WO2021097677A1 - A method for configuring guard subcarriers - Google Patents

A method for configuring guard subcarriers Download PDF

Info

Publication number
WO2021097677A1
WO2021097677A1 PCT/CN2019/119498 CN2019119498W WO2021097677A1 WO 2021097677 A1 WO2021097677 A1 WO 2021097677A1 CN 2019119498 W CN2019119498 W CN 2019119498W WO 2021097677 A1 WO2021097677 A1 WO 2021097677A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission band
subcarrier
radio frequency
frequency transmission
subcarriers
Prior art date
Application number
PCT/CN2019/119498
Other languages
French (fr)
Inventor
Yu Xin
Tong BAO
Jin Xu
Guanghui Yu
Liujun Hu
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CA3157407A priority Critical patent/CA3157407A1/en
Priority to CN201980102281.2A priority patent/CN114731319A/en
Priority to KR1020227016394A priority patent/KR20220082891A/en
Priority to PCT/CN2019/119498 priority patent/WO2021097677A1/en
Priority to EP19953473.6A priority patent/EP4062613A4/en
Publication of WO2021097677A1 publication Critical patent/WO2021097677A1/en
Priority to US17/740,863 priority patent/US20220271981A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/003Adaptive formatting arrangements particular to signalling, e.g. variable amount of bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking

Definitions

  • This disclosure is directed generally to wireless communications and particularly to configuring guard subcarriers in a transmission subband.
  • the communication technique adopts cyclic-prefix orthogonal frequency division multiplexing (CP-OFDM) waveforms as primary waveforms of subcarriers in radio frequency transmission subbands.
  • CP-OFDM orthogonal frequency division multiplexing
  • the wireless communication network may use different numerologies in allocating radio resources for individual radio frequency transmission subbands. For example, adjacent transmission subbands in a channel bandwidth may have numerologies with different subcarrier spacing, which may, however, damage orthogonality among the subcarriers of the adjacent transmission subbands. As a result, mutual interference occurs between the adjacent transmission subbands.
  • a straightforward method is to insert a guard band between two adjacent transmission subbands when they have different numerologies, which wastes radio resources.
  • the methods of windowing and filtering may suppress out-of-band leakage, but they have limited effects on alleviating interband interference.
  • This disclosure is directed to methods, systems, and devices related to wireless communication, and more specifically, for configuring guard subcarriers in transmission subbands to reduce interband interference.
  • a method for configuring guard subcarriers by an apparatus may include determining that a first subcarrier spacing for a first radio frequency transmission band is different than a second subcarrier spacing for a second radio frequency transmission band.
  • the first radio frequency transmission band is close to the second radio frequency transmission band in frequency spectrum and the first subcarrier spacing is less than the second subcarrier spacing.
  • the method may further include configuring a subcarrier of the first radio frequency transmission band as a guard subcarrier carrying dummy data when the first radio frequency transmission band and the second radio frequency transmission band are simultaneously used to transmit data loads.
  • a device for wireless communication may include a memory storing instructions and a processing circuitry in communication with the memory.
  • the processing circuitry executes the instructions, the processing circuitry is configured to carry out the above method.
  • a computer-readable medium comprising instructions which, when executed by a computer, cause the computer to carry out the above method.
  • FIG. 1 illustrates an example diagram of a wireless communication network in accordance with various embodiments.
  • FIG. 2 illustrates a flow diagram of a method for configuring guard subcarriers in accordance with an embodiment.
  • FIG. 3 illustrates an example diagram showing guard subcarriers in a transmission band in accordance with an embodiment.
  • FIG. 4 illustrates an example diagram showing guard subcarriers in a transmission band in accordance with another embodiment.
  • FIG. 5 illustrates an example diagram showing guard subcarriers in a transmission band in accordance with another embodiment.
  • FIG. 6 illustrates an example diagram showing guard subcarriers in a transmission band in accordance with another embodiment.
  • a wireless access network provides network connectivity between a user equipment and an information or data network such as a voice or video communication network, the Internet, and the like.
  • An example wireless access network may be based on cellular technologies, which may further be based on, for example, 5G NR technologies and/or formats.
  • FIG. 1 shows an example system diagram of wireless communication network 100 including a user equipment (UE) 102 and a wireless access network node (WANN) 104 according to various embodiments.
  • the UE 102 may include but is not limited to a mobile phone, smartphone, tablet, laptop computer, a smart electronics or appliance including an air conditioner, a television, a refrigerator, an oven and the like, or other devices that are capable of communicating wirelessly over a network.
  • the UE 102 may include transceiver circuitry 106 coupled to an antenna 108 to effect wireless communication with the wireless access network node 104.
  • the transceiver circuitry 106 may also be coupled to a processor 110, which may also be coupled to a memory 112 or other storage devices.
  • the memory 112 may store therein instructions or code that, when read and executed by the processor 110, cause the processor 110 to implement various ones of the methods described herein.
  • the wireless access network node 104 may comprise a base station or other wireless network access points capable of communicating wirelessly over a network with one or more UEs.
  • the wireless access network node 104 may comprise a 5G NR base station, a5G central-unit base station, or a 5G distributed-unit base station.
  • Each type of these wireless access network nodes may be configured to perform a corresponding set of wireless network functions.
  • the set of wireless network functions between different types of wireless access network nodes may not be identical.
  • the set of wireless network functions between different types of wireless access network nodes may functionally overlap.
  • the wireless access network node 104 may include transceiver circuitry 114 coupled to an antenna 116, which may include an antenna tower 118 in various approaches, to effect wireless communication with the UE 102.
  • the transceiver circuitry 114 may also be coupled to one or more processors 120, which may also be coupled to a memory 122 or other storage devices.
  • the memory 122 may store therein instructions or code that, when read and executed by the processor 120, cause the processor 120 to implement various ones of the methods described herein.
  • the wireless communication network 100 For simplicity and clarity, only one WANN and one UE are shown in the wireless communication network 100. It will be appreciated that one or more WANNs may exist in the wireless communication network, and each WANN may serve one or more UEs in the meantime. Besides UEs and WANNs, the network 100 may further comprise any other network nodes with different functions such as the network nodes in core network of the wireless communication network 100. In addition, while various embodiments will be discussed in the context of the particular example wireless communication network 100, the underlying principle applies to other applicable wireless communication networks.
  • the interband interference can be addressed by configuring one or more subcarriers in the adjacent transmission bands as guard subcarriers carrying dummy data. In this way, it may only insert a small guard bandwidth, or even no guard bandwidth, between the adjacent transmission bands thereby improving frequency spectrum utilization efficiency.
  • Various exemplary embodiments addressing the interband interference based on such an underlying principle will be discussed in detail below with reference to FIGs. 2-6.
  • FIG. 2 illustrates an exemplary implementation 200 of configuring guard subcarriers in a transmision band.
  • the exemplary implementation 200 may be performed by either a UE such as UE 102 or a wireless access network node such as WANN 104. As an example, the implementation is described as performed by the UE 102.
  • the UE 102 may determine that the transmission band 310 is close to the transmission band 320 in frequency spectrum and the subcarrier spacing for the transmission band 310 is less than the subcarrier spacing for the transmission band 320 as shown in FIG. 3.
  • the transmission bands 310 and 320 include two subbands within a channel bandwidth.
  • the UE 102 may, for example, receive this information on the transmission bands 310 and 320 from the WANN 104 which uses the two transmission bands to transmit downlink data to a plurality of UEs including the UE 102 or receiving uplink data from the plurality of UEs.
  • the UE 102 may use the transmission band 310 to transmit uplink data to the WANN 104.
  • the transmission band 310 is adjacent to the transmission band 320, i.e. there is not a third transmission band between the transmission band 310 and the transmission band 320. In other implementations, a third transmission band may be present between the transmission band 310 and the transmission band 320.
  • the transmission bands 310 and 320 may, for example, have 12 subcarriers respectively numbering 0 through 11 as illustrated in FIG. 3.
  • the subcarrier spacing ⁇ f 1 for the transmission band 310 is 15 kHz and the subcarrier spacing ⁇ f 2 for the transmission band 320 is 30 kHz. ⁇ f 1 ⁇ f 2 .
  • the frequency spacing between the transmission band 310 and the transmission band 320 is 30 kHz. It should be appreciated that the frequency spacing can be any other value.
  • the frequency spacing between the transmission band 410 and the transmission band 420 may be 15 kHz.
  • the frequency spacing between the transmission band 510 and the transmission band 520 may be 60 kHz.
  • the UE 102 may configure a subcarrier of the transmission band 310 as a guard subcarrier carrying dummy data when the transmission band 310 and the transmission band 320 are simultaneously used to transmit data loads. For example, the UE 102 and another UE (not shown) simultaneously transmit uplink data to the WANN 104, the UE 102 transmits uplink data in the transmission band 310 and the another UE transmits uplink data in the transmission band 320.
  • the subcarriers of the transmission band 310 close to the transmission band 320 may give rise to more significant interference, it is desirable to configure one or more of these subcarriers as guard carriers.
  • the subcarrier of the transmission band 310 is orthogonal to the subcarrier 0 and other subcarriers of the transmission band 320, thereby causing insignificant interference. Therefore, it may be not necessary in such a situation to configure this subcarrier of the transmission band 310 as a guard carrier.
  • this subcarrier of the transmission band 310 is desirable to be configured as a guard carrier.
  • the subcarrier 10 of the transmission band 310 may be configured as a guard subcarrier because the frequency distance between the subcarrier 10 and the subcarrier 0 of the transmission band 320 is 1.5 ⁇ f 2 .
  • the UE 102 may determine whether to configure the guard subcarrier in the transmission band 310 based on the control message which may be a high-layer configuration signaling or received from the wireless communication network 100.
  • the WANN 104 may function to determine whether to configure guard subcarriers in individual transmission bands and transmit the determination result to the UE 102 in the control message.
  • the control message can be transmitted in a control channel, in a radio resource control (RRC) signaling or in a broadcast channel.
  • RRC radio resource control
  • a plurality of subcarriers of the transmission band may be configured as guard subcarriers.
  • subcarrier 4, subcarrier 6, subcarrier 8, and subcarrier 10 of the transmission band 310 in FIG. 3 are configured as guard subcarriers because the frequency distance between each of these subcarriers and the subcarrier 0 of the transmission band 320 is equal to R* ⁇ f 2 , R is a non-integer.
  • R is a non-integer.
  • the frequency distance between subcarrier 10 of the transmission band 310 and the subcarrier 0 of the transmission band 320 is 45 kHz, i.e.
  • the frequency spacing between subcarrier 8 of the transmission band 310 and the subcarrier 0 of the transmission band 320 is 75 kHz, i.e. 2.5* ⁇ f 2 ; the frequency spacing between subcarrier 6 of the transmission band 310 and the subcarrier 0 of the transmission band 320 is 105 kHz, i.e. 3.5* ⁇ f 2 ; and the frequency spacing between subcarrier 4 of the transmission band 310 and the subcarrier 0 of the transmission band 320 is 135 kHz, i.e. 4.5* ⁇ f 2 .
  • subcarrier 3, subcarrier 5, subcarrier 7, subcarrier 9, and subcarrier 11 of the transmission band 410 in FIG. 4 may be configured as guard subcarriers.
  • Subcarrier 6, subcarrier 8, and subcarrier 10 of the transmission band 510 in FIG. 5 may be configured as guard subcarriers.
  • the number of subcarriers to be configured as guard subcarriers N can be determined based on a control message which may be a high-layer configuration signaling or received from a network node in the wireless communication network 100 such as the WANN 104.
  • the control message may include, for example, the value of the N, a message type having a predetermined correspondence to the value of the N, and a parameter for a predetermined formula used to calculate the value of the N.
  • the UE 102 may look up a local mapping table between message types and values of the N to get the value of the N.
  • the UE 102 may use the predetermined formula to calculate the value of the N.
  • Such control message can be transmitted in a control channel, in a RRC signaling or in a broadcast channel.
  • the number of subcarriers to be configured as guard subcarriers N can be determined based on, but not limited to, a modulation and coding scheme (MCS) used for transmission in the transmission band 310 or the transmission band 320.
  • MCS modulation and coding scheme
  • the MCS may include but not limited to a modulation order or a code rate.
  • SNR signal to noise ratio
  • the N guard subcarriers in the transmission band are discrete subcarriers.
  • the transmission band 310 in FIG. 3 has subcarrier 4, subcarrier 6, subcarrier 8, and subcarrier 10 as guard subcarriers which have interval non-guard subcarriers, i.e. subcarrier 5, subcarrier 7, and subcarrier 9.
  • the transmission band 410 in FIG. 4 has subcarrier 3, subcarrier 5, subcarrier 7, subcarrier 9, and subcarrier 11 as guard subcarriers which have interval non-guard subcarriers, i.e. subcarrier 4, subcarrier 6, subcarrier 8, and subcarrier 10.
  • the transmission band 510 in FIG. 5 has subcarrier 6, subcarrier 8, and subcarrier 10 as guard subcarriers which have interval non-guard subcarriers, i.e. subcarrier 7 and subcarrier 9.
  • a portion of the N guard subcarriers in the transmission band is continuous subcarriers.
  • the subcarrier spacing ⁇ f 1 of the transmission band 610 is 15 kHz and the subcarrier spacing ⁇ f 2 of the transmission band 620 is 60 kHz. ⁇ f 2 >2* ⁇ f 1 .
  • the frequency spacing between the transmission band 610 and the transmission band 620 is 15 kHz.
  • subcarrier 5, subcarrier 6, subcarrier 7, subcarrier 9, subcarrier 10, and subcarrier 11 of the transmission band 610 may be configured as guard subcarriers because their frequency distances to subcarrier 0 of the transmission band 620 are non-integral multiple of the subcarrier spacing ⁇ f 2 of the transmission band 620, i.e. 1.75 ⁇ f 2 , 1.5 ⁇ f 2 , 1.25 ⁇ f 2 , 0.75 ⁇ f 2 , 0.5 ⁇ f 2 , and 0.25 ⁇ f 2 respectively.
  • subcarrier 5, subcarrier 6, and subcarrier 7 constitute a series of continuous guard subcarriers and subcarrier 9, subcarrier 10, and subcarrier 11 constitute the other series of continuous guard subcarriers.
  • subcarrier 9 and subcarrier 11 of the transmission band 310 their frequency distances to subcarrier 0 of the transmission band 320 are integral multiple of the subcarrier spacing ⁇ f 2 of the transmission band 320, i.e. ⁇ f 2 and 2 ⁇ f 2 respectively, thereby being orthogonal to the subcarrier 0 of the transmission band 320 as discussed above.
  • subcarrier 9 and subcarrier 11 may not give rise to significant interference, this interference may not be negligible due to the closeness to the subcarrier 0 of the transmission band 320.
  • subcarrier 9 and subcarrier 11 may also be interfered by the transmission band 320.
  • the UE 102 may configure additional M subcarriers of the transmission band 310 close to the transmssion band 320 as guard subcarriers.
  • M is an integer and M ⁇ N.
  • the UE 102 configures two more subcarriers, subcarrier 9 and subcarrier 11, in the transmission band 310 as guard subcarriers.
  • subcarrier 4 and subcarrier 6 are discrete guard subcarriers
  • subcarrier 8, subcarrier 9, subcarrier 10, and subcarrier 11 are continuous guard subcarriers.
  • terms, such as “a, ” “an, ” or “the, ” may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context.
  • the term “based on” may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part on context.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This disclosure relates to methods and devices for configuring guard subcarriers in transmission subbands to reduce interband interference in a wireless communication network. In one implementation, the method may include determining that a first subcarrier spacing for a first radio frequency transmission band is less than a second subcarrier spacing for a second radio frequency transmission band, and the first radio frequency transmission band is close to the second radio frequency transmission band in frequency spectrum. The method may further include configuring a subcarrier of the first radio frequency transmission band as a guard subcarrier carrying dummy data when the first radio frequency transmission band and the second radio frequency transmission band are simultaneously used to transmit data loads.

Description

A METHOD FOR CONFIGURING GUARD SUBCARRIERS TECHNICAL FIELD
This disclosure is directed generally to wireless communications and particularly to configuring guard subcarriers in a transmission subband.
BACKGROUND
In a wireless communication network such as 5G new radio (NR) network, the communication technique adopts cyclic-prefix orthogonal frequency division multiplexing (CP-OFDM) waveforms as primary waveforms of subcarriers in radio frequency transmission subbands. In addition, the wireless communication network may use different numerologies in allocating radio resources for individual radio frequency transmission subbands. For example, adjacent transmission subbands in a channel bandwidth may have numerologies with different subcarrier spacing, which may, however, damage orthogonality among the subcarriers of the adjacent transmission subbands. As a result, mutual interference occurs between the adjacent transmission subbands.
To address the mutual interference, a straightforward method is to insert a guard band between two adjacent transmission subbands when they have different numerologies, which wastes radio resources. Moreover, the methods of windowing and filtering may suppress out-of-band leakage, but they have limited effects on alleviating interband interference.
SUMMARY
This disclosure is directed to methods, systems, and devices related to wireless communication, and more specifically, for configuring guard subcarriers in transmission subbands to reduce interband interference.
In one embodiment, a method for configuring guard subcarriers by an apparatus is disclosed. The method may include determining that a first subcarrier spacing for a first  radio frequency transmission band is different than a second subcarrier spacing for a second radio frequency transmission band. The first radio frequency transmission band is close to the second radio frequency transmission band in frequency spectrum and the first subcarrier spacing is less than the second subcarrier spacing. The method may further include configuring a subcarrier of the first radio frequency transmission band as a guard subcarrier carrying dummy data when the first radio frequency transmission band and the second radio frequency transmission band are simultaneously used to transmit data loads.
In another embodiment, a device for wireless communication may include a memory storing instructions and a processing circuitry in communication with the memory. When the processing circuitry executes the instructions, the processing circuitry is configured to carry out the above method.
In another embodiment, a computer-readable medium comprising instructions which, when executed by a computer, cause the computer to carry out the above method.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims below.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example diagram of a wireless communication network in accordance with various embodiments.
FIG. 2 illustrates a flow diagram of a method for configuring guard subcarriers in accordance with an embodiment.
FIG. 3 illustrates an example diagram showing guard subcarriers in a transmission band in accordance with an embodiment.
FIG. 4 illustrates an example diagram showing guard subcarriers in a transmission band in accordance with another embodiment.
FIG. 5 illustrates an example diagram showing guard subcarriers in a transmission band in accordance with another embodiment.
FIG. 6 illustrates an example diagram showing guard subcarriers in a transmission band in accordance with another embodiment.
DETAILED DESCRIPTION
The technology and examples of implementations and/or embodiments in this disclosure can be used to improve performance in wireless communication systems. The term “exemplary” is used to mean “an example of” and unless otherwise stated, does not imply an ideal or preferred example, implementation, or embodiment. Section headers are used in the present disclosure to facilitate understanding and do not limit the disclosed technology in the sections only to the corresponding section. Please note that the implementations may, however, be embodied in a variety of different forms and, therefore, the covered or claimed subject matter is intended to be construed as not being limited to any of the embodiments to be set forth below. Please also note that the implementations may be embodied as methods, devices, components, or systems. Accordingly, embodiments of this disclosure may, for example, take the form of hardware, software, firmware or any combination thereof.
A wireless access network provides network connectivity between a user equipment and an information or data network such as a voice or video communication network, the Internet, and the like. An example wireless access network may be based on cellular technologies, which may further be based on, for example, 5G NR technologies and/or formats. FIG. 1 shows an example system diagram of wireless communication network 100 including a user equipment (UE) 102 and a wireless access network node (WANN) 104 according to various embodiments. The UE 102 may include but is not limited to a mobile phone, smartphone, tablet, laptop computer, a smart electronics or appliance including an air conditioner, a television, a refrigerator, an oven and the like, or other devices that are capable of communicating wirelessly over a network. The UE 102 may include transceiver circuitry 106 coupled to an antenna 108 to effect wireless communication with the wireless access network node 104. The transceiver circuitry 106 may also be coupled to a processor 110, which may also be coupled to a memory 112 or other  storage devices. The memory 112 may store therein instructions or code that, when read and executed by the processor 110, cause the processor 110 to implement various ones of the methods described herein.
Similarly, the wireless access network node 104 may comprise a base station or other wireless network access points capable of communicating wirelessly over a network with one or more UEs. For example, the wireless access network node 104 may comprise a 5G NR base station, a5G central-unit base station, or a 5G distributed-unit base station. Each type of these wireless access network nodes may be configured to perform a corresponding set of wireless network functions. The set of wireless network functions between different types of wireless access network nodes may not be identical. The set of wireless network functions between different types of wireless access network nodes, however, may functionally overlap. The wireless access network node 104 may include transceiver circuitry 114 coupled to an antenna 116, which may include an antenna tower 118 in various approaches, to effect wireless communication with the UE 102. The transceiver circuitry 114 may also be coupled to one or more processors 120, which may also be coupled to a memory 122 or other storage devices. The memory 122 may store therein instructions or code that, when read and executed by the processor 120, cause the processor 120 to implement various ones of the methods described herein.
For simplicity and clarity, only one WANN and one UE are shown in the wireless communication network 100. It will be appreciated that one or more WANNs may exist in the wireless communication network, and each WANN may serve one or more UEs in the meantime. Besides UEs and WANNs, the network 100 may further comprise any other network nodes with different functions such as the network nodes in core network of the wireless communication network 100. In addition, while various embodiments will be discussed in the context of the particular example wireless communication network 100, the underlying principle applies to other applicable wireless communication networks.
As shown in various embodiments below, the interband interference can be addressed by configuring one or more subcarriers in the adjacent transmission bands as guard subcarriers carrying dummy data. In this way, it may only insert a small guard bandwidth,  or even no guard bandwidth, between the adjacent transmission bands thereby improving frequency spectrum utilization efficiency. Various exemplary embodiments addressing the interband interference based on such an underlying principle will be discussed in detail below with reference to FIGs. 2-6.
FIG. 2 illustrates an exemplary implementation 200 of configuring guard subcarriers in a transmision band. Note that the exemplary implementation 200 may be performed by either a UE such as UE 102 or a wireless access network node such as WANN 104. As an example, the implementation is described as performed by the UE 102.
At step 210, the UE 102 may determine that the transmission band 310 is close to the transmission band 320 in frequency spectrum and the subcarrier spacing for the transmission band 310 is less than the subcarrier spacing for the transmission band 320 as shown in FIG. 3. In some implementations, the  transmission bands  310 and 320 include two subbands within a channel bandwidth. The UE 102 may, for example, receive this information on the  transmission bands  310 and 320 from the WANN 104 which uses the two transmission bands to transmit downlink data to a plurality of UEs including the UE 102 or receiving uplink data from the plurality of UEs. For example, the UE 102 may use the transmission band 310 to transmit uplink data to the WANN 104.
In FIG. 3, the transmission band 310 is adjacent to the transmission band 320, i.e. there is not a third transmission band between the transmission band 310 and the transmission band 320. In other implementations, a third transmission band may be present between the transmission band 310 and the transmission band 320.
The  transmission bands  310 and 320 may, for example, have 12 subcarriers respectively numbering 0 through 11 as illustrated in FIG. 3. The subcarrier spacing Δf 1 for the transmission band 310 is 15 kHz and the subcarrier spacing Δf 2 for the transmission band 320 is 30 kHz. Δf 1<Δf 2. As shown in FIG. 3, the frequency spacing between the transmission band 310 and the transmission band 320 is 30 kHz. It should be appreciated that the frequency spacing can be any other value. For example, in FIG. 4, the frequency spacing between the transmission band 410 and the transmission band 420 may be 15 kHz.  In FIG. 5, the frequency spacing between the transmission band 510 and the transmission band 520 may be 60 kHz.
At step 220, the UE 102 may configure a subcarrier of the transmission band 310 as a guard subcarrier carrying dummy data when the transmission band 310 and the transmission band 320 are simultaneously used to transmit data loads. For example, the UE 102 and another UE (not shown) simultaneously transmit uplink data to the WANN 104, the UE 102 transmits uplink data in the transmission band 310 and the another UE transmits uplink data in the transmission band 320.
In view that the subcarriers of the transmission band 310 close to the transmission band 320 may give rise to more significant interference, it is desirable to configure one or more of these subcarriers as guard carriers.
Generally, when the frequency distance between a subcarrier of the transmission band 310 and a most edging subcarrier of the transmission band 320 close to the transmission band 310, i.e. subcarrier 0 of the transmission band 320, is an integral multiple of the subcarrier spacing Δf 2 of the transmission band 320, the subcarrier of the transmission band 310 is orthogonal to the subcarrier 0 and other subcarriers of the transmission band 320, thereby causing insignificant interference. Therefore, it may be not necessary in such a situation to configure this subcarrier of the transmission band 310 as a guard carrier.
By contrast, when the frequency distance between a subcarrier of the transmission band 310 and the subcarrier 0 of the transmission band 320 is a non-integral multiple of the subcarrier spacing Δf 2, the subcarrier of the transmission band 310 is not orthogonal to the subcarrier 0 and other subcarriers of the transmission band 320, thereby causing interference. Therefore, this subcarrier of the transmission band 310 is desirable to be configured as a guard carrier. For example, as shown in FIG. 3, the subcarrier 10 of the transmission band 310 may be configured as a guard subcarrier because the frequency distance between the subcarrier 10 and the subcarrier 0 of the transmission band 320 is 1.5Δf 2.
In some implementations, the UE 102 may determine whether to configure the guard subcarrier in the transmission band 310 based on the control message which may be a  high-layer configuration signaling or received from the wireless communication network 100. For example, the WANN 104 may function to determine whether to configure guard subcarriers in individual transmission bands and transmit the determination result to the UE 102 in the control message. The control message can be transmitted in a control channel, in a radio resource control (RRC) signaling or in a broadcast channel.
In some implementations, a plurality of subcarriers of the transmission band may be configured as guard subcarriers. For example, subcarrier 4, subcarrier 6, subcarrier 8, and subcarrier 10 of the transmission band 310 in FIG. 3 are configured as guard subcarriers because the frequency distance between each of these subcarriers and the subcarrier 0 of the transmission band 320 is equal to R*Δf 2, R is a non-integer. Specifically, the frequency distance between subcarrier 10 of the transmission band 310 and the subcarrier 0 of the transmission band 320 is 45 kHz, i.e. 1.5*Δf 2; the frequency spacing between subcarrier 8 of the transmission band 310 and the subcarrier 0 of the transmission band 320 is 75 kHz, i.e. 2.5*Δf 2; the frequency spacing between subcarrier 6 of the transmission band 310 and the subcarrier 0 of the transmission band 320 is 105 kHz, i.e. 3.5*Δf 2; and the frequency spacing between subcarrier 4 of the transmission band 310 and the subcarrier 0 of the transmission band 320 is 135 kHz, i.e. 4.5*Δf 2. Similarly, subcarrier 3, subcarrier 5, subcarrier 7, subcarrier 9, and subcarrier 11 of the transmission band 410 in FIG. 4 may be configured as guard subcarriers. Subcarrier 6, subcarrier 8, and subcarrier 10 of the transmission band 510 in FIG. 5 may be configured as guard subcarriers.
The number of subcarriers to be configured as guard subcarriers N can be determined based on a control message which may be a high-layer configuration signaling or received from a network node in the wireless communication network 100 such as the WANN 104. The control message may include, for example, the value of the N, a message type having a predetermined correspondence to the value of the N, and a parameter for a predetermined formula used to calculate the value of the N. Where the control message includes the message type, the UE 102 may look up a local mapping table between message types and values of the N to get the value of the N. Where the control message includes the parameter, the UE 102 may use the predetermined formula to calculate the value of the N.  Such control message can be transmitted in a control channel, in a RRC signaling or in a broadcast channel.
Alternatively, the number of subcarriers to be configured as guard subcarriers N can be determined based on, but not limited to, a modulation and coding scheme (MCS) used for transmission in the transmission band 310 or the transmission band 320. The MCS may include but not limited to a modulation order or a code rate. Generally, the higher the modulation order is, the higher the desired signal to noise ratio (SNR) is. To achiver higher SNR, less interference is required which results in a larger N, i.e. more guard subcarriers. Likewise, a higher code rate requires a higher SNR, and thereby a larger N.
In some implementations, the N guard subcarriers in the transmission band are discrete subcarriers. For example, the transmission band 310 in FIG. 3 has subcarrier 4, subcarrier 6, subcarrier 8, and subcarrier 10 as guard subcarriers which have interval non-guard subcarriers, i.e. subcarrier 5, subcarrier 7, and subcarrier 9. The transmission band 410 in FIG. 4 has subcarrier 3, subcarrier 5, subcarrier 7, subcarrier 9, and subcarrier 11 as guard subcarriers which have interval non-guard subcarriers, i.e. subcarrier 4, subcarrier 6, subcarrier 8, and subcarrier 10. The transmission band 510 in FIG. 5 has subcarrier 6, subcarrier 8, and subcarrier 10 as guard subcarriers which have interval non-guard subcarriers, i.e. subcarrier 7 and subcarrier 9.
In some implementations, a portion of the N guard subcarriers in the transmission band is continuous subcarriers. For example, as shown in FIG. 6, the subcarrier spacing Δf 1 of the transmission band 610 is 15 kHz and the subcarrier spacing Δf 2 of the transmission band 620 is 60 kHz. Δf 2>2*Δf 1. The frequency spacing between the transmission band 610 and the transmission band 620 is 15 kHz. In this case, subcarrier 5, subcarrier 6, subcarrier 7, subcarrier 9, subcarrier 10, and subcarrier 11 of the transmission band 610 may be configured as guard subcarriers because their frequency distances to subcarrier 0 of the transmission band 620 are non-integral multiple of the subcarrier spacing Δf 2 of the transmission band 620, i.e. 1.75 Δf 2, 1.5 Δf 2, 1.25 Δf 2, 0.75 Δf 2, 0.5 Δf 2, and 0.25 Δf 2 respectively. As such, subcarrier 5, subcarrier 6, and subcarrier 7 constitute a series of continuous guard subcarriers and subcarrier 9, subcarrier 10, and subcarrier 11 constitute the  other series of continuous guard subcarriers.
Return to FIG. 3, for subcarrier 9 and subcarrier 11 of the transmission band 310, their frequency distances to subcarrier 0 of the transmission band 320 are integral multiple of the subcarrier spacing Δf 2 of the transmission band 320, i.e. Δf 2 and 2Δf 2 respectively, thereby being orthogonal to the subcarrier 0 of the transmission band 320 as discussed above. Although subcarrier 9 and subcarrier 11 may not give rise to significant interference, this interference may not be negligible due to the closeness to the subcarrier 0 of the transmission band 320. In turn, subcarrier 9 and subcarrier 11 may also be interfered by the transmission band 320. Therefore, in another implementation, aside from configuring the N subcarriers of a transmission band as guard subcarriers as discussed above, the UE 102 may configure additional M subcarriers of the transmission band 310 close to the transmssion band 320 as guard subcarriers. M is an integer and M<N. Take an example with reference to FIG. 3, in addition to four guard subcarriers, i.e. subcarrier 4, subcarrier 6, subcarrier 8, and subcarrier 10 in the transmission band 310, the UE 102 configures two more subcarriers, subcarrier 9 and subcarrier 11, in the transmission band 310 as guard subcarriers. As such, subcarrier 4 and subcarrier 6 are discrete guard subcarriers, and subcarrier 8, subcarrier 9, subcarrier 10, and subcarrier 11 are continuous guard subcarriers.
Throughout the specification and claims, terms may have nuanced meanings suggested or implied in context beyond an explicitly stated meaning. Likewise, the phrase “in one embodiment/implementation” as used herein does not necessarily refer to the same embodiment and the phrase “in another embodiment/implementation” as used herein does not necessarily refer to a different embodiment. It is intended, for example, that claimed subject matter includes combinations of example embodiments in whole or in part.
In general, terminology may be understood at least in part from usage in context. For example, terms, such as “and” , “or” , or “and/or, ” as used herein may include a variety of meanings that may depend at least in part on the context in which such terms are used. Typically, “or” if used to associate a list, such as A, B or C, is intended to mean A, B, and C, here used in the inclusive sense, as well as A, B or C, here used in the exclusive sense. In  addition, the term “one or more” as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as “a, ” “an, ” or “the, ” may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context. In addition, the term “based on” may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part on context.
Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present solution should be or are included in any single implementation thereof. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present solution. Thus, discussions of the features and advantages, and similar language, throughout the specification may, but do not necessarily, refer to the same embodiment.
Furthermore, the described features, advantages and characteristics of the present solution may be combined in any suitable manner in one or more embodiments. One of ordinary skill in the relevant art will recognize, in light of the description herein, that the present solution can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the present solution.

Claims (19)

  1. A method performed by an apparatus in a wireless communication network, comprising:
    determining that a first subcarrier spacing for a first radio frequency transmission band is different than a second subcarrier spacing for a second radio frequency transmission band, wherein the first radio frequency transmission band is close to the second radio frequency transmission band in frequency spectrum and the first subcarrier spacing is less than the second subcarrier spacing; and
    configuring a subcarrier of the first radio frequency transmission band as a guard subcarrier carrying dummy data when the first radio frequency transmission band and the second radio frequency transmission band are simultaneously used to transmit data loads.
  2. The method of claim 1, wherein the subcarrier is at an edge of the first radio frequency transmission band close to the second radio frequency transmission band.
  3. The method of claim 1, wherein a frequency distance between the subcarrier and a most edging subcarrier in the second radio frequency transmission band is a non-integral multiple of a value of the second subcarrier spacing, wherein the most edging subcarrier is at an edge of the second radio frequency transmission band close to the first radio frequency transmission band.
  4. The method of claim 1, further comprising determining whether to configure the subcarrier of the first radio frequency transmission band as the guard subcarrier based on a control message received from the wireless communication network.
  5. The method of claim 1, wherein the configuring the subcarrier in the first radio frequency transmission band as a guard subcarrier comprises configuring N subcarriers in the first radio frequency transmission band as guard subcarriers, wherein N is an integer.
  6. The method of claim 5, wherein the N subcarriers are discrete subcarriers.
  7. The method of claim 5, wherein a portion of the N subcarriers are continuous subcarriers when a value of the second subcarrier spacing is greater than two times of a value of the first subcarrier spacing.
  8. The method of claim 5, wherein the N subcarriers are at an edge of the first radio frequency transmission band close to the second radio frequency transmission band.
  9. The method of claim 5, wherein a frequency distance between each of the N subcarriers and a most edging subcarrier in the second radio frequency transmission band is a non-integral multiple of a value of the second subcarrier spacing, wherein the most edging subcarrier is at an edge of the second radio frequency transmission band close to the first radio frequency transmission band.
  10. The method of claim 9, further comprising configuring M subcarriers in the first radio frequency transmission band as guard subcarriers, wherein M is an integer and M<N, wherein the M subcarriers is at an edge of the first radio frequency transmission band close to the second radio frequency transmission band and a frequency distance between each of the M subcarriers and the most edging subcarrier of the second radio frequency transmission band is an integral multiple of the value of the second subcarrier spacing.
  11. The method of claim 10, wherein a portion of the N+M subcarriers are discrete subcarriers.
  12. The method of claim 5, further comprising determining a value of the N based on a control message received from the wireless communication network.
  13. The method of claim 12, wherein the control message comprises the value of the N, amessage type having a predetermined correspondence to the value of the N, or a parameter for a predetermined formula used to calculate the value of the N.
  14. The method of claim 5, further comprising determining a value of the N at least based on a modulation and coding scheme for transmission in the first radio frequency transmission band or the second radio frequency transmission band.
  15. The method of claim 14, wherein the modulation and coding scheme comprises at least one of a modulation order and a code rate.
  16. The method of claim 1, wherein the apparatus is a user equipment or a wireless network node.
  17. The method of claim 1, wherein the first radio frequency transmission band and the second radio frequency transmission band are subbands in a channel bandwidth.
  18. A device comprising a processor and a memory, wherein the processor is configured to read computer code from the memory to implement a method in any one of claims 1 to 17.
  19. A computer-readable medium comprising instructions which, when executed by a computer, cause the computer to carry out the method of any one of claims 1 to 17.
PCT/CN2019/119498 2019-11-19 2019-11-19 A method for configuring guard subcarriers WO2021097677A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3157407A CA3157407A1 (en) 2019-11-19 2019-11-19 A method for configuring guard subcarriers
CN201980102281.2A CN114731319A (en) 2019-11-19 2019-11-19 Method for configuring guard sub-carriers
KR1020227016394A KR20220082891A (en) 2019-11-19 2019-11-19 Method for constructing a guard subcarrier
PCT/CN2019/119498 WO2021097677A1 (en) 2019-11-19 2019-11-19 A method for configuring guard subcarriers
EP19953473.6A EP4062613A4 (en) 2019-11-19 2019-11-19 A method for configuring guard subcarriers
US17/740,863 US20220271981A1 (en) 2019-11-19 2022-05-10 Method for configuring guard subcarriers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119498 WO2021097677A1 (en) 2019-11-19 2019-11-19 A method for configuring guard subcarriers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/740,863 Continuation US20220271981A1 (en) 2019-11-19 2022-05-10 Method for configuring guard subcarriers

Publications (1)

Publication Number Publication Date
WO2021097677A1 true WO2021097677A1 (en) 2021-05-27

Family

ID=75980068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119498 WO2021097677A1 (en) 2019-11-19 2019-11-19 A method for configuring guard subcarriers

Country Status (6)

Country Link
US (1) US20220271981A1 (en)
EP (1) EP4062613A4 (en)
KR (1) KR20220082891A (en)
CN (1) CN114731319A (en)
CA (1) CA3157407A1 (en)
WO (1) WO2021097677A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873697A (en) * 2009-04-25 2010-10-27 中兴通讯股份有限公司 Resource mapping method
WO2018021008A1 (en) * 2016-07-29 2018-02-01 日本電気株式会社 Communication device, method, system, program, and recording medium
US20180049204A1 (en) 2016-08-12 2018-02-15 Motorola Mobility Llc Method and Apparatus Including One or More Parameters for Defining a More Flexible Radio Communication
CN109644173A (en) * 2016-08-12 2019-04-16 华为技术有限公司 The system and method utilized for effective bandwidth
CN109964463A (en) * 2016-11-03 2019-07-02 高通股份有限公司 Technology for signaling and channel design in new radio

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096755A2 (en) * 2010-02-05 2011-08-11 엘지전자 주식회사 Method and apparatus for transmitting a sounding reference signal
EP3316541B1 (en) * 2015-07-27 2019-10-09 Huawei Technologies Co., Ltd. Method and apparatus for realizing data transmission
PL3618342T3 (en) * 2016-05-13 2021-05-31 Telefonaktiebolaget Lm Ericsson (Publ) Multi-subcarrier system with multiple numerologies
CN109792263B (en) * 2016-09-27 2021-06-08 江苏舒茨测控设备股份有限公司 Data transmission method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873697A (en) * 2009-04-25 2010-10-27 中兴通讯股份有限公司 Resource mapping method
WO2018021008A1 (en) * 2016-07-29 2018-02-01 日本電気株式会社 Communication device, method, system, program, and recording medium
US20180049204A1 (en) 2016-08-12 2018-02-15 Motorola Mobility Llc Method and Apparatus Including One or More Parameters for Defining a More Flexible Radio Communication
CN109644173A (en) * 2016-08-12 2019-04-16 华为技术有限公司 The system and method utilized for effective bandwidth
CN109964463A (en) * 2016-11-03 2019-07-02 高通股份有限公司 Technology for signaling and channel design in new radio

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Downlink Performance Evaluations for Guard-band Operation", 3GPP DRAFT; R1-156801 DOWNLINK PERFORMANCE EVALUATIONS FOR GUARD-BAND OPERATION, vol. RAN WG1, 7 November 2015 (2015-11-07), Anaheim, USA, pages 1 - 8, XP051022500 *
See also references of EP4062613A4

Also Published As

Publication number Publication date
US20220271981A1 (en) 2022-08-25
KR20220082891A (en) 2022-06-17
EP4062613A4 (en) 2022-12-28
EP4062613A1 (en) 2022-09-28
CA3157407A1 (en) 2021-05-27
CN114731319A (en) 2022-07-08

Similar Documents

Publication Publication Date Title
US10863456B2 (en) Systems and methods of communicating via sub-bands in wireless communication networks
US10554353B2 (en) Pulse shaping method, transmitter, receiver, and system
US7929472B2 (en) Method and apparatus for uplink scheduling in a mobile communication system
US10826657B2 (en) Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
CN109151970B (en) Method for determining transmission power, processing chip and communication equipment
CN107872865B (en) A kind of method and apparatus of transmission power adjustment in UE, base station
Mihovska et al. Overview of 5G new radio and carrier aggregation: 5G and beyond networks
US11677603B2 (en) Peak-to-average power ratio reduction with pseudo-random in-band tone reservation
CN113424618B (en) Communication method, device and computer readable storage medium
CN102754506A (en) Base station device, mobile station device, and integrated circuit
CN106027441A (en) Signal modulation method, device and system
WO2019029592A1 (en) Slot aggregation
US10652062B2 (en) Configurable waveform for beyond 52.6GHz
US20220271981A1 (en) Method for configuring guard subcarriers
CN101047410B (en) Power control method and system
CN110430612B (en) Method and device for supporting transmission power adjustment in UE and base station
US8626227B2 (en) Method and system for power allocation in a transmission system
US20210195568A1 (en) Communication method and apparatus
WO2020030255A1 (en) Reducing dmrs overhead
CN102316467B (en) The method and apparatus of allocate communications resource
WO2023024731A1 (en) Method for reducing peak-to-average power ratio (papr), and communication apparatus
CN112005590B (en) Grouping of orthogonal subcarriers
CN116996352A (en) Communication method and device
CN117641386A (en) Reference unit determining method, configuration method, device, terminal and network side equipment
WO2018058855A1 (en) Data transmission method, device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3157407

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227016394

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019953473

Country of ref document: EP

Effective date: 20220620