WO2021119909A1 - 一种用于监测叶根紧固件的健康状态的方法及系统 - Google Patents

一种用于监测叶根紧固件的健康状态的方法及系统 Download PDF

Info

Publication number
WO2021119909A1
WO2021119909A1 PCT/CN2019/125611 CN2019125611W WO2021119909A1 WO 2021119909 A1 WO2021119909 A1 WO 2021119909A1 CN 2019125611 W CN2019125611 W CN 2019125611W WO 2021119909 A1 WO2021119909 A1 WO 2021119909A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
sequence
nacelle
frequency
blade root
Prior art date
Application number
PCT/CN2019/125611
Other languages
English (en)
French (fr)
Inventor
姜文生
陈林
李明辉
王凯
Original Assignee
远景能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 远景能源有限公司 filed Critical 远景能源有限公司
Priority to AU2019478946A priority Critical patent/AU2019478946B2/en
Priority to EP19956647.2A priority patent/EP4080046A4/en
Priority to PCT/CN2019/125611 priority patent/WO2021119909A1/zh
Priority to BR112022011863A priority patent/BR112022011863A2/pt
Priority to US17/785,408 priority patent/US20230011584A1/en
Priority to CN201980042080.8A priority patent/CN113286944B/zh
Publication of WO2021119909A1 publication Critical patent/WO2021119909A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0016Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of aircraft wings or blades
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/50Maintenance or repair
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/30Retaining components in desired mutual position
    • F05B2260/301Retaining bolts or nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/334Vibration measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention generally relates to the field of wind power generation, and specifically relates to a method for monitoring the health status of blade root fasteners. In addition, the present invention also relates to a system for monitoring the health status of leaf root fasteners.
  • the blade of a wind turbine is an important component for the wind turbine to capture wind energy, and its normal operation is directly related to the safety of the equipment and the efficiency of power generation.
  • the normal operation of the blade and even the fan depends on the fastened connection of blade root fasteners such as blade root bolts.
  • the blade root fastener is an important part used to connect the blade and the hub. If the blade root fasteners are broken or loose, it will affect the operating posture of the blades and cause the power generation efficiency to decrease; in the worst case, it will cause major safety accidents such as blade sweeping or falling off. Therefore, monitoring the health of blade root fasteners is of great significance to the efficient and safe operation of the fan.
  • the task of the present invention is to provide a method and system for monitoring the health status of leaf root fasteners, through which the method and/or the system can determine the health status of leaf root fasteners with low cost and high accuracy , Thereby improving the operating efficiency and operating safety of the fan.
  • this task is solved by a method for monitoring the health of leaf root fasteners, the method including the following steps:
  • the health status of the leaf root fastener is determined according to the amplitude.
  • nacelle lateral vibration means that the nacelle of the wind generator is perpendicular to or transverse to the vertical direction (for example, at an angle of 70° to 90° from the vertical). Vibration.
  • rotation speed of the wind wheel refers to the rotation speed of the wind wheel composed of the blades and the hub of the wind generator.
  • the term “twice the frequency of the rotor speed” refers to the conversion of the rotor speed to the frequency of Hertz Hz (ie times/second) twice (for example, the rotation speed in cycles/minute is converted into cycles/second. The unit rotation speed is then multiplied by 2 times to obtain the 2 times frequency).
  • sequence of a signal refers to a collection of values of the signal collected at multiple points in time.
  • the method further includes the following steps:
  • a filter can be used to filter out abnormal frequencies or abnormal amplitude points.
  • the anomaly can be defined as, for example, a difference from a historical average value or a statistical value under a specific condition (such as a specific wind speed) by more than a prescribed threshold value, such as 50%, 60%, 70%, etc., for example.
  • analyzing the sequence of the acceleration signal and the sequence of the rotation speed signal to determine the amplitude of the nacelle at 2 times the rotation speed of the wind turbine includes the following steps:
  • Fast Fourier transform FFT is performed on the angle domain signal, and the amplitude corresponding to the frequency 2 times of the rotation speed of the wind wheel is extracted as the amplitude of the nacelle at the frequency 2 times of the rotation speed of the wind wheel.
  • the amplitude of the nacelle at twice the frequency of the rotation speed of the wind wheel can be accurately and quickly determined.
  • the frequency spectrum signal of the nacelle vibration can be easily obtained, so that the nacelle can be quickly obtained at 2 times the frequency of the wind wheel speed. The amplitude.
  • the method further includes the following steps:
  • the amplitude corresponding to the double frequency of the rotation speed of the wind wheel is corrected.
  • the background noise can be reduced or eliminated, or the accuracy of the double frequency range can be improved.
  • the elimination of background noise can be achieved, for example, by passing the fast Fourier transformed signal through a filter with a suitable cut-off frequency, such as a band-pass filter.
  • the blade root fastener includes one or more of the following: blade root bolts, blade root nuts, blade root screws, and blade root bonding parts.
  • the method further includes the following steps:
  • a user may install a monitoring application software App on the user's mobile device, which can remotely communicate with the wind turbine (or "wind turbine") in real time, so that the user can view the health status of the leaf root fasteners in real time.
  • a monitoring application software App on the user's mobile device, which can remotely communicate with the wind turbine (or "wind turbine") in real time, so that the user can view the health status of the leaf root fasteners in real time.
  • determining the health status of the leaf root fastener according to the amplitude includes the following steps:
  • a shutdown signal indicating that the shutdown should be issued is issued.
  • the amplitude exceeds the first threshold but is lower than the second threshold it means that the falling or breaking of the bolt does not seriously affect the safety of the wind turbine, for example, only one or non-critical bolt falls off or breaks; and when the amplitude exceeds the second threshold , Which means that multiple or key bolts have fallen off or broken, so it is necessary to stop the machine immediately to prevent safety accidents.
  • the second threshold is greater than the first threshold, and the two thresholds can be set according to statistics or empirical data.
  • a system for monitoring the health of leaf root fasteners including:
  • a sensor configured to obtain a sequence of acceleration signals representing lateral vibration of the nacelle and a sequence of rotational speed signals representing the rotational speed of the wind wheel;
  • the controller which is configured to perform the following actions:
  • the senor is a PCH acceleration sensor.
  • both acceleration and speed can be measured by the same PCH acceleration sensor.
  • this solution does not require or requires very little additional hardware cost. Then the acceleration and rotation speed can be measured.
  • system further includes:
  • a pitch actuator which is configured to perform a pitch operation according to the health of the blade root fastener
  • the remote communication module is configured to remotely send the health status of the leaf root fastener to the user's mobile device.
  • the remote communication module may, for example, use Bluetooth connection, Wi-Fi connection, cellular connection, etc., to realize remote communication.
  • Laser communication or satellite communication is also conceivable.
  • the user mobile device may be, for example, a laptop computer, a tablet computer, a personal digital assistant (PDA), a smart phone, and so on.
  • the state of health includes one or more of the following:
  • the invention also relates to a wind power generator having a system according to the invention.
  • the present invention has at least the following beneficial effects: (1) Through the present invention, it is possible to accurately determine whether a blade root fastener failure occurs. This is based on the inventor’s insight as follows: the inventor found through research that the blade root fastener has Breaking, loosening and other faults can cause abnormal changes in the blade attitude, such as a reduction in the natural frequency of the blades. This abnormal change will then cause the lateral vibration of the nacelle. Not only that, the inventors have also discovered the peculiarities of this lateral vibration. In particular, the various lateral vibrations of the nacelle are not all related to the failure of the blade root fasteners, but only the vibration of the nacelle at twice the frequency of the rotor speed is related to the failure of the blade root fasteners.
  • the solution of the present invention has the characteristics of simpler calculation, lower hardware cost, and more practicability, because the solution of the present invention only requires The acceleration and rotation speed are detected, and this can be realized by PCH acceleration, for example, and the calculation process is simple. Therefore, the software and hardware of the present invention have low cost, simple operation and strong practicability.
  • Figure 1 shows a schematic diagram of a system according to the present invention
  • FIG. 2 shows the flow of the method according to the present invention.
  • Fig. 3 shows an example of the monitoring process according to the present invention.
  • the quantifiers "one” and “one” do not exclude the scenario of multiple elements.
  • the number of the steps of each method of the present invention does not limit the execution order of the method steps. Unless otherwise specified, the method steps can be performed in a different order.
  • the controller can be implemented by software, hardware or firmware or a combination thereof.
  • the controller can exist alone or part of a component.
  • the controller can be implemented as a discrete hardware module in the wind turbine or a part of the pitch system; or the controller can be implemented as software, such as a software module of the control system of the pitch system, or on a local computer or remote server or a user’s mobile device.
  • the present invention provides a novel method for monitoring the health status of leaf root fasteners.
  • the method and system determine the health status of blade root fasteners with low cost and high accuracy, thereby improving the operating efficiency and operating safety of the fan.
  • the idea behind the present invention is that the inventors discovered through research that failures such as breakage and loosening of blade root fasteners can cause abnormal changes in blade posture, and this abnormal change will in turn cause the lateral orientation of the nacelle. Not only that, but the inventors also discovered the specificity of this lateral vibration.
  • the various lateral vibrations of the nacelle are not all related to the failure of the blade root fasteners, but the nacelle is only
  • the vibration at the 2 times frequency of the rotor speed has a strong correlation with the failure of the blade root fastener, that is, the frequency of the nacelle side vibration caused by the blade root fastener failure is exactly twice the frequency of the blade rotation speed.
  • the height is consistent. Therefore, by detecting the amplitude of the nacelle at the double frequency of the wind wheel speed, in the case that the amplitude exceeds the limit, it can be accurately judged whether a blade root fastener failure occurs.
  • the solution of the present invention only needs to detect acceleration and rotation speed and the calculation solution is simple, so the hardware and software costs of the fastener fault detection solution can be better reduced.
  • the present invention can use the PCH sensor that can be installed in the fan, and does not need to install additional hardware sensors, and has low cost and good versatility.
  • the solution of the present invention can be installed in the programmable logic circuit PLC of the wind turbine in the form of a software APP for stand-alone offline operation, realizing full-time monitoring, and once the fault warning is triggered, the wind turbine will automatically stop protection.
  • the invention has strict theoretical support behind it, and has clear directivity to the fracture of the blade root bolt.
  • Fig. 1 shows a schematic diagram of a system 100 according to the present invention.
  • the system 100 for monitoring the health status of leaf root fasteners determines the health status of leaf root fasteners through data measurement or data acquisition and data processing, and the health The status is remotely sent to the user's mobile device 107 through the optional relay device 105 and the optional network 106, and then the user can view the health status remotely, for example, by a monitoring application 108 installed on the user's mobile device 107, and If necessary, perform remote operations, such as blade attitude adjustment or shutdown.
  • the relay device 105 may be, for example, an infrared receiver, a Wi-Fi router, a base station, a communication satellite, and the like.
  • the network 106 may be the Internet or an intranet or other private networks.
  • the system 100 directly communicates with the user's mobile device 107 or other control terminals.
  • the system 100 has a transmitter with corresponding power so that the signal of the state of health can be transmitted by the user's mobile device 107. Or received by other control terminals.
  • a remote server 109 is also provided for authentication of the system 100 and historical data storage.
  • the user must first input correct user credentials to the remote server 109 to access the system 100 (for example, through the monitoring application 108 installed on the user's mobile device 107), thereby obtaining the corresponding health status.
  • the remote server 109 may also store historical health status data of the system 100 for statistics or related threshold determination. Additionally, the remote server 109 can also encrypt and decrypt data between the system 100 and the user's mobile device 107, thereby improving security.
  • blade root fasteners should be understood in a broad sense.
  • blade roots cover various fastening devices used to connect blade roots and bolts, such as blade root bolts, blade root nuts, blade root screws, and blade root bonding parts. These fastening devices are broken, loose, etc. Failures will lead to changes in blade posture, and even lead to wind turbine safety accidents.
  • the system 100 for monitoring the health of leaf root fasteners according to the present invention includes the following components (some of which are optional):
  • the sensor 101 is configured to obtain a sequence of acceleration signals representing lateral vibration of the nacelle and a sequence of rotational speed signals representing the rotational speed of the wind wheel.
  • the sensor 101 may be, for example, a PCH acceleration sensor installed in the nacelle, which can be used to measure both acceleration and rotation speed.
  • other types of sensors 101 are also conceivable, such as rotational speed sensors and displacement sensors.
  • the term "acceleration signal representing lateral vibration of the nacelle” refers to the acceleration measured in the nacelle because the acceleration is caused by the nacelle measured vibration.
  • the nacelle measurement refers to the horizontal direction or the direction transverse to the vertical direction (for example, at an angle of 70° to 90° with the vertical direction).
  • the controller 102 which is configured to perform the following actions:
  • the sequence of the acceleration signal and the sequence of speed signal may be, for example, continuous signals within a certain period of time, and the two are related in time.
  • the time of two signals may be recorded in order to correlate them with each other, or the two signals may be stored in association with each other in the form of an array.
  • the controller 102 can continuously collect vibration data and put it in the data queue.
  • the signal sequence is analyzed to obtain the current vibration amplitude of the nacelle at the 2 times frequency (2P) of the wind wheel rotation. .
  • 2P 2 times frequency
  • the amplitude of the nacelle at 2 times the rotation speed of the wind wheel is determined by the following method:
  • the acceleration represented by the sequence of the acceleration signal is transformed from the time domain signal to the angle domain signal of the azimuth angle of the wind wheel.
  • the above-mentioned conversion is performed by the relationship between time and the azimuth angle of the wind wheel. That is to say, at each moment, the wind wheel has a corresponding azimuth angle, so that the above transformation can be completed through data substitution.
  • Fast Fourier transform FFT is performed on the angle domain signal, and the amplitude corresponding to the frequency 2 times of the rotation speed of the wind wheel is extracted as the amplitude of the nacelle at the frequency 2 times of the rotation speed of the wind wheel.
  • the fast Fourier transform is a well-known algorithm, so it will not be described here.
  • the background noise caused by the limited data length of the angular domain signal after the FFT is eliminated.
  • the amplitude corresponding to the double frequency of the rotation speed of the wind wheel is corrected according to the frequency and/or weight of the tower and the frequency and/or weight of the blades.
  • the elimination of background noise can be achieved, for example, by passing the fast Fourier transformed signal through a filter with a suitable cut-off frequency, such as a band-pass filter.
  • a suitable cut-off frequency such as a band-pass filter.
  • it can also discharge the influence of weather factors such as strong winds.
  • the amplitude of the nacelle at twice the frequency of the wind wheel speed can be accurately and quickly determined.
  • the frequency spectrum signal of the nacelle vibration can be easily obtained, so that the nacelle can be quickly obtained at 2 times the frequency of the wind wheel speed.
  • the amplitude is the frequency spectrum signal of the nacelle vibration.
  • the first threshold and the second threshold may be determined based on historical data, such as historical health status data or statistical values or empirical values, for example. Both of these thresholds can be determined by theoretical methods. For example, the relationship between the number of bolt breaks of each blade of each wind turbine and the 2P amplitude of the nacelle can be obtained by calculation, so as to determine the number of broken bolts at the time of alarm. , To determine the alarm threshold of the final 2P amplitude.
  • This threshold determination process can also be completed or improved through machine learning. For example, after each amplitude analysis is completed, the amplitude information will be stored for subsequent statistical analysis or threshold setting operations.
  • the historical amplitude information can also be used to filter the acquired signal sequence to avoid misjudgment of the data caused by abnormal data.
  • the first threshold may be set to exceed the historical average value by 50%-100%
  • the second threshold may be set to exceed the historical average value by 100%-200%.
  • the controller 102 can be implemented as a discrete hardware module in the wind turbine or a part of the pitch system; or the controller 102 can be implemented as software, such as a software module of the control system of the pitch system, or on a local computer or remote server or a user’s mobile device. App, etc.
  • the controller 102 may include, for example, a field programmable logic gate array FPGA, an application specific integrated circuit ASIC, a dedicated processor, and so on.
  • the controller 102 may be implemented as software codes stored on a memory, and the software codes may be executed by a dedicated or general-purpose processor to perform the steps.
  • An optional remote communication module 104 which is configured to remotely send the health status of the leaf root fastener to the user's mobile device.
  • the remote communication module 104 may be implemented as a Wi-Fi module, a Bluetooth module, an infrared communication module, a cellular communication module, a transceiver, etc., for example.
  • the remote communication module 104 through the remote communication module 104, the user can communicate with the system 100 to obtain the health status and issue a shutdown or posture adjustment instruction to the system 100 when necessary.
  • the remote communication module 104 is connected to the network 106 through the relay device 105, and communicates with the user mobile device 107 through the network 106.
  • the system 100 may also directly communicate with the user mobile device 107.
  • the remote communication module 104 may have an antenna 110 for wireless communication with the relay device 105.
  • ⁇ Pitch actuator 103 which is configured to perform a pitch operation according to the health of the blade root fastener. For example, when the amplitude of the nacelle exceeds the second threshold, the blade attitude is adjusted by the pitch actuator 103 or the wind turbine is shut down. In a preferred embodiment, the user can instruct the pitch actuator 103 to perform a pitch operation through the user mobile device 107.
  • the present invention has at least the following beneficial effects: (1) Through the present invention, it is possible to accurately determine whether a blade root fastener failure occurs. This is based on the inventor’s insight as follows: the inventor found through research that the blade root fastener has Breaking, loosening, and other faults can cause abnormal changes in blade attitude, which in turn will cause lateral vibration of the nacelle. Not only that, the inventors also discovered the specificity of such lateral vibration.
  • the nacelle The various lateral vibrations are not all related to the failure of the blade root fasteners, but only the vibration of the nacelle at 2 times the frequency of the rotor speed is strongly related to the failure of the blade root fasteners, that is, In other words, the frequency of the side vibration of the nacelle caused by the fault of the blade root fastener is exactly the same as the frequency twice of the blade speed. Therefore, by detecting the amplitude of the nacelle at the double frequency of the rotor speed, it is possible to accurately determine whether a blade has occurred.
  • Root fastener failure (2)
  • the solution of the present invention has the characteristics of simpler calculation, lower hardware cost, and more practicability, because the solution of the present invention only needs to detect acceleration and rotation speed, and this For example, it can be realized by PCH acceleration, and the calculation process is simple. Therefore, the software and hardware cost of the present invention is low, and the operation is simple, and the practicability is strong.
  • Fig. 2 shows the flow of the method 200 according to the present invention, in which the dashed boxes represent optional steps.
  • step 202 a sequence of acceleration signals representing lateral vibration of the nacelle and a sequence of rotational speed signals representing the rotational speed of the wind turbine are obtained.
  • the amplitude is filtered according to historical amplitude data to eliminate the influence caused by abnormal data.
  • step 206 the sequence of the acceleration signal and the sequence of the rotation speed signal are analyzed to determine the amplitude of the nacelle at 2 times the frequency of the rotation speed of the wind wheel.
  • the amplitude is corrected according to the frequency and/or weight of the tower and the frequency and/or weight of the blades.
  • step 210 the health status of the leaf root fastener is determined according to the amplitude.
  • Fig. 3 shows an example of the monitoring process according to the present invention.
  • Curves 301-304 respectively represent the wind wheel speed, the lateral acceleration of the nacelle, the amplitude of the nacelle at 2 times the wind wheel speed, and the alarm signal level.
  • the system 100 detects that one or more bolts have broken through curves 301-303, and automatically performs shutdown protection. At the same time, an early warning message is sent to the station to remind the operation and maintenance personnel to perform maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Wind Motors (AREA)

Abstract

一种用于监测叶根紧固件的健康状态的方法,包括下列步骤:获得表示机舱侧向振动的加速度信号的序列以及表示风轮转速的转速信号的序列;分析加速度信号的序列和转速信号的序列以确定机舱在风轮转速的2倍频上的振幅;以及根据所述振幅确定叶根紧固件的健康状态。还涉及一种用于监测叶根紧固件的健康状态的系统,可以低成本且高精度地确定叶根紧固件的健康状态,由此提高风机的运行效率和运行安全性。

Description

一种用于监测叶根紧固件的健康状态的方法及系统 技术领域
本发明总的来说涉及风力发电领域,具体而言涉及一种用于监测叶根紧固件的健康状态的方法。此外,本发明还涉及一种用于监测叶根紧固件的健康状态的系统。
背景技术
近年来,随着环境保护意识的提高以及各国的政策支持,清洁能源领域呈现出快速发展的趋势。清洁能源作为一种新型能源,与传统化石燃料相比具有分布广泛、可再生、环境污染小等优点。作为清洁能源的代表,风力发电机的应用日益增长。
风力发电机的叶片是风力发电机捕捉风能的重要组件,其正常运行直接关系到设备安全和发电效率。叶片乃至风机的正常运行有赖于诸如叶根螺栓之类的叶根紧固件的紧固连接。叶根紧固件是用于连接叶片与轮毂的重要部件。如果叶根紧固件断裂或松动,轻则影响叶片的运行姿态,造成发电效率下降;重则导致叶片扫塔或脱落等重大安全事故。因此,监测叶根紧固件的健康状态对于风机的高效和安全的运行具有重大意义。
目前,主要采用如下几种方案来监测叶根紧固件的健康状态:
(1)基于机器学习分析处理风机传感器采集的各种信号,构建多层感知模型来预测风机是否处于故障状态以及叶根螺栓是否健康。这一方案过于复杂,可靠性待验证,且模型依赖机组配置,可移植性差。
(2)通过非接触式传感器扫描变桨过程中接近的所有螺栓,判断叶根螺栓是否发生螺栓头掉落。该方案需要安装硬件传感器,成本高。
(3)利用监测探头和温度传感器采集的信号计算螺栓预紧力,判断预紧力是否处于正常范围,螺栓是否发生损坏。该方案需要安装硬件传感器,成本高,且预紧力与螺栓断裂没有直接关系。
(4)利用螺栓连接件之间的压力变化,判断螺栓是否断裂或松动。该方案需要硬件传感器,成本高。
(5)通过机舱加速度传感器振动信号反推叶片频率变化,当三支叶 片频率差超过阈值时进行停机保护。该方案中机舱振动信号频谱中叶片自振的信噪较低。
从上述方案的局限性可以得知,目前需要一种更为简单高效的紧固件监测方案。
发明内容
本发明的任务是,提供一种用于监测叶根紧固件的健康状态的方法和系统,通过该方法和/或该系统,可以低成本且高精度地确定叶根紧固件的健康状态,由此提高风机的运行效率和运行安全性。
在本发明的第一方面,该任务通过一种用于监测叶根紧固件的健康状态的方法来解决,该方法包括下列步骤:
获得表示机舱侧向振动的加速度信号的序列以及表示风轮转速的转速信号的序列;
分析加速度信号的序列和转速信号的序列以确定机舱在风轮转速的2倍频上的振幅;以及
根据所述振幅确定叶根紧固件的健康状态。
在本发明的范围内,术语“机舱侧向振动”是指风力发电机的机舱在垂直于或横向于(例如与竖直方向成70°至90°夹角的方向)竖直方向的侧向上的振动。术语“风轮转速”是指风力发电机的由叶片和轮毂构成的风轮的转动速度。术语“风轮转速的2倍频”是指将风轮转速换算成赫兹Hz(即次/秒)频率后的2倍(例如,将以周/分钟为单位的转速换算成以周/秒为单位的转速以后乘以2倍即得到所述2倍频)。术语“信号的序列”是指该信号的在多个时间点采集的值的集合。
在本发明的一个扩展方案中规定,该方法还包括下列步骤:
根据历史振幅数据对所述振幅进行滤波以消除异常数据带来的影响。
通过该扩展方案,可以消除异常数据及其影响,从而提高监测精度。例如,可以使用滤波器滤除异常频率或异常振幅的点。异常例如可以规定为与历史平均值或特定条件(如特定风速)下的统计值相差超过例如所规定的阈值、如50%、60%、70%等。
在本发明的一个优选方案中规定,分析加速度信号的序列和转速信号的序列以确定机舱在风轮转速的2倍频上的振幅包括下列步骤:
根据由转速信号的序列所表示的风轮转速,将由加速度信号的序列所表示的加速度从时域信号变换到风轮方位角的角域信号;以及
对所述角域信号进行快速傅里叶变换FFT,并且提取与风轮转速的2倍频相对应的幅度以作为机舱在风轮转速的2倍频上的振幅。
通过该优选方案,可以精确且快速地确定机舱在风轮转速的2倍频上的振幅。在此,通过执行时域到角域的变换并对角域信号执行快速傅里叶变换,可以方便地得到机舱振动的频谱信号,由此可以快速地得到机舱在风轮转速的2倍频上的振幅。
根据本发明的另一优选方案,该方法还包括下列步骤:
消除经过FFT的角域信号的由于有限数据长度导致的背景噪声;和/或
根据塔架的频率和/或重量、以及叶片的频率和/或重量对与风轮转速的2倍频相对应的幅度进行修正。
通过该优选方案,可以减少或消除背景噪声,或者可以提高2倍频幅度的精度。背景噪声的消除例如可以使经过快速傅里叶变换的信号经过具有合适截止频率的滤波器、如带通滤波器来实现。
在本发明的一个扩展方案中规定,所述叶根紧固件包括下列各项中的一个或多个:叶根螺栓、叶根螺母、叶根螺钉、以及叶根粘接部。通过该扩展方案,可以低成本且准确地检测各种叶根紧固件,从而提高风机运行安全性。
在本发明的另一扩展方案中规定,该方法还包括下列步骤:
向用户移动设备远程地发送警报信号。
通过该扩展方案,可以实现叶根紧固件的远程监控。例如,用户可以在用户移动设备上安装有监测应用软件App,该App能够实时地与风力发电机(或称“风机”)远程通信,使得用户可以实时地查看叶根紧固件的健康状态。
在本发明的又一扩展方案中规定,根据所述振幅确定叶根紧固件的健康状态包括下列步骤:
在所述振幅超过第一阈值时发出表示应当进行维护的警报信号;以及
在所述振幅超过第二阈值时发出表示应当停机的停机信号。
通过该方案,可以根据不同的故障情况采取不同的应对措施。例如, 当振幅超过第一阈值但是低于第二阈值时,这表示螺栓的脱落或断裂未严重影响风机的安全,例如只有一个或非关键的螺栓脱落或断裂;而在振幅超过第二阈值时,这表示多个或关键螺栓已脱落或断裂,因此需要立即停机以防止安全事故发生。第二阈值大于第一阈值,并且两个阈值可以根据统计或经验数据来设置。
在本发明的第二方面,前述任务通过一种用于监测叶根紧固件的健康状态的系统来解决,该系统包括:
传感器,其被配置为获得表示机舱侧向振动的加速度信号的序列以及表示风轮转速的转速信号的序列;以及
控制器,其被配置为执行下列动作:
分析加速度信号的序列和转速信号的序列以确定机舱在风轮转速的2倍频上的振幅;以及
根据振幅确定叶根紧固件的健康状态。
在本发明的一个优选方案中规定,所述传感器为PCH加速度传感器。通过该优选方案,可以方便地通过同一PCH加速度传感器实现加速度和转速二者的测量,同时,由于PCH加速度传感器是大部分风机中均会安装的,因此本方案无需或仅需极少附加硬件成本即可实现加速度和转速的测量。
在本发明的一个扩展方案中规定,该系统还包括:
变桨执行器,其被配置为根据叶根紧固件的健康状态执行变桨操作;和/或
远程通信模块,其被配置为将叶根紧固件的健康状态远程地发送给用户移动设备。
通过该扩展方案,可以实现故障状态的紧急处理、如通过变桨操作来调整叶片姿态或者使风轮减速或停止以避免事故;或者可以实现远程通信以例如远程地通知用户。远程通信模块例如可以采用蓝牙连接、Wi-Fi连接、蜂窝连接等方式来实现远程通信。激光通信或卫星通信也是可设想的。用户移动设备例如可以是膝上型计算机、平板计算机、个人数字助理(PDA)、智能手机等等。
在本发明的另一扩展方案中规定,所述健康状态包括下列各项中的一个或多个:
紧固件是否脱落;
紧固件是否断裂;以及
紧固件是否松动。
通过该扩展方案,可以检测各种紧固件故障情况。在本发明的教导下,其它紧固件故障情况也是可设想的、例如紧固件过度磨损等等。
此外,本发明还涉及一种风力发电机,其具有根据本发明的系统。
本发明至少具有如下有益效果:(1)通过本发明,可以准确地判断是否发生叶根紧固件故障,这基于本发明人的如下洞察:本发明人通过研究发现,叶根紧固件的断裂、松脱等故障会导致叶片姿态的异常变化、例如叶片自振频率降低,这种异常变化进而会导致机舱的侧向振动,不仅如此,本发明人还发现了这种侧向振动的特异性,具体而言,机舱的各种侧向振动并不都与叶根紧固件的故障相关联,而是机舱仅仅在风轮转速2倍频上的振动才与叶根紧固件的故障具有强关联性,也就是说,由叶根紧固件故障导致的机舱侧向振动的频率恰好与叶片转速的2倍频率高度一致,因此通过检测机舱在风轮转速2倍频上的振幅,可以准确地判断是否发生叶根紧固件故障;(2)本发明的方案与现有技术相比具有计算更简单、硬件更低成本、更具实用性等特点,因为本发明的方案仅需检测加速度和转速,而这例如可以通过PCH加速度即可实现,且计算过程简单,因此本发明的软件和硬件成本较低,且操作简单,实用性强。
附图说明
下面结合具体实施方式参考附图进一步阐述本发明。
图1示出了根据本发明的系统的示意图;
图2示出了根据本发明的方法的流程;以及
图3示出了根据本发明的监测过程的一个示例。
具体实施方式
应当指出,各附图中的各组件可能为了图解说明而被夸大地示出,而不一定是比例正确的。在各附图中,给相同或功能相同的组件配备了相同的附图标记。
在本发明中,除非特别指出,“布置在…上”、“布置在…上方”以及“布置在…之上”并未排除二者之间存在中间物的情况。此外,“布 置在…上或上方”仅仅表示两个部件之间的相对位置关系,而在一定情况下、如在颠倒产品方向后,也可以转换为“布置在…下或下方”,反之亦然。
在本发明中,各实施例仅仅旨在说明本发明的方案,而不应被理解为限制性的。
在本发明中,除非特别指出,量词“一个”、“一”并未排除多个元素的场景。
在此还应当指出,在本发明的实施例中,为清楚、简单起见,可能示出了仅仅一部分部件或组件,但是本领域的普通技术人员能够理解,在本发明的教导下,可根据具体场景需要添加所需的部件或组件。
在此还应当指出,在本发明的范围内,“相同”、“相等”、“等于”等措辞并不意味着二者数值绝对相等,而是允许一定的合理误差,也就是说,所述措辞也涵盖了“基本上相同”、“基本上相等”、“基本上等于”。以此类推,在本发明中,表方向的术语“垂直于”、“平行于”等等同样涵盖了“基本上垂直于”、“基本上平行于”的含义。
另外,本发明的各方法的步骤的编号并未限定所述方法步骤的执行顺序。除非特别指出,各方法步骤可以以不同顺序执行。
在本发明中,控制器可以用软件、硬件或固件或其组合来实现。控制器既可以单独存在,也可以是某个部件的一部分。例如,控制器可以实现为风机中的分立硬件模块或者是变桨系统的一部分;或者控制器可以实现为软件、例如变桨系统的控制系统的软件模块或者本地计算机或远程服务器或用户移动设备上的应用程序App。
针对现有叶根紧固件监测方案中所存在的监测复杂度高、硬件成本高、检测精度低等局限性,本发明提供了一种新颖的用于监测叶根紧固件的健康状态的方法及系统,以低成本且高精度地确定叶根紧固件的健康状态,由此提高风机的运行效率和运行安全性。具体而言,本发明所基于的思想在于,本发明人通过研究发现,叶根紧固件的断裂、松脱等故障会导致叶片姿态的异常变化,这种异常变化进而会导致机舱的侧向振动,不仅如此,本发明人还发现了这种侧向振动的特异性,具体而言,机舱的各种侧向振动并不都与叶根紧固件的故障相关联,而是机舱仅仅在风轮转速2倍频上的振动才与叶根紧固件的故障具有强关联性,也就是说,由叶根紧固件故障导致的机舱侧向振动的频率恰好与叶片转速的 2倍频率高度一致,因此通过检测机舱在风轮转速2倍频上的振幅,在所述振幅超限的情况下,可以准确地判断是否发生叶根紧固件故障。此外,本发明的方案仅需检测加速度和转速且计算方案简单,因此可较好地降低紧固件故障检测方案的软硬件成本。本发明例如可以使用风机中均会安装的PCH传感器,不需要另外安装硬件传感器,成本低,通用性好。此外,本发明的方案可以以软件APP形式安装到风机的可编程逻辑电路PLC中进行单机离线运行,实现全时段监测,一旦触发故障预警,风机自动停机保护。本发明背后有严格的理论支撑,对叶根螺栓断裂具有明确的指向性。
下面结合具体实施方式参考附图进一步阐述本发明。
图1示出了根据本发明的系统100的示意图。
首先,阐述系统100的示例性运行环境。在本实施例中,用于监测叶根紧固件的健康状态的系统100(或简称“系统100”)通过数据测量或数据获取以及数据处理确定叶根紧固件的健康状态,并且将健康状态通过可选的中继设备105和可选的网络106远程地发送给用户移动设备107,然后用户例如可以在用户移动设备107上安装的监测应用程序108远程地查看所述健康状态,并且在必要情况下执行远程操作、如叶片姿态调整或停机。中继设备105例如可以是红外接收机、Wi-Fi路由器、基站、通讯卫星等。网络106可以是因特网或内联网(Intranet)或其它私有网络。在一个优选实施例中,系统100直接与用户移动设备107或其它控制端通信,例如在这种情况下,系统100具有相应功率的发射机,使得所述健康状态的信号能够被用户移动设备107或其它控制端接收到。在一个优选实施例中,还设置有远程服务器109以用于系统100的认证以及历史数据存储。例如,用户首先必须向远程服务器109输入正确的用户凭证才能访问系统100(例如通过安装在用户移动设备107上的监测应用程序108),由此获得相应健康状态。远程服务器109还可以存储系统100的历史健康状态数据以用于统计或相关阈值确定。附加地,远程服务器109还可以对系统100与用户移动设备107之间的数据进行加密和解密,由此提高安全性。
在本发明,叶根紧固件应当广义地来理解。例如叶根涵盖了用于连接叶根和螺栓的各种紧固装置、例如叶根螺栓、叶根螺母、叶根螺钉、以及叶根粘接部等等,这些紧固装置的断裂、松动等故障均会导致叶片 姿态的改变、甚至导致风机安全事故。
接下来阐述系统100的进一步细节。
如图1所示,根据本发明的用于监测叶根紧固件的健康状态的系统100包括下列部件(其中一些部件是可选的):
·传感器101,其被配置为获得表示机舱侧向振动的加速度信号的序列以及表示风轮转速的转速信号的序列。传感器101例如可以是安装在机舱内的PCH加速度传感器,其可用于测量加速度和转速二者。在本发明的教导下,其它类型的传感器101也是可设想的、例如转速传感器和位移传感器。在此,术语“表示机舱侧向振动的加速度信号”是指,在机舱测量上的加速度,因为该加速度是由机舱测量振动引起的。在本发明中,机舱测量是指水平方向或横向于竖直方向(如与竖直方向成70°至90°夹角)的方向。
·控制器102,其被配置为执行下列动作:
◇分析加速度信号的序列和转速信号的序列以确定机舱在风轮转速的2倍频上的振幅。例如,这可以通过识别机舱侧向振动谱的频谱上的特定频率的幅度来实现。在此,加速度信号的序列和转速信号的序列例如可以为一定时间段内的连续信号,并且两者在时间上相关联。例如,可以记录两个信号的时间以便将它们彼此关联,或者两个信号以数组的形式彼此相关联地被存储。控制器102例如可以持续收集振动数据并放入数据队列中,当采集数据达到一定时长后,才对信号序列进行分析,以获取当前机舱在风轮转动2倍频(2P)上的振动幅值。完成一次分析后,置空数据队列,然后重复上述收集、分析操作。在一个优选实施例中,通过如下方式来确定机舱在风轮转速的2倍频上的振幅:
Figure PCTCN2019125611-appb-000001
根据由转速信号的序列所表示的风轮转速,将由加速度信号的序列所表示的加速度从时域信号变换到风轮方位角的角域信号。在此,通过将时间与风轮方位角之间的关系,来进行上述变换。也就是说,在各个时刻,风轮具有相应的方位角,从而通过数据代入来完成上述变换。
Figure PCTCN2019125611-appb-000002
对所述角域信号进行快速傅里叶变换FFT,并且提取与风轮转速的2倍频相对应的幅度以作为机舱在风轮转速的2倍频上的振幅。通过快速傅里叶变换FFT,可以方便地将角域信号变换成频域信号,从而有利于识别2倍频上的机舱振幅。快速傅里叶变换是 公知的算法,因此在此不展开叙述。在一个优选实施例中,消除经过FFT的角域信号的由于有限数据长度导致的背景噪声。在另一优选实施例中,根据塔架的频率和/或重量、以及叶片的频率和/或重量对与风轮转速的2倍频相对应的幅度进行修正。背景噪声的消除例如可以使经过快速傅里叶变换的信号经过具有合适截止频率的滤波器、如带通滤波器来实现。此外,还可以排出诸如大风之类的天气因素带来的影响。
通过上述计算方式,可以精确且快速地确定机舱在风轮转速的2倍频上的振幅。在此,通过执行时域到角域的变换并对角域信号执行快速傅里叶变换,可以方便地得到机舱振动的频谱信号,由此可以快速地得到机舱在风轮转速的2倍频上的振幅。
◇根据振幅确定叶根紧固件的健康状态。例如,在所述振幅超过第一阈值时发出表示应当进行维护的警报信号,并且在所述振幅超过第二阈值时发出表示应当停机的停机信号。第一阈值和第二阈值例如可以根据历史数据、如历史健康状态数据或统计值或者经验值来确定。这两个阈值均可以用理论方法确定,例如,通过计算可以得到每个风机的每个叶片的螺栓断裂数量与机舱2倍频(2P)振幅之间的关系,从而通过确定报警时断裂螺栓数量,来确定最终2P幅值的报警阈值。这个阈值确定过程也可以通过机器学习来完成或改进。例如,每完成一次振幅分析后,振幅信息将被存储下来,以用于后续统计分析或阈值设定操作。历史振幅信息还可以用于对所获取的信号序列进行滤波,以避免异常数据导致对数据的误判。例如,第一阈值可以设置为超过历史平均值50%-100%,第二阈值可以设置为超过历史平均值100%-200%。
控制器102可以实现为风机中的分立硬件模块或者是变桨系统的一部分;或者控制器102可以实现为软件、例如变桨系统的控制系统的软件模块或者本地计算机或远程服务器或用户移动设备上的应用程序App等。在硬件实现的情况下,控制器102例如可以包括现场可编程逻辑门阵列FPGA、专用集成电路ASIC、专用处理器等等。在软件实现的情况下,控制器102可以被实现为存储在存储器上的软件代码,所述软件代码可以由专用或通用处理器执行以执行所述步骤。
·可选的远程通信模块104,其被配置为将叶根紧固件的健康状态远程地发送给用户移动设备。远程通信模块104例如可以实现为Wi-Fi 模块、蓝牙模块、红外通信模块、蜂窝通信模块、收发机等等。在此,通过远程通信模块104,用户可以与系统100进行通信,以获取健康状态并在必要时对系统100发出停机或姿态调整指令。在本实施例中,远程通信模块104通过中继设备105连接到网络106,并通过网络106与用户移动设备107通信。但是,这仅仅是示例性的,在其它实施例中,系统100也可以直接与用户移动设备107通信。此外,远程通信模块104可以具有天线110以用于与中继设备105之间的无线通信。
·变桨执行器103,其被配置为根据叶根紧固件的健康状态执行变桨操作。例如,在机舱振幅超过第二阈值时,通过变桨执行器103调整叶片姿态或者使风机停机。在一个优选实施例中,用户可以通过用户移动设备107指示变桨执行器103执行变桨操作。
本发明至少具有如下有益效果:(1)通过本发明,可以准确地判断是否发生叶根紧固件故障,这基于本发明人的如下洞察:本发明人通过研究发现,叶根紧固件的断裂、松脱等故障会导致叶片姿态的异常变化,这种异常变化进而会导致机舱的侧向振动,不仅如此,本发明人还发现了这种侧向振动的特异性,具体而言,机舱的各种侧向振动并不都与叶根紧固件的故障相关联,而是机舱仅仅在风轮转速2倍频上的振动才与叶根紧固件的故障具有强关联性,也就是说,由叶根紧固件故障导致的机舱侧向振动的频率恰好与叶片转速的2倍频率高度一致,因此通过检测机舱在风轮转速2倍频上的振幅,可以准确地判断是否发生叶根紧固件故障;(2)本发明的方案与现有技术相比具有计算更简单、硬件更低成本、更具实用性等特点,因为本发明的方案仅需检测加速度和转速,而这例如可以通过PCH加速度即可实现,且计算过程简单,因此本发明的软件和硬件成本较低,且操作简单,实用性强。
图2示出了根据本发明的方法200的流程,其中虚线框表示可选步骤。
在步骤202,获得表示机舱侧向振动的加速度信号的序列以及表示风轮转速的转速信号的序列。
在可选步骤204,根据历史振幅数据对所述振幅进行滤波以消除异常数据带来的影响。
在步骤206,分析加速度信号的序列和转速信号的序列以确定机舱在风轮转速的2倍频上的振幅。
在可选步骤208,根据塔架的频率和/或重量、以及叶片的频率和/或重量对所述振幅进行修正。
在步骤210,根据所述振幅确定叶根紧固件的健康状态。
图3示出了根据本发明的监测过程的一个示例。
曲线301-304分别表示风轮转速、机舱侧向加速度、机舱在风轮转速的2倍频上的幅度、以及警报信号电平。在本示例中,在时刻503,系统100通过曲线301-303检测到一个或多个螺栓断裂已发生,并且自动进行停机保护。同时,发送预警信息到站端,提示运维人员进行检修。
虽然本发明的一些实施方式已经在本申请文件中予以了描述,但是本领域技术人员能够理解,这些实施方式仅仅是作为示例示出的。本领域技术人员在本发明的教导下可以想到众多的变型方案、替代方案和改进方案而不超出本发明的范围。所附权利要求书旨在限定本发明的范围,并由此涵盖这些权利要求本身及其等同变换的范围内的方法和结构。

Claims (12)

  1. 一种用于监测叶根紧固件的健康状态的方法,包括下列步骤:
    获得表示机舱侧向振动的加速度信号的序列以及表示风轮转速的转速信号的序列;
    分析加速度信号的序列和转速信号的序列以确定机舱在风轮转速的2倍频上的振幅;以及
    根据所述振幅确定叶根紧固件的健康状态。
  2. 根据权利要求1所述的方法,还包括下列步骤:
    根据历史振幅数据对所述振幅进行滤波以消除异常数据带来的影响。
  3. 根据权利要求1所述的方法,其中分析加速度信号的序列和转速信号的序列以确定机舱在风轮转速的2倍频上的振幅包括下列步骤:
    根据由转速信号的序列所表示的风轮转速,将由加速度信号的序列所表示的加速度从时域信号变换到风轮方位角的角域信号;以及
    对所述角域信号进行快速傅里叶变换FFT,并且提取与风轮转速的2倍频相对应的幅度以作为机舱在风轮转速的2倍频上的振幅。
  4. 根据权利要求3所述的方法,还包括下列步骤:
    消除经过FFT的角域信号的由于有限数据长度导致的背景噪声;和/或
    根据塔架的频率和/或重量、以及叶片的频率和/或重量对与风轮转速的2倍频相对应的幅度进行修正。
  5. 根据权利要求1所述的方法,其中所述叶根紧固件包括下列各项中的一个或多个:叶根螺栓、叶根螺母、叶根螺钉、以及叶根粘接部。
  6. 根据权利要求1所述的方法,还包括下列步骤:
    向用户移动设备远程地发送警报信号。
  7. 根据权利要求1所述的方法,根据所述振幅确定叶根紧固件的健康状态包括下列步骤:
    在所述振幅超过第一阈值时发出表示应当进行维护的警报信号;以及
    在所述振幅超过第二阈值时发出表示应当停机的停机信号。
  8. 一种用于监测叶根紧固件的健康状态的系统,包括:
    传感器,其被配置为获得表示机舱侧向振动的加速度信号的序列以 及表示风轮转速的转速信号的序列;以及
    控制器,其被配置为执行下列动作:
    分析加速度信号的序列和转速信号的序列以确定机舱在风轮转速的2倍频上的振幅;以及
    根据振幅确定叶根紧固件的健康状态。
  9. 根据权利要求8所述的系统,其中所述传感器为PCH加速度传感器。
  10. 根据权利要求8所述的系统,还包括:
    变桨执行器,其被配置为根据叶根紧固件的健康状态执行变桨操作;和/或
    远程通信模块,其被配置为将叶根紧固件的健康状态远程地发送给用户移动设备。
  11. 根据权利要求8所述的系统,其中所述健康状态包括下列各项中的一个或多个:
    紧固件是否脱落;
    紧固件是否断裂;以及
    紧固件是否松动。
  12. 一种风力发电机,其具有根据权利要求8至11之一所述的系统。
PCT/CN2019/125611 2019-12-16 2019-12-16 一种用于监测叶根紧固件的健康状态的方法及系统 WO2021119909A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2019478946A AU2019478946B2 (en) 2019-12-16 2019-12-16 Method and system for monitoring health state of blade root fastener
EP19956647.2A EP4080046A4 (en) 2019-12-16 2019-12-16 DEVICE AND SYSTEM FOR MONITORING THE STATE OF HEALTH OF A BLADE FOOT FIXING
PCT/CN2019/125611 WO2021119909A1 (zh) 2019-12-16 2019-12-16 一种用于监测叶根紧固件的健康状态的方法及系统
BR112022011863A BR112022011863A2 (pt) 2019-12-16 2019-12-16 Método para monitorar o estado de integridade do fixador da raiz da pá, sistema para monitorar o estado de integridade do fixador da raiz da pá e turbina eólica
US17/785,408 US20230011584A1 (en) 2019-12-16 2019-12-16 Method and system for monitoring the health state of blade root fastener
CN201980042080.8A CN113286944B (zh) 2019-12-16 2019-12-16 一种用于监测叶根紧固件的健康状态的方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/125611 WO2021119909A1 (zh) 2019-12-16 2019-12-16 一种用于监测叶根紧固件的健康状态的方法及系统

Publications (1)

Publication Number Publication Date
WO2021119909A1 true WO2021119909A1 (zh) 2021-06-24

Family

ID=76476960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125611 WO2021119909A1 (zh) 2019-12-16 2019-12-16 一种用于监测叶根紧固件的健康状态的方法及系统

Country Status (6)

Country Link
US (1) US20230011584A1 (zh)
EP (1) EP4080046A4 (zh)
CN (1) CN113286944B (zh)
AU (1) AU2019478946B2 (zh)
BR (1) BR112022011863A2 (zh)
WO (1) WO2021119909A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788387A (zh) * 2017-12-29 2020-10-16 维斯塔斯风力系统集团公司 用于监视风力涡轮机的方法和装置
CN114893360A (zh) * 2022-05-23 2022-08-12 国家电投集团科学技术研究院有限公司 风电机组塔筒异常振动识别和运行状态监测方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240016353A (ko) * 2022-01-30 2024-02-06 골드윈드 사이언스 앤 테크놀로지 컴퍼니 리미티드 풍력 발전기용 검출 방법 및 관련 기기
CN116517785B (zh) * 2023-04-06 2024-05-10 中广核全椒风力发电有限公司 用于监测风电机组叶片螺栓断裂的监测系统及监测方法
CN116517790B (zh) * 2023-05-30 2024-01-26 广州穗泰岩土工程有限公司 一种风力发电机叶片用螺栓紧固监控方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110313726A1 (en) * 2009-03-05 2011-12-22 Honeywell International Inc. Condition-based maintenance system for wind turbines
KR101358397B1 (ko) * 2012-09-27 2014-02-05 주식회사 가온솔루션 가속도 센서 및 출력 전력에 기반하는 풍력 발전기의 고장진단장치 및 고장 진단 방법
CN107218180A (zh) * 2017-07-18 2017-09-29 华北电力大学(保定) 一种基于振动加速度测量的风力发电机组传动系统故障报警方法
CN109268214A (zh) * 2018-10-29 2019-01-25 国电联合动力技术有限公司 一种风力发电机联轴器对中状态智能监测系统及方法
CN109973325A (zh) * 2017-12-20 2019-07-05 北京金风科创风电设备有限公司 识别异常振动的方法和设备
CN110173399A (zh) * 2019-06-06 2019-08-27 上海电力学院 一种海上风力发电机组螺栓松动检测系统及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751657A (en) * 1985-07-08 1988-06-14 General Electric Company Method and apparatus for detecting axial cracks in rotors for rotating machinery
DK200701456A (da) * 2007-10-09 2009-04-10 Siemens Wind Power As Overvågning af en vindmölles vingefrekvenser
WO2010071607A1 (en) * 2008-12-17 2010-06-24 Vestas Wind System A/S Method and system for monitoring fastener loads
DE102009039340A1 (de) * 2009-08-29 2011-03-03 Robert Bosch Gmbh Betriebsführungssystem einer Windenergieanlage und Verfahren unter Verwendung des Betriebsführungssystems
US20120053851A1 (en) * 2011-06-01 2012-03-01 General Electric Company System and method for monitoring turbine blade
DE102011116961A1 (de) * 2011-10-26 2013-05-02 Robert Bosch Gmbh Verfahren zur Bestimmung einer mechanischenBeschädigung eines Rotorblatts einerWindenergieanlage
CN104142229B (zh) * 2013-05-10 2017-08-04 中科风电(北京)有限公司 一种风力发电机组法兰螺栓在线监测及故障诊断系统
US10371123B2 (en) * 2013-08-19 2019-08-06 General Electric Company Methods and systems for detecting wind turbine rotor blade damage
DE102016203013A1 (de) * 2016-02-25 2017-08-31 Innogy Se Verfahren zur Schwingungszustandsüberwachung einer Windkraftanlage
DE102017008782A1 (de) * 2017-09-20 2019-03-21 Senvion Gmbh System und Verfahren zur Überwachung einer Flanschverbindung einer Windenergieanlage
CN108195535B (zh) * 2017-12-22 2020-01-17 清华大学 基于非线性激振特征的螺栓结合部松动检测方法及系统
CN108709724B (zh) * 2018-04-13 2021-02-05 山东中车风电有限公司 风力发电机组螺栓在线状态监测系统及方法
CN110378427A (zh) * 2019-07-23 2019-10-25 上海电气风电集团有限公司 风电叶片的叶根螺栓的故障检测方法、系统、设备及介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110313726A1 (en) * 2009-03-05 2011-12-22 Honeywell International Inc. Condition-based maintenance system for wind turbines
KR101358397B1 (ko) * 2012-09-27 2014-02-05 주식회사 가온솔루션 가속도 센서 및 출력 전력에 기반하는 풍력 발전기의 고장진단장치 및 고장 진단 방법
CN107218180A (zh) * 2017-07-18 2017-09-29 华北电力大学(保定) 一种基于振动加速度测量的风力发电机组传动系统故障报警方法
CN109973325A (zh) * 2017-12-20 2019-07-05 北京金风科创风电设备有限公司 识别异常振动的方法和设备
CN109268214A (zh) * 2018-10-29 2019-01-25 国电联合动力技术有限公司 一种风力发电机联轴器对中状态智能监测系统及方法
CN110173399A (zh) * 2019-06-06 2019-08-27 上海电力学院 一种海上风力发电机组螺栓松动检测系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4080046A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788387A (zh) * 2017-12-29 2020-10-16 维斯塔斯风力系统集团公司 用于监视风力涡轮机的方法和装置
CN111788387B (zh) * 2017-12-29 2023-09-05 维斯塔斯风力系统集团公司 用于监视风力涡轮机的方法和装置
CN114893360A (zh) * 2022-05-23 2022-08-12 国家电投集团科学技术研究院有限公司 风电机组塔筒异常振动识别和运行状态监测方法及系统

Also Published As

Publication number Publication date
CN113286944A (zh) 2021-08-20
BR112022011863A2 (pt) 2022-09-06
EP4080046A4 (en) 2022-12-14
EP4080046A1 (en) 2022-10-26
CN113286944B (zh) 2022-06-10
AU2019478946B2 (en) 2024-04-11
AU2019478946A1 (en) 2022-07-14
US20230011584A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
WO2021119909A1 (zh) 一种用于监测叶根紧固件的健康状态的方法及系统
EP2573390B1 (en) System and method for predicting wind turbine component failures
US10557459B2 (en) Verification of wind turbine nacelle yaw position sensor
US10371123B2 (en) Methods and systems for detecting wind turbine rotor blade damage
CA2891326C (en) Early detection of wind turbine degradation using acoustical monitoring
KR101943636B1 (ko) 차세대 IoT를 지원하기 위한 스마트 RTU
CN102620807A (zh) 风力发电机状态监测系统及方法
CN102200186A (zh) 风力发电机组齿轮箱远程在线状态监测与故障诊断系统
US9810200B2 (en) Method for controlling a profile of a blade on a wind turbine
CN105587463A (zh) 一种风力发电的远程监控方法
CN104101652A (zh) 一种基于音频信号的风电叶片损伤监测方法及监测系统
CN107725350B (zh) 具有机泵在线能效评测的状态监测装置
CN204719531U (zh) 一种风电机组设备的故障监控预警系统
CN106194602B (zh) 一种风电机组无线声发射检测装置
US11476685B2 (en) System and method for detecting battery faults in a pitch system of a wind turbine
CN102914360A (zh) 冗余型风电机组振动监测装置及监测方法
CN113218653A (zh) 一种基于消除低频扰动的海上风电齿轮箱监测方法及装置
CN103076568B (zh) 基于温度特性的风机运行工况监测方法
CN210924234U (zh) 一种扇风机感知系统
KR101976460B1 (ko) 모터의 보호 및 상태진단이 가능한 모터기동장치 및 이를 이용하는 수자원 관제시스템
CN117552936A (zh) 一种风电机组叶片状态监测系统及方法
Chakraborty et al. Real-time monitoring of wind turbine performance using IoT technology to prevent potential disruptions
CN114278516A (zh) 一种风电机组振动智慧监测系统
CN103727910A (zh) 风力发电机远程状态监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956647

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022011863

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019478946

Country of ref document: AU

Date of ref document: 20191216

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019956647

Country of ref document: EP

Effective date: 20220718

ENP Entry into the national phase

Ref document number: 112022011863

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220615