WO2021113396A1 - Methods and compositions for producing ethylene from recombinant microorganisms - Google Patents
Methods and compositions for producing ethylene from recombinant microorganisms Download PDFInfo
- Publication number
- WO2021113396A1 WO2021113396A1 PCT/US2020/062938 US2020062938W WO2021113396A1 WO 2021113396 A1 WO2021113396 A1 WO 2021113396A1 US 2020062938 W US2020062938 W US 2020062938W WO 2021113396 A1 WO2021113396 A1 WO 2021113396A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleotide sequence
- native
- seq
- efe
- recombinant microorganism
- Prior art date
Links
- 244000005700 microbiome Species 0.000 title claims abstract description 274
- 239000005977 Ethylene Substances 0.000 title claims abstract description 126
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 title claims abstract description 115
- 238000000034 method Methods 0.000 title claims abstract description 83
- 239000000203 mixture Substances 0.000 title description 3
- 238000004519 manufacturing process Methods 0.000 claims abstract description 44
- 230000001976 improved effect Effects 0.000 claims abstract description 18
- 238000009629 microbiological culture Methods 0.000 claims abstract description 15
- 230000001965 increasing effect Effects 0.000 claims abstract description 14
- 239000002773 nucleotide Substances 0.000 claims description 408
- 125000003729 nucleotide group Chemical group 0.000 claims description 408
- 108010065744 ethylene forming enzyme Proteins 0.000 claims description 264
- 101710098648 Alpha-ketoglutarate permease Proteins 0.000 claims description 124
- 239000013612 plasmid Substances 0.000 claims description 68
- 108090000623 proteins and genes Proteins 0.000 claims description 51
- 230000001580 bacterial effect Effects 0.000 claims description 42
- 102000004169 proteins and genes Human genes 0.000 claims description 39
- 241000894006 Bacteria Species 0.000 claims description 31
- 241000588724 Escherichia coli Species 0.000 claims description 30
- 241000195585 Chlamydomonas Species 0.000 claims description 28
- 241000192700 Cyanobacteria Species 0.000 claims description 26
- 108010062110 water dikinase pyruvate Proteins 0.000 claims description 26
- KPGXRSRHYNQIFN-UHFFFAOYSA-L 2-oxoglutarate(2-) Chemical compound [O-]C(=O)CCC(=O)C([O-])=O KPGXRSRHYNQIFN-UHFFFAOYSA-L 0.000 claims description 23
- 102000012011 Isocitrate Dehydrogenase Human genes 0.000 claims description 22
- 108010075869 Isocitrate Dehydrogenase Proteins 0.000 claims description 22
- 241001148183 Pseudomonas savastanoi Species 0.000 claims description 19
- 241000195597 Chlamydomonas reinhardtii Species 0.000 claims description 18
- 241001453296 Synechococcus elongatus Species 0.000 claims description 18
- 241000192560 Synechococcus sp. Species 0.000 claims description 18
- 238000012217 deletion Methods 0.000 claims description 18
- 230000037430 deletion Effects 0.000 claims description 18
- 108010030844 2-methylcitrate synthase Proteins 0.000 claims description 17
- 108010071536 Citrate (Si)-synthase Proteins 0.000 claims description 17
- 102000006732 Citrate synthase Human genes 0.000 claims description 17
- 101710117283 Sucrose permease Proteins 0.000 claims description 17
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 16
- 241000192707 Synechococcus Species 0.000 claims description 16
- 241000488157 Escherichia sp. Species 0.000 claims description 15
- 241000233866 Fungi Species 0.000 claims description 15
- 239000012298 atmosphere Substances 0.000 claims description 15
- 230000000243 photosynthetic effect Effects 0.000 claims description 15
- 241000589516 Pseudomonas Species 0.000 claims description 14
- 241000589615 Pseudomonas syringae Species 0.000 claims description 14
- 241000192542 Anabaena Species 0.000 claims description 13
- 241000195493 Cryptophyta Species 0.000 claims description 13
- 241000588722 Escherichia Species 0.000 claims description 13
- 241001453317 Synechococcus leopoliensis Species 0.000 claims description 13
- 241000192584 Synechocystis Species 0.000 claims description 13
- 235000015097 nutrients Nutrition 0.000 claims description 12
- 108091033409 CRISPR Proteins 0.000 claims description 10
- 238000010354 CRISPR gene editing Methods 0.000 claims description 10
- 230000006801 homologous recombination Effects 0.000 claims description 10
- 238000002744 homologous recombination Methods 0.000 claims description 10
- 238000002823 phage display Methods 0.000 claims description 10
- 108700023224 Glucose-1-phosphate adenylyltransferases Proteins 0.000 claims description 9
- 239000012190 activator Substances 0.000 claims description 9
- 238000012258 culturing Methods 0.000 claims description 9
- 229930006000 Sucrose Natural products 0.000 claims description 8
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 8
- 230000003247 decreasing effect Effects 0.000 claims description 8
- 239000005720 sucrose Substances 0.000 claims description 8
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 6
- 238000003306 harvesting Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 238000004113 cell culture Methods 0.000 claims description 4
- 102000007390 Glycogen Phosphorylase Human genes 0.000 claims description 3
- 108010046163 Glycogen Phosphorylase Proteins 0.000 claims description 3
- 108010001483 Glycogen Synthase Proteins 0.000 claims description 3
- 108700006291 Sucrose-phosphate synthases Proteins 0.000 claims description 3
- 102000048175 UTP-glucose-1-phosphate uridylyltransferases Human genes 0.000 claims description 3
- 108700023183 UTP-glucose-1-phosphate uridylyltransferases Proteins 0.000 claims description 3
- 108010051210 beta-Fructofuranosidase Proteins 0.000 claims description 3
- 108091022928 glucosylglycerol-phosphate synthase Proteins 0.000 claims description 3
- 125000003275 alpha amino acid group Chemical group 0.000 claims 22
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 104
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 54
- 239000001569 carbon dioxide Substances 0.000 abstract description 47
- 230000008901 benefit Effects 0.000 abstract description 17
- 239000000126 substance Substances 0.000 abstract description 6
- 239000004033 plastic Substances 0.000 abstract description 4
- 229920003023 plastic Polymers 0.000 abstract description 4
- 239000004753 textile Substances 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 230000009467 reduction Effects 0.000 abstract description 3
- 150000001413 amino acids Chemical group 0.000 description 85
- 230000014509 gene expression Effects 0.000 description 60
- 108020004705 Codon Proteins 0.000 description 38
- 235000018102 proteins Nutrition 0.000 description 24
- 238000010367 cloning Methods 0.000 description 21
- 238000000746 purification Methods 0.000 description 21
- 235000001014 amino acid Nutrition 0.000 description 18
- 229940024606 amino acid Drugs 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 16
- 230000012010 growth Effects 0.000 description 16
- 230000006698 induction Effects 0.000 description 13
- 108020004414 DNA Proteins 0.000 description 11
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 11
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 239000013592 cell lysate Substances 0.000 description 9
- 241000196324 Embryophyta Species 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 238000001262 western blot Methods 0.000 description 7
- 108010039224 Amidophosphoribosyltransferase Proteins 0.000 description 6
- 239000004475 Arginine Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 150000002894 organic compounds Chemical class 0.000 description 6
- 229920001184 polypeptide Polymers 0.000 description 6
- 102000004196 processed proteins & peptides Human genes 0.000 description 6
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 5
- 108700010070 Codon Usage Proteins 0.000 description 5
- PKFBJSDMCRJYDC-GEZSXCAASA-N N-acetyl-s-geranylgeranyl-l-cysteine Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CSC[C@@H](C(O)=O)NC(C)=O PKFBJSDMCRJYDC-GEZSXCAASA-N 0.000 description 5
- 238000002105 Southern blotting Methods 0.000 description 5
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 5
- 238000001502 gel electrophoresis Methods 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 5
- 230000000813 microbial effect Effects 0.000 description 5
- 230000002018 overexpression Effects 0.000 description 5
- 108091033319 polynucleotide Proteins 0.000 description 5
- 102000040430 polynucleotide Human genes 0.000 description 5
- 239000002157 polynucleotide Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000002028 Biomass Substances 0.000 description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 4
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 4
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 4
- 240000000111 Saccharum officinarum Species 0.000 description 4
- 235000007201 Saccharum officinarum Nutrition 0.000 description 4
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 101150075169 cscB gene Proteins 0.000 description 4
- 239000002803 fossil fuel Substances 0.000 description 4
- 101150013858 glgC gene Proteins 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 238000010792 warming Methods 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 241000672609 Escherichia coli BL21 Species 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- 101150020771 IDH gene Proteins 0.000 description 3
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 3
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 244000061176 Nicotiana tabacum Species 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- 241000589776 Pseudomonas putida Species 0.000 description 3
- 241000499912 Trichoderma reesei Species 0.000 description 3
- 241000223261 Trichoderma viride Species 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 101150075980 psbA gene Proteins 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 101000651036 Arabidopsis thaliana Galactolipid galactosyltransferase SFR2, chloroplastic Proteins 0.000 description 2
- 241000510930 Brachyspira pilosicoli Species 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 229920002527 Glycogen Polymers 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- 239000006137 Luria-Bertani broth Substances 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 150000003862 amino acid derivatives Chemical class 0.000 description 2
- 238000002869 basic local alignment search tool Methods 0.000 description 2
- 101150038738 ble gene Proteins 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 101150111968 efe gene Proteins 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 101150106096 gltA gene Proteins 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229940096919 glycogen Drugs 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 101150023641 ppc gene Proteins 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004230 steam cracking Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- BEJKOYIMCGMNRB-GRHHLOCNSA-N (2s)-2-amino-3-(4-hydroxyphenyl)propanoic acid;(2s)-2-amino-3-phenylpropanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1.OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 BEJKOYIMCGMNRB-GRHHLOCNSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- JTTIOYHBNXDJOD-UHFFFAOYSA-N 2,4,6-triaminopyrimidine Chemical compound NC1=CC(N)=NC(N)=N1 JTTIOYHBNXDJOD-UHFFFAOYSA-N 0.000 description 1
- DVGKRPYUFRZAQW-UHFFFAOYSA-N 3 prime Natural products CC(=O)NC1OC(CC(O)C1C(O)C(O)CO)(OC2C(O)C(CO)OC(OC3C(O)C(O)C(O)OC3CO)C2O)C(=O)O DVGKRPYUFRZAQW-UHFFFAOYSA-N 0.000 description 1
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 1
- 208000009746 Adult T-Cell Leukemia-Lymphoma Diseases 0.000 description 1
- 208000016683 Adult T-cell leukemia/lymphoma Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 101100351124 Bacillus subtilis (strain 168) pckA gene Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 102100034330 Chromaffin granule amine transporter Human genes 0.000 description 1
- 108091029523 CpG island Proteins 0.000 description 1
- 108091029430 CpG site Proteins 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- 101100061504 Escherichia coli cscB gene Proteins 0.000 description 1
- 241000660147 Escherichia coli str. K-12 substr. MG1655 Species 0.000 description 1
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 1
- -1 GC content Proteins 0.000 description 1
- 102100034265 GEM-interacting protein Human genes 0.000 description 1
- 101710102635 GEM-interacting protein Proteins 0.000 description 1
- 102100040004 Gamma-glutamylcyclotransferase Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 101000641221 Homo sapiens Chromaffin granule amine transporter Proteins 0.000 description 1
- 101000886680 Homo sapiens Gamma-glutamylcyclotransferase Proteins 0.000 description 1
- 101000724418 Homo sapiens Neutral amino acid transporter B(0) Proteins 0.000 description 1
- 101000637732 Homo sapiens Tudor-interacting repair regulator protein Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 125000000393 L-methionino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C(SC([H])([H])[H])([H])[H] 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- 102100028267 Neutral amino acid transporter B(0) Human genes 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 241001507673 Penicillium digitatum Species 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 201000011176 T-cell adult acute lymphocytic leukemia Diseases 0.000 description 1
- 206010042987 T-cell type acute leukaemia Diseases 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 102100032119 Tudor-interacting repair regulator protein Human genes 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 101150041954 galU gene Proteins 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 101150068630 ggpS gene Proteins 0.000 description 1
- 101150019926 glgA gene Proteins 0.000 description 1
- 101150090624 glgP gene Proteins 0.000 description 1
- 101150042350 gltA2 gene Proteins 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000012269 metabolic engineering Methods 0.000 description 1
- 230000006679 metabolic signaling pathway Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 230000007939 microbial gene expression Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000012474 protein marker Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000009962 secretion pathway Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 101150076304 spp gene Proteins 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/02—Preparation of hydrocarbons or halogenated hydrocarbons acyclic
- C12P5/026—Unsaturated compounds, i.e. alkenes, alkynes or allenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/21—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0069—Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1294—Phosphotransferases with paired acceptors (2.7.9)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01041—Isocitrate dehydrogenase (NAD+) (1.1.1.41)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y203/00—Acyltransferases (2.3)
- C12Y203/03—Acyl groups converted into alkyl on transfer (2.3.3)
- C12Y203/03001—Citrate (Si)-synthase (2.3.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/09—Phosphotransferases with paired acceptors (2.7.9)
- C12Y207/09002—Pyruvate, water dikinase (2.7.9.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/02—Atmosphere, e.g. low oxygen conditions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01042—Isocitrate dehydrogenase (NADP+) (1.1.1.42)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- the present disclosure relates to recombinant microorganisms having an improved ethylene producing ability, methods of producing the same, and methods of harvesting ethylene from such recombinant organisms.
- a benefit of the recombinant microorganisms and the methods disclosed herein can include increased production of ethylene from microbial cultures.
- An additional benefit can be the use of carbon dioxide to produce bio-ethylene useful as a feedstock for the production of plastics, textiles, and chemical materials, and for use in other applications.
- Another benefit of the methods and systems disclosed herein can include reduction of excess carbon dioxide from the environment.
- Ethylene is the most widely produced organic compound in the world, useful in a broad spectrum of industries including plastics, solvents, and textiles. Ethylene is currently produced by steam cracking fossil fuels or dehydrogenating ethane. With millions of metric tons of ethylene being produced each year, however, more than enough carbon dioxide is produced by such processes to greatly contribute to the global carbon footprint. Producing ethylene through renewable methods would accordingly help to meet the huge demand from the energy and chemical industries, while also helping to protect the environment.
- ethylene is a potentially renewable feedstock, there has been a great deal of interest in developing technologies to produce ethylene from renewable sources, such as carbon dioxide and biomass.
- Bio-ethylene is currently produced using ethanol derived from corn or sugar cane.
- Heterologous expression of an ethylene producing enzyme has been demonstrated in several microbial species, where the hosts have been able to utilize a variety of carbon sources, including lignocellulose and carbon dioxide.
- Embodiments herein are directed to a recombinant microorganism having an improved ethylene producing ability, wherein the recombinant microorganism expresses at least one ethylene forming enzyme (EFE) protein having an amino acid sequence at least 95% identical to SEQ ID NO: 1 (see attached Appendix) by expressing a non-native EFE expressing nucleotide sequence, wherein an amount of EFE protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native EFE expressing nucleotide sequence.
- EFE ethylene forming enzyme
- the recombinant microorganism also expresses at least one alpha-ketoglutarate permease (AKGP) protein having an amino acid sequence at least 95% identical to SEQ ID NO: 2 (see attached Appendix) by expressing a non-native AKGP expressing nucleotide sequence, wherein an amount of AKGP protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native AKGP expressing nucleotide sequence.
- AKGP alpha-ketoglutarate permease
- the amount of EFE protein produced by the recombinant microorganism is from about 5% to about 200% or more greater than that produced relative to the control microorganism lacking the non-native EFE expressing nucleotide sequence.
- the recombinant microorganism includes a
- Cyanobacteria a Synechococcus , Synechococcus elongatus, Synechococcus leopoliensis, Synechocystis, Anabaena, a Pseudomonas, Pseudomonas syringae, Pseudomonas savastanoi, Chlamydomonas, Chlamydomonas reinhardtii, Escherichia, Escherichia coli, Geobacteria , algae, microalgae, electrosynthesis bacteria, a photosynthetic microorganism, yeast, filamentous fungi, or a plant cell.
- the non-native EFE expressing nucleotide sequence is inserted into a bacterial vector plasmid, a high copy number bacterial vector plasmid, a bacterial vector plasmid having an inducible promoter, a nucleotide guide of a homologous recombination system, a CRISPR CAS system, a phage display system, or a combination thereof.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 3 (see attached Appendix), and the non-native EFE expressing nucleotide sequence is inserted into a vector plasmid of a Chlamydomonas sp. bacterium.
- a non-native EFE expressing nucleotide sequence and a non-native AKGP expressing nucleotide sequence are inserted into a bacterial vector plasmid, a high copy number bacterial vector plasmid, a bacterial vector plasmid having an inducible promoter, a nucleotide guide of a homologous recombination system, a CRISPR CAS system, a phage display system, or a combination thereof.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 4 (see attached Appendix), and the non-native EFE expressing nucleotide sequence and the AKGP expressing nucleotide sequence are inserted into a vector plasmid of an Escherichia sp. bacterium.
- the recombinant microorganism further includes a non-native AKGP expressing nucleotide sequence, wherein the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 95% identical to SEQ ID NO. 5 (see attached Appendix), and the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence are inserted into a bacterial plasmid of a Synechococcus sp. bacterium.
- the recombinant microorganism further includes a non-native AKGP expressing nucleotide sequence, wherein the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 95% identical to SEQ ID NO. 6 (see attached Appendix), and the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence are inserted into a bacterial plasmid of a Synechococcus sp. bacterium.
- the recombinant microorganism expresses at least one phosphoenolpyruvate synthase (PEP) protein having an amino acid sequence at least 95% identical to SEQ ID NO. 15 by expressing a non-native PEP expressing nucleotide sequence, wherein an amount of PEP protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native PEP expressing nucleotide sequence, and wherein an amount of AKG produced by the recombinant microorganism is greater than that produced relative to the control microorganism.
- PEP phosphoenolpyruvate synthase
- the recombinant microorganism includes a microorganism selected from the group consisting of a Cyanobacteria , a Synechococcus , Synechococcus elongatus, Synechococcus leopoliensis, Synechocystis, Anabaena, a Pseudomonas, Pseudomonas syringae, Pseudomonas savastanoi, Chlamydomonas, Chlamydomonas reinhardtii, Escherichia, Escherichia coli, Geobacteria , algae, microalgae, electrosynthesis bacteria, a photosynthetic microorganism, yeast, filamentous fungi, and a plant cell.
- a microorganism selected from the group consisting of a Cyanobacteria , a Synechococcus , Synechococcus elongatus, Synechococcus le
- the recombinant microorganism expresses at least one phosphoenolpyruvate synthase (PEP) protein having an amino acid sequence at least 95% identical to SEQ ID NO. 15 by expressing a non-native PEP expressing nucleotide sequence, wherein an amount of PEP protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native PEP expressing nucleotide sequence, and wherein an amount of AKG produced by the recombinant microorganism is greater than that produced relative to the control microorganism.
- PEP phosphoenolpyruvate synthase
- the recombinant microorganism expresses at least one citrate synthase protein having an amino acid sequence at least 95% identical to SEQ ID NO. 17 by expressing a non-native citrate synthase expressing nucleotide sequence, wherein an amount of citrate synthase protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native citrate synthase expressing nucleotide sequence.
- the recombinant microorganism expresses at least one isocitrate dehydrogenase (IDH) protein having an amino acid sequence at least 95% identical to SEQ ID NO. 20 by expressing a non-native IDH expressing nucleotide sequence, wherein an amount of IDH protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native IDH expressing nucleotide sequence, and wherein an amount of AKG produced by the recombinant microorganism is greater than that produced relative to the control microorganism.
- IDH isocitrate dehydrogenase
- the recombinant microorganism contains a deletion in a glucose- 1 -phosphate adenylyltransf erase expressing nucleotide sequence, wherein an amount of glucose- 1 -phosphate adenylyltransf erase protein produced by the recombinant microorganism is less than that produced relative to a control microorganism lacking the deletion.
- the recombinant microorganism expresses at least one sucrose permease protein having an amino acid sequence at least 95% identical to SEQ ID NO. 24 by expressing a non-native sucrose permease expressing nucleotide sequence, wherein an amount of sucrose permease protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native sucrose permease expressing nucleotide sequence.
- the recombinant microorganism expresses at least one sucrose permease protein having an amino acid sequence at least 95% identical to SEQ ID NO. 24 by expressing a non-native sucrose permease expressing nucleotide sequence, wherein an amount of sucrose permease protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native sucrose permease expressing nucleotide sequence.
- the recombinant microorganism expresses at least one sucrose permease protein having an amino acid sequence at least 95% identical to SEQ ID NO. 24 by expressing a non-native sucrose permease expressing nucleotide sequence, wherein an amount of sucrose permease protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native sucrose permease expressing nucleotide sequence.
- the recombinant microorganism expresses at least one protein selected from the group consisting of a sucrose phosphate synthase protein having an amino acid sequence at least 95% identical to SEQ ID NO. 26, a sucrose-e- phosphatase protein having an amino acid sequence at least 95% identical to SEQ ID NO. 28, a glycogen phosphorylase protein having an amino acid sequence at least 95% identical to SEQ ID NO. 30, and a UTP-glucose-1 -phosphate uridylyltransferase protein having an amino acid sequence at least 95% identical to SEQ ID NO.
- the recombinant microorganism contains at least one deletion in at least one nucleotide sequence, wherein the at least one nucleotide sequence encodes at least one protein selected from an invertase protein having an amino acid sequence at least 95% identical to SEQ ID NO. 34, a glucosylglycerol-phosphate synthase protein having an amino acid sequence at least 95% identical to SEQ ID NO. 36, and a glycogen synthase protein having an amino acid sequence at least 95% identical to SEQ ID NO. 38, wherein an amount of the at least one protein produced by the recombinant microorganism is less than that produced relative to a control microorganism lacking the at least one deletion.
- Embodiments herein are directed to methods of producing a recombinant microorganism having an improved ethylene producing ability.
- the method includes producing the recombinant microorganism by inserting a non-native EFE expressing nucleotide sequence or a combined non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence into a bacterial plasmid of a microorganism, wherein the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 3 or SEQ ID NO. 4.
- the combined non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence expresses an amino acid sequence at least 95% identical to SEQ ID NO. 5 or SEQ ID NO. 6.
- the combined non native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 7 (See Appendix).
- the microorganism includes a
- Cyanobacteria a Synechococcus , Synechococcus elongatus, Synechococcus leopoliensis, Synechocystis, Anabaena, a Pseudomonas, Pseudomonas syringae, Pseudomonas savastanoi, Chlamydomonas, Chlamydomonas reinhardtii, Escherichia, Escherichia coli, Geobacteria , algae, microalgae, electrosynthesis bacteria, a photosynthetic microorganism, yeast, filamentous fungi, or a plant cell.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 3 and the microorganism is a Chlamydomonas sp. bacterium.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 4 and the microorganism is an Escherichia sp. bacterium.
- the combined non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence expresses an amino acid sequence at least 95% identical to SEQ ID NO.
- the microorganism is a Synechococcus sp. bacterium.
- the combined non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 7 and the microorganism is Synechococcus sp. bacterium.
- An embodiment of such a method includes providing a recombinant microorganism having an improved ethylene producing ability, wherein the recombinant microorganism expresses at least one ethylene forming enzyme (EFE) protein having an amino acid sequence at least 95% identical to SEQ ID NO: 1 by expressing a non-native EFE expressing nucleotide sequence, wherein an amount of EFE protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native EFE expressing nucleotide sequence; culturing the recombinant microorganism in a bioreactor culture vessel under conditions sufficient to produce ethylene in the bioreactor culture vessel; and harvesting ethylene from the bioreactor culture vessel.
- EFE ethylene forming enzyme
- the recombinant microorganism contains a non-native EFE expressing nucleotide sequence or a combined non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence inserted into a bacterial plasmid of the microorganism, wherein the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 3 or SEQ ID NO. 4.
- the combined non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 7. In another embodiment, the combined non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence expresses an amino acid sequence at least 95% identical to SEQ ID NO. 5 or SEQ ID NO. 6.
- the recombinant microorganism includes a Cyanobacteria , a Synechococcus , Synechococcus elongatus, Synechococcus leopoliensis, Synechocystis, Anabaena, a Pseudomonas, Pseudomonas syringae, Pseudomonas savastanoi, Chlamydomonas, Chlamydomonas reinhardtii, Escherichia, Escherichia coli, Geobacteria , algae, microalgae, electrosynthesis bacteria, a photosynthetic microorganism, yeast, filamentous fungi, or a plant cell.
- An embodiment of a method of producing ethylene further includes increasing an amount of ethylene production by adding at least one activator to a culture containing the recombinant microorganism located within the bioreactor culture vessel.
- such a method includes adding CO2 to a culture atmosphere contained within the bioreactor culture vessel at rate of between about 100 ml/minute and about 500 ml/minute.
- such a method further includes decreasing an amount of ethylene production by removing at least one molecular switch from the cell culture containing the recombinant microorganism located within the bioreactor culture vessel.
- such a method further includes controlling the amount of ethylene produced from the microbial culture by increasing or decreasing the concentration of at least one nutrient or the amount of at least one stimulus when culturing the recombinant microorganism.
- the concentration of at least one nutrient and the amount of at least one stimulus are at a ratio of from about 0.5-1.5 gr./liter to about 0.1 mM in the microbial culture.
- such a method further includes removing the amount of ethylene produced from the microbial culture by condensing the ethylene from a gaseous to a liquid state, or wherein the amount of ethylene recovered is from about 0.5 ml to about 10 ml/liter/h.
- Embodiments herein are directed to a recombinant microorganism having an improved alpha-ketoglutarate (AKG) producing ability.
- the recombinant microorganism expresses at least one phosphoenolpyruvate synthase (PEP) protein having an amino acid sequence at least 95% identical to SEQ ID NO. 15 by expressing a non-native PEP expressing nucleotide sequence, and wherein an amount of PEP protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native PEP expressing nucleotide sequence.
- PEP phosphoenolpyruvate synthase
- the recombinant microorganism expresses at least one isocitrate dehydrogenase (IDH) protein having an amino acid sequence at least 95% identical to SEQ ID NO. 20 by expressing a non-native IDH expressing nucleotide sequence, and wherein an amount of IDH protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native IDH expressing nucleotide sequence; wherein an amount of AKG produced by the recombinant microorganism is greater than that produced relative to the control microorganism.
- IDH isocitrate dehydrogenase
- the recombinant microorganism expresses at least one citrate synthase protein having an amino acid sequence at least 95% identical to SEQ ID NO. 17 by expressing a non-native citrate synthase expressing nucleotide sequence, wherein an amount of citrate synthase protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native citrate synthase expressing nucleotide sequence.
- the recombinant microorganism contains a deletion in a glucose- 1 -phosphate adenylyltransf erase expressing nucleotide sequence, wherein an amount of glucose- 1 -phosphate adenylyltransf erase protein produced by the recombinant microorganism is less than that produced relative to a control microorganism lacking the deletion.
- the recombinant microorganism includes a microorganism selected from the group consisting of a Cyanobacteria, a Synechococcus, Synechococcus elongatus, Synechococcus leopoliensis, Synechocystis, Anabaena, a Pseudomonas, Pseudomonas syringae, Pseudomonas savastanoi, Chlamydomonas, Chlamydomonas reinhardtii, Escherichia, Escherichia coli, Geobacteria, algae, microalgae, electrosynthesis bacteria, a photosynthetic microorganism, yeast, filamentous fungi, and a plant cell.
- a microorganism selected from the group consisting of a Cyanobacteria, a Synechococcus, Synechococcus elongatus, Synechococcus leopoliensis
- Figure l is a flow chart depicting an embodiment of a method of producing ethylene herein.
- Figure 2 is an illustration of a vector plasmid for expression of an ethylene forming enzyme (EFE) protein according to embodiments herein.
- EFE ethylene forming enzyme
- Figure 3 A is a photograph of an SDS-PAGE gel showing expression of an EFE protein according to embodiments herein.
- Figure 3B is a photograph of a Western blot showing expression of an EFE protein according to embodiments herein.
- Figure 4A is a graph showing the growth rate of E. coli BL 21 PUC19
- Figure 4B is a graph showing ethylene yield over time for an E. coli BL 21 PUC19 EFE culture according to embodiments herein.
- Figure 5 A is a photograph showing growth of bacterial colonies according to embodiments herein.
- Figure 5B is a photograph showing growth of bacterial colonies according to embodiments herein.
- Figure 6 is a photograph of a Southern blot showing the results of a cloning experiment for AKG and sucrose production according to embodiments herein.
- Figure 7A is a photograph of a Southern blot showing the results of a cloning experiment for sucrose production according to embodiments herein.
- Figure 7B is a photograph of a flask bacterial culture according to embodiments herein.
- Figure 8A is a photograph of a Southern blot showing the results of a cloning experiment for ethylene production according to embodiments herein.
- Figure 8B is a photograph of a Southern blot showing the results of a cloning experiment for ethylene production according to embodiments herein.
- Figure 9A is a photograph of a Southern blot showing the results of a cloning experiment for AKG production according to embodiments herein.
- Figure 9B is a photograph of a flask bacterial culture according to embodiments here. DETAILED DESCRIPTION
- the term “about” refers to ⁇ 10% of the non percentage number that is described, rounded to the nearest whole integer. For example, about 100 ml/minute, would include 90 to 110 ml/minute. Unless otherwise noted, the term “about” refers to ⁇ 5% of a percentage number. For example, about 95% would include 90 to 100%. When the term “about” is discussed in terms of a range, then the term refers to the appropriate amount less than the lower limit and more than the upper limit. For example, from about 100 to about 500 ml/minute would include from 90 to 550 ml/minute.
- measurable properties are understood to be averaged measurements.
- providing refer to the supply, production, purchase, manufacture, assembly, formation, selection, configuration, conversion, introduction, addition, or incorporation of any element, amount, component, reagent, quantity, measurement, or analysis of any composition of matter, method or system of any embodiment herein.
- Sequence identity is herein defined as a relationship between two or more amino acid (polypeptide or protein) sequences or two or more nucleic acid (polynucleotide) sequences, as determined by comparing the sequences. Usually, sequence identities or similarities are compared over the whole length of the sequences compared. In the art, “identity” also means the degree of sequence relatedness between amino acid or nucleic acid sequences, as the case may be, as determined by the match between strings of such sequences. "Similarity" between two amino acid sequences is determined by comparing the amino acid sequence and its conserved amino acid substitutes of one polypeptide to the sequence of a second polypeptide. "Identity” and “similarity” can be readily calculated by various methods, known to those skilled in the art. In an embodiment, sequence identity is determined by comparing the whole length of the sequences as identified herein.
- Exemplary methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Exemplary computer program methods to determine identity and similarity between two sequences include e.g. the BestFit, BLASTP (Protein Basic Local Alignment Search Tool), BLASTN (Nucleotide Basic Local Alignment Search Tool), and FASTA (Altschul, S. F. et ak, J. Mol. Biol. 215:403-410 (1990), publicly available from NCBI and other sources (BLAST.RTM. Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, Md. 20894).
- EMBOSS European Molecular Biology Open Software Suite
- Exemplary parameters for amino acid sequences comparison using EMBOSS are gap open 10.0, gap extend 0.5, Blosum matrix.
- Exemplary parameters for nucleic acid sequences comparison using EMBOSS are gap open 10.0, gap extend 0.5, DNA full matrix (DNA identity matrix).
- amino acid similarity the skilled person may also take into account so-called “conservative” amino acid substitutions, as will be clear to the skilled person.
- Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains.
- a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulphur-containing side chains is cysteine and methionine.
- Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine- tyrosine, lysine-arginine, alanine-valine, and asparagine-glutamine.
- Substitutional variants of the amino acid sequence disclosed herein are those in which at least one residue in the disclosed sequences has been removed and a different residue inserted in its place.
- the amino acid change is conservative.
- Preferred conservative substitutions for each of the naturally occurring amino acids are as follows: Ala to ser; Arg to lys; Asn to gin or his; Asp to glu; Cys to ser or ala; Gin to asn; Glu to asp; Gly to pro; His to asn or gin; He to leu or val; Leu to ile or val; Lys to arg; gin or glu; Met to leu or ile; Phe to met, leu or tyr; Ser to thr; Thr to ser; Trp to tyr; Tyr to trp or phe; and, Val to ile or leu.
- adapted or “codon adapted” refers to “codon optimization” of polynucleotides as disclosed herein, the sequence of which may be native or non-native, or may be adapted for expression in other microorganisms. Codon optimization adapts the codon usage for an encoded polypeptide towards the codon bias of the organism in which the polypeptide is to be expressed. Codon optimization generally helps to increase the production level of the encoded polypeptide in the host cell. [0060] Carbon dioxide emissions resulting from the use of fossil fuels continue to rise on a global scale. Reduction of atmospheric carbon dioxide levels is a key to mitigating or reversing climate change.
- Carbon capture and storage is a prominent technology for removal of industrial carbon dioxide from the atmosphere; it has been estimated that over 20 trillion tons of carbon dioxide captured from refining and other industrial processes can be transported and stored in various types of subterranean environments or storage tanks.
- CCS Carbon capture and storage
- CCS methods do not provide a sustainable solution to reduce excess carbon dioxide in the atmosphere. Also, there is little financial incentive for industries to pump carbon dioxide into subterranean environments, unless they are forced to by environmental regulations, or they are paid to do it as part of their business model. Arguably, global warming is a crisis because it is more lucrative to produce carbon dioxide than to dispose of carbon dioxide.
- a type of ethylene pathway such as is found in Pseudomonas syringae and Penicillium digitatum , uses alpha-ketoglutarate (AKG) and arginine as substrates in a reaction catalyzed by an ethylene-forming enzyme.
- Ethylene-forming enzymes provide a promising target, because expression of a single gene can be sufficient for ethylene production.
- Techniques making use of heterologous expression of an EFE have been demonstrated in several microbial species, where the microbial hosts have been able to utilize a variety of carbon sources in the Calvin cycle, including lignocellulose and carbon dioxide. Plus, recent developments in cost-effective high throughput genetic sequencing technologies have led to an increased understanding of microbial gene expression.
- Embodiments of the present disclosure can provide a benefit not only of removing carbon dioxide from the environment along with the benefit of producing a valuable organic compound capable of being sold commercially. Embodiments of the present disclosure can thus provide a renewable alternative to conventional carbon dioxide storage, by using recombinant microbial technology to convert the carbon dioxide into ethylene as a useful organic compound.
- One benefit of the embodiments of the present disclosure is that the methods can make it economically profitable for an oil or natural gas company to remove carbon dioxide from the environment.
- An oil company could instead of pumping carbon dioxide into a subterranean environment or leaving the sequestered carbon dioxide underground, use the carbon dioxide as a carbon source for a culture of recombinant microorganisms to convert the carbon dioxide to ethylene in a cost- effective way. Also, much the carbon dioxide generated by transportation can be avoided because the process can be practiced on-site or would be expected to consumer more carbon dioxide than it produces. [0065]
- the most effective methods for protecting the environment are those methods that people actually use. The more profitable those methods are; the more likely people are to use them.
- One of the benefits of the methods disclosed herein is the cost- effectiveness of using a bioreactor system.
- Embodiments of the present disclosure can provide a benefit of engineering a photosynthetic ethylene producing microorganism, by adapting the relevant metabolic signaling pathways to produce ethylene on an industrial scale. Such embodiments can make it profitable to remove carbon dioxide from the atmosphere and to passively generate valuable organic compounds while the microbes do the work - on a scale previously unimaginable.
- the present disclosure relates to recombinant microorganisms having an improved ethylene producing ability.
- the present disclosure relates to methods of producing ethylene, including providing a recombinant microorganism having an improved ethylene producing ability according to various embodiments herein. As a general overview of a method disclosed herein, referring to FIG.
- the method includes providing a recombinant microorganism expressing at least one EFE protein according to embodiments disclosed herein 102; culturing the recombinant microorganism in a bioreactor culture vessel under conditions sufficient to produce ethylene in the bioreactor culture vessel 104; increasing an amount of ethylene production by adding at least one activator to the culture within the bioreactor culture vessel, or adding carbon dioxide to a culture atmosphere within the bioreactor culture vessel 106; decreasing an amount of ethylene production by removing at least one molecular switch from the cell culture 108; controlling an amount of ethylene produced from the microbial culture by increasing or decreasing the concentration of at least one nutrient or the amount of at least one stimulus when culturing the recombinant microorganism 110; and removing an amount of ethylene produced from the microbial culture by condensing the ethylene from a gaseous to a liquid state 112.
- a non-native EFE expressing nucleotide sequence is inserted into the vector plasmid of a Chlamydomonas sp. bacterium.
- a recombinant microorganism having an improved ethylene producing ability herein referring to the illustration of an SDS-PAGE gel in FIG. 3 A and the illustration of a Western blot in FIG. 3B, an EFE protein is expressed from a vector plasmid of an Escherichia sp. bacterium having a non-native EFE expressing nucleotide sequence inserted into the vector plasmid, as shown by the arrows.
- the present disclosure relates to a recombinant microorganism having an improved ethylene producing ability.
- the recombinant microorganism expresses at least one ethylene forming enzyme (EFE) protein having an amino acid sequence at least 95% identical to SEQ ID NO: 1 by expressing a non-native EFE expressing nucleotide sequence.
- the non-native EFE expressing nucleotide sequence encodes an EFE of Pseudomonas savastanoi.
- the EFE protein has an amino acid sequence at least 80% or at least 90% identical to SEQ ID NO: 1.
- the EFE protein has an amino acid sequence at least 98% identical to SEQ ID NO: 1.
- an amount of EFE protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native EFE expressing nucleotide sequence. In some embodiments, the amount of EFE protein produced by the recombinant microorganism is from about 5% to about 200% or more greater than that produced relative to the control microorganism lacking the non-native EFE expressing nucleotide sequence. In some embodiments, the amount of EFE protein produced by the recombinant microorganism is from about 50% to about 150% or more greater than that produced relative to the control microorganism lacking the non native EFE expressing nucleotide sequence. In some embodiments, the amount of EFE protein produced by the recombinant microorganism is from about 75% to about 100% or more greater than that produced relative to the control microorganism lacking the non-native EFE expressing nucleotide sequence.
- the recombinant microorganism also expresses at least one alpha-ketoglutarate permease (AKGP) protein by expressing a non-native AKGP expressing nucleotide sequence.
- AKGP alpha-ketoglutarate permease
- the AKGP protein has an amino acid sequence at least 95% identical to SEQ ID NO: 2.
- the AKGP protein has an amino acid sequence at least 80% or at least 90% identical to SEQ ID NO: 2.
- the AKGP protein has an amino acid sequence at least 98% identical to SEQ ID NO: 2.
- the original sequence for SEQ ID NO: 2 was from AKGP from Pseudomonas syringe , but sequence innovation was performed to improve the expression of this sequence in Synechococcus elongatus.
- an amount of AKGP protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native AKGP expressing nucleotide sequence.
- the amount of AKGP protein produced by the recombinant microorganism is from about 5% to about 200% or more greater than that produced relative to the control microorganism lacking the non-native AKGP expressing nucleotide sequence.
- the amount of AKGP protein produced by the recombinant microorganism is from about 50% to about 150% or more greater than that produced relative to the control microorganism lacking the non-native AKGP expressing nucleotide sequence. In some embodiments, the amount of AKGP protein produced by the recombinant microorganism is from about 75% to about 100% or more greater than that produced relative to the control microorganism lacking the non-native AKGP expressing nucleotide sequence.
- the recombinant microorganism includes a
- Cyanobacteria a Synechococcus , Synechococcus elongatus , Synechococcus leopoliensis, Synechocystis, Anabaena, a Pseudomonas, Pseudomonas syringae, Pseudomonas savastanoi, Chlamydomonas, Chlamydomonas reinhardtii, Escherichia, Escherichia coli, Geobacteria , algae, microalgae, electrosynthesis bacteria, a photosynthetic microorganism, yeast, filamentous fungi, or a plant cell.
- the recombinant microorganism can include Saccharomyces cerevisiae, Pseudomonas putida, Trichoderma viride, Trichoderma reesei , and tobacco.
- the non-native EFE expressing nucleotide sequence is inserted into a bacterial vector plasmid, a nucleotide guide of a homologous recombination system, a CRISPR CAS system, a phage display system, or a combination thereof.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 3, and the non-native EFE expressing nucleotide sequence is inserted into a vector plasmid of a Chlamydomonas sp. bacterium.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 90% identical to SEQ ID NO. 3. In an embodiment, the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 98% identical to SEQ ID NO. 3. In an embodiment, the non-native EFE expressing nucleotide sequence is codon adapted for expression in a Chlamydomonas sp. bacterium.
- a non-native EFE expressing nucleotide sequence and a non-native AKGP expressing nucleotide sequence are inserted into a bacterial vector plasmid, a nucleotide guide of a homologous recombination system, a CRISPR CAS system, a phage display system, or a combination thereof.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 4, and the non-native EFE expressing nucleotide sequence and the AKGP expressing nucleotide sequence are inserted into a vector plasmid of an Escherichia sp.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 90% identical to SEQ ID NO. 4. In an embodiment, the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 98% identical to SEQ ID NO. 4. In an embodiment, the non-native EFE expressing nucleotide sequence is codon adapted for expression in an Escherichia sp. bacterium, or in an Escherichia coli bacterium.
- the recombinant microorganism further includes a non-native AKGP expressing nucleotide sequence.
- the non native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 95% identical to SEQ ID NO. 5.
- the non-native expressing nucleotide sequence and non-native AKGP expression nucleotide sequence express a combined amino acid sequence at least 95% identical to SEQ ID NO. 6.
- the combined amino acid sequence can include one or more purification tags; in an embodiment, the purification tag includes a histidine tag.
- the purification tag includes a His-TEV sequence; in an embodiment, the His-TEV sequence includes SEQ ID NO. 10.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 90% identical to SEQ ID NO. 5 or SEQ ID NO. 6.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 98% identical to SEQ ID NO. 5 or SEQ ID NO. 6.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence are inserted into a bacterial plasmid of a Synechococcus sp. bacterium.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence include a nucleotide sequence at least 95% identical to SEQ ID NO. 7. In an embodiment, the non-native EFE expressing nucleotide sequence and non native AKGP expressing nucleotide sequence include a nucleotide sequence at least 90% identical to SEQ ID NO. 7. In an embodiment, the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence include a nucleotide sequence at least 98% identical to SEQ ID NO. 7.
- the non-native EFE expressing nucleotide sequence and the non-native AKGP expressing nucleotide sequence are codon adapted for expression in a Cyanobacteria. In an embodiment, the non-native EFE expressing nucleotide sequence and the non-native AKGP expressing nucleotide sequence are codon adapted for expression in a Synechococcus sp. bacterium.
- Embodiments herein are directed to methods of producing a recombinant microorganism having an improved ethylene producing ability.
- the method includes producing a recombinant microorganism by inserting a non-native EFE expressing nucleotide sequence into a bacterial plasmid of a microorganism.
- the non-native EFE expressing nucleotide sequence encodes an EFE of Pseudomonas savastanoi.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 3.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 90% identical to SEQ ID NO. 3. In an embodiment, the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 98% identical to SEQ ID NO. 3. In an embodiment, the non-native EFE expressing nucleotide sequence is codon adapted for expression in a Chlamydomonas sp. bacterium. In an embodiment, the Chlamydomonas sp. bacterium includes Chlamydomonas reinhardtii.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 4. In an embodiment, the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 90% identical to SEQ ID NO. 4. In an embodiment, the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 98% identical to SEQ ID NO. 4. In an embodiment, the non-native EFE expressing nucleotide sequence is codon adapted for expression in an Escherichia sp. bacterium. In an embodiment, the Escherichia sp. bacterium includes E. coli.
- the non-native EFE expressing nucleotide sequence includes an N-terminal Ndel cloning site (SEQ ID NO. 8 (See Appendix)).
- the non-native EFE expressing nucleotide sequence includes one or more purification tags; in an embodiment, the purification tag includes a histidine tag. In an embodiment, the purification tag includes a histidine tag at the C-terminal end, followed by a stop codon and a Hindlll cloning site (SEQ ID NO. 9 (See Appendix)).
- the method includes producing a recombinant microorganism by inserting a combined non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence into a bacterial plasmid of a microorganism.
- the combined non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence expresses an amino acid sequence at least 95% identical to SEQ ID NO. 5.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expression nucleotide sequence express a combined amino acid sequence at least 95% identical to SEQ ID NO. 6.
- the combined amino acid sequence can include one or more purification tags; in an embodiment, the purification tag includes a histidine tag. In an embodiment, the purification tag includes a His-TEV sequence; in an embodiment, the His- TEV sequence includes SEQ ID NO. 10 (See Appendix).
- the non native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 90% identical to SEQ ID NO. 5 or SEQ ID NO. 6. In other embodiments, the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 98% identical to SEQ ID NO.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence are inserted into a bacterial plasmid of a Synechococcus sp. bacterium.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence include a nucleotide sequence at least 95% identical to SEQ ID NO. 7. In an embodiment, the non-native EFE expressing nucleotide sequence and non native AKGP expressing nucleotide sequence include a nucleotide sequence at least 90% identical to SEQ ID NO. 7. In an embodiment, the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence include a nucleotide sequence at least 98% identical to SEQ ID NO. 7.
- the non-native EFE expressing nucleotide sequence and the non-native AKGP expressing nucleotide sequence are codon adapted for expression in a Cyanobacteria. In an embodiment, the non-native EFE expressing nucleotide sequence and the non-native AKGP expressing nucleotide sequence are codon adapted for expression in a Synechococcus sp. bacterium.
- the microorganism includes a
- Cyanobacteria a Synechococcus , Synechococcus elongatus, Synechococcus leopoliensis, Synechocystis, Anabaena, a Pseudomonas, Pseudomonas syringae, Pseudomonas savastanoi, Chlamydomonas, Chlamydomonas reinhardtii, Escherichia, Escherichia coli, Geobacteria , algae, microalgae, electrosynthesis bacteria, a photosynthetic microorganism, yeast, filamentous fungi, or a plant cell.
- the recombinant microorganism can include Saccharomyces cerevisiae, Pseudomonas putida, Trichoderma viride, Trichoderma reesei , and tobacco.
- the non-native EFE expressing nucleotide sequence is inserted into a bacterial vector plasmid, a nucleotide guide of a homologous recombination system, a CRISPR CAS system, a phage display system, or a combination thereof.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 3, and the non-native EFE expressing nucleotide sequence is inserted into a vector plasmid of a Chlamydomonas sp. bacterium.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 90% identical to SEQ ID NO. 3. In an embodiment, the non native EFE expressing nucleotide sequence has a nucleotide sequence at least 98% identical to SEQ ID NO. 3. In an embodiment, the non-native EFE expressing nucleotide sequence is codon adapted for expression in a Chlamydomonas sp. bacterium.
- a non-native EFE expressing nucleotide sequence and a non-native AKGP expressing nucleotide sequence are inserted into a bacterial vector plasmid, a nucleotide guide of a homologous recombination system, a CRISPR CAS system, a phage display system, or a combination thereof.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 4, and the non-native EFE expressing nucleotide sequence and the AKGP expressing nucleotide sequence are inserted into a vector plasmid of an Escherichia sp.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 90% identical to SEQ ID NO. 4. In an embodiment, the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 98% identical to SEQ ID NO. 4. In an embodiment, the non-native EFE expressing nucleotide sequence is codon adapted for expression in an Escherichia sp. bacterium, or in an Escherichia coli bacterium.
- the recombinant microorganism further includes a non-native AKGP expressing nucleotide sequence.
- the non native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 95% identical to SEQ ID NO. 5.
- the non-native expressing nucleotide sequence and non-native AKGP expression nucleotide sequence express a combined amino acid sequence at least 95% identical to SEQ ID NO. 6.
- the combined amino acid sequence can include one or more purification tags; in an embodiment, the purification tag includes a histidine tag.
- the purification tag includes a His-TEV sequence; in an embodiment, the His-TEV sequence includes SEQ ID NO. 10.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 90% identical to SEQ ID NO. 5 or SEQ ID NO. 6.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 98% identical to SEQ ID NO. 5 or SEQ ID NO. 6.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence are inserted into a bacterial plasmid of a Synechococcus sp. bacterium.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence include a nucleotide sequence at least 95% identical to SEQ ID NO. 7. In an embodiment, the non-native EFE expressing nucleotide sequence and non native AKGP expressing nucleotide sequence include a nucleotide sequence at least 90% identical to SEQ ID NO. 7. In an embodiment, the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence include a nucleotide sequence at least 98% identical to SEQ ID NO. 7.
- the non-native EFE expressing nucleotide sequence and the non-native AKGP expressing nucleotide sequence are codon adapted for expression in a Cyanobacteria. In an embodiment, the non-native EFE expressing nucleotide sequence and the non-native AKGP expressing nucleotide sequence are codon adapted for expression in a Synechococcus sp. bacterium.
- Methods of producing ethylene are embodied herein.
- An embodiment of such a method includes providing a recombinant microorganism having an improved ethylene producing ability.
- the recombinant microorganism expresses at least one ethylene forming enzyme (EFE) protein having an amino acid sequence at least 95% identical to SEQ ID NO: 1 by expressing a non-native EFE expressing nucleotide sequence, wherein an amount of EFE protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native EFE expressing nucleotide sequence; culturing the recombinant microorganism in a bioreactor culture vessel under conditions sufficient to produce ethylene in the bioreactor culture vessel; and harvesting ethylene from the bioreactor culture vessel.
- EFE ethylene forming enzyme
- the non native EFE expressing nucleotide sequence encodes an EFE of Pseudomonas savastanoi.
- the EFE protein has an amino acid sequence at least 80% or at least 90% identical to SEQ ID NO: 1.
- the EFE protein has an amino acid sequence at least 98% identical to SEQ ID NO: 1.
- an amount of EFE protein produced by the recombinant microorganism is greater than that produced relative to a control microorganism lacking the non-native EFE expressing nucleotide sequence.
- the amount of EFE protein produced by the recombinant microorganism is from about 5% to about 200% or more greater than that produced relative to the control microorganism lacking the non-native EFE expressing nucleotide sequence. In some embodiments, the amount of EFE protein produced by the recombinant microorganism is from about 50% to about 150% or more greater than that produced relative to the control microorganism lacking the non-native EFE expressing nucleotide sequence. In some embodiments, the amount of EFE protein produced by the recombinant microorganism is from about 75% to about 100% or more greater than that produced relative to the control microorganism lacking the non-native EFE expressing nucleotide sequence.
- EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 3. In an embodiment, the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 80% or at least 90% identical to SEQ ID NO. 3. In an embodiment, the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 98% identical to SEQ ID NO. 3. In an embodiment, the non-native EFE expressing nucleotide sequence is codon adapted for expression in a Chlamydomonas sp. bacterium. In an embodiment, the Chlamydomonas sp. bacterium includes Chlamydomonas reinhardtii.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 4. In an embodiment, the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 90% identical to SEQ ID NO. 4. In an embodiment, the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 98% identical to SEQ ID NO. 4. In an embodiment, the non-native EFE expressing nucleotide sequence is codon adapted for expression in an Escherichia sp. bacterium. In an embodiment, the Escherichia sp. bacterium includes E. coli.
- the non-native EFE expressing nucleotide sequence includes an N-terminal Ndel cloning site (SEQ ID NO. 8). In an embodiment, the non-native EFE expressing nucleotide sequence includes one or more purification tags; in an embodiment, the purification tag includes a histidine tag. In an embodiment, the purification tag includes a histidine tag at the C-terminal end, followed by a stop codon and a Hindlll cloning site (SEQ ID NO. 9).
- the method of producing ethylene includes producing a recombinant microorganism by inserting a combined non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence into a bacterial plasmid of a microorganism.
- the combined non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence expresses an amino acid sequence at least 95% identical to SEQ ID NO. 5.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expression nucleotide sequence express a combined amino acid sequence at least 95% identical to SEQ ID NO. 6.
- the combined amino acid sequence can include one or more purification tags; in an embodiment, the purification tag includes a histidine tag. In an embodiment, the purification tag includes a His-TEV sequence; in an embodiment, the His-TEV sequence includes SEQ ID NO. 10.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 90% identical to SEQ ID NO. 5 or SEQ ID NO. 6. In other embodiments, the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 98% identical to SEQ ID NO. 5 or SEQ ID NO. 6.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence are inserted into a bacterial plasmid of a Synechococcus sp. bacterium.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence include a nucleotide sequence at least 95% identical to SEQ ID NO. 7. In an embodiment, the non-native EFE expressing nucleotide sequence and non native AKGP expressing nucleotide sequence include a nucleotide sequence at least 90% identical to SEQ ID NO. 7. In an embodiment, the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence include a nucleotide sequence at least 98% identical to SEQ ID NO. 7.
- the non-native EFE expressing nucleotide sequence and the non-native AKGP expressing nucleotide sequence are codon adapted for expression in a Cyanobacteria. In an embodiment, the non-native EFE expressing nucleotide sequence and the non-native AKGP expressing nucleotide sequence are codon adapted for expression in a Synechococcus sp. bacterium. [0086] In various embodied methods, the microorganism includes a
- Cyanobacteria a Synechococcus , Synechococcus elongatus, Synechococcus leopoliensis, Synechocystis, Anabaena, a Pseudomonas, Pseudomonas syringae, Pseudomonas savastanoi, Chlamydomonas, Chlamydomonas reinhardtii, Escherichia, Escherichia coli, Geobacteria , algae, microalgae, electrosynthesis bacteria, a photosynthetic microorganism, yeast, filamentous fungi, or a plant cell.
- the recombinant microorganism can include Saccharomyces cerevisiae, Pseudomonas putida, Trichoderma viride, Trichoderma reesei , and tobacco.
- the non-native EFE expressing nucleotide sequence is inserted into a bacterial vector plasmid, a nucleotide guide of a homologous recombination system, a CRISPR CAS system, a phage display system, or a combination thereof.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 3, and the non-native EFE expressing nucleotide sequence is inserted into a vector plasmid of a Chlamydomonas sp. bacterium.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 90% identical to SEQ ID NO. 3. In an embodiment, the non native EFE expressing nucleotide sequence has a nucleotide sequence at least 98% identical to SEQ ID NO. 3. In an embodiment, the non-native EFE expressing nucleotide sequence is codon adapted for expression in a Chlamydomonas sp. bacterium.
- a non-native EFE expressing nucleotide sequence and a non-native AKGP expressing nucleotide sequence are inserted into a bacterial vector plasmid, a nucleotide guide of a homologous recombination system, a CRISPR CAS system, a phage display system, or a combination thereof.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 95% identical to SEQ ID NO. 4, and the non-native EFE expressing nucleotide sequence and the AKGP expressing nucleotide sequence are inserted into a vector plasmid of an Escherichia sp.
- the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 90% identical to SEQ ID NO. 4. In an embodiment, the non-native EFE expressing nucleotide sequence has a nucleotide sequence at least 98% identical to SEQ ID NO. 4. In an embodiment, the non-native EFE expressing nucleotide sequence is codon adapted for expression in an Escherichia sp. bacterium, or in an Escherichia coli bacterium.
- the recombinant microorganism further includes a non-native AKGP expressing nucleotide sequence.
- the non native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 95% identical to SEQ ID NO. 5.
- the non-native expressing nucleotide sequence and non-native AKGP expression nucleotide sequence express a combined amino acid sequence at least 95% identical to SEQ ID NO. 6.
- the combined amino acid sequence can include one or more purification tags; in an embodiment, the purification tag includes a histidine tag.
- the purification tag includes a His-TEV sequence; in an embodiment, the His-TEV sequence includes SEQ ID NO. 10.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 90% identical to SEQ ID NO. 5 or SEQ ID NO. 6.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence express a combined amino acid sequence at least 98% identical to SEQ ID NO. 5 or SEQ ID NO. 6.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence are inserted into a bacterial plasmid of a Synechococcus sp. bacterium.
- the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence include a nucleotide sequence at least 95% identical to SEQ ID NO. 7. In an embodiment, the non-native EFE expressing nucleotide sequence and non native AKGP expressing nucleotide sequence include a nucleotide sequence at least 90% identical to SEQ ID NO. 7. In an embodiment, the non-native EFE expressing nucleotide sequence and non-native AKGP expressing nucleotide sequence include a nucleotide sequence at least 98% identical to SEQ ID NO. 7.
- the non-native EFE expressing nucleotide sequence and the non-native AKGP expressing nucleotide sequence are codon adapted for expression in a Cyanobacteria. In an embodiment, the non-native EFE expressing nucleotide sequence and the non-native AKGP expressing nucleotide sequence are codon adapted for expression in a Synechococcus sp. bacterium.
- Embodiments of producing ethylene herein include culturing a recombinant microorganism in a bioreactor culture under conditions sufficient to produce ethylene in the bioreactor culture vessel.
- a bioreactor culture according to embodied methods can include one or more suitable reagents or growth media for supporting the growth of the recombinant microorganism culture.
- Such reagents or culture media can include water, one or more carbohydrates, one or more amino acids or amino acid derivatives, one or more buffers, sea water, Luria broth, Luria Bertani broth, BG-11 media, carbon dioxide, light, temperature, electricity, or combinations thereof.
- An embodiment of a method of producing ethylene includes increasing an amount of ethylene production by adding at least one activator to a culture containing the recombinant microorganism located within the bioreactor culture vessel.
- the addition of such an activator can include increasing a concentration of one or more substrates of the EFE enzyme being expressed by the recombinant microorganism culture.
- a substrate can include alpha-ketoglutarate or arginine, or combinations thereof as well as other sources of carbon such as glycerol and glucose.
- adding at least one activator can include adding a molecular switch.
- adding at least one activator can include insertion of an inducible promoter upstream of the EFE gene; one such promoter includes an IPTG promoter.
- IPTG can be added as a molecular switch to the culture media.
- adding at least one activator can include adding one or more nutrients or stimuli to the culture.
- nutrients or stimuli can include one or more carbohydrates, one or more amino acids or amino acid derivatives, one or more EFE substrates, succinate, carbon dioxide, light, temperature, electricity, glycerol, sugars, or combinations thereof.
- adding at least one activator to the culture can provide a benefit of controlling the cycles of ethylene production and enhancing the ethylene production rate.
- the ethylene produced can be removed from the bioreactor culture vessel as it is produced.
- removal of the ethylene can include condensing ethylene produced as a gas into a liquid form for removal from the bioreactor culture vessel.
- a method of producing ethylene includes adding
- the method includes adding CO2 to a culture atmosphere contained within the bioreactor culture vessel at rate of between about 100 ml/minute and about 500 ml/minute.
- the method includes adding CO2 to a culture atmosphere contained within the bioreactor culture vessel at rate of between about 150 ml/minute and about 450 ml/minute.
- the method includes adding CO2 to a culture atmosphere contained within the bioreactor culture vessel at rate of between about 250 ml/minute and about 350 ml/minute.
- Such embodiments can provide a benefit of enhancing or controlling the rate of ethylene production in the bioreactor culture vessel, as well as providing a benefit of converting CO2 into a useful product.
- a method of producing ethylene includes decreasing an amount of ethylene production by removing at least one molecular switch from the microbial culture containing the recombinant microorganism located within the bioreactor culture vessel. In an embodiment, such a method further includes controlling the amount of ethylene produced from the microbial culture by increasing or decreasing the concentration of at least one nutrient or the amount of at least one stimulus when culturing the recombinant microorganism. In an embodiment, the concentration of at least one nutrient and the amount of at least one stimulus are at a ratio of from about 0.5-1.5 gr./liter to about 0.1 mM in the microbial culture.
- such a method further includes removing the amount of ethylene produced from the microbial culture by condensing the ethylene from a gaseous to a liquid state, or wherein the amount of ethylene recovered is from about 0.5 ml to about 10 ml/liter/h.
- Such embodiments can provide a benefit of controlling the amount of ethylene production by controlling the rate of activity of the Calvin cycle in the microbial culture. For example, it is possible to shift from an expression system to a growth system, where the cells are allowed to grow for 5-7 days and their growth conditions are monitored.
- EFE Ethylene Forming Enzyme
- Phaseolicola EFE protein (GenBank: KPB44727.1, SEQ ID NO: 1) was cloned into the pChlamy_4 vector plasmid (ThermoFisher). Other reagents and use of instruments were provided by Creative Biostructure.
- EFE Ethylene-forming enzyme
- Pseudomonas savastanoi pv. Phaseolicola (GenBank: KPB44727.1) was used for the preparation of EFE recombinant protein.
- the corresponding nucleotide sequences were codon adapted for expression in Chlamydomonas reinhardtii and synthesized (SEQ ID NO: 3).
- the EFE construct was cloned into the pChlamy_4 vector with the Kpnl and Pstl restriction enzyme sites.
- the pChlamy_4vector character EFE with an N-tag was designed and generated.
- the pChlamy_4 vector contains the ATG initiation codon (vector ATG) for proper initiation of translation at position 497-499, found at the beginning of the Sh ble gene after the removal of Intron-1 Rbc S2.
- the FMDV 2A peptide gene flanking the Multiple Cloning Site 1 (MCS1) is in frame with the Sh ble gene.
- MCS1 Multiple Cloning Site 1
- the EFE sequence was cloned in-frame after the TEV site, into the Kphl/Pstl digested pChlamy_4 vector.
- a TAA (stop codon) was designed for proper translation termination.
- the resulting sequence chromatogram is shown in FIG. 2; referring to FIG. 2, the EFE protein gene coding sequences are shown in the arrow labeled “EFE- protein”.
- An open reading frame orientation was confirmed by plasmid validation by nucleotide sequencing.
- Phaseolicola EFE protein (GenBank: KPB44727.1, SEQ ID NO: 1) was cloned into the pET- 30a(+) vector plasmid.
- the corresponding nucleotides sequences were codon adapted for expression in E. coli (SEQ ID NO: 4), containing an optional His tag at the C-terminal end followed by a stop codon and Malawi site (SEQ ID NO: 9).
- An Ndel site was used for cloning at the 5-prime end, where the Ndel site contains an ATG start codon (SEQ ID NO: 8).
- E.coli BL21(DE3) competent cells were transformed with the recombinant plasmid.
- Lane Mi Protein marker Lane M2: Western blot marker Lane PCi: BSA (1 m g)
- Lane 1 Cell lysate with induction for 16 h at 15°C
- Lane 2 Cell lysate with induction for 4 h at 37°C
- Lane NCi Supernatant of cell lysate without induction
- Lane 3 Supernatant of cell lysate with induction for 16 h at 15 C
- Lane NC2 Pellet of cell lysate without induction
- Lane 5 Pellet of cell lysate with induction for 16 h at 15°C
- Lane 6 Pellet of cell lysate with induction for 4 h at 37°C
- Example 3 Recombinant EFE and AKGP Expressing Nucleotide Sequences Adapted for Expression in Synechococcus spp. Bacteria
- codon adaptation analysis algorithm which adapts a variety of parameters that are critical to the efficiency of gene expression, including but not limited to codon usage bias, GC content, CpG dinucleotide content, mRNA secondary structure, cryptic splicing sites, premature PolyA sites, internal chi sites and ribosomal binding sites, negative CpG islands, RNA instability motif (ARE), repeat sequences (direct repeat, reverse repeat, and Dyad repeat), and restriction sites that may interfere with cloning.
- a codon usage bias adjustment was performed using the distribution of codon usage frequency along the length of the gene sequence, with a resulting Codon Adaptation Index (CAI) of 0.95.
- CAI Codon Adaptation Index
- a CAI of 1.0 is considered to be perfect in the desired expression organism, and a CAI of greater than 0.8 is regarded as good, in terms of high gene expression level.
- the Frequency of Optimal Codons (FOP) was measured as the percentage distribution of favorable codons in computed codon quality groups, with the value of 100 set for the codon with the highest usage frequency for a given amino acid in the desired expression organism.
- a result of 80% of the codons was found in the highest codon quality group of 91-100, 3% in the second highest quality group of 81-90, and 14% in the third highest quality group of 71-80.
- a GC content adjustment was performed resulting in an average GC content of 56.46%, with the ideal percentage range of GC content being between 30-70%.
- Hindlll cloning site SEQ ID NO: 12
- Kpnl cloning site SEQ ID NO: 13
- EFE-P2A_pSyn_6 No His
- His-TEV sequence may be included at the N-terminus (SEQ ID NO: 10), resulting in the amino acid sequence of SEQ ID NO. 6 (EFE-P2A-aKGP_pSyn_6).
- Tailored-designed DNA constructions will be generated that encode the critical intermediates of a synthetic bio-ethylene pathway. 2. Carefully selected photosynthetic microorganisms will then be expanded for cloning and gene expression. 3. Genetic and metabolic engineering of microorganisms will then be performed for continuous production of bio-ethylene. 4. Bioengineered microorganisms will then be selected and expanded in a photobioreactor. 5. Bioreactor culture conditions (including C02 concentration, light exposure time and wave-length, temperature, pH) will be adapted. 6. Samples will be collected and analyzed by HPLC to measure bio-ethylene synthesis. 7. Bio-ethylene production in genetically engineered microorganisms will be adapted. 8. Ethylene production processes will be scaled up.
- ppc and gltA genes that are related directly to AKG synthesis and secretion pathways, including ppc and gltA (overexpression), and genes that are involved in energy storage pathways, including glgC (deletion), which plays a critical role in the glycogen synthesis pathway.
- a construct of ppc-p2A-gltA (SEQ ID NO. 18) was created for cloning into the pSyn6 plasmid before integration into Synechococcus elongatus and growth of transformed colonies. PCR was performed on pSyn6-PPC-gltA colonies to confirm the expression of the construct in Cyanobacteria; an expected band size for PPC-gltA of 4621 base pairs was observed.
- IDH gene (SEQ ID NO: 19), which encodes isocitrate dehydrogenase (SEQ ID NO. 20), was made by cloning the IDH gene into the pSyn6 plasmid. Successful cloning of the IDH gene into the pSyn6-IDH plasmid was confirmed by growth of bacterial colonies FIG. 5 A) and by gel electrophoresis and DNA analysis (FIG. 6). Synechococcus elongatus strain S2434-IDH integrating the IDH construct was confirmed by bacterial culture growth (FIG. 9B) and gel electrophoresis and DNA analysis (FIG. 9A).
- Cell culture growth was shown to be improved significantly by increasing the bicarbonate concentration in the growth medium by 0.5 g/L or 1.0 g/L.
- a plasmid for deletion of the glgC gene (SEQ ID NO. 21, Genbank CP000100.1), which encodes glucose- 1 -phosphate adenylyltransferase (SEQ ID NO. 22), in Cyanobacteria ⁇ Synechococcus elongatus ), was also made and confirmed.
- Synechococcus elongatus strain UTEX S2434 (S2434-cscB) integrating cscB was confirmed by bacterial culture growth (FIG. 7B) and by gel electrophoresis and DNA analysis (FIG. 7A).
- sps gene SEQ ID NO. 25, Genbank A0A0H3K0V9, which encodes sucrose phosphate synthase (SEQ ID NO. 26); the spp gene (SEQ ID NO. 27, Genbank Q7BII3), which encodes sucrose-6-phosphatase (SEQ ID NO. 28), the glgP gene (SEQ ID NO. 29, Genbank Q31RP3), which encodes glycogen phosphorylase (SEQ ID NO. 30), and the galU gene (SEQ ID NO.
- Genbank P0AEP3 which encodes UTP -glucose- 1 -phosphate uridylyltransferase (SEQ ID NO. 32), to reroute the intermediates to sucrose.
- deletion of the inv gene (SEQ ID NO. 33, Genbank P74573), which encodes invertase (SEQ ID NO. 34), and the ggpS gene (SEQ ID NO. 35, Genbank P74258), which encodes glucosylglycerol-phosphate synthase (SEQ ID NO. 36), will prevent conversion to alternative products; and deletion of the glgA gene (SEQ ID NO. 37, Genbank P74521), which encodes glycogen synthase (SEQ ID NO. 38), will eliminate the conversion of substrate to glycogen, which potentially can increase the sucrose yield.
- Example 7 Engineering the production of ethylene in E. coli
- EFE (SEQ ID NO. 39) was made encoding ethylene forming enzyme (EFE) under an IPTG- inducible promoter in a high copy number plasmid, pUC19. Expression of the PUC-EFE plasmid in E. coli was confirmed by colony growth on agar media supplemented with ampicillin, IPTG and X-gal, and observance of the expected band size of 2322 base pairs by gel electrophoresis and DNA analysis (FIG. 8A and FIG. 8B). In FIG. 8A, the arrow shows the EFE DNA construct; in FIG. 8B, the arrow shows the DNA element controlling plasmid copy number. DNA sequencing results confirmed the presence of the plasmid. EFE production was confirmed by SDS-PAGE and Western blot analysis. Ethylene expression levels of 5 mg/L and 30% solubility were observed under induction conditions of 16 hours at 15 degrees Celsius.
- EFE- AKGP-psbA SEQ ID NO. 40
- the EFE and AKGP genes were placed under control of the psbA promoter (SEQ ID NO. 41) and the rrnB terminator (SEQ ID NO. 42).
- EFE-psbA SEQ ID NO. 43
- only EFE gene expression was placed under control of the psbA promoter (SEQ ID NO. 41) and the T7 terminator (SEQ ID NO. 44).
- a A A AAGCC AT GGT C A A A AT C A AT GGGC A AT AC GT GGGGACGGT GGC GGC C ATT C
- a AGA A AGT GT GC A AC A A A A A AGTT GC T GA A ATT A A AC A AGATTT AGGCGGT A AGA
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Enzymes And Modification Thereof (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20895365.3A EP4069857A4 (en) | 2019-12-03 | 2020-12-02 | Methods and compositions for producing ethylene from recombinant microorganisms |
CA3160540A CA3160540A1 (en) | 2019-12-03 | 2020-12-02 | Methods and compositions for producing ethylene from recombinant microorganisms |
JP2022532714A JP2023505443A (en) | 2019-12-03 | 2020-12-02 | Methods and compositions for producing ethylene from recombinant microorganisms |
AU2020395163A AU2020395163A1 (en) | 2019-12-03 | 2020-12-02 | Methods and compositions for producing ethylene from recombinant microorganisms |
US17/756,400 US20220411829A1 (en) | 2019-12-03 | 2020-12-02 | Methods and compositions for producing ethylene from recombinant microorganisms |
BR112022010689A BR112022010689A2 (en) | 2019-12-03 | 2020-12-02 | METHODS AND COMPOSITIONS TO PRODUCE ETHYLENE FROM RECOMBINANT MICRO-ORGANISMS |
CN202080095327.5A CN115052990A (en) | 2019-12-03 | 2020-12-02 | Methods and compositions for producing ethylene from recombinant microorganisms |
KR1020227022359A KR20220110249A (en) | 2019-12-03 | 2020-12-02 | Methods and compositions for producing ethylene from recombinant microorganisms |
MX2022006610A MX2022006610A (en) | 2019-12-03 | 2020-12-02 | Methods and compositions for producing ethylene from recombinant microorganisms. |
CONC2022/0008803A CO2022008803A2 (en) | 2019-12-03 | 2022-06-24 | Methods and compositions for producing ethylene from recombinant microorganisms |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962942895P | 2019-12-03 | 2019-12-03 | |
US62/942,895 | 2019-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021113396A1 true WO2021113396A1 (en) | 2021-06-10 |
Family
ID=76221147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2020/062938 WO2021113396A1 (en) | 2019-12-03 | 2020-12-02 | Methods and compositions for producing ethylene from recombinant microorganisms |
Country Status (11)
Country | Link |
---|---|
US (1) | US20220411829A1 (en) |
EP (1) | EP4069857A4 (en) |
JP (1) | JP2023505443A (en) |
KR (1) | KR20220110249A (en) |
CN (1) | CN115052990A (en) |
AU (1) | AU2020395163A1 (en) |
BR (1) | BR112022010689A2 (en) |
CA (1) | CA3160540A1 (en) |
CO (1) | CO2022008803A2 (en) |
MX (1) | MX2022006610A (en) |
WO (1) | WO2021113396A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023250392A1 (en) * | 2022-06-21 | 2023-12-28 | Lanzatech, Inc. | Microorganisms and methods for the continuous production of ethylene from c1-substrates |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2769321A (en) * | 1952-08-07 | 1956-11-06 | Kellogg M W Co | Separation of ethylene from a gaseous mixture |
US5536659A (en) * | 1992-09-18 | 1996-07-16 | Hideo Fukuda | DNA fragment comprising a gene encoding ethylene forming enzyme of bacteria and the use thereof |
US20140154762A1 (en) * | 2011-06-24 | 2014-06-05 | Algenol Biofuels Inc. | Genetically Enhanced Cyanobacteria Lacking Functional Genes Conferring Biocide Resistance for the Production of Chemical Compounds |
US20150247170A1 (en) * | 2011-07-27 | 2015-09-03 | Alliance For Sustainable Energy, Llc | Biological production of organic compounds |
US20150329882A1 (en) * | 2014-05-16 | 2015-11-19 | Samsung Electronics Co., Ltd. | Microorganism having enhanced productivity of succinate and method of producing succinate using the same |
WO2018009770A1 (en) * | 2016-07-07 | 2018-01-11 | Cemvita Technologies Llc. | Cognitive cell with coded chemicals for generating outputs from environmental inputs and method of using same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009078712A2 (en) * | 2007-12-17 | 2009-06-25 | Universiteit Van Amsterdam | Light-driven co2 reduction to organic compounds to serve as fuels or as industrial half products by an autotroph containing a fermentative gene cassette |
-
2020
- 2020-12-02 MX MX2022006610A patent/MX2022006610A/en unknown
- 2020-12-02 BR BR112022010689A patent/BR112022010689A2/en unknown
- 2020-12-02 WO PCT/US2020/062938 patent/WO2021113396A1/en unknown
- 2020-12-02 AU AU2020395163A patent/AU2020395163A1/en active Pending
- 2020-12-02 CN CN202080095327.5A patent/CN115052990A/en active Pending
- 2020-12-02 EP EP20895365.3A patent/EP4069857A4/en active Pending
- 2020-12-02 KR KR1020227022359A patent/KR20220110249A/en unknown
- 2020-12-02 CA CA3160540A patent/CA3160540A1/en active Pending
- 2020-12-02 JP JP2022532714A patent/JP2023505443A/en active Pending
- 2020-12-02 US US17/756,400 patent/US20220411829A1/en active Pending
-
2022
- 2022-06-24 CO CONC2022/0008803A patent/CO2022008803A2/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2769321A (en) * | 1952-08-07 | 1956-11-06 | Kellogg M W Co | Separation of ethylene from a gaseous mixture |
US5536659A (en) * | 1992-09-18 | 1996-07-16 | Hideo Fukuda | DNA fragment comprising a gene encoding ethylene forming enzyme of bacteria and the use thereof |
US20140154762A1 (en) * | 2011-06-24 | 2014-06-05 | Algenol Biofuels Inc. | Genetically Enhanced Cyanobacteria Lacking Functional Genes Conferring Biocide Resistance for the Production of Chemical Compounds |
US20150247170A1 (en) * | 2011-07-27 | 2015-09-03 | Alliance For Sustainable Energy, Llc | Biological production of organic compounds |
US20150329882A1 (en) * | 2014-05-16 | 2015-11-19 | Samsung Electronics Co., Ltd. | Microorganism having enhanced productivity of succinate and method of producing succinate using the same |
WO2018009770A1 (en) * | 2016-07-07 | 2018-01-11 | Cemvita Technologies Llc. | Cognitive cell with coded chemicals for generating outputs from environmental inputs and method of using same |
Non-Patent Citations (2)
Title |
---|
DATABASE UniProt August 2018 (2018-08-01), ANONYMOUS: "A0A3M6CBR7: SubName: Full=Gibberellin 3-beta-dioxygenase {ECO:0000313|EMBL:RMV41342.1};", XP009529636, retrieved from UniProt Database accession no. A0A2M6CBR 7 * |
See also references of EP4069857A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023250392A1 (en) * | 2022-06-21 | 2023-12-28 | Lanzatech, Inc. | Microorganisms and methods for the continuous production of ethylene from c1-substrates |
Also Published As
Publication number | Publication date |
---|---|
BR112022010689A2 (en) | 2022-08-23 |
JP2023505443A (en) | 2023-02-09 |
MX2022006610A (en) | 2022-10-07 |
KR20220110249A (en) | 2022-08-05 |
US20220411829A1 (en) | 2022-12-29 |
AU2020395163A1 (en) | 2022-06-16 |
CN115052990A (en) | 2022-09-13 |
CO2022008803A2 (en) | 2022-06-30 |
CA3160540A1 (en) | 2021-06-10 |
EP4069857A1 (en) | 2022-10-12 |
EP4069857A4 (en) | 2024-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7947478B2 (en) | Short chain volatile hydrocarbon production using genetically engineered microalgae, cyanobacteria or bacteria | |
US20230183627A1 (en) | Biomanufacturing systems and methods for producing organic products from recombinant microorganisms | |
CN111936631A (en) | Microorganisms and methods for the biological production of ethylene glycol | |
US20150218567A1 (en) | Bacterial Mutants with Improved Transformation Efficiency | |
Löwe et al. | Trehalose production by Cupriavidus necator from CO2 and hydrogen gas | |
US8637283B2 (en) | Production of hydrocarbons in microorganisms | |
WO2021113396A1 (en) | Methods and compositions for producing ethylene from recombinant microorganisms | |
EP2524035A2 (en) | Constructs, vectors and cyanobacteria for the synthesis of fatty alcohols, and methods for producing fatty alcohols in cyanobacteria | |
CN111705030A (en) | Escherichia coli genetic engineering bacterium capable of producing L-homoserine with high yield, construction method and strain | |
DK2297329T3 (en) | METHOD OF L-LIGHT PREPARATION | |
CN104651388B (en) | A kind of construct efficiently synthesizing ethylene and its construction method and application | |
EP3011009A1 (en) | Bacterial mutants with improved transformation efficiency | |
CN101479378A (en) | Short chain volatile hydrocarbon production using genetically engineered microalgae, cyanobacteria or bacteria | |
WO2022261288A2 (en) | Methods and compositions | |
CN112062822B (en) | Carbon catabolism regulatory protein CcpA mutant I42A | |
KR20220136947A (en) | Recombinant microalga with highly improved tolerances towards high CO2 and/or low pH conditions | |
CN115916980A (en) | Transformant of aspartic acid-and methionine-producing bacteria of the genus hydrogenophilus | |
Nariya | Oxygen: Cycling and Intracellular Production in Methlyotuvimicrobium alcaliphilum 20ZR | |
CN114774342A (en) | Method for producing 1, 4-butanediamine by fermenting xylose and hydrolysate containing xylose | |
WO2004076477A1 (en) | MICROBIOLOGICAL PRODUCTION METHOD FOR α-L-ASPARTYL-L-PHENYLALANINE | |
KR20150038857A (en) | Method of GABA production using cell surface display system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20895365 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022532714 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3160540 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112022010689 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2020395163 Country of ref document: AU Date of ref document: 20201202 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227022359 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020895365 Country of ref document: EP Effective date: 20220704 |
|
ENP | Entry into the national phase |
Ref document number: 112022010689 Country of ref document: BR Kind code of ref document: A2 Effective date: 20220531 |