WO2021108960A1 - Method and apparatus for sensor measurements processing - Google Patents

Method and apparatus for sensor measurements processing Download PDF

Info

Publication number
WO2021108960A1
WO2021108960A1 PCT/CN2019/122465 CN2019122465W WO2021108960A1 WO 2021108960 A1 WO2021108960 A1 WO 2021108960A1 CN 2019122465 W CN2019122465 W CN 2019122465W WO 2021108960 A1 WO2021108960 A1 WO 2021108960A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensors
sensor
group
measurements
physical
Prior art date
Application number
PCT/CN2019/122465
Other languages
French (fr)
Inventor
Cheng FENG
Xiao Liang
Daniel Schneegass
Peng Wei Tian
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP19954741.5A priority Critical patent/EP4052051A4/en
Priority to CN201980102288.4A priority patent/CN114902057A/en
Priority to US17/781,508 priority patent/US20230003785A1/en
Priority to PCT/CN2019/122465 priority patent/WO2021108960A1/en
Publication of WO2021108960A1 publication Critical patent/WO2021108960A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing

Definitions

  • a method, apparatus and computer-readable storage media for sensor measurements processing are proposed. Based on sensor measurements, reliability scores of sensors can be calculated. By giving less weights to unreliable sensors, accuracy of estimation of true states of monitored physical processes can be improved; and comparing to Kalman filtering-based methods, the dynamic model of the underlying physical process is not necessarily known to conduct measurements fusion, which makes our solution much more applicable in practical scenarios.
  • a method for sensor measurements processing is presented to calculate reliability scores of sensors.
  • the method includes following steps:
  • an apparatus for sensor measurements processing is presented to acquire more precise evaluation of true states of physical processes.
  • the apparatus comprises:
  • a measurement module configured to get measurements by a group of sensors, wherein different sensors monitor different physical processes
  • an estimation module configured to estimate based on the measurements, initial true states of the physical processes monitored by the group of sensors
  • an apparatus includes:
  • At least one processor coupled to the at least one memory, and upon execution of the executable instructions, configured to execute method according to the first aspect of the present disclosure.
  • a computer-readable medium stores executable instructions, which upon execution by a processor, enables the processor to execute the method according to the first aspect of the present disclosure.
  • At least one soft sensor can be constructed by calculating measurement by a soft sensor based on measurement by at least one sensor other than the sensor monitoring the physical process in the group of sensors, to enlarge the group of sensors.
  • reliability scores of the group of sensors can be calculated such that the more reliable a sensor is, the higher penalty if the measurement by the sensor is far away from the estimated true state of the respective physical process.
  • true states of the physical processes can be calculated out which make sum of sensor reliability-weighted distance between estimated true state of a physical process and measurement by the sensor monitoring the physical process in predefined at least one time step and among the physical processes and among the group of sensors is minimum.
  • true states of the physical processes can be calculated such that estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth. With the smoothing processing, unexpected fluctuation of true states of the physical processes can be avoided.
  • a method for sensor measurements processing which includes:
  • an apparatus for sensor measurements processing includes:
  • an acquisition module configured to acquire reliability scores of the group of sensors
  • fusion module configured to estimate, based on the acquired reliability scores, true states of the physical processes monitored by the group of sensors such that:
  • an apparatus for sensor measurements processing which includes:
  • At least one processor coupled to the at least one memory, and upon execution of the executable instructions, configured to execute method according to the fifth aspect of the present disclosure.
  • a computer-readable medium storing executable instructions, which upon execution by a processor, enables the processor to execute method according to the fifth aspect of the present disclosure.
  • the sensor fusion can be conducted such that estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth. With the smoothing processing, unexpected fluctuation of true states of the physical processes can be avoided.
  • measurements by the group of sensors can be got at time step t, then reliability scores of the group of sensors can be got by calculating reliability scores of the group of sensors based on:
  • the reliability score of sensors can be calculated and dynamically updated based on the sensor measurements observed and the fused results during the sliding window to make sure of accuracy.
  • At least one soft sensor before estimating true states of the physical processes monitored by the group of sensors, for each physical process, at least one soft sensor can be constructed by calculating measurement by a soft sensor based on measurement by at least one sensor other than the sensor monitoring the physical process in the group of sensors, to enlarge the group of sensors.
  • soft sensors rich information for evaluation of the true states of physical processes can be got by utilizing correlation between the states of multiple physical processes, to enhance the inference of estimation of truth states of physical processes.
  • FIG. 1 shows a flow chart of a method for sensor measurements processing of the present disclosure.
  • FIG. 2 shows a flow chart of the other method for sensor measurements processing of the present disclosure.
  • FIG. 3 and FIG. 4 depict block diagrams of apparatuses for sensor measurements processing of the present disclosure.
  • FIG. 5 and FIG. 6 depict block diagrams of apparatuses for sensor measurements processing of the present disclosure.
  • true states of the physical processes can be estimated based on the calculated reliability scores such that the real state of a physical process should be closer to measurements by a more reliable sensor.
  • true states of the physical processes can be estimated such that estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth.
  • true states of the physical processes can be calculated out such that they make sum of sensor reliability-weighted distance between estimated true state of a physical process and measurement by the sensor monitoring the physical process in predefined at least one time step and among the physical processes and among the group of sensors is minimum.
  • the ground truth of process state we can estimate the ground truth of process state by solving the following optimization problem:
  • the objective term seeks to have estimated process states which are closer to the measurements from more reliable sensors;
  • the other objective term is a smoothing factor enforcing the smoothness of estimated process states, and
  • ⁇ p is a user-defined hyperparameter which controls the strengthen of the enforcement for process p. Note that here we use a simple smoothing factor as an illustration which lets two consecutive process states not far away from each other. In principle, other more complicated smoothing factors such as higher-order smoothing factors can also be applied in our context.
  • Equation (6) Since the optimization problem in Equation (6) is convex, making derivatives with respect to be 0, then takes the solution of the following system of linear equations:
  • step S103 repeat above step S103 and S105 until Convergence.
  • coordinate descent Wright, Stephen J. "Coordinate descent algorithms. " Mathematical Programming 151.1 (2015) : 3-34
  • the convergence criterion is based on the Euclidean distance between the estimated truth states of the physical process in two consecutive iterations, thus is defined as follows:
  • is a user-defined threshold value.
  • reliability scores of the group of sensors are acquired.
  • the reliability scores can be pre-set by engineers, can be received from other systems, or can be acquired through above warm-up period. After the warm-up period, we believe that the derived reliability scores for sensors are optimal for the next measurement.
  • step S201 measurements by a group of sensors are collected at time step t, and reliability scores of the group of sensors are calculated based on: measurements by the group of sensors got at each time step from t-L to t, and estimated true states of the physical processes at each time step from t-L to t.
  • At least one soft sensor can be constructed by calculating measurement by a soft sensor based on measurement by at least one sensor other than the sensor monitoring the physical process in the group of sensors (here, we call them “explanatory sensors” ) , to enlarge the group of sensors. Similar to above step S102’, by utilizing correlation between the states of multiple physical processes to enhance the inference of sensor reliability scores and the estimation of truth states of physical processes.
  • step S203 we conduct sensor fusion to estimate the true state of the physical processes.
  • the sensor fusion can be conducted such that a true state of a physical process should be closer to the measurements by sensors with higher reliability scores; and estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth.
  • the sensor fusion can be conducted at time t by solving:
  • reliability scores of sensors can be updated to implement Real-time reliability monitoring.
  • an estimation module 302 configured to estimate based on the measurements, initial true states of the physical processes monitored by the group of sensors;
  • calculation module 303 can be further configured to:
  • the apparatus 300 may also include I/O interfaces 307, configured to interface with external devices.
  • the at least one processor 306, the at least one memory 305 and I/O interfaces can be connected via a bus, or connected directly to each other.
  • modules 301 ⁇ 304 can be software modules including instructions which are stored in the at least one memory 305, when executed by the at least one processor 306, execute the method 100.
  • FIG. 5 and FIG. 6 depict block diagrams of apparatuses for sensor measurements processing of the present disclosure.
  • an apparatus 400 which can execute the above method 200 includes:
  • a measurement module 401 configured to get measurements by a group of sensors, wherein different sensors monitor different physical processes
  • an acquisition module 402 configured to acquire reliability scores of the group of sensors
  • fusion module 403 configured to estimate, based on the acquired reliability scores, true states of the physical processes monitored by the group of sensors such that:
  • the fusion module 403 can be further configured to conduct the sensor fusion such that estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth.
  • the measurement module 401 can be further configured to get at time step t, measurements by a group of sensors; the acquisition module 402 can be further configured to calculate reliability scores of the group of sensors based on: measurements by the group of sensors got at each time step from t-L to t, and estimated true states of the physical at each time step from t-L to t.
  • FIG. 6 another embodiment of the apparatus 400 is depicted. It can include:
  • At least one processor 406 coupled to the at least one memory 405, and upon execution of the executable instructions, configured to execute method 200.
  • the apparatus 400 may also include I/O interfaces 407, configured to interface with external devices.
  • the at least one processor 406, the at least one memory 405 and I/O interfaces can be connected via a bus, or connected directly to each other.
  • a computer program which is being executed by at least one processor and performs method 100 or 200 presented in this disclosure.
  • PM10_0, PM10_1 and PM10_2 are three sensors for measurement of PM10 (particulate matter 10) .
  • the sensor PM10_0 reports abnormal PM10 measurements during the time interval around 40 to 60, this is caused by a physical fault of the sensor which is confirmed by the system operator.
  • our proposed fusion method reports much more reliable PM10 measurements than taking the averaging between the three redundant sensors.
  • our method also timely identified that the sensor PM10_0 has much lower reliability score than other two sensors during the time interval around 40 to 60.
  • a method, apparatus and computer-readable storage media for sensor measurements processing are proposed. Based on sensor measurements, reliability scores of sensors can be calculated. By giving less weights to unreliable sensors, accuracy of estimation of true states of monitored physical processes can be improved; and comparing to Kalman filtering-based methods, the dynamic model of the underlying physical process is not necessarily known to conduct measurements fusion, which makes our solution much more applicable in practical scenarios.
  • our approach is purely data-driven and it does not require the dynamic model of the underlying physical process to be known.
  • our approach does not necessarily need any Kalman filtering-based algorithms. As a result, our approach not only provides accurate estimates of the truth process states, but also becomes more generalizable and applicable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

A method (100) for sensor measurements processing includes following steps: getting (S101) measurements by a group of sensors; estimating (S102), initial true states of the physical processes; repeating following steps until convergence: calculating (S103) reliability scores of the group of sensors such that a more reliable sensor should be more likely to provide measurements which are closer to real state of the physical process monitored by the sensor; estimating (S104), based on the calculated reliability scores, true states of the physical processes, such that the real state of a physical process should be closer to measurements by a more reliable sensor. An apparatus (300, 400) for sensor measurements processing and a computer-readable medium are also disclosed.

Description

Method and apparatus for sensor measurements processing Technical Field
The present invention relates to industrial technology field, and more particularly to a method, apparatus and computer-readable storage media for sensor measurements processing.
Background Art
With the trend of Internet of things, sensors are becoming pervasive. The measurements from sensors have become an important source of knowledge for decision making for either human-beings or machines.
Sometimes, measurements from sensors can be error-prone due to a lot of reasons such as equipment noises, faults, aging, extreme ambient environment conditions, etc.
To improve accuracy, sensor measurements fusion can be done to combine measurements from multiple sensors. Typical fusion methods combine measurements from multiple sensors using weighted averaging. For example, Kalman filtering-based methods (C.K. Chui, G. Chen et al., Kalman filtering. Springer, 2017) assign different weights to sensors based on their noise covariance. However, Kalman filtering-based methods require the dynamic model of the underlying physical process to be known, which significantly limits their applicability in many practical scenarios.
Summary of the Invention
A method, apparatus and computer-readable storage media for sensor measurements processing are proposed. Based on sensor measurements, reliability scores of sensors can be calculated. By giving less weights to unreliable sensors, accuracy of estimation of true states of monitored physical processes can be improved; and comparing to Kalman filtering-based methods, the dynamic model of the underlying physical process is not necessarily known to conduct measurements fusion, which makes our solution much more applicable in practical scenarios.
According to a first aspect of the present disclosure, a method for sensor measurements processing is presented to calculate reliability scores of sensors. The method includes following steps:
- getting, measurements by a group of sensors, wherein different sensors monitor different physical processes;
- estimating, based on the measurements, initial true states of the physical processes;
- repeating following steps until convergence:
- calculating, based on the estimated true states of the physical processes, reliability scores of the group of sensors wherein the higher the score is, the more reliable a sensor is, such that a more reliable sensor should be more likely to provide measurements which are closer to real state of the physical process monitored by the sensor;
- estimating, based on the calculated reliability scores, true states of the physical processes, such that the real state of a physical process should be closer to measurements by a more reliable sensor.
According to a second aspect of the present disclosure, an apparatus for sensor measurements processing is presented to acquire more precise evaluation of true states of physical processes. The apparatus comprises:
- a measurement module, configured to get measurements by a group of sensors, wherein different sensors monitor different physical processes;
- an estimation module, configured to estimate based on the measurements, initial true states of the physical processes monitored by the group of sensors;
- a calculation module, configured to repeat following steps until convergence:
- calculate, based on the estimated true states of the physical processes, reliability scores of the group of sensors wherein the higher the score is, the more reliable a sensor is, such that a more reliable sensor should be more likely to provide measurements which are closer to real state of the physical process monitored by the sensor;
- estimate, based on the calculated reliability scores, true states of the physical processes, such that the real state of a physical process should be closer to measurements by a more reliable sensor.
According to a third aspect of the present disclosure, an apparatus is presented, it includes:
- at least one memory, configured to store instructions;
- at least one processor, coupled to the at least one memory, and upon execution of the executable instructions, configured to execute method according to the first  aspect of the present disclosure.
According to a fourth aspect of the present disclosure, a computer-readable medium is presented, it stores executable instructions, which upon execution by a processor, enables the processor to execute the method according to the first aspect of the present disclosure.
With the solution provided by any of above aspects, by combination of sensor reliability evaluation and sensor measurements fusion, calculation of reliability scores of sensors and sensor fusion are processed as an optimization problem, which does not necessarily need any Kalman filtering-based algorithms. As a result, our solution is more generalizable as it does not assume dynamic model of the underlying physical process to be known, which makes our solution much more applicable in practical scenarios. And reliability scores of sensors can provide an important metric for benchmarking between different sensor vendors. By monitoring sensor reliability, predictive maintenance of sensor systems can be conducted by timely identifying and replacing unreliable sensors.
In an embodiment of any of above aspects, before repeating until convergence, for each of the physical processes, at least one soft sensor can be constructed by calculating measurement by a soft sensor based on measurement by at least one sensor other than the sensor monitoring the physical process in the group of sensors, to enlarge the group of sensors. With construction of soft sensors, rich information for evaluation of the true states of physical processes can be got by utilizing correlation between the states of multiple physical processes, to enhance the inference of sensor reliability scores and the estimation of truth states of physical processes.
In an embodiment of any of above aspects, reliability scores of the group of sensors can be calculated such that the more reliable a sensor is, the higher penalty if the measurement by the sensor is far away from the estimated true state of the respective physical process.
In an embodiment of any of above aspects, reliability scores of the group of sensors can be calculated out which make sum of sensor reliability-weighted distance between estimated true state of a physical process and measurement by the  sensor monitoring the physical process in predefined at least one time step and among the physical processes and among the group of sensors is minimum.
In an embodiment of any of above aspects, true states of the physical processes can be calculated out which make sum of sensor reliability-weighted distance between estimated true state of a physical process and measurement by the sensor monitoring the physical process in predefined at least one time step and among the physical processes and among the group of sensors is minimum.
In an embodiment of any of above aspects, true states of the physical processes can be calculated such that estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth. With the smoothing processing, unexpected fluctuation of true states of the physical processes can be avoided.
According to a fifth aspect of the present disclosure, a method for sensor measurements processing is presented, which includes:
- getting, measurements by a group of sensors, wherein different sensors monitor different physical processes;
- acquiring reliability scores of the group of sensors;
- conducting sensor fusion, based on the acquired reliability scores, to estimate true states of the physical processes monitored by the group of sensors such that:
- a true state of a physical process should be closer to the measurements by sensors with higher reliability scores.
According to a sixth aspect of the present disclosure, an apparatus for sensor measurements processing is presented, the apparatus includes:
- a measurement module, configured to get measurements by a group of sensors, wherein different sensors monitor different physical processes;
- an acquisition module, configured to acquire reliability scores of the group of sensors;
- a fusion module, configured to estimate, based on the acquired reliability scores, true states of the physical processes monitored by the group of sensors such that:
- a true state of a physical process should be closer to the measurements by sensors with higher reliability scores.
According to a seventh aspect of the present disclosure, an apparatus for sensor measurements processing is presented, which includes:
- at least one memory, configured to store instructions;
- at least one processor, coupled to the at least one memory, and upon execution of the executable instructions, configured to execute method according to the fifth aspect of the present disclosure.
According to an eighth aspect of the present disclosure, a computer-readable medium, storing executable instructions, which upon execution by a processor, enables the processor to execute method according to the fifth aspect of the present disclosure.
With solution provided by any of the above fifth to eighth aspects, an efficient approach for real-time sensor fusion and reliability score calculation is provided, with which real-time sensor fusion and reliability monitoring can be conducted.
In an embodiment of any of above fifth to sixth aspects, the sensor fusion can be conducted such that estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth. With the smoothing processing, unexpected fluctuation of true states of the physical processes can be avoided.
In an embodiment of any of above fifth to sixth aspects, measurements by the group of sensors can be got at time step t, then reliability scores of the group of sensors can be got by calculating reliability scores of the group of sensors based on:
- measurements by the group of sensors got at each time step from t-L to t, and
- estimated true states of the physical processes at each time step from t-L to t. In the sliding window with length L, the reliability score of sensors can be calculated and dynamically updated based on the sensor measurements observed and the fused results during the sliding window to make sure of accuracy.
In an embodiment of any of above fifth to sixth aspects, before estimating true states of the physical processes monitored by the group of sensors, for each physical process, at least one soft sensor can be constructed by calculating measurement by a  soft sensor based on measurement by at least one sensor other than the sensor monitoring the physical process in the group of sensors, to enlarge the group of sensors. With construction of soft sensors, rich information for evaluation of the true states of physical processes can be got by utilizing correlation between the states of multiple physical processes, to enhance the inference of estimation of truth states of physical processes.
Brief Description of the Drawings
The above mentioned attributes and other features and advantages of the present technique and the manner of attaining them will become more apparent and the present technique itself will be better understood by reference to the following description of embodiments of the present technique taken in conjunction with the accompanying drawings, wherein:
FIG. 1 shows a flow chart of a method for sensor measurements processing of the present disclosure.
FIG. 2 shows a flow chart of the other method for sensor measurements processing of the present disclosure.
FIG. 3 and FIG. 4 depict block diagrams of apparatuses for sensor measurements processing of the present disclosure.
FIG. 5 and FIG. 6 depict block diagrams of apparatuses for sensor measurements processing of the present disclosure.
FIG. 7 and FIG. 8 depict experiment results of the present disclosure.
Reference Numbers:
100, 200: methods for sensor measurements processing
300, 400: apparatuses for sensor measurements processing
S101~S104, S201~S203: steps of methods for sensor measurements processing
301~304: modules of apparatus 300 for sensor measurements processing
401~404: modules of apparatus 400 for sensor measurements processing
305, 405: at least one memory
306, 406: at least one processor
307, 407: I/O interfaces
Detailed Description of Example Embodiments
Hereinafter, above-mentioned and other features of the present technique are  described in details. Various embodiments are described with reference to the drawing, where like reference numerals are used to refer to like elements throughout. In the following description, for purpose of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more embodiments. It may be noted that the illustrated embodiments are intended to explain, and not to limit the invention. It may be evident that such embodiments may be practiced without these specific details.
When introducing elements of various embodiments of the present disclosure, the articles “a” , “an” , “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising” , “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
To solve the above-mentioned problem of inaccurate measurements by sensors, reliability score of sensors are calculated to indicate reliability of a sensor, a sensor with higher reliability score, the measurement it provided is much closer to true state of a physical process it monitored. By giving less weights to unreliable sensors, accuracy of estimation of true states of monitored physical processes can be improved. With combination of sensor reliability evaluation and sensor measurements fusion, calculation of reliability scores of sensors and sensor fusion are processed as an optimization problem, which does not necessarily need any Kalman filtering-based algorithms. As a result, our solution is more generalizable as it does not assume dynamic model of the underlying physical process to be known, which makes our solution much more applicable in practical scenarios.
What’s more, reliability scores of sensors can provide an important metric for benchmarking between different sensor vendors. And by monitoring sensor reliability, predictive maintenance of sensor systems can be conducted by timely identifying and replacing unreliable sensors.
Two processes are introduced here, they are namely the warm-up period and the real-time evaluation period. In the warm-up period, calculation of reliability scores of a group of sensors and true states of physical processes monitored by the group of sensors are initialized by solving a joint optimization problem (referring to FIG. 1 and method 100 of the present disclosure) . In the real-time evaluation period, the reliability scores of the group of sensors can be updated and sensor measurements fusion is done by using simple closed form expressions (referring to FIG. 2 and method 200) .
Here, considering the general case where there are a group of sensors monitoring multiple physical processes in a system. The system can be an industrial system, such as a factory or a production line, or an agriculture system, such as a farm, etc. Sensors are deployed in the system, including but not limited to temperature, pressure, humidity, flow, location sensors. They are deployed to monitor state of the physical process of the system. With the measurements provided by the sensors, true state of the physical process (es) can be estimated.
Let P be the set of physical processes, S be the set of sensors in the system, Sp denote the set of sensors that are monitoring the physical process p, where p ∈ P, |Sp|≥1 and Σ p∈P|S p|=|S|. That is to say, each physical process is monitored by one or more sensors, and each sensor can only monitor one physical process.
Let
Figure PCTCN2019122465-appb-000001
be the monitored signals from the sensors (i.e. the measurements by the sensors) at a given discrete time t, where the timestamps t=1: T are a totally ordered set. Our target is to infer
Figure PCTCN2019122465-appb-000002
and
Figure PCTCN2019122465-appb-000003
Figure PCTCN2019122465-appb-000004
which are the quantified reliability score of sensors and the real states of the underlying physical processes at time t, respectively. Here, we assume the underlying dynamic model of the physical processes is unknown to the user.
Now, referring to FIG. 1 to FIG. 8, details of implementations are described.
Procedures
The warm-up period
Now, referring to FIG. 1, a method 100 of sensor measurement processing is introduced. It is before real-time evaluation of sensor reliability and information fusion can be conducted, so we call it a “warm-up period” . Assume the warm-up period lasts for T time steps. Here, the reliability score of each sensor is assumed to be fixed during the warm-up period, then c = [c 1, c 2, ..., c |S|] is used to denote the reliability scores of sensors at the warm-up period.
S101: measurements collection.
In the step of S101, measurements by the above-mentioned group of sensors are got.
S102: initialization.
In the step of S102, initial true states of the physical processes of the system are  estimated based on the measurements got in the step S101.
Let
Figure PCTCN2019122465-appb-000005
which means that we initialize the estimation of the true process states at the warm-up period as the mean value of the measurements from all sensors. Note that the estimation will be updated in the later steps.
S102’: soft sensor construction
Step S102’ is optional. In the step of S103, for each of the physical processes at least one soft sensor is constructed, by calculating measurement by a soft sensor based on measurement by at least one sensor other than the sensor monitoring the physical process in the group of sensors (here, we call them “explanatory sensors” ) , to enlarge the group of sensors. Taking a factory as an example, some physical process is monitored by many sensors, which can provide rich information of measurements to evaluation the true state of the physical process. But for a physical process monitored by less sensors, sometimes, measurement may be not enough to evaluate the true states, especially when the monitoring sensor (s) is/are not reliable. So here for each physical process, soft sensors are constructed, by utilizing correlation between the states of multiple physical processes to enhance the inference of sensor reliability scores and the estimation of truth states of physical processes. For each physical process, besides physical sensors, we further construct M soft sensors for monitoring its state at each time step. To be mentioned that, for different physical processes, different number of soft sensors can be constructed. optionally, the soft sensors can be constructed by random local linear regression. Local linear regression models are globally nonlinear, can achieve the requested accuracy and can be promptly adapted when the process characteristics change.
Optionally, when constructing a soft sensor, we select random subsets of sensors for explanatory variables to setup the local linear regression model. The reason we choose to do so is: a group of “weak learners” can come together to form a “strong learner” ; and combining predictions from multiple models in ensembles works better if the predictions from the sub-models are uncorrelated or at best weakly correlated.
Concretely, let p be target physical process, t be current time step, to build up a soft sensor for p, we first randomly select ceiling (r*|S\Sp|) explanatory sensors from sensor set S\Sp, where r∈ [0, 1] is a tunable ratio. Let
Figure PCTCN2019122465-appb-000006
be selected sensors for making a soft sensor m for process p at time t, 
Figure PCTCN2019122465-appb-000007
be the vector consists of the sensor signals from the selected sensors, we define a neighbour set 
Figure PCTCN2019122465-appb-000008
for the point
Figure PCTCN2019122465-appb-000009
The neighbor set is derived by the K-nearest neighbors  using Euclidean distance, given a set of measurement points.
Then the signal of the soft sensor is given by:
Figure PCTCN2019122465-appb-000010
Where
Figure PCTCN2019122465-appb-000011
S103: calculate reliability score of the group of sensors.
In the step S103, reliability scores of the group of sensors are calculated based on the estimated true states of the physical processes, such that a more reliable sensor should be more likely to provide measurements which are closer to real state of the physical process monitored by the sensor.
Since we assume that reliability score of a sensor at the warm-up period is fixed, thus given the estimated values of the process state, we can obtain the reliability scores for the group of sensors at the warm-up period. Optionally, we can calculate out reliability scores of the group of sensors which make sum of sensor reliability-weighted distance between estimated true state of a physical process and measurement by the sensor monitoring the physical process in predefined at least one time step and among the physical processes and among the group of sensors is minimum.
Optionally, the reliability scores for the group of sensors can be calculated by solving the following constrained optimization problem:
Figure PCTCN2019122465-appb-000012
Where
Figure PCTCN2019122465-appb-000013
is the normalized training error when fitting the mth soft sensor for process p at time t; 
Figure PCTCN2019122465-appb-000014
works as the reliability score of the mth soft sensor for process p at time t, which indicates that the reliability score of a soft sensor is the weighted sum of the reliability scores of the explanatory sensors, scaled by the normalized training error when fitting the soft sensor (larger training error, smaller reliability score) .
Here, in equation (1) , soft sensors are taken into account. If not, the constrained optimization problem can be transformed into:
Figure PCTCN2019122465-appb-000015
Optionally, reliability scores of the group of sensors can be calculated such that the more reliable a sensor is, the higher penalty if the measurement by the sensor is far away from the estimated true state of the respective physical process. So here we can allocate positive reliability score to sensors such that a more reliable sensor will receive higher penalty if its measurement is far away from the estimated ground truth of the process states. As a result, a sensor whose measurements are closer to the estimated ground truth will receive higher reliability score.
To solve the constrained optimization problem, we can introduce Lagrange multiplier to transform it to an unconstrained optimization problem:
Figure PCTCN2019122465-appb-000016
Here, in equation (2) , soft sensors are taken into account. If not, the constrained optimization problem with introducing Lagrange multiplier can be transformed into:
Figure PCTCN2019122465-appb-000017
Making partial derivative with respect to c s be 0, we get:
Figure PCTCN2019122465-appb-000018
Where I (*) is an indicator function which equals 1 when the condition is satisfied and 0 otherwise. Since Σ s∈Sexp (-c s) =1, we get:
Figure PCTCN2019122465-appb-000019
By replacing λ back to Equation (3) , we finally obtain:
Figure PCTCN2019122465-appb-000020
S104: estimate true states of the physical processes.
In the step S104, true states of the physical processes can be estimated based on the calculated reliability scores such that the real state of a physical process should be closer to measurements by a more reliable sensor.
Here we can assume the reliability score of sensors are known, thus we can utilize the reliability score of sensors to obtain a better estimate of the process states. Optionally, true states of the physical processes can be estimated such that estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth. Optionally, true states of the physical processes can be calculated out such that they make sum of sensor reliability-weighted distance between estimated true state of a physical process and measurement by the sensor monitoring the physical process in predefined at least one time step and among the physical processes and among the group of sensors is minimum. Optionally, given the reliability score of sensors, we can estimate the ground truth of process state by solving the following optimization problem:
Figure PCTCN2019122465-appb-000021
Where in the above the objective term
Figure PCTCN2019122465-appb-000022
Figure PCTCN2019122465-appb-000023
seeks to have estimated process states which are closer to the measurements from more reliable sensors; the other objective term
Figure PCTCN2019122465-appb-000024
is a smoothing factor enforcing the smoothness of estimated process states, and γ p is a user-defined hyperparameter which controls the strengthen of the enforcement for process p. Note that here we use a simple smoothing factor as an illustration which lets two consecutive process states not far away from each other. In principle, other more complicated smoothing factors such as higher-order smoothing factors can also be applied in our context.
Since the optimization problem in Equation (6) is convex, making derivatives with respect to
Figure PCTCN2019122465-appb-000025
be 0, then
Figure PCTCN2019122465-appb-000026
takes the solution of the following system of linear equations:
Figure PCTCN2019122465-appb-000027
Then repeat above step S103 and S105 until Convergence. Here we can apply coordinate descent (Wright, Stephen J. "Coordinate descent algorithms. " Mathematical Programming 151.1 (2015) : 3-34) to iteratively update  the reliability score of sensors and the estimated truth states of physical processes until convergence. The convergence criterion is based on the Euclidean distance between the estimated truth states of the physical process in two consecutive iterations, thus is defined as follows:
Figure PCTCN2019122465-appb-000028
Where
Figure PCTCN2019122465-appb-000029
denotes the estimated truth states of the physical process after Nth iteration, ∈ is a user-defined threshold value.
The real-time evaluation period
Sensor reliability score calculation and true process state estimation in the warm-up period requires to iteratively solving a system of linear equations in Equation (7) until convergence. Here, referring to FIG. 2, the other method for sensor measurements processing will be introduced, providing an efficient approach for real-time sensor fusion and reliability score calculation.
Concretely, we show how to conduct real-time sensor fusion and reliability monitoring by solving two simple closed form expressions as follows:
S201: measurements collection.
In the step of S201, measurements by the group of sensors are collected.
S202: reliability scores acquisition.
In the step of S202, reliability scores of the group of sensors are acquired. Optionally, the reliability scores can be pre-set by engineers, can be received from other systems, or can be acquired through above warm-up period. After the warm-up period, we believe that the derived reliability scores for sensors are optimal for the next measurement. Thus, when new measurements from sensors are received, we can first use the reliability scores to do sensor fusion, then the reliability scores for sensors are dynamically updated by keeping a sliding window during which we believe that the latest sensor reliability scores are reflected.
Optionally, in the step S201, measurements by a group of sensors are collected at time step t, and reliability scores of the group of sensors are calculated based on: measurements by the group of sensors got at each time step from t-L to t, and estimated true states of the physical processes at each time step from t-L to t.
S202’: soft sensors construction.
This step is optional, in the step of S202’, for each physical process, at least one soft sensor can be constructed by calculating measurement by a soft sensor based on measurement by at least one sensor other than the sensor monitoring the physical process in the group of sensors (here, we call them “explanatory sensors” ) , to enlarge the group of sensors. Similar to above step S102’, by utilizing correlation between the states of multiple physical processes to enhance the inference of sensor reliability scores and the estimation of truth states of physical processes.
To be mentioned that, the step S202’ can be executed before the step S202, simultaneously with the step S202, or after the step S202. However, it should be after the step S201, for calculating soft sensor measurements based on physical sensors’ measurements, and it should be before the step S203, for true states of the physical processes may be estimated based on soft sensors measurements got in the step S203.
Assume that in the step S201, measurements by the group of sensors are collected at time step t, At the same time step t, we can construct soft sensors using random local linear regression according to measurements got in the step S201 and estimated true states of the physical processes in time steps [1, t-1] .
S203: sensor fusion.
In the step S203, we conduct sensor fusion to estimate the true state of the physical processes. The sensor fusion can be conducted such that a true state of a physical process should be closer to the measurements by sensors with higher reliability scores; and estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth.
Optionally, the sensor fusion can be conducted at time t by solving:
Figure PCTCN2019122465-appb-000030
Where
Figure PCTCN2019122465-appb-000031
and
Figure PCTCN2019122465-appb-000032
are treated as constants that have been calculated in the previous time step. The intuition behind the above equation is that at a specific time step, the truth process state should be closer to the measurement from sensors with higher reliability scores, and also not far away from the previous truth state. Since 
Figure PCTCN2019122465-appb-000033
and
Figure PCTCN2019122465-appb-000034
are known, taking derivative with respect to
Figure PCTCN2019122465-appb-000035
be 0, we get a closed form solution:
Figure PCTCN2019122465-appb-000036
S204: update reliability score.
In the step of S204, reliability scores of sensors can be updated to implement Real-time reliability monitoring.
Taking an example, At time step t, let L be the sliding window based on which the reliability score of sensors are calculated, we can dynamically update the reliability score of each sensor based on the sensor measurements observed and the fused results during the sliding window by the following formula:
Figure PCTCN2019122465-appb-000037
Apparatus
FIG. 3 and FIG. 4 depict block diagrams of apparatuses for sensor measurements processing of the present disclosure.
Referring to FIG. 3, an apparatus 300 which can execute the above method 100, includes:
- a measurement module 301, configured to get measurements by a group of sensors, wherein different sensors monitor different physical processes;
- an estimation module 302, configured to estimate based on the measurements, initial true states of the physical processes monitored by the group of sensors;
- a calculation module 303, configured to repeat following steps until convergence:
- calculate, based on the estimated true states of the physical processes, reliability scores of the group of sensors wherein the higher the score is, the more reliable a sensor is, such that a more reliable sensor should be more likely to provide measurements which are closer to real state of the physical process monitored by the sensor;
- estimate, based on the calculated reliability scores, true states of the physical processes, such that the real state of a physical process should be closer to measurements by a more reliable sensor.
Optionally, the apparatus 300 can further include a construction module 304, configured to before the calculation module 303 repeats until convergence, construct, for each of the physical processes, at least one soft sensor by calculating measurement by a soft sensor based on measurement by at least one sensor other than the sensor monitoring the physical process in the group of sensors, to enlarge the group of sensors.
Optionally, the calculation module 303 can be further configured to calculate reliability scores of the group of sensors, such that the more reliable a sensor is, the higher penalty if the measurement by the sensor is far away from the estimated true state of the respective physical process.
Optionally, the calculation module 303 can be further configured to:
- calculate out reliability scores of the group of sensors which make sum of differences between estimated true state of a physical process and measurement by the sensor monitoring the physical process in predefined at least one time step and among the physical processes and among the group of sensors is minimum.
Optionally, the calculation module 303 is further configured to:
- calculate out true states of the physical processes which make sum of differences between estimated true state of a physical process and measurement by the sensor monitoring the physical process in predefined at least one time step and among the physical processes and among the group of sensors is minimum.
Optionally, the calculation module 303 can be further configured to:
- estimate true states of the physical processes such that estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth.
Other embodiments of the apparatus 300 can be referred to above method 100.
Referring to FIG. 4, another embodiment of the apparatus 300 is depicted. It can include:
- at least one memory 305, configured to store instructions;
- at least one processor 306, coupled to the at least one memory 305, and upon execution of the executable instructions, configured to execute method 100.
Optionally, the apparatus 300 may also include I/O interfaces 307, configured to interface with external devices. The at least one processor 306, the at least one memory 305 and I/O interfaces can be connected via a bus, or connected directly to each other.
To be mentioned that, above mentioned modules 301~304 can be software  modules including instructions which are stored in the at least one memory 305, when executed by the at least one processor 306, execute the method 100.
FIG. 5 and FIG. 6 depict block diagrams of apparatuses for sensor measurements processing of the present disclosure.
Referring to FIG. 5, an apparatus 400 which can execute the above method 200, includes:
- a measurement module 401, configured to get measurements by a group of sensors, wherein different sensors monitor different physical processes;
- an acquisition module 402, configured to acquire reliability scores of the group of sensors;
- a fusion module 403, configured to estimate, based on the acquired reliability scores, true states of the physical processes monitored by the group of sensors such that:
- a true state of a physical process should be closer to the measurements by sensors with higher reliability scores.
Optionally, the fusion module 403 can be further configured to conduct the sensor fusion such that estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth.
Optionally, the measurement module 401 can be further configured to get at time step t, measurements by a group of sensors; the acquisition module 402 can be further configured to calculate reliability scores of the group of sensors based on: measurements by the group of sensors got at each time step from t-L to t, and estimated true states of the physical at each time step from t-L to t.
Optionally, the apparatus 400 can further include a construction module 404, configured to: before the acquisition module 402 acquires reliability scores of the group of sensors, construct, for each physical process, at least one soft sensor by calculating measurement by a soft sensor based on measurement by at least one sensor other than the sensor monitoring the physical process in the group of sensors, to enlarge the group of sensors.
Referring to FIG. 6, another embodiment of the apparatus 400 is depicted. It can include:
- at least one memory 405, configured to store instructions;
- at least one processor 406, coupled to the at least one memory 405, and upon execution of the executable instructions, configured to execute method 200.
Optionally, the apparatus 400 may also include I/O interfaces 407, configured to  interface with external devices. The at least one processor 406, the at least one memory 405 and I/O interfaces can be connected via a bus, or connected directly to each other.
To be mentioned that, above mentioned modules 401~404 can be software modules including instructions which are stored in the at least one memory 405, when executed by the at least one processor 406, execute the method 200.
A computer-readable medium is also provided in the present disclosure, storing executable instructions, which upon execution by a computer, enables the computer to execute  method  100 or 200 presented in this disclosure.
A computer program, which is being executed by at least one processor and performs  method  100 or 200 presented in this disclosure.
Experiment
We use our approach to monitor the reliability of sensors deployed for urban air pollution monitoring and fuse sensor measurements for more reliable pollution report. Experiment shows that our method can timely detect faulty sensors with low reliability scores and provide more accurate measurements. Taking FIG. 7 an FIG. 8 as an example. PM10_0, PM10_1 and PM10_2 are three sensors for measurement of PM10 (particulate matter 10) . In FIG. 7, we can see that the sensor PM10_0 reports abnormal PM10 measurements during the time interval around 40 to 60, this is caused by a physical fault of the sensor which is confirmed by the system operator. From FIG. 7, we can observe that our proposed fusion method reports much more reliable PM10 measurements than taking the averaging between the three redundant sensors. In FIG. 8, we can see that our method also timely identified that the sensor PM10_0 has much lower reliability score than other two sensors during the time interval around 40 to 60.
A method, apparatus and computer-readable storage media for sensor measurements processing are proposed. Based on sensor measurements, reliability scores of sensors can be calculated. By giving less weights to unreliable sensors, accuracy of estimation of true states of monitored physical processes can be improved; and comparing to Kalman filtering-based methods, the dynamic model of the underlying physical process is not necessarily known to conduct measurements  fusion, which makes our solution much more applicable in practical scenarios.
Firstly, our approach is purely data-driven and it does not require the dynamic model of the underlying physical process to be known. We treat the evaluation of sensor reliability scores and sensor fusion as an optimization problem based on the principle that more reliability sensors should be more likely to provide sensor measurements closer to the true states of the physical processes. Using the optimization framework we proposed, our approach does not necessarily need any Kalman filtering-based algorithms. As a result, our approach not only provides accurate estimates of the truth process states, but also becomes more generalizable and applicable.
Also, to utilize the correlation between the states of multiple physical processes to enhance the inference of sensor reliability scores and the estimation of truth states of physical processes, for each physical process, besides the physical sensors, we further construct soft sensors for monitoring its state at each time step by random local regression.
Secondly, we proposed a dynamic approach to monitor sensor reliability in real time. we use a sliding window based on which to efficiently update the sensor reliability score. As a result, our approach can capture evolving sensor reliability scores.
Furthermore, the fused measurements using our approach are more accurate than the commonly used averaging method as illustrated in our experiment.
While the present technique has been described in detail with reference to certain embodiments, it should be appreciated that the present technique is not limited to those precise embodiments. Rather, in view of the present disclosure which describes exemplary modes for practicing the invention, many modifications and variations would present themselves, to those skilled in the art without departing from the scope and spirit of this invention. The scope of the invention is, therefore, indicated by the following claims rather than by the foregoing description. All changes, modifications, and variations coming within the meaning and range of equivalency of the claims are to be considered within their scope.

Claims (23)

  1. A method (100) for sensor measurements processing, comprising:
    - getting (S101) , measurements by a group of sensors, wherein different sensors monitor different physical processes;
    - estimating (S102) , based on the measurements, initial true states of the physical processes;
    - repeating following steps until convergence:
    -calculating (S103) , based on the estimated true states of the physical processes, reliability scores of the group of sensors wherein the higher the score is, the more reliable a sensor is, such that a more reliable sensor should be more likely to provide measurements which are closer to real state of the physical process monitored by the sensor;
    - estimating (S104) , based on the calculated reliability scores, true states of the physical processes, such that the real state of a physical process should be closer to measurements by a more reliable sensor.
  2. the method (100) according to claim 1, before repeating until convergence, further comprising:
    - constructing (S102’) , for each of the physical processes, at least one soft sensor by calculating measurement by a soft sensor based on measurement by at least one sensor other than the sensor monitoring the physical process in the group of sensors, to enlarge the group of sensors.
  3. the method (100) according to claim 2, wherein calculating (S103) reliability scores of the group of sensors, comprises:
    - calculating reliability scores of the group of sensors, such that the more reliable a sensor is, the higher penalty if the measurement by the sensor is far away from the estimated true state of the respective physical process.
  4. the method (100) according to any of claims 1~3, wherein calculating (S103) reliability scores of the group of sensors comprises:
    - calculating out reliability scores of the group of sensors which make sum of sensor reliability-weighted distance between estimated true state of a physical process and measurement by the sensor monitoring the physical process in predefined at least one time step and among the physical processes and among the group of sensors is minimum.
  5. the method (100) according to any of claims 1~4, wherein estimating (S104) true states of physical processes monitored by the group of sensors, comprises:
    - calculating out true states of the physical processes which make sum of sensor reliability-weighted distance between estimated true state of a physical process and measurement by the sensor monitoring the physical process in predefined at least one time step and among the physical processes and among the group of sensors is minimum.
  6. the method (100) according to any of claims 1~5, wherein estimating (S104) true states of the physical processes comprises:
    - estimating true states of the physical processes such that estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth.
  7. A method (200) for sensor measurements processing, comprising:
    - getting (S201) , measurements by a group of sensors, wherein different sensors monitor different physical processes;
    - acquiring (S202) reliability scores of the group of sensors;
    - conducting sensor fusion (S203) , based on the acquired reliability scores, to estimate true states of the physical processes monitored by the group of sensors such that:
    - a true state of a physical process should be closer to the measurements by sensors with higher reliability scores.
  8. the method according to claim 7, wherein conducting sensor fusion (S203) , based on the acquired reliability scores, to estimate true states of the physical processes monitored by the group of sensors comprises:
    - conducting sensor fusion (S203) such that estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth.
  9. the method according to claims 7 or 8, wherein
    - getting (S201) measurements by a group of sensors comprises: getting at time step t, measurements by the group of sensors;
    - acquiring (S202) reliability scores of the group of sensors comprises: calculating reliability scores of the group of sensors based on:
    - measurements by the group of sensors got at each time step from t-L to t, and
    - estimated true states of the physical processes at each time step from t-L to t.
  10. the method according to any of claims 7~9, before estimating (S203) , based on the acquired reliability scores, true states of the physical processes monitored by the group of sensors, further comprising:
    - constructing (S202’) , for each physical process, at least one soft sensor by calculating measurement by a soft sensor based on measurement by at least one sensor other than the sensor monitoring the physical process in the group of sensors, to enlarge the group of sensors.
  11. An apparatus (300) for sensor measurements processing, comprising:
    - a measurement module (301) , configured to get measurements by a group of sensors, wherein different sensors monitor different physical processes;
    - an estimation module (302) , configured to estimate based on the measurements, initial true states of the physical processes monitored by the group of sensors;
    - a calculation module (303) , configured to repeat following steps until convergence:
    - calculate, based on the estimated true states of the physical processes, reliability scores of the group of sensors wherein the higher the score is, the more reliable a sensor is, such that a more reliable sensor should be more likely to provide measurements which are closer to real state of the physical process monitored by the sensor;
    - estimate, based on the calculated reliability scores, true states of the physical processes, such that the real state of a physical process should be closer to measurements by a more reliable sensor.
  12. the apparatus (300) according to claim 11, further comprising a construction module (304) , configured to before the calculation module (303) repeats until convergence, construct, for each of the physical processes, at least one soft sensor by calculating measurement by a soft sensor based on measurement by at least one sensor other than the sensor monitoring the physical process in the group of sensors, to enlarge the group of sensors.
  13. the apparatus (300) according to claim 12, wherein the calculation  module (303) is further configured to calculate reliability scores of the group of sensors, such that the more reliable a sensor is, the higher penalty if the measurement by the sensor is far away from the estimated true state of the respective physical process.
  14. the apparatus (300) according to any of claims 11~13, wherein the calculation module (303) is further configured to:
    - calculate out reliability scores of the group of sensors which make sum of differences between estimated true state of a physical process and measurement by the sensor monitoring the physical process in predefined at least one time step and among the physical processes and among the group of sensors is minimum.
  15. the apparatus (300) according to any of claims 11~14, wherein the calculation module (303) is further configured to:
    - calculate out true states of the physical processes which make sum of differences between estimated true state of a physical process and measurement by the sensor monitoring the physical process in predefined at least one time step and among the physical processes and among the group of sensors is minimum.
  16. the apparatus (300) according to any of claims 11~15, wherein the calculation module (303) is further configured to:
    - estimate true states of the physical processes such that estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth.
  17. An apparatus (300) for sensor measurements processing, comprising:
    - at least one memory (305) , configured to store instructions;
    - at least one processor (306) , coupled to the at least one memory (305) , and upon execution of the executable instructions, configured to execute method according to any of claims 1~6.
  18. An apparatus (400) for sensor measurements processing, comprising:
    - a measurement module (401) , configured to get measurements by a group of sensors, wherein different sensors monitor different physical processes;
    - an acquisition module (402) , configured to acquire reliability scores of the group of sensors;
    - an fusion module (403) , configured to estimate, based on the acquired reliability scores, true states of the physical processes monitored by the group of sensors such that:
    - a true state of a physical process should be closer to the measurements by sensors with higher reliability scores.
  19. the apparatus (400) according to claim 18, wherein the fusion module (403) is further configured to conduct the sensor fusion such that estimated true states of the physical processes monitored by the group of sensors in two consecutive discrete time steps are smooth.
  20. the apparatus (400) according to claim 18 or 19, wherein
    - the measurement module (401) is further configured to get at time step t, measurements by a group of sensors;
    - the acquisition module (402) is further configured to calculate reliability scores of the group of sensors based on:
    - measurements by the group of sensors got at each time step from t-L to t, and
    - estimated true states of the physical at each time step from t-L to t.
  21. the apparatus according to any of claims 18 to 20, further comprising a construction module (404) , configured to: before the acquisition module (402) acquires reliability scores of the group of sensors, construct, for each physical process, at least one soft sensor by calculating measurement by a soft sensor based on measurement by at least one sensor other than the sensor monitoring the physical process in the group of sensors, to enlarge the group of sensors.
  22. An apparatus (400) for sensor measurements processing, comprising:
    - at least one memory (405) , configured to store instructions;
    - at least one processor (406) , coupled to the at least one memory (305) , and upon execution of the executable instructions, configured to execute method according to any of claims 7~10.
  23. A computer-readable medium, storing executable instructions, which upon execution by a processor, enables the processor to execute method according to any of claims 1~10.
PCT/CN2019/122465 2019-12-02 2019-12-02 Method and apparatus for sensor measurements processing WO2021108960A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19954741.5A EP4052051A4 (en) 2019-12-02 2019-12-02 Method and apparatus for sensor measurements processing
CN201980102288.4A CN114902057A (en) 2019-12-02 2019-12-02 Method and device for sensor measurement processing
US17/781,508 US20230003785A1 (en) 2019-12-02 2019-12-02 Method and Apparatus for Sensor Measurements Processing
PCT/CN2019/122465 WO2021108960A1 (en) 2019-12-02 2019-12-02 Method and apparatus for sensor measurements processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122465 WO2021108960A1 (en) 2019-12-02 2019-12-02 Method and apparatus for sensor measurements processing

Publications (1)

Publication Number Publication Date
WO2021108960A1 true WO2021108960A1 (en) 2021-06-10

Family

ID=76221280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122465 WO2021108960A1 (en) 2019-12-02 2019-12-02 Method and apparatus for sensor measurements processing

Country Status (4)

Country Link
US (1) US20230003785A1 (en)
EP (1) EP4052051A4 (en)
CN (1) CN114902057A (en)
WO (1) WO2021108960A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012100153A (en) * 2010-11-04 2012-05-24 Nec Corp Radio wave propagation characteristic estimation system, radio wave propagation characteristic estimation method, and computer program
CN102761888A (en) * 2012-07-20 2012-10-31 无锡儒安科技有限公司 Sensor network abnormal detection method and device based on feature selection
EP2667208A1 (en) * 2012-05-24 2013-11-27 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Electronic integrated sensor system, method of estimating the value of a functional physical quantity and a corresponding computer program
CN103592575A (en) * 2013-11-25 2014-02-19 国家电网公司 Self-adaptation weighting data fusion fault distance measurement method based on multi-sensor system
JP2016050866A (en) * 2014-09-01 2016-04-11 株式会社島津製作所 Mass spectrometer
CN105711350A (en) * 2014-12-17 2016-06-29 法国大陆汽车公司 Method for estimating the reliability of measurements by wheel sensors of a vehicle and system for its application
US20170176225A1 (en) 2015-12-22 2017-06-22 Microchip Technology Incorporated System And Method For Reducing Noise In A Sensor System
US20170315961A1 (en) 2014-12-05 2017-11-02 Nec Corporation System analyzing device, system analyzing method and storage medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140012791A1 (en) * 2012-07-05 2014-01-09 Caterpillar Inc. Systems and methods for sensor error detection and compensation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012100153A (en) * 2010-11-04 2012-05-24 Nec Corp Radio wave propagation characteristic estimation system, radio wave propagation characteristic estimation method, and computer program
EP2667208A1 (en) * 2012-05-24 2013-11-27 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Electronic integrated sensor system, method of estimating the value of a functional physical quantity and a corresponding computer program
CN102761888A (en) * 2012-07-20 2012-10-31 无锡儒安科技有限公司 Sensor network abnormal detection method and device based on feature selection
CN103592575A (en) * 2013-11-25 2014-02-19 国家电网公司 Self-adaptation weighting data fusion fault distance measurement method based on multi-sensor system
JP2016050866A (en) * 2014-09-01 2016-04-11 株式会社島津製作所 Mass spectrometer
US20170315961A1 (en) 2014-12-05 2017-11-02 Nec Corporation System analyzing device, system analyzing method and storage medium
CN105711350A (en) * 2014-12-17 2016-06-29 法国大陆汽车公司 Method for estimating the reliability of measurements by wheel sensors of a vehicle and system for its application
US20170176225A1 (en) 2015-12-22 2017-06-22 Microchip Technology Incorporated System And Method For Reducing Noise In A Sensor System

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
C. K. CHUIG. CHEN ET AL.: "Kalman filtering", 2017, SPRINGER
FISHER JR W P ET AL.: "JOURNAL OF", vol. 238, INSTITUTE OF PHYSISC PUBLISHING, article "Reliability, precision, and measurement in the context of data from ability tests, surveys, and assessments", pages: 12035
See also references of EP4052051A4
WRIGHT, STEPHEN J.: "Coordinate descent algorithms", MATHEMATICAL PROGRAMMING, vol. 151, no. 1, 2015, pages 3 - 34, XP035503085, DOI: 10.1007/s10107-015-0892-3

Also Published As

Publication number Publication date
CN114902057A (en) 2022-08-12
US20230003785A1 (en) 2023-01-05
EP4052051A1 (en) 2022-09-07
EP4052051A4 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
Qian et al. A multi-time scale approach to remaining useful life prediction in rolling bearing
US10664754B2 (en) Information processing apparatus
Borgi et al. Data analytics for predictive maintenance of industrial robots
JP6609050B2 (en) Anomalous fusion in temporal causal graphs
US10317853B2 (en) Machine learning method and machine learning device for learning fault conditions, and fault prediction device and fault prediction system including the machine learning device
US9122273B2 (en) Failure cause diagnosis system and method
Yu Machine health prognostics using the Bayesian-inference-based probabilistic indication and high-order particle filtering framework
CN107729985B (en) Method for detecting process anomalies in a technical installation and corresponding diagnostic system
Tang et al. Methodologies for uncertainty management in prognostics
CN106934242B (en) The health degree appraisal procedure and system of equipment under multi-mode based on Cross-Entropy Method
CN110757510B (en) Method and system for predicting remaining life of robot
CN102257448B (en) Method and device for filtering signal using switching models
CN112487694B (en) Complex equipment residual life prediction method based on multiple degradation indexes
CN117708738A (en) Sensor time sequence anomaly detection method and system based on multi-modal variable correlation
KR20050031809A (en) Method and apparatus for unmanned vehicle navigation using sensors fusion
CN116414653A (en) Method and device for detecting host fault, electronic equipment and storage medium
Lin et al. A novel product remaining useful life prediction approach considering fault effects
Takruri et al. Online drift correction in wireless sensor networks using spatio-temporal modeling
CN112128950B (en) Machine room temperature and humidity prediction method and system based on multiple model comparisons
Zug et al. Fault-handling in networked sensor systems
Dietrich et al. Detecting external measurement disturbances based on statistical analysis for smart sensors
WO2021108960A1 (en) Method and apparatus for sensor measurements processing
Kakati et al. Remaining useful life predictions for turbofan engine degradation using online long short-term memory network
CN109067598A (en) A kind of cloud computing system physical equipment fault detection method based on figure centrad
Garcia et al. Resilient plant monitoring system: Design, analysis, and performance evaluation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019954741

Country of ref document: EP

Effective date: 20220530

NENP Non-entry into the national phase

Ref country code: DE