WO2021097851A1 - 光学成像系统、取像装置及电子设备 - Google Patents

光学成像系统、取像装置及电子设备 Download PDF

Info

Publication number
WO2021097851A1
WO2021097851A1 PCT/CN2019/120433 CN2019120433W WO2021097851A1 WO 2021097851 A1 WO2021097851 A1 WO 2021097851A1 CN 2019120433 W CN2019120433 W CN 2019120433W WO 2021097851 A1 WO2021097851 A1 WO 2021097851A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
object side
image side
Prior art date
Application number
PCT/CN2019/120433
Other languages
English (en)
French (fr)
Inventor
蔡雄宇
兰宾利
周芮
Original Assignee
天津欧菲光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津欧菲光电有限公司 filed Critical 天津欧菲光电有限公司
Priority to PCT/CN2019/120433 priority Critical patent/WO2021097851A1/zh
Publication of WO2021097851A1 publication Critical patent/WO2021097851A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • This application relates to optical imaging technology, in particular to an optical imaging system, image capturing device and electronic equipment.
  • ADAS Advanced Driving Assistant System
  • DMS Driver Monitor System, driving warning system
  • other technologies for in-vehicle driving have gradually matured, and the development of these in-vehicle technologies is inseparable from camera technology.
  • the existing camera devices that meet the requirements of vehicle miniaturization have low resolution and cannot monitor the driver's state well. According to the eye state, the number of closed eyes, the magnitude of closed eyes, yawns, facial conditions, etc. The information is estimated to determine whether the driver is driving fatigued, so as to provide early warning and improve driving safety.
  • the present application provides an optical imaging system with high pixel resolution.
  • An optical imaging system which sequentially includes from the object side to the image side:
  • a first lens with positive refractive power, the object side surface of the first lens is convex;
  • a second lens with negative refractive power, the object side and the image side of the second lens are both concave;
  • a third lens with positive refractive power, the object side and the image side of the third lens are both convex;
  • a fourth lens with positive refractive power, the object side and image side of the fourth lens are both convex;
  • a fifth lens with negative refractive power, the object side and the image side of the fifth lens are both concave.
  • At least one lens of the first lens, the second lens, the third lens, the fourth lens and the fifth lens is an aspheric lens.
  • the aspheric lens can be easily manufactured into a shape other than the spherical surface to obtain more control variables, which is beneficial to reduce aberrations, and obtain the advantages of good imaging with a smaller number of lenses; thereby reducing the number of lenses to meet the miniaturization.
  • the image side surface of the first lens is a plane.
  • the first lens has a flat surface on the image side to facilitate the assembly of the optical imaging system, reduce eccentricity, and expand the back focus; in addition, when it is necessary to coat the image side, it also facilitates the coating process of the bandpass filter film and reduces ghosting. risk.
  • At least one of the object side surface and the image side surface of the first lens, the second lens, the third lens, the fourth lens and the fifth lens is provided with an infrared band-pass filter film.
  • the infrared bandpass filter film By setting the infrared bandpass filter film, it can be ensured that the optical imaging system only passes through the required light wavelength range, filters out the light waves in the non-operating band, and avoids the light waves in the non-operating range from interfering with the imaging effect of the photosensitive element.
  • the optical imaging system further includes an aperture, and the effective diameter of the aperture is the aperture of the object side of the first lens. Adopting the aperture of the object side of the first lens as the diaphragm can ensure that the optical imaging system has a larger aperture and sufficient light flux, so that the image surface can be imaged clearly and brightly.
  • the optical imaging system further includes a protective glass, and the protective glass is located between the fifth lens and the imaging surface.
  • the protective glass is used to protect the photosensitive element on the imaging surface to achieve a dust-proof effect.
  • optical imaging system satisfies the following conditional formula:
  • f3 is the focal length of the third lens
  • f is the effective focal length of the optical imaging system.
  • positive refractive power can be provided for the optical imaging system, which is beneficial to correct the aberration of the optical imaging system and ensure the high-pixel imaging quality of the optical imaging system 100.
  • optical imaging system satisfies the following conditional formula:
  • f4 is the focal length of the fourth lens
  • f is the effective focal length of the optical imaging system.
  • optical imaging system satisfies the following conditional formula:
  • f3 is the focal length of the third lens
  • f4 is the focal length of the fourth lens
  • D34 is the distance between the image side surface of the third lens and the object side surface of the fourth lens on the optical axis.
  • the two convex lenses can be used to correct aberrations to improve the optical performance of the optical imaging system; at the same time, it is conducive to the integration and miniaturization of the optical imaging system.
  • optical imaging system satisfies the following conditional formula:
  • ET S8 is the distance from the image side surface of the fourth lens to the object side surface of the fifth lens parallel to the optical axis at the maximum effective diameter.
  • optical imaging system satisfies the following conditional formula:
  • f5 is the focal length of the fifth lens
  • f is the effective focal length of the optical imaging system.
  • the fifth lens near the imaging surface has a negative refractive power, which can expand the beam width of the incident beam exiting the optical imaging system, which is beneficial to the maximum area of the photosensitive element to receive the light carrying image information, and ensures the high-pixel imaging quality of the optical imaging system.
  • optical imaging system satisfies the following conditional formula:
  • RS9 is the radius of curvature of the object side surface of the fifth lens
  • f is the effective focal length of the optical imaging system.
  • the optical imaging system satisfies -2 ⁇ RS9/f ⁇ -1. At this time, the aberration of the optical imaging system can be better optimized, and the generation of ghost images can be better reduced.
  • optical imaging system satisfies the following conditional formula:
  • sag10 is the image side vector height of the fifth lens.
  • optical imaging system satisfies the following conditional formula:
  • Imgh is the image height of the imaging surface of the optical imaging system in the angular direction
  • f is the effective focal length of the optical imaging system.
  • optical imaging system satisfies the following conditional formula:
  • BFL is the optical back focus of the optical imaging system
  • TTL is the total length of the optical imaging imaging system
  • optical imaging system satisfies the following conditional formula:
  • FOV is the diagonal viewing angle of the optical imaging system
  • CRA is the incident angle of the chief ray of the optical imaging system.
  • the optical imaging system has a sufficient angle of view to meet the high FOV requirements of mobile phones, cameras, vehicles, surveillance, medical and other electronic products, while reducing the angle of light entering the chip and increasing Photosensitive performance.
  • the optical imaging system has the best field of view, and the photosensitive performance is better.
  • optical imaging system satisfies the following conditional formula:
  • CT is the central thickness of the biconvex lens in the optical imaging system at the optical axis
  • DT is the central thickness of the biconcave lens in the optical imaging system at the optical axis.
  • optical imaging system satisfies the following conditional formula:
  • nd3 is the refractive index of d light of the third lens
  • vd3 is the Abbe number of the third lens
  • optical imaging system satisfies the following conditional formula:
  • f is the effective focal length of the optical imaging system
  • ⁇ CT is the sum of the thickness of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens on the optical axis.
  • the structure of the optical imaging system is compact, and the total length of the optical imaging system is reduced, which is beneficial to miniaturization.
  • An image capturing device which includes:
  • the photosensitive element is located on the image side of the optical imaging system.
  • An electronic device which includes:
  • the main body of the equipment and;
  • the image capturing device is installed on the main body of the device.
  • the optical imaging system of the present application is composed of five lenses, is small in size, and has high pixel resolution.
  • Figure 1-1 is a schematic structural diagram of an optical imaging system according to the first embodiment of the present application.
  • Figure 1-2 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system according to the first embodiment of the present application from left to right.
  • Figure 2-1 is a schematic structural diagram of an optical imaging system according to a second embodiment of the present application.
  • Fig. 2-2 shows the spherical aberration, astigmatism and distortion curves of the optical imaging system according to the second embodiment of the present application, from left to right.
  • Fig. 3-1 is a schematic structural diagram of an optical imaging system according to a third embodiment of the present application.
  • Fig. 3-2 shows the spherical aberration, astigmatism, and distortion curves of the optical imaging system according to the third embodiment of the present application, from left to right.
  • Fig. 4-1 is a schematic structural diagram of an optical imaging system according to a fourth embodiment of the present application.
  • Fig. 4-2 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system according to the fourth embodiment of the present application, from left to right.
  • FIG. 5-1 is a schematic structural diagram of an optical imaging system according to a fifth embodiment of the present application.
  • Fig. 5-2 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system according to the fifth embodiment of the present application, from left to right.
  • Fig. 6-1 is a schematic structural diagram of an optical imaging system according to a sixth embodiment of the present application.
  • Fig. 6-2 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system according to the sixth embodiment of the present application, from left to right.
  • Fig. 7-1 is a schematic structural diagram of an optical imaging system according to a seventh embodiment of the present application.
  • Fig. 7-2 is a graph showing spherical aberration, astigmatism, and distortion of the optical imaging system according to the seventh embodiment of the present application, from left to right.
  • FIG. 8 is a schematic structural diagram of an image capturing device according to an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the optical imaging system 100 of the embodiment of the present application is applied to a vehicle camera On the device, it is used for imaging in the near-infrared light band. It includes a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a third lens L3 with a positive refractive power from the object side to the image side. , The fourth lens L4 with positive refractive power and the fifth lens L5 with negative refractive power.
  • the first lens L1 is made of glass and has an object side surface S1 and an image side surface S2.
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a flat surface.
  • the image side surface S2 of the first lens L1 adopts a flat surface to facilitate the assembly of the optical imaging system, reduce eccentricity, and enlarge the back focal length; in addition, when it is necessary to coat the image side surface S2, it is also conducive to the coating process of the bandpass filter film, reducing ghost shadow risk.
  • band-pass filter film refers to a filter film with a cut-off band adjacent to both sides of the transmission band of the spectral characteristic curve.
  • Bandpass filter films are roughly divided into broadband filter films and narrowband filter films according to their spectral characteristics. The two filter films are usually combined, and the bandpass filter film is prepared using the principle of light wave interference.
  • ghost image is also called ghost image, which refers to the additional image generated near the focal plane of the optical system due to the reflection of the lens surface. Its brightness is generally darker and it is offset from the original image.
  • the second lens L2 is made of glass and has an object side surface S3 and an image side surface S4. Both the object side surface S3 and the image side surface S4 are concave surfaces.
  • the third lens L3 is made of glass and has an object side surface S5 and an image side surface S6. Both the object side surface S5 and the image side surface S6 are convex surfaces.
  • the fourth lens L4 is made of glass and has an object side surface S7 and an image side surface S8. Both the object side surface S7 and the image side surface S8 are convex surfaces.
  • the fifth lens L5 is made of glass and has an object side surface S9 and an image side surface S10. Both the object side surface S9 and the image side surface S10 are concave surfaces.
  • the optical imaging system 100 of the present application is small in size and has high pixel resolution, and can be used for high-pixel camera lenses, automatic driving, monitoring devices, etc. based on vehicle-mounted use.
  • At least one lens of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 is an aspheric lens.
  • the aspheric lens can be easily manufactured into a shape other than the spherical surface to obtain more control variables, which is beneficial to reduce aberrations, and obtain the advantages of good imaging with a smaller number of lenses; thereby reducing the number of lenses to meet the miniaturization.
  • one of the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 is provided with an infrared band-pass filter film.
  • the infrared bandpass filter film By setting the infrared bandpass filter film, it can be ensured that the optical imaging system only passes through the required light wavelength range, filters out the light waves in the non-operating band, and avoids the light waves in the non-operating range from interfering with the imaging effect of the photosensitive element.
  • the optical imaging system 100 further includes a diaphragm (not shown), and the effective diameter of the diaphragm is formed by the aperture of the first lens L1 on the object side S1. Adopting the aperture of the object side of the first lens as the diaphragm can ensure that the optical imaging system has a larger aperture and sufficient light flux, so that the image surface can be imaged clearly and brightly.
  • the optical imaging system 100 further includes a protective glass 10.
  • the cover glass 10 has a first surface 11 and a second surface 12.
  • the protective glass 10 is made of glass and is located between the fifth lens L5 and the imaging surface 30.
  • the protective glass 10 is used to protect the photosensitive element of the imaging surface 30 to achieve a dust-proof effect.
  • the optical imaging system 100 satisfies the following conditional formula:
  • f3 is the focal length of the third lens
  • f is the effective focal length of the optical imaging system.
  • f3/f can be any value between 0 and 2, for example, 0.1, 0.5, 0.8, 1.0, 1.2, 1.5, 1.6, 1.9, and so on.
  • positive refractive power can be provided for the optical imaging system, which is beneficial to correct the aberration of the optical imaging system and ensure the high-pixel imaging quality of the optical imaging system 100.
  • the optical imaging system 100 satisfies the following conditional formula:
  • f4 is the focal length of the fourth lens
  • f is the effective focal length of the optical imaging system.
  • f4/f can be any value between 1 and 2, such as 1, 1.2, 1.3, 1.5, 1.7, 1.9, and so on.
  • the optical imaging system 100 satisfies the following conditional formula:
  • f3 is the focal length of the third lens
  • f4 is the focal length of the fourth lens
  • D34 is the distance on the optical axis between the image side surface of the third lens and the object side surface of the fourth lens.
  • (f3-f4)/D34 can be any value between -25 and -0.5, such as -24, -22, -20, -15, -10, -8, -3, -0.8, etc.
  • the two convex lenses can be used to correct aberrations to improve the optical performance of the optical imaging system; at the same time, it is conducive to the integration and miniaturization of the optical imaging system.
  • the optical imaging system 100 satisfies the following conditional formula:
  • ET S8 is the distance from the image side surface of the fourth lens to the object side surface of the fifth lens parallel to the optical axis at the maximum effective diameter.
  • ET S8 can be any value between 0.1 and 0.3, such as 0.1, 0.15, 0.18, 0.2, 0.25, 0.3 and so on.
  • the optical imaging system 100 satisfies the following conditional formula:
  • f5 is the focal length of the fifth lens
  • f is the effective focal length of the optical imaging system.
  • f5/f can be any value between -3 and -1, such as -3, -2.5, -2, -1.5, -1.2, and so on.
  • the fifth lens near the imaging surface has a negative refractive power, which can expand the beam width of the incident beam exiting the optical imaging system, which is beneficial to the maximum area of the photosensitive element to receive the light carrying image information, and ensures the high-pixel imaging quality of the optical imaging system.
  • the optical imaging system 100 satisfies the following conditional formula:
  • RS9 is the radius of curvature of the object side surface of the fifth lens
  • f is the effective focal length of the optical imaging system.
  • RS9/f can be any value between -5 and -1, such as -4.8, -4.5, -4, -3.5, -2, -1.5, and so on.
  • the optical imaging system 100 satisfies -2 ⁇ RS9/f ⁇ -1. In this case, the aberration of the optical imaging system can be better optimized, and the generation of ghost images can be better reduced.
  • the optical imaging system 100 satisfies the following conditional formula:
  • sag10 is the sagittal height of the image side surface of the fifth lens.
  • sag10 can be any value between 0 and 0.7, such as 0.05, 0.1, 0.2, 0.3, 0.5, 0.68, and so on.
  • the optical imaging system 100 satisfies the following conditional formula:
  • Imgh is the image height of the imaging surface of the optical imaging system in the angular direction
  • f is the effective focal length of the optical imaging system.
  • Imgh/f can be any value between 1 and 1.2, such as 1.05, 1.08, 1.1, 1.15, 1.18, and so on.
  • the optical imaging system 100 satisfies the following conditional formula:
  • BFL is the optical back focus of the optical imaging system
  • TTL is the total length of the optical imaging imaging system
  • BFL/TTL can be any value between 0.1 and 0.3, such as 0.11, 0.15, 0.18, 0.2, 0.25, 0.29, etc.
  • the optical imaging system 100 satisfies the following conditional formula:
  • FOV is the diagonal viewing angle of the optical imaging system
  • CRA is the incident angle of the chief ray of the optical imaging system.
  • FOV/CRA can be any value between 3 and 4, such as 3.1, 3.2, 3.5, 3.6, 3.7, 3.9, and so on.
  • the optical imaging system has a sufficient angle of view to meet the high FOV requirements of mobile phones, cameras, vehicles, surveillance, medical and other electronic products, while reducing the angle of light entering the chip and increasing Photosensitive performance.
  • the optical imaging system has the best field of view, and the photosensitive performance is better.
  • the optical imaging system 100 satisfies the following conditional formula:
  • CT is the central thickness of the biconvex lens in the optical imaging system at the optical axis
  • DT is the central thickness of the biconcave lens in the optical imaging system at the optical axis.
  • the optical imaging system 100 satisfies the following conditional formula:
  • nd3 is the refractive index of d light of the third lens
  • vd3 is the Abbe number of the third lens
  • the optical imaging system 100 satisfies the following conditional formula:
  • f is the effective focal length of the optical imaging system
  • ⁇ CT is the sum of the thickness of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens on the optical axis.
  • ⁇ CT/f can be any value between 1.2 and 1.35, such as 1.21, 1.25, 1.28, 1.30, 1.32, 1.33, 1.34, and so on.
  • the structure of the optical imaging system is compact, and the total length of the optical imaging system is reduced, which is beneficial to miniaturization.
  • optical imaging system 100 of the present application will be described in further detail below in conjunction with specific embodiments.
  • Fig. 1-1 is a schematic structural diagram of the optical imaging system 100 of the first embodiment
  • Fig. 1-2 shows the spherical aberration, Graphs of astigmatism and distortion.
  • the optical imaging system 100 of this embodiment sequentially includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a second lens with positive refractive power from the object side to the image side.
  • the optical imaging system 100 further includes an infrared band-pass filter film (not shown), and the infrared band-pass filter film is plated on the image side surface S2 of the first lens L1.
  • the first lens L1 is made of glass, and the object side surface S1 and the image side surface S2 are both spherical surfaces.
  • the object side surface S1 is a convex surface, and the image side surface S2 is a flat surface.
  • the second lens L2 is made of glass, and the object side surface S3 and the image side surface S4 are both spherical surfaces. Both the object side surface S3 and the image side surface S4 are concave surfaces.
  • the third lens L3 is made of glass, and the object side surface S5 and the image side surface S6 are both aspherical. Both the object side surface S5 and the image side surface S6 are convex surfaces.
  • the fourth lens L4 is made of glass, and the object side surface S7 and the image side surface S8 are both spherical surfaces. Both the object side surface S7 and the image side surface S8 are convex surfaces.
  • the fifth lens L5 is made of glass, and the object side surface S9 and the image side surface S10 are both spherical surfaces. Both the object side surface S9 and the image side surface S10 are concave surfaces.
  • the optical imaging system 100 satisfies the conditions of Table 1 and Table 2 below.
  • FNO is the aperture number of the optical imaging system.
  • Table 2 is the aspheric surface data of the first embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • the optical imaging system 100 of the present application has a relatively high pixel resolution when miniaturization is satisfied.
  • FIG. 2-1 is a schematic structural diagram of the optical imaging system 100 of the second embodiment
  • FIG. 2-2 shows the spherical aberration, Graphs of astigmatism and distortion.
  • the optical imaging system 100 of this embodiment includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a second lens with positive refractive power from the object side to the image side.
  • the optical imaging system 100 further includes an infrared band-pass filter film (not shown), and the infrared band-pass filter film is plated on the image side surface S2 of the first lens L1.
  • the first lens L1 is made of glass, and the object side surface S1 and the image side surface S2 are both spherical surfaces.
  • the object side surface S1 is a convex surface, and the image side surface S2 is a flat surface.
  • the second lens L2 is made of glass, and the object side surface S3 and the image side surface S4 are both spherical surfaces. Both the object side surface S3 and the image side surface S4 are concave surfaces.
  • the third lens L3 is made of glass, and the object side surface S5 and the image side surface S6 are both aspherical. Both the object side surface S5 and the image side surface S6 are convex surfaces.
  • the fourth lens L4 is made of glass, and the object side surface S7 and the image side surface S8 are both spherical surfaces. Both the object side surface S7 and the image side surface S8 are convex surfaces.
  • the fifth lens L5 is made of glass, and the object side surface S9 and the image side surface S10 are both spherical surfaces. Both the object side surface S9 and the image side surface S10 are concave surfaces.
  • the optical imaging system 100 satisfies the conditions in Table 3 and Table 4 below.
  • FNO is the aperture number of the optical imaging system.
  • Table 4 is the aspheric surface data of the second embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • the optical imaging system 100 of the present application has relatively high pixels when miniaturization is satisfied.
  • Fig. 3-1 is a schematic structural diagram of the optical imaging system 100 of the third embodiment
  • Fig. 3-2 shows the spherical aberration, Graphs of astigmatism and distortion.
  • the optical imaging system 100 of this embodiment sequentially includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a second lens with positive refractive power from the object side to the image side.
  • the optical imaging system 100 further includes an infrared band-pass filter film (not shown), and the infrared band-pass filter film is plated on the image side surface S2 of the first lens L1.
  • the first lens L1 is made of glass, and the object side surface S1 and the image side surface S2 are both spherical surfaces.
  • the object side surface S1 is a convex surface, and the image side surface S2 is a flat surface.
  • the second lens L2 is made of glass, and the object side surface S3 and the image side surface S4 are both spherical surfaces. Both the object side surface S3 and the image side surface S4 are concave surfaces.
  • the third lens L3 is made of glass, and the object side surface S5 and the image side surface S6 are both aspherical. Both the object side surface S5 and the image side surface S6 are convex surfaces.
  • the fourth lens L4 is made of glass, and the object side surface S7 and the image side surface S8 are both spherical surfaces. Both the object side surface S7 and the image side surface S8 are convex surfaces.
  • the fifth lens L5 is made of glass, and the object side surface S9 and the image side surface S10 are both spherical surfaces. Both the object side surface S9 and the image side surface S10 are concave surfaces.
  • the optical imaging system 100 satisfies the conditions in Table 5 and Table 6 below.
  • FNO is the aperture number of the optical imaging system.
  • Table 6 is the aspheric surface data of the third embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • the optical imaging system 100 of the present application has relatively high pixels under the condition of meeting miniaturization.
  • Fig. 4-1 is a schematic structural diagram of the optical imaging system 100 of the fourth embodiment
  • Fig. 4-2 shows the spherical aberration, Graphs of astigmatism and distortion.
  • the optical imaging system 100 of this embodiment includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a second lens with positive refractive power from the object side to the image side.
  • the optical imaging system 100 further includes an infrared band-pass filter film (not shown), and the infrared band-pass filter film is plated on the image side surface S10 of the fifth lens L5.
  • the first lens L1 is made of glass, and the object side surface S1 and the image side surface S2 are both spherical surfaces.
  • the object side surface S1 is a convex surface, and the image side surface S2 is a flat surface.
  • the second lens L2 is made of glass, and the object side surface S3 and the image side surface S4 are both spherical surfaces. Both the object side surface S3 and the image side surface S4 are concave surfaces.
  • the third lens L3 is made of glass, and the object side surface S5 and the image side surface S6 are both aspherical. Both the object side surface S5 and the image side surface S6 are convex surfaces.
  • the fourth lens L4 is made of glass, and the object side surface S7 and the image side surface S8 are both spherical surfaces. Both the object side surface S7 and the image side surface S8 are convex surfaces.
  • the fifth lens L5 is made of glass, and the object side surface S9 and the image side surface S10 are both spherical surfaces. Both the object side surface S9 and the image side surface S10 are concave surfaces.
  • the optical imaging system 100 satisfies the conditions in Table 7 and Table 8 below.
  • FNO is the aperture number of the optical imaging system.
  • Table 8 is the aspheric surface data of the fourth embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • the optical imaging system 100 of the present application has relatively high pixels under the condition of meeting miniaturization.
  • FIG. 5-1 is a schematic structural diagram of the optical imaging system 100 of the fifth embodiment
  • FIG. 5-2 shows the spherical aberration, Graphs of astigmatism and distortion.
  • the optical imaging system 100 of this embodiment sequentially includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a second lens with positive refractive power from the object side to the image side.
  • the optical imaging system 100 further includes an infrared band-pass filter film (not shown), and the infrared band-pass filter film is plated on the image side surface S2 of the first lens L1.
  • the first lens L1 is made of glass, and the object side surface S1 and the image side surface S2 are both spherical surfaces.
  • the object side surface S1 is a convex surface, and the image side surface S2 is a flat surface.
  • the second lens L2 is made of glass, and the object side surface S3 and the image side surface S4 are both spherical surfaces. Both the object side surface S3 and the image side surface S4 are concave surfaces.
  • the third lens L3 is made of glass, and the object side surface S5 and the image side surface S6 are both aspherical. Both the object side surface S5 and the image side surface S6 are convex surfaces.
  • the fourth lens L4 is made of glass, and the object side surface S7 and the image side surface S8 are both spherical surfaces. Both the object side surface S7 and the image side surface S8 are convex surfaces.
  • the fifth lens L5 is made of glass, and the object side surface S9 and the image side surface S10 are both spherical surfaces. Both the object side surface S9 and the image side surface S10 are concave surfaces.
  • the optical imaging system 100 satisfies the conditions of Table 9 and Table 10 below.
  • FNO is the aperture number of the optical imaging system.
  • Table 10 is the aspheric surface data of the fifth embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • the optical imaging system 100 of the present application has relatively high pixels under the condition of meeting miniaturization.
  • FIG. 6-1 is a schematic structural diagram of the optical imaging system 100 of the sixth embodiment
  • FIG. 6-2 shows the spherical aberration and the spherical aberration of the sixth embodiment of the present application from left to right.
  • Graphs of astigmatism and distortion It can be seen from FIG. 6-1 that the optical imaging system 100 of this embodiment includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a second lens with positive refractive power from the object side to the image side.
  • the optical imaging system 100 further includes an infrared band-pass filter film (not shown), and the infrared band-pass filter film is plated on the image side surface S8 of the fourth lens L4.
  • the first lens L1 is made of glass, and the object side surface S1 and the image side surface S2 are both spherical surfaces.
  • the object side surface S1 is a convex surface, and the image side surface S2 is a flat surface.
  • the second lens L2 is made of glass, and the object side surface S3 and the image side surface S4 are both spherical surfaces. Both the object side surface S3 and the image side surface S4 are concave surfaces.
  • the third lens L3 is made of glass, and the object side surface S5 and the image side surface S6 are both aspherical. Both the object side surface S5 and the image side surface S6 are convex surfaces.
  • the fourth lens L4 is made of glass, and the object side surface S7 and the image side surface S8 are both spherical surfaces. Both the object side surface S7 and the image side surface S8 are convex surfaces.
  • the fifth lens L5 is made of glass, and the object side surface S9 and the image side surface S10 are both spherical surfaces. Both the object side surface S9 and the image side surface S10 are concave surfaces.
  • the optical imaging system 100 satisfies the conditions in Table 11 and Table 12 below.
  • FNO is the aperture number of the optical imaging system.
  • Table 12 is the aspheric surface data of the sixth embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • the optical imaging system 100 of the present application has relatively high pixels under the condition of meeting miniaturization.
  • FIG. 7-1 is a schematic structural diagram of the optical imaging system 100 of the seventh embodiment
  • FIG. 7-2 shows the spherical aberration and the spherical aberration of the seventh embodiment of the present application from left to right.
  • Graphs of astigmatism and distortion It can be seen from FIG. 7-1 that the optical imaging system 100 of this embodiment sequentially includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a second lens with positive refractive power from the object side to the image side.
  • the optical imaging system 100 further includes an infrared band-pass filter film (not shown), and the infrared band-pass filter film is plated on the image side surface S2 of the first lens L1.
  • the first lens L1 is made of glass, and the object side surface S1 and the image side surface S2 are both spherical surfaces.
  • the object side surface S1 is a convex surface, and the image side surface S2 is a flat surface.
  • the second lens L2 is made of glass, and the object side surface S3 and the image side surface S4 are both spherical surfaces. Both the object side surface S3 and the image side surface S4 are concave surfaces.
  • the third lens L3 is made of glass, and the object side surface S5 and the image side surface S6 are both aspherical. Both the object side surface S5 and the image side surface S6 are convex surfaces.
  • the fourth lens L4 is made of glass, and the object side surface S7 and the image side surface S8 are both spherical surfaces. Both the object side surface S7 and the image side surface S8 are convex surfaces.
  • the fifth lens L5 is made of glass, and the object side surface S9 and the image side surface S10 are both spherical surfaces. Both the object side surface S9 and the image side surface S10 are concave surfaces.
  • the optical imaging system 100 satisfies the conditions in Table 13 and Table 14 below.
  • FNO is the aperture number of the optical imaging system.
  • Table 14 is the aspheric surface data of the seventh embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • the optical imaging system 100 of the present application has a higher pixel resolution under the condition of meeting miniaturization.
  • the present application also provides an imaging device 200 including the optical imaging system 100 and the photosensitive element 210 of the present application.
  • the photosensitive element 210 is located on the image side of the optical imaging system 100.
  • the photosensitive element 210 of the present application may be a photosensitive coupling device (Charge Coupled Device, CCD) or a Complementary Metal-Oxide Semiconductor Sensor (CMOS sensor).
  • CCD Charge Coupled Device
  • CMOS sensor Complementary Metal-Oxide Semiconductor Sensor
  • the present application also provides an electronic device 300, which includes a device main body 310 and the image capturing device 200 of the present application.
  • the orientation device 200 is installed on the device main body 310.
  • the electronic device 300 of this application includes, but is not limited to, computers, laptops, tablet computers, mobile phones, cameras, smart bracelets, smart watches, smart glasses, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请提供一种光学成像系统,其由物侧到像侧依次包括具有正光焦度的第一透镜,所述第一透镜的物侧面为凸面;具有负光焦度的第二透镜,所述第二透镜的物侧面和像侧面均为凹面;具有正光焦度的第三透镜,所述第三透镜的物侧面和像侧面均为凸面;具有正光焦度的第四透镜,所述第四透镜的物侧面和像侧面均为凸面;及具有负光焦度的第五透镜,所述第五透镜的物侧面和像侧面均为凹面。本申请的光学成像系统具有高像素分辨率,体积小。此外,本申请还提供了一种取像装置及电子设备。

Description

光学成像系统、取像装置及电子设备 技术领域
本申请涉及光学成像技术,特别涉及一种光学成像系统、取像装置及电子设备。
背景技术
随着汽车的普及,疲劳驾驶等因素产生的交通事故频繁发生。现今车载行业迅速发展,ADAS(Advanced Driving Assistant System,先进驾驶辅助系统)、DMS(Driver Monitor System,驾驶预警系统)等车载驾驶的技术也逐渐成熟,而这些车载技术的发展都离不开摄像技术。但是现有满足车载小型化要求的摄像装置,其分辨率较低,不能很好的对对驾驶员的状态进行监测,根据眼睛状态、闭眼次数、闭眼幅度、打哈欠、面部状态等相关信息进行推测,判断出驾驶员是否进行疲劳驾驶,从而提出预警,提高驾驶安全性。
申请内容
有鉴于此,本申请提供一种光学成像系统,其具有高像素分辨率。
还有必要提供一种使用上述光学成像系统的取像装置。
此外,还有必要提供一种使用上述取向装置的电子设备。
一种光学成像系统,其由物侧到像侧依次包括:
具有正光焦度的第一透镜,所述第一透镜的物侧面为凸面;
具有负光焦度的第二透镜,所述第二透镜的物侧面和像侧面均为凹面;
具有正光焦度的第三透镜,所述第三透镜的物侧面和像侧面均为凸面;
具有正光焦度的第四透镜,所述第四透镜的物侧面和像侧面均为凸面;及
具有负光焦度的第五透镜,所述第五透镜的物侧面和像侧面均为凹面。
其中,所述第一透镜、第二透镜、第三透镜、第四透镜和第五透镜至少一片透镜为非球面透镜。采用非球面透镜,可以容易制作成球面以外的形状,获得更多的控制变数,有利于消减像差,以较少枚数的透镜获得良好成像的优点;进而减少透镜数量,满足小型化。
其中,所述第一透镜的像侧面为平面。第一透镜像侧面采用平面有便于光学成像系统的组装,减小偏心,扩大后焦距;此外,当需要在该像侧面上镀膜时,还有利于带通滤光膜的镀膜工艺,降低鬼影风险。
其中,所述第一透镜、第二透镜、第三透镜、第四透镜和第五透镜的物侧面和像侧面中的至少一面设有红外带通滤光膜。通过设置红外带通滤光膜可以保证光学成像系统仅通过需要的光波长范围,滤掉非工作波段的光波,避免非工作范围的光波干扰感光元件的成像效果。
其中,光学成像系统还包括光阑,所述光阑的有效径为所述第一透镜物侧面的口径。采用第一透镜物侧面口径作为光阑,可以保证光学成像系统具有较大的光圈以及充足的通光量,使像面成像清晰、明亮。
其中,所述光学成像系统还包括保护玻璃,所述保护玻璃位于所述第五透镜与成像面之间。保护玻璃用于保护成像面的感光元件,以达到防尘的效果。
其中,所述光学成像系统满足以下条件式:
0<f3/f<2;
其中,f3为所述第三透镜的焦距,f为所述光学成像系统的有效焦距。
当0<f3/f<2时,可以为光学成像系统提供正光焦度,有利于校正光学成像系统的像差,保证光学成像系统100的高像素成像质量。
其中,所述光学成像系统满足以下条件式:
1≤f4/f<2;
其中,f4为所述第四透镜的焦距,f为所述光学成像系统的有效焦距。
当1≤f4/f<2时,可以为光学成像系统提供正光焦度,可收敛入射光束射出光学成像系统的光束宽度,有利于优化边缘像差,缩短光学成像系统总长,使光学成像系统具有小型化的特征。
其中,所述光学成像系统满足以下条件式:
-25<(f3-f4)/D34<-0.5;
其中,f3为所述第三透镜的焦距,f4为所述第四透镜的焦距,D34为所述第三透镜像侧面与第四透镜物侧面于光轴上的距离。
当-25<(f3-f4)/D34<-0.5时,可以利用凸面相对的两透镜相互校正像差提高光学成像系统的光学性能;同时有利于光学成像系统结构接凑,小型化。
其中,所述光学成像系统满足以下条件式:
0.1≤ET S8<0.3;
其中,ET S8为所述第四透镜像侧面至第五透镜物侧面在最大有效径处平行于光轴的距离。
当0.1≤ET S8<0.3时,有利于第四透镜与第五透镜直接接触,减少光学成像系统的非光学组装部件,降低组装敏感度;同时有利于光学成像系统在温度差异较大的环境时有较小的焦距变化量。
其中,所述光学成像系统满足以下条件式:
-3<f5/f≤-1;
其中,f5为所述第五透镜的焦距,f为所述光学成像系统的有效焦距。
靠近成像面的第五透镜具有负光焦度,可扩大入射光束射出光学成像系统的光束宽度,有利于感光元件最大面积的接收到携带图像信息的光线,保证光学成像系统的高像素成像品质。
其中,所述光学成像系统满足以下条件式:
-5<RS9/f<-1;
其中,RS9为所述第五透镜物侧面的曲率半径,f为所述光学成像系统的有效焦距。
当-5<RS9/f<-1时,有利于优化光学成像系统的像差,降低鬼影的产生。
进一步地,光学成像系统满足-2<RS9/f<-1,此时,可以更好的优化光学成像系统的像差,更好的降低鬼影的产生。
其中,所述光学成像系统满足以下条件式:
0<sag10<0.7;
其中,sag10为所述第五透镜像侧面矢高。
当0<sag10<0.7时,有利于优化像差,减小主光线入射至成像面的角度,增强成像元件的感光性,同时有利于缩短系统总长,增加调焦距离。
其中,所述光学成像系统满足以下条件式:
1<Imgh/f<1.2;
其中,Imgh为所述光学成像系统成像面对角线方向的像高,f为所述光学成像系统的有效焦距。
1<Imgh/f<1.2时,既可保证光学成像系统高像素成像品质,又可控制光学成像系统的总长,使光学成像系统体积最小化。
其中,所述光学成像系统满足以下条件式:
0.1<BFL/TTL<0.3;
其中,BFL为所述光学成像系统的光学后焦,TTL为所述光学成像成像系统的总长。
当0.1<BFL/TTL<0.3时,可保证系统小型化。
其中,所述光学成像系统满足以下条件式:
3<FOV/CRA<4;
其中,FOV为所述光学成像系统对角方向的视场角,CRA为所述光学成像系统主光线的入射角。
3<FOV/CRA<4时,使光学成像系统具有充足的视场角,以满足手机、相机、车载、监控、医疗等电子产品高FOV的要求,同时减小光线射入芯片的角度,提高感光性能。
进一步地,3.41≤FOV/CRA<4,此时,光学成像系统具有最佳的视场角,感光性能更佳。
其中,所述光学成像系统满足以下条件式:
CT-DT>0;
其中,CT为所述光学成像系统中双凸透镜于光轴处的中心厚度,DT为所述光学成像系统中双凹透镜于光轴处的中心厚度。
当CT大于DT时,有利于光学成像系统校正相差,有效的控制双凸透镜与双凹透镜中心厚度,使光学成像系统小型化。
其中,所述光学成像系统满足以下条件式:
nd3≥1.66,vd3≤45;
其中,nd3为所述第三透镜的d光折射率,vd3为所述第三透镜的阿贝数。
这样有利于校正轴外色差,提高光学成像系统应用于可见光波段时的成像品质。
其中,所述光学成像系统满足以下条件式:
1.2<ΣCT/f<1.35
其中,f为所述光学成像系统的有效焦距,ΣCT为所述第一透镜、第二透镜、第三透镜、第四透镜及第五透镜于光轴上透镜厚度的总和。
通过合理配置各透镜中心厚度,使光学成像系统的结构紧凑,减小光学成像系统的总长,有利于小型化。
一种取像装置,其包括:
上述的光学成像系统;及
感光元件,其位于所述光学成像系统的像侧。
一种电子设备,其包括:
设备主体及;
上述的取像装置,所述取像装置安装在设备主体上。
由此,本申请的光学成像系统由五片透镜组成,体积小,具有高像素分辨率。
附图说明
为更清楚地阐述本申请的构造特征和功效,下面结合附图与具体实施例来对其进行详细说明。
图1-1是本申请第一实施例光学成像系统的结构示意图。
图1-2由左到右依次是本申请第一实施例光学成像系统的球差、像散以及畸变曲线图。
图2-1是本申请第二实施例的光学成像系统的结构示意图。
图2-2由左到右依次是本申请第二实施例光学成像系统的球差、像散以及畸变曲线图。
图3-1是本申请第三实施例的光学成像系统的结构示意图。
图3-2由左到右依次是本申请第三实施例光学成像系统的球差、像散以及畸变曲线图。
图4-1是本申请第四实施例的光学成像系统的结构示意图。
图4-2由左到右依次是本申请第四实施例光学成像系统的球差、像散以及畸变曲线图。
图5-1是本申请第五实施例的光学成像系统的结构示意图。
图5-2由左到右依次是本申请第五实施例光学成像系统的球差、像散以及畸变曲线图。
图6-1是本申请第六实施例的光学成像系统的结构示意图。
图6-2由左到右依次是本申请第六实施例光学成像系统的球差、像散以及畸变曲线图。
图7-1是本申请第七实施例的光学成像系统的结构示意图。
图7-2由左到右依次是本申请第七实施例光学成像系统的球差、像散以及畸变曲线图。
图8本申请实施例的取像装置的结构示意图。
图9本申请实施例的电子设备的结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请 中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本申请保护的范围。
请参阅图1-1、图2-1、图3-1、图4-1、图5-1、图6-1及图7-1,本申请实施例的光学成像系统100应用在车载摄像装置上,用于近红外光波段成像,其由物侧到像侧依次包括具有正光焦度的第一透镜L1、具有负光焦度的第二透镜L2、具有正光焦度的第三透镜L3、具有正光焦度的第四透镜L4及具有负光焦度的第五透镜L5。
可选地,第一透镜L1为玻璃材质,具有物侧面S1及像侧面S2。物侧面S1为凸面,像侧面S2为平面。第一透镜L1像侧面S2采用平面有便于光学成像系统的组装,减小偏心,扩大后焦距;此外,当需要在像侧面S2上镀膜时,还有利于带通滤光膜的镀膜工艺,降低鬼影风险。
术语“带通滤光膜”是指光谱特性曲线透射带两侧邻接截止带的滤光膜。带通滤光膜根据光谱特性大致分为宽带滤光膜和窄带滤光膜两种,两种滤光膜通常都是组合而成的,应用了光波干涉原理制备带通滤光膜。
术语“鬼影”又叫鬼像,是指由于透镜表面反射而在光学系统焦面附近产生的附加像,其亮度一般较暗,且与原像错开。
可选地,第二透镜L2为玻璃材质,具有物侧面S3及像侧面S4。物侧面S3和像侧面S4均为凹面。
可选地,第三透镜L3为玻璃材质,具有物侧面S5及像侧面S6。物侧面S5和像侧面S6均为凸面。
可选地,第四透镜L4为玻璃材质,具有物侧面S7及像侧面S8。物侧面S7和像侧面S8均为凸面。
可选地,第五透镜L5为玻璃材质,具有物侧面S9及像侧面S10。物侧面S9和像侧面S10均为凹面。
本申请的光学成像系统100体积小,具有高像素分辨率,可以用于基于车载使用的高像素摄像镜头、自动驾驶、监控装置等。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5至少一片透镜为非球面透镜。采用非球面透镜,可以容易制作成球面以外的形状,获得更多的控制变数,有利于消减像差,以较少枚数的透镜获得良好成像的优点;进而减少透镜数量,满足小型化。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5的物侧面和像侧面中的一面设有红外带通滤光膜。通过设置红外带通滤光膜可以保证光学成像系统仅通过需要的光波长范围,滤掉非工作波段的光波,避免非工作范围的光波干扰感光元件的成像效果。
在一些实施例中,光学成像系统100还包括光阑(图未示),光阑的有效径为第一透镜L1物侧面S1口径形成。采用第一透镜物侧面口径作为光阑,可以保证光学成像系统具有较大的光圈以及充足的通光量,使像面成像清晰、明亮。
在一些实施例中,光学成像系统100还包括保护玻璃10。保护玻璃10具有第一面11和第二面12。保护玻璃10为玻璃材质,位于第五透镜L5与成像面30之间。保护玻璃10用于保护成像面30的感光元件,以达到防尘的效果。
在一些实施例中,光学成像系统100满足以下条件式:
0<f3/f<2;
其中,f3为第三透镜的焦距,f为所述光学成像系统的有效焦距。
也就是说,f3/f可以为0和2之间的任意数值,例如0.1、0.5、0.8、1.0、1.2、1.5、1.6、1.9等。
当0<f3/f<2时,可以为光学成像系统提供正光焦度,有利于校正光学成像系统的像差,保证光学成像系统100的高像素成像质量。
在一些实施例中,光学成像系统100满足以下条件式:
1≤f4/f<2;
其中,f4为第四透镜的焦距,f为所述光学成像系统的有效焦距。
也就是说,f4/f可以为1和2之间的任意数值,例如1、1.2、1.3、1.5、1.7、1.9等。
当1≤f4/f<2时,可以为光学成像系统提供正光焦度,可收敛入射光束射出光学成像系统的光束宽度,有利于优化边缘像差,缩短光学成像系统总长,使光学成像系统具有小型化的特征。
在一些实施例中,光学成像系统100满足以下条件式:
-25<(f3-f4)/D34<-0.5;
其中,f3为第三透镜的焦距,f4为第四透镜的焦距,D34为所述第三透镜像侧面与第四透镜物侧面于光轴上的距离。
也就是说,(f3-f4)/D34可以为-25和-0.5之间的任意数值,例如-24、-22、-20、-15、-10、-8、-3、-0.8等。
当-25<(f3-f4)/D34<-0.5时,可以利用凸面相对的两透镜相互校正像差提高光学成像系统的光学性能;同时有利于光学成像系统结构接凑,小型化。
在一些实施例中,光学成像系统100满足以下条件式:
0.1≤ET S8<0.3;
其中,ET S8为所述第四透镜像侧面至第五透镜物侧面在最大有效径处平行于光轴的距离。
也就是说,ET S8可以0.1和0.3之间的任意数值,例如0.1、0.15、0.18、0.2、0.25、0.3等。
当0.1≤ET S8<0.3时,有利于第四透镜与第五透镜直接接触,减少光学成像系统的非光学组装部件,降低组装敏感度;同时有利于光学成像系统在温度差异较大的环境时有较小的焦距变化量。
在一些实施例中,光学成像系统100满足以下条件式:
-3<f5/f≤-1;
其中,f5为第五透镜的焦距,f为所述光学成像系统的有效焦距。
也就是说,f5/f可以为-3和-1之间的任意数值,例如-3、-2.5、-2、-1.5、-1.2等。
靠近成像面的第五透镜具有负光焦度,可扩大入射光束射出光学成像系统的光束宽度,有利于感光元件最大面积的接收到携带图像信息的光线,保证光学成像系统的高像素成像品质。
在一些实施例中,光学成像系统100满足以下条件式:
-5<RS9/f<-1;
其中,RS9为所述第五透镜物侧面的曲率半径,f为所述光学成像系统的有效焦距。
也就是说,RS9/f可以为-5和-1之间的任意数值,例如-4.8、-4.5、-4、-3.5、-2、-1.5等。
当-5<RS9/f<-1时,有利于优化光学成像系统的像差,降低鬼影的产生。
进一步地,光学成像系统100满足-2<RS9/f<-1,此时,可以更好的优化光学成像系统的像差,更好的降低鬼影的产生。
在一些实施例中,光学成像系统100满足以下条件式:
0<sag10<0.7;
其中,sag10为所述第五透镜像侧面的矢高。
也就是说,sag10可以为0和0.7之间的任意数值,例如0.05、0.1、0.2、0.3、0.5、0.68等。
当0<sag10<0.7时,有利于优化像差,减小主光线入射至成像面的角度,增强成像元件的感光性,同时有利于缩短系统总长,增加调焦距离。
在一些实施例中,光学成像系统100满足以下条件式:
1<Imgh/f<1.2;
其中,Imgh为所述光学成像系统成像面对角线方向的像高,f为所述光学成像系统的有效焦距。
也就是说,Imgh/f可以为1和1.2之间的任意数值,例如1.05、1.08、1.1、1.15、1.18等。
1<Imgh/f<1.2时,既可保证光学成像系统高像素成像品质,又可控制光学成像系统的总长,使光学成像系统体积最小化。
在一些实施例中,光学成像系统100满足以下条件式:
0.1<BFL/TTL<0.3;
其中,BFL为所述光学成像系统的光学后焦,TTL为所述光学成像成像系统的总长。
也就是说,BFL/TTL可以为0.1和0.3之间的任意数值,例如0.11、0.15、0.18、0.2、0.25、0.29等。
0.1<BFL/TTL<0.3时,可保证系统小型化。
在一些实施例中,光学成像系统100满足以下条件式:
3<FOV/CRA<4;
其中,FOV为所述光学成像系统对角方向的视场角,CRA为所述光学成像系统主光线的入射角。
也就是说,FOV/CRA可以为3和4之间的任意数值,例如3.1、3.2、3.5、3.6、3.7、3.9等。
3<FOV/CRA<4时,使光学成像系统具有充足的视场角,以满足手机、相机、车载、监控、医疗等电子产品高FOV的要求,同时减小光线射入芯片的角度,提高感光性能。
进一步地,3.41≤FOV/CRA<4,此时,光学成像系统具有最佳的视场角,感光性能更佳。
在一些实施例中,光学成像系统100满足以下条件式:
CT-DT>0;
其中,CT为所述光学成像系统中双凸透镜于光轴处的中心厚度,DT为所述光学成像系统中双凹透镜于光轴处的中心厚度。
当CT大于DT时,有利于光学成像系统校正相差,有效的控制双凸透镜与双凹透镜中心厚度,使光学成像系统小型化。
在一些实施例中,光学成像系统100满足以下条件式:
nd3≥1.66,vd3≤45;
其中,nd3为所述第三透镜的d光折射率,vd3为所述第三透镜的阿贝数。
这样有利于校正轴外色差,提高光学成像系统应用于可见光波段时的成像品质。
在一些实施例中,光学成像系统100满足以下条件式:
1.2<ΣCT/f<1.35
其中,f为所述光学成像系统的有效焦距,ΣCT为所述第一透镜、第二透镜、第三透镜、第四透镜及第五透镜于光轴上透镜厚度的总和。
也就是说,ΣCT/f可以为1.2和1.35之间的任意数值,例如1.21、1.25、1.28、1.30、1.32、1.33、1.34等。
通过合理配置各透镜中心厚度,使光学成像系统的结构紧凑,减小光学成像系统的总长,有利于小型化。
以下结合具体实施例对本申请的光学成像系统100做进一步详细描述。
第一实施例
请参见图1-1及图1-2,其中图1-1为第一实施例的光学成像系统100的结构示意图,图1-2由左到右依次是本申请第一实施例球差、像散以及畸变曲线图。由图1-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、具有负光焦度的第二透镜L2、具有正光焦度的第三透镜L3、具有正光焦度的第四透镜L4、具有负光焦度的第五透镜L5、保护玻璃10及成像面30。光学成像系统100还包括红外带通滤光膜(图未示),红外带通滤光膜镀在第一透镜L1的像侧面S2。
第一透镜L1为玻璃材质,其物侧面S1及像侧面S2均为球面。物侧面S1为凸面,像侧面S2为平面。
第二透镜L2为玻璃材质,其物侧面S3及像侧面S4均为球面。物侧面S3和像侧面S4均为凹面。
第三透镜L3为玻璃材质,其物侧面S5及像侧面S6均为非球面。物侧面S5和像侧面S6均为凸面。
第四透镜L4为玻璃材质,其物侧面S7及像侧面S8均为球面。物侧面S7和像侧面S8均为凸面。
第五透镜L5为玻璃材质,其物侧面S9及像侧面S10均为球面。物侧面S9和像侧面S10均为凹面。
在本实施例中,f3=5.22,f=5.54,f3/f=0.94;f4=6.25,f4/f=1.13;(f3-f4)/D34=-10.25;ET S8=0.1;f5=-5.75,f5/f=-1.04;RS9=-7.3,RS9/f=-1.32;sag10=0.48;Imgh=6,Imgh/f=1.08;BFL=2.35,TTL=11.27,BFL/TTL=0.21;FOV=59.6,CRA=17.5,FOV/CRA=3.41;ΣCT=7.14,ΣCT/f=1.29。
在本实施例中,光学成像系统100满足以下表1及表2的条件。
Figure PCTCN2019120433-appb-000001
Figure PCTCN2019120433-appb-000002
Figure PCTCN2019120433-appb-000003
表1中FNO为光学成像系统光圈数。
表2为第一实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图1-2可知,本申请光学成像系统100的在满足小型化情况下,具有较高的像素分辨率。
第二实施例
请参见图2-1及图2-2,其中图2-1为第二实施例的光学成像系统100的结构示意图,图2-2由左到右依次是本申请第二实施例球差、像散以及畸变曲线图。由图2-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、具有负光焦度的第二透镜L2、具有正光焦度的第三透镜L3、具有正光焦度的第四透镜L4、具有负光焦度的第五透镜L5、保护玻璃10及成像面30。光学成像系统100还包括红外带通滤光膜(图未示),红外带通滤光膜镀在第一透镜L1的像侧面S2。
第一透镜L1为玻璃材质,其物侧面S1及像侧面S2均为球面。物侧面S1为凸面,像侧面S2为平面。
第二透镜L2为玻璃材质,其物侧面S3及像侧面S4均为球面。物侧面S3和像侧面S4均为凹面。
第三透镜L3为玻璃材质,其物侧面S5及像侧面S6均为非球面。物侧面S5和像侧面S6均为凸面。
第四透镜L4为玻璃材质,其物侧面S7及像侧面S8均为球面。物侧面S7和像侧面S8均为凸面。
第五透镜L5为玻璃材质,其物侧面S9及像侧面S10均为球面。物侧面S9和像侧面S10均为凹面。
在本实施例中,f3=5.19,f=5.54,f3/f=0.94;f4=7.41,f4/f=1.34;(f3-f4)/D34=-22.23;ET S8=0.1;f5=-7.04,f5/f=-1.27;RS9=-27.34,RS9/f=-4.93;sag10=0.62;Imgh=6,Imgh/f=1.08;BFL=2.85,TTL=11.12,BFL/TTL=0.26;FOV=59.6,CRA=17.5,FOV/CRA=3.41;ΣCT=6.86,ΣCT/f=1.24。
在本实施例中,光学成像系统100满足以下表3及表4的条件。
Figure PCTCN2019120433-appb-000004
Figure PCTCN2019120433-appb-000005
Figure PCTCN2019120433-appb-000006
表3中FNO为光学成像系统光圈数。
表4为第二实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图2-2可知,本申请光学成像系统100的在满足小型化情况下,具有较高的像素。
第三实施例
请参见图3-1及图3-2,其中图3-1为第三实施例的光学成像系统100的结构示意图,图3-2由左到右依次是本申请第三实施例球差、像散以及畸变曲线图。由图3-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、具有负光焦度的第二透镜L2、具有正光焦度的第三透镜L3、具有正光焦度的第四透镜L4、具有负光焦度的第五透镜L5、保护玻璃10及成像面30。光学成像系统100还包括红外带通滤光膜(图未示),红外带通滤光膜镀在第一透镜L1的像侧面S2。
第一透镜L1为玻璃材质,其物侧面S1及像侧面S2均为球面。物侧面S1为凸面,像侧面S2为平面。
第二透镜L2为玻璃材质,其物侧面S3及像侧面S4均为球面。物侧面S3和像侧面S4均为凹面。
第三透镜L3为玻璃材质,其物侧面S5及像侧面S6均为非球面。物侧面S5和像侧面S6均为凸面。
第四透镜L4为玻璃材质,其物侧面S7及像侧面S8均为球面。物侧面S7和像侧面S8均为凸面。
第五透镜L5为玻璃材质,其物侧面S9及像侧面S10均为球面。物侧面S9和像侧面S10均为凹面。
在本实施例中,f3=5.56,f=5.53,f3/f=1.00;f4=5.7,f4/f=1.03;(f3-f4)/D34=-1.47;ETS8=0.1;f5=-5.61,f5/f=-1.01;RS9=-7.26,RS9/f=-1.31;sag10=0.5;Imgh=6,Imgh/f=1.08;BFL=2.45,TTL=11.21,BFL/TTL=0.22;FOV=59.6,CRA=17.5,FOV/CRA=3.41;ΣCT=7.08,ΣCT/f=1.28。
在本实施例中,光学成像系统100满足以下表5及表6的条件。
Figure PCTCN2019120433-appb-000007
Figure PCTCN2019120433-appb-000008
Figure PCTCN2019120433-appb-000009
表5中FNO为光学成像系统光圈数。
表6为第三实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图3-2可知,本申请光学成像系统100的在满足小型化情况下,具有较高的像素。
第四实施例
请参见图4-1及图4-2,其中图4-1为第四实施例的光学成像系统100的结构示意图,图4-2由左到右依次是本申请第四实施例球差、像散以及畸变曲线图。由图4-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、具有负光焦度的第二透镜L2、具有正光焦度的第三透镜L3、具有正光焦度的第四透镜L4、具有负光焦度的第五透镜L5、保护玻璃10及成像面30。光学成像系统100还包括红外带通滤光膜(图未示),红外带通滤光膜镀在第五透镜L5的像侧面S10。
第一透镜L1为玻璃材质,其物侧面S1及像侧面S2均为球面。物侧面S1为凸面,像侧面S2为平面。
第二透镜L2为玻璃材质,其物侧面S3及像侧面S4均为球面。物侧面S3和像侧面S4均为凹面。
第三透镜L3为玻璃材质,其物侧面S5及像侧面S6均为非球面。物侧面S5和像侧面S6均为凸面。
第四透镜L4为玻璃材质,其物侧面S7及像侧面S8均为球面。物侧面S7和像侧面S8均为凸面。
第五透镜L5为玻璃材质,其物侧面S9及像侧面S10均为球面。物侧面S9和像侧面S10均为凹面。
在本实施例中,f3=5.56,f=5.54,f3/f=1.00;f4=5.77,f4/f=1.04;(f3-f4)/D34=-2.14;ET S8=0.1;f5=-6.06,f5/f=-1.09;RS9=-6.95,RS9/f=-1.26;sag10=0.37;Imgh=6,Imgh/f=1.08;BFL=2.45,TTL=11.14,BFL/TTL=0.22;FOV=59.6,CRA=17.5,FOV/CRA=3.41;ΣCT=7.10,ΣCT/f=1.28。
在本实施例中,光学成像系统100满足以下表7及表8的条件。
Figure PCTCN2019120433-appb-000010
Figure PCTCN2019120433-appb-000011
Figure PCTCN2019120433-appb-000012
表7中FNO为光学成像系统光圈数。
表8为第四实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图4-2可知,本申请光学成像系统100的在满足小型化情况下,具有较高的像素。
第五实施例
请参见图5-1及图5-2,其中图5-1为第五实施例的光学成像系统100的结构示意图,图5-2由左到右依次是本申请第五实施例球差、像散以及畸变曲线图。由图5-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、具有负光焦度的第二透镜L2、具有正光焦度的第三透镜L3、具有正光焦度的第四透镜L4、具有负光焦度的第五透镜L5、保护玻璃10及成像面30。光学成像系统100还包括红外带通滤光 膜(图未示),红外带通滤光膜镀在第一透镜L1的像侧面S2。
第一透镜L1为玻璃材质,其物侧面S1及像侧面S2均为球面。物侧面S1为凸面,像侧面S2为平面。
第二透镜L2为玻璃材质,其物侧面S3及像侧面S4均为球面。物侧面S3和像侧面S4均为凹面。
第三透镜L3为玻璃材质,其物侧面S5及像侧面S6均为非球面。物侧面S5和像侧面S6均为凸面。
第四透镜L4为玻璃材质,其物侧面S7及像侧面S8均为球面。物侧面S7和像侧面S8均为凸面。
第五透镜L5为玻璃材质,其物侧面S9及像侧面S10均为球面。物侧面S9和像侧面S10均为凹面。
在本实施例中,f3=5.47,f=5.54,f3/f=0.99;f4=6.34,f4/f=1.14;(f3-f4)/D34=-8.63;ET S8=0.1;f5=-5.93,f5/f=-1.07;RS9=-8.04,RS9/f=-1.45;sag10=0.5;Imgh=6,Imgh/f=1.08;BFL=2.45,TTL=11.20,BFL/TTL=0.22;FOV=59.6,CRA=17.5,FOV/CRA=3.41;ΣCT=6.98,ΣCT/f=1.26。
在本实施例中,光学成像系统100满足以下表9及表10的条件。
Figure PCTCN2019120433-appb-000013
Figure PCTCN2019120433-appb-000014
Figure PCTCN2019120433-appb-000015
表9中FNO为光学成像系统光圈数。
表10为第五实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图5-2可知,本申请光学成像系统100的在满足小型化情况下,具有较高的像素。
第六实施例
请参见图6-1及图6-2,其中图6-1为第六实施例的光学成像系统100的结构示意图,图6-2由左到右依次是本申请第六实施例球差、像散以及畸变曲线图。由图6-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、具有负光焦度的第二透镜L2、具有正光焦度的第三透镜L3、具有正光焦度的第四透镜L4、具有负光焦度的第五透镜L5、保护玻璃10及成像面30。光学成像系统100还包括红外带通滤光膜(图未示),红外带通滤光膜镀在第四透镜L4的像侧面S8。
第一透镜L1为玻璃材质,其物侧面S1及像侧面S2均为球面。物侧面S1为凸面,像侧面S2为平面。
第二透镜L2为玻璃材质,其物侧面S3及像侧面S4均为球面。物侧面S3和像侧面S4均为凹面。
第三透镜L3为玻璃材质,其物侧面S5及像侧面S6均为非球面。物侧面S5和像侧面S6均为凸面。
第四透镜L4为玻璃材质,其物侧面S7及像侧面S8均为球面。物侧面S7和像侧面S8均为凸面。
第五透镜L5为玻璃材质,其物侧面S9及像侧面S10均为球面。物侧面S9和像侧面S10均为凹面。
在本实施例中,f3=5.43,f=5.53,f3/f=0.98;f4=7.57,f4/f=1.37;(f3-f4)/D34=-21.47;ET S8=0.1;f5=-7.37,f5/f=-1.33;RS9=-10.29,RS9/f=-1.86;sag10=0.49;Imgh=6,Imgh/f=1.08;BFL=2.45,TTL=11.92,BFL/TTL=0.22;FOV=59.6,CRA=17.5,FOV/CRA=3.41;ΣCT=6.75,ΣCT/f=1.22。
在本实施例中,光学成像系统100满足以下表11及表12的条件。
Figure PCTCN2019120433-appb-000016
Figure PCTCN2019120433-appb-000017
Figure PCTCN2019120433-appb-000018
表11中FNO为光学成像系统光圈数。
表12为第六实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图6-2可知,本申请光学成像系统100的在满足小型化情况下,具有较高的像素。
第七实施例
请参见图7-1及图7-2,其中图7-1为第七实施例的光学成像系统100的结构示意图,图7-2由左到右依次是本申请第七实施例球差、像散以及畸变曲线图。由图7-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、具有负光 焦度的第二透镜L2、具有正光焦度的第三透镜L3、具有正光焦度的第四透镜L4、具有负光焦度的第五透镜L5、保护玻璃10及成像面30。光学成像系统100还包括红外带通滤光膜(图未示),红外带通滤光膜镀在第一透镜L1的像侧面S2。
第一透镜L1为玻璃材质,其物侧面S1及像侧面S2均为球面。物侧面S1为凸面,像侧面S2为平面。
第二透镜L2为玻璃材质,其物侧面S3及像侧面S4均为球面。物侧面S3和像侧面S4均为凹面。
第三透镜L3为玻璃材质,其物侧面S5及像侧面S6均为非球面。物侧面S5和像侧面S6均为凸面。
第四透镜L4为玻璃材质,其物侧面S7及像侧面S8均为球面。物侧面S7和像侧面S8均为凸面。
第五透镜L5为玻璃材质,其物侧面S9及像侧面S10均为球面。物侧面S9和像侧面S10均为凹面。
在本实施例中,f3=5.53,f=5.53,f3/f=1.00;f4=5.59,f4/f=1.01;(f3-f4)/D34=-0.67;ET S8=0.1;f5=-5.55,f5/f=-1.00;RS9=-7.10,RS9/f=-1.28;sag10=0.37;Imgh=6,Imgh/f=1.08;BFL=2.45,TTL=11.22,BFL/TTL=0.22;FOV=59.6,CRA=17.5,FOV/CRA=3.41;ΣCT=7.11,ΣCT/f=1.29。
在本实施例中,光学成像系统100满足以下表13及表14的条件。
Figure PCTCN2019120433-appb-000019
Figure PCTCN2019120433-appb-000020
Figure PCTCN2019120433-appb-000021
表13中FNO为光学成像系统光圈数。
表14为第七实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图7-2可知,本申请光学成像系统100的在满足小型化情况下,具有较高的像素分辨率。
如图8所示,本申请还提供取像装置200包括本申请的光学成像系统100及感光元件210。感光元件210位于光学成像系统100的像侧。
本申请的感光元件210可以为感光耦合元件(Charge Coupled Device,CCD)或互补性氧化金属半导体元件(Complementary Metal-Oxide Semiconductor Sensor,CMOS sensor)。
该取像装置200的其他特征描述请参考上述描述,在此不再赘述。
如图9所示,本申请还提供一种电子设备300,其包括设备主体310及本申请的取像装置200。所述取向装置200安装在所述设备主体310上。
本申请的电子设备300包括但不限于电脑、笔记本电脑、平板电脑、手机、相机、智能手环、智能手表、智能眼镜等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易的想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种光学成像系统,其特征在于,由物侧到像侧依次包括:
    具有正光焦度的第一透镜,所述第一透镜的物侧面为凸面;
    具有负光焦度的第二透镜,所述第二透镜的物侧面和像侧面均为凹面;
    具有正光焦度的第三透镜,所述第三透镜的物侧面和像侧面均为凸面;
    具有正光焦度的第四透镜,所述第四透镜的物侧面和像侧面均为凸面;及
    具有负光焦度的第五透镜,所述第五透镜的物侧面和像侧面均为凹面。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜、第二透镜、第三透镜、第四透镜和第五透镜至少一片透镜为非球面透镜。
  3. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的像侧面为平面。
  4. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜、第二透镜、第三透镜、第四透镜和第五透镜的物侧面和像侧面中的至少一面设有红外带通滤光膜。
  5. 根据权利要求1所述的光学成像系统,其特征在于,光学成像系统还包括光阑,所述光阑的有效径为所述第一透镜物侧面口径。
  6. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    0<f3/f<2;
    其中,f3为所述第三透镜的焦距,f为所述光学成像系统的有效焦距。
  7. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    1≤f4/f<2;
    其中,f4为所述第四透镜的焦距,f为所述光学成像系统的有效焦距。
  8. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    -25<(f3-f4)/D34<-0.5;
    其中,f3为所述第三透镜的焦距,f4为所述第四透镜的焦距,D34为所述第三透镜像侧面与第四透镜物侧面于光轴上的距离。
  9. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    0.1≤ET S8<0.3;
    其中,ET S8为所述第四透镜像侧面至第五透镜物侧面在最大有效径处平行于光轴的距离。
  10. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    -3<f5/f≤-1;
    其中,f5为所述第五透镜的焦距,f为所述光学成像系统的有效焦距。
  11. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    -5<RS9/f<-1;
    其中,RS9为所述第五透镜物侧面的曲率半径,f为所述光学成像系统的有效焦距。
  12. 根据权利要求11所述的光学成像系统,其特征在于,所述光学成像系统满足条件式:-2<RS9/f<-1。
  13. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    0<sag10<0.7;
    其中,sag10为所述第五透镜像侧面矢高。
  14. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    1<Imgh/f<1.2;
    其中,Imgh为所述光学成像系统成像面对角线方向的像高,f为所述光学成像系统的有效焦距。
  15. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    0.1<BFL/TTL<0.3;
    其中,BFL为所述光学成像系统的光学后焦,TTL为所述光学成像成像系统的总长。
  16. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    3<FOV/CRA<4;
    其中,FOV为所述光学成像系统对角方向的视场角,CRA为所述光学成像系统主光线的入射角。
  17. 根据权利要求16所述的光学成像系统,其特征在于,所述光学成像系统满足条件式:3.41≤FOV/CRA<4。
  18. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    CT-DT>0;
    其中,CT为所述光学成像系统中双凸透镜于光轴处的中心厚度,DT为所述光学成像系统中双凹透镜于光轴处的中心厚度。
  19. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    nd3≥1.66,vd3≤45;
    其中,nd3为所述第三透镜的d光折射率,vd3为所述第三透镜的阿贝数。
  20. 根据权利要求1-19任一项所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    1.2<ΣCT/f<1.35
    其中,f为所述光学成像系统的有效焦距,ΣCT为所述第一透镜、第二透镜、第三透镜、第四透镜及第五透镜于光轴上透镜厚度的总和。
  21. 一种取像装置,其特征在于,包括:
    权利要求1-20任一项所述的光学成像系统;及
    感光元件,其位于所述光学成像系统的像侧。
  22. 一种电子设备,其特征在于,包括:
    设备主体及;
    权利要求21所述的取像装置,所述取像装置安装在设备主体上。
PCT/CN2019/120433 2019-11-22 2019-11-22 光学成像系统、取像装置及电子设备 WO2021097851A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/120433 WO2021097851A1 (zh) 2019-11-22 2019-11-22 光学成像系统、取像装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/120433 WO2021097851A1 (zh) 2019-11-22 2019-11-22 光学成像系统、取像装置及电子设备

Publications (1)

Publication Number Publication Date
WO2021097851A1 true WO2021097851A1 (zh) 2021-05-27

Family

ID=75980079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120433 WO2021097851A1 (zh) 2019-11-22 2019-11-22 光学成像系统、取像装置及电子设备

Country Status (1)

Country Link
WO (1) WO2021097851A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353668A (zh) * 2013-06-28 2013-10-16 浙江舜宇光学有限公司 微型摄像镜头
US20150062718A1 (en) * 2013-08-28 2015-03-05 Kazuyasu Ohashi Zoom lens and imaging apparatus
CN105739059A (zh) * 2014-11-12 2016-07-06 大立光电股份有限公司 摄影用光学镜组、取像装置及电子装置
CN106443972A (zh) * 2016-11-29 2017-02-22 福建师范大学 虹膜识别光学成像透镜组及其成像方法
CN106873130A (zh) * 2017-03-21 2017-06-20 惠州市星聚宇光学有限公司 一种高解析成像透镜组和成像系统
WO2019079996A1 (zh) * 2017-10-25 2019-05-02 深圳市柔宇科技有限公司 目镜及头戴式电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353668A (zh) * 2013-06-28 2013-10-16 浙江舜宇光学有限公司 微型摄像镜头
US20150062718A1 (en) * 2013-08-28 2015-03-05 Kazuyasu Ohashi Zoom lens and imaging apparatus
CN105739059A (zh) * 2014-11-12 2016-07-06 大立光电股份有限公司 摄影用光学镜组、取像装置及电子装置
CN106443972A (zh) * 2016-11-29 2017-02-22 福建师范大学 虹膜识别光学成像透镜组及其成像方法
CN106873130A (zh) * 2017-03-21 2017-06-20 惠州市星聚宇光学有限公司 一种高解析成像透镜组和成像系统
WO2019079996A1 (zh) * 2017-10-25 2019-05-02 深圳市柔宇科技有限公司 目镜及头戴式电子设备

Similar Documents

Publication Publication Date Title
TWI440922B (zh) 光學取像透鏡組
TWI421533B (zh) 光學攝影鏡頭
JP2008309810A (ja) 撮像レンズ
US11215798B2 (en) Photographing optical lens system, image capturing unit and electronic device
WO2021196030A1 (zh) 光学系统、镜头模组和电子设备
CN211627920U (zh) 光学系统、镜头模组及终端设备
CN113433659B (zh) 光学镜头、摄像模组、电子设备及汽车
CN112835174B (zh) 光学成像系统、取像装置及电子设备
WO2022056934A1 (zh) 光学成像系统、取像模组和电子装置
WO2021195891A1 (zh) 光学成像系统、取像装置及电子设备
WO2021168662A1 (zh) 光学系统、镜头模组及终端设备
CN111722367A (zh) 光学镜头、取像模组及电子装置
CN218497241U (zh) 光学成像系统、摄像头及终端设备
CN115079380B (zh) 光学系统、摄像模组和终端
CN115166949B (zh) 光学镜头、摄像模组及智能终端
CN113376797A (zh) 光学系统、镜头模组及终端设备
WO2022247713A1 (zh) 光学镜头、镜头模组和电子设备
TWI807478B (zh) 光學成像系統、取像裝置及電子設備
CN113866940B (zh) 光学系统、摄像模组及电子设备
WO2023015511A1 (zh) 光学系统、取像模组、电子设备及载具
WO2022011546A1 (zh) 光学镜头、取像模组及电子装置
CN212341572U (zh) 光学镜头、取像模组及电子装置
CN211554455U (zh) 光学成像系统、取像装置及电子设备
CN214122552U (zh) 光学系统、摄像模组及电子设备
WO2021097851A1 (zh) 光学成像系统、取像装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953384

Country of ref document: EP

Kind code of ref document: A1