WO2021115068A1 - 一种具有3d测量功能的胶囊内窥镜及相应成像方法 - Google Patents

一种具有3d测量功能的胶囊内窥镜及相应成像方法 Download PDF

Info

Publication number
WO2021115068A1
WO2021115068A1 PCT/CN2020/129543 CN2020129543W WO2021115068A1 WO 2021115068 A1 WO2021115068 A1 WO 2021115068A1 CN 2020129543 W CN2020129543 W CN 2020129543W WO 2021115068 A1 WO2021115068 A1 WO 2021115068A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
lens
capsule endoscope
module
imaging system
Prior art date
Application number
PCT/CN2020/129543
Other languages
English (en)
French (fr)
Inventor
章逸舟
李光元
鲁远甫
焦国华
陈良培
刘鹏
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2021115068A1 publication Critical patent/WO2021115068A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00193Optical arrangements adapted for stereoscopic vision
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]

Definitions

  • the invention belongs to the technical field of medical devices, and specifically relates to a capsule endoscope.
  • the capsule endoscope is a visualized medical gastrointestinal examination equipment in the shape of a capsule. Entering the human body through the capsule endoscope can spy on the health of the human intestines, stomach and esophagus, thereby helping doctors diagnose the patient.
  • the capsule endoscope has the advantages of non-invasive, accurate, reusable and other traditional flexible gastrointestinal endoscopes.
  • commercial capsule endoscopes mainly integrate a single camera for 2D imaging.
  • observation endoscopes usually have high distortion.
  • capsule endoscopes are only used for observation, not measurement.
  • the patent CN107317954A collects the light field signal of the scene to be detected through the light field technology, and the light field camera records the four-dimensional information of the light in the propagation process so as to reconstruct the 3D state of the observed object.
  • the light field camera is used for imaging, and the light field camera is composed of a main lens group, a micro lens array, and a photosensitive element, the miniature micro lens array itself is expensive, and the entire set of equipment requires very fine production, so the cost is also high.
  • Patent CN105996961A discloses a structured light-based 3D stereo imaging capsule endoscope system, which generates structured light through a structured light generating module and cooperates with an illumination device to obtain three-dimensional information.
  • the 3D imaging light band used for imaging is formed by filtering the white light and using the structured light generation module, so it cannot accurately reflect the color information of the imaging target.
  • 3D measurement can be performed, it lacks the color of the diseased area. Important information in this dimension will have a great impact on the doctor's diagnosis.
  • the virtual reality capsule endoscope of patent CN104720735A uses two camera devices to simulate the left and right eyes of a person, and each camera device includes a CCD image sensor and a camera lens.
  • each camera device includes a CCD image sensor and a camera lens.
  • the imaging technology using dual objective lenses and dual image sensors is very unfavorable for the capsule endoscope to meet the size requirements in the application, and it is also unfavorable for reducing costs.
  • the present invention proposes a capsule endoscope with 3D measurement function for gastrointestinal examination.
  • the capsule endoscope system uses a specially designed prism module and uses a dual objective lens and a single image sensor. Realizing the purpose of 3D measurement not only reduces the size of the system, but also has 3D measurement functions while retaining spectral information.
  • the capsule endoscope of the present invention includes a capsule housing, and a binocular imaging system, a lighting module, an image acquisition and processing module, a battery module, a magnetic cover positioning module, and a wireless transmitting module arranged in the capsule housing;
  • the binocular imaging system includes a prism unit and an image sensor used in conjunction with the prism unit;
  • the prism unit includes two identical 45° angle rhombic prisms, and the two rhombic prisms are mutually staggered by 180°
  • the azimuth relationship is placed side by side; the light exit surfaces of the two oblique prisms are in a plane, and respectively correspond to the two evenly divided areas on the target surface of the image sensor.
  • the binocular imaging system further includes two sets of imaging objective lens systems, and the two sets of imaging objective lens systems respectively correspond to the incident surfaces of the two rhombic prisms.
  • the imaging objective lens system includes, for example, a lens unit and a diaphragm.
  • the lens unit includes a lens 1, a lens 2, a lens 3 and a diaphragm;
  • the lens 1 is a lens with a negative refractive power, and the curved surface on the object side is concave toward the image side, and the curved surface on the image side is concave toward the object.
  • the second lens is a lens with negative refractive power, the object side of which is concave toward the image side, and the image side is concave toward the image side;
  • the third lens is a lens with positive refractive power, the object side
  • the curved surface on one side is concave toward the image side, and the curved surface on the image side is concave toward the image side.
  • a filter may be provided between the prism unit and the image sensor.
  • the lighting module has one or more lighting units arranged at the side of the binocular imaging system, and the lighting units use, for example, LEDs.
  • the present invention also proposes a method for using the above-mentioned capsule endoscope to perform three-dimensional imaging, which includes the following operation steps:
  • the gastrointestinal tract is illuminated by the illumination module, and the lesion area in the intestine is imaged by the binocular imaging system; during the imaging process, the image signals entering the two rhombic prisms have parallax and are imaged to one place. Two equally divided areas on the target surface of the image sensor; the image formed by the image sensor is collected by the image collection and processing module.
  • the method further includes that the image acquisition and processing module transmits the processed image to the wireless transmission module, and the wireless transmission module encodes the processed image and transmits it to a receiving device outside the body.
  • the receiving device performs three-dimensional image reconstruction through computer software.
  • the present invention adopts the capsule endoscope with double objective lens and single image sensor, which has compact optical structure, can realize color imaging of the diseased area, can also obtain the function of 3D measurement, and reduce the overall production cost.
  • Figure 1 is the principle of binocular stereo imaging
  • Figure 2 is a schematic diagram of depth calculation
  • Fig. 3 is a schematic diagram of a double objective lens single image sensor capsule endoscope of the present invention.
  • Figure 4 is a three-dimensional schematic diagram of the glued prism in the binocular imaging system
  • Figure 5 is an example diagram of a binocular imaging system with dual objective lenses and a single image sensor.
  • 1-Capsule housing 2-Binocular imaging system, 3-Illumination module, 4-Image acquisition and processing module, 5-Battery module, 6-Magnetic cover positioning module, 7-Wireless transmission module, 21-Lens one, 22- Lens two, 23-lens three, 24-aperture, 25-cemented prism, 251 and 252-rhombic prism, 251a and 252a-outgoing surface of rhombic prism, 251b and 252b-incident surface of rhombic prism, 26- Filter, 27-image sensor.
  • a basic imaging principle is to set up two optical systems in the three-dimensional imaging capsule endoscope system, which are used to capture separate images corresponding to the left and right eyes, and then perform three-dimensional reconstruction through software.
  • FIG. 1 The basic principle of binocular stereo imaging is shown in Figure 1 of the specification.
  • the bottom of the figure shows two identical cameras, and the corresponding parameters of the two cameras are marked with subscripts 1 and r, respectively.
  • O 1 and Or are the projection centers of the two cameras, and the distance between them is called the baseline distance, denoted by B.
  • O 1 n 1 and O r n r are the two normals of the left and right camera image planes C 1 and C r , respectively.
  • a point A (X, Y, Z) in the world coordinate system is on the left and right camera image planes C 1 and C r
  • the image points of are respectively a 1 (u 1 ,v 1 ) and a r (u r ,v r ), which are also called "conjugation points”. Knowing these two points, respectively make the connection between them and the projection center of the corresponding camera to obtain the projection lines a 1 O 1 and a r O r .
  • f is the focal length of the two cameras, so the parallax is:
  • Equation (2) is the basic principle of binocular stereo imaging. After obtaining the parallax information, the depth information and three-dimensional information of the image can be obtained according to the projection model.
  • the three-dimensional information can be accurately calculated based on the parameters obtained after the stereo correction, the image coordinates of the point to be measured, and the left and right image detectors, such as the CCD parallax.
  • the CCD parallax Refer to Figure 2 of the manual, set Is the center of the left CCD, Is the center of the right CCD, the distance between the center of the camera is T, x l is the matching point on the left CCD, and x r is the matching point on the right CCD. According to similar triangles
  • the conventional capsule endoscope acquires two images using dual objective lens and dual image sensor imaging technology, which is not suitable for capsules that have high requirements on size. Looking glass.
  • the structure of the capsule endoscope of the present invention is shown in Figure 3 of the specification.
  • the capsule endoscope includes a capsule housing 1, a binocular imaging system 2, an illumination module 3, an image acquisition and processing module 4, a battery module 5, and a magnetic cover positioning Module 6 and wireless transmitting module 7.
  • the binocular imaging system 2, the lighting module 3, the image acquisition and processing module 4, the battery module 5, the magnetic cover positioning module 6 and the wireless transmitting module 7 are all arranged and fixed inside the capsule housing 1.
  • the capsule housing 1 may be formed by extruding two parts of the housing together, and the part of the capsule housing 1 facing the binocular imaging system 2 and the lighting module 3 is transparent.
  • a typical capsule shell 1 can achieve a size of about ⁇ 12mmx30mm.
  • the binocular imaging system 2 is disposed at one end of the capsule housing 1, and it is a key component for obtaining three-dimensional information, which will be described in detail later.
  • An illumination module 3 is provided on the side of the binocular imaging system 2 to provide illumination light for the imaging target area.
  • the lighting module 3 may be one lighting unit, or two or more lighting units. As shown in FIG. 3, in this embodiment, the lighting module 3 has two lighting units, which are respectively arranged on both sides of the binocular imaging system 2, so as to provide a similar lighting environment for the two signals.
  • each unit of the lighting module 3 preferably uses LEDs.
  • An image acquisition and processing module 4, a battery module 5, a magnetic cover positioning module 6 and a wireless transmission module 7 are installed behind the optical path of the binocular imaging system 2, and the image signals acquired by the binocular imaging system 2 are transmitted to the image acquisition and processing Module 4, and the image acquisition and processing module 4 processes the signal to obtain three-dimensional image information, which can be transmitted to an external device through the wireless transmitting module 7 for display to the physician.
  • the battery module 5 supplies power to other parts.
  • the magnetic cover positioning module 6 is used by the physician to control the entire capsule endoscope.
  • the core part of the binocular imaging system 2 is a glued prism 25 and an image sensor 27 used in conjunction with the glued prism 25.
  • the glued prism 25 specifically adopts two identical 45° angle rhombic prisms 251 and 252, and the two rhombic prisms are placed side by side in an azimuth relationship of 180° interlaced with each other, that is, the rhombic prism 251 is arranged around the angle shown in FIG. 5 Rotating the dashed line of rotation axis L by 180° is the direction of another rhomboid prism 252.
  • the two rhomboid prisms are staggered and placed side by side, so that the bottom surface 251a of the rhomboid prism 251 and the bottom surface 252a of the rhomboid prism 252 are coplanar. It is also the exit surface of the imaging light path.
  • the surface 251b of the rhomboid prism 251 and the surface 252b of the rhomboid prism 252 are the incident surfaces of the image.
  • the overlapping parts of the two rhombic prisms 251 and the rhombic prism 252 can be glued together, so that the images of the two objective lenses are respectively imaged to two equally divided areas on the left and right of the target surface of the same image sensor 27.
  • the two oblique prisms and the image sensor 27 and other components of the binocular imaging system can be further fixed in the capsule housing via a circuit board. Since the prism and the gap are small enough, the boundary between the two images is clear enough, and the left and right optical information will not interfere with each other.
  • the binocular imaging system 2 in the present invention adopts a dual-objective optical axis translation and zooming design.
  • two optical systems are used for the two incident surfaces 251b and 252b of the cemented prism 25, two optical systems are used. Imaging objective lens system with the same parameters.
  • the binocular imaging system 2 consists of two lenses one 21, two lenses two 22, two lenses three 23, two diaphragms 24, a cemented prism 25 with a filter 26, and an image
  • the sensor 27 is composed.
  • Each imaging objective lens system consists of 3 lenses and a diaphragm 24:
  • Lens 21 is a lens with negative refractive power, the curved surface of the object side is concave toward the image side, and the curved surface of the image side is concave toward the object side;
  • Lens two 22 is a lens with negative refractive power. Its object side has a concave curved surface toward the image side and the image side has a concave curved surface toward the image side.
  • Lens three 23 is a positive refractive lens with a concave curved surface on the object side. To the image side, the curved surface on the image side is concave toward the image side; the diaphragm 24 is located between the second lens 22 and the third lens 23.
  • the typical field angle of the objective lens is not less than 90°, and the aperture is not more than 2mm.
  • the target area is illuminated by the illumination module 3, the light of the lesion area can be captured by two sets of imaging objective lens systems, and the same lesion area enters the ramp prism 251 and enters the image signal of the ramp prism 252 With parallax.
  • the light from the upper imaging objective lens system in Figure 5 sequentially passes through lens one 21, lens two 22, diaphragm 24, and lens three 23 in the upper imaging objective lens system, and then passes through the oblique prism
  • the incident surface 251b of 251 enters the cemented prism 25.
  • the light is reflected by 90° twice in the rhombic prism 251 and then enters the filter 26 from the exit surface 251a of the rhombic prism 251. At this time, the chief ray of the central field of view is parallel to the original The optical axis is filtered by the filter 26 and then imaged on one side of the image sensor 27. After entering the second set of imaging objective lens system, that is, the light rays of the lower imaging objective lens system in Fig.
  • the external magnetic control device enters the gastrointestinal tract by controlling the magnetic cover positioning module 6 in the capsule, and continues to move forward.
  • a diseased area passes through the lighting module 3.
  • Illuminate the gastrointestinal tract image the lesions in the intestine through the binocular imaging system 2, and form a common imaging area for the same scene area corresponding to the imaging range of the two objective lenses.
  • the image formed by the image sensor is taken by the image acquisition and processing module 4 Collect and process, and send it to the wireless transmitting module 7 after processing.
  • the wireless transmitting module 7 encodes the processed image and transmits it to a receiving device outside the body.
  • the received image is divided into two left and right screenshots through software technology, and then Three-dimensional reconstruction and measurement can be performed through computer software.
  • the energy of all devices in the capsule endoscope is powered by the battery module 5.
  • the key to the capsule endoscope of the present invention is to adopt a dual objective lens and a single image sensor to realize 3D measurement.
  • Two imaging objective lens systems with the same optical parameters are used, and two oblique prisms arranged side by side and 180 degrees out of phase are respectively arranged behind them, so that the images captured by the two imaging objective lens systems are respectively imaged to the left and right sides of the target surface of the same image sensor.
  • the two equally divided regions are then recognized by software algorithms and reconstructed in a three-dimensional image.
  • the imaging optical path of the capsule endoscope of the present invention uses the reflection inside the prism and uses an image sensor to obtain two parallax images, thus making the entire imaging optical path more compact and smaller in diameter.
  • the capsule endoscope has a smaller volume and a lower cost.
  • the pictures taken by the binocular imaging system can be either color images or monochromatic images. The rich image information helps doctors distinguish the diseased area.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)

Abstract

一种胶囊内窥镜,核心为双目成像系统(2),其采用双物镜单图像传感器的设计。双目成像系统(2)包括棱镜单元以及与棱镜单元配合使用的一个图像传感器(27)。棱镜单元包括两块相同的45°角斜方棱镜,两块斜方棱镜以相互交错180°的方位关系并排放置并且光路出射面在一个平面内,分别对应图像传感器(27)靶面上的两个均分区域。胶囊内窥镜光学结构紧凑,可实现对病变区的彩色成像,也可以获得3D测量的功能,同时整体制作成本也得到降低。

Description

一种具有3D测量功能的胶囊内窥镜及相应成像方法 技术领域
本发明属于医疗器械技术领域,具体涉及一种胶囊内窥镜。
背景技术
胶囊内窥镜是一种胶囊形状的可视化医用肠胃检查设备。通过胶囊内窥镜进入人体,可以窥探人体肠胃和食道部位的健康状况,从而帮助医师对病人进行诊断。胶囊内窥镜具有无创、准确、可重复利用等传统柔性肠胃内窥镜所不及的优点。目前,商业化的胶囊内窥镜主要集成2D成像的单摄像头,为了获得更大的视场,观测内窥镜通常具有高畸变,长期以来,胶囊内窥镜只是用于观察,而不是测量,这些缺陷使得医师很难利用胶囊内窥镜判断病变的严重程度。为了改善医师对病变观测的准确性和真实性,通过胶囊内窥镜获取肠胃内的三维信息是非常有利的。
专利CN107317954A通过光场技术采集待检测位置场景的光场信号,光场相机记录光在传播过程中的四维信息从而可以重构出被观测物体3D状态。但由于采用光场相机进行成像,而光场相机由主透镜组、微透镜阵列和感光元件组成,微型的微透镜阵列本身就价格昂贵,而且整套设备制作要求非常精细,因而成本也很高。
专利CN105996961A公开了一种基于结构光的3D立体成像胶囊内窥镜系统,通过结构光产生模块产生结构光并配合照明装置来获取三维信息。但是,用于成像的3D成像光带是通过对白光进行滤光处理并利用结构光产生模块所形成的,因而并不能准确反应成像目标的颜色信息,虽然可以进行3D测量,但是缺少病区颜色这一维度的重要信息对医师的诊断将带来很 大影响。
专利CN104720735A的虚拟现实胶囊内窥镜采用两个摄像装置来模拟人的左右眼,每个摄像装置都包括CCD图像传感器和摄像镜头。但由于胶囊内窥镜对尺寸要求很高,采用双物镜、双图像传感器的成像技术非常不利于胶囊内窥镜满足应用中的尺寸需求,也不利于降低成本。
因此,成本高、制作工艺复杂、不容易满足尺寸需求、成像信息不够丰富等都是目前现有三维成像胶囊内窥镜具有的缺点,如能对这些缺点进行改进,将为医师通过胶囊内窥镜对病变进行诊断带来更多的便捷。
发明内容
针对上述现有技术中的缺点,本发明提出了一种用于肠胃检查的具有3D测量功能的胶囊内窥镜,该胶囊内窥镜系统借助特殊设计的棱镜模块,采用双物镜单图像传感器来实现3D测量的目的,不但减小了系统的尺寸空间,在保留光谱信息的同时还具备3D测量功能。
具体地,本发明的胶囊内窥镜包括胶囊外壳,以及设置在所述胶囊外壳内的双目成像系统、照明模块、图像采集及处理模块、电池模块、磁罩定位模块和无线发射模块;其中,所述双目成像系统包括棱镜单元以及与所述棱镜单元配合使用的一个图像传感器;所述棱镜单元包括两块相同的45°角斜方棱镜,两块斜方棱镜以相互交错180°的方位关系并排放置;两块斜方棱镜的光路出射面在一个平面内,并且分别对应所述图像传感器靶面上的两个均分区域。
进一步,所述双目成像系统还包括两套成像物镜系统,两套所述成像物镜系统分别对应所述两块斜方棱镜的入射面。所述成像物镜系统例如包括透镜单元和光阑。优选地,所述透镜单元包括透镜一、透镜二、透镜三和光阑;所述透镜一是一具有负屈光度的透镜,其物方一侧曲面凹向像方,像方一侧曲面凹向物方;所述透镜二是一具有负屈光度的透镜,其物方一侧曲面凹向像方,像方一侧曲面凹向像方;所述透镜三是一具有正屈光度 的透镜,其物方一侧曲面凹向像方,像方一侧曲面凹向像方。
进一步,在所述棱镜单元和所述图像传感器之间还可设有滤光片。
优选地,所述照明模块具有设置在所述双目成像系统侧方的一个或者多个照明单元,所述照明单元例如使用LED。
同时,本发明还提出一种使用上述胶囊内窥镜进行三维成像的方法,包括如下操作步骤:
使用体外磁控设备通过控制胶囊内的所述磁罩定位模块进入肠胃道,并不断前行;
通过所述照明模块对肠胃道进行照明,通过所述双目成像系统对肠道内病变区进行成像;在成像过程中,进入两块所述斜方棱镜的图像信号具有视差,并且成像至一个所述图像传感器靶面上的两个均分区域;所述图像传感器所成的图像由所述图像采集及处理模块采集。
进一步,所述方法还包括所述图像采集及处理模块将处理后的图像输送至所述无线发射模块,所述无线发射模块对处理后的图像进行编码并传输至体外的接收装置上。
优选地,所述接收装置通过计算机软件进行三维图像重建。
与现有技术相比,本发明采用了双物镜单图像传感器的胶囊内窥镜,光学结构紧凑,可实现对病变区的彩色成像,也可以获得3D测量的功能,同时整体制作成本也得到降低。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,并可依照说明书的内容予以实施,以下以本申请的较佳实施例并配合附图详细说明如后。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明;
图1是双目立体成像原理;
图2是深度计算示意图;
图3是本发明的双物镜单图像传感器胶囊内窥镜示意图;
图4是双目成像系统中胶合棱镜三维示意图;
图5是双物镜单图像传感器双目成像系统实例图。
附图标记:
1-胶囊外壳、2-双目成像系统、3-照明模块、4-图像采集及处理模块、5-电池模块、6-磁罩定位模块、7-无线发射模块、21-透镜一、22-透镜二、23-透镜三、24-光阑、25-胶合棱镜、251和252-斜方棱镜、251a和252a-斜方棱镜的出射面、251b和252b-斜方棱镜的入射面、26-滤光片、27-图像传感器。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
为了实现立体测量,一种基本的成像原理是在三维成像胶囊内窥镜系统中设置有两路光学系统,分别用来摄取对应左眼和右眼的分离图像,然后再通过软件进行三维重建。
双目立体成像的基本原理参见说明书附图1所示,图中下方为两个完全相同的摄像机,两个摄像机的相应参数分别以下标1和r标注。其中O 1和O r分别为两个摄像机的投影中心,它们之间的距离称为基线距,用B表示。O 1n 1和O rn r分别为左右摄像机像面C 1和C r的两条法线,世界坐标系内一点A(X,Y,Z)在左右摄像机像面C 1和C r上的像点分别为a 1(u 1,v 1)和a r(u r,v r),这两点又被称为“共轭点”。知道了这两个点,分别作它们与对应相机的投影中心的连线,从而得到投影线a 1O 1和a rO r
假设两摄像机像面在同一平面上,则物点A在左右摄像机像面上像点的Y坐标相同,即v 1=v r,由三角几何关系可得到:
Figure PCTCN2020129543-appb-000001
式(1)中f为两个摄像机的焦距,所以视差为:
Figure PCTCN2020129543-appb-000002
式(2)就是双目立体成像的基本原理,在获得了视差信息后,根据投影模型便可以得到图像的深度信息和三维信息。
同时,在获取到视差后,也可以根据立体校正后得到的参数、待测点图像坐标和左右图像探测器,例如CCD视差进行三维信息的准确计算。参见说明书附图2所示,设
Figure PCTCN2020129543-appb-000003
为左CCD中心,
Figure PCTCN2020129543-appb-000004
为右CCD中心,摄像头中心间距为T,x l为左CCD上待匹配点,x r为右CCD上匹配点。根据相似三角形可得
Figure PCTCN2020129543-appb-000005
可解得Z=-Tf/x l-x r
这样可知在已标定T和f,以及主图像上一点p的像差xl-xr情况下,即可计算出深度信息Z,通过标定信息可计算出(x,y),这样即可恢复待测点三维信息(x,y,z)。
基于上述三维成像的工作原理,如前文所述目前常规的胶囊内窥镜获取两幅图像是采用双物镜、双图像传感器的成像技术,这并不适用于原本就对尺寸要求很高的胶囊内窥镜。
本发明的胶囊内窥镜的结构如说明书附图3所示,胶囊内窥镜包括胶 囊外壳1、双目成像系统2、照明模块3、图像采集及处理模块4、电池模块5、磁罩定位模块6和无线发射模块7。其中,双目成像系统2、照明模块3、图像采集及处理模块4、电池模块5、磁罩定位模块6和无线发射模块7都设置并固定在所述胶囊外壳1的内部。所述胶囊外壳1可以由两部分外壳挤压在一起形成,双目成像系统2和照明模块3所面对的所述胶囊外壳1的部分是透明的。典型的胶囊外壳1可以做到约φ12mmx30mm的尺寸大小。在本实施例中,双目成像系统2设置在胶囊外壳1内的一端,其是获取三维信息的关键部件,将在后文详述。在双目成像系统2的侧方配设有照明模块3,用于为成像目标区域提供照明光。所述照明模块3可以为一个照明单元,也可以为两个或者更多个照明单元。如图3所示,在本实施例中,照明模块3具有两个照明单元,分别设置在双目成像系统2的两侧,从而为两路信号提供相近的照明环境。为了降低成本、增加使用寿命以及兼顾结构紧凑,照明模块3的各单元优选使用LED。在双目成像系统2的光路后方安装有图像采集及处理模块4、电池模块5、磁罩定位模块6和无线发射模块7,双目成像系统2获取的图像信号传送给所述图像采集及处理模块4,并由所述图像采集及处理模块4对信号进行处理从而获取三维图像信息,该三维图像信息能够通过所述无线发射模块7传送到外部设备以显示给医师。所述电池模块5为其他部分供电。所述磁罩定位模块6用于医师控制整个胶囊内窥镜。
本发明与现有技术之间最大的区别就在于所述双目成像系统2。如说明书附图4和5所示,所述双目成像系统2的核心部分是一个胶合棱镜25以及于所述胶合棱镜25配合使用的图像传感器27。所述胶合棱镜25具体采用两块完全一样的45°角斜方棱镜251和252,两块斜方棱镜以相互交错180°的方位关系并排放置,即,斜方棱镜251绕图5所示的虚线旋转轴L旋转180°即为另一块斜方棱镜252的方向,两块斜方棱镜交错并列放置,从而斜方棱镜251的底面251a和斜方棱镜252的底面252a共面,这两个 面也是成像光路的出射面。而斜方棱镜251的面251b和斜方棱镜252的面252b为成像的入射面。两块斜方棱镜251和斜方棱镜252交叠的部分可以通过胶粘接在一起,从而将两个物镜的图像分别成像至同一图像传感器27靶面左右的两个均分的区域。两块斜方棱镜以及图像传感器27等双目成像系统的器件都可经由电路板进一步固定在所述胶囊外壳内。由于棱镜并靠间隙足够小,因此两个图像分界线足够清晰,左右光学信息不会互为干涉影响。
本发明中所述双目成像系统2是采用了一种双物镜光轴平移拉近设计,参见说明书附图5所示,对于胶合棱镜25的两个入射面251b和252b,使用了两个光学参数相同的成像物镜系统。在本实施例中,双目成像系统2由两个透镜一21、两个透镜二22、两个透镜三23、两个光阑24、一个胶合棱镜25配一个滤光片26、以及一个图像传感器27组成。每一套成像物镜系统都由3片透镜和一个光阑24组成:透镜一21是一具有负屈光度的透镜,其物方一侧曲面凹向像方,像方一侧曲面凹向物方;透镜二22是一具有负屈光度的透镜,其物方一侧曲面凹向像方,像方一侧曲面凹向像方;透镜三23是一具有正屈光度的透镜,其物方一侧曲面凹向像方,像方一侧曲面凹向像方;光阑24位于透镜二22和透镜三23之间。该物镜的典型视场角不小于90°,口径不大于2mm。
使用本发明的胶囊内窥镜时,目标区域被照明模块3照亮,病变区域的光线能够被两套成像物镜系统所捕获,相同病变区域进入斜方棱镜251和进入斜方棱镜252的图像信号具有视差。具体地,进入第一套成像物镜系统,即图5中上方成像物镜系统的光线依次通过上方成像物镜系统中的透镜一21、透镜二22、光阑24、透镜三23后,经斜方棱镜251的入射面251b进入胶合棱镜25,光线在斜方棱镜251中经过两次90°反射后由斜方棱镜251的出射面251a进入滤光片26,此时中心视场的主光线平行于原光轴,经过滤光片26滤光后在图像传感器27的一侧成像。进入第二套成 像物镜系统,即图5中下方成像物镜系统的光线依次通过下方成像物镜系统中的透镜一21、透镜二22、光阑24、透镜三23后,经斜方棱镜252的入射面252b进入胶合棱镜25,光线在斜方棱镜252中经过两次90°反射后由斜方棱镜252的出射面252a进入滤光片26,此时中心视场的主光线也平行于原光轴,经过滤光片26滤光后在图像传感器27的另一侧成像。因此,被两个成像物镜系统捕获的图像经不同的光路分别成像至同一图像传感器27靶面左右的两个均分的区域,由于棱镜并靠间隙足够小,因此两个图像分界线足够清晰,左右光学信息不会互为干涉影响。
具体应用中,病人将本发明的胶囊内窥镜吞服后,体外磁控设备通过控制胶囊内的磁罩定位模块6进入肠胃道,并不断前行,当发现病变区时,通过照明模块3对肠胃道进行照明,通过双目成像系统2对肠道内病变区成像,对两个物镜成像范围内对应的相同的场景区域形成共同成像区,图像传感器所成的图像由图像采集及处理模块4采集并处理,处理后输送至无线发射模块7,无线发射模块7对处理后的图像进行编码并传输至体外的接收装置上,接收到的一副图像通过软件技术分隔成左右两幅截图,然后可以通过计算机软件进行三维重建和测量。胶囊内窥镜内的所有器件的能量都由电池模块5供电。
本发明胶囊内窥镜的关键在于采用双物镜单图像传感器实现3D测量。使用两个光学参数相同的成像物镜系统,在其后方分别设置两个并列、相位相错180度的斜方棱镜,从而将两个成像物镜系统捕获的图像分别成像至同一图像传感器靶面左右的两个均分区域,进而被软件算法识别并重建三维图像。与现有技术相比,本发明胶囊内窥镜的成像光路中利用棱镜内部的反射以及使用一个图像传感器获取两张具有视差的图像,因而使得整个成像光路的结构更紧凑,口径更小,最终使胶囊内窥镜的体积更小,成本也更低。同时,双目成像系统所摄取的图片既可以是彩色图像也可以是单色图像,丰富的图像信息有助于医师辨别病变区域。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种胶囊内窥镜,包括胶囊外壳(1),以及设置在所述胶囊外壳(1)内的双目成像系统(2)、照明模块(3)、图像采集及处理模块(4)、电池模块(5)、磁罩定位模块(6)和无线发射模块(7);
    其中,所述双目成像系统(2)包括棱镜单元以及与所述棱镜单元配合使用的一个图像传感器(27);
    所述棱镜单元包括两块相同的45°角斜方棱镜,两块斜方棱镜以相互交错180°的方位关系并排放置;两块斜方棱镜的光路出射面在一个平面内,并且分别对应所述图像传感器(27)靶面上的两个均分区域。
  2. 根据权利要求1所述的胶囊内窥镜,其特征在于:所述双目成像系统(2)还包括两套成像物镜系统,两套所述成像物镜系统分别对应所述两块斜方棱镜的入射面。
  3. 根据权利要求2所述的胶囊内窥镜,其特征在于:所述成像物镜系统包括透镜单元和光阑(24)。
  4. 根据权利要求3所述的胶囊内窥镜,其特征在于:所述透镜单元包括透镜一(21)、透镜二(22)、透镜三(23)和光阑(24);所述透镜一(21)是一具有负屈光度的透镜,其物方一侧曲面凹向像方,像方一侧曲面凹向物方;所述透镜二(22)是一具有负屈光度的透镜,其物方一侧曲面凹向像方,像方一侧曲面凹向像方;所述透镜三(23)是一具有正屈光度的透镜,其物方一侧曲面凹向像方,像方一侧曲面凹向像方。
  5. 根据权利要求1所述的胶囊内窥镜,其特征在于:在所述棱镜单元和所述图像传感器(27)之间还设有滤光片(26)。
  6. 根据权利要求1所述的胶囊内窥镜,其特征在于:所述照明模块(3)具有设置在所述双目成像系统(2)侧方的一个或者多个照明单元。
  7. 一种使用如权利要求1-6任一项所述胶囊内窥镜进行三维成像的方 法,包括如下操作步骤:
    使用体外磁控设备通过控制胶囊内的所述磁罩定位模块(6)进入肠胃道,并不断前行;
    通过所述照明模块(3)对肠胃道进行照明,通过所述双目成像系统(2)对肠道内病变区进行成像;在成像过程中,进入两块所述斜方棱镜的图像信号具有视差,并且成像至一个所述图像传感器(27)靶面上的两个均分区域;
    所述图像传感器(27)所成的图像由所述图像采集及处理模块(4)采集。
  8. 根据权利要求7所述的方法,其特征在于:还包括所述图像采集及处理模块(4)将处理后的图像输送至所述无线发射模块(7),所述无线发射模块(7)对处理后的图像进行编码并传输至体外的接收装置上。
  9. 根据权利要求8所述的方法,其特征在于:所述接收装置通过计算机软件进行三维图像重建。
PCT/CN2020/129543 2019-12-11 2020-11-17 一种具有3d测量功能的胶囊内窥镜及相应成像方法 WO2021115068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911267384.2 2019-12-11
CN201911267384.2A CN110811489A (zh) 2019-12-11 2019-12-11 一种具有3d测量功能的胶囊内窥镜及相应成像方法

Publications (1)

Publication Number Publication Date
WO2021115068A1 true WO2021115068A1 (zh) 2021-06-17

Family

ID=69544892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129543 WO2021115068A1 (zh) 2019-12-11 2020-11-17 一种具有3d测量功能的胶囊内窥镜及相应成像方法

Country Status (2)

Country Link
CN (1) CN110811489A (zh)
WO (1) WO2021115068A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110811489A (zh) * 2019-12-11 2020-02-21 深圳先进技术研究院 一种具有3d测量功能的胶囊内窥镜及相应成像方法
CN111281312A (zh) * 2020-02-28 2020-06-16 重庆金山医疗技术研究院有限公司 胶囊内镜
CN112261399B (zh) * 2020-12-18 2021-03-16 安翰科技(武汉)股份有限公司 胶囊内窥镜图像三维重建方法、电子设备及可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443510A (zh) * 2002-03-08 2003-09-24 奥林巴斯光学工业株式会社 胶囊内视镜
CN1672626A (zh) * 2005-04-28 2005-09-28 重庆金山科技(集团)有限公司 立体成像的智能胶囊式消化道内窥镜
US20080045789A1 (en) * 2006-07-06 2008-02-21 Fujifilm Corporation Capsule endoscope
US20130250061A1 (en) * 2010-12-09 2013-09-26 Scholly Fiberoptic Gmbh Endoscope and method for recording at least one stereoscopic image by means of an endoscope
CN204318702U (zh) * 2014-12-02 2015-05-13 上海理鑫光学科技有限公司 一种采集三维图像的胶囊内窥镜
CN106361255A (zh) * 2016-11-10 2017-02-01 微创(上海)医疗机器人有限公司 3d电子内窥镜
CN106455906A (zh) * 2014-05-23 2017-02-22 柯惠有限合伙公司 具有单个图像传感器的3d腹腔镜图像捕获装置
CN110811489A (zh) * 2019-12-11 2020-02-21 深圳先进技术研究院 一种具有3d测量功能的胶囊内窥镜及相应成像方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103356152B (zh) * 2013-07-15 2016-07-06 中国人民解放军第二军医大学 含便携式定位装置的胶囊内窥镜系统
CN104656242B (zh) * 2013-11-22 2016-10-05 深圳先进技术研究院 双物镜单图像传感器的内窥镜双目光学系统
CN205729299U (zh) * 2016-04-22 2016-11-30 重庆金山科技(集团)有限公司 胶囊内窥镜的位姿控制系统及胶囊内窥镜
CN105942959B (zh) * 2016-06-01 2018-08-24 安翰光电技术(武汉)有限公司 胶囊内窥镜系统及其三维成像方法
KR101921268B1 (ko) * 2016-12-21 2018-11-22 주식회사 인트로메딕 3d 영상을 재생을 위한 캡슐 내시경 장치, 상기 캡슐 내시경의 동작 방법, 캡슐 내시경과 연동하여 3d 영상을 재생하는 수신기, 캡슐 내시경과 연동하여 수신기의 3d 영상을 재생하는 방법, 및 캡슐 내시경 시스템

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443510A (zh) * 2002-03-08 2003-09-24 奥林巴斯光学工业株式会社 胶囊内视镜
CN1672626A (zh) * 2005-04-28 2005-09-28 重庆金山科技(集团)有限公司 立体成像的智能胶囊式消化道内窥镜
US20080045789A1 (en) * 2006-07-06 2008-02-21 Fujifilm Corporation Capsule endoscope
US20130250061A1 (en) * 2010-12-09 2013-09-26 Scholly Fiberoptic Gmbh Endoscope and method for recording at least one stereoscopic image by means of an endoscope
CN106455906A (zh) * 2014-05-23 2017-02-22 柯惠有限合伙公司 具有单个图像传感器的3d腹腔镜图像捕获装置
CN204318702U (zh) * 2014-12-02 2015-05-13 上海理鑫光学科技有限公司 一种采集三维图像的胶囊内窥镜
CN106361255A (zh) * 2016-11-10 2017-02-01 微创(上海)医疗机器人有限公司 3d电子内窥镜
CN110811489A (zh) * 2019-12-11 2020-02-21 深圳先进技术研究院 一种具有3d测量功能的胶囊内窥镜及相应成像方法

Also Published As

Publication number Publication date
CN110811489A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2021115068A1 (zh) 一种具有3d测量功能的胶囊内窥镜及相应成像方法
CN104434001B (zh) 全方位三维立体视觉的单目内窥镜系统
US7744528B2 (en) Methods and devices for endoscopic imaging
CN106236006B (zh) 3d光学分子影像腹腔镜成像系统
JP4709579B2 (ja) カプセル型内視鏡
CN105996961B (zh) 基于结构光的3d立体成像胶囊内窥镜系统及方法
CN106618454B (zh) 一种胶囊式内窥镜系统
WO2006045011A2 (en) Endocapsule
WO2012121459A1 (ko) 진단 및 디스플레이 일체형 광 단층 촬영 검이경
JPH11503844A (ja) ステレオビデオ内視鏡の対物レンズ系
US20170119237A1 (en) Optical Design of a Light Field Otoscope
JP2009528554A (ja) 近接対象物を撮影するための3次元動画撮影装置
CN102370453A (zh) 带环形透镜的无线胶囊内窥镜
US20100262000A1 (en) Methods and devices for endoscopic imaging
EP2531088A1 (en) Spherical capsule video endoscopy
CN102090881B (zh) 三维立体硬质电子肛肠镜系统
US10638920B2 (en) Method and apparatus of lens alignment for capsule
CN109068035B (zh) 一种智能微相机阵列内窥成像系统
CN107320058A (zh) 全景成像装置及胶囊胃镜
CN211511734U (zh) 具有双目测距系统的胶囊内窥镜
CN110507276A (zh) 一种双镜头全景成像的胶囊内窥镜系统
JP2014056225A (ja) 全視野小型撮像装置
JP2014054499A (ja) 筒型撮像素子を用いた全視野小型撮像装置
CN208371767U (zh) 全景成像装置及胶囊胃镜
TWI428855B (zh) The Method of Restoring Three Dimensional Image of Capsule Endoscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900505

Country of ref document: EP

Kind code of ref document: A1