WO2021115418A1 - Motor-driven fixator to apply micromotion to fracture site to accelerate bone healing - Google Patents

Motor-driven fixator to apply micromotion to fracture site to accelerate bone healing Download PDF

Info

Publication number
WO2021115418A1
WO2021115418A1 PCT/CN2020/135629 CN2020135629W WO2021115418A1 WO 2021115418 A1 WO2021115418 A1 WO 2021115418A1 CN 2020135629 W CN2020135629 W CN 2020135629W WO 2021115418 A1 WO2021115418 A1 WO 2021115418A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer tube
inner tube
displacement
micromotional
fracture
Prior art date
Application number
PCT/CN2020/135629
Other languages
French (fr)
Inventor
Weichen QI
Xiaoreng FENG
Ka-Li LEUNG
Original Assignee
The University Of Hong Kong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Hong Kong filed Critical The University Of Hong Kong
Priority to US17/784,731 priority Critical patent/US20230000524A1/en
Priority to CN202080085479.7A priority patent/CN114786599A/en
Priority to EP20898028.4A priority patent/EP4072449A4/en
Publication of WO2021115418A1 publication Critical patent/WO2021115418A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/64Devices extending alongside the bones to be positioned
    • A61B17/6466Devices extending alongside the bones to be positioned with pin-clamps movable along a solid connecting rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/66Alignment, compression or distraction mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/64Devices extending alongside the bones to be positioned
    • A61B17/6416Devices extending alongside the bones to be positioned with non-continuous, e.g. hinged, pin-clamp connecting element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/64Devices extending alongside the bones to be positioned
    • A61B17/6466Devices extending alongside the bones to be positioned with pin-clamps movable along a solid connecting rod
    • A61B17/6475Devices extending alongside the bones to be positioned with pin-clamps movable along a solid connecting rod the connecting rod being threaded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/64Devices extending alongside the bones to be positioned
    • A61B17/6466Devices extending alongside the bones to be positioned with pin-clamps movable along a solid connecting rod
    • A61B17/6483Devices extending alongside the bones to be positioned with pin-clamps movable along a solid connecting rod the connecting rod having a non-circular section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B2017/564Methods for bone or joint treatment

Definitions

  • DCP dynamic compression plate
  • LCP locking compression plate
  • intramedullary nail intramedullary nail and external fixator.
  • DCP which provides absolute stability by achieving compression across the fracture line, can result in primary fracture healing without callus formation.
  • LCP and intramedullary nail provide relative stability that is good for secondly bone healing with massive bone callus formation. As the primary fracture healing requires longer time and has a higher re-fracture rate, the secondly bone healing induced by the relative stability is considered to be a better option for fracture fixation.
  • the relative stable implants can induce micromotion at the fracture site, which promotes callus formation and therefore accelerate the fracture healing.
  • This theory has been proven by clinical observations and animal experiments. What is more, a series of micromotional implants have been designed to take advantage of this theory, such as the active plate, and dynamic locking screw. Even with good clinical results, the number of clinical reported fracture nonunion and delayed union with the relative stability fixation method is still high. It is reported that the overall rate of nonunion is up to 18.5%in the tibia diaphysis and the nonunion rate in the femoral shaft after reamed nailing is 1.7%. The effective range of strain that can promote fracture healing remains unclear. That could be the reason why the currently used relative stable implants showed inconsistent clinical results.
  • One aspect of the disclosure relates to external fixator for treating bone fractures, comprising a holder attached to bone at two locations, the two locations on opposite sides of a fracture site; a micromotional unit removably coupled to the holder, the micromotional unit configured to produce reciprocating displacement between two components to apply controllable micromotion to the fracture site; and a controller coupled to the micromotional unit, the controller for controlling the micromotional unit to produce reciprocating displacement.
  • the external fixator for treating bone fractures comprises: a holder attached to bone at two fracture fragments, the two fracture fragments respectively on opposite sides of a fracture site; a micromotional unit removably coupled to the holder, the micromotional unit configured to produce a reciprocating displacement between the two fracture fragments to apply a controllable micromotion to the fracture site; and a controller coupled to the micromotional unit, the controller configured for controlling the micromotional unit to produce the reciprocating displacement between the two fracture fragments.
  • the method of treating bone fractures comprises: attaching a holder to bone at two fracture fragments, the two fracture fragments respectively on opposite sides of a fracture site; producing reciprocating displacement between the two fracture fragments by a micromotional unit removably coupled to the holder, thereby applying a controllable micromotion to the fracture site; and controlling the reciprocating displacement between the two fracture fragments by a controller to facilitate fracture healing at the fracture site.
  • Still another aspect of the disclosure relates to a micromotional unit comprising: an outer tube, an inner tube, a motor, and a gear drive. At least a portion of the inner tube is inserted inside the outer tube; the motor and the gear drive are configured to transform an electrical signal into a relative axial displacement between the outer tube and the inner tube along an axial direction of the inner tube and the outer tube; and the outer tube and the inner tube are respectively connected with the two fracture fragments, so that the relative displacement between the outer tube and the inner tube produces the reciprocating displacement between the two fracture fragments.
  • Figure 2 depicts a structure of a micromotional unit in accordance with an embodiment showing 61 –outer tube; 62 –drive screw; 63 –Elliptical gear; 64 –strain wave generator; 65 –sealing ring; 66 –wire to electronic controller; 67 –inner tube; 68 –limiting screw; 69 –displacement sensor; 610 –motor; 611 –circular ring gear; and 612 –guide rail.
  • Figure 4 shows a measured displacement-time curve of a micromotional unit in accordance with an embodiment.
  • Figure 6 shows a comparison between an external fixator in accordance with an embodiment and the conventional external fixator on micromotion accuracy.
  • FIG. 7 shows application of a micromotional unit (MMU) on fracture site in accordance with an embodiment.
  • MMU micromotional unit
  • Figure 8 depicts X-ray images showing use and non-use of an MMU on fracture site in accordance with an embodiment.
  • Figure 10 shows the relationship between bone formation and interfragmentary strain (IFS) .
  • Figure 12 shows various applications of an MMU in accordance with an embodiment.
  • micromotion With the ongoing investigation of bone healing mechanisms, the application of micromotion to a certain degree at the fracture site can accelerate fracture healing and reduce the incidence of nonunion. Consequently, a series of ‘dynamic fixators’ , including external fixators and plates, have been designed to produce micromotion at the fracture site. All of the currently used ‘dynamic fixators’ rely on the bearing weight of the patient to produce the micromotion across the fracture line, which makes the micromotion uncontrollable. A problem is that improper micromotion parameters exert a negative impact on bone healing. For example, premature start or laggard end of micromotion application can delay the fracture repairing, and excessive displacement causes nonunion. Therefore, one significant limitation of currently used ‘dynamic fixators’ is the lack of feasible means to adjust the parameters of micromotion, such as range, frequency, duration and timing of micromotion, to produce proper micromotion to accelerate bone healing.
  • Autonomous -The external fixator can autonomously apply micromotion to patient’s fracture site, instead of the relay on the patient’s manual action or bearing weight, which makes the micromotion more effective than most conventional ‘dynamic fixators’ .
  • Accuracy The mechanical parameters, such as range and frequency, of each micromotional cycle are accurately controlled and compensated by a closed-loop controller based on a displacement sensor in micromotional unit.
  • Demountable -The micromotional unit of the external fixator is designed to be demountable at the end of each micromotional application to lighten the patient’s burden.
  • the external fixator comprises a micromotional unit 6, an electronic controller 9, and a holder.
  • two fracture fragments 1 of the patient are fixed on the main body 7 and slide block 4 of the holder respectively.
  • the main body 7 and slide block 4 are jointed with the inner tube 67 and the outer tube 61 of the micromotional unit 6 through two connective rods 8.
  • the micromotional unit 6 is configured to transfer the electric signal form the electronic controller 9 into circulatory displacement between the inner tube 67 and the outer tube 61.
  • a sensor 69 in the micromotional unit 6 is configured to measure the actual displacement and the electronic controller 9 is configured to make compensation based on this measured value.
  • the micromotional unit 6 is dismountable after use to release the patient’s burden. This disclosure for example is used as an orthopedic fixator to treat fracture in various locations.
  • Figure 2 presents a drawing of the micromotional unit.
  • the micromotional unit comprises four parts, an outer tube 61, an inner tube 67, a motor 610, and a gear drive.
  • the motor 610 and the gear drive in the micromotional unit 6 are configured to transform the electrical signal from the electronic controller 9 into the relative displacement between the outer tube 61 and the inner tube 67.
  • a large-torque coreless motor 610 is rigidly fixed inside a purpose-designed space of the inner tube 67.
  • the reasons for choosing coreless motor 610 as the prime mover are its advantages on high efficiency, quick response, tiny volume, and the like.
  • the coreless motor is a key technology to achieve an axial displacement of the micromotional unit 6.
  • an output shaft of the motor 610 is connected with a strain wave generator 64.
  • the strain wave generator 64 presses an elliptical gear 63 from its inside and forces the elliptical gear 63 mesh with a circular ring gear 611 in one end of the inner tube 67.
  • the strain wave generator 64, the elliptical gear 63, and the circular ring gear 611 constitute a harmonic gear drive to lower the rotational speed and increase the torque of the coreless motor 610.
  • the harmonic gear drive is an important component to complete the micromotion of the micromotional unit 6. For example, its characteristic on ‘no backlash’ is helpful to achieve the reciprocating motion of micromotional unit 6.
  • this drive can provide a high drive ratio (a ratio from 30: 1 up to 300: 1 is possible in the same space in which planetary gears typically only produce a 10: 1 ratio) in a small volume, which saves precious space in the micromotional unit.
  • a drive screw 62 is coaxially connected with elliptical gear 63 through an output shaft, which converts the rotation into axial displacement.
  • a guide rail 612 such as four guide rails 612, provided between the inner tube 67 and outer tube 61 restrict the skewing or spin.
  • a limiting screw such as four limiting screws, impose a restriction on the maximum displacement, though anywhere from two to 20 screws may be employed.
  • a closed-loop controller 9 to regulate the operation of the micromotional unit 6 is provided.
  • the controller 9 is a commercial SCM (single chip microcomputer) with I/O (input/output) model and PMW output (pulse width modulation) model.
  • Figure 3 shows an exemplary control logic diagram of the electronic controller 9, although others may be employed.
  • the user sets parameters of micromotion (such as range, frequency, duration, and timing) , then the controller 9 produces a DC pulse signal (micromotion signal) to conduct the motor 610 in the micromotional unit 6 reciprocating motion.
  • the magnetic grid 69 detects the relative displacement of the micromotional unit 6, and then transform the displacement into a ‘displacement signal’ .
  • the controller 9 compares the received signal with user-entered parameters and adds an additional ‘compensating signal’ on the motor 610 to fix the error of displacement.
  • a Micromotion Unit (MMU) 6 as described herein comprises components: a motor 610 such as a coreless motor; a gear drive such as a harmonic gear drive; and a displacement sensor such as a magnetic grid.
  • a motor 610 such as a coreless motor
  • gear drive such as a harmonic gear drive
  • a displacement sensor such as a magnetic grid.
  • an electrical actuator such as a motor 610 is designed to transform electric energy into reciprocating displacement between two fracture fragments 1.
  • the core component is a micromotion unit (MMU) 6 which comprises four parts, an outer tube 61, an inner tube 67, a motor 610, and a gear drive.
  • MMU micromotion unit
  • the motor 610 and the gear drive are configured to transform the electrical signal from an external controller 9 into the relative displacement between the outer tube 61 and the inner tube 67.
  • the outer tube 61 and the inner tube 67 are fixed at the proximal and distal fracture fragment respectively so that the reciprocating of motor machine device 610 produces micromotion to patient's fracture site FS.
  • a large-torque coreless motor 610 is rigidly fixed inside a purpose-designed space of the inner tube 67.
  • the reasons for choosing coreless motor 610 as the prime mover are its advantages on high efficiency, quick response, tiny volume and the like.
  • the coreless motor 610 is a feature to facilitate achieving axial displacement of the MMU 6.
  • the output shaft of the motor 610 is connected with a strain wave generator 64.
  • the strain wave generator 64 presses an elliptical gear 63 from its inside and forces the elliptical gear 63 mesh with a circular ring gear 611 in one end of inner tube 67.
  • the strain wave generator 64, the elliptical gear 63, and the circular ring gear 611 constitute a harmonic gear drive to lower the rotational speed and increase the torque of the coreless motor 610.
  • the harmonic gear drive is a notable component to complete the micromotion of the MMU 6 –its characteristic of 'no backlash' is helpful to facilitate achieving the reciprocating motion of the MMU 6.
  • the drive provides a high drive ratio (a ratio from 30: 1 up to 300: 1 is possible in the same space) in a small volume.
  • the drive provides a high drive ratio (a ratio from 50: 1 up to 250: 1 in the same space) in a small volume.
  • a drive screw 62 is coaxially connected with elliptical gear 63 through an output shaft, which converts the rotation into axial displacement.
  • a guid rail 612 such as four guide rails 612, provided between the inner tube 67 and the outer tube 61 restrict the skewing or spin.
  • a limiting screw 68 such as four limiting screws 68, impose a restriction on the maximum displacement.
  • a sealing ring 65 such as three sealing rings 65, are set between the inner tube 67 and the outer tube 61 to keep the waterproof and sealing of MMU 6.
  • a displacement sensor 69 such as the magnetic grid, is placed in the sealing space to export displacement signals to the closed-loop controller 9 through a wire 66, and the micromotion signal and the compensating signal from the controller 9 are transmitted to motor 610 through the same wire 610.
  • Figure 4 illustrates the measured displacement-time curve of the micromotional unit; that is, calculation of frequency (f) and range (R) using an MMU in accordance with the description herein.
  • the micromotional unit 6 was set to produce micromotion at the range of 2 mm in the frequency of 0.2 Hz.
  • the displacement-time curve proves the compensation function has been realized by the electronic controller.
  • Figure 5 illustrates the measured displacement-time curve of a conventional device; that is, calculation of frequency (f) and range (R) using the external fixator.
  • the MMU 6 is the core component, which produces reciprocating displacement alone its axial direction.
  • the closed-loop controller 9 supplies power to the MMU 6 and controls the MMU 6 via the changing of the electrical signal.
  • the MMU for example is configured as one of various forms of orthopedic fixators to satisfy different requirements of fracture classifications on fixation, for example, for fracture reduction, limb lengthening and scoliosis correction.
  • Figure 9 shows a micromotional external fixator.
  • FIG. 10 shows the relationship between bone formation and interfragmentary strain (IFS) . If the IFS higher than Point C or lower than Point A, the delayed union or the nonunion would happen.
  • IFS interfragmentary strain
  • the optimal range of micromotion makes IFS remain between Point A and Point C in Figure 10, the bone healing theoretically is enhanced by the improvement of callus formation along with the fracture site FS. And the rate of delayed union and non-union is decreased. As a result, irregular micromotion may cause invalid stimulate even brings a negative effect to fracture healing.
  • the external fixator described herein operates in a range with a frequency that facilitates fracture healing with a relatively low standard deviation.
  • the external fixator operates in a range from 0.01 mm to 5 mm.
  • the external fixator operates in a range from 0.1 mm to 3 mm.
  • the external fixator operates in a given range with a standard deviation from ⁇ 0.001 mm to 0.1 mm.
  • the external fixator operates in a given range with a standard deviation from ⁇ 0.01 mm to 0.075 mm.
  • the external fixator operates at a frequency from 0.05 Hz to 5 Hz.
  • the external fixator operates at a frequency from 0.1 Hz to 2.5 Hz.
  • the external fixator operates at a given frequency with a standard deviation from 0.001 Hz to 0.1 Hz.
  • the external fixator operates at a given frequency with a standard deviation from 0.01 Hz to 0.05 Hz.
  • the external fixator described herein can provide real-time feedback to surgeons and help them timely adjust the micromotional parameters. It is an important therapeutic reference to surgeons because both exaggerate micromotion and inadequate micromotion cause detrimentally the delayed union or the nonunion.
  • the electric controller 9 described herein reduces the workload of patents. For example, according to the protocol, the patient should shake a handle on one side of fixator for 10 minutes daily, and produce cycle micromotion for 2-3 weeks, then the patient should produce progressive loading for 2-3 weeks more by the same method. These complicated operations and repetitive work are advantageously executed by the electric controller 9 as described herein, which highly shortens the learning curve.
  • the external fixator described herein shows significant advantages on the integrated design, the modular construction and the compatibility compared with current commercial fixator.
  • the integrated design enables all movable parts of the micromotional unit to be packaged into one tubular shell. This integrated design minimizes the risk of failure due to foreign matter (such as water, ash, and fiber) entering the mechanical part and brings great benefit to the reliability of micromotional fixator.
  • the modular construction enables the connections among the micromotional unit 6, the electronic controller 9, and the holder to be dismountable.
  • the micromotional unit 6 and the electronic controller 9 are removed from the holder at the end of each micromotional application to lighten the patient’s burden.
  • the external fixator described herein has compatibility with a commercial fixator in that the connector on the micromotional unit 6 is designed to be compatible with the commercial fixator.
  • the micromotional unit can take place of the manual adaptor on product to furnish it with the ability of autonomous working.
  • the micromotional unit 6 comprises an outer tube 61, an inner tube 67, a motor 610, and a gear drive, and at least a portion of the inner tube 67 is inserted inside the outer tube 61; the motor 610 and the gear drive are configured to transform an electrical signal from the controller 9 into a relative axial displacement between the outer tube 61 and the inner tube 67 along an axial direction of the inner tube 67 and the outer tube 61; and the outer tube 61 and the inner tube 67 are respectively connected with the two fracture fragments 1, so that the relative axial displacement between the outer tube 61 and the inner tube 67 produces the reciprocating displacement between the two fracture fragments 1.
  • the gear drive is a harmonic gear drive
  • the harmonic gear drive comprises a strain wave generator 64, an elliptical gear 63, and a circular ring gear 611; and the strain wave generator 64 is connected with an output shaft of the motor 610, the circular ring gear 611 is provided on the inner tube 67, and the motor 610 drives the strain wave generator 64 to press the elliptical gear 63 from an inside of the elliptical gear 63 to force the elliptical gear 63 mesh with the circular ring gear 611.
  • the motor 610 rotates in a first direction, the outer tube 61 and the inner tube 67 move towards each other along the axial direction of the inner tube 67 and the outer tube 61; and the motor 610 rotates in a second direction opposite to the first direction, the outer tube 61 and the inner tube 67 move away from each other along the axial direction of the inner tube 67 and the outer tube 61.
  • the micromotional unit 6 further comprises a threaded rod 614 connected to the motor 610, and a sliding block 615 connected to the threaded rod 613; and the motor 610 drives the sliding block 615 to move at the same time the motor 610 drives the strain wave generator 64 to press the elliptical gear 63 from the inside of the elliptical gear 63, the outer tube 61 is connected with the sliding block 615 and moves with the sliding block 615, so as to produce the relative axial displacement between the outer tube 61 and the inner tube 67.
  • the threaded rod 614 is connected to the motor 610 by a coupling 613.
  • the outer tube 61 is connected with the sliding block 615 by a screw 616.
  • the micromotional unit 6 also comprise the displacement sensor 69, details thereof may refer to Figure 2.
  • the sliding block 615 is connected to the displacement sensor 69.
  • the motor 610 is a coreless motor.
  • the coreless motor 610 is rigidly fixed inside a purpose-designed space of the inner tube 67.
  • the micromotional unit 6 further comprises a guide rail 612 provided between the inner tube 67 and outer tube 61 and extending along the axial direction of the inner tube 67 and the outer tube 61, so as to restrict skewing or spin between the outer tube 61 and the inner tube 67.
  • the micromotional unit 6 further comprises a limiting screw 68 imposing a restriction on a maximum relative displacement between the outer tube 61 and the inner tube 67.
  • the holder comprises a main body 7 and a movable block 4, the movable block 4 is movable with respect to the main body 7, and the main body 7 and the movable block 4 are respectively attached to the two fracture fragments 1; the outer tube 61 and the inner tube 67 are respectively connected with the main body 7 and the movable block 4 of the holder; and the relative axial displacement between the outer tube 61 and the inner tube 67 produces a reciprocating displacement between the main body 7 and the movable block 4 of the holder, so as to produce the reciprocating displacement between the two fracture fragments 1.
  • the movable block 4 is movable with respect to the main body 7; during the micromotion is not applied to the fracture site FS, the movable block 4 is locked and is not movable with respect to the main body 7.
  • the holder further comprises a slideway 3 connected with the main body 7, the movable block 4 is a slide block slidable on the slideway 3 with respect to the main body 7.
  • the holder comprises a main body 7 and two movable blocks 4, each of the two movable blocks 4 is movable with respect to the main body 7, and the two movable blocks 4 are respectively attached to the two fracture fragments 1; the outer tube 61 and the inner tube 67 are respectively connected with the two movable blocks 4 of the holder; and the relative axial displacement between the outer tube 61 and the inner tube 67 produces a reciprocating displacement between the two movable blocks 4 of the holder, so as to produce the reciprocating displacement between the two fracture fragments 1.
  • the holder further comprises a slideway 3 connected with the main body 7, each of the two movable blocks 4 is a slide block slidable on the slideway 3 with respect to the main body 7.
  • a method of treating bone fractures comprising: attaching a holder to bone at two fracture fragments 1, the two fracture fragments 1 respectively on opposite sides of a fracture site FS; producing reciprocating displacement between the two fracture fragments 1 by a micromotional unit 6 removably coupled to the holder, thereby applying a controllable micromotion to the fracture site FS; and controlling the reciprocating displacement between the two fracture fragments 1 by a controller 9 to facilitate fracture healing at the fracture site.
  • the micromotional unit comprises an outer tube 61, an inner tube 67, a motor 610, and a gear drive, and at least a portion of the inner tube 67 is inserted inside the outer tube 61; the motor 610 and the gear drive are configured to transform an electrical signal from the controller 9 into a relative axial displacement between the outer tube 61 and the inner tube 67 along an axial direction of the inner tube 67 and the outer tube 61; the relative axial displacement between the outer tube 67 and the inner tube 61 produces the reciprocating displacement between the two fracture fragments 1; and the method further comprises: detecting the relative axial displacement between the inner tube 67 and the outer tube 61, transforming the relative axial displacement into a displacement signal, and exporting the displacement signal to the controller 9; and determining a compensating signal for compensating the electrical signal from the controller 9 based on the displacement signal.
  • the two fracture fragments 1 are spaced from each other by a distance at the fracture site FS; and the method further comprises: producing the displacement between the two fracture fragments 1 to be 10%-20%, preferably 20%, of the distance. That is, strains from 10%to 20%are employed, preferably, strain of 20%is employed.
  • the method further comprises: producing reciprocating displacement in a range with a frequency that facilitates fracture healing at the fracture site with a relatively low standard deviation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

Devices and methods for treating bone fractures involving a micromotional unit (6) that produces reciprocating displacement between two fracture fragments (1) to thereby apply controllable micromotion to a fracture site.

Description

MOTOR-DRIVEN FIXATOR TO APPLY MICROMOTION TO FRACTURE SITE TO ACCELERATE BONE HEALING TECHNICAL FIELD
Disclosed are devices, systems, and methods that facilitate bone healing.
BACKGROUND
Fracture is the most common kind of bone disease, which usually requires expensive surgical treatment. According to the audit report issued by the International Osteoporosis Foundation (IOF) in 2013, high fracture rates with major increases in Asia is predicted by 2050 as the aging population, widespread vitamin D deficiency and low calcium intake.
Open reduction and implant fixation are considered as the standard treatment for fractures that are impossible to reduce manipulatively. A lot of implants have been developed and used widely in the fracture fixation, including dynamic compression plate (DCP) , locking compression plate (LCP) , intramedullary nail and external fixator. DCP, which provides absolute stability by achieving compression across the fracture line, can result in primary fracture healing without callus formation. LCP and intramedullary nail, however, provide relative stability that is good for secondly bone healing with massive bone callus formation. As the primary fracture healing requires longer time and has a higher re-fracture rate, the secondly bone healing induced by the relative stability is considered to be a better option for fracture fixation.
The relative stable implants can induce micromotion at the fracture site, which promotes callus formation and therefore accelerate the fracture healing. This theory has been proven by clinical observations and animal experiments. What is more, a series of micromotional implants have been designed to take advantage of this theory, such as the active plate, and dynamic locking screw.  Even with good clinical results, the number of clinical reported fracture nonunion and delayed union with the relative stability fixation method is still high. It is reported that the overall rate of nonunion is up to 18.5%in the tibia diaphysis and the nonunion rate in the femoral shaft after reamed nailing is 1.7%. The effective range of strain that can promote fracture healing remains unclear. That could be the reason why the currently used relative stable implants showed inconsistent clinical results.
SUMMARY
The following presents a simplified summary of the disclosure in order to provide a basic understanding of some aspects of the disclosure. This summary is not an extensive overview of the disclosure. It is intended to neither identify key or critical elements of the disclosure nor delineate the scope of the disclosure. Rather, the sole purpose of this summary is to present some concepts of the disclosure in a simplified form as a prelude to the more detailed description that is presented hereinafter.
The subject disclosure provides devices, systems, and methods that involve micromotion with the appropriate model (including displacement range and frequency) that improves the callus formation along the fracture. A series of micromotional fixators accelerate fracture healing. Conventional ‘dynamic fixators’ rely on the bearing weight of the patient to produce the micromotion across the fracture line, which makes the micromotion uncontrollable. To produce controllable and accuracy micromotion at the fracture site, an electronic linear servo motor actuator and micromotional unit are designed to transform electric energy into reciprocating displacement between two fracture fragments. The electronic controller actuates micromotional unit to produce micromotion with per-set parameters and makes necessary compensation based on measured results of the displacement sensor. The micromotional unit can be removed after use. This orthopedic fixator can be used to treat fracture in various locations of patient  in need thereof.
Essentially, a motor machine transforms electric energy into a reciprocating displacement between two components to apply controllable micromotion to the fracture site, which can be precisely adjusted by an electronic controller.
One aspect of the disclosure relates to external fixator for treating bone fractures, comprising a holder attached to bone at two locations, the two locations on opposite sides of a fracture site; a micromotional unit removably coupled to the holder, the micromotional unit configured to produce reciprocating displacement between two components to apply controllable micromotion to the fracture site; and a controller coupled to the micromotional unit, the controller for controlling the micromotional unit to produce reciprocating displacement.
The external fixator for treating bone fractures comprises: a holder attached to bone at two fracture fragments, the two fracture fragments respectively on opposite sides of a fracture site; a micromotional unit removably coupled to the holder, the micromotional unit configured to produce a reciprocating displacement between the two fracture fragments to apply a controllable micromotion to the fracture site; and a controller coupled to the micromotional unit, the controller configured for controlling the micromotional unit to produce the reciprocating displacement between the two fracture fragments.
Another aspect of the disclosure relates to method of treating bone fractures, involving attaching a holder attached to bone at two locations, the two locations on opposite sides of a fracture site; producing reciprocating displacement between two components a micromotional unit removably coupled to the holder thereby applying controllable micromotion to the fracture site; and controlling the reciprocating displacement to facilitate fracture healing at the fracture site.
The method of treating bone fractures comprises: attaching a holder to bone at two fracture fragments, the two fracture fragments respectively on  opposite sides of a fracture site; producing reciprocating displacement between the two fracture fragments by a micromotional unit removably coupled to the holder, thereby applying a controllable micromotion to the fracture site; and controlling the reciprocating displacement between the two fracture fragments by a controller to facilitate fracture healing at the fracture site.
Still another aspect of the disclosure relates to a micromotional unit comprising: an outer tube, an inner tube, a motor, and a gear drive. At least a portion of the inner tube is inserted inside the outer tube; the motor and the gear drive are configured to transform an electrical signal into a relative axial displacement between the outer tube and the inner tube along an axial direction of the inner tube and the outer tube; and the outer tube and the inner tube are respectively connected with the two fracture fragments, so that the relative displacement between the outer tube and the inner tube produces the reciprocating displacement between the two fracture fragments.
To the accomplishment of the foregoing and related ends, the disclosure comprises the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative aspects and implementations of the disclosure. These are indicative, however, of but a few of the various ways in which the principles of the disclosure may be employed. Other objects, advantages and novel features of the disclosure will become apparent from the following detailed description of the disclosure when considered in conjunction with the drawings.
BRIEF SUMMARY OF THE DRAWINGS
Figure 1 depicts an external fixator in accordance with an embodiment showing 1 –fracture fragment of patient; 2 –K wire; 3 –slideway on the main body of holder; 4 –slide block; 5 –adapter ring between micromotional unit and connecting rod; 6 –micromotional unit; 7 –main body of holder; 8 –connecting rod; and 9 –electronic controller.
Figure 2 depicts a structure of a micromotional unit in accordance with an embodiment showing 61 –outer tube; 62 –drive screw; 63 –Elliptical gear; 64 –strain wave generator; 65 –sealing ring; 66 –wire to electronic controller; 67 –inner tube; 68 –limiting screw; 69 –displacement sensor; 610 –motor; 611 –circular ring gear; and 612 –guide rail.
Figure 3 illustrates a control logic diagram of an electronic controller in accordance with an embodiment.
Figure 4 shows a measured displacement-time curve of a micromotional unit in accordance with an embodiment.
Figure 5 shows a measured displacement-time curve of a conventional micromotional unit.
Figure 6 shows a comparison between an external fixator in accordance with an embodiment and the conventional
Figure PCTCN2020135629-appb-000001
external fixator on micromotion accuracy.
Figure 7 shows application of a micromotional unit (MMU) on fracture site in accordance with an embodiment.
Figure 8 depicts X-ray images showing use and non-use of an MMU on fracture site in accordance with an embodiment.
Figure 9 shows an external fixator with MMU in accordance with an embodiment.
Figure 10 shows the relationship between bone formation and interfragmentary strain (IFS) .
Figure 11 shows a structure of a micromotional unit in accordance with an embodiment showing 613-coupling; 614-thread rod; 615-sliding block; 616-screw.
Figure 12 shows various applications of an MMU in accordance with an embodiment.
DETAILED DESCRIPTION
With the ongoing investigation of bone healing mechanisms, the  application of micromotion to a certain degree at the fracture site can accelerate fracture healing and reduce the incidence of nonunion. Consequently, a series of ‘dynamic fixators’ , including external fixators and plates, have been designed to produce micromotion at the fracture site. All of the currently used ‘dynamic fixators’ rely on the bearing weight of the patient to produce the micromotion across the fracture line, which makes the micromotion uncontrollable. A problem is that improper micromotion parameters exert a negative impact on bone healing. For example, premature start or laggard end of micromotion application can delay the fracture repairing, and excessive displacement causes nonunion. Therefore, one significant limitation of currently used ‘dynamic fixators’ is the lack of feasible means to adjust the parameters of micromotion, such as range, frequency, duration and timing of micromotion, to produce proper micromotion to accelerate bone healing.
To produce controllable and proper micromotion for facilitating fracture healing, described herein is an external fixator. Referring to Figure 1, Figure 2 and Figure 11, an electronic linear servo motor actuator 610 is designed to transform electric energy into reciprocating displacement between two fracture fragments 1. For example, a core component is a micromotional unit 6. For example, the micromotional unit 6 has four parts, an outer tube 61, an inner tube 67, a motor 610, and a gear drive. In terms of the working principle, for example, the motor 610 and the gear drive are configured to transform the electrical signal from an electronic controller 9 into the relative displacement between the outer tube 61 and the inner tube 67. For example, the outer tube 61 and the inner tube 67 are fixed at the proximal and distal fracture fragment respectively so that the reciprocating of the motor machine device 610 produces micromotion to patient’s fracture site in a manner that facilitates and/or promotes fracture healing, especially compared to similar situations where the described external fixator is not employed.
As a product of orthopedic fixator to accelerate fracture healing, the  advantages of the disclosure can be summarized at least in four keywords:
Autonomous -The external fixator can autonomously apply micromotion to patient’s fracture site, instead of the relay on the patient’s manual action or bearing weight, which makes the micromotion more effective than most conventional ‘dynamic fixators’ .
Programmable -The progress of the micromotional application, such as applied duration and timing, is programmable. According to the patient’s healing status, the micromotional function can be turned on or off –that is, tailored to each circumstance.
Accuracy -The mechanical parameters, such as range and frequency, of each micromotional cycle are accurately controlled and compensated by a closed-loop controller based on a displacement sensor in micromotional unit.
Demountable -The micromotional unit of the external fixator is designed to be demountable at the end of each micromotional application to lighten the patient’s burden.
This disclosure is about an external fixator to apply micromotion to patient’s fracture site to improve bone healing. The external fixator comprises a micromotional unit 6, an electronic controller 9, and a holder. For example, two fracture fragments 1 of the patient are fixed on the main body 7 and slide block 4 of the holder respectively. For example, the main body 7 and slide block 4 are jointed with the inner tube 67 and the outer tube 61 of the micromotional unit 6 through two connective rods 8. For example, the micromotional unit 6 is configured to transfer the electric signal form the electronic controller 9 into circulatory displacement between the inner tube 67 and the outer tube 61. For example, a sensor 69 in the micromotional unit 6 is configured to measure the actual displacement and the electronic controller 9 is configured to make compensation based on this measured value. For example, the micromotional unit 6 is dismountable after use to release the patient’s burden. This disclosure for example is used as an orthopedic fixator to treat fracture in various locations.
Referring to Figure 1, an illustration in accordance with an embodiment is shown. The disclosure comprises a micromotional unit 6, an electronic controller 9, and a holder. For example, the micromotional unit 6 produces micromotion under the control of the electronic controller 9. For example, the holder is designed to provide stability to the patient’s fracture site FS. For example, the main body 7 of the holder and the slide block 4 of the holder are fixed with the patient’s proximal fragment and distal fracture fragment through three or so K wires 2 respectively. For example, the outer tube 61 and the inner tube 67 are inserted at the main body 7 of the holder and the slide block 4 of the holder through two or more connecting rods 8 respectively. For example, the micromotional unit is demountable, which is removed from holder after use.
Figure 2 presents a drawing of the micromotional unit. For example, the micromotional unit comprises four parts, an outer tube 61, an inner tube 67, a motor 610, and a gear drive. For example, the motor 610 and the gear drive in the micromotional unit 6 are configured to transform the electrical signal from the electronic controller 9 into the relative displacement between the outer tube 61 and the inner tube 67. For example, a large-torque coreless motor 610 is rigidly fixed inside a purpose-designed space of the inner tube 67. The reasons for choosing coreless motor 610 as the prime mover are its advantages on high efficiency, quick response, tiny volume, and the like. For example, the coreless motor is a key technology to achieve an axial displacement of the micromotional unit 6. For example, an output shaft of the motor 610 is connected with a strain wave generator 64. For example, the strain wave generator 64 presses an elliptical gear 63 from its inside and forces the elliptical gear 63 mesh with a circular ring gear 611 in one end of the inner tube 67. For example, the strain wave generator 64, the elliptical gear 63, and the circular ring gear 611 constitute a harmonic gear drive to lower the rotational speed and increase the torque of the coreless motor 610. For example, the harmonic gear drive is an important component to complete the micromotion of the micromotional unit 6. For example,  its characteristic on ‘no backlash’ is helpful to achieve the reciprocating motion of micromotional unit 6. For example, this drive can provide a high drive ratio (a ratio from 30: 1 up to 300: 1 is possible in the same space in which planetary gears typically only produce a 10: 1 ratio) in a small volume, which saves precious space in the micromotional unit. For example, a drive screw 62 is coaxially connected with elliptical gear 63 through an output shaft, which converts the rotation into axial displacement. For example, a guide rail 612, such as four guide rails 612, provided between the inner tube 67 and outer tube 61 restrict the skewing or spin. For example, a limiting screw, such as four limiting screws, impose a restriction on the maximum displacement, though anywhere from two to 20 screws may be employed. For example, a sealing ring 65, such as three sealing rings, are set between the inner tube 67 and the outer tube 61 to keep the waterproof and sealing of the micromotional unit 6. For example, a displacement sensor 69, such as a magnetic grid, is placed in the sealing space as to export displacement signals to the closed-loop controller 9 through a wire 66, and the micromotion signal and the compensating signal from the controller 9 are transmitted to motor 610 through the same wire 66.
For example, to facilitate the accurateness and controllability of the micromotional application, a closed-loop controller 9 to regulate the operation of the micromotional unit 6 is provided. For example, the controller 9 is a commercial SCM (single chip microcomputer) with I/O (input/output) model and PMW output (pulse width modulation) model. Figure 3 shows an exemplary control logic diagram of the electronic controller 9, although others may be employed. For example, in the beginning, the user sets parameters of micromotion (such as range, frequency, duration, and timing) , then the controller 9 produces a DC pulse signal (micromotion signal) to conduct the motor 610 in the micromotional unit 6 reciprocating motion. Meanwhile, the magnetic grid 69 detects the relative displacement of the micromotional unit 6, and then transform the displacement into a ‘displacement signal’ . For example, the controller 9  compares the received signal with user-entered parameters and adds an additional ‘compensating signal’ on the motor 610 to fix the error of displacement.
For example, a Micromotion Unit (MMU) 6 as described herein comprises components: a motor 610 such as a coreless motor; a gear drive such as a harmonic gear drive; and a displacement sensor such as a magnetic grid.
For example, to produce controllable and proper micromotion for fracture healing, inventors developed a motor-driven fixator. In this disclosure, for example, an electrical actuator such as a motor 610 is designed to transform electric energy into reciprocating displacement between two fracture fragments 1. For example, the core component is a micromotion unit (MMU) 6 which comprises four parts, an outer tube 61, an inner tube 67, a motor 610, and a gear drive. In terms of the working principle, for example, the motor 610 and the gear drive are configured to transform the electrical signal from an external controller 9 into the relative displacement between the outer tube 61 and the inner tube 67. For example, the outer tube 61 and the inner tube 67 are fixed at the proximal and distal fracture fragment respectively so that the reciprocating of motor machine device 610 produces micromotion to patient's fracture site FS.
For example, a large-torque coreless motor 610 is rigidly fixed inside a purpose-designed space of the inner tube 67. For example, the reasons for choosing coreless motor 610 as the prime mover are its advantages on high efficiency, quick response, tiny volume and the like. For example, the coreless motor 610 is a feature to facilitate achieving axial displacement of the MMU 6. For example, the output shaft of the motor 610 is connected with a strain wave generator 64.
For example, the strain wave generator 64 presses an elliptical gear 63 from its inside and forces the elliptical gear 63 mesh with a circular ring gear 611 in one end of inner tube 67. For example, the strain wave generator 64, the elliptical gear 63, and the circular ring gear 611 constitute a harmonic gear drive to lower the rotational speed and increase the torque of the coreless motor 610.  For example, the harmonic gear drive is a notable component to complete the micromotion of the MMU 6 –its characteristic of 'no backlash' is helpful to facilitate achieving the reciprocating motion of the MMU 6. For example, the drive provides a high drive ratio (a ratio from 30: 1 up to 300: 1 is possible in the same space) in a small volume. For example, the drive provides a high drive ratio (a ratio from 50: 1 up to 250: 1 in the same space) in a small volume. For example, a drive screw 62 is coaxially connected with elliptical gear 63 through an output shaft, which converts the rotation into axial displacement. For example, a guid rail 612, such as four guide rails 612, provided between the inner tube 67 and the outer tube 61 restrict the skewing or spin. For example, a limiting screw 68, such as four limiting screws 68, impose a restriction on the maximum displacement. For example, a sealing ring 65, such as three sealing rings 65, are set between the inner tube 67 and the outer tube 61 to keep the waterproof and sealing of MMU 6.
For example, a displacement sensor 69, such as the magnetic grid, is placed in the sealing space to export displacement signals to the closed-loop controller 9 through a wire 66, and the micromotion signal and the compensating signal from the controller 9 are transmitted to motor 610 through the same wire 610.
Figure 4 illustrates the measured displacement-time curve of the micromotional unit; that is, calculation of frequency (f) and range (R) using an MMU in accordance with the description herein. For example, the micromotional unit 6 was set to produce micromotion at the range of 2 mm in the frequency of 0.2 Hz. The displacement-time curve proves the compensation function has been realized by the electronic controller.
Figure 5 illustrates the measured displacement-time curve of a conventional device; that is, calculation of frequency (f) and range (R) using the 
Figure PCTCN2020135629-appb-000002
external fixator.
Figure 6 lists a comparison between an MMU/an external fixator in  accordance with an embodiment and a commercially available
Figure PCTCN2020135629-appb-000003
external fixator on micromotion accuracy. The external fixator in accordance with this disclosure shows a significant advantage in the accuracy of micromotional range and micromotional frequency compared to the commercially available
Figure PCTCN2020135629-appb-000004
external fixator. As demonstrated in Figure 6, the MMU in accordance with an embodiment can provide a more uniform and stable micromotion than the Orthofix’s product (with a smaller standard deviation in both range (R) and frequency (f) ) .
Figure 7 shows application of MMU on fracture site FS after two week’s postoperative recovery. Although not specifically tied to Figure 7, an exemplary range for the application is 0.246 ± 0.020 mm and an exemplary frequency is 0.644 ± 0.032 Hz.
Figure 8 depicts X-ray images of a control group without using an MMU and the micromotion group using MMU in accordance with this disclosure.
For example, there are numerous applications of the MMU 6 in accordance with this disclosure. The MMU 6 is the core component, which produces reciprocating displacement alone its axial direction. For example, the closed-loop controller 9 supplies power to the MMU 6 and controls the MMU 6 via the changing of the electrical signal. As shown in Figure 9, the MMU for example is configured as one of various forms of orthopedic fixators to satisfy different requirements of fracture classifications on fixation, for example, for fracture reduction, limb lengthening and scoliosis correction. For example, Figure 9 shows a micromotional external fixator.
Having regular frequencies and ranges of micromotion is important in clinical treatment. It has been noticed that the micromotion within a certain range can promote bone healing, however, below or above this optimal range can lead to the delayed union or the nonunion. Figure 10 shows the relationship between bone formation and interfragmentary strain (IFS) . If the IFS higher than Point C or lower than Point A, the delayed union or the nonunion would happen.
According to current bone healing theory, the optimal range of micromotion makes IFS remain between Point A and Point C in Figure 10, the bone healing theoretically is enhanced by the improvement of callus formation along with the fracture site FS. And the rate of delayed union and non-union is decreased. As a result, irregular micromotion may cause invalid stimulate even brings a negative effect to fracture healing.
Meanwhile, the
Figure PCTCN2020135629-appb-000005
fixator can only limit the maximum displacement by a stop block. However, in some extreme cases, the delayed union and the non-union still occur since interfragmentary strain is too low.
For example, the external fixator described herein is designed to solve this problem by monitoring the actual range and frequency and make necessary compensation. And the micromotional range can be accuracy controlled in the optimal range, which is a significant advance in the art.
For example, the external fixator described herein operates in a range with a frequency that facilitates fracture healing with a relatively low standard deviation. For example, the external fixator operates in a range from 0.01 mm to 5 mm. For example, the external fixator operates in a range from 0.1 mm to 3 mm. For example, the external fixator operates in a given range with a standard deviation from ± 0.001 mm to 0.1 mm. For example, the external fixator operates in a given range with a standard deviation from ± 0.01 mm to 0.075 mm. For example, the external fixator operates at a frequency from 0.05 Hz to 5 Hz. For example, the external fixator operates at a frequency from 0.1 Hz to 2.5 Hz. For example, the external fixator operates at a given frequency with a standard deviation from 0.001 Hz to 0.1 Hz. For example, the external fixator operates at a given frequency with a standard deviation from 0.01 Hz to 0.05 Hz.
For example, the external fixator described herein can provide real-time feedback to surgeons and help them timely adjust the micromotional parameters. It is an important therapeutic reference to surgeons because both exaggerate micromotion and inadequate micromotion cause detrimentally the delayed union  or the nonunion.
For example, the electric controller 9 described herein reduces the workload of patents. For example, according to the
Figure PCTCN2020135629-appb-000006
protocol, the patient should shake a handle on one side of fixator for 10 minutes daily, and produce cycle micromotion for 2-3 weeks, then the patient should produce progressive loading for 2-3 weeks more by the same method. These complicated operations and repetitive work are advantageously executed by the electric controller 9 as described herein, which highly shortens the learning curve.
For example, the external fixator described herein shows significant advantages on the integrated design, the modular construction and the compatibility compared with current commercial fixator. For example, the integrated design enables all movable parts of the micromotional unit to be packaged into one tubular shell. This integrated design minimizes the risk of failure due to foreign matter (such as water, ash, and fiber) entering the mechanical part and brings great benefit to the reliability of micromotional fixator.
For example, the modular construction enables the connections among the micromotional unit 6, the electronic controller 9, and the holder to be dismountable. For example, the micromotional unit 6 and the electronic controller 9 are removed from the holder at the end of each micromotional application to lighten the patient’s burden.
For example, the external fixator described herein has compatibility with a commercial fixator in that the connector on the micromotional unit 6 is designed to be compatible with the commercial fixator. For example, the micromotional unit can take place of the manual adaptor on
Figure PCTCN2020135629-appb-000007
product to furnish it with the ability of autonomous working.
According to our results on rat model, a 20%strain of micromotional range showed the most significant improvement on fracture healing, but strains from 2%to 40%can be employed. For example, strains from 15%to 25%are employed. For example, strains from 10%to 20%are employed.
For example, the displacement sensor 69 and the electric controller 9 make the MMU 6 controllable. Also, the harmonic gear drive facilitates the characteristic on ‘no backlash’ to achieve the reciprocating motion of MMU 6.
For example, the MMU needs reciprocating motion in a high speed, and the mechanical parts make quick response to the signal form the electronic controller 9. For example, the selection of motor 610 and gear drive fulfills this requirement. For example, for the cordless motor 610, the rotating part on this kind of motor 610 is lighter than step motor and other common motor. For example, this motor achieves the action of ‘rotation-stop-reverse rotation’ in a high speed. For example, the step motor is more likely to achieve a high accuracy action. And the extremely high transmission ratio of harmonic gear drive undercuts the advantage of step motor in accuracy.
With respect to any figure or numerical range for a given characteristic, a figure or a parameter from one range may be combined with another figure or a parameter from a different range for the same characteristic to generate a numerical range.
For example, an external fixator for treating bone fractures is provided. For example, referring to Figure 1, the external fixator comprises: aholder attached to bone at two fracture fragments 1, the two fracture fragments 1 respectively on opposite sides of a fracture site FS; a micromotional unit 6 removably coupled to the holder, the micromotional unit 6 configured to produce a reciprocating displacement between the two fracture fragments 1 to apply a controllable micromotion to the fracture site FS; and a controller 9 coupled to the micromotional unit 6, the controller 9 configured for controlling the micromotional unit 6 to produce the reciprocating displacement between the two fracture fragments 1.
For example, referring to Figure 2, the micromotional unit 6 comprises an outer tube 61, an inner tube 67, a motor 610, and a gear drive, and at least a portion of the inner tube 67 is inserted inside the outer tube 61; the motor 610  and the gear drive are configured to transform an electrical signal from the controller 9 into a relative axial displacement between the outer tube 61 and the inner tube 67 along an axial direction of the inner tube 67 and the outer tube 61; and the outer tube 61 and the inner tube 67 are respectively connected with the two fracture fragments 1, so that the relative axial displacement between the outer tube 61 and the inner tube 67 produces the reciprocating displacement between the two fracture fragments 1.
For example, referring to Figure 2, the gear drive is a harmonic gear drive, and the harmonic gear drive comprises a strain wave generator 64, an elliptical gear 63, and a circular ring gear 611; and the strain wave generator 64 is connected with an output shaft of the motor 610, the circular ring gear 611 is provided on the inner tube 67, and the motor 610 drives the strain wave generator 64 to press the elliptical gear 63 from an inside of the elliptical gear 63 to force the elliptical gear 63 mesh with the circular ring gear 611.
For example, referring to Figure 2, the micromotional unit 6 further comprises a drive screw 62 coaxially connected with elliptical gear 63 and meshed with the outer tube 61, and the motor 610 drives the drive screw 62 to rotate at the same time the motor 610 drives the strain wave generator 64 to press the elliptical gear 63 from the inside of the elliptical gear 63, so as to produce the relative axial displacement between the outer tube 61 and the inner tube 67.
For example, the motor 610 rotates in a first direction, the outer tube 61 and the inner tube 67 move towards each other along the axial direction of the inner tube 67 and the outer tube 61; and the motor 610 rotates in a second direction opposite to the first direction, the outer tube 61 and the inner tube 67 move away from each other along the axial direction of the inner tube 67 and the outer tube 61.
For example, Figure 11 shows a structure of a micromotional unit in accordance with an embodiment, in which the motor 610, the strain wave  generator 64, the elliptical gear 63, and the circular ring gear 611 are integrated together as a block for simplicity, details thereof and connections therebetween may refer to Figure 2. To show the internal structure, parts of the outer tube 61 and inner tube 67 have been removed in the Figure 11. For example, referring to Figure 11, the micromotional unit 6 further comprises a threaded rod 614 connected to the motor 610, and a sliding block 615 connected to the threaded rod 613; and the motor 610 drives the sliding block 615 to move at the same time the motor 610 drives the strain wave generator 64 to press the elliptical gear 63 from the inside of the elliptical gear 63, the outer tube 61 is connected with the sliding block 615 and moves with the sliding block 615, so as to produce the relative axial displacement between the outer tube 61 and the inner tube 67. For example, the threaded rod 614 is connected to the motor 610 by a coupling 613. For example, the outer tube 61 is connected with the sliding block 615 by a screw 616. It should be noted that, the micromotional unit 6 also comprise the displacement sensor 69, details thereof may refer to Figure 2. For example, the sliding block 615 is connected to the displacement sensor 69.
For example, referring to Figure 2, the micromotional unit 6 further comprises a displacement sensor 69 detecting the relative axial displacement between the inner tube 67 and the outer tube 61, transforming the relative axial displacement into a displacement signal, and exporting the displacement signal to the controller 9. Then, based on the displacement signal, the controller 9 determines whether a compensating signal for compensating the electrical signal from the controller. In this way, the external fixator described herein is designed to monitor the actual micromotion applied to the fracture site and make necessary compensation. And the micromotion applied to the fracture site can be accuracy controlled in the optimal range, which is a significant advance in the art. For example, the compensating signal comprises: whether the electrical signal from the controller is necessary to be compensated or not; and if necessary, how much the compensation amount is. For example, the displacement sensor 69 is a  magnetic grid.
For example, the motor 610 is a coreless motor. For example, the coreless motor 610 is rigidly fixed inside a purpose-designed space of the inner tube 67.
For example, referring to Figure 2, the micromotional unit 6 further comprises a guide rail 612 provided between the inner tube 67 and outer tube 61 and extending along the axial direction of the inner tube 67 and the outer tube 61, so as to restrict skewing or spin between the outer tube 61 and the inner tube 67.
For example, referring to Figure 2, the micromotional unit 6 further comprises a limiting screw 68 imposing a restriction on a maximum relative displacement between the outer tube 61 and the inner tube 67.
For example, referring to Figure 2, the micromotional unit 6 further comprises a sealing ring 65 provided between the inner tube 67 and the outer tube 61.
For example, referring to Figure 1, the holder comprises a main body 7 and a movable block 4, the movable block 4 is movable with respect to the main body 7, and the main body 7 and the movable block 4 are respectively attached to the two fracture fragments 1; the outer tube 61 and the inner tube 67 are respectively connected with the main body 7 and the movable block 4 of the holder; and the relative axial displacement between the outer tube 61 and the inner tube 67 produces a reciprocating displacement between the main body 7 and the movable block 4 of the holder, so as to produce the reciprocating displacement between the two fracture fragments 1. For example, during the micromotion is applied to the fracture site FS, the movable block 4 is movable with respect to the main body 7; during the micromotion is not applied to the fracture site FS, the movable block 4 is locked and is not movable with respect to the main body 7.
For example, referring to Figure 1, the holder further comprises a slideway 3 connected with the main body 7, the movable block 4 is a slide block slidable on the slideway 3 with respect to the main body 7.
For example, the holder comprises a main body 7 and two movable blocks  4, each of the two movable blocks 4 is movable with respect to the main body 7, and the two movable blocks 4 are respectively attached to the two fracture fragments 1; the outer tube 61 and the inner tube 67 are respectively connected with the two movable blocks 4 of the holder; and the relative axial displacement between the outer tube 61 and the inner tube 67 produces a reciprocating displacement between the two movable blocks 4 of the holder, so as to produce the reciprocating displacement between the two fracture fragments 1. For example, during the micromotion is applied to the fracture site FS, the two movable blocks 4 are movable with respect to the main body 7; during the micromotion is not applied to the fracture site FS, the two movable blocks 4 are locked and are not movable with respect to the main body 7.
For example, the holder further comprises a slideway 3 connected with the main body 7, each of the two movable blocks 4 is a slide block slidable on the slideway 3 with respect to the main body 7.
For example, a method of treating bone fractures is provided, comprising: attaching a holder to bone at two fracture fragments 1, the two fracture fragments 1 respectively on opposite sides of a fracture site FS; producing reciprocating displacement between the two fracture fragments 1 by a micromotional unit 6 removably coupled to the holder, thereby applying a controllable micromotion to the fracture site FS; and controlling the reciprocating displacement between the two fracture fragments 1 by a controller 9 to facilitate fracture healing at the fracture site.
For example, the method further comprising: removing the micromotional unit 6 from the holder at an end of applying the controllable micromotion to the fracture site FS to lighten the patient’s burden.
For example, the micromotional unit comprises an outer tube 61, an inner tube 67, a motor 610, and a gear drive, and at least a portion of the inner tube 67 is inserted inside the outer tube 61; the motor 610 and the gear drive are configured to transform an electrical signal from the controller 9 into a relative  axial displacement between the outer tube 61 and the inner tube 67 along an axial direction of the inner tube 67 and the outer tube 61; the relative axial displacement between the outer tube 67 and the inner tube 61 produces the reciprocating displacement between the two fracture fragments 1; and the method further comprises: detecting the relative axial displacement between the inner tube 67 and the outer tube 61, transforming the relative axial displacement into a displacement signal, and exporting the displacement signal to the controller 9; and determining a compensating signal for compensating the electrical signal from the controller 9 based on the displacement signal. In this way, the external fixator described herein is designed to monitor the actual micromotion applied to the fracture site and make necessary compensation. And the micromotion applied to the fracture site can be accuracy controlled in the optimal range, which is a significant advance in the art. For example, the compensating signal comprises: whether the electrical signal from the controller is necessary to be compensated or not; and if necessary, how much the compensation amount is. For example, the displacement sensor 69 is a magnetic grid.
For example, the two fracture fragments 1 are spaced from each other by a distance at the fracture site FS; and the method further comprises: producing the displacement between the two fracture fragments 1 to be 10%-20%, preferably 20%, of the distance. That is, strains from 10%to 20%are employed, preferably, strain of 20%is employed.
For example, strains from 2%to 40%may be employed. For example, strains from 15%to 25%may be employed.
For example, the method further comprises: producing reciprocating displacement in a range with a frequency that facilitates fracture healing at the fracture site with a relatively low standard deviation.
For example, a micromotional unit 6 is provided, comprising: an outer tube 61, an inner tube 67, a motor 610, and a gear drive; at least a portion of the  inner tube 67 is inserted inside the outer tube 61; the motor 610 and the gear drive are configured to transform an electrical signal into a relative axial displacement between the outer tube 61 and the inner tube 67 along an axial direction of the inner tube 61 and the outer tube 67; and the outer tube 61 and the inner tube 67 are respectively connected with two fracture fragments 1, so that the relative axial displacement between the outer tube 61 and the inner tube 67 produces a reciprocating displacement between the two fracture fragments 1.
For example, the micromotional unit produces reciprocating displacement in a range with a frequency that facilitates fracture healing at the fracture site with a relatively low standard deviation.
For example, the micromotional unit 6 has numerous potential applications. For example, referring to Figure 12, the micromotional unit 6 is applied to: (a) a micromotional external fixator; (b) a micromotional plate; and (c) a micromotional intramedullary nail. It should be noted that, the applications of the micromotional unit 6 are not limited to cases illustrated in Figure 12.
Other than in the operating examples, if any, or where otherwise indicated, all numbers, values and/or expressions referring to parameters, measurements, conditions, etc., used in the specification and claims are to be understood as modified in all instances by the term "about. "
While the disclosure is explained in relation to certain embodiments, it is to be understood that various modifications thereof will become apparent to those skilled in the art upon reading the specification. Therefore, it is to be understood that the disclosure disclosed herein is intended to cover such modifications as fall within the scope of the appended claims.
Further descriptions are included in Appendix 1.

Claims (20)

  1. An external fixator for treating bone fractures, comprising:
    a holder attached to bone at two fracture fragments, the two fracture fragments respectively on opposite sides of a fracture site;
    a micromotional unit removably coupled to the holder, the micromotional unit configured to produce a reciprocating displacement between the two fracture fragments to apply a controllable micromotion to the fracture site; and
    a controller coupled to the micromotional unit, the controller configured for controlling the micromotional unit to produce the reciprocating displacement between the two fracture fragments.
  2. The external fixator according to claim 1, wherein the micromotional unit comprises an outer tube, an inner tube, a motor, and a gear drive, and at least a portion of the inner tube is inserted inside the outer tube;
    the motor and the gear drive are configured to transform an electrical signal from the controller into a relative axial displacement between the outer tube and the inner tube along an axial direction of the inner tube and the outer tube; and
    the outer tube and the inner tube are respectively connected with the two fracture fragments, so that the relative axial displacement between the outer tube and the inner tube produces the reciprocating displacement between the two fracture fragments.
  3. The external fixator according to claim 2, wherein the gear drive is a harmonic gear drive, and the harmonic gear drive comprises a strain wave generator, an elliptical gear, and a circular ring gear; and
    the strain wave generator is connected with an output shaft of the motor, the circular ring gear is provided on the inner tube, and the motor drives the strain wave generator to press the elliptical gear from an inside of the elliptical gear to force the elliptical gear mesh with the circular ring gear.
  4. The external fixator according to claim 3, wherein the micromotional unit further comprises a drive screw coaxially connected with elliptical gear and meshed with the outer tube, and the motor drives the drive screw to rotate at the same time the motor drives the strain wave generator to press the elliptical gear from the inside of the elliptical gear, so as to produce the relative axial displacement between the outer tube and the inner tube.
  5. The external fixator according to claim 3, wherein the micromotional unit further comprises a threaded rod connected to the motor, and a sliding block connected to the threaded rod; and
    the motor drives the sliding block to move at the same time the motor drives the strain wave generator to press the elliptical gear from the inside of the elliptical gear, the outer tube is connected with the sliding block and moves with the sliding block, so as to produce the relative axial displacement between the outer tube and the inner tube.
  6. The external fixator according to any one of claims 2-5, wherein the micromotional unit further comprises a displacement sensor detecting the relative axial displacement between the inner tube and the outer tube, transforming the relative axial displacement into a displacement signal, and exporting the displacement signal to the controller.
  7. The external fixator according to claim 6, wherein displacement sensor is a magnetic grid.
  8. The external fixator according to any one of claims 2-7, wherein the motor is a coreless motor.
  9. The external fixator according to any one of claims 2-8, wherein the micromotional unit further comprises a guide rail provided between the inner tube and outer tube and extending along the axial direction of the inner tube and the outer tube, so as to restrict skewing or spin between the outer tube and the inner tube.
  10. The external fixator according to any one of claims 2-9, wherein the micromotional unit further comprises a limiting screw imposing a restriction on a maximum relative displacement between the outer tube and the inner tube.
  11. The external fixator according to any one of claims 2-10, wherein the micromotional unit further comprises a sealing ring provided between the inner tube and the outer tube.
  12. The external fixator according to any one of claims 2-11, wherein the holder comprises a main body and a movable block, the movable block is movable with respect to the main body, and the main body and the movable block are respectively attached to the two fracture fragments;
    the outer tube and the inner tube are respectively connected with the main body and the movable block of the holder; and
    the relative axial displacement between the outer tube and the inner tube produces a reciprocating displacement between the main body and the movable block of the holder, so as to produce the reciprocating displacement between the two fracture fragments.
  13. The external fixator according to claim 12, wherein the holder further comprises a slideway connected with the main body, the movable block is a slide block slidable on the slideway with respect to the main body.
  14. The external fixator according to any one of claims 2-11, wherein
    the holder comprises a main body and two movable blocks, each of the two movable blocks is movable with respect to the main body, and the two movable blocks are respectively attached to the two fracture fragments;
    the outer tube and the inner tube are respectively connected with the two movable blocks of the holder; and
    the relative axial displacement between the outer tube and the inner tube produces a reciprocating displacement between the two movable blocks of the holder, so as to produce the reciprocating displacement between the two fracture fragments.
  15. The external fixator according to claim 14, wherein the holder further comprises a slideway connected with the main body, each of the two movable blocks is a slide block slidable on the slideway with respect to the main body.
  16. A method of treating bone fractures, comprising:
    attaching a holder to bone at two fracture fragments, the two fracture fragments respectively on opposite sides of a fracture site;
    producing reciprocating displacement between the two fracture fragments by a micromotional unit removably coupled to the holder, thereby applying a controllable micromotion to the fracture site; and
    controlling the reciprocating displacement between the two fracture fragments by a controller to facilitate fracture healing at the fracture site.
  17. The method according to claim 16, further comprising:
    removing the micromotional unit from the holder at an end of applying the controllable micromotion to the fracture site.
  18. The method according to claim 16 or 17, wherein
    the micromotional unit comprises an outer tube, an inner tube, a motor, and a gear drive, and at least a portion of the inner tube is inserted inside the outer tube;
    the motor and the gear drive are configured to transform an electrical signal from the controller into a relative axial displacement between the outer tube and the inner tube along an axial direction of the inner tube and the outer tube;
    the relative axial displacement between the outer tube and the inner tube produces the reciprocating displacement between the two fracture fragments; and
    the method further comprises:
    detecting the relative axial displacement between the inner tube and the outer tube, transforming the relative axial displacement into a displacement signal, and exporting the displacement signal to the controller; and
    determining a compensating signal for compensating the electrical signal from the controller based on the displacement signal.
  19. The method according to any one of claims 16-18, wherein the two fracture fragments are spaced from each other by a distance at the fracture site; and
    the method further comprises: producing the displacement between the two fracture fragments to be 10%-20%, preferably 20%, of the distance.
  20. A micromotional unit comprising: an outer tube, an inner tube, a motor, and a gear drive, wherein
    at least a portion of the inner tube is inserted inside the outer tube;
    the motor and the gear drive are configured to transform an electrical signal into a relative axial displacement between the outer tube and the inner tube along an axial direction of the inner tube and the outer tube; and
    the outer tube and the inner tube are respectively connected with two fracture fragments, so that the relative axial displacement between the outer tube and the inner tube produces a reciprocating displacement between the two fracture fragments.
PCT/CN2020/135629 2019-12-13 2020-12-11 Motor-driven fixator to apply micromotion to fracture site to accelerate bone healing WO2021115418A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/784,731 US20230000524A1 (en) 2019-12-13 2020-12-11 Motor-driven fixator to apply micromotion to fracture site to accelerate bone healing
CN202080085479.7A CN114786599A (en) 2019-12-13 2020-12-11 Motor-driven fixator for applying micromotion to fracture part to accelerate bone healing
EP20898028.4A EP4072449A4 (en) 2019-12-13 2020-12-11 Motor-driven fixator to apply micromotion to fracture site to accelerate bone healing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962947569P 2019-12-13 2019-12-13
US62/947,569 2019-12-13

Publications (1)

Publication Number Publication Date
WO2021115418A1 true WO2021115418A1 (en) 2021-06-17

Family

ID=76329614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135629 WO2021115418A1 (en) 2019-12-13 2020-12-11 Motor-driven fixator to apply micromotion to fracture site to accelerate bone healing

Country Status (4)

Country Link
US (1) US20230000524A1 (en)
EP (1) EP4072449A4 (en)
CN (1) CN114786599A (en)
WO (1) WO2021115418A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100018371A1 (en) * 2021-07-13 2023-01-13 Corrado Caruso DEVICE FOR MONITORING THE HEALING PROCESS OF A FRACTURED BONE
WO2023133426A1 (en) * 2022-01-04 2023-07-13 Ostiio LLC Systems and processes for distraction control
WO2024059116A1 (en) * 2022-09-14 2024-03-21 Smith & Nephew, Inc. Methods and arrangements for dynamizing bone alignment devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450423A1 (en) 1990-03-27 1991-10-09 Bernhard Clasbrummel Apparatus for the retention of body parts with injured ligaments and/or bones
CN1403061A (en) * 2002-09-26 2003-03-19 上海交通大学 Externally fixed lightly movable pressurized fracture recovering device
US20070173837A1 (en) * 2005-11-18 2007-07-26 William Marsh Rice University Bone fixation and dynamization devices and methods
WO2010032098A1 (en) 2008-09-16 2010-03-25 Orthofix S.R.L. Orthopaedic device for correcting deformities of long bones
CN101797176A (en) 2010-01-31 2010-08-11 卫小春 Pressure feedback multi-mode micro external fixture
WO2018086195A1 (en) * 2016-11-09 2018-05-17 上海斐赛轴承科技有限公司 Novel flexspline and wave generator assembly for harmonic gear drive apparatus
CN209529305U (en) * 2018-09-10 2019-10-25 深圳市龙华区中心医院 A kind of controllable automatic micro-displacement type bone Filtting device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207676A (en) * 1989-02-27 1993-05-04 Jaquet Orthopedie S.A. External fixator with controllable damping
AU648542B2 (en) * 1990-02-05 1994-04-28 Bruce Henry Ide Improvements in and to an external fixation device
AUPM731194A0 (en) * 1994-08-05 1994-11-10 Ide, Bruce Henry External fixator for military use
US20020010465A1 (en) * 2000-01-31 2002-01-24 Ja Kyo Koo Frame fixator and operation system thereof
AU2001288018A1 (en) * 2000-09-05 2002-03-22 Technion Research And Development Foundation Ltd. Methods of repairing longitudinal bone defects
US8702705B2 (en) * 2006-03-23 2014-04-22 Bruce H. Ziran Electromechanically driven external fixator and methods of use
US11317949B2 (en) * 2018-04-25 2022-05-03 Loubert S. Suddaby Segmented alignment rod assembly
CN111345877A (en) * 2020-03-06 2020-06-30 北京积水潭医院 Dynamic device for promoting bone formation at osteotomy end, unilateral extension frame and Taylor type six-axis external fixation frame

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450423A1 (en) 1990-03-27 1991-10-09 Bernhard Clasbrummel Apparatus for the retention of body parts with injured ligaments and/or bones
CN1403061A (en) * 2002-09-26 2003-03-19 上海交通大学 Externally fixed lightly movable pressurized fracture recovering device
US20070173837A1 (en) * 2005-11-18 2007-07-26 William Marsh Rice University Bone fixation and dynamization devices and methods
WO2010032098A1 (en) 2008-09-16 2010-03-25 Orthofix S.R.L. Orthopaedic device for correcting deformities of long bones
CN101797176A (en) 2010-01-31 2010-08-11 卫小春 Pressure feedback multi-mode micro external fixture
WO2018086195A1 (en) * 2016-11-09 2018-05-17 上海斐赛轴承科技有限公司 Novel flexspline and wave generator assembly for harmonic gear drive apparatus
CN209529305U (en) * 2018-09-10 2019-10-25 深圳市龙华区中心医院 A kind of controllable automatic micro-displacement type bone Filtting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4072449A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100018371A1 (en) * 2021-07-13 2023-01-13 Corrado Caruso DEVICE FOR MONITORING THE HEALING PROCESS OF A FRACTURED BONE
WO2023133426A1 (en) * 2022-01-04 2023-07-13 Ostiio LLC Systems and processes for distraction control
WO2024059116A1 (en) * 2022-09-14 2024-03-21 Smith & Nephew, Inc. Methods and arrangements for dynamizing bone alignment devices

Also Published As

Publication number Publication date
EP4072449A4 (en) 2023-12-20
US20230000524A1 (en) 2023-01-05
EP4072449A1 (en) 2022-10-19
CN114786599A (en) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2021115418A1 (en) Motor-driven fixator to apply micromotion to fracture site to accelerate bone healing
US20210393301A1 (en) Method for bone adjustment with anchoring function
US11406432B2 (en) System and method for altering rotational alignment of bone sections
EP2723252B1 (en) An endoprosthesis
US6022349A (en) Method and system for therapeutically treating bone fractures and osteoporosis
WO2006116164A1 (en) Osteosynthetic implants and methods of use and manufacture
JP2005204987A (en) Automatic bone extending device
CN107693099A (en) It is a kind of efficiently to extend intramedullary needle
US10675064B2 (en) Distraction Osteogenesis system
CN218606789U (en) Intelligent resetting device for lower limb fracture
CN209826928U (en) Controllable continuous compression intramedullary nail
CN1189134C (en) Externally fixed lightly movable pressurized fracture recovering device
CN208756136U (en) The intramedullary nail with lock that axial compressive force is adjusted
Sukruth et al. Design and Development of Motorized Ilizarov Apparatus for Distraction Osteogenesis
WO2022009219A1 (en) System for varying distance between bone segments
CN107669326A (en) A kind of semi-automatic extension intramedullary needle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020898028

Country of ref document: EP

Effective date: 20220713