WO2021109980A1 - Drivetrain system for an electrified vehicle and method of cooling the drivetrain system - Google Patents

Drivetrain system for an electrified vehicle and method of cooling the drivetrain system Download PDF

Info

Publication number
WO2021109980A1
WO2021109980A1 PCT/CN2020/133069 CN2020133069W WO2021109980A1 WO 2021109980 A1 WO2021109980 A1 WO 2021109980A1 CN 2020133069 W CN2020133069 W CN 2020133069W WO 2021109980 A1 WO2021109980 A1 WO 2021109980A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
cooling
cooling channel
power inverter
reducer
Prior art date
Application number
PCT/CN2020/133069
Other languages
French (fr)
Inventor
Yejin JIN
Kai Chen
Guoqiang Sun
Original Assignee
Valeo Powertrain (shanghai) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Powertrain (shanghai) Co., Ltd. filed Critical Valeo Powertrain (shanghai) Co., Ltd.
Priority to EP20896808.1A priority Critical patent/EP4082099A4/en
Priority to JP2022533144A priority patent/JP2023504664A/en
Publication of WO2021109980A1 publication Critical patent/WO2021109980A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • Embodiments of the present disclosure relate generally to a drivetrain system for an electrified vehicle and a method of cooling the drivetrain system.
  • Electrified vehicles such as BEV (Battery Electric Vehicle) , HEV (Hybrid Electric Vehicle) , PHEV (Plug-in Hybrid Electric Vehicle) , Range extended EV, FCEC (Fuel Cell Electric Vehicle) etc., electrified vehicles that combine a relatively efficient combustion engine with an electric drive motor.
  • Electrified vehicles can include components, particularly the drivetrain system, that generate heat. Excessive heat build-up can cause performance degradation or damage to the components.
  • a drivetrain system for an electrified vehicle comprises an electric motor comprising a rotor and a stator; a power inverter configured for supplying the stator with electric energy; a reducer configured for receiving torque provided by the rotor and comprising a transmission shaft; the electric motor, the power inverter and the reducer are integrated as a drivetrain assembly.
  • the drivetrain system further comprises: a cooling circuit connecting with the drivetrain assembly, configured for being flowed through with coolant and distributing the coolant throughout the drivetrain assembly; the cooling circuit comprising a cooling channel arranged inside the power inverter, the cooling channel comprising a coolant retaining section for retaining the coolant from the cooling circuit, an inlet for receiving the coolant and an outlet for discharging the coolant.
  • the drivetrain system further comprises a mechanical pumping component connecting with the cooling circuit and driven by the transmission shaft for transferring the coolant to the cooling channel.
  • the mechanical pumping component is positioned at the same side of the electric motor, or at the other side of the reducer than the electric motor.
  • auxiliary heat transferring elements are provided within the cooling channel.
  • the auxiliary heat transferring elements comprises at least one spikes, extruded walls or the combination thereof.
  • a thermal mass is provided with the electric motor, the reducer or the both, the power inverter is mechanically mounted on the electric motor or the reducer or the both so as to benefit from the thermal mass to dissipate heat into therein through the cooling channel of the inverter and the coolant retained in the coolant retaining section and the auxiliary heat transferring elements in it increasing further heat transfer to the thermal mass.
  • cooling fins are provided onto an outer surface of the electric motor, the reducer, or both of the electric motor and reducer, the power inverter is mechanically mounted on the electric motor or the reducer or the both so as to benefit from the cooling fins to dissipate heat into therein through the cooling channel and the coolant retained in the coolant retaining section and the auxiliary heat transferring elements in it increasing further heat transfer to the cooling fins.
  • the cooling channel is configured as a loop forming along an inner circumference periphery of the power inverter, the inlet and the outlet are positioned at a top end of the cooling channel in a gravitational orientation.
  • the cooling channel is configured as a serpentine-shaped channel within an accommodating space of the power inverter.
  • the cooling channel is configured as a spiral-shaped channel within an accommodating space of the power inverter.
  • the cooling channel is configured as a Z-shaped channel within an accommodating space of the power inverter.
  • a method of cooling a drivetrain system for an electrified vehicle comprising a drivetrain assembly integrated by an electric motor, a power inverter and a reducer.
  • the method comprises: providing a cooling circuit connecting with the drivetrain assembly and configured for being flowed through with coolant so as to distribute the coolant throughout the drivetrain assembly; and providing the cooling circuit with a cooling channel arranged inside the power inverter and further providing the cooling channel with a coolant retaining section so as to retain coolant therein.
  • the method further comprises providing a mechanical pumping component connecting with the cooling circuit and driven by one transmission shaft of the drivetrain assembly for transferring the coolant to the cooling channel.
  • the method further comprises providing auxiliary heat transferring elements within the cooling channel so as to promote the heat disposition from the power inverter.
  • the auxiliary heat transferring elements comprising at least one spikes, extruded walls or the combination thereof.
  • the method further comprises providing a thermal mass with the electric motor, the reducer or the both, wherein the power inverter is mechanically mounted on the electric motor or the reducer or the both so as to benefit from the thermal mass to dissipate heat into therein through the cooling channel of the inverter and the coolant retained in the coolant retaining section and the auxiliary heat transferring elements in it increasing further heat transfer to the thermal mass.
  • the method further comprises providing cooling fins onto the outer surface of the electric motor, the reducer, or both of the electric motor and reducer, wherein the power inverter is mechanically mounted on the electric motor or the reducer or the both so as to benefit from the cooling fins to dissipate heat into therein through the cooling channel of the inverter and the coolant retained in the coolant retaining section and the auxiliary heat transferring elements in it increasing further heat transfer to the cooling fins.
  • the method further comprises forming the cooling channel as a loop along an inner circumference periphery of the power inverter, positioning an inlet and an outlet of the cooling channel at a top end of the cooling channel in a gravitational orientation.
  • the method further comprises forming the cooling channel as a serpentine-shaped channel within an accommodating space of the power inverter.
  • the method further comprises forming the cooling channel as a spiral-shaped channel within an accommodating space of the power inverter.
  • the method further comprises forming the cooling channel as a Z-shaped channel within an accommodating space of the power inverter.
  • FIG. 1 is a schematic view of a drivetrain system in accordance with an exemplary aspect of the present disclosure
  • FIG. 2 is a schematic view of a drivetrain system in accordance with another exemplary aspect of the present disclosure
  • FIG. 3 is a schematic view of a power inverter of the drivetrain system in accordance with an exemplary aspect of the present disclosure
  • FIG. 4 is a schematic view of one exemplary cooling channel of the power inverter shown in FIG. 3;
  • FIG. 5 is a schematic view of another exemplary cooling channel of the power inverter shown in FIG. 3;
  • FIG. 6 is a schematic view of another exemplary cooling channel of the power inverter of the present disclosure.
  • FIG. 7 is a schematic view of another exemplary cooling channel of the power inverter of the present disclosure.
  • FIG. 8 is a schematic view of another exemplary cooling channel of the power inverter of the present disclosure.
  • FIG. 9 shows a thermal mass and one exemplary power inverter with the cooling channel of FIG. 8;
  • FIG. 10 shows cooling fins and one exemplary power inverter comprising the cooling channel of FIG. 8;
  • FIG. 11 shows a thermal mass and another exemplary power inverter comprising the cooling channel of FIG. 8 with spikes
  • FIG. 12 is a flow diagram of a method of cooling a drivetrain system in accordance with an exemplary aspect of the present disclosure.
  • FIGs 1 to 2 show a drivetrain system 101, 102 in accordance with embodiments of the present disclosure. More particularly, for the embodiment of FIG. 1, the drivetrain system 101 comprises a drivetrain assembly 1 which is generally integrated with a power inverter 3 (as shown in FIG. 3) , an electric motor 2 and a reducer 4.
  • the drivetrain assembly 1 as shown is therefore a single unit.
  • the electric motor 2 can be a synchronous motor or an asynchronous motor. When it is a synchronous motor, it may include a wound rotor or a permanent magnet rotor.
  • the nominal power supplied by the electric motor can be between 10 KW and 60KW, for example, of the order of 15 KW, for a nominal supply voltage of 48V to 350V, or up to 800V for higher power. In the case of an electric motor adapted to a high voltage supply, the nominal power supplied by this electric motor may be 60 KW.
  • the electric motor 2 is a synchronous motor with permanent magnets, providing a nominal power between 10 KW and 60 KW.
  • the electric motor 2 can include a stator with a three-phase winding, or a combination of two three-phase windings or five-phase windings.
  • the reducer 4 is coupled to the electric motor 2.
  • the reducer 4 can transform the electric motor’s high speed, low torque to low speed, high torque.
  • the reducer 4 may comprise two or more gears, with one of the gears driven by the electric motor 2 for instance, for torque increase via speed reduction.
  • the reducer 4 may further comprise a transmission shaft 41, i.e., an intermediate shaft, linking a driving gear driven by one transmission shaft of the electric motor (not shown) and another gear of larger diameter coupled to a driven mechanical load (not shown, e.g., vehicle wheel shafts) .
  • the electric motor 2 and the reducer 4 are designed with high thermal capacity.
  • the power inverter 3 (as shown in FIG. 3) is attached by the electrical wires to the electric motor 2 and mechanically to a wall of the electric motor 2 or to a wall of the reducer 4 or to both walls of the electric motor 2 and the reducer 4.
  • the power inverter 3 converts the direct current ( “DC” ) supplied by an electrical energy storage unit (not shown) providing with the electric energy of a nominal voltage to the alternating current ( “AC” ) used to the electric motor 2.
  • the power inverter 3 can be, without limitation, field effect transistors ( “FETs” ) , metal oxide semiconductor field effect transistors ( “MOSFETs” ) or insulated gate bipolar transistors ( “IGBTs” ) .
  • FETs field effect transistors
  • MOSFETs metal oxide semiconductor field effect transistors
  • IGBTs insulated gate bipolar transistors
  • the electric motor 2 is contained in a first housing 11, and the reducer 4 is contained in a second housing 12.
  • the first housing 11 or the second housing 12 can be one-piece or be formed by the assembly of housing sub-parts together.
  • the first housing 11 and the second housing 12 can be rigidly fixed together, for example by means of screws.
  • a sealing wall is here provided between the first housing 11 and the second housing 12.
  • Cooling fins 91, 92 are provided for the heat dissipation towards the outside of the drivetrain assembly 1.
  • the cooling fins 91, 92 are carried by the outer surface of the first and second housing 11, 12. These cooling fins 91, 92 are for example made in one piece with the first and second housing 11, 12. These cooling fins 91, 92 allow to increase the outer surface of the first and second housing 11, 12, and thus promote the heat dissipation to the outside of the drivetrain assembly 1 via the first and second housing 11, 12.
  • the entire outer surface of the first housing 11 and the entire outer surface of the second housing 12 may carry cooling fins 91, 92.
  • the cooling fins 91, 92 may be arranged in rows, and a pitch, constant or not, may exist between two adjacent rows. These rows may or may not all have the same orientation. Where appropriate, the same fins may extend firstly to the first housing 11 and secondly to the second housing 12.
  • a cooling circuit 5 being flowed through with coolant is provided for distributing the coolant throughout the drivetrain assembly 1.
  • the coolant flowing in the cooling circuit 5 can be for example oil, water, or water based coolant.
  • a mechanical pumping component 6 is provided within the cooling circuit 5.
  • the mechanical pumping component 6 can be a gerotor pump which can promote a coolant flowing within the cooling circuit 5.
  • the mechanical pumping component 6 is in connection with the drivetrain assembly 1 and configured for transferring the coolant into the drivetrain assembly, particularly into the power inverter 3, via one section 51 provided by the cooling circuit 5, and recovering the coolant from the drivetrain assembly, particularly from the reducer 4 via another section 52 provided by the cooling circuit 5.
  • the sections 51, 52 are arranged outside of the drivetrain assembly 1.
  • the mechanical pumping component 6 is mechanically connected with one end of the transmission shaft 41 so that the mechanical pumping component 6 may be driven by the mechanical power from a rotary shaft. It can be understood that the mechanical power generated by the rotary shaft may be fully utilized and there is no need of an additional power source for driving a pump (e.g., using electric power for driving an electrical pump) positioned in the cooling circuit for transferring the coolant, which will cause less energy, less cost and smaller space by removing a dedicated motor.
  • a pump e.g., using electric power for driving an electrical pump
  • the exemplary system 101 described herein is by way of example only.
  • the mechanical pumping component 6 can be mechanically connected with another end of the transmission shaft 41 (e.g., the exemplary system 102 as shown in FIG. 2) , depending on different assembly conditions and needs, so as to well used the rotation power of the shafts inside the drivetrain assembly 1.
  • FIG. 3 shows a power inverter 3 of the drivetrain system in accordance with one embodiment of the present disclosure.
  • a longitudinal orientation L corresponding to the axis of the power inverter 3, a transverse orientation T and a vertical orientation V corresponding to the gravitational orientation are provided.
  • a cooling channel 33 is provided by the cooling circuit 5.
  • the cooling channel 33 comprises an inlet 31 for receiving the coolant from the mechanical pumping component 6 and an outlet 32 for discharging the coolant.
  • the cooling channel 33 comprises a coolant retaining section 35 so that there would be coolant within the cooling channel whether the mechanical pumping component 6 is working or not. Accordingly, the cooling channel 33 can be always kept cooling by means of the coolant flowed or remained within the cooling channel 33 by the gravitational effect.
  • the cooling channel 33 positioned within the radial surface of the power inverter 3 and formed along an inner circumference periphery of the power inverter is basically an annular loop.
  • the inlet and outlet 31, 32 are positioned at a top end provided with the cooling channel 33, 331 in a gravitational orientation.
  • the inlet and outlet 31, 32 can be further arranged in a horizontal plane, or there can be slight height difference.
  • coolant retaining section 35, 351 is formed in a lower portion of the cooling channel 33, 331 along the gravitational orientation. Thanks to the high thermal weight of the reducer and/or the electric motor, and the remaining the coolant ensuring the heat transfer, the inverter can continue to be cooled down even if the mechanical pumping system is at stop or is working at very low flow.
  • the mechanical pumping component 6 such as a gerotor pump
  • a constant volume of coolant will be transferred from the gerotor pump to the cooling channel 33, 331 in the power converter 3.
  • the coolant enters the cooling channel via the inlet 31, flows through the cooling channel and exits the cooling channel via the outlet 32.
  • the heat from the power inverter 3 is therefore dissipated by the flowing of the coolant.
  • FIGs 4 and 5 show different exemplary cooling channels 33, 331.
  • Auxiliary heat transferring elements are provided within the cooling channel 33, 331 so as to provide additional heat dissipation to the high thermal capacity components, i.e., the reducer and the electrical motor, for example in the circumstances that the gerotor pump operates in a low speed or a rest state.
  • the auxiliary heat transferring elements can be several metallic spikes 34 as shown in FIG. 5, or extruded walls 341 as shown in FIG. 6, or the combination of spikes 34 and extruded walls 341.
  • the auxiliary heat transferring elements are made of thermal material, for example aluminum.
  • the cooling channel 332 is designed as a spiral shape.
  • An inlet 312 is provided at the central of the shape and an outlet 322 is provided at the outer edge of the shape.
  • a coolant retaining section 352 is formed between the inlet 312 and outlet 322.
  • the cooling channel 333 is designed as a serpentine shape.
  • An inlet 313 is provided at a bottom section of the shape and an outlet 323 is provided at a top section of the shape.
  • a coolant retaining section 353 is formed between the inlet 313 and outlet 323.
  • the cooling channel 334 is designed as a Z shape in a radial plane. Both an inlet 314 and an outlet 324 are provided at a top section of the shape. A coolant retaining section 354 is formed at a bottom section of the shape.
  • cooling channels 33, 331, 332, 333, 334 described herein is by way of example only. Rather than these shapes as illustrated herein, other shapes of cooling channel that are possible to keep coolant therein so as to have minimum air inside when the coolant pump has very low flow rate should be included.
  • the power inverter 3 containing the cooling channel for example, the exemplary cooling channel 334 as shown in FIG. 8, can be in contact with a big thermal mass, such as the electric motor 2, or the reducer 4, or both of the electric motor 2 and the reducer 4.
  • the exemplary cooling channel 334 can be in contact with the cooling fins 91, 92 arranged onto the outer surface of the electric motor 2, or the reducer 4, or both of the electric motor 2 and the reducer 4.
  • the remaining coolant in the cooling channel 334 can ensure the heat transferring from the power inverter 3, further, the heat from the power inverter 3 can be further dissipated by the big thermal mass or the cooling fins.
  • auxiliary cooling elements such as spikes 34
  • the cooling channel like the exemplary Z-shaped cooling channel 334 for additional heat dissipation to the big thermal mass (as shown) or to the cooling fins.
  • the distance d between the spikes and surface of the cooling channel towards to the thermal mass or the cooling fins shall be minimized, so that there would be increased heat dissipation area and higher heat conducting efficiency.
  • FIG. 12 a flow diagram is provided of an exemplary method 200 of cooling a drivetrain system in accordance with an exemplary aspect of the present disclosure.
  • the exemplary method 200 may be used to cool the exemplary drivetrain system 101, 102 described above with reference to FIGs 1 through 2.
  • the exemplary method 200 includes step 201 of providing a cooling circuit connecting with the drivetrain assembly and configured for being flowed through with coolant so as to distribute the coolant throughout the drivetrain assembly.
  • the drivetrain assembly is integrated with an electric motor, a power inverter and a reducer.
  • the exemplary method 200 additionally includes step 202 of providing the cooling circuit with a cooling channel arranged inside the power inverter and further providing the cooling channel with a coolant retaining section allowing to maintain heat dissipation to the thermal mass like motor and/or reducer, or to the cooling fins provided by the outer surface of motor and/or reducer, so as to remove heat from the power inverter.
  • the exemplary method 200 includes step 203 of providing at least one spikes, extruded walls or the combination thereof within the cooling channel so as to promote the heat dissipation from the power inverter.
  • the exemplary method 200 includes step 204 of forming the cooling channel as a loop along an inner circumference periphery of the power inverter, and positioning an inlet and an outlet of the cooling channel at a top end of the cooling channel in a gravitational orientation; or forming the cooling channel as a serpentine-shaped channel, a spiral-shaped channel or a Z-shaped channel within an accommodating space of the power inverter.
  • the shapes of the cooling channel and the positons of the inlet and outlet of the cooling channel help to form the coolant retaining section within the cooling channel.
  • the exemplary method 200 includes step 205 of providing a mechanical pumping component connecting with the cooling circuit and driven by one transmission shaft of the drivetrain assembly.
  • the transmission shaft can be a rotary shaft driving the electric motor or the reducer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

Provided is a drivetrain system for an electrified vehicle. The drivetrain system comprises an electric motor (2) comprising a rotor and a stator; a power inverter (3) configured for supplying the stator with electric energy; a reducer (4) configured for receiving torque provided by the rotor and comprising a transmission shaft; the electric motor (2), the power inverter (3) and the reducer (4) are integrated as a drivetrain assembly (1). The drivetrain system further comprises: a cooling circuit (5) configured for being flowed through with coolant and distributing the coolant throughout the drivetrain assembly (1); the cooling circuit (5) comprising a cooling channel (33) arranged inside the power inverter (3), the cooling channel (33) comprising a coolant retaining section (35) for retaining the coolant from the cooling circuit (5), an inlet (31) for receiving the coolant and an outlet (32) for discharging the coolant. Also provided is a method of cooling the drivetrain system for an electrified vehicle.

Description

DRIVETRAIN SYSTEM FOR AN ELECTRIFIED VEHICLE AND METHOD OF COOLING THE DRIVETRAIN SYSTEM
CROSS-REFERENCE TO RELATED APPLICATIONS
This disclosure claims priority to Chinese Patent Application No. 201911213242.8, filed on December 02, 2019, the entirety of which is incorporated herein by reference as a part of this disclosure.
TECHNICAL FIELD
Embodiments of the present disclosure relate generally to a drivetrain system for an electrified vehicle and a method of cooling the drivetrain system.
BACKGROUND
The trend towards designing and building fuel efficient, low emission vehicles has increased dramatically, this trend driven by concerns over the environment as well as increasing fuel costs. At the forefront of this trend has been the development of electrified vehicles, such as BEV (Battery Electric Vehicle) , HEV (Hybrid Electric Vehicle) , PHEV (Plug-in Hybrid Electric Vehicle) , Range extended EV, FCEC (Fuel Cell Electric Vehicle) etc., electrified vehicles that combine a relatively efficient combustion engine with an electric drive motor. Electrified vehicles can include components, particularly the drivetrain system, that generate heat. Excessive heat build-up can cause performance degradation or damage to the components.
Therefore, it would be desirable if any improvements on cooling design for the drivetrain system for electrified vehicles could be provided at least with simple configuration, high efficiency and low cost.
SUMMARY
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In accordance with one aspect disclosed herein, a drivetrain system for an electrified vehicle is provided. The drivetrain system comprises an electric motor comprising a rotor and a stator; a power inverter configured for supplying the stator with electric energy; a reducer configured for receiving torque provided by the rotor and comprising a transmission shaft; the electric motor, the power inverter and the reducer are integrated as a drivetrain assembly. The drivetrain system further comprises: a cooling circuit connecting with the drivetrain assembly, configured for being flowed through with coolant and distributing the coolant throughout the drivetrain assembly; the cooling circuit comprising a cooling channel arranged inside the power inverter, the cooling channel comprising a coolant retaining section for retaining the coolant from the cooling circuit, an inlet for receiving the coolant and an outlet for discharging the coolant.
In one embodiment, the drivetrain system further comprises a mechanical pumping component connecting with the cooling circuit and driven by the transmission shaft for transferring the coolant to the cooling channel.
In one embodiment, the mechanical pumping component is positioned at the same side of the electric motor, or at the other side of the reducer than the electric motor.
In one embodiment, auxiliary heat transferring elements are provided within the cooling channel. The auxiliary heat transferring elements comprises at least one spikes, extruded walls or the combination thereof.
In one embodiment, a thermal mass is provided with the electric motor, the reducer or the both, the power inverter is mechanically mounted on the electric motor or the reducer or the both so as to benefit from the thermal mass to dissipate heat into therein through the cooling channel of the inverter and the coolant retained in the coolant retaining section and the auxiliary heat transferring elements in it increasing further heat transfer to the thermal mass.
In one embodiment, cooling fins are provided onto an outer surface of the electric motor, the reducer, or both of the electric motor and reducer, the power inverter is mechanically mounted on the electric motor or the reducer or the both so as to benefit from the cooling fins to dissipate heat into therein through the cooling  channel and the coolant retained in the coolant retaining section and the auxiliary heat transferring elements in it increasing further heat transfer to the cooling fins.
In one embodiment, the cooling channel is configured as a loop forming along an inner circumference periphery of the power inverter, the inlet and the outlet are positioned at a top end of the cooling channel in a gravitational orientation.
In an alternatively embodiment, the cooling channel is configured as a serpentine-shaped channel within an accommodating space of the power inverter.
In an alternatively embodiment, the cooling channel is configured as a spiral-shaped channel within an accommodating space of the power inverter.
In an alternatively embodiment, the cooling channel is configured as a Z-shaped channel within an accommodating space of the power inverter.
In accordance with another aspect disclosed herein, a method of cooling a drivetrain system for an electrified vehicle comprising a drivetrain assembly integrated by an electric motor, a power inverter and a reducer is provided. The method comprises: providing a cooling circuit connecting with the drivetrain assembly and configured for being flowed through with coolant so as to distribute the coolant throughout the drivetrain assembly; and providing the cooling circuit with a cooling channel arranged inside the power inverter and further providing the cooling channel with a coolant retaining section so as to retain coolant therein.
In one embodiment, the method further comprises providing a mechanical pumping component connecting with the cooling circuit and driven by one transmission shaft of the drivetrain assembly for transferring the coolant to the cooling channel.
In one embodiment, the method further comprises providing auxiliary heat transferring elements within the cooling channel so as to promote the heat disposition from the power inverter. The auxiliary heat transferring elements comprising at least one spikes, extruded walls or the combination thereof.
In one embodiment, the method further comprises providing a thermal mass with the electric motor, the reducer or the both, wherein the power inverter is mechanically mounted on the electric motor or the reducer or the both so as to benefit  from the thermal mass to dissipate heat into therein through the cooling channel of the inverter and the coolant retained in the coolant retaining section and the auxiliary heat transferring elements in it increasing further heat transfer to the thermal mass.
In one embodiment, the method further comprises providing cooling fins onto the outer surface of the electric motor, the reducer, or both of the electric motor and reducer, wherein the power inverter is mechanically mounted on the electric motor or the reducer or the both so as to benefit from the cooling fins to dissipate heat into therein through the cooling channel of the inverter and the coolant retained in the coolant retaining section and the auxiliary heat transferring elements in it increasing further heat transfer to the cooling fins.
In one embodiment, the method further comprises forming the cooling channel as a loop along an inner circumference periphery of the power inverter, positioning an inlet and an outlet of the cooling channel at a top end of the cooling channel in a gravitational orientation.
In an alternatively embodiment, the method further comprises forming the cooling channel as a serpentine-shaped channel within an accommodating space of the power inverter.
In an alternatively embodiment, the method further comprises forming the cooling channel as a spiral-shaped channel within an accommodating space of the power inverter.
In an alternatively embodiment, the method further comprises forming the cooling channel as a Z-shaped channel within an accommodating space of the power inverter.
These and other features, aspects, and advantages of the present disclosure will become better understood with reference to the following detailed description. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
A full and enabling disclosure of the present invention, including the  best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
FIG. 1 is a schematic view of a drivetrain system in accordance with an exemplary aspect of the present disclosure;
FIG. 2 is a schematic view of a drivetrain system in accordance with another exemplary aspect of the present disclosure;
FIG. 3 is a schematic view of a power inverter of the drivetrain system in accordance with an exemplary aspect of the present disclosure;
FIG. 4 is a schematic view of one exemplary cooling channel of the power inverter shown in FIG. 3;
FIG. 5 is a schematic view of another exemplary cooling channel of the power inverter shown in FIG. 3;
FIG. 6 is a schematic view of another exemplary cooling channel of the power inverter of the present disclosure;
FIG. 7 is a schematic view of another exemplary cooling channel of the power inverter of the present disclosure;
FIG. 8 is a schematic view of another exemplary cooling channel of the power inverter of the present disclosure;
FIG. 9 shows a thermal mass and one exemplary power inverter with the cooling channel of FIG. 8;
FIG. 10 shows cooling fins and one exemplary power inverter comprising the cooling channel of FIG. 8;
FIG. 11 shows a thermal mass and another exemplary power inverter comprising the cooling channel of FIG. 8 with spikes; and
FIG. 12 is a flow diagram of a method of cooling a drivetrain system in accordance with an exemplary aspect of the present disclosure.
DETAILED DESCRIPTION
Reference will now be made to in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to  features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention. As used herein, the terms “a” , “an” and “the” are intended to mean that there are one or more of the elements unless the context clearly dictates otherwise. The terms “comprising” , “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. The terms “first” and “second” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of individual components.
Referring now to the drawings, wherein identical numerals indicate the same elements throughout the figures, FIGs 1 to 2 show a  drivetrain system  101, 102 in accordance with embodiments of the present disclosure. More particularly, for the embodiment of FIG. 1, the drivetrain system 101 comprises a drivetrain assembly 1 which is generally integrated with a power inverter 3 (as shown in FIG. 3) , an electric motor 2 and a reducer 4. The drivetrain assembly 1 as shown is therefore a single unit.
The electric motor 2 can be a synchronous motor or an asynchronous motor. When it is a synchronous motor, it may include a wound rotor or a permanent magnet rotor. The nominal power supplied by the electric motor can be between 10 KW and 60KW, for example, of the order of 15 KW, for a nominal supply voltage of 48V to 350V, or up to 800V for higher power. In the case of an electric motor adapted to a high voltage supply, the nominal power supplied by this electric motor may be 60 KW. In the illustrated embodiment, the electric motor 2 is a synchronous motor with permanent magnets, providing a nominal power between 10 KW and 60 KW. The electric motor 2 can include a stator with a three-phase winding, or a combination of two three-phase windings or five-phase windings.
The reducer 4 is coupled to the electric motor 2. The reducer 4 can transform the electric motor’s high speed, low torque to low speed, high torque. The reducer 4 may comprise two or more gears, with one of the gears driven by the electric motor 2 for instance, for torque increase via speed reduction. The reducer 4 may further comprise a transmission shaft 41, i.e., an intermediate shaft, linking a  driving gear driven by one transmission shaft of the electric motor (not shown) and another gear of larger diameter coupled to a driven mechanical load (not shown, e.g., vehicle wheel shafts) .
In the illustrated embodiments, the electric motor 2 and the reducer 4 are designed with high thermal capacity. The power inverter 3 (as shown in FIG. 3) is attached by the electrical wires to the electric motor 2 and mechanically to a wall of the electric motor 2 or to a wall of the reducer 4 or to both walls of the electric motor 2 and the reducer 4. The power inverter 3 converts the direct current ( “DC” ) supplied by an electrical energy storage unit (not shown) providing with the electric energy of a nominal voltage to the alternating current ( “AC” ) used to the electric motor 2. The power inverter 3 can be, without limitation, field effect transistors ( “FETs” ) , metal oxide semiconductor field effect transistors ( “MOSFETs” ) or insulated gate bipolar transistors ( “IGBTs” ) . In the case of a nominal supply voltage of 48V, the power inverter 3 can be MOSFET transistors. In the case of a supply voltage corresponding to a high voltage, the power inverter 3 can be IGBTs.
Referring to FIGs 1 to 2, the electric motor 2 is contained in a first housing 11, and the reducer 4 is contained in a second housing 12. The first housing 11 or the second housing 12 can be one-piece or be formed by the assembly of housing sub-parts together. The first housing 11 and the second housing 12 can be rigidly fixed together, for example by means of screws. A sealing wall is here provided between the first housing 11 and the second housing 12.
Cooling fins 91, 92 are provided for the heat dissipation towards the outside of the drivetrain assembly 1. The cooling fins 91, 92 are carried by the outer surface of the first and second housing 11, 12. These cooling fins 91, 92 are for example made in one piece with the first and second housing 11, 12. These cooling fins 91, 92 allow to increase the outer surface of the first and second housing 11, 12, and thus promote the heat dissipation to the outside of the drivetrain assembly 1 via the first and second housing 11, 12. The entire outer surface of the first housing 11 and the entire outer surface of the second housing 12 may carry cooling fins 91, 92. The cooling fins 91, 92 may be arranged in rows, and a pitch, constant or not, may exist between two adjacent rows. These rows may or may not all have the same  orientation. Where appropriate, the same fins may extend firstly to the first housing 11 and secondly to the second housing 12.
For the embodiment depicted, a cooling circuit 5 being flowed through with coolant is provided for distributing the coolant throughout the drivetrain assembly 1. The coolant flowing in the cooling circuit 5 can be for example oil, water, or water based coolant.
Still in the illustrated embodiment, a mechanical pumping component 6 is provided within the cooling circuit 5. The mechanical pumping component 6 can be a gerotor pump which can promote a coolant flowing within the cooling circuit 5. Further, the mechanical pumping component 6 is in connection with the drivetrain assembly 1 and configured for transferring the coolant into the drivetrain assembly, particularly into the power inverter 3, via one section 51 provided by the cooling circuit 5, and recovering the coolant from the drivetrain assembly, particularly from the reducer 4 via another section 52 provided by the cooling circuit 5. The  sections  51, 52 are arranged outside of the drivetrain assembly 1. By use of the mechanical pumping component 6, specially by a gerotor pump, the transferred coolant flowing within the section 51 towards to the drivetrain assembly carries an increased and constant delivery volume and a high pressure. As shown in FIG. 1, the mechanical pumping component 6 is mechanically connected with one end of the transmission shaft 41 so that the mechanical pumping component 6 may be driven by the mechanical power from a rotary shaft. It can be understood that the mechanical power generated by the rotary shaft may be fully utilized and there is no need of an additional power source for driving a pump (e.g., using electric power for driving an electrical pump) positioned in the cooling circuit for transferring the coolant, which will cause less energy, less cost and smaller space by removing a dedicated motor.
Moreover, it should be appreciated, however, that the exemplary system 101 described herein is by way of example only. In some exemplary embodiments, the mechanical pumping component 6 can be mechanically connected with another end of the transmission shaft 41 (e.g., the exemplary system 102 as shown in FIG. 2) , depending on different assembly conditions and needs, so as to well used the rotation power of the shafts inside the drivetrain assembly 1.
Referring now to FIG. 3, FIG. 3 shows a power inverter 3 of the drivetrain system in accordance with one embodiment of the present disclosure. As shown in FIG. 3, a longitudinal orientation L corresponding to the axis of the power inverter 3, a transverse orientation T and a vertical orientation V corresponding to the gravitational orientation are provided. In the illustrated embodiment, a cooling channel 33 is provided by the cooling circuit 5. Further, the cooling channel 33 comprises an inlet 31 for receiving the coolant from the mechanical pumping component 6 and an outlet 32 for discharging the coolant. Moreover, the cooling channel 33 comprises a coolant retaining section 35 so that there would be coolant within the cooling channel whether the mechanical pumping component 6 is working or not. Accordingly, the cooling channel 33 can be always kept cooling by means of the coolant flowed or remained within the cooling channel 33 by the gravitational effect.
Specially, the cooling channel 33, as shown in FIGs 3 to 5, positioned within the radial surface of the power inverter 3 and formed along an inner circumference periphery of the power inverter is basically an annular loop. The inlet and  outlet  31, 32 are positioned at a top end provided with the cooling  channel  33, 331 in a gravitational orientation. The inlet and  outlet  31, 32 can be further arranged in a horizontal plane, or there can be slight height difference. Moreover,  coolant retaining section  35, 351 is formed in a lower portion of the cooling  channel  33, 331 along the gravitational orientation. Thanks to the high thermal weight of the reducer and/or the electric motor, and the remaining the coolant ensuring the heat transfer, the inverter can continue to be cooled down even if the mechanical pumping system is at stop or is working at very low flow.
During the operation of the mechanical pumping component 6, such as a gerotor pump, a constant volume of coolant will be transferred from the gerotor pump to the cooling  channel  33, 331 in the power converter 3. Particularly, the coolant enters the cooling channel via the inlet 31, flows through the cooling channel and exits the cooling channel via the outlet 32. The heat from the power inverter 3 is therefore dissipated by the flowing of the coolant. Once the rotary shaft, i.e., the transmission shaft 41 with which the gerotor pump 6 is mechanically in connection, is  in a stop state, there will be coolant remains in the  coolant retaining section  35, 351 of the cooling  channel  33, 331 so that the power converter 3 can be kept cooling by the remained coolant by absorbing heat in itself and transferring the heat to the thermal mass.
Referring now to FIGs 4 and 5, these figures show different  exemplary cooling channels  33, 331. Auxiliary heat transferring elements are provided within the cooling  channel  33, 331 so as to provide additional heat dissipation to the high thermal capacity components, i.e., the reducer and the electrical motor, for example in the circumstances that the gerotor pump operates in a low speed or a rest state. As illustrated in the embodiments, the auxiliary heat transferring elements can be several metallic spikes 34 as shown in FIG. 5, or extruded walls 341 as shown in FIG. 6, or the combination of spikes 34 and extruded walls 341. The auxiliary heat transferring elements are made of thermal material, for example aluminum.
Referring now to FIG. 6, another exemplary cooling channel 332 is shown. The cooling channel 332 is designed as a spiral shape. An inlet 312 is provided at the central of the shape and an outlet 322 is provided at the outer edge of the shape. A coolant retaining section 352 is formed between the inlet 312 and outlet 322.
Referring now to FIG. 7, another exemplary cooling channel 333 is shown. The cooling channel 333 is designed as a serpentine shape. An inlet 313 is provided at a bottom section of the shape and an outlet 323 is provided at a top section of the shape. A coolant retaining section 353 is formed between the inlet 313 and outlet 323.
Referring now to FIG. 8, another exemplary cooling channel 334 is shown. The cooling channel 334 is designed as a Z shape in a radial plane. Both an inlet 314 and an outlet 324 are provided at a top section of the shape. A coolant retaining section 354 is formed at a bottom section of the shape.
It should be appreciated, however, that the  exemplary cooling channels  33, 331, 332, 333, 334 described herein is by way of example only. Rather than these shapes as illustrated herein, other shapes of cooling channel that are possible to keep coolant therein so as to have minimum air inside when the coolant pump has  very low flow rate should be included.
Referring now to FIGs 9 and 10, the power inverter 3 containing the cooling channel, for example, the exemplary cooling channel 334 as shown in FIG. 8, can be in contact with a big thermal mass, such as the electric motor 2, or the reducer 4, or both of the electric motor 2 and the reducer 4. Alternatively, the exemplary cooling channel 334 can be in contact with the cooling fins 91, 92 arranged onto the outer surface of the electric motor 2, or the reducer 4, or both of the electric motor 2 and the reducer 4. With the configuration, the remaining coolant in the cooling channel 334 can ensure the heat transferring from the power inverter 3, further, the heat from the power inverter 3 can be further dissipated by the big thermal mass or the cooling fins.
Referring now to FIG. 11, several auxiliary cooling elements, such as spikes 34, are provided with the cooling channel like the exemplary Z-shaped cooling channel 334 for additional heat dissipation to the big thermal mass (as shown) or to the cooling fins. The distance d between the spikes and surface of the cooling channel towards to the thermal mass or the cooling fins shall be minimized, so that there would be increased heat dissipation area and higher heat conducting efficiency.
Referring now to FIG. 12, a flow diagram is provided of an exemplary method 200 of cooling a drivetrain system in accordance with an exemplary aspect of the present disclosure. For example, the exemplary method 200 may be used to cool the  exemplary drivetrain system  101, 102 described above with reference to FIGs 1 through 2.
The exemplary method 200 includes step 201 of providing a cooling circuit connecting with the drivetrain assembly and configured for being flowed through with coolant so as to distribute the coolant throughout the drivetrain assembly. The drivetrain assembly is integrated with an electric motor, a power inverter and a reducer.
The exemplary method 200 additionally includes step 202 of providing the cooling circuit with a cooling channel arranged inside the power inverter and further providing the cooling channel with a coolant retaining section allowing to maintain heat dissipation to the thermal mass like motor and/or reducer, or to the  cooling fins provided by the outer surface of motor and/or reducer, so as to remove heat from the power inverter.
Subsequently, the exemplary method 200 includes step 203 of providing at least one spikes, extruded walls or the combination thereof within the cooling channel so as to promote the heat dissipation from the power inverter.
Moreover, the exemplary method 200 includes step 204 of forming the cooling channel as a loop along an inner circumference periphery of the power inverter, and positioning an inlet and an outlet of the cooling channel at a top end of the cooling channel in a gravitational orientation; or forming the cooling channel as a serpentine-shaped channel, a spiral-shaped channel or a Z-shaped channel within an accommodating space of the power inverter. The shapes of the cooling channel and the positons of the inlet and outlet of the cooling channel help to form the coolant retaining section within the cooling channel.
Furthermore, the exemplary method 200 includes step 205 of providing a mechanical pumping component connecting with the cooling circuit and driven by one transmission shaft of the drivetrain assembly. The transmission shaft can be a rotary shaft driving the electric motor or the reducer.
This written description uses examples to disclose the embodiments of the present disclosure, including the best mode, and also to enable any person skilled in the art to practice embodiments of the present disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the embodiments described herein is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims (14)

  1. A drivetrain system for an electrified vehicle, comprising:
    an electric motor comprising a rotor and a stator;
    a power inverter configured for supplying the stator with electric energy;
    a reducer configured for receiving torque provided by the rotor and comprising a transmission shaft;
    the electric motor, the power inverter and the reducer are integrated as a drivetrain assembly;
    the drivetrain system further comprising:
    a cooling circuit configured for being flowed through with coolant and distributing the coolant throughout the drivetrain assembly, the cooling circuit comprising a cooling channel arranged inside the power inverter, the cooling channel comprising a coolant retaining section for retaining the coolant from the cooling circuit, an inlet for receiving the coolant and an outlet for discharging the coolant.
  2. The drivetrain system of claim 1, further comprising a mechanical pumping component connecting with the cooling circuit and driven by the transmission shaft for transferring the coolant to the cooling channel.
  3. The drivetrain system of claim 1 or 2, wherein auxiliary heat transferring elements are provided within the cooling channel, the auxiliary heat transferring elements comprising at least one spikes, extruded walls or the combination thereof.
  4. The drivetrain system of claim 3, wherein a thermal mass is provided with the electric motor, the reducer or the both, the power inverter is mechanically mounted on the electric motor or the reducer or the both so as to benefit from the thermal mass to dissipate heat into therein through the cooling channel and the coolant retained in the coolant retaining section and the auxiliary heat transferring elements in it increasing further heat transfer to the thermal mass.
  5. The drivetrain system of claim 3, wherein cooling fins are provided onto an outer surface of the electric motor, the reducer, or both of the electric motor and reducer, the power inverter is mechanically mounted on the electric motor or the reducer or the both so as to benefit from the cooling fins to dissipate heat into therein  through the cooling channel and the coolant retained in the coolant retaining section and the auxiliary heat transferring elements in it increasing further heat transfer to the cooling fins.
  6. The drivetrain system of claim 1, wherein the cooling channel is configured as a loop forming along an inner circumference periphery of the power inverter, the inlet and the outlet are positioned at a top end of the cooling channel in a gravitational orientation.
  7. The drivetrain system of claim 1, wherein the cooling channel is configured as a spiral-shaped channel, a serpentine-shaped channel, or a Z shaped channel within an accommodating space of the power inverter.
  8. A method of cooling a drivetrain system for an electrified vehicle comprising a drivetrain assembly integrated by an electric motor, a power inverter and a reducer, the method comprising:
    providing a cooling circuit configured for being flowed through with coolant so as to distribute the coolant throughout the drivetrain assembly; and providing the cooling circuit with a cooling channel arranged inside the power inverter and further providing the cooling channel with a coolant retaining section so as to retain coolant therein.
  9. The method of claim 8, further comprising:
    providing a mechanical pumping component connecting with the cooling circuit and driven by one transmission shaft of the drivetrain assembly for transferring the coolant to the cooling channel.
  10. The method of claim 8 or 9, further comprising:
    providing auxiliary heat transferring elements within the cooling channel so as to promote the heat disposition from the power inverter, the auxiliary heat transferring elements comprising at least one spikes, extruded walls or the combination thereof.
  11. The method of claim 10, further comprising:
    providing a thermal mass with the electric motor, the reducer or the both, wherein the power inverter is mechanically mounted on the electric motor or the reducer or the both so as to benefit from the thermal mass to dissipate heat into therein through the cooling channel of the inverter and the coolant retained in the coolant  retaining section and the auxiliary heat transferring elements in it increasing further heat transfer to the thermal mass.
  12. The method of claim 10, further comprising:
    providing cooling fins onto the outer surface of the electric motor, the reducer, or both of the electric motor and reducer, wherein the power inverter is mechanically mounted on the electric motor or the reducer or the both so as to benefit from the cooling fins to dissipate heat into therein through the cooling channel of the inverter and the coolant retained in the coolant retaining section and the auxiliary heat transferring elements in it increasing further heat transfer to the cooling fins.
  13. The method of claim 8, further comprising:
    forming the cooling channel as a loop along an inner circumference periphery of the power inverter; and
    positioning an inlet and an outlet of the cooling channel at a top end of the cooling channel in a gravitational orientation.
  14. The method of claim 8, further comprising:
    forming the cooling channel as a serpentine-shaped channel, a spiral-shaped channel or a Z-shaped channel within an accommodating space of the power inverter.
PCT/CN2020/133069 2019-12-02 2020-12-01 Drivetrain system for an electrified vehicle and method of cooling the drivetrain system WO2021109980A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20896808.1A EP4082099A4 (en) 2019-12-02 2020-12-01 Drivetrain system for an electrified vehicle and method of cooling the drivetrain system
JP2022533144A JP2023504664A (en) 2019-12-02 2020-12-01 Driveline system for electric vehicle and method for cooling driveline system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911213242.8 2019-12-02
CN201911213242.8A CN112977046A (en) 2019-12-02 2019-12-02 Transmission system for electric vehicle and method of cooling the transmission system

Publications (1)

Publication Number Publication Date
WO2021109980A1 true WO2021109980A1 (en) 2021-06-10

Family

ID=76221484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133069 WO2021109980A1 (en) 2019-12-02 2020-12-01 Drivetrain system for an electrified vehicle and method of cooling the drivetrain system

Country Status (4)

Country Link
EP (1) EP4082099A4 (en)
JP (1) JP2023504664A (en)
CN (1) CN112977046A (en)
WO (1) WO2021109980A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205070688U (en) * 2015-11-10 2016-03-02 大陆汽车投资(上海)有限公司 Drive arrangement's cooling runner for electric automobile
CN105515288A (en) * 2014-10-08 2016-04-20 三菱自动车工业株式会社 Motor apparatus for vehicle
JP2016077117A (en) * 2014-10-08 2016-05-12 三菱自動車工業株式会社 Vehicle motor apparatus
CN205632158U (en) * 2015-04-28 2016-10-12 源捷公司 Multi -mode vehicle transmission system thermal management system
CN106685141A (en) * 2015-11-10 2017-05-17 大陆汽车投资(上海)有限公司 Cooling flow passage of driving device for electric automobiles
CN106911224A (en) * 2015-12-22 2017-06-30 大陆汽车投资(上海)有限公司 The coolant flow channel of integrated driving device used for electric vehicle
CN106911228A (en) * 2015-12-22 2017-06-30 大陆汽车投资(上海)有限公司 Integrated driving device used for electric vehicle
CN208035924U (en) * 2018-02-02 2018-11-02 株洲齿轮有限责任公司 Power drive assembly and pure electric automobile
US20190291570A1 (en) * 2018-03-23 2019-09-26 Sf Motors, Inc. Dual loop liquid cooling of integrated electric drivetrain

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4186109B2 (en) * 2003-06-25 2008-11-26 アイシン・エィ・ダブリュ株式会社 Drive device
JP2005253167A (en) * 2004-03-03 2005-09-15 Hitachi Ltd Vehicle driving unit and electric four-wheel drive vehicle using it
MY167716A (en) * 2015-05-20 2018-09-21 Nissan Motor Drive device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515288A (en) * 2014-10-08 2016-04-20 三菱自动车工业株式会社 Motor apparatus for vehicle
JP2016077117A (en) * 2014-10-08 2016-05-12 三菱自動車工業株式会社 Vehicle motor apparatus
CN205632158U (en) * 2015-04-28 2016-10-12 源捷公司 Multi -mode vehicle transmission system thermal management system
CN205070688U (en) * 2015-11-10 2016-03-02 大陆汽车投资(上海)有限公司 Drive arrangement's cooling runner for electric automobile
CN106685141A (en) * 2015-11-10 2017-05-17 大陆汽车投资(上海)有限公司 Cooling flow passage of driving device for electric automobiles
CN106911224A (en) * 2015-12-22 2017-06-30 大陆汽车投资(上海)有限公司 The coolant flow channel of integrated driving device used for electric vehicle
CN106911228A (en) * 2015-12-22 2017-06-30 大陆汽车投资(上海)有限公司 Integrated driving device used for electric vehicle
CN208035924U (en) * 2018-02-02 2018-11-02 株洲齿轮有限责任公司 Power drive assembly and pure electric automobile
US20190291570A1 (en) * 2018-03-23 2019-09-26 Sf Motors, Inc. Dual loop liquid cooling of integrated electric drivetrain

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4082099A4 *

Also Published As

Publication number Publication date
JP2023504664A (en) 2023-02-06
EP4082099A4 (en) 2024-02-07
CN112977046A (en) 2021-06-18
EP4082099A1 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
EP2458717B1 (en) Electric motor and electric vehicle having the same
US8093769B2 (en) Cooling structure for rotating electric machine
US11735974B2 (en) Electric assembly and vehicle having the same
US20100072865A1 (en) Vehicle drive device
CN103802665A (en) Temperature regulation of an inductor assembly
JP5751065B2 (en) End plate of rotor and rotating electric machine
JP2008067546A (en) Cooling structure for capacitor and motor therewith
US20190260259A1 (en) Electric machine cooling passage with internal fin structure
WO2021109980A1 (en) Drivetrain system for an electrified vehicle and method of cooling the drivetrain system
WO2022116940A1 (en) An integrated drivetrain assembly for an electrified vehicle and an electrified vehicle
WO2022033536A1 (en) An integrated drivetrain assembly for an electrified vehicle and an electrified vehicle
WO2023273689A1 (en) A cooling system for an integrated drivetrain assembly and an electrified vehicle
WO2022222909A1 (en) A cooling system for an integrated drivetrain assembly and an integrated power electronics assembly and an electrified vehicle
EP4366140A1 (en) A compact electric drive with a structure allowing efficient heat dissipation
CN112977048A (en) Transmission system for electric vehicle and method of cooling the transmission system
WO2024146933A1 (en) Cooling system, electric drivetrain assembly and vehicle
US20230307980A1 (en) Manifold Assembly for a Fluid Cooled Generator
WO2022135082A1 (en) Drivetrain system for an electrified vehicle
CN118306197A (en) Cooling system, electric drive device and vehicle
CN116073682A (en) Electric drive unit
CN116073685A (en) Electric drive unit
JP2023067202A (en) Electrical drive unit
JP2023067204A (en) Electrical drive unit
JP2005333782A (en) Inverter-integrated dynamo-electric machine
KR20240096417A (en) Vehicle cooling system and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533144

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020896808

Country of ref document: EP

Effective date: 20220704