WO2021106443A1 - 誘電体共振器、誘電体フィルタ、およびマルチプレクサ - Google Patents

誘電体共振器、誘電体フィルタ、およびマルチプレクサ Download PDF

Info

Publication number
WO2021106443A1
WO2021106443A1 PCT/JP2020/039653 JP2020039653W WO2021106443A1 WO 2021106443 A1 WO2021106443 A1 WO 2021106443A1 JP 2020039653 W JP2020039653 W JP 2020039653W WO 2021106443 A1 WO2021106443 A1 WO 2021106443A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
conductors
dielectric
distributed constant
axis direction
Prior art date
Application number
PCT/JP2020/039653
Other languages
English (en)
French (fr)
Inventor
多田 斉
康雄 山田
宗禎 山本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080056790.9A priority Critical patent/CN114245955B/zh
Priority to JP2021561223A priority patent/JP7211533B2/ja
Publication of WO2021106443A1 publication Critical patent/WO2021106443A1/ja
Priority to US17/715,097 priority patent/US12051847B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • H01P7/105Multimode resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2053Comb or interdigital filters; Cascaded coaxial cavities the coaxial cavity resonators being disposed parall to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/04Coaxial resonators

Definitions

  • the present invention relates to a dielectric resonator, a dielectric filter, and a multiplexer including the dielectric filter.
  • Patent Document 1 discloses a coaxial dielectric resonator.
  • the outer conductor of the conductive member is formed on the outer peripheral surface of the dielectric member, and the through hole of the coaxial-shaped dielectric member is filled with the conductor paste to form the inner conductor.
  • a conductor is formed. Since the inner conductor has high conductivity, the amount of heat due to the loss generated in the coaxial dielectric resonator can be efficiently dissipated to the outside of the coaxial dielectric resonator. According to the coaxial dielectric resonator, the decrease in Q value due to miniaturization can be reduced.
  • the frequency characteristics (for example, passing characteristics or damping characteristics) of a dielectric filter are often formed by a plurality of dielectric resonators.
  • the performance of the dielectric filter depends on the steepness of the dielectric resonator. Therefore, in order to further reduce the loss of the dielectric filter, it is necessary to further improve the Q value, which is an index for the steepness of the dielectric resonator.
  • the present invention has been made to solve the above problems, and an object of the present invention is to improve the Q value of a dielectric resonator and reduce the loss of a dielectric filter.
  • the dielectric resonator includes a dielectric substrate, a distributed constant element, and a shield conductor portion.
  • the distributed constant element extends in the first direction inside the dielectric substrate.
  • the shield conductor portion is formed on the surface of the dielectric substrate so as to wind the distributed constant element when the distributed constant element is viewed in a plan view from the first direction.
  • One end of the distributed constant element is not connected to the shield conductor portion.
  • the distributed constant element includes a plurality of conductors.
  • the dielectric filter according to another aspect of the present invention includes a dielectric substrate, a distributed constant element, first and second terminals, and a shield conductor portion.
  • the distributed constant element extends in the first direction inside the dielectric substrate.
  • the first terminal and the second terminal are electrically connected to a plurality of distributed constant elements.
  • the shield conductor portion is formed on the surface of the dielectric substrate so as to wind the plurality of distributed constant elements when the plurality of distributed constant elements are viewed in a plan view from the first direction.
  • One end of each of the plurality of distributed constant elements is not connected to the shield conductor portion.
  • At least one distributed constant element included in the plurality of distributed constant elements includes a plurality of conductors.
  • the dielectric substrate is formed of a plurality of dielectric layers laminated in a second direction orthogonal to the first direction.
  • Each of the plurality of conductors extends in the first direction and forms a distributed constant line having the second direction as a normal.
  • the plurality of conductors are arranged in at least 13 dielectric layers of the plurality of dielectric layers.
  • the Q value can be improved by including a plurality of conductors in the distributed constant element.
  • low loss can be realized by including a plurality of conductors in the distributed constant element.
  • FIG. 1 It is an external perspective view of the dielectric filter 1 which concerns on Embodiment 1.
  • FIG. It is a perspective view of the dielectric filter 1 which concerns on Embodiment 1.
  • FIG. It is a figure which shows the passing characteristic (solid line) and reflection characteristic (dotted line) of the dielectric filter of FIG. 1 together.
  • FIG. It is a perspective view of the dielectric filter which concerns on Comparative Example 1.
  • FIG. It is a figure which shows the minimum value (solid line) of the insertion loss of the dielectric filter of FIG. 1 and the minimum value (dotted line) of the insertion loss of the dielectric filter of FIG. 4 together.
  • FIG. FIG. 6 is a sectional view taken along line VII-VII of FIG.
  • FIG. FIG. 8 is a plan view of the distribution of the electric field strength (kV / m) in the simulation in which a high-frequency signal is passed through the distribution constant element of FIG.
  • FIG. 6 is a plan view of the distribution of electric field strength in a simulation in which a high-frequency signal is passed through the distribution constant element of FIG. 6 from the X-axis direction.
  • It is sectional drawing of the dielectric resonator which concerns on the modification 1 of Embodiment 2. It is sectional drawing of the dielectric resonator which concerns on the modification 2 of Embodiment 2. It is sectional drawing of the dielectric resonator which concerns on the modification 3 of Embodiment 2.
  • FIG. 5 is a plan view of the dielectric resonator of FIG. 15 from the X-axis direction. It is a figure which shows the relationship between the stacking number of a plurality of conductors and the Q value of a dielectric resonator together with the case of the dielectric resonator of FIG. 16 (solid line) and the dielectric resonator of FIG. 6 (dotted line).
  • FIG. 5 is a plan view of the dielectric resonator according to the modified example of the third embodiment from the X-axis direction.
  • FIG. 20 shows the passing characteristic (solid line) of the dielectric filter of FIG. 20 and the passing characteristic (dotted line) of the dielectric filter of FIG. 21 together.
  • FIG. 19 shows the passing characteristic (solid line) of the dielectric filter of FIG. 19 and the passing characteristic (dotted line) of the dielectric filter of FIG. 21 together.
  • FIG. 5 is a perspective view of the dielectric filter which concerns on Embodiment 5.
  • FIG. 4 is a plan view of the distribution of the electric field strength in the simulation in which a high-frequency signal is passed through the distribution constant element of FIG. 24 in the odd mode from the X-axis direction.
  • FIG. 4 is a plan view of the distribution of the electric field strength in the simulation in which a high-frequency signal is passed through the distribution constant element of FIG. 24 in the even mode from the X-axis direction.
  • FIG. 5 is a plan view of the distribution of the electric field strength in the simulation in which a high-frequency signal is passed through the distributed constant element of FIG. 19 in the odd mode from the X-axis direction.
  • FIG. 5 is a plan view of the distribution of the electric field strength in the simulation in which a high-frequency signal is passed through the distribution constant element of FIG.
  • FIGS. 1 and 2 are perspective views of the dielectric filter 1 according to the first embodiment.
  • the X-axis, Y-axis, and Z-axis are orthogonal to each other. The same applies to FIGS. 4, 6 to 16, 18 to 21, FIGS. 24 to 29, and FIGS. 31 and 32, which will be described later.
  • the dielectric filter 1 has, for example, a rectangular parallelepiped shape.
  • the dielectric filter 1 includes a dielectric substrate 100, distributed constant elements 131 to 134, a shield conductor portion 150, ground electrodes 121 and 122, input / output terminals P1 (first terminal), and input / output terminals P2 (first terminal). 2 terminals).
  • the dielectric substrate 100 of FIG. 1 is not shown in order to make it easier to see the distributed constant elements 131 to 134 formed inside the dielectric filter 1.
  • FIG. 4 FIG. 6, FIG. 8, FIG. 15, FIG. 16, FIGS. 18 to 21, FIG. 24, FIG. 29, and FIG. 32 regarding the non-illustration of the dielectric substrate.
  • the dielectric substrate 100 is formed by laminating a plurality of dielectric layers in the Z-axis direction (second direction).
  • Each of the distributed constant elements 131 to 134 extends in the X-axis direction (first direction) inside the dielectric substrate 100.
  • the length of each of the distributed constant elements 131 to 134 in the X-axis direction, the length in the Y-axis direction, and the length in the Z-axis direction are the lengths of the other distributed constant elements in the X-axis direction and the Y-axis direction. It is the same as the length and the length in the Z-axis direction, respectively.
  • the distribution constant elements 131 to 134 are arranged in this order linearly in the Y-axis direction (third direction) between the ground electrodes 121 and 122.
  • the distribution constant elements 131 to 134 do not have to be arranged in a straight line, and may be arranged in a diamond shape or a zigzag shape, for example.
  • Each of the input / output terminals P1 and P2 is electrically connected to the distributed constant elements 131 and 134 via the via conductor and the line conductor, respectively.
  • the signal input to the input / output terminal P1 is output from the input / output terminal P2.
  • the signal input to the input / output terminal P2 is output from the input / output terminal P1.
  • the case where the two circuit elements are electrically connected includes the case where the two circuit elements are directly connected and the case where the two circuit elements are electrically coupled.
  • the outermost surface of the dielectric filter 1 perpendicular to the Z-axis direction is the upper surface UF and the lower surface BF.
  • the top surface UF and the bottom surface BF face each other in the Z-axis direction.
  • the planes parallel to the ZX plane are referred to as side surfaces SF1 and SF3.
  • the planes parallel to the YZ plane are referred to as side surfaces SF2 and SF4.
  • Input / output terminals P1 and P2 and a ground terminal 110 are formed on the bottom surface BF.
  • the input / output terminals P1 and P2 and the ground terminal 110 are, for example, LGA (Land Grid Array) terminals in which planar electrodes are regularly arranged on the bottom surface BF.
  • the bottom surface BF is connected to a circuit board (not shown).
  • a shield electrode 116 is arranged on the upper surface UF.
  • the shield electrode 116 covers the upper surface UF.
  • Shield electrodes 111 and 112 are arranged on the side surface SF1.
  • the shield electrodes 111 and 112 are arranged apart from each other in the X-axis direction.
  • Each of the shield electrodes 111 and 112 is connected to the ground terminal 110, the ground electrodes 121 and 122, and the shield electrode 116.
  • Shield electrodes 114 and 115 are arranged on the side surface SF3.
  • the shield electrodes 114 and 115 are arranged apart from each other in the X-axis direction.
  • Each of the shield electrodes 114 and 115 is connected to the ground terminal 110, the ground electrodes 121 and 122, and the shield electrode 116.
  • a shield electrode 113 is arranged on the side surface SF2.
  • the shield electrode 113 covers the side surface SF2.
  • the shield electrode 113 is connected to the ground terminal 110, the ground electrodes 121, 122, and the shield electrodes 112, 114, 116.
  • a shield electrode is not formed on the side surface SF4.
  • the ground terminal 110 and the shield electrodes 111 to 116 form a shield conductor portion 150.
  • the shield conductor portion 150 is viewed in a plan view from the X-axis direction, the shield conductor portion 150 is formed on the surface of the dielectric substrate 100 so as to wind the distributed constant elements 131 to 134.
  • each of the distributed constant elements 131 to 134 is not connected to the shield conductor portion 150. That is, one end of each of the distributed constant elements 131 to 134 is an open end where the voltage can change.
  • the end portion (the other end) on the side surface SF2 side of each of the distributed constant elements 131 to 134 is connected to the shield electrode 113. That is, the other end of each of the distributed constant elements 131 to 134 is a fixed end in which the voltage is fixed to the reference voltage of the shield conductor portion 150.
  • each of the distributed constant elements 131 to 134 in the X-axis direction is one-fourth of the wavelength of the desired signal that can pass through the dielectric filter 1. That is, each of the distributed constant elements 131 to 134 is a ⁇ / 4 resonator.
  • the dielectric filter 1 is a four-stage dielectric filter formed from four ⁇ / 4 resonators.
  • the number of stages (the number of resonators) of the dielectric filter 1 may be two stages, three stages, or five or more stages.
  • Distribution constant elements 131 to 134 include a plurality of conductors 141 to 144, respectively.
  • Each of the plurality of conductors 141 extends in the X-axis direction and forms a distributed constant line having a normal in the Z-axis direction.
  • Each of the plurality of conductors 141 is arranged on any one of the plurality of dielectric layers forming the dielectric substrate 100. That is, the plurality of conductors 141 are laminated in the Z-axis direction with an interval corresponding to the thickness of the dielectric layer. In the plurality of conductors 141, the distance between adjacent conductors in the Z-axis direction does not have to be constant.
  • Each of the plurality of conductors 142 to 144 is also arranged in the same manner as the plurality of conductors 141.
  • Distribution constant elements 131 to 134 include via conductors V11 to V14, respectively.
  • the plurality of conductors 141 are connected to each other by a via conductor V11 (short-circuit conductor portion).
  • the plurality of conductors 142 are connected to each other by a via conductor V12 (short-circuit conductor portion).
  • the plurality of conductors 143 are connected to each other by a via conductor V13 (short-circuit conductor portion).
  • the plurality of conductors 144 are connected to each other by a via conductor V14 (short-circuit conductor portion).
  • the potentials (polarities) of the plurality of conductors match by connecting the plurality of conductors of the distribution constant elements to each other. Therefore, the resonance modes of the currents flowing through each of the plurality of conductors can be matched. As a result, the directions in which currents flow can be matched in each of the plurality of conductors.
  • FIG. 3 is a diagram showing the passing characteristics (solid line) and the reflection characteristics (dotted line) of the dielectric filter 1 of FIG. 1 together.
  • the pass characteristic is the frequency characteristic of the insertion loss.
  • the reflection characteristic is a frequency characteristic of reflection loss.
  • a pass band is formed between 5.5 GHz and 6.0 GHz, and an attenuation pole is formed between 5.0 GHz and 5.3 GHz.
  • FIG. 4 is a perspective view of the dielectric filter 10 according to Comparative Example 1.
  • the configuration of the dielectric filter 10 is such that the distribution constant elements 131 to 134 of the dielectric filter 1 of FIG. 1 are replaced with the distribution constant elements 11 to 14, respectively. Other than these, the description is the same, so the description will not be repeated.
  • each of the distributed constant elements 11 to 14 is formed of one bulk material whose inside is filled.
  • the length in the X-axis direction, the length in the Y-axis direction, and the length in the Z-axis direction of the bulk member are the length in the X-axis direction and the length in the Y-axis direction of each of the distributed constant elements 131 to 134 in FIG. It is the same as the length in the Z-axis direction.
  • FIG. 5 is a diagram showing the minimum value of the insertion loss of the dielectric filter 1 of FIG. 1 (solid line) and the minimum value of the insertion loss of the dielectric filter 10 of FIG. 4 (dotted line).
  • the minimum value of the insertion loss of the dielectric filter 1 in FIG. 1 the length (height) of the distributed constant elements 131 to 134 in the Z-axis direction and the length (thickness) of each conductor in the Z-axis direction are kept constant.
  • Values when the number of divisions (number of layers) of the dielectric in which each of the plurality of conductors 141 to 144 is changed are shown.
  • the distance between conductors adjacent to each of the plurality of conductors 141 to 144 in the Z-axis direction becomes narrower.
  • the insertion loss of the dielectric filter 1 is smaller than the insertion loss of the dielectric filter 10.
  • each of the plurality of conductors is arranged at intervals in the Z-axis direction. Therefore, the volume of the plurality of conductors included in the distributed constant element is smaller than the volume of each of the distributed constant elements 11 to 14 in FIG.
  • the high frequency signal does not flow through the entire part of the conductor, but flows through the surface part of the conductor (skin effect).
  • the skin portion through which the current flows in each conductor increases. That is, by forming the distributed constant element as a laminated body of a plurality of conductors, the surface area through which a high frequency signal can pass can be increased. As a result, the Q value of the dielectric resonator including the distributed constant element can be increased, so that the insertion loss of the dielectric filter formed by using the dielectric resonator can be reduced.
  • the thickness of the conductor included in each of the distributed constant elements 131 to 134 is larger than the skin depth ⁇ of the conductor in order to secure the region through which the current flows.
  • the skin depth ⁇ of the conductor represents the depth from the surface where the current is reduced to the reciprocal of the natural logarithm e (about 36.7%) as compared with the surface (skin) of the conductor.
  • the skin depth ⁇ is determined by using the conductor resistance ⁇ , magnetic permeability ⁇ r , vacuum magnetic permeability ⁇ 0 (4 ⁇ ⁇ 10-7 ), and angular frequency ⁇ (2 ⁇ times the frequency f of the high frequency signal). It is expressed as in equation (1).
  • FIG. 6 is a perspective view of the dielectric resonator 2 according to the second embodiment.
  • FIG. 7 is a sectional view taken along line VII-VII of FIG.
  • the configuration of the dielectric resonator 2 is such that the distributed constant elements 131 to 134 of the dielectric filters 1 of FIGS. 1 and 2 are replaced with the distributed constant elements 231. Other than this, the explanation is not repeated because it is the same.
  • the distributed constant element 231 includes a plurality of conductors 241 and a via conductor V21 (short-circuit conductor portion).
  • Each of the plurality of conductors 241 extends in the X-axis direction and forms a distributed constant line having a normal in the Z-axis direction.
  • Each of the plurality of conductors 241 is arranged on any one of the plurality of dielectric layers forming the dielectric substrate 100.
  • One end of the distribution constant element 231 is not connected to the shield conductor portion 150. That is, one end of the distributed constant element 231 is an open end where the voltage can change.
  • the plurality of conductors 241 are connected to each other by a via conductor V21.
  • the other end of the distribution constant element 231 is connected to the shield electrode 113. That is, the other end of the distributed constant element 231 is a fixed end at which the voltage is fixed to the reference voltage of the shield conductor portion 150.
  • the length of the distributed constant element 231 in the X-axis direction is one-fourth of the wavelength of the signal at which the dielectric resonator 2 resonates. That is, the dielectric resonator 2 is a ⁇ / 4 resonator.
  • the length of each of the plurality of conductors 241 in the X-axis direction is equal to the length of the dielectric substrate 100 in the X-axis direction.
  • FIG. 8 is a perspective view of the dielectric resonator 20 according to Comparative Example 2.
  • the configuration of the dielectric resonator 20 is such that the distributed constant element 231 in FIG. 6 is replaced with 21. Other than that, the explanation is not repeated because it is the same.
  • the distribution constant element 21 is formed of a single bulk material whose inside is filled.
  • the length of the distributed constant element 21 in the X-axis direction, the length in the Y-axis direction, and the length in the Z-axis direction are the length of the distributed constant element 231 in FIG. 6 in the X-axis direction and the length in the Y-axis direction. And the length in the Z-axis direction, respectively.
  • FIG. 9 is a plan view of the distribution of the electric field strength (kV / m) in the simulation in which a high-frequency signal is passed through the distribution constant element 21 of FIG. 8 from the X-axis direction.
  • FIG. 10 is a plan view of the distribution of the electric field strength in the simulation in which the high frequency signal is passed through the distribution constant element 231 of FIG. 6 from the X-axis direction.
  • FIGS. 25 to 28 the closer the color of the region is from white to black, the stronger the electric field strength of the region. The same applies to FIGS. 25 to 28.
  • the electric field is concentrated on the surface of the distributed constant element 21 due to the skin effect, and almost no current flows inside the distributed constant element 21.
  • an electric field is also generated inside the distributed constant element 231.
  • the surface area through which a high frequency signal can pass is increased as compared with the distributed constant element 21 by laminating a plurality of conductors 241 at intervals.
  • the Q value of the dielectric resonator 2 can be improved higher than the Q value of the dielectric resonator 20 due to the expansion of the region through which the high frequency signal can pass.
  • each of the plurality of conductors 241 is connected to each other by the via conductor V21 formed inside the dielectric substrate 100 has been described.
  • Each of the plurality of conductors 241 may be connected to each other outside the dielectric substrate 100.
  • FIG. 11 is a cross-sectional view of the dielectric resonator 2A according to the first modification of the second embodiment.
  • the configuration of the dielectric resonator 2A is such that the via conductor V21 in FIG. 7 is replaced with the connecting conductor 217 (short-circuit conductor portion). Other than this, the explanation is not repeated because it is the same.
  • the connecting conductor 217 connects each of the plurality of conductors 241 to each other outside the dielectric substrate 100.
  • the connecting conductor 217 By forming the connecting conductor 217 on the outside of the dielectric substrate 100, the step of forming the via conductor inside the dielectric substrate 100 becomes unnecessary. As a result, the manufacturing process of the dielectric resonator 2 can be simplified.
  • each of the plurality of conductors 241 in the X-axis direction is equal to the length of the dielectric substrate 100 in the X-axis direction.
  • the lengths of the two may be different.
  • FIG. 12 is a cross-sectional view of the dielectric resonator 2B according to the second modification of the second embodiment.
  • the configuration of the dielectric resonator 2B is such that the plurality of conductors 241 in FIG. 7 are replaced with 241B. Other than this, the explanation is not repeated because it is the same.
  • the length of each of the plurality of conductors 241B in the X-axis direction is shorter than the length of the dielectric substrate 100 in the X-axis direction.
  • both ends of the distribution constant element 231 may be open ends.
  • FIG. 13 is a cross-sectional view of the dielectric resonator 2C according to the third modification of the second embodiment.
  • the configuration of the dielectric resonator 2C is such that the plurality of conductors 241 in FIG. 7 are replaced with 241C and the shield electrode 113 is removed. Other than this, the explanation is not repeated because it is the same.
  • both ends of each of the plurality of conductors 241C are not connected to the shield conductor portion 150. That is, both ends of the distribution constant element 231 are open ends.
  • the length of the distributed constant element 231 in the X-axis direction is half the wavelength of the signal at which the dielectric resonator 2C resonates. That is, the dielectric resonator 2C is a ⁇ / 2 resonator.
  • each of the plurality of conductors 241 is connected to each other at the open end of the distributed constant element 231 has been described.
  • Each of the plurality of conductors 241 may not be connected to each other at the open end of the distribution constant element 231.
  • FIG. 14 is a cross-sectional view of the dielectric resonator 2D according to the fourth modification of the second embodiment.
  • the configuration of the dielectric resonator 2D is such that the via conductor V21 of FIG. 7 is removed. Other than this, the explanation is not repeated because it is the same.
  • the Q value can be improved.
  • FIG. 15 is a perspective view of the dielectric resonator 3 according to the third embodiment.
  • the configuration of the dielectric resonator 3 is such that the distributed constant element 231 in FIG. 6 is replaced with 331. Other than this, the explanation is not repeated because it is the same.
  • the distributed constant element 331 includes a plurality of conductors 341 and a short-circuit conductor portion 360 (short-circuit conductor portion).
  • the short-circuit conductor portion 360 includes via conductors V31 and V32.
  • Each of the plurality of conductors 341 extends in the X-axis direction and forms a distributed constant line having a normal in the Z-axis direction.
  • One end of the distribution constant element 331 is not connected to the shield conductor portion 150. That is, one end of the distributed constant element 331 is an open end where the voltage can change. At one end of the distributed constant element 331, the plurality of conductors 341 are connected to each other by the via conductors V31 and V32.
  • the other end of the distribution constant element 331 is connected to the shield electrode 113. That is, the other end of the distributed constant element 331 is a fixed end at which the voltage is fixed to the reference voltage of the shield conductor portion 150.
  • the length of the distributed constant element 331 in the X-axis direction is one-fourth of the wavelength of the signal at which the dielectric resonator 3 resonates. That is, the dielectric resonator 3 is a ⁇ / 4 resonator.
  • FIG. 16 is a plan view of the dielectric resonator 3 of FIG. 15 from the X-axis direction. As shown in FIG. 16, the length (width) of the distributed constant element 331 in the Y-axis direction is the width w31 (specific length).
  • the plurality of conductors 341 include conductor 3411 (first conductor), conductor 3412 (first conductor), conductor 3413 (third conductor), conductor 3414 (fourth conductor), and conductor 3415 (second conductor). , Includes conductor 3416 (second conductor). Among the conductors included in the plurality of conductors 341, the conductors other than the conductors 3411 and 3416 are laminated between the conductor 3411 and the conductor 3416.
  • each of the conductors 3411, 3412, 3415, and 3416 is the width w31.
  • the width of the conductor laminated between the conductors 3411 and 3412 and the width of the conductor laminated between the conductors 3415 and 3416 are also width w31.
  • the width of the conductor 3413 is the width w32 ( ⁇ w31).
  • the width of the conductor 3414 is the width w33 ( ⁇ w31).
  • the widths w32 and w33 may be different or equal.
  • Conductors 3413 and 3414 are arranged between conductors 3412 and 3415 in the Z-axis direction.
  • Each of the width of the conductor laminated between the conductors 3412 and 3413 and the width of the conductor laminated between the conductors 3413 and 3415 is also the width w32.
  • the conductor 3411, the conductor laminated between the conductors 3411 and 3413, the conductor 3413, the conductor laminated between the conductor 3413 and the conductor 3416, and the conductor 3416 are connected to each other by the via conductor V31.
  • Each of the width of the conductor laminated between the conductors 3412 and 3414 and the width of the conductor laminated between the conductors 3414 and 3415 is also the width w33.
  • the conductor 3411, the conductor laminated between the conductors 3411 and 3414, the conductor laminated between the conductor 3414 and the conductor 3416, and the conductor 3416 are connected to each other by the via conductor V32.
  • a laminated structure of conductors is not formed in the core portion Cd of the distribution constant element 331 (the portion between the conductors 3412 and 3415 and between the conductors 3413 and 3414). Since the rigidity of the dielectric of the core portion Cd can be ensured, the distortion of the distributed constant element 331 can be reduced. Further, due to the skin effect of the high frequency signal, almost no current flows through the core portion of the distribution constant element 331. Therefore, even if the laminated structure of the conductor is not formed in the core portion Cd, the current flowing through the distributed constant element 331 is hardly reduced. As a result, the Q value of the dielectric resonator 3 can be maintained.
  • FIG. 17 shows the relationship between the number of laminated layers of a plurality of conductors and the Q value of the dielectric resonator, in which the case of the dielectric resonator 3 of FIG. 16 (solid line) and the dielectric resonator 2 of FIG. 6 (dotted line) are combined. It is a figure which shows. As shown in FIG. 17, both are almost the same. In the dielectric resonator 3, the Q value of the dielectric resonator 2 is maintained.
  • FIG. 18 is a plan view of the dielectric resonator 3A according to the modified example of the third embodiment from the X-axis direction.
  • the configuration of the dielectric resonator 3A is such that the plurality of conductors 341 in FIG. 16 are replaced with 341A.
  • a conductor having the same width as the conductor 3413 and a conductor having the same width as the conductor 3414 are laminated on both sides of the core portion Cd in the Y-axis direction between the conductors 3411 and 3416 in the outermost layer.
  • the thickness of each of the conductors 3411 and 3416 is thicker than the skin depth of each conductor.
  • the Q value can be improved and the distortion of the dielectric resonator can be reduced.
  • FIG. 19 is a perspective view of the dielectric filter 4 according to the fourth embodiment.
  • the configuration of the dielectric filter 4 is such that the distribution constant elements 131 to 134 of the dielectric filter 1 of FIG. 2 are replaced with the distribution constant elements 431 and 432. Other than this, the explanation is not repeated because it is the same.
  • the distribution constant element 431 includes a plurality of conductors 441 and a via conductor V41 (short-circuit conductor portion).
  • Each of the plurality of conductors 441 extends in the X-axis direction and forms a distributed constant line having a normal in the Z-axis direction.
  • One end of the distribution constant element 431 is not connected to the shield conductor portion 150. That is, one end of the distributed constant element 431 is an open end where the voltage can change. At one end of the distributed constant element 431, the plurality of conductors 441 are connected to each other by a via conductor V41.
  • the other end of the distribution constant element 431 is connected to the shield electrode 113. That is, the other end of the distributed constant element 431 is a fixed end at which the voltage is fixed to the reference voltage of the shield conductor portion 150.
  • the distribution constant element 432 includes a plurality of conductors 442 and a via conductor V42 (short-circuit conductor portion). Each of the plurality of conductors 442 extends in the X-axis direction and forms a distributed constant line having a normal in the Z-axis direction.
  • One end of the distribution constant element 432 is not connected to the shield conductor portion 150. That is, one end of the distributed constant element 432 is an open end where the voltage can change. At one end of the distributed constant element 432, the plurality of conductors 442 are connected to each other by a via conductor V42.
  • the other end of the distribution constant element 432 is connected to the shield electrode 113. That is, the other end of the distributed constant element 432 is a fixed end at which the voltage is fixed to the reference voltage of the shield conductor portion 150.
  • each of the distributed constant elements 431 and 432 in the X-axis direction is one-fourth of the wavelength of a desired signal that can pass through the dielectric filter 4. That is, each of the distributed constant elements 431 and 432 is a ⁇ / 4 resonator.
  • the dielectric filter 4 is a two-stage dielectric filter formed from two ⁇ / 4 resonators.
  • FIG. 20 is a perspective view of the dielectric filter 4A according to the modified example of the fourth embodiment.
  • the configuration of the dielectric filter 4A is such that the distribution constant elements 431 and 432 in FIG. 19 are replaced with 431A and 432A, respectively.
  • the configuration of the distribution constant elements 431A and 432A is such that the via conductors V41 and V42 are removed from the distribution constant elements 431 and 432 of FIG. 19, respectively. Other than these, the description is the same, so the description will not be repeated.
  • FIG. 21 is a perspective view of the dielectric filter 40 according to Comparative Example 3.
  • the configuration of the dielectric filter 40 is such that the distributed constant elements 431 and 432 in FIG. 19 are replaced with 41 and 42, respectively. Other than that, the explanation is not repeated because it is the same.
  • each of the distribution constant elements 41 and 42 is formed from a single bulk material whose inside is filled.
  • the length of the distributed constant elements 41 and 42 in the X-axis direction, the length in the Y-axis direction, and the length in the Z-axis direction are the lengths of the distributed constant elements 431 and 432 in FIG. 19 in the X-axis direction.
  • FIG. 22 is a diagram showing the passing characteristics (solid line) of the dielectric filter 4A of FIG. 20 and the passing characteristics (dotted line) of the dielectric filter 40 of FIG. 21 together.
  • the insertion loss is minimized at frequencies f41 and f42 (> f41).
  • the frequency f41 is the resonance frequency of the dielectric filter 40 in the odd mode in which the directions of the currents flowing through the distributed constant elements 41 and 42 are opposite to each other.
  • the frequency f42 is the resonance frequency of the dielectric filter 40 in the even mode in which the directions of the currents flowing through the distributed constant elements 41 and 42 are the same. Since the insertion loss is minimized at each of the frequencies f41 and f42, a pass band of the dielectric filter 40 is formed between the frequencies f41 and f42.
  • the insertion loss is minimized at the frequency f43 (> f41).
  • resonance occurs in the even mode in which the directions of the currents flowing through the distributed constant elements 431A and 432A are the same. However, resonance is unlikely to occur in the odd mode in which the directions of the currents flowing through the distributed constant elements 431A and 432A are opposite to each other.
  • the dielectric filter 4A since each of the plurality of conductors 441 and 442 is not connected to each other at the open ends of the distributed constant elements 431A and 432A, a plurality of resonance modes are applied to the current flowing through each of the plurality of conductors. Occurs, and the plurality of resonance modes interfere with each other. In particular, in the odd mode, since the directions of the currents flowing through the distributed constant elements 431A and 432A are opposite to each other, the plurality of resonance modes cancel each other out. Therefore, the dielectric filter 4A is unlikely to resonate in the odd mode.
  • FIG. 23 is a diagram showing the passing characteristics (solid line) of the dielectric filter 4 of FIG. 19 and the passing characteristics (dotted line) of the dielectric filter 40 of FIG. 21 together. As shown in FIG. 23, both exhibit almost the same characteristics. Similar to the dielectric filter 40, the dielectric filter 4 also has a minimum insertion loss at frequencies f41 and f42 (> f41).
  • each of the plurality of conductors 441 and 442 is connected to each other at the open ends of the distributed constant elements 431 and 432, the resonance modes of the currents flowing through each of the plurality of conductors match. To do. As a result, resonance occurs in the dielectric filter 4 even in the odd mode in which the directions of the currents flowing through the distributed constant elements 431 and 432 are opposite to each other.
  • the dielectric filter according to the fourth embodiment and the modified example low loss can be realized. Further, according to the dielectric filter according to the fourth embodiment and the modified example, resonance can be generated even in the odd mode, so that the pass band can be widened.
  • the width of the conductor close to the outermost layer is made shorter than the width of the conductor close to the intermediate layer.
  • the plurality of conductors When the plurality of conductors are viewed in a plan view from the extending direction of the distribution constant element, the plurality of conductors form a shape in which the corners of a rectangle are rounded as a whole. Since the corners of the shape are not sharp, the electric field concentration is relaxed. According to the dielectric filter according to the fifth embodiment, the conductor loss is reduced. As a result, the insertion loss can be further improved.
  • FIG. 24 is a perspective view of the dielectric filter 5 according to the fifth embodiment.
  • the structure of the dielectric filter 5 is such that the distribution constant elements 431 and 432 in FIG. 19 are replaced with the distribution constant elements 531 and 532, respectively. Other than this, the explanation is not repeated because it is the same.
  • the distributed constant element 531 includes a plurality of conductors 541 and a via conductor V51 (short-circuit conductor portion).
  • Each of the plurality of conductors 541 extends in the X-axis direction and forms a distributed constant line having a normal in the Z-axis direction.
  • One end of the distribution constant element 531 is not connected to the shield conductor portion 150. That is, one end of the distributed constant element 531 is an open end where the voltage can change. At one end of the distributed constant element 531 the plurality of conductors 541 are connected to each other by a via conductor V51.
  • the other end of the distribution constant element 531 is connected to the shield electrode 113. That is, the other end of the distributed constant element 531 is a fixed end at which the voltage is fixed to the reference voltage of the shield conductor portion 150.
  • the distribution constant element 532 includes a plurality of conductors 542 and a via conductor V52 (short-circuit conductor portion). Each of the plurality of conductors 542 extends in the X-axis direction and forms a distributed constant line having a normal in the Z-axis direction.
  • One end of the distribution constant element 532 is not connected to the shield conductor portion 150. That is, one end of the distributed constant element 532 is an open end where the voltage can change. At one end of the distributed constant element 532, the plurality of conductors 542 are connected to each other by a via conductor V52.
  • the other end of the distribution constant element 532 is connected to the shield electrode 113. That is, the other end of the distributed constant element 532 is a fixed end at which the voltage is fixed to the reference voltage of the shield conductor portion 150.
  • each of the distributed constant elements 531, 532 in the X-axis direction is one-fourth of the wavelength of a desired signal that can pass through the dielectric filter 5. That is, each of the distributed constant elements 531, 532 is a ⁇ / 4 resonator.
  • the dielectric filter 5 is a two-stage dielectric filter formed from two ⁇ / 4 resonators.
  • the plurality of conductors 541 and 542 have a laminated structure similar to each other.
  • a laminated structure of a plurality of conductors 541 will be described.
  • the plurality of conductors 541 include a conductor 5411 (first conductor), a conductor 5412 (second conductor), a conductor 5413 (third conductor), and a conductor 5414 (third conductor).
  • conductors other than the conductors 5411 and 5412 are laminated between the conductor 5411 and the conductor 5412.
  • the width of the distribution constant element 531 is the width w53 (specific length).
  • the width of each of the conductors 5413 and 5414 and the conductors laminated between the conductors 5413 and 5414 is also the width w53.
  • the width of the conductor 5411 is the width w51 ( ⁇ w53).
  • the width of the conductor 5412 is the width w52 ( ⁇ w53).
  • the widths w51 and w52 may be different or equal.
  • the width of the conductor arranged between the conductor 5411 and the conductor 5413 gradually increases as it approaches the conductors 5411 to 5413.
  • the width of the conductor arranged between the conductor 5412 and the conductor 5414 gradually increases as it approaches the conductors 5412 to 5414.
  • FIG. 25 is a plan view of the distribution of the electric field strength in the simulation in which a high frequency signal is passed through the distribution constant elements 531, 532 of FIG. 24 in the odd mode.
  • FIG. 26 is a plan view of the distribution of the electric field strength in the simulation in which a high frequency signal is passed through the distribution constant elements 531, 532 of FIG. 24 in the even mode from the X-axis direction.
  • the plurality of conductors included in each of the distributed constant elements 531 and 532 form a shape in which the corners of a rectangle are rounded as a whole.
  • FIG. 27 is a plan view of the distribution of the electric field strength in the simulation in which a high frequency signal is passed through the distribution constant elements 431 and 432 of FIG. 19 in the odd mode.
  • FIG. 28 is a plan view of the distribution of the electric field strength in the simulation in which a high frequency signal is passed through the distribution constant elements 431 and 432 of FIG. 19 in the even mode from the X-axis direction.
  • the plurality of conductors included in each of the distributed constant elements 431 and 432 form a rectangle with sharp corners as a whole.
  • FIGS. 25 and 27 for the odd mode and comparing FIGS. 26 and 28 for the even mode they occur at both ends of the conductors of the outermost layers of the distributed constant elements 431 and 432 in FIGS. 27 and 28.
  • the electric field concentration is dispersed in the conductor of the outermost layer of the distribution constant elements 531, 532 of FIGS. 25 and 26. According to the dielectric filter 5, the insertion loss can be improved as compared with the dielectric filter 4 by relaxing the electric field concentration.
  • the shape formed by the plurality of conductors included in the distributed constant line as a whole may be circular.
  • the circle does not have to be a perfect circle, and includes an ellipse.
  • FIG. 29 is a perspective view of the dielectric filter 5A according to the modified example of the fifth embodiment.
  • the configuration of the dielectric filter 5A is such that the plurality of conductors 541 and 542 in FIG. 24 are replaced with 541A and 542A. Other than this, the explanation is not repeated because it is the same.
  • each of the plurality of conductors 541A and 542A forms a circle as a whole.
  • the plurality of conductors 541A include a conductor 5431 (first conductor), a conductor 5432 (second conductor), and a conductor 5433 (third conductor).
  • the conductors included in the plurality of conductors 541A the conductors other than the conductors 5431 and 5432 are laminated between the conductor 5431 and the conductor 5432.
  • the width of the conductor 5433 is the width w53.
  • the width of the conductor 5431 is the width w54 ( ⁇ w53).
  • the width of the conductor 5432 is a width w55 ( ⁇ w53).
  • the widths w54 and w55 may be different or equal.
  • the width of the conductor arranged between the conductor 5431 and the conductor 5433 gradually increases as it approaches the conductors 5431 to 5433.
  • the width of the conductor arranged between the conductor 5432 and the conductor 5433 gradually increases as it approaches the conductor 5432 to 5433.
  • a dielectric resonator can be formed by using the distributed constant element 531 shown in FIGS. 24 and 29.
  • FIG. 30 is an equivalent circuit diagram of duplexer 6, which is an example of the multiplexer according to the sixth embodiment.
  • the duplexer 6 includes dielectric filters 6A, 6B and a common terminal Pcom.
  • the dielectric filter 6A includes an input / output terminal P61A (first terminal) and an input / output terminal P62A (second terminal).
  • the dielectric filter 6B includes an input / output terminal P61B (first terminal) and an input / output terminal P62B (second terminal).
  • the common terminal Pcom is connected to the input / output terminal P62A of the dielectric filter 6A and is also connected to the input / output terminal P61B of the dielectric filter 6B.
  • the pass band of the dielectric filter 6A is different from the pass band of the dielectric filter 6B.
  • the multiplexer 6 has a rectangular parallelepiped shape, for example.
  • the multiplexer 6 further includes a dielectric substrate 600, a ground terminal 610, shield electrodes 611, 612, 613, 614, 615, 616, and ground electrodes 621, 622.
  • the dielectric filter 6A includes distributed constant elements 631, 632, 633.
  • the dielectric filter 6B includes distributed constant elements 634, 635, 636.
  • the dielectric substrate 600 is formed by laminating a plurality of dielectric layers in the Z-axis direction.
  • Each of the distributed constant elements 631 to 636 extends in the X-axis direction inside the dielectric substrate 600.
  • the length in the X-axis direction, the length in the Y-axis direction, and the length in the Z-axis direction of each of the distributed constant elements 631 to 636 are the length in the X-axis direction and the length in the Y-axis direction of the other distributed constant elements. It is the same as the length in the Z-axis direction.
  • the distribution constant elements 631 to 636 are juxtaposed in this order linearly in the Y-axis direction between the ground electrodes 621 and 622.
  • the distribution constant elements 631 to 636 do not have to be arranged in a straight line, and may be arranged in a diamond shape or a zigzag shape, for example.
  • the input / output terminals P61A and P62B are electrically connected to the distributed constant elements 631 and 636 via the via conductor and the line conductor, respectively.
  • the input / output terminals P62A and P61B are electrically connected to the distributed constant elements 633 and 634, respectively, and are connected to the common terminal Pcom by the via conductor V60.
  • the input / output terminals P62A and P61B overlap with the distribution constant elements 633 and 634, respectively.
  • the input / output terminals P62A and P61B may overlap the distributed constant elements 632 and 635, respectively.
  • the signals input to the input / output terminals P61A and P62B are output from the common terminal Pcom.
  • the signal input to the common terminal Pcom is output from the input / output terminals P61A or P62B depending on the frequency of the signal.
  • the outermost surface of the multiplexer 6 perpendicular to the Z-axis direction is the upper surface UF6 and the lower surface BF6.
  • the upper surface UF6 and the lower surface BF6 face each other in the Z-axis direction.
  • the planes parallel to the ZX plane are referred to as side surfaces SF61 and SF63.
  • the planes parallel to the YZ plane are referred to as side surfaces SF62 and SF64.
  • Input / output terminals P61A and P62B, a common terminal Pcom, and a ground terminal 610 are formed on the bottom surface BF6.
  • the input / output terminals P1 and P2 and the ground terminal 610 are, for example, LGA (Land Grid Array) terminals in which planar electrodes are regularly arranged on the bottom surface BF6.
  • the bottom surface BF6 is connected to a circuit board (not shown).
  • a shield electrode 616 is arranged on the upper surface UF6.
  • the shield electrode 616 covers the upper surface UF6.
  • Shield electrodes 611 and 612 are arranged on the side surface SF61.
  • the shield electrodes 611 and 612 are arranged apart from each other in the X-axis direction.
  • Each of the shield electrodes 611 and 612 is connected to a ground terminal 610, a ground electrode 621, 622, and a shield electrode 616.
  • Shield electrodes 614 and 615 are arranged on the side surface SF63.
  • the shield electrodes 614 and 615 are arranged apart from each other in the X-axis direction.
  • Each of the shield electrodes 614 and 615 is connected to the ground terminal 610, the ground electrodes 621 and 622, and the shield electrode 616.
  • a shield electrode 613 is arranged on the side surface SF62.
  • the shield electrode 613 covers the side surface SF62.
  • the shield electrode 613 is connected to a ground terminal 610, a ground electrode 621, 622, and a shield electrode 612, 614, 616.
  • a shield electrode is not formed on the side surface SF64.
  • the ground terminal 610 and the shield electrodes 611 to 616 form a shield conductor portion 650.
  • the shield conductor portion 650 is viewed in a plan view from the X-axis direction, the shield conductor portion 650 is formed on the surface of the dielectric substrate 600 so as to wind the distributed constant elements 631 to 636.
  • each of the distributed constant elements 631 to 636 is not connected to the shield conductor portion 650. That is, one end of each of the distributed constant elements 631 to 634 is an open end where the voltage can change.
  • the end (other end) of each of the distributed constant elements 631 to 636 on the side surface SF62 side is connected to the shield electrode 613. That is, the other end of each of the distributed constant elements 631 to 636 is a fixed end in which the voltage is fixed to the reference voltage of the shield conductor portion 650.
  • each of the distributed constant elements 631 to 636 in the X-axis direction is one-fourth of the wavelength of the desired signal that can pass through the multiplexer 6. That is, each of the distributed constant elements 631 to 636 is a ⁇ / 4 resonator.
  • Each of the dielectric filters 6A and 6B is a three-stage dielectric filter formed from three ⁇ / 4 resonators.
  • the distribution constant elements 631 to 636 include a plurality of conductors 641 to 646, respectively.
  • Each of the plurality of conductors 641 extends in the X-axis direction and forms a distributed constant line having a normal in the Z-axis direction.
  • Each of the plurality of conductors 641 is arranged on any of the plurality of dielectric layers forming the dielectric substrate 600. That is, the plurality of conductors 641 are laminated in the Z-axis direction with an interval corresponding to the thickness of the dielectric layer. In the plurality of conductors 641, the distance between adjacent conductors in the Z-axis direction does not have to be constant.
  • Each of the plurality of conductors 642 to 646 is arranged in the same manner as the plurality of conductors 641.
  • Distribution constant elements 631 to 636 include via conductors V61 to V66, respectively.
  • the plurality of conductors 641 are connected to each other by a via conductor V61 (short-circuit conductor portion).
  • the plurality of conductors 642 are connected to each other by a via conductor V62 (short-circuit conductor portion).
  • the plurality of conductors 643 are connected to each other by a via conductor V63 (short-circuit conductor portion).
  • the plurality of conductors 644 are connected to each other by a via conductor V64 (short-circuit conductor portion).
  • the plurality of conductors 645 are connected to each other by a via conductor V65 (short-circuit conductor portion).
  • the plurality of conductors 646 are connected to each other by a via conductor V66 (short-circuit conductor portion).
  • the potentials (polarities) of the plurality of conductors match by connecting the plurality of conductors of the distribution constant element to each other. Therefore, the resonance modes of the currents flowing through each of the plurality of conductors can be matched. As a result, the directions in which currents flow can be matched in each of the plurality of conductors.
  • the dielectric filter included in the multiplexer according to the sixth embodiment is not limited to the three-stage dielectric filter, and for example, the dielectric filter according to the fourth embodiment and the modified example, and the fifth embodiment and the modified example. It may be a two-stage dielectric filter like the dielectric filter according to the example, or it may be a four-stage or more-stage dielectric filter. Further, the number of dielectric filters included in the multiplexer according to the sixth embodiment is not limited to 2, and may be 3 or more. That is, the multiplexer according to the sixth embodiment is not limited to the duplexer and the diplexer, and includes, for example, a triplexer, a quadplexer, or a pentaplexer.
  • the dielectric resonator according to the embodiment can be regarded as a coaxial dielectric resonator including an inner conductor and an outer conductor.
  • the distributed constant element and the shield conductor portion included in the dielectric resonator according to the embodiment correspond to the inner conductor and the outer conductor included in the coaxial dielectric resonator, respectively. That is, the dielectric resonator according to the embodiment can be regarded as a coaxial dielectric resonator in which the inner conductor is divided into a plurality of conductors.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

誘電体共振器のQ値の向上および誘電体フィルタの低損失化を実現する。誘電体共振器は、誘電体基板(100)と、分布定数素子(231)と、シールド導体部(150)とを備える。分布定数素子(2)は、誘電体基板(100)の内部においてX軸方向に延在する。シールド導体部(150)は、X軸方向から分布定数素子(231)を平面視したとき、分布定数素子(231)を巻回するように誘電体基板(100)の表面に形成されている。分布定数素子(231)の一方端は、シールド導体部(150)に接続されていない。分布定数素子(231)は、複数の導体(241)を含む。

Description

誘電体共振器、誘電体フィルタ、およびマルチプレクサ
 本発明は、誘電体共振器、誘電体フィルタ、および当該誘電体フィルタを含むマルチプレクサに関する。
 従来、誘電体共振器が知られている。たとえば、特開平5-90811号公報(特許文献1)には、同軸型誘電体共振器が開示されている。当該同軸型誘電体共振器においては、誘電体部材の外周面に導電性部材の外導体が形成されているとともに、同軸形状の誘電体部材の貫通孔に導電体ペーストが充填されることにより内導体が形成されている。当該内導体が高い導電率を有することにより、同軸型誘電体共振器で発生する損失による熱量を効率的に同軸型誘電体共振器の外部へ放熱することができる。当該同軸型誘電体共振器によれば、小型化によるQ値の低下を小さくすることができる。
特開平5-90811号公報
 誘電体フィルタの周波数特性(たとえば通過特性または減衰特性)は、複数の誘電体共振器によって形成される場合が多い。このような場合、誘電体フィルタの性能は、当該誘電体共振器の急峻性に依存する。そのため、誘電体フィルタのさらなる低損失化を実現するためには、誘電体共振器の急峻性についての指標であるQ値をさらに向上させる必要がある。
 本発明は上記のような課題を解決するためになされたものであり、その目的は誘電体共振器のQ値の向上および誘電体フィルタの低損失化を実現することである。
 本発明の一局面に係る誘電体共振器は、誘電体基板と、分布定数素子と、シールド導体部とを備える。分布定数素子は、誘電体基板の内部において第1方向に延在する。シールド導体部は、第1方向から分布定数素子を平面視したとき、分布定数素子を巻回するように誘電体基板の表面に形成されている。分布定数素子の一方端は、シールド導体部に接続されていない。分布定数素子は、複数の導体を含む。
 本発明の他の局面に係る誘電体フィルタは、誘電体基板と、分布定数素子と、第1端子および第2端子と、シールド導体部とを備える。分布定数素子は、誘電体基板の内部において第1方向に延在する。第1端子および第2端子は、複数の分布定数素子に電気的に接続されている。シールド導体部は、第1方向から複数の分布定数素子を平面視したとき、複数の分布定数素子を巻回するように誘電体基板の表面に形成されている。複数の分布定数素子の各々の一方端は、シールド導体部に接続されていない。複数の分布定数素子に含まれる少なくとも1つの分布定数素子は、複数の導体を含む。誘電体基板は、第1方向に直交する第2方向に積層された複数の誘電体層によって形成されている。複数の導体の各々は、第1方向に延在し、第2方向を法線とする分布定数線路を形成している。複数の導体は、複数の誘電体層の少なくとも13層の誘電体層に配置されている。
 本発明に係る誘電体共振器によれば、分布定数素子が複数の導体を含むことにより、Q値の向上を実現することができる。
 本発明に係る誘電体フィルタによれば、分布定数素子が複数の導体を含むことにより、低損失化を実現することができる。
実施の形態1に係る誘電体フィルタ1の外観斜視図である。 実施の形態1に係る誘電体フィルタ1の斜視図である。 図1の誘電体フィルタの通過特性(実線)および反射特性(点線)を併せて示す図である。 比較例1に係る誘電体フィルタの斜視図である。 図1の誘電体フィルタの挿入損失の最小値(実線)と図4の誘電体フィルタの挿入損失の最小値(点線)とを併せて示す図である。 実施の形態2に係る誘電体共振器の斜視図である。 図6のVII-VII線断面図である。 比較例2に係る誘電体共振器の斜視図である。 図8の分布定数素子に高周波信号を流すシミュレーションにおける電界強度(kV/m)の分布を、X軸方向から平面視した図である。 図6の分布定数素子に高周波信号を流すシミュレーションにおける電界強度の分布を、X軸方向から平面視した図である。 実施の形態2の変形例1に係る誘電体共振器の断面図である。 実施の形態2の変形例2に係る誘電体共振器の断面図である。 実施の形態2の変形例3に係る誘電体共振器の断面図である。 実施の形態2の変形例4に係る誘電体共振器の断面図である。 実施の形態3に係る誘電体共振器の斜視図である。 図15の誘電体共振器をX軸方向から平面視した図である。 複数の導体の積層数と誘電体共振器のQ値の関係について、図16の誘電体共振器の場合(実線)と図6の誘電体共振器(点線)とを併せて示す図である。 実施の形態3の変形例に係る誘電体共振器をX軸方向から平面視した図である。 実施の形態4に係る誘電体フィルタの斜視図である。 実施の形態4の変形例に係る誘電体フィルタの斜視図である。 比較例3に係る誘電体フィルタの斜視図である。 図20の誘電体フィルタの通過特性(実線)および図21の誘電体フィルタの通過特性(点線)を併せて示す図である。 図19の誘電体フィルタの通過特性(実線)および図21の誘電体フィルタの通過特性(点線)を併せて示す図である。 実施の形態5に係る誘電体フィルタの斜視図である。 図24の分布定数素子にoddモードにおいて高周波信号を流すシミュレーションにおける電界強度の分布を、X軸方向から平面視した図である。 図24の分布定数素子にevenモードにおいて高周波信号を流すシミュレーションにおける電界強度の分布を、X軸方向から平面視した図である。 図19の分布定数素子にoddモードにおいて高周波信号を流すシミュレーションにおける電界強度の分布を、X軸方向から平面視した図である。 図19の分布定数素子にevenモードにおいて高周波信号を流すシミュレーションにおける電界強度の分布を、X軸方向から平面視した図である。 実施の形態5の変形例に係る誘電体フィルタの斜視図である。 実施の形態6に係るマルチプレクサの一例であるデュプレクサの等価回路図である。 図30のデュプレクサの外観斜視図である。 図30のデュプレクサの斜視図である。
 以下、実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
 [実施の形態1]
 図1および図2は、実施の形態1に係る誘電体フィルタ1の斜視図である。図1および図2において、X軸、Y軸、およびZ軸は互いに直交している。後に説明する図4、図6~図16、図18~図21、図24~図29、および図31,図32においても同様である。
 図1および図2を参照しながら、誘電体フィルタ1は、たとえば直方体状である。誘電体フィルタ1は、誘電体基板100と、分布定数素子131~134と、シールド導体部150と、接地電極121,122と、入出力端子P1(第1端子)と、入出力端子P2(第2端子)とを備える。なお、図2においては、誘電体フィルタ1の内部に形成された分布定数素子131~134を見易くするため、図1の誘電体基板100を図示していない。誘電体基板の不図示について、図4、図6、図8、図15、図16、図18~図21、図24、図29、および図32においても同様である。
 誘電体基板100は、複数の誘電体層がZ軸方向(第2方向)に積層されることによって形成されている。分布定数素子131~134の各々は、誘電体基板100の内部においてX軸方向(第1方向)に延在している。分布定数素子131~134の各々のX軸方向の長さ、Y軸方向の長さ、およびZ軸方向の長さ、は、他の分布定数素子のX軸方向の長さ、Y軸方向の長さ、およびZ軸方向の長さとそれぞれ同じである。分布定数素子131~134は、接地電極121と122との間において、Y軸方向(第3方向)に直線状にこの順に並置されている。なお、分布定数素子131~134は、直線状に並置されている必要はなく、たとえば、菱形状、あるいは千鳥状(ジグザク状)に配置されていてもよい。
 入出力端子P1,P2の各々は、ビア導体および線路導体を介して、分布定数素子131,134にそれぞれ電気的に接続されている。入出力端子P1に入力された信号は、入出力端子P2から出力される。入出力端子P2に入力された信号は、入出力端子P1から出力される。なお、2つの回路素子が電気的に接続されている場合には、当該2つの回路素子が直接接続されている場合、および当該2つの回路素子が電界結合している場合が含まれる。
 Z軸方向に垂直な誘電体フィルタ1の最外層の面を上面UFおよび底面BFとする。上面UFおよび底面BFは、Z軸方向に対向している。Z軸方向に平行な面のうちZX平面と平行な面を側面SF1およびSF3とする。Z軸方向に平行な面のうちYZ平面と平行な面を側面SF2およびSF4とする。
 底面BFには、入出力端子P1,P2、および接地端子110が形成されている。入出力端子P1,P2、および接地端子110は、たとえば底面BFに平面電極が規則的に配置されたLGA(Land Grid Array)端子である。底面BFは、不図示の回路基板に接続される。
 上面UFには、シールド電極116が配置されている。シールド電極116は、上面UFを覆っている。
 側面SF1には、シールド電極111,112が配置されている。シールド電極111,112は、X軸方向に互いに離間して配置されている。シールド電極111,112の各々は、接地端子110、接地電極121,122、およびシールド電極116に接続されている。
 側面SF3には、シールド電極114,115が配置されている。シールド電極114,115は、X軸方向に互いに離間して配置されている。シールド電極114,115の各々は、接地端子110、接地電極121,122、およびシールド電極116に接続されている。
 側面SF2には、シールド電極113が配置されている。シールド電極113は、側面SF2を覆っている。シールド電極113は、接地端子110、接地電極121,122、およびシールド電極112,114,116に接続されている。
 側面SF4には、シールド電極が形成されていない。
 接地端子110およびシールド電極111~116は、シールド導体部150を形成する。X軸方向からシールド導体部150を平面視したとき、シールド導体部150は、分布定数素子131~134を巻回するように誘電体基板100の表面に形成されている。
 分布定数素子131~134の各々の側面SF4側の端部(一方端)は、シールド導体部150に接続されていない。すなわち、分布定数素子131~134の各々の一方端は、電圧が変化し得る開放端である。一方、分布定数素子131~134の各々の側面SF2側の端部(他方端)は、シールド電極113に接続されている。すなわち、分布定数素子131~134の各々の他方端は、電圧がシールド導体部150の基準電圧に固定される固定端である。
 分布定数素子131~134の各々のX軸方向の長さは、誘電体フィルタ1を通過可能な所望の信号の波長の4分の1である。すなわち、分布定数素子131~134の各々は、λ/4共振器である。誘電体フィルタ1は、4つのλ/4共振器から形成される4段の誘電体フィルタである。誘電体フィルタ1の段数(共振器の数)は、2段、あるいは3段であってもよいし、5段以上であってもよい。
 分布定数素子131~134は、複数の導体141~144をそれぞれ含む。複数の導体141の各々は、X軸方向に延在し、Z軸方向を法線とする分布定数線路を形成している。複数の導体141の各々は、誘電体基板100を形成する複数の誘電体層のいずれかに配置されている。すなわち、複数の導体141は、Z軸方向に誘電体層の厚み分の間隔を空けて積層されている。複数の導体141においてZ軸方向に隣接する導体の間隔は一定でなくてもよい。複数の導体142~144の各々も、複数の導体141と同様に配置されている。
 分布定数素子131~134は、ビア導体V11~V14をそれぞれ含む。分布定数素子131の一方端において、複数の導体141は、ビア導体V11(短絡導体部)によって互いに接続されている。分布定数素子132の一方端において、複数の導体142は、ビア導体V12(短絡導体部)によって互いに接続されている。分布定数素子133の一方端において、複数の導体143は、ビア導体V13(短絡導体部)によって互いに接続されている。分布定数素子134の一方端において、複数の導体144は、ビア導体V14(短絡導体部)によって互いに接続されている。
 分布定数素子131~134の各々の開放端において、当該分布定数素子の複数の導体が互いに接続されることにより、当該複数の導体各々の電位(極性)が一致する。そのため、当該複数の導体の各々を流れる電流の共振モードを一致させることができる。その結果、当該複数の導体の各々を電流が流れる方向を一致させることができる。
 図3は、図1の誘電体フィルタ1の通過特性(実線)および反射特性(点線)を併せて示す図である。通過特性とは、挿入損失の周波数特性である。反射特性とは、反射損失の周波数特性である。図3に示されるように、5.5GHz~6.0GHzの間において通過帯域が形成されているとともに、5.0GHz~5.3GHzの間に減衰極が生じている。
 図4は、比較例1に係る誘電体フィルタ10の斜視図である。誘電体フィルタ10の構成は、図1の誘電体フィルタ1の分布定数素子131~134が分布定数素子11~14にそれぞれ置き換えられた構成である。これら以外は同様であるため、説明を繰り返さない。図4に示されるように、分布定数素子11~14の各々は、内部が充填された一個のバルク材から形成されている。当該バルク部材のX軸方向の長さ、Y軸方向の長さ、およびZ軸方向の長さは、図1の分布定数素子131~134各々のX軸方向の長さ、Y軸方向の長さ、およびZ軸方向の長さとそれぞれ同じである。
 図5は、図1の誘電体フィルタ1の挿入損失の最小値(実線)と図4の誘電体フィルタ10の挿入損失の最小値(点線)とを併せて示す図である。図1の誘電体フィルタ1の挿入損失の最小値に関しては、分布定数素子131~134のZ軸方向の長さ(高さ)および各導体のZ軸方向の長さ(厚み)を一定にして、複数の導体141~144の各々が形成される誘電体の分割数(積層数)を変化させた場合の値が示されている。積層数が増加するほど、複数の導体141~144の各々においてZ軸方向に隣接する導体の間隔は狭くなる。図5に示されるように、積層数が13以上である場合、誘電体フィルタ1の挿入損失は、誘電体フィルタ10の挿入損失より小さい。
 図1の分布定数素子131~134の各々において、複数の導体の各々がZ軸方向に間隔を空けて配置されている。そのため、当該分布定数素子に含まれる複数の導体の体積は、図4の分布定数素子11~14各々の体積よりも小さい。
 この点、高周波信号は、導体の全部分を流れるわけではなく、導体の表面部分を流れる(表皮効果)ことが知られている。図1の分布定数素子131~134の各々において、Z軸方向に隣接する導体の間には電流が流れないものの、各導体において電流が流れる表皮部分が増加する。すなわち、分布定数素子を複数の導体の積層体として形成することにより、高周波信号が通過可能な表面積を増加させることができる。その結果、当該分布定数素子を含む誘電体共振器のQ値を増加させることができるため、当該誘電体共振器を用いて形成される誘電体フィルタの挿入損失を低減することができる。
 表皮効果の観点から、電流が流れる領域を確保するために、分布定数素子131~134の各々に含まれる導体の厚みは、当該導体の表皮深さδよりも大きいことが望ましい。導体の表皮深さδは、当該導体の表面(表皮)に比べて、電流が自然対数eの逆数(約36.7%)に低下する表面からの深さのことを表す。表皮深さδは、導体の抵抗率ρ、透磁率μ、真空の透磁率μ(4π×10-7)、および角周波数ω(高周波数信号の周波数fの2π倍)を用いて、式(1)のように表される。
Figure JPOXMLDOC01-appb-M000001
 以上、実施の形態1に係る誘電体フィルタによれば、低損失化を実現することができる。
 [実施の形態2]
 実施の形態1では、複数の分布定数素子の各々が複数の導体の積層構造を有する誘電体フィルタについて説明した。実施の形態2では、複数の導体の積層構造を有する1つの分布定数素子を備える誘電体共振器について説明する。
 図6は、実施の形態2に係る誘電体共振器2の斜視図である。図7は、図6のVII-VII線断面図である。誘電体共振器2の構成は、図1および図2の誘電体フィルタ1の分布定数素子131~134が、分布定数素子231に置き換えられた構成である。これ以外は同様であるため、説明を繰り返さない。
 図6および図7に示されるように、分布定数素子231は、複数の導体241と、ビア導体V21(短絡導体部)とを含む。複数の導体241の各々は、X軸方向に延在し、Z軸方向を法線とする分布定数線路を形成している。複数の導体241の各々は、誘電体基板100を形成する複数の誘電体層のいずれかに配置されている。
 分布定数素子231の一方端は、シールド導体部150に接続されていない。すなわち、分布定数素子231の一方端は、電圧が変化し得る開放端である。分布定数素子231の一方端において、複数の導体241は、ビア導体V21によって互いに接続されている。
 一方、分布定数素子231の他方端は、シールド電極113に接続されている。すなわち、分布定数素子231の他方端は、電圧がシールド導体部150の基準電圧に固定される固定端である。
 分布定数素子231のX軸方向の長さは、誘電体共振器2が共振する信号の波長の4分の1である。すなわち、誘電体共振器2は、λ/4共振器である。
 図7を参照しながら、複数の導体241の各々のX軸方向の長さは、誘電体基板100のX軸方向の長さに等しい。誘電体共振器2の製造過程においては、複数の導体241のX軸方向の長さおよび誘電体基板100のX軸方向の長さを決定する切断作業を一体的に行うことが可能であるため、誘電体基板100の製造ばらつきを抑制することができる。
 図8は、比較例2に係る誘電体共振器20の斜視図である。誘電体共振器20の構成は、図6の分布定数素子231が21に置き換えられた構成である。それ以外は同様であるため説明を繰り返さない。
 図8に示されるように、分布定数素子21は、内部が充填された一個のバルク材から形成されている。分布定数素子21のX軸方向の長さ、Y軸方向の長さ、およびZ軸方向の長さは、図6の分布定数素子231のX軸方向の長さ、Y軸方向の長さ、およびZ軸方向の長さとそれぞれ同じである。
 図9は、図8の分布定数素子21に高周波信号を流すシミュレーションにおける電界強度(kV/m)の分布を、X軸方向から平面視した図である。図10は、図6の分布定数素子231に高周波信号を流すシミュレーションにおける電界強度の分布を、X軸方向から平面視した図である。図9および図10において、領域の色が白から黒に近づくほど、当該領域の電界強度が強い。図25~図28に関しても同様である。
 図9に示されるように、表皮効果により、分布定数素子21の表面に電界が集中しており、分布定数素子21の内部にはほとんど電流が流れていない。一方、図10に示されるように、分布定数素子231においては、分布定数素子231の内部にも電界が発生している。分布定数素子231においては、複数の導体241を間隔を空けて積層することにより、高周波数信号が通過可能の表面積が分布定数素子21より増加している。高周波数信号が通過可能な領域の広がりにより、誘電体共振器2のQ値を誘電体共振器20のQ値よりも向上させることができる。
 誘電体共振器2においては、誘電体基板100の内部に形成されたビア導体V21によって、複数の導体241の各々が互い接続されている場合について説明した。複数の導体241の各々は、誘電体基板100の外部において互いに接続されてもよい。
 図11は、実施の形態2の変形例1に係る誘電体共振器2Aの断面図である。誘電体共振器2Aの構成は、図7のビア導体V21が接続導体217(短絡導体部)に置き換えられた構成である。これ以外は同様であるため、説明を繰り返さない。
 図11に示されるように、接続導体217は、誘電体基板100の外部において、複数の導体241の各々を互いに接続している。接続導体217を誘電体基板100の外部に形成することにより、誘電体基板100の内部にビア導体を形成する工程が不要になる。その結果、誘電体共振器2の製造工程を簡略化することができる。
 誘電体共振器2においては、複数の導体241の各々のX軸方向の長さが誘電体基板100のX軸方向の長さに等しい場合について説明した。両者の長さは異なっていてもよい。
 図12は、実施の形態2の変形例2に係る誘電体共振器2Bの断面図である。誘電体共振器2Bの構成は、図7の複数の導体241が241Bに置き換えられた構成である。これ以外は同様であるため、説明を繰り返さない。図12に示されるように、複数の導体241Bの各々のX軸方向の長さは、誘電体基板100のX軸方向の長さよりも短い。
 誘電体共振器2においては、分布定数素子231の一方端が開放端で、他方端が固定端である場合について説明した。分布定数素子231の両端は、開放端であってもよい。
 図13は、実施の形態2の変形例3に係る誘電体共振器2Cの断面図である。誘電体共振器2Cの構成は、図7の複数の導体241が241Cに置き換えられているとともに、シールド電極113が除かれた構成である。これ以外は同様であるため、説明を繰り返さない。図13に示されるように、複数の導体241Cの各々の両端は、シールド導体部150に接続されていない。すなわち、分布定数素子231の両端は、開放端である。分布定数素子231のX軸方向の長さは、誘電体共振器2Cが共振する信号の波長の2分の1である。すなわち、誘電体共振器2Cは、λ/2共振器である。
 誘電体共振器2においては、分布定数素子231の開放端において、複数の導体241の各々が互い接続されている場合について説明した。複数の導体241の各々は、分布定数素子231の開放端において互いに接続されていなくてもよい。
 図14は、実施の形態2の変形例4に係る誘電体共振器2Dの断面図である。誘電体共振器2Dの構成は、図7のビア導体V21が除かれた構成である。これ以外は同様であるため、説明を繰り返さない。
 以上、実施の形態2および変形例1~4に係る誘電体共振器によれば、Q値の向上を実現することができる。
 [実施の形態3]
 実施の形態2においては、ほぼ同一の線路形状の複数の導体を積層することにより、分布定数素子が形成されている場合について説明した。複数の導体の積層数を増加させて導体間の間隔を小さくすると、導体間に形成可能な誘電体の量が減少する。その結果、導体間の誘電体の剛性が低下して、導体と当該誘電体との間に生じる応力によって分布定数素子に歪みが生じ易くなる。そこで、実施の形態3においては、分布定数素子の芯部分に導体の積層構造を形成しない構成について説明する。当該構成によれば、当該芯部分に形成される誘電体の剛性を確保することにより、誘電体共振器のQ値を維持しながら分布定数素子の歪みを低減することができる。
 図15は、実施の形態3に係る誘電体共振器3の斜視図である。誘電体共振器3の構成は、図6の分布定数素子231が331に置き換えられた構成である。これ以外は同様であるため、説明を繰り返さない。
 図15に示されるように、分布定数素子331は、複数の導体341と、短絡導体部360(短絡導体部)とを含む。短絡導体部360は、ビア導体V31,V32を含む。複数の導体341の各々は、X軸方向に延在し、Z軸方向を法線とする分布定数線路を形成している。
 分布定数素子331の一方端は、シールド導体部150に接続されていない。すなわち、分布定数素子331の一方端は、電圧が変化し得る開放端である。分布定数素子331の一方端において、複数の導体341は、ビア導体V31,V32の各々によって互いに接続されている。
 一方、分布定数素子331の他方端は、シールド電極113に接続されている。すなわち、分布定数素子331の他方端は、電圧がシールド導体部150の基準電圧に固定される固定端である。
 分布定数素子331のX軸方向の長さは、誘電体共振器3が共振する信号の波長の4分の1である。すなわち、誘電体共振器3は、λ/4共振器である。
 図16は、図15の誘電体共振器3をX軸方向から平面視した図である。図16に示されるように、Y軸方向における分布定数素子331の長さ(幅)は、幅w31(特定長さ)である。
 複数の導体341は、導体3411(第1導体)と、導体3412(第1導体)と、導体3413(第3導体)と、導体3414(第4導体)と、導体3415(第2導体)と、導体3416(第2導体)とを含む。複数の導体341に含まれる導体のうち、導体3411および3416以外の導体は、導体3411と導体3416との間に積層されている。
 導体3411,3412,3415,3416各々の幅は、幅w31である。導体3411と3412との間に積層されている導体の幅および導体3415と3416との間に積層されている導体の幅も幅w31である。
 導体3413の幅は、幅w32(<w31)である。導体3414の幅は、幅w33(<w31)である。幅w32とw33とは異なっていてもよいし、等しくてもよい。導体3413および3414は、Z軸方向において導体3412と3415との間に配置されている。導体3413および3414は、Y軸方向に距離d30(=w31-w32-w33)だけ離間している。
 導体3412と3413との間に積層されている導体の幅および導体3413と3415との間に積層されている導体の幅の各々も幅w32である。導体3411、導体3411と3413との間に積層されている導体、導体3413、導体3413と導体3416との間に積層されている導体、および導体3416は、ビア導体V31によって互いに接続されている。
 導体3412と3414との間に積層されている導体の幅および導体3414と3415との間に積層されている導体の幅の各々も幅w33である。導体3411、導体3411と3414との間に積層されている導体、導体3414と導体3416との間に積層されている導体、および導体3416は、ビア導体V32によって互いに接続されている。
 分布定数素子331の芯部分Cd(導体3412と3415との間であって、かつ導体3413と3414との間の部分)には、導体の積層構造が形成されていない。芯部分Cdの誘電体の剛性を確保することができるため、分布定数素子331の歪みを低減することができる。また、高周波信号の表皮効果から、分布定数素子331の芯部分にはほとんど電流が流れない。そのため、芯部分Cdに導体の積層構造を形成しなくても、分布定数素子331を流れる電流はほとんど減少しない。その結果、誘電体共振器3のQ値を維持することができる。
 図17は、複数の導体の積層数と誘電体共振器のQ値の関係について、図16の誘電体共振器3の場合(実線)と図6の誘電体共振器2(点線)とを併せて示す図である。図17に示されるように、両者はほとんど同じである。誘電体共振器3においては、誘電体共振器2のQ値が維持されている。
 誘電体共振器3においては、芯部分Cdと最外層の導体3411,3416との間に最外層の導体3411,3416と同じ幅の導体が配置されている場合について説明した。芯部分Cdと最外層の導体3411,3416との間には、導体が配置されていなくてもよい。
 図18は、実施の形態3の変形例に係る誘電体共振器3AをX軸方向から平面視した図である。誘電体共振器3Aの構成は、図16の複数の導体341が341Aに置き換えられた構成である。複数の導体341Aにおいては、最外層の導体3411と3416との間において、芯部分CdのY軸方向の両側に導体3413と同じ幅の導体、および導体3414と同じ幅の導体がそれぞれ積層されている。表皮効果の観点から、導体3411,3416の各々の厚みは、各導体の表皮深さよりも厚いことが望ましい。
 以上、実施の形態3および変形例に係る誘電体共振器によれば、Q値の向上を実現することができるともに、誘電体共振器の歪みを低減することができる。
 [実施の形態4]
 実施の形態4においては、2段の誘電体フィルタについて説明する。
 図19は、実施の形態4に係る誘電体フィルタ4の斜視図である。誘電体フィルタ4の構成は、図2の誘電体フィルタ1の分布定数素子131~134が、分布定数素子431,432に置き換えられた構成である。これ以外は同様であるため、説明を繰り返さない。
 図19に示されるように、分布定数素子431は、複数の導体441と、ビア導体V41(短絡導体部)とを含む。複数の導体441の各々は、X軸方向に延在し、Z軸方向を法線とする分布定数線路を形成している。
 分布定数素子431の一方端は、シールド導体部150に接続されていない。すなわち、分布定数素子431の一方端は、電圧が変化し得る開放端である。分布定数素子431の一方端において、複数の導体441は、ビア導体V41によって互いに接続されている。
 一方、分布定数素子431の他方端は、シールド電極113に接続されている。すなわち、分布定数素子431の他方端は、電圧がシールド導体部150の基準電圧に固定される固定端である。
 分布定数素子432は、複数の導体442と、ビア導体V42(短絡導体部)とを含む。複数の導体442の各々は、X軸方向に延在し、Z軸方向を法線とする分布定数線路を形成している。
 分布定数素子432の一方端は、シールド導体部150に接続されていない。すなわち、分布定数素子432の一方端は、電圧が変化し得る開放端である。分布定数素子432の一方端において、複数の導体442は、ビア導体V42によって互いに接続されている。
 一方、分布定数素子432の他方端は、シールド電極113に接続されている。すなわち、分布定数素子432の他方端は、電圧がシールド導体部150の基準電圧に固定される固定端である。
 分布定数素子431,432の各々のX軸方向の長さは、誘電体フィルタ4を通過可能な所望の信号の波長の4分の1である。すなわち、分布定数素子431,432の各々は、λ/4共振器である。誘電体フィルタ4は、2つのλ/4共振器から形成される2段の誘電体フィルタである。
 図20は、実施の形態4の変形例に係る誘電体フィルタ4Aの斜視図である。誘電体フィルタ4Aの構成は、図19の分布定数素子431,432が431A,432Aにそれぞれ置き換えられた構成である。分布定数素子431A,432Aの構成は、図19の分布定数素子431,432からビア導体V41,V42がそれぞれ除かれた構成である。これら以外は同様であるため、説明を繰り返さない。
 図21は、比較例3に係る誘電体フィルタ40の斜視図である。誘電体フィルタ40の構成は、図19の分布定数素子431,432が41,42にそれぞれ置き換えられた構成である。それ以外は同様であるため説明を繰り返さない。
 図21に示されるように、分布定数素子41,42の各々は、内部が充填された一個のバルク材から形成されている。分布定数素子41,42の各々のX軸方向の長さ、Y軸方向の長さ、およびZ軸方向の長さは、図19の分布定数素子431,432の各々のX軸方向の長さ、Y軸方向の長さ、およびZ軸方向の長さとそれぞれ同じである。
 図22は、図20の誘電体フィルタ4Aの通過特性(実線)および図21の誘電体フィルタ40の通過特性(点線)を併せて示す図である。図22に示されるように、誘電体フィルタ40においては、周波数f41およびf42(>f41)において挿入損失が極小となっている。周波数f41は、分布定数素子41,42の各々を流れる電流の方向が逆となるoddモードにおける誘電体フィルタ40の共振周波数である。周波数f42は、分布定数素子41,42の各々を流れる電流の方向が同じとなるevenモードにおける誘電体フィルタ40の共振周波数である。周波数f41,f42の各々において挿入損失が極小となることにより、周波数f41とf42との間において誘電体フィルタ40の通過帯域が形成される。
 誘電体フィルタ4Aにおいては、周波数f43(>f41)において挿入損失が極小となっている。誘電体フィルタ4Aにおいては、分布定数素子431A,432Aの各々を流れる電流の向きが同じとなるevenモードにおいて共振が発生する。しかし、分布定数素子431A,432Aの各々を流れる電流の向きが逆となるoddモードにおいては共振が発生し難い。
 誘電体フィルタ4Aにおいては、分布定数素子431A,432Aの各々の開放端において、複数の導体441,442の各々が互いに接続されていないため、当該複数の導体の各々を流れる電流に複数の共振モードが発生し、当該複数の共振モードが互いに干渉する。特に、oddモードにおいては、分布定数素子431A,432Aの各々を流れる電流の方向が逆であるため、当該複数の共振モードが打ち消し合う。そのため、oddモードにおいて誘電体フィルタ4Aは、共振し難い。
 図23は、図19の誘電体フィルタ4の通過特性(実線)および図21の誘電体フィルタ40の通過特性(点線)を併せて示す図である。図23に示されるように、両者はほとんど同じ特性を示している。誘電体フィルタ4においても誘電体フィルタ40と同様に、周波数f41およびf42(>f41)において挿入損失が極小となっている。
 誘電体フィルタ4においては、分布定数素子431,432の各々の開放端において、複数の導体441,442の各々が互いに接続されているため、当該複数の導体の各々を流れる電流の共振モードが一致する。その結果、分布定数素子431,432を流れる電流の方向が逆となるoddモードにおいても、誘電体フィルタ4においては共振が発生する。
 以上、実施の形態4および変形例に係る誘電体フィルタによれば、低損失化を実現することができる。さらに、実施の形態4および変形例に係る誘電体フィルタによれば、oddモードにおいても共振を発生させることができるため通過帯域を広帯域化することができる。
 [実施の形態5]
 実施の形態4においては、分布定数素子を形成する複数の導体の幅が一定である場合について説明した。当該分布定数素子の延在方向から当該複数の導体を平面視すると、当該複数の導体は、全体として矩形を形成する。矩形のように尖った角部分を有する分布定数素子に電流が流れると、当該角部分に電界集中が生じ易い。電界集中は、導体損失を生じさせるため、誘電体フィルタの挿入損失を悪化させる。
 そこで、実施の形態5においては、分布定数素子を形成する複数の導体において、最外層に近い導体の幅を中間層に近い導体の幅よりも短くする。当該分布定数素子の延在方向から当該複数の導体を平面視すると、当該複数の導体は、全体として矩形の角部が丸められた形状を形成する。当該形状においては角部が尖っていないため、電界集中が緩和される。実施の形態5に係る誘電体フィルタによれば、導体損失が低減される。その結果、挿入損失をさらに改善することができる。
 図24は、実施の形態5に係る誘電体フィルタ5の斜視図である。誘電体フィルタ5の構成は、図19の分布定数素子431,432が、分布定数素子531,532にそれぞれ置き換えられた構成である。これ以外は同様であるため説明を繰り返さない。
 図24に示されるように、分布定数素子531は、複数の導体541と、ビア導体V51(短絡導体部)とを含む。複数の導体541の各々は、X軸方向に延在し、Z軸方向を法線とする分布定数線路を形成している。
 分布定数素子531の一方端は、シールド導体部150に接続されていない。すなわち、分布定数素子531の一方端は、電圧が変化し得る開放端である。分布定数素子531の一方端において、複数の導体541は、ビア導体V51によって互いに接続されている。
 一方、分布定数素子531の他方端は、シールド電極113に接続されている。すなわち、分布定数素子531の他方端は、電圧がシールド導体部150の基準電圧に固定される固定端である。
 分布定数素子532は、複数の導体542と、ビア導体V52(短絡導体部)とを含む。複数の導体542の各々は、X軸方向に延在し、Z軸方向を法線とする分布定数線路を形成している。
 分布定数素子532の一方端は、シールド導体部150に接続されていない。すなわち、分布定数素子532の一方端は、電圧が変化し得る開放端である。分布定数素子532の一方端において、複数の導体542は、ビア導体V52によって互いに接続されている。
 一方、分布定数素子532の他方端は、シールド電極113に接続されている。すなわち、分布定数素子532の他方端は、電圧がシールド導体部150の基準電圧に固定される固定端である。
 分布定数素子531,532の各々のX軸方向の長さは、誘電体フィルタ5を通過可能な所望の信号の波長の4分の1である。すなわち、分布定数素子531,532の各々は、λ/4共振器である。誘電体フィルタ5は、2つのλ/4共振器から形成される2段の誘電体フィルタである。
 複数の導体541,542は互いに同様の積層構造を有する。以下では、複数の導体541の積層構造について説明する。
 複数の導体541は、導体5411(第1導体)と、導体5412(第2導体)と、導体5413(第3導体)と、導体5414(第3導体)とを含む。複数の導体541に含まれる導体のうち、導体5411および5412以外の導体は、導体5411と導体5412との間に積層されている。
 分布定数素子531の幅は、幅w53(特定長さ)である。導体5413,5414および導体5413と5414との間に積層されている導体の各々の幅も幅w53である。
 導体5411の幅は、幅w51(<w53)である。導体5412の幅は、幅w52(<w53)である。幅w51とw52とは異なっていてもよいし、等しくてもよい。
 導体5411と導体5413との間に配置された導体の幅は、導体5411から5413に近づくにつれて徐々に長くなる。導体5412と導体5414との間に配置された導体の幅は、導体5412から5414に近づくにつれて徐々に長くなる。
 図25は、図24の分布定数素子531,532にoddモードにおいて高周波信号を流すシミュレーションにおける電界強度の分布を、X軸方向から平面視した図である。図26は、図24の分布定数素子531,532にevenモードにおいて高周波信号を流すシミュレーションにおける電界強度の分布を、X軸方向から平面視した図である。図25および図26に示されるように、分布定数素子531,532の各々に含まれる複数の導体は、全体として矩形の角部が丸められた形状を形成している。
 図27は、図19の分布定数素子431,432にoddモードにおいて高周波信号を流すシミュレーションにおける電界強度の分布を、X軸方向から平面視した図である。図28は、図19の分布定数素子431,432にevenモードにおいて高周波信号を流すシミュレーションにおける電界強度の分布を、X軸方向から平面視した図である。図27および図28に示されるように、分布定数素子431,432の各々に含まれる複数の導体は、全体として角部分が尖った矩形を形成している。
 oddモードに関して図25および図27を比較するとともに、evenモードに関して図26および図28を比較すると、図27および図28において分布定数素子431,432の各々の最外層の導体の両端に生じている電界集中が、図25および図26の分布定数素子531,532の最外層の導体においては分散されている。誘電体フィルタ5によれば、電界集中の緩和により、誘電体フィルタ4よりも挿入損失を改善することができる。
 分布定数線路に含まれる複数の導体が全体として形成する形状は、円形であってもよい。なお、円形は、真円である必要はなく、また楕円形も含む。
 図29は、実施の形態5の変形例に係る誘電体フィルタ5Aの斜視図である。誘電体フィルタ5Aの構成は、図24の複数の導体541,542が541A,542Aに置き換えられた構成である。これ以外は同様であるため説明を繰り返さない。
 図29に示されるように、X軸方向から複数の導体541A,542Aを平面視したとき、複数の導体541A,542Aの各々は、全体として円形を形成している。
 複数の導体541Aは、導体5431(第1導体)と、導体5432(第2導体)と、導体5433(第3導体)とを含む。複数の導体541Aに含まれる導体のうち、導体5431および5432以外の導体は、導体5431と導体5432との間に積層されている。
 導体5433の幅は、幅w53である。導体5431の幅は、幅w54(<w53)である。導体5432の幅は、幅w55(<w53)である。幅w54とw55とは異なっていてもよいし、等しくてもよい。
 導体5431と導体5433との間に配置された導体の幅は、導体5431から5433に近づくにつれて徐々に長くなる。導体5432と導体5433との間に配置された導体の幅は、導体5432から5433に近づくにつれて徐々に長くなる。
 なお、図24および図29の分布定数素子531を用いて、誘電体共振器を形成可能である。
 以上、実施の形態5および変形例に係る誘電体フィルタによれば、さらなる低損失化を実現することができる。
 [実施の形態6]
 実施の形態6においては、実施の形態に係る誘電体フィルタを含むマルチプレクサについて説明する。
 図30は、実施の形態6に係るマルチプレクサの一例であるデュプレクサ6の等価回路図である。図30に示されるように、デュプレクサ6は、誘電体フィルタ6A,6Bと、共通端子Pcomとを備える。誘電体フィルタ6Aは、入出力端子P61A(第1端子)と、入出力端子P62A(第2端子)とを含む。誘電体フィルタ6Bは、入出力端子P61B(第1端子)と、入出力端子P62B(第2端子)とを含む。共通端子Pcomは、誘電体フィルタ6Aの入出力端子P62Aに接続されているとともに、誘電体フィルタ6Bの入出力端子P61Bに接続されている。誘電体フィルタ6Aの通過帯域は、誘電体フィルタ6Bの通過帯域と異なる。
 図31および図32は、図30のデュプレクサ6の斜視図である。図31および図32を参照しながら、マルチプレクサ6は、たとえば直方体状である。マルチプレクサ6は、誘電体基板600と、接地端子610と、シールド電極611,612,613,614,615,616と、接地電極621,622とをさらに備える。誘電体フィルタ6Aは、分布定数素子631,632,633を含む。誘電体フィルタ6Bは、分布定数素子634,635,636を含む。
 誘電体基板600は、複数の誘電体層がZ軸方向に積層されることによって形成されている。分布定数素子631~636の各々は、誘電体基板600の内部においてX軸方向に延在している。分布定数素子631~636の各々のX軸方向の長さ、Y軸方向の長さ、およびZ軸方向の長さは、他の分布定数素子のX軸方向の長さ、Y軸方向の長さ、およびZ軸方向の長さとそれぞれ同じである。分布定数素子631~636は、接地電極621と622との間において、Y軸方向に直線状にこの順に並置されている。なお、分布定数素子631~636は、直線状に並置されている必要はなく、たとえば、菱形状、あるいは千鳥状(ジグザク状)に配置されていてもよい。
 入出力端子P61A,P62Bは、ビア導体および線路導体を介して、分布定数素子631,636にそれぞれ電気的に接続されている。入出力端子P62A,P61Bは、分布定数素子633,634にそれぞれ電気的に接続されているとともに、ビア導体V60によって共通端子Pcomに接続されている。Z軸方向から誘電体フィルタ6A,6Bを平面視したとき、入出力端子P62A,P61Bは、分布定数素子633,634にそれぞれ重なっている。なお、入出力端子P62A,P61Bは、分布定数素子632,635にそれぞれ重なっていてもよい。
 入出力端子P61A,P62Bに入力された信号は、共通端子Pcomから出力される。共通端子Pcomに入力された信号は、当該信号の周波数によって入出力端子P61AまたはP62Bから出力される。
 Z軸方向に垂直なマルチプレクサ6の最外層の面を上面UF6および底面BF6とする。上面UF6および底面BF6は、Z軸方向に対向している。Z軸方向に平行な面のうちZX平面と平行な面を側面SF61およびSF63とする。Z軸方向に平行な面のうちYZ平面と平行な面を側面SF62およびSF64とする。
 底面BF6には、入出力端子P61A,P62B,共通端子Pcom、および接地端子610が形成されている。入出力端子P1,P2、および接地端子610は、たとえば底面BF6に平面電極が規則的に配置されたLGA(Land Grid Array)端子である。底面BF6は、不図示の回路基板に接続される。
 上面UF6には、シールド電極616が配置されている。シールド電極616は、上面UF6を覆っている。
 側面SF61には、シールド電極611,612が配置されている。シールド電極611,612は、X軸方向に互いに離間して配置されている。シールド電極611,612の各々は、接地端子610、接地電極621,622、およびシールド電極616に接続されている。
 側面SF63には、シールド電極614,615が配置されている。シールド電極614,615は、X軸方向に互いに離間して配置されている。シールド電極614,615の各々は、接地端子610、接地電極621,622、およびシールド電極616に接続されている。
 側面SF62には、シールド電極613が配置されている。シールド電極613は、側面SF62を覆っている。シールド電極613は、接地端子610、接地電極621,622、およびシールド電極612,614,616に接続されている。
 側面SF64には、シールド電極が形成されていない。
 接地端子610およびシールド電極611~616は、シールド導体部650を形成する。X軸方向からシールド導体部650を平面視したとき、シールド導体部650は、分布定数素子631~636を巻回するように誘電体基板600の表面に形成されている。
 分布定数素子631~636の各々の側面SF64側の端部(一方端)は、シールド導体部650に接続されていない。すなわち、分布定数素子631~634の各々の一方端は、電圧が変化し得る開放端である。一方、分布定数素子631~636の各々の側面SF62側の端部(他方端)は、シールド電極613に接続されている。すなわち、分布定数素子631~636の各々の他方端は、電圧がシールド導体部650の基準電圧に固定される固定端である。
 分布定数素子631~636の各々のX軸方向の長さは、マルチプレクサ6を通過可能な所望の信号の波長の4分の1である。すなわち、分布定数素子631~636の各々は、λ/4共振器である。誘電体フィルタ6A,6Bの各々は、3つのλ/4共振器から形成される3段の誘電体フィルタである。
 分布定数素子631~636は、複数の導体641~646をそれぞれ含む。複数の導体641の各々は、X軸方向に延在し、Z軸方向を法線とする分布定数線路を形成している。複数の導体641の各々は、誘電体基板600を形成する複数の誘電体層のいずれかに配置されている。すなわち、複数の導体641は、Z軸方向に誘電体層の厚み分の間隔を空けて積層されている。複数の導体641においてZ軸方向に隣接する導体の間隔は一定でなくてもよい。複数の導体642~646の各々も、複数の導体641と同様に配置されている。
 分布定数素子631~636は、ビア導体V61~V66をそれぞれ含む。分布定数素子631の一方端において、複数の導体641は、ビア導体V61(短絡導体部)によって互いに接続されている。分布定数素子632の一方端において、複数の導体642は、ビア導体V62(短絡導体部)によって互いに接続されている。分布定数素子633の一方端において、複数の導体643は、ビア導体V63(短絡導体部)によって互いに接続されている。分布定数素子634の一方端において、複数の導体644は、ビア導体V64(短絡導体部)によって互いに接続されている。分布定数素子635の一方端において、複数の導体645は、ビア導体V65(短絡導体部)によって互いに接続されている。分布定数素子636の一方端において、複数の導体646は、ビア導体V66(短絡導体部)によって互いに接続されている。
 分布定数素子631~636の各々の開放端において、当該分布定数素子の複数の導体が互いに接続されることにより、当該複数の導体各々の電位(極性)が一致する。そのため、当該複数の導体の各々を流れる電流の共振モードを一致させることができる。その結果、当該複数の導体の各々を電流が流れる方向を一致させることができる。
 なお、実施の形態6に係るマルチプレクサに含まれる誘電体フィルタは、3段の誘電体フィルタに限定されず、たとえば、実施の形態4および変形例に係る誘電体フィルタ、ならびに実施の形態5および変形例に係る誘電体フィルタのように2段の誘電体フィルタであってもよいし、4段以上の誘電体フィルタであってもよい。また、実施の形態6に係るマルチプレクサに含まれる誘電体フィルタの数は2に限定されず、3以上であってもよい。すなわち、実施の形態6に係るマルチプレクサは、デュプレクサおよびダイプレクサに限定されず、たとえばトリプレクサ、クアッドプレクサ、あるいはペンタプレクサを含む。
 以上、実施の形態6に係るマルチプレクサによれば、低損失化を実現することができる。
 なお、実施の形態に係る誘電体共振器は、内導体と外導体とを含む同軸型誘電体共振器として捉えることが可能である。この場合、実施の形態に係る誘電体共振器に含まれる分布定数素子,シールド導体部が、同軸型誘電体共振器に含まれる内導体,外導体にそれぞれ対応する。すなわち、実施の形態に係る誘電体共振器は、内導体が複数の導体に分割された同軸型誘電体共振器として捉えることができる。
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わされて実施されることも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,4,4A,5,5A,6A,6B,10,40 誘電体フィルタ、2,2A~2D,3,3A,20 誘電体共振器、6 マルチプレクサ、11,14,21,41,42,131~134,231,331,431,431A,432,432A,531,532,631~636 分布定数素子、100,600 誘電体基板、110,610 接地端子、111~116,611~616 シールド電極、121,122,621,622 接地電極、141~144,241,241B,241C,341,341A,441,442,541,541A,542,542A,641~646 複数の導体、3411~3416,5411~5414,5431~5433 導体、150,650 シールド導体部、217 接続導体、360 短絡導体部、Cd 芯部分、P1,P2,P61A,P62A,P61B,P62B 入出力端子、Pcom 共通端子、V11~V14,V21,V31,V32,V41,V42,V51,V52,V61~V66 ビア導体。 

Claims (20)

  1.  誘電体基板と、
     前記誘電体基板の内部において第1方向に延在する分布定数素子と、
     前記第1方向から前記分布定数素子を平面視したとき、前記分布定数素子を巻回するように前記誘電体基板の表面に形成されたシールド導体部とを備え、
     前記分布定数素子の一方端は、前記シールド導体部に接続されておらず、
     前記分布定数素子は、複数の導体を含む、誘電体共振器。
  2.  前記誘電体基板は、前記第1方向に直交する第2方向に積層された複数の誘電体層によって形成され、
     前記複数の導体の各々は、前記第1方向に延在し、前記第2方向を法線とする分布定数線路を形成し、
     前記複数の導体は、前記複数の誘電体層の少なくとも2層の誘電体層に配置されている、請求項1に記載の誘電体共振器。
  3.  前記少なくとも2層の誘電体層の数は、13以上である、請求項2に記載の誘電体共振器。
  4.  前記複数の導体の各々の前記第1方向の長さは、前記誘電体基板の前記第1方向の長さに等しい、請求項2または3に記載の誘電体共振器。
  5.  前記分布定数素子は、前記一方端において前記複数の導体の各々を互いに接続する短絡導体部をさらに含む、請求項2~4のいずれか1項に記載の誘電体共振器。
  6.  前記短絡導体部は、前記誘電体基板の外部に配置されている、請求項5に記載の誘電体共振器。
  7.  前記分布定数素子の他方端において、前記複数の導体の各々は、前記シールド導体部に接続されている、請求項2~6のいずれか1項に記載の誘電体共振器。
  8.  前記複数の導体は、第1導体と、第2導体と、第3導体と、第4導体とを含み、
     前記第3導体および前記第4導体は、前記第2方向において前記第1導体と前記第2導体との間に配置されているとともに、前記第1方向および前記第2方向の各々に直交する第3方向に離間している、請求項2~7のいずれか1項に記載の誘電体共振器。
  9.  前記第1方向および前記第2方向の各々に直交する第3方向における前記分布定数素子の長さは、特定長さであり、
     前記複数の導体は、第1導体と、第2導体と、第3導体とを含み、
     前記複数の導体のうち、前記第1導体および前記第2導体以外の導体は、前記第1導体と前記第2導体との間に配置され、
     前記第3方向における前記第1導体および前記第2導体の各々の長さは、前記特定長さよりも短く、
     前記第3導体の長さは、前記特定長さである、請求項2~7のいずれか1項に記載の誘電体共振器。
  10.  前記複数の導体の各々の前記第1方向の厚みは、当該導体の表皮深さよりも厚い、請求項2~9のいずれか1項に記載の誘電体共振器。
  11.  誘電体基板と、
     前記誘電体基板の内部において第1方向に延在する複数の分布定数素子と、
     前記複数の分布定数素子に電気的に接続された、第1端子および第2端子と、
     前記第1方向から前記複数の分布定数素子を平面視したとき、前記複数の分布定数素子を巻回するように前記誘電体基板の表面に形成されたシールド導体部とを備え、
     前記複数の分布定数素子の各々の一方端は、前記シールド導体部に接続されておらず、
     前記複数の分布定数素子に含まれる少なくとも1つの分布定数素子は、複数の導体を含み、
     前記誘電体基板は、前記第1方向に直交する第2方向に積層された複数の誘電体層によって形成され、
     前記複数の導体の各々は、前記第1方向に延在し、前記第2方向を法線とする分布定数線路を形成し、
     前記複数の導体は、前記複数の誘電体層の少なくとも13層の誘電体層に配置されている、誘電体フィルタ。
  12.  前記複数の導体の各々の前記第1方向の長さは、前記誘電体基板の前記第1方向の長さに等しい、請求項11に記載の誘電体フィルタ。
  13.  前記少なくとも1つの分布定数素子は、前記一方端において前記複数の導体の各々を互いに接続する短絡導体部をさらに含む、請求項11または12に記載の誘電体フィルタ。
  14.  前記短絡導体部は、前記誘電体基板の外部に配置されている、請求項13に記載の誘電体フィルタ。
  15.  前記複数の分布定数素子の他方端において、前記複数の導体の各々は、前記シールド導体部に接続されている、請求項11~14のいずれか1項に記載の誘電体フィルタ。
  16.  前記複数の導体は、第1導体と、第2導体と、第3導体と、第4導体とを含み、
     前記第3導体および前記第4導体は、前記第1方向において前記第1導体と前記第2導体との間に配置されているとともに、前記第1方向および前記第2方向の各々に直交する第3方向に離間している、請求項11~15のいずれか1項に記載の誘電体フィルタ。
  17.  前記第1方向および前記第2方向の各々に直交する第3方向における前記分布定数素子の長さは、特定長さであり、
     前記複数の導体は、第1導体と、第2導体と、第3導体とを含み、
     前記複数の導体のうち、前記第1導体および前記第2導体以外の導体は、前記第1導体と前記第2導体との間に配置され、
     前記第3方向における前記第1導体および前記第2導体の各々の長さは、前記特定長さよりも短く、
     前記第3導体の長さは、前記特定長さである、請求項11~15のいずれか1項に記載の誘電体フィルタ。
  18.  前記複数の導体の各々の前記第1方向の厚みは、当該導体の表皮深さよりも厚い、請求項11~17のいずれか1項に記載の誘電体フィルタ。
  19.  請求項11~18のいずれか1項に記載の第1誘電体フィルタおよび第2誘電体フィルタを備える、マルチプレクサ。
  20.  前記第1誘電体フィルタの第2端子に接続されているとともに、前記第2誘電体フィルタの第1端子に接続された共通端子をさらに備える、請求項19に記載のマルチプレクサ。 
PCT/JP2020/039653 2019-11-29 2020-10-22 誘電体共振器、誘電体フィルタ、およびマルチプレクサ WO2021106443A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080056790.9A CN114245955B (zh) 2019-11-29 2020-10-22 电介质谐振器、电介质滤波器、以及多工器
JP2021561223A JP7211533B2 (ja) 2019-11-29 2020-10-22 誘電体共振器、誘電体フィルタ、およびマルチプレクサ
US17/715,097 US12051847B2 (en) 2019-11-29 2022-04-07 Dielectric resonator, dielectric filter, and multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-216297 2019-11-29
JP2019216297 2019-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/715,097 Continuation US12051847B2 (en) 2019-11-29 2022-04-07 Dielectric resonator, dielectric filter, and multiplexer

Publications (1)

Publication Number Publication Date
WO2021106443A1 true WO2021106443A1 (ja) 2021-06-03

Family

ID=76129325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039653 WO2021106443A1 (ja) 2019-11-29 2020-10-22 誘電体共振器、誘電体フィルタ、およびマルチプレクサ

Country Status (4)

Country Link
US (1) US12051847B2 (ja)
JP (1) JP7211533B2 (ja)
CN (1) CN114245955B (ja)
WO (1) WO2021106443A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11862835B2 (en) * 2020-08-13 2024-01-02 Cyntec Co., Ltd. Dielectric filter with multilayer resonator
CN113948835B (zh) * 2021-10-18 2022-06-14 华南理工大学 一种基于单体四模介质谐振器的双频滤波开关

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140804A (ja) * 1992-10-28 1994-05-20 Hitachi Ferrite Ltd ストリップラインフィルタ
JPH06252606A (ja) * 1993-03-02 1994-09-09 Sumitomo Metal Ind Ltd 高周波用フィルタ
JPH0766078A (ja) * 1993-08-25 1995-03-10 Tdk Corp 積層電子部品
JP2000196310A (ja) * 1998-12-25 2000-07-14 Murata Mfg Co Ltd 誘電体共振器、誘電体フィルタ、アンテナ共用器および通信装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263702A (ja) * 1986-05-09 1987-11-16 Murata Mfg Co Ltd ストリツプラインフイルタ
US4692726A (en) * 1986-07-25 1987-09-08 Motorola, Inc. Multiple resonator dielectric filter
JPH0650802B2 (ja) * 1988-03-23 1994-06-29 株式会社村田製作所 フィルタ
JPH0590811A (ja) 1991-09-25 1993-04-09 Sanyo Electric Co Ltd 同軸型誘電体共振器
JP3464820B2 (ja) * 1993-03-25 2003-11-10 松下電器産業株式会社 誘電体積層共振器および誘電体フィルタ
EP0716468B1 (en) * 1993-08-27 2001-10-24 Murata Manufacturing Co., Ltd. Thin-film multilayer electrode of high frequency electromagnetic field coupling
US5408053A (en) * 1993-11-30 1995-04-18 Hughes Aircraft Company Layered planar transmission lines
JP2001196817A (ja) * 1999-11-05 2001-07-19 Murata Mfg Co Ltd 誘電体共振器、誘電体フィルタ、誘電体デュプレクサおよび通信装置
JP2001177306A (ja) 1999-12-20 2001-06-29 Ngk Insulators Ltd 積層型誘電体フィルタ
JP2003218604A (ja) 2002-01-25 2003-07-31 Ngk Insulators Ltd 積層型誘電体共振器及び積層型誘電体フィルタ
JP4640218B2 (ja) 2006-02-28 2011-03-02 Tdk株式会社 積層型誘電体共振器およびバンドパスフィルタ
JP4780476B2 (ja) * 2007-11-12 2011-09-28 Tdk株式会社 電子部品
JP5402932B2 (ja) * 2008-08-11 2014-01-29 日立金属株式会社 バンドパスフィルタ、高周波部品及び通信装置
US9209772B2 (en) * 2010-05-28 2015-12-08 Advantest Corporation Electrical filter structure
US9166550B2 (en) * 2013-03-14 2015-10-20 Avago Technologies General Ip (Singapore) Pte. Ltd. System and method for using a reference plane to control transmission line characteristic impedance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140804A (ja) * 1992-10-28 1994-05-20 Hitachi Ferrite Ltd ストリップラインフィルタ
JPH06252606A (ja) * 1993-03-02 1994-09-09 Sumitomo Metal Ind Ltd 高周波用フィルタ
JPH0766078A (ja) * 1993-08-25 1995-03-10 Tdk Corp 積層電子部品
JP2000196310A (ja) * 1998-12-25 2000-07-14 Murata Mfg Co Ltd 誘電体共振器、誘電体フィルタ、アンテナ共用器および通信装置

Also Published As

Publication number Publication date
JPWO2021106443A1 (ja) 2021-06-03
CN114245955B (zh) 2023-05-23
US20220231395A1 (en) 2022-07-21
CN114245955A (zh) 2022-03-25
US12051847B2 (en) 2024-07-30
JP7211533B2 (ja) 2023-01-24

Similar Documents

Publication Publication Date Title
US9431690B2 (en) Dielectric waveguide filter with direct coupling and alternative cross-coupling
JP5675449B2 (ja) 誘電体導波管フィルタ
US7902944B2 (en) Stacked resonator
CN108649920B (zh) 压电声波谐振器、压电声波滤波器、双工器及射频通信模块
JP2019017084A (ja) 直接結合および代替交差結合を伴う誘電体導波管フィルタ
WO2021106443A1 (ja) 誘電体共振器、誘電体フィルタ、およびマルチプレクサ
CN1874053B (zh) 加载扇形微带分支的小型化谐波抑制带通滤波器
US20210336313A1 (en) Waveguide filter
JP6267801B2 (ja) 共振器、フィルタおよび通信装置
US20010043129A1 (en) Resonator, filter, duplexer, and communication device
US7274273B2 (en) Dielectric resonator device, dielectric filter, duplexer, and high-frequency communication apparatus
US9666922B2 (en) Dielectric filter, duplexer, and communication device
JPH1013105A (ja) 高周波フィルタ
US11916295B2 (en) Frequency selective surface
US6809615B2 (en) Band-pass filter and communication apparatus
US12027742B2 (en) Distributed constant filter, distributed constant line resonator, and multiplexer
JP6068678B2 (ja) 誘電体共振器,誘電体フィルタおよび通信装置
CN107834136B (zh) 带通滤波器
KR102604231B1 (ko) 고차 공진모드 억제를 위한 세라믹 도파관 필터
US8866568B2 (en) Signal transmission device, filter, and inter-substrate communication device
CN115513622A (zh) 一种四分之一模慢波基片集成波导滤波器
JP2010028417A (ja) 左手系共振器、および、左手系フィルタ
JP2009273082A (ja) 左手系フィルタ
JP2009273083A (ja) 左手系フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561223

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892559

Country of ref document: EP

Kind code of ref document: A1