을 미치게 되는 문제점이 있다. 그러나 본 발명의 일 실시예에 의한 방향성 전기강판의 제조 방법은 슬라브의 탄소 함량이 비교적 많아 슬라브 재가열 온도가 높더라도 열연 조직이 조대화 되지 않으며, 통상의 경우 보다 높은 온도에서 재가열 함으로써, 열간 압연시 보다 유리하다.
열간압연은 최종 냉간압연단계에서 적정한 압연율을 적용하여 최종 제품두께로 제조할 수 있도록 열간압연에 의하여 1.5 내지 4.0mm 두께의 열연판으로 제조할 수 있다.
열연온도나 냉각 온도는 특별히 제한되지 아니하나, 자성이 우수한 일예로 열연 종료 온도를 950℃ 이하로 하고 냉각을 물에 의해 급랭하여 600℃ 이하에서 권취할 수 있다.
다음으로 열연 강판을 열연판 소둔한다. 이때 열연판 소둔은 탈탄 과정을 포함할 수 있다. 구체적으로 열연판 소둔은 850℃ 내지 1000℃ 온도 및 이슬점 온도 70℃이하에서 소둔할 수 있다. 전술한 소둔 이후, 1000 내지 1200℃의 온도 및 이슬점 온도 0℃ 이하에서 추가 소둔할 수 있다. 열연판 소둔을 실시한 후 산세할 수 있다.
다음으로, 1차 냉간 압연을 실시하여 냉연강판을 제조한다.
통상의 방향성 전기강판의 제조 공정에 있어서 냉간 압연은 90%에 가까운 고압하율로 1회 실시하는 것이 효과적인 것으로 알려져 있다. 이것이 1차 재결정립 중 Goss 결정립만이 입자성장하기 유리한 환경을 만들어주기 때문이다. 그러나 본 발명의 일 실시예에 따른 방향성 전기강판의 제조방법은 Goss 방위 결정립의 비정상 입자 성장을 이용하지 않고 탈탄 소둔 및 냉간 압연에 의하여 발생한 표층부의 <100> 방향이 강판의 압연 방향(RD 방향)과 평행한 결정립을 내부 확산시키는 것이므로 표층부에서 <100> 방향이 강판의 압연 방향(RD 방향)과 평행한 결정립을 다수 분포하도록 형성하는 것이 유리하다.
따라서, 냉간 압연시 압하율 50% 내지 70%에서 냉간 압연을 실시하는 경우 Goss 집합조직이 표층부에서 다수 형성될 수 있다. 더욱 구체적으로 55% 내지 65% 일 수 있다.
다음으로 냉연강판을 1차 탈탄 소둔한다. 이 때, 탈탄 소둔하는 단계는 오스테나이트 단상영역 또는 페라이트 및 오스테나이트의 복합상이 존재하는 영역에서 실시할 수 있다. 구체적으로 850℃ 내지 1000℃ 온도 및 이슬점 온도 50℃ 내지 70℃에서 소둔할 수 있다. 또한, 분위기는 수소 및 질소의 혼합가스 분위기일 수 있다. 또한, 탈탄 소둔시 탈탄량은 0.0300 중량% 내지 0.0600 중량% 일 수 있다. 전술한 소둔 이후, 1000 내지 1200℃의 온도 및 이슬점 온도 0℃ 이하에서 추가 소둔할 수 있다.
이러한 1차 탈탄 소둔 과정에서 전기강판의 표면의 결정립의 크기는 조대하게 성장 하게 되지만 전기강판의 내부의 결정립은 미세한 조직으로 남게된다. 이러한 1차 탈탄 소둔 이후 결정립의 평균 직경은 150㎛ 내지 250㎛일 수 있다. 이 때, 결정립은 표면 페라이트 결정립이다. 또한 결정립의 직경이란 결정립과 동일한 면적을 가지는 가상의 원을 상정하여, 그 원의 직경을 의미한다. 기준면은 압연면(ND면)과 평행한 면이다.
다음으로, 1차 탈탄 소둔이 완료된 강판을 2차 냉간 압연한다. 2차 냉간 압연은 1차 냉간 압연과 동일하므로, 구체적인 설명은 생략한다.
전술한 1차 탈탄 소둔하는 단계 및 2차 냉간 압연하는 단계는 2회 이상 반복하여 실시할 수 있다. 2회 이상 반복하여 실시함으로써, <100> 방향이 강판의 압연 방향(RD 방향)과 평행한 집합조직이 표층부에서 다수 형성 될 수 있다.
다음으로, 2차 냉간 압연이 완료된 강판을 2차 탈탄 소둔한다.
2차 탈탄 소둔하는 단계는 850℃ 내지 1000℃ 온도 및 이슬점 온도 50℃ 내지 70℃에서 소둔한다. 2차 소둔 전 냉연판은 탈탄 소둔이 진행되어 탄소량이 슬라브의 탄소 중량 대비 40% 내지 60% 남아있는 상태이다. 따라서 2차 탈탄 소둔하는 단계에서는 탄소가 빠져나가면서 표층부에 형성된 결정립이 내부로 확산된다. 2차 탈탄 소둔하는 단계에서는 강판 중의 탄소량을 0.005 중량% 이하가 되도록 탈탄을 실시할 수 있다.
2차 탈탄 소둔하는 단계는 30초 내지 5분 동안 소둔할 수 있다. 전술한 시간 범위에서 탈탄이 충분히 이루어질 수 있다.
다음으로, 2차 탈탄 소둔된 강판을 연속 소둔한다.
2차 탈탄 소둔하는 단계 이후 및 연속 소둔하는 단계 이전의 승온 단계에서 950 내지 1000℃의 온도 범위를 10℃/초 이하의 속도로 가열할 수 있다. 이처럼 승온 속도를 낮게 제어함으로써, 탈탄소둔이 끝난후의 결정성장 과정에 있어서 그 결정성장이 용이한 방위의 선택성을 높이는 효과가 있게 된다. 그 이유는, 높은 승온율을 적용할 경우에는 급격한 열에너지의 공급으로 인하여 각각의 결정립이 가지는 결정방위의 특수성에 의한 선택적 성장을 위한 충분한 시간을 부여할 수 없어 다양한 방위의 결정립이 모두 성장하기 때문이다. 본 발명의 성분 및 냉간압연된 강판의 특성에 따르면, <100>방향이 강판의 압연 방향(RD 방향)에 평행한 결정립의 성장이 용이하기 때문에, 그 선택적 성장을 위한 적정한 승온율이 필요하다고 할 수 있다. 즉, <100> 방향이 강판의 압연 방향(RD 방향)과 평행한 결정립 중에서 5 ˚ 이하의 Deviation을 가지는 결정립이 다수 형성될 수 있다. 반면 상대적으로 <100>//RD 결정립 중에서 10 내지 15˚의 각도를 이루는 결정립은 적게 형성될 수 있다. 더욱 구체적으로 950 내지 1000℃의 온도 범위를 3 내지 8℃/초의 속도로 가열할 수 있다.
연속 소둔하는 단계는 1000℃ 내지 1200℃ 온도 및 이슬점 온도 -20℃ 이하에서 소둔할 수 있다. 연속 소둔하는 단계의 목적은 강중의 Carbon을 탈탄 후 결정립을 일정크기 이상으로 성장시키는 것이다. 그 이유는 탈탄 및 그 직후의 결정립 성장의 과정을 통하여 지속적으로 <100> 방향이 강판의 압연 방향(RD 방향)과 평행한 결정립의 분율은 늘어나기 때문이다.
연속 소둔하는 단계는 30초 내지 5분 동안 소둔할 수 있다.
전술한 시간 범위에서 <100> 방향이 강판의 압연 방향(RD 방향)과 평행한 결정립의 성장이 충분히 이루어질 수 있다.
1차 냉간 압연하는 단계 이후, 연속 소둔 공정까지 연속 공정으로 수행될 수 있다. 연속 공정이란 강판을 코일상으로 권취하여 소둔하는 배치 공정 등이 없는 것을 의미한다. 전술하였듯이, 탈탄 소둔 공정 및 연속 소둔 공정이 수 분에서 종료하기 때문에 연속 공정이 가능하다.
연속 소둔하는 단계는 1000℃ 내지 1100℃에서 1차 소둔하는 단계 및 1130 내지 1200℃에서 2차 소둔하는 단계를 포함할 수 있다. 1차 소둔하는 단계 및 2차 소둔하는 단계는 각각 30초 내지 2분 동안 수행될 수 있다.
이처럼 연속 소둔하는 단계를 2단계의 균열 온도를 적용함으로써, 평균 승온율을 낮추는 이점이 있다. 특히 1차 소둔하는 단계에서의 균열 온도를 비교적 낮게 조절함으로써, 탈탄소둔으로 인한 <100> 방향이 강판의 압연 방향(RD 방향)과 평행한 결정립의 선택적 성장이 끝난 시점에서, <100> 방향이 강판의 압연 방향(RD 방향)과 평행한 결정립의 추가적인 선택적 성장을 부여하는 이점이 있다. 이것은 앞서 기술한 바와 같이, 급격한 승온시에는 각각의 결정립이 가지는 결정방위의 특수성에 의한 선택적 성장을 위한 충분한 시간을 부여할 수 없는데 반하여, 비교적 느린 승온시에는 본 특허에서의 시편이 가지는 탈탄소둔 후의 결정방위의 특수성에 기인한 <100> 방향이 강판의 압연 방향(RD 방향)과 평행한 결정립의 선택적 성장을 극대화할 수 있기 때문이다.
연속 소둔하는 단계를 마치고 최종 제조된 방향성 전기강판은 전체 결정립 중 외접원의 지름(D1)과 내접원의 지름(D2)의 비(D2/D1)가 0.4이상인 결정립이 90% 이상이다. 이는 전술하였듯이, 2차 탈탄 소둔 및 연속 소둔을 단시간 수행하였기 때문이다. 종래와 같이 배치 소둔을 통해 1시간 이상 장시간 소둔할 경우, 외접원의 지름(D1)이 내접원(D2)에 비해 월등히 커져 그 비가 0.4 이상이 될 수 없다. 여기서, 외접원이란 결정립의 외부를 둘러싸는 가상의 원 중 가장 작은 원을 의미하고, 내접원이란 결정립의 내부에 포함되는 가상의 원 중 가장 큰 원을 의미한다. 더욱 구체적으로 전체 결정립 중 외접원의 지름(D1)과 내접원의 지름(D2)의 비(D2/D1)가 0.4이상인 결정립이 95% 이상 일 수 있다. 더욱 구체적으로 전체 결정립 중 외접원의 지름(D1)과 내접원의 지름(D2)의 비(D2/D1)가 0.4이상인 결정립이 95% 내지 99% 일 수 있다.
또한, 최종 제조된 방향성 전기강판은 <100> 방위가 강판의 압연 방향(RD 방향)과 5 ˚ 이하로 평행한 결정립이 다수 형성될 수 있고, 상대적으로 <100> 방위가 강판의 압연 방향(RD 방향)과 10 내지 15˚의 각도를 이루는 결정립은 적게 형성될 수 있다. 구체적으로 <100> 방위가 강판의 압연 방향(RD 방향)과 5 ˚ 이하로 평행한 결정립이 15% 이상이다. <100> 방위가 강판의 압연 방향(RD 방향)과 10 내지 15˚의 각도를 이루는 결정립이 30% 이하일 수 있다. 이처럼 <100> 방위가 정확히 배열된 결정립이 다수 형성됨으로써 자성 향상에 기여할 수 있다. 더욱 구체적으로 구체적으로 <100> 방위가 강판의 압연 방향(RD 방향)과 5 ˚ 이하로 평행한 결정립이 15% 내지 30% 일 수 있다. <100> 방위가 강판의 압연 방향(RD 방향)과 10 내지 15˚의 각도를 이루는 결정립이 5% 내지 30% 이하일 수 있다.
전체 결정립 중 결정립 입경이 50㎛ 내지 5000㎛인 결정립의 면적분율이 80% 이상일 수 있다. 이는 전술하였듯이, 2차 탈탄 소둔 및 연속 소둔을 단시간 수행하였기 때문이다. 종래와 같이 배치 소둔을 통해 1시간 이상 장시간 소둔할 경우, 평균 결정립 입경이 5mm 이상 커지며, 본 발명의 일 실시예에 의한 방향성 전기강판의 결정립 입경 분포와는 전혀 상이하다. 더욱 구체적으로 전체 결정립 중 결정립 입경이 50㎛ 내지 5000㎛인 결정립의 분율이 90% 이상일 수 있다. 더욱 구체적으로 전체 결정립 중 결정립 입경이 50㎛ 내지 5000㎛인 결정립의 분율이 90% 내지 99%일 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 전체 결정립 중 외접원의 지름(D1)과 내접원의 지름(D2)의 비(D2/D1)가 0.4 이상인 결정립이 90% 이상이다.
<100> 방위가 강판의 압연 방향(RD 방향)과 5 ˚ 이하로 평행한 결정립이 15% 이상이다.
<100> 방위가 강판의 압연 방향(RD 방향)과 10 내지 15˚의 각도를 이루는 결정립이 30% 이하일 수 있다.
전체 결정립 중 결정립 입경이 50㎛ 내지 5000㎛인 결정립의 분율이 80% 이상일 수 있다.
결정립의 방위, 형상 및 입경에 대해서는 방향성 전기강판의 제조 방법과 관련하여 상세하게 설명하였으므로, 중복되는 설명은 생략한다.
전기강판은 중량%로, Si:1.0% 내지 4.0%, C:0.005% 이하(0%를 제외함) 및 잔부는 Fe 및 불가피한 불순물을 포함할 수 있다.
전기강판은 Mn: 0.1 중량% 이하 및 S: 0.005 중량% 이하 더 포함할 수 있다.
C를 제외하고, 슬라브의 성분 한정 내용과 동일하므로, 중복되는 설명은 생략한다.
본 발명의 일 실시예에 의한 방향성 전기강판은 5°이하의 sharpness가 우수한 결정립의 분율이 높아 자기적 특성이 뛰어나다.
구체적으로 철손(W17/50)이 1.55 W/kg 이하일 수 있다. 더욱 구체적으로 철손(W17/50)이 1.00 내지 1.50 W/kg 일 수 있다. 더욱 구체적으로 1.10 내지 1.50W/kg일 수 있다. 철손 W17/50은 1.7Tesla 및 50Hz 조건에서 유도되는 철손의 크기(W/kg)이다.
또한 자속밀도(B8)이 1.83T 이상일 수 있다. 더욱 구체적으로 자속밀도(B8)이 1.85 내지 2.00T일 수 있다. 더욱 구체적으로 1.87 내지 1.95T일 수 있다.
자속밀도 B8은 800A/m의 자기장에서 유도되는 자속밀도이다.
이하 본 발명의 구체적인 실시예를 기재한다. 그러나 하기 실시예는 본 발명의 구체적인 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
실시예 1
중량%로 Si:2.0%, C:0.20%를 함유하고 잔부 Fe 및 불가피한 불순물로 이루어진 슬라브를 1250℃의 온도에서 가열한 다음 열간 압연하고, 이어 소둔 온도 950℃, 이슬점 온도 60℃에서 열연판 소둔을 하였다. 이후 강판을 냉각한 후 산세를 실시하고, 50%의 압하율로 냉간 압연하여 두께 1.4mm의 냉연판을 제작하였다.
냉간 압연된 판은 다시 탈탄 소둔(1차)을 시행한 후에 산세 및 54%의 압하율로 냉간압연하여 0.65mm의 냉연판을 제작하였다. 이후에 950℃의 온도에서 수소 및 질소의 습윤 혼합가스 분위기(이슬점 온도 60℃)에서 탈탄 소둔(2차)을 거치고 다시 냉간 압연하여 두께 0.282mm의 냉연판을 제작하였다.
이후 최종 소둔시에는 950℃의 분위기 온도에서 수소 및 질소의 습윤 혼합가스 분위기(이슬점 온도 60℃)에서 2분간 탈탄 소둔(3차)을 실시하였다. 이후에 결정성장 소둔을 위하여, 하기 표 1에 정리된 1차 균열 온도에서 60초간 체류 후에 1130℃에서 60초간 2차로 체류하면서 열처리를 실시하였다. 950 내지 1000℃ 구간에서의 승온율 및 <100> 방향이 강판의 압연 방향(RD 방향)과 평행한 결정립 분율을 EBSD측정을 통하여 0°내지 5°및 10°내지 15°deviation 에 따라 구분하여 하기 표 1에 정리하였다.
또한, 외접원의 지름(D1)과 내접원의 지름(D2)의 비(D2/D1)가 0.4이상인 결정립 및 결정립 입경이 50㎛ 내지 5000㎛인 결정립의 면적 분율을 EBSD로 분석하여 하기 표 1에 정리하였다.
1차 균열
온도
(℃)
950-1000℃ 구간 승온율 (℃/초) <100>//RD (0°~5°)
(%)
<100>//RD (10°~15°)
(%)
D2/D1 0.4 이상 비율(%) 50㎛ 내지 5000㎛인 결정립 면적 분율(%) B8
(T)
W17/50
(W/Kg)
구분
1150 15 9.9 33.3 95 96.2 1.78 1.45 비교재 1
1150 15 12.1 29.0 96 95.4 1.81 1.39 비교재 2
1100 10 14.1 32.5 97 96.2 1.82 1.38 비교재 3
1100 10 13.3 24.1 98 91.1 1.80 1.35 비교재 4
1080 8 18.8 22.8 99 95.2 1.88 1.22 발명재 1
1080 8 15.9 28.4 97 96.5 1.88 1.21 발명재 2
1050 7 23 19.6 98 97.1 1.89 1.19 발명재 3
1050 7 19.6 23.4 99 96.1 1.87 1.15 발명재 4
1030 5 26.8 18.9 99 95.5 1.87 1.19 발명재 5
1030 5 30.4 20.6 95 93.5 1.90 1.18 발명재 6
1030 5 31.2 21.1 98 94.1 1.89 1.14 발명재 7
1030 5 35.2 9.9 97 99.1 1.89 1.13 발명재 8
1000 3 40.4 8.2 96 97.6 1.89 1.15 발명재 9
1000 3 40.8 9.2 99 96.8 1.90 1.10 발명재 10
표 1에 나타난 바와 같이, 최종소둔 과정 중에, 950 내지 1000℃ 구간 승온율을 10℃/s이하로 조절한 경우, 결정립 방위에 있어서 자기적 특성에 유리한 5˚ 이하의 deviation을 가지는 <100> 방위가 강판의 압연 방향(RD 방향)과 평행한 결정립을 다수 형성할 수 있게 된다.
도 1에서는 발명재 10에서 제조한 방향성 전기강판의 표면을 EBSD로 분석한 사진을 나타내었다. <100> 방향이 강판의 압연 방향에 평행한 결정립을 각각의 색깔을 이용하여 5°간격으로 분류하였다.
실시예 2
중량%로 Si:2.52%, C:0.195%를 함유하고 잔부 Fe 및 불가피한 불순물로 이루어진 슬라브를 1220℃ 의 온도에서 가열한 다음 열간 압연하고, 이어 소둔 온도 950℃, 이슬점 온도 60℃에서 열연판 소둔을 하였다. 이후 강판을 냉각한 후 산세를 실시하고, 60%의 압하율로 냉간 압연하여 두께 0.9mm의 냉연판을 제작하였다.
냉간 압연된 판은 950℃의 온도에서 수소 및 질소의 습윤 혼합가스 분위기(이슬점 온도 60℃)에서 탈탄 소둔(1차)을 거치고 다시 냉간 압연하여 두께 0.35mm의 냉연판을 제작하였다.
이후 950℃의 분위기 온도에서 수소 및 질소의 습윤 혼합가스 분위기(이슬점 온도 60℃)에서 150초간 탈탄 소둔(2차)을 실시하였다. 이후에 결정성장 소둔을 위하여, 하기 표 2에 정리된 1차 균열 온도에서 열처리를 실시하였다. 각 체류 시 60초간 열처리를 실시하였으며 950 내지 1000℃ 구간에서의 승온율 및 <100>//RD 방향의 결정립 분율을 EBSD측정을 통하여 0°~ 5°및 10°~ 15°deviation 에 따라 구분하여 하기 표 2에 정리하였다.
또한, 외접원의 지름(D1)과 내접원의 지름(D2)의 비(D2/D1)가 0.4이상인 결정립 및 결정립 입경이 50㎛ 내지 5000㎛인 결정립의 면적 분율을 EBSD로 분석하여 하기 표 2에 정리하였다.
1차 균열
온도
(℃)
950-1000℃ 구간 승온율 (℃/초) <100>//RD (0°~5°)
(%)
<100>//RD (10°~15°)
(%)
D2/D1 0.4 이상 비율(%) 50㎛ 내지 5000㎛인 결정립 면적 분율(%) B8
(T)
W17/50
(W/Kg)
구분
1180 13 5.9 28.3 95 96.1 1.73 1.66 비교재 5
1180 13 7.1 28 96 96.6 1.76 1.58 비교재 6
1130 10 9.3 34.5 95 95.6 1.78 1.75 비교재 7
1100 8 16.8 26.8 95 93.5 1.83 1.42 발명재 11
1100 8 16.9 25.6 99 94.9 1.85 1.41 발명재 12
1050 6 21.8 17.9 97 92.6 1.84 1.49 발명재 13
1050 6 17.9 25 98 94.6 1.84 1.45 발명재 14
1030 4 22.9 23.9 96 95.3 1.85 1.49 발명재 15
1030 4 28.9 28.5 96 94.4 1.87 1.48 발명재 16
1030 4 28.8 12.4 97 91.1 1.85 1.44 발명재 17
1030 4 27.9 6.9 98 98.6 1.86 1.43 발명재 18
표 1에 나타난 바와 같이, Si, C의 함량 및 압연회수와 냉연판 두께가 다른 연속 소둔 과정 중에도, 결정성장을 위한 열처리를 시작함에 있어서 결정성장의 초기에 있어서 낮은 결정성장 속도 즉, 950 내지 1000℃ 구간 승온율을 10℃/s이하로 조절한 경우, 자기적특성에 유리한 결정방위를 형성하는 사실을 확인할 수 있다.
본 발명은 상기 구현예 및/또는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 구현예 및/또는 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (19)

  1. 슬라브를 열간 압연하여 열연 강판을 제조하는 단계;
    상기 열연 강판을 열연판 소둔하는 단계;
    상기 열연판 소둔된 열연 강판을 1차 냉간 압연하는 단계;
    상기 1차 냉간 압연된 강판을 1차 탈탄 소둔하는 단계;
    상기 탈탄 소둔이 완료된 강판을 2차 냉간 압연하는 단계;
    상기 2차 냉간 압연이 완료된 강판을 2차 탈탄 소둔하는 단계; 및
    2차 탈탄 소둔된 강판을 연속 소둔하는 단계를 포함하고,
    상기 2차 탈탄 소둔하는 단계 이후 및 상기 연속 소둔하는 단계 이전의 승온 단계에서 950 내지 1000℃의 온도 범위를 10℃/초 이하의 속도로 가열하는 방향성 전기강판의 제조방법.
  2. 제1항에 있어서,
    상기 슬라브는 중량%로, Si:1.0% 내지 4.0%, C:0.1% 내지 0.4% 및 잔부는 Fe 및 불가피한 불순물을 포함하는 방향성 전기강판의 제조방법.
  3. 제2항에 있어서,
    상기 슬라브는 Mn: 0.1 중량% 이하 및 S: 0.005 중량% 이하 더 포함하는 방향성 전기강판의 제조방법.
  4. 제1항에 있어서,
    상기 열연판 소둔하는 단계에서 탈탄과정을 포함하는 방향성 전기강판의 제조방법.
  5. 제1항에 있어서,
    상기 열연판 소둔하는 단계는 850℃ 내지 1000℃ 온도 및 이슬점 온도 70℃이하에서 소둔하는 방향성 전기강판의 제조방법.
  6. 제1항에 있어서,
    상기 1차 탈탄 소둔하는 단계는 850℃ 내지 1000℃ 온도 및 이슬점 온도 50℃ 내지 70℃에서 소둔하는 방향성 전기강판의 제조방법.
  7. 제1항에 있어서,
    상기 1차 냉간 압연된 강판을 1차 탈탄 소둔하는 단계는 오스테나이트 단상영역 또는 페라이트 및 오스테나이트의 복합상이 존재하는 영역에서 소둔하는 방향성 전기강판의 제조방법.
  8. 제1항에 있어서,
    상기 1차 냉간 압연된 강판을 탈탄 소둔하는 단계이후, 결정립의 평균 직경이 150 내지 250㎛인 방향성 전기강판의 제조방법.
  9. 제1항에 있어서,
    상기 1차 탈탄 소둔하는 단계 및 상기 2차 냉간 압연하는 단계는 2회 이상 반복되는 방향성 전기강판의 제조방법.
  10. 제1항에 있어서,
    상기 2차 탈탄 소둔하는 단계는 850℃ 내지 1000℃ 온도 및 이슬점 온도 50℃ 내지 70℃에서 소둔하는 방향성 전기강판의 제조방법.
  11. 제1항에 있어서,
    상기 2차 탈탄 소둔하는 단계는 30초 내지 5분 동안 소둔하는 방향성 전기강판의 제조방법.
  12. 제1항에 있어서,
    상기 연속 소둔하는 단계는 1000℃ 내지 1200℃ 온도 및 이슬점 온도 -20℃ 이하에서 소둔하는 방향성 전기강판의 제조방법.
  13. 제1항에 있어서,
    상기 연속 소둔하는 단계는 30초 내지 5분 동안 소둔하는 방향성 전기강판의 제조방법.
  14. 제1항에 있어서,
    상기 연속 소둔하는 단계는 1000℃ 내지 1100℃에서 1차 소둔하는 단계 및 1130 내지 1200℃에서 2차 소둔하는 단계를 포함하는 방향성 전기강판의 제조방법.
  15. 전체 결정립 중 외접원의 지름(D1)과 내접원의 지름(D2)의 비(D2/D1)가 0.4이상인 결정립이 90%이상이고,
    <100> 방위가 강판의 압연 방향(RD 방향)과 5 ˚ 이하로 평행한 결정립이 15% 이상인 방향성 전기강판.
  16. 제15항에 있어서,
    전체 결정립 중 결정립 입경이 50㎛ 내지 5000㎛인 결정립의 분율이 80% 이상인 방향성 전기강판.
  17. 제15항에 있어서,
    <100> 방향이 강판의 압연 방향(RD 방향)과 10 내지 15˚의 각도를 이루는 결정립이 30% 이하인 방향성 전기강판.
  18. 제15항에 있어서,
    상기 전기강판은 중량%로, Si:1.0% 내지 4.0%, C:0.005% 이하(0%를 제외함) 및 잔부는 Fe 및 불가피한 불순물을 포함하는 방향성 전기강판.
  19. 제18항에 있어서,
    상기 전기강판은 Mn: 0.1 중량% 이하 및 S: 0.005 중량% 이하 더 포함하는 방향성 전기강판.
PCT/KR2020/018618 2019-12-20 2020-12-17 방향성 전기강판 및 그의 제조방법 WO2021125864A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20902524.6A EP4079873A4 (en) 2019-12-20 2020-12-17 GRAIN ORIENTED ELECTRICAL STEEL SHEET AND METHOD OF MANUFACTURING THEREOF
US17/787,111 US20220389532A1 (en) 2019-12-20 2020-12-17 Grain-oriented electrical steel sheet and method for manufacturing same
CN202080089003.0A CN114867872A (zh) 2019-12-20 2020-12-17 取向电工钢板及其制造方法
JP2022538348A JP2023508029A (ja) 2019-12-20 2020-12-17 方向性電磁鋼板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190171867A KR102326327B1 (ko) 2019-12-20 2019-12-20 방향성 전기강판 및 그의 제조방법
KR10-2019-0171867 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021125864A1 true WO2021125864A1 (ko) 2021-06-24

Family

ID=76476621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018618 WO2021125864A1 (ko) 2019-12-20 2020-12-17 방향성 전기강판 및 그의 제조방법

Country Status (6)

Country Link
US (1) US20220389532A1 (ko)
EP (1) EP4079873A4 (ko)
JP (1) JP2023508029A (ko)
KR (1) KR102326327B1 (ko)
CN (1) CN114867872A (ko)
WO (1) WO2021125864A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642281B1 (ko) * 2014-11-27 2016-07-25 주식회사 포스코 방향성 전기강판 및 이의 제조방법
KR20230095281A (ko) * 2021-12-22 2023-06-29 주식회사 포스코 방향성 전기강판 및 그의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317060A (ja) * 1997-05-22 1998-12-02 Kawasaki Steel Corp 磁気特性に優れた方向性電磁鋼板の製造方法
KR20140058942A (ko) * 2012-11-07 2014-05-15 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR20160063895A (ko) * 2014-11-27 2016-06-07 주식회사 포스코 방향성 전기강판 및 이의 제조방법
KR20170074635A (ko) * 2015-12-22 2017-06-30 주식회사 포스코 방향성 전기강판의 제조 방법
KR20190077890A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 방향성 전기강판 및 그의 제조방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3008003B2 (ja) * 1992-04-16 2000-02-14 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH06306473A (ja) * 1993-04-26 1994-11-01 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH0797631A (ja) * 1993-09-30 1995-04-11 Kawasaki Steel Corp 磁気特性および被膜特性に優れた高磁束密度方向性けい素鋼板の製造方法
JP3390345B2 (ja) * 1997-07-17 2003-03-24 川崎製鉄株式会社 磁気特性に優れる方向性電磁鋼板及びその製造方法
CN1401793A (zh) * 2002-10-09 2003-03-12 北京科技大学 双取向硅钢的真空退火工艺
JP5515485B2 (ja) * 2009-07-28 2014-06-11 Jfeスチール株式会社 分割モータ用コア
JP5644154B2 (ja) * 2010-03-29 2014-12-24 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6011063B2 (ja) * 2011-06-27 2016-10-19 Jfeスチール株式会社 低鉄損方向性電磁鋼板の製造方法
KR101980940B1 (ko) * 2012-12-28 2019-05-21 제이에프이 스틸 가부시키가이샤 방향성 전기 강판의 제조 방법 및 방향성 전기 강판 제조용의 1 차 재결정 강판
US20160108493A1 (en) * 2014-10-15 2016-04-21 Sms Siemag Ag Process for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip obtained according to said process
FR3027920B1 (fr) * 2014-10-29 2019-03-29 Fives Stein Procede d'orientation de grains de tole d'acier, dispositif s'y rapportant, et installation mettant en oeuvre ce procede ou ce dispositif
KR101657466B1 (ko) * 2014-12-18 2016-09-19 주식회사 포스코 방향성 전기강판 및 이의 제조방법
KR101657467B1 (ko) * 2014-12-18 2016-09-19 주식회사 포스코 방향성 전기강판 및 이의 제조방법
CN104846177B (zh) * 2015-06-18 2017-08-08 北京科技大学 一种利用连续退火制备低成本取向硅钢的方法
WO2017155057A1 (ja) * 2016-03-09 2017-09-14 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR101887605B1 (ko) * 2016-12-22 2018-08-10 주식회사 포스코 방향성 전기강판 및 이의 제조방법
JP6838601B2 (ja) * 2017-12-28 2021-03-03 Jfeスチール株式会社 低鉄損方向性電磁鋼板とその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317060A (ja) * 1997-05-22 1998-12-02 Kawasaki Steel Corp 磁気特性に優れた方向性電磁鋼板の製造方法
KR20140058942A (ko) * 2012-11-07 2014-05-15 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR20160063895A (ko) * 2014-11-27 2016-06-07 주식회사 포스코 방향성 전기강판 및 이의 제조방법
KR20170074635A (ko) * 2015-12-22 2017-06-30 주식회사 포스코 방향성 전기강판의 제조 방법
KR20190077890A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 방향성 전기강판 및 그의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079873A4 *

Also Published As

Publication number Publication date
KR20210079753A (ko) 2021-06-30
EP4079873A1 (en) 2022-10-26
EP4079873A4 (en) 2023-02-01
CN114867872A (zh) 2022-08-05
JP2023508029A (ja) 2023-02-28
KR102326327B1 (ko) 2021-11-12
US20220389532A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
WO2016099191A1 (ko) 방향성 전기강판 및 그 제조방법
WO2021125855A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2013089297A1 (ko) 자성이 우수한 방향성 전기강판의 제조방법
WO2021125864A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2011040723A2 (ko) 저철손 고자속밀도 방향성 전기강판 및 그 제조방법
WO2022139352A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2020067721A1 (ko) 이방향성 전기강판 및 그의 제조방법
KR101700125B1 (ko) 방향성 전기강판 및 이의 제조방법
WO2013094777A1 (ko) 저철손 고자속밀도 방향성 전기강판 및 이의 제조방법
KR20160063895A (ko) 방향성 전기강판 및 이의 제조방법
KR20160074350A (ko) 방향성 전기강판 및 이의 제조방법
WO2020067724A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2021125902A2 (ko) 방향성 전기강판 및 그 자구미세화 방법
WO2021125856A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111741A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2022139353A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2022173159A1 (ko) 무방향성 전기강판의 제조방법 및 이에 의해 제조된 무방향성 전기강판
KR20190078160A (ko) 방향성 전기강판 및 이의 제조방법
WO2023121273A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2021125738A1 (ko) 방향성 전기강판 및 그 제조방법
WO2022139314A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2019132295A1 (ko) 초저철손 방향성 전기강판 제조방법
WO2023121274A1 (ko) 방향성 전기강판 및 방향성 전기강판의 제조 방법
WO2023113527A1 (ko) 방향성 전기강판 및 이의 제조 방법
WO2020111738A2 (ko) 방향성 전기강판 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538348

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020902524

Country of ref document: EP

Effective date: 20220720