WO2021093545A1 - 一种天线及移动终端 - Google Patents
一种天线及移动终端 Download PDFInfo
- Publication number
- WO2021093545A1 WO2021093545A1 PCT/CN2020/123011 CN2020123011W WO2021093545A1 WO 2021093545 A1 WO2021093545 A1 WO 2021093545A1 CN 2020123011 W CN2020123011 W CN 2020123011W WO 2021093545 A1 WO2021093545 A1 WO 2021093545A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiator
- antenna
- radiating part
- mobile terminal
- radiating portion
- Prior art date
Links
- 238000005452 bending Methods 0.000 claims description 40
- 229910000831 Steel Inorganic materials 0.000 claims description 24
- 239000010959 steel Substances 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 20
- 229910000859 α-Fe Inorganic materials 0.000 claims description 12
- 239000010410 layer Substances 0.000 description 28
- 238000010586 diagram Methods 0.000 description 15
- 238000004891 communication Methods 0.000 description 8
- 230000005672 electromagnetic field Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
- H01Q7/06—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/20—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/40—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
- H04B5/43—Antennas
Definitions
- This application relates to the technical field of mobile terminals, and in particular to an antenna and a mobile terminal.
- the conventional NFC (Near Field Communication) community solution is due to the reduction of the radiator headroom or the top composite metal caused by the layout.
- the length reduction will affect the communication performance of NFC to varying degrees.
- NFC has the advantages of high security, fast response and low cost compared with short-distance communication technologies such as Bluetooth or infrared. Therefore, how to ensure NFC with minimal headroom and no increase in cost The communication performance becomes a new challenge point.
- the prior art solution is integrated with the metal frame, and the metal frame has at least one gap.
- the antenna structure includes an NFC antenna and a non-NFC antenna. Through two sets of filtering, the length of the NFC radiator is not limited by the non-NFC radiator.
- This solution increases the length of the NFC antenna radiator on the one hand, and improves the NFC performance of the communication terminal on the other hand.
- the performance of the NFC antenna is related to the clearance of the metal frame, and the performance of the community solution will decrease when the clearance is less than 1.5mm.
- the present application provides an antenna and a mobile terminal, which are used to improve the size of the antenna and facilitate the near field communication effect of the mobile terminal.
- an antenna is provided.
- the antenna is an NFC antenna, and the antenna is applied to a mobile terminal.
- the antenna includes: a feeder, a radiator, and a ground wire; wherein the radiator is An annular radiator with an opening, and the ends of the radiator located on both sides of the opening are respectively a feeding point and a grounding point; the distance between the grounding point and the feeding point is at least not less than a set value; The feed point is connected to the feed line, and the ground point is connected to the ground wire.
- a separate NFC antenna is set in the mobile terminal to achieve decoupling from other non-NFC antennas; in addition, the NFC antenna is set up with a single-ended feed and the other end is grounded, in a very small headroom environment To achieve single-ended NFC performance, compared with the double-ended NFC antenna in the prior art, the cost is lower and the area is small.
- the radiator includes a first radiating part, a second radiating part, and a third radiating part, wherein the second radiating part is connected to the first radiating part and the third radiating part respectively.
- the radiating parts are connected, and the first radiating part, the second radiating part and the third radiating part form a U-shaped radiator.
- the widths of the first radiating part, the second radiating part, and the third radiating part are equal or approximately equal.
- the radiator includes a first radiating part and a second radiating part connected to the first radiating part; wherein the first radiating part and the second radiating part form an L Shaped radiator.
- the radiator includes a first radiating part, a second radiating part, and a third radiating part; wherein, the second radiating part is connected to the first radiating part and the first radiating part respectively.
- the third radiating part is connected, and the first radiating part, the second radiating part and the third radiating part form a U-shaped radiator;
- An end of the first radiating portion away from the second radiating portion has a first and third bending structure
- An end of the third radiating portion away from the second radiating portion has a second third bending structure
- the grounding point and the feeding point are arranged in the first third bending structure and the second third bending structure in a one-to-one correspondence.
- the radiator is provided with a third bending structure for avoiding structures or devices in the mobile terminal. This facilitates the setting of the antenna.
- the third bending structure is a U-shaped third bending structure.
- the space in the mobile terminal can be utilized to the maximum.
- a debugging branch is connected to the radiator.
- the radiator includes a laminated ferrite layer and a conductive layer.
- the conductive layer is a circuit layer or a steel plate of the mobile terminal.
- the antennas are set up through different structures in the mobile terminal.
- the set value is 9 mm.
- a mobile terminal in a second aspect, includes a middle frame and the antenna according to any one of the above items arranged in the middle frame.
- a separate NFC antenna is set in the mobile terminal to achieve decoupling from other non-NFC antennas; in addition, the NFC antenna is set up with a single-ended feed and the other end is grounded, in a very small headroom environment To achieve single-ended NFC performance, compared with the double-ended NFC antenna in the prior art, the cost is lower and the area is small.
- a main board is arranged in the middle frame; the feed point and the ground point of the antenna are arranged on the main board. The feed point and ground point of the antenna through the main board.
- a steel plate is provided in the middle frame, and the antenna is provided on the steel plate; and when the radiator includes a laminated conductive layer and a ferrite layer, the steel plate is a The conductive layer.
- the antenna is supported by the steel plate.
- the middle frame is a metal middle frame, and the metal middle frame serves as the ground of the mobile terminal; the steel plate is electrically connected to the metal middle frame; On the steel plate, and the grounding point of the antenna is arranged on the metal middle frame. The occupied area of the antenna is increased, thereby improving the performance of the antenna.
- FIG. 1 is a schematic diagram of the layout of a mobile terminal provided by an embodiment of the application
- FIG. 2 is a circuit diagram of an antenna provided by an embodiment of the application.
- FIG. 3 is a schematic structural diagram of a radiator of the first NFC antenna provided by an embodiment of the application.
- FIG. 4 is a schematic structural diagram of a radiator of a second NFC antenna provided by an embodiment of the application.
- FIG. 5 is a schematic structural diagram of a radiator of a third NFC antenna provided by an embodiment of the application.
- FIG. 6 is a schematic structural diagram of a fourth NFC antenna radiator provided by an embodiment of the application.
- FIG. 7 is a schematic structural diagram of a fifth NFC antenna radiator provided by an embodiment of the application.
- FIG. 8 is a schematic structural diagram of a radiator of an NFC antenna provided by an embodiment of the application.
- FIG. 9 is a schematic diagram of the layout of another NFC antenna radiator provided by an embodiment of the application.
- FIG. 10 is a schematic diagram of the layout of another NFC antenna radiator provided by an embodiment of the application.
- FIG. 11 is a schematic diagram of the layout of another NFC antenna in a mobile terminal according to an embodiment of the application.
- FIG. 12 is a schematic diagram of the layout of another NFC antenna in a mobile terminal according to an embodiment of the application.
- FIG. 13 is a schematic diagram of the layout of another NFC antenna in a mobile terminal according to an embodiment of the application.
- FIG. 14 is a schematic diagram of the layout of another NFC antenna in a mobile terminal according to an embodiment of the application.
- the antenna is applied to mobile terminals, such as mobile phones, tablet computers, wearable products, or notebooks, and other common mobile terminals.
- mobile terminals such as mobile phones, tablet computers, wearable products, or notebooks, and other common mobile terminals.
- the mobile phone Take a mobile phone as an example.
- the mobile phone includes a middle frame and an antenna arranged in the middle frame.
- the antenna is an NFC (Near Field Communication) antenna.
- NFC Near Field Communication
- the controlled solution allows consumers to exchange information, access content and services simply and intuitively.
- the NFC antenna in the prior art usually shares the radiator with the non-NFC antenna, which causes the NFC antenna to be decoupled from the non-NFC antenna.
- the space in the mobile phone in the prior art is getting smaller and smaller, resulting in more and more headroom in the mobile phone.
- FIG. 1 shows a specific structure in which the NFC antenna provided by an embodiment of the present application is applied in a mobile terminal.
- the mobile terminal includes a middle frame 10 and a main board 20 and a battery 30 arranged in the middle frame 10. As shown in FIG. 1, the main board 20 and the battery 30 are arranged side by side in the middle frame 10. Continuing to refer to FIG. 1, the NFC antenna 40 is located on the main board 20.
- FIG. 2 illustrates a circuit diagram of the NFC antenna 40.
- the circuit includes an NFC chip 50, an NFC filter circuit 60 connected to the NFC chip 50, a balun 70 connected to the NFC filter circuit 60, and a balun 70 connected to the balun 70.
- the NFC matching circuit 80 and the NFC antenna 40 connected to the NFC matching circuit 80.
- the NFC chip 50 is used to transmit the signal of the NFC antenna 40, and the signal is transmitted from the NFC chip 50 to the NFC filter circuit 60, and is filtered by the NFC filter circuit 60, and then the signal is sent to the NFC matching circuit 80 through the balun 70 and passed
- the NFC matching circuit 80 is passed to the NFC antenna 40.
- the aforementioned NFC chip 50, NFC filter circuit 60, balun 70, and NFC matching circuit 80 are all arranged on the main board 20 of the mobile terminal.
- the NFC antenna 40 provided by the embodiment of the present application mainly includes a feeder line, a radiator 41, and a ground wire.
- the feeder wire is used to connect with the NFC matching circuit 80 and is used to transmit the signal to the radiator 41 for emission, and the ground wire is used to connect the radiator 41 to the ground.
- the feed line may be a circuit layer, a metal layer or a metal wire in the mobile terminal. One end of the feed line is connected to the NFC matching circuit 80, and the other end is connected to the feed point 414 on the radiator 41.
- the ground wire can also be a circuit layer, metal layer or metal wire in the mobile terminal. One end of the ground wire is connected to the ground point 415 of the radiator 41, and the other end is connected to the ground in the mobile terminal.
- the ground wire can be made of shrapnel or conductive soft accessories. (Conductive silica gel or conductive foam, etc.); the ground of the mobile terminal can be the ground of the main board 20 of the mobile terminal, the middle frame 10 or the rear case of the mobile terminal as the ground.
- FIG. 3 illustrates the structure of the radiator 41 of the NFC antenna in FIG. 2.
- the radiator 41 shown in FIG. 3 includes a first radiating portion 411, a second radiating portion 412, and a third radiating portion 413.
- the second radiating portion 412 is connected to the first radiating portion 411 and the third radiating portion 413, respectively, and the first radiating portion 411, the second radiating portion 412, and the third radiating portion 413 form a U-shaped radiator 41.
- the end of the first radiating portion 411 away from the second radiating portion 412 and the end of the third radiating portion 413 away from the second radiating portion 412 serve as the end of the entire radiator 41.
- the ends of the radiator 41 are respectively named the first end and the second end.
- the aforementioned feed point 414 is provided at the first end, and the ground point 415 is provided at the second end.
- the feeding point 414 and the grounding point 415 as shown in FIG. 3 are both rectangular in shape, but the specific shape of the feeding point 414 is not specifically limited in the embodiment of the present application.
- the grounding point 415 and the feeding point 414 can also be selected Different shapes such as round, oval, rhombus, etc.
- the grounding point 415 and the feeding point 414 may also have different shapes, for example, the grounding point 415 is circular and the feeding point 414 is rectangular.
- the first radiating portion 411, the second radiating portion 412, and the third radiating portion 413 are all linear structures, and the first radiating portion 411 and the third radiating portion 413 are parallel or approximately parallel.
- the length of the first radiating portion 411 is L1 and the width is W1; the length of the second radiating portion 412 is L2 and the width is W2; the length of the third radiating portion 413 is L3 and the width is W3.
- the length of the first radiation part 411, the second radiation part 412, and the third radiation part 413 are not specifically limited in the embodiment of the present application, such as: L1 ⁇ L2 ⁇ L3, L1 ⁇ L3 ⁇ L2, L1 ⁇ L2 ⁇ L3, etc. happening. However, in either case, the distance between the feeding point 414 and the grounding point 415 needs to meet the set value. As shown in FIG.
- the distance between the feeding point 414 and the grounding point 415 is D, then D is at least Not less than the set value. If the set value is 9mm, then D ⁇ 9mm, and the specific distance can be 10mm, 11mm, 15mm, 20mm, so that the signal of the NFC antenna can excite a larger eddy current.
- first radiating portion 411 the linear shape of the first radiating portion 411, the second radiating portion 412, and the third radiating portion 413 is only a specific example. It is also possible that all three radiating portions adopt an arc shape, and the three radiating portions constitute one Ring structure with openings.
- Fig. 3 also illustrates the current flow direction excited by the NFC antenna.
- the NFC chip 50 sends the signal to the radiator 41 of the NFC antenna, the signal is transmitted on the radiator 41, and an eddy current is excited in the space enclosed by the radiator 41, as shown in FIG. 3, located in the first radiating part 411, the second radiating part 412 and the third radiating part 413 in the space area enclosed, the current flows from the feeding point 414 to the grounding point 415, and then from the grounding point 415 to the feeding point 414, thus forming a closed Eddy currents and form an electromagnetic field.
- the performance of the electromagnetic field directly affects the performance of the NFC antenna. It can be seen from the structure shown in FIG.
- the radiator 41 of the NFC antenna is separately arranged and can be decoupled from other non-NFC antennas.
- the NFC antenna adopts a structure where one end is fed and the other is grounded, which makes the entire NFC antenna simple in structure and convenient to set up.
- FIG. 4 shows the radiator 41 of the second NFC antenna provided by an embodiment of the present application.
- the radiator 41 shown in FIG. 4 includes a first radiating portion 411 and a second radiating portion 412 connected to the first radiating portion 411; wherein, the first radiating portion 411 and the second radiating portion 412 form an L-shaped radiator 41.
- the end of the first radiating portion 411 away from the second radiating portion 412 and the end of the second radiating portion 412 away from the first radiating portion 411 are respectively used as two ends of the radiator 41. For the description of the aspect, they are respectively named the first end and the first end.
- the above-mentioned feed point 414 is set at the first end, and the ground point 415 is set at the second end.
- the first radiating portion 411 and the second radiating portion 412 are arranged in a manner perpendicular to the length direction, but the NFC antenna provided in the embodiment of the present application does not limit the first radiating portion 411 and the second radiating portion
- the length direction of the portion 412 must be vertical, and the included angle between the length direction of the first radiating portion 411 and the second radiating portion 412 may be approximately parallel.
- the included angle of the length direction of the first radiating portion 411 and the second radiating portion 412 may be Different angles such as 80°, 90°, 120°, etc.
- the length of the first radiating portion 411 is L1 and the width is W1; the length of the second radiating portion 412 is L2 and the width is W2.
- the length of the first radiating portion 411 and the length of the second radiating portion 412 are not specifically limited here, and it may be L1 ⁇ L2 or L1 ⁇ L2.
- the distance between the feeding point 414 and the grounding point 415 meets the set value, as shown in Figure 4, the distance between the feeding point 414 and the grounding point 415 is D, then D is at least not less than the set value. If the set value is 9mm, then D ⁇ 9mm, and the specific distance can be 10mm, 11mm, 15mm, 20mm, so that the signal of the NFC antenna can excite a larger eddy current.
- Fig. 4 also illustrates the current flow direction excited by the NFC antenna.
- the NFC chip 50 sends the signal to the radiator 41 of the NFC antenna, the signal flows on the radiator 41, and an eddy current is excited in the space enclosed by the radiator 41, as shown in FIG. 4, located in the first radiating part In the space area enclosed by the 411 and the second radiating part 412, the current flows from the feeding point 414 to the grounding point 415, and then from the grounding point 415 to the feeding point 414, thereby forming a closed eddy current and forming an electromagnetic field , The performance of the electromagnetic field directly affects the performance of the NFC antenna.
- FIG. 5 illustrates the third structure of the radiator 41 of the NFC antenna.
- FIG. 5 can be regarded as a modification of the radiator 41 shown in FIG. 3.
- the radiator 41 shown in FIG. 5 also includes a first radiating portion 411, a second radiating portion 412, and a third radiating portion 413.
- the first radiating portion 411, the second radiating portion 412, and the third radiating portion 413 are U-shaped Radiator 41.
- the end of the first radiating portion 411 away from the second radiating portion 412 has the first bending structure 416; the end of the third radiating portion 413 is away from the second radiating portion 412
- the first bending structure 416 faces the third radiating portion 413, and the second bending structure 417 faces the first radiating portion 411.
- the length L1 and width W1 of the first radiating portion 411 refers to the vertical portion of the first radiating portion 411, excluding the size of the first bending structure 416; the length L3 of the third radiating portion 413 refers to the vertical portion of the third radiating portion 413
- the length of the part does not include the size of the second bending structure 417.
- the grounding point 415 and the feeding point 414 are arranged in the first bending structure 416 and the second bending structure 417 in a one-to-one correspondence.
- the feeding point 414 is disposed at an end of the first bending structure 416 away from the first radiating portion 411, and the ground point 415 is disposed at an end of the second bending structure 417 away from the third radiating portion 413.
- the distance D between the grounding point 415 and the feeding point 414 also satisfies: D is at least not less than the set value. If the set value is 9mm, then D ⁇ 9mm, and the specific distance can be 10mm, 11mm, 15mm, 20mm, so that the signal of the NFC antenna can excite a larger eddy current.
- Fig. 5 also illustrates the current flow direction excited by the NFC antenna.
- the NFC chip 50 sends the signal to the radiator 41 of the NFC antenna, the signal flows on the radiator 41, and the eddy current is excited in the space enclosed by the radiator 41, as shown in FIG. 5, located in the first radiating part In the space area enclosed by the 411 and the second radiating part 412, the current flows from the feeding point 414 to the grounding point 415, and then from the grounding point 415 to the feeding point 414, thereby forming a closed eddy current and forming an electromagnetic field , The performance of the electromagnetic field directly affects the performance of the NFC antenna.
- FIG. 6 illustrates the structure of the fourth radiator 41 of the NFC antenna.
- FIG. 6 can be regarded as a modification of the radiator 41 shown in FIG. 3.
- the radiator 41 shown in FIG. 6 also includes a first radiating portion 411, a second radiating portion 412, and a third radiating portion 413.
- the first radiating portion 411, the second radiating portion 412, and the third radiating portion 413 form a U-shaped Radiator 41.
- the first radiating portion 411 is provided with a third bending structure 418 for avoiding structures or devices in the mobile terminal.
- the third bending structure 418 is U-shaped third bending structure 418, or V-shaped third bending structure 418.
- the third bending structure 418 is bent toward the inside of the space enclosed by the radiator 41, but in the embodiment of the present application, it can also be bent toward the outside of the space enclosed by the radiator 41.
- the radiator 41 When the radiator 41 is installed in the mobile terminal, it may be necessary to avoid the devices, screws or space in the mobile terminal. Through the third bending structure 418, the radiator 41 can avoid the above devices and continue to be installed. This makes the space enclosed by the mobile terminal larger, and the larger the space enclosed by the NFC antenna, the wider the frequency it can cover, so that the NFC antenna can cover a larger frequency band.
- the third bending structure 418 is exemplified on the first radiating portion 411, but in the embodiment of the present application, the third bending structure 418 may be provided on the second radiating portion 412 and the third radiating portion as required. 413 on. It only needs to be satisfied that when the radiator 41 is set, the radiator 41 can be provided with the third bending structure 418 according to the needs of the setting position, and the specific setting position of the third bending structure 418 is not specifically limited here.
- the length L1 and width W1 of the first radiating portion 411 refers to the vertical portion of the first radiating portion 411, excluding the size of the third bending structure 418; the length L3 of the third radiating portion 413 refers to the third radiating portion The length of the vertical portion of the section 413.
- the grounding point 415 and the feeding point 414 are arranged at the end of the first radiator 411 and the end of the second radiator 413 in one-to-one correspondence, and the distance between the grounding point 415 and the feeding point 414 is D is also satisfied: D is at least not less than the set value. If the set value is 9mm, then D ⁇ 9mm, and the specific distance can be 10mm, 11mm, 15mm, 20mm, so that the signal of the NFC antenna can excite a larger eddy current.
- the current excited by the NFC antenna shown in FIG. 6 is similar to the current shown in FIG. 3, and will not be described in detail here.
- FIG. 7 illustrates the structure of the radiator 41 of the fifth NFC antenna provided by the embodiment of the present application.
- FIG. 7 can be regarded as a modification of the radiator 41 shown in FIG. 3.
- the radiator 41 shown in FIG. 7 also includes a first radiating portion 411, a second radiating portion 412, and a third radiating portion 413.
- the first radiating portion 411, the second radiating portion 412, and the third radiating portion 413 form a U-shaped Radiator 41.
- a debugging stub 419 is provided on the first radiating part 411, and the debugging stub 419 is a protrusion extending from the first radiating part 411.
- the debugging branch 419 can also be arranged at different positions such as the second radiating part 412 and the third radiating part 413, and the specific setting position of the debugging branch 419 is not specifically limited here.
- the length L1 and width W1 of the first radiating portion 411 refers to the vertical portion of the first radiating portion 411, excluding the size of the third bending structure 418; the length L3 of the third radiating portion 413 refers to the third radiating portion The length of the vertical portion of the section 413.
- the grounding point 415 and the feeding point 414 are arranged in the first bending structure 416 and the second bending structure 417 in a one-to-one correspondence.
- the feeding point 414 is disposed at an end of the first bending structure 416 away from the first radiating portion 411, and the ground point 415 is disposed at an end of the second bending structure 417 away from the third radiating portion 413.
- the distance D between the grounding point 415 and the feeding point 414 also satisfies: D is at least not less than the set value.
- the set value is 9mm, then D ⁇ 9mm, and the specific distance can be 10mm, 11mm, 15mm, 20mm, so that the signal of the NFC antenna can excite a larger eddy current.
- the current excited by the NFC antenna shown in FIG. 7 is similar to the current shown in FIG. 3, and will not be described in detail here.
- the radiator 41 of the NFC antenna is provided with several specific examples.
- the radiator 41 only needs to be an opening with an opening.
- the end portions of the radiator 41 located on both sides of the opening are the feeding point 414 and the grounding point 415 respectively.
- the specific arrangement of the radiator 41 can be changed according to needs, which is specifically defined here.
- the radiator 41 includes a multilayer structure.
- FIG. 8 shows a schematic cross-sectional view of the radiator 41.
- the radiator 41 mainly includes three layers, which are a conductive layer 44, an adhesive layer 43, and a ferrite layer 42.
- the conductive layer 44 and the ferrite layer 42 are laminated and arranged, and the conductive layer 44 is fixedly connected to the ferrite layer 42 through the adhesive layer 43.
- the adhesive layer 43 may specifically adopt common adhesive adhesives such as curing adhesive and double-sided adhesive. It should be understood that FIG. 8 is only a specific example, and the radiator 41 may also include other layers in addition to the layer structure shown in FIG. 8.
- the radiator 41 When the NFC antenna is set in the mobile terminal, the radiator 41 may be a different structure in the mobile terminal. Referring to FIG. 9, when the radiator 41 of the NFC antenna is disposed in the area above the main board 20 of the mobile terminal, the radiator 41 may be a circuit layer or a copper-clad layer.
- the ferrite layer 42 is prepared in the structure above the area of the main board 20, and the ferrite 42 and the radiator 41 constitute an NFC antenna. It can be seen from FIG. 9 that when the radiator 41 is arranged above the area of the main board 20, the radiator 41 can use the space above the main board 20 to surround a relatively large space area.
- the NFC antenna was tested on a sample, as shown in Table 1 and Table 2 below.
- L L1+L2+L3.
- the NFC antenna is not limited to the position shown in FIG. 9.
- the radiator 41 of the NFC antenna can also be arranged on the back cover of the mobile terminal.
- the radiator 41 of the NFC antenna is arranged in the area of the back cover corresponding to the main board 20.
- the back cover is provided with a steel plate to enhance the strength of the back cover or the back cover is directly made of metal material.
- the conductive layer 44 of the radiator 41 is the steel plate or the back cover provided on the back cover, and the ferrite layer 42 is provided on the back cover. Steel plate or back cover.
- the radiator 41 is disposed on the main board 20 or the area of the back cover corresponding to the main board 20, the ground of the radiator 41 is still disposed on the main board 20.
- the NFC antenna and the charging coil of the mobile terminal may be arranged in the same area.
- FIG. 10 illustrates another specific structure of the radiator 41.
- the radiator 41 is arranged in an area corresponding to the area of the battery 30 on the back cover, and the specific arrangement method is the same as that shown in FIG. 9.
- the ground of the radiator 41 is still connected to the ground on the main board 20.
- Fig. 11 shows another situation where the radiator 41 is arranged in the mobile terminal.
- the radiator 41 is arranged on the main board 20 or the back cover area corresponding to the main board 20.
- the setting mode in Fig. 9 is similar to the setting mode of the radiator 41 shown in Fig. 11 except for the difference in the shape of the radiator 41.
- Fig. 12 shows another situation where the radiator 41 is arranged in the mobile terminal.
- the radiator 41 is arranged on the main board 20 or the back cover area corresponding to the main board 20.
- the setting method in Fig. 10 the setting position of the radiator 41 shown in FIG. 12 is similar to the setting method shown in Fig. 10, except for the difference in the shape of the radiator 41.
- the ground to which the radiator 41 is connected is the middle frame 10
- the ground point 415 of the radiator 41 is connected to the middle frame through shrapnel or conductive soft materials (conductive silica gel or conductive foam, etc.) 10Electrical connection.
- FIG. 13 illustrates another arrangement of the radiator 41.
- the steel plate part can be designed with holes. After digging and slotting, it is equivalent to lengthening the path and increasing the antenna return path, as shown in Figure 13. , The final performance is improved by more than 85% compared to the performance of the pure top solution.
- the radiator 41 of the NFC antenna multiplexed by the steel plate is connected to the middle frame 10 of the mobile terminal through a wire or elastic piece 420, which further increases the return path of the antenna of the radiator 41. .
- An embodiment of the present application also provides a mobile terminal, which includes a middle frame 10 and any one of the above-mentioned antennas provided in the middle frame 10.
- a separate NFC antenna is set in the mobile terminal to achieve decoupling from other non-NFC antennas; in addition, the NFC antenna is set up with a single-ended power feed and the other end is grounded, in a very small headroom environment
- the cost is lower and the area is small.
- a main board 20 is arranged in the middle frame 10; and the antenna is arranged in the area of the main board 20, or as shown in Fig. 10, Fig. 11 and Fig. 12
- a steel plate is provided in the middle frame 10 and the antenna is provided on the steel plate; and when the radiator 41 includes a laminated conductive layer and a ferrite layer, the steel plate is a conductive layer.
- the middle frame 10 is a metal middle frame 10, and the metal middle frame 10 is used as the ground of the mobile terminal; the steel plate is electrically connected to the metal middle frame 10; the antenna is arranged on the steel plate, and the ground point of the antenna Set in the metal middle frame 10.
- the occupied area of the antenna is increased, thereby improving the performance of the antenna.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Details Of Aerials (AREA)
- Support Of Aerials (AREA)
Abstract
本申请提供了一种天线及移动终端,该天线为NFC天线,且该天线应用于移动终端,在具体设置时,所述天线包括:馈电线、辐射体以及接地线;其中,所述辐射体为带有开口的环形辐射体,且所述辐射体位于所述开口两侧的端部分别为馈电点及接地点;所述接地点与所述馈电点的间距至少不小于设定值;所述馈电点与所述馈电线连接,所述接地点与所述接地线连接。在上述技术方案中,采用在移动终端内单独设置NFC天线,实现了与其他非NFC天线解耦;另外,在采用单端馈电,另一端接地的方式设置NFC天线,在极小净空环境下实现单端NFC性能,相比现有技术中的双端NFC天线成本低,面积小。
Description
相关申请的交叉引用
本申请要求在2019年11月14日提交中国专利局、申请号为201911114555.8、申请名称为“一种天线及移动终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及到移动终端技术领域,尤其涉及到一种天线及移动终端。
随着全面屏屏占比越来越大,天线净空越来越小,常规的NFC(Near Field Communication,近场通信)共体方案因为辐射体的净空缩减或者因布局所导致的顶部共体金属长度缩减均会不同程度的影响NFC的通信性能。
NFC作为一种短距非接触式的通信方式较之蓝牙或红外等短距通信技术具有安全性高、反应快和成本低等优势,所以如何在极小净空且不增加成本的前提下保证NFC的通信性能便成为一个新的挑战点。
现有技术方案与金属边框共体,且金属边框至少有一个缝隙,天线结构包含NFC天线和非NFC天线,通过两组滤波使得NFC辐射体的长度不会受到非NFC辐射体的限制。该方案一方面提高NFC天线辐射体的长度,另一方面提高通信终端的NFC性能。但是NFC天线性能与金属边框的净空相关,净空小于1.5mm后共体方案性能会下降。
发明内容
本申请提供了一种天线及移动终端,用以改善天线的体积,便于移动终端的近场通信效果。
第一方面,提供了一种天线,该天线为NFC天线,且该天线应用于移动终端,在具体设置时,所述天线包括:馈电线、辐射体以及接地线;其中,所述辐射体为带有开口的环形辐射体,且所述辐射体位于所述开口两侧的端部分别为馈电点及接地点;所述接地点与所述馈电点的间距至少不小于设定值;所述馈电点与所述馈电线连接,所述接地点与所述接地线连接。在上述技术方案中,采用在移动终端内单独设置NFC天线,实现了与其他非NFC天线解耦;另外,在采用单端馈电,另一端接地的方式设置NFC天线,在极小净空环境下实现单端NFC性能,相比现有技术中的双端NFC天线成本低,面积小。
在一个具体的可实施方案中,所述辐射体包括第一辐射部、第二辐射部以及第三辐射部,其中,所述第二辐射部分别与所述第一辐射部及所述第三辐射部连接,且所述第一辐射部、第二辐射部及所述第三辐射部形成U形的辐射体。
在一个具体的可实施方案中,所述第一辐射部、第二辐射部及所述第三辐射部的宽度相等或近似相等。
在一个具体的可实施方案中,所述辐射体包括第一辐射部及与所述第一辐射部连接的 第二辐射部;其中,所述第一辐射部及所述第二辐射部形成L形的辐射体。
在一个具体的可实施方案中,所述辐射体包括第一辐射部、第二辐射部及第三辐射部;其中,其中,所述第二辐射部分别与所述第一辐射部及所述第三辐射部连接,且所述第一辐射部、第二辐射部及所述第三辐射部形成U形的辐射体;
所述第一辐射部远离所述第二辐射部的一端具有第一第三折弯结构;
所述第三辐射部远离所述第二辐射部的一端具有第二第三折弯结构;
所述接地点及所述馈电点一一对应设置在所述第一第三折弯结构及所述第二第三折弯结构。
在一个具体的可实施方案中,所述辐射体上设置有用于避让所述移动终端内的结构体或器件的第三折弯结构。从而方便天线的设置。
在一个具体的可实施方案中,所述第三折弯结构为U形的第三折弯结构。从而可以最大限度的利用移动终端内的空间。
在一个具体的可实施方案中,所述辐射体上连接有调试枝节。
在一个具体的可实施方案中,所述辐射体包括层叠的铁氧体层及导电层。
在一个具体的可实施方案中,所述导电层为所述移动终端的电路层或钢板。通过移动终端内的不同结构来设置天线。
在一个具体的可实施方案中,所述设定值为9mm。
第二方面,提供了一种移动终端,该移动终端包括中框以及设置在所述中框内的上述任一项所述的天线。在上述技术方案中,采用在移动终端内单独设置NFC天线,实现了与其他非NFC天线解耦;另外,在采用单端馈电,另一端接地的方式设置NFC天线,在极小净空环境下实现单端NFC性能,相比现有技术中的双端NFC天线成本低,面积小。
在一个具体的可实施方案中,所述中框内设置有主板;所述天线的馈电点和接地点设置在所述主板。过主板承载天线的馈电点和接地点。
在一个具体的可实施方案中,所述中框内设置有钢板,所述天线设置在所述钢板;且在所述辐射体包含层叠的导电层及铁氧体层时,所述钢板为与所述导电层。通过钢板支撑天线。
在一个具体的可实施方案中,所述中框为金属中框,且所述金属中框作为所述移动终端的地;所述钢板与所述金属中框导电连接;所述天线设置在所述钢板上,且所述天线的接地点设置在所述金属中框。提高了天线的占用面积,进而提高了天线的性能。
图1为本申请实施例提供的移动终端的布局示意图;
图2为本申请实施例提供的天线的电路图;
图3为本申请实施例提供的第一种NFC天线的辐射体的结构示意图;
图4为本申请实施例提供的第二种NFC天线的辐射体的结构示意图;
图5为本申请实施例提供的第三种NFC天线的辐射体的结构示意图;
图6为本申请实施例提供的第四种NFC天线的辐射体的结构示意图;
图7为本申请实施例提供的第五种NFC天线的辐射体的结构示意图;
图8为本申请实施例提供的NFC天线的辐射体的结构示意图;
图9为本申请实施例提供的另一种NFC天线的辐射体的布局示意图;
图10为本申请实施例提供的另一种NFC天线的辐射体的布局示意图;
图11为本申请实施例提供的另一种NFC天线在移动终端的布局示意图;
图12为本申请实施例提供的另一种NFC天线在移动终端的布局示意图;
图13为本申请实施例提供的另一种NFC天线在移动终端的布局示意图;
图14为本申请实施例提供的另一种NFC天线在移动终端的布局示意图。
为了方便理解本申请实施例提供的天线,首先说明一下其应用场景,该天线应用于移动终端,如手机、平板电脑、穿戴产品或者笔记本等常见的移动终端。以手机为例,该手机包括中框,以及设置在中框内的天线,该天线为NFC(Near Field Communication,近场通信)天线,用于手机的近场通信,提供了一种简单、触控式的解决方案,可以让消费者简单直观地交换信息、访问内容与服务。但是现有技术中的NFC天线通常与非NFC天线共用辐射体,造成NFC天线需要与非NFC天线解耦,另外由于现有技术中手机内的空间越来越小,导致手机内的净空越来越小,NFC天线的性能受到很大的影响,为此本申请实施例提供了一种NFC天线,为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
首先参考图1,图1示出了本申请实施例提供的NFC天线应用在移动终端内的一种具体结构。移动终端包括中框10以及设置在中框10内的主板20及电池30,如图1中所示,主板20及电池30并排设置在中框10内。继续参考图1,NFC天线40位于主板20之上。
参考图2,图2中示例出了NFC天线40的电路图,电路包括NFC芯片50,与NFC芯片50连接的NFC滤波电路60,与NFC滤波电路60连接的巴伦70,与巴伦70连接的NFC匹配电路80以及与NFC匹配电路80连接的NFC天线40。其中,NFC芯片50用于发射NFC天线40的信号,信号从NFC芯片50传递到NFC滤波电路60,并通过NFC滤波电路60进行滤波,之后信号通过巴伦70发送到NFC匹配电路80,并通过NFC匹配电路80传递到NFC天线40中。上述的NFC芯片50、NFC滤波电路60、巴伦70以及NFC匹配电路80均设置在了移动终端的主板20上。
本申请实施例提供的NFC天线40主要包括馈电线、辐射体41以及接地线。其中,馈电线用于与NFC匹配电路80连接,并用于将信号传递给辐射体41发射出去,接地线用于将辐射体41与地连接。其中,馈电线可以为移动终端内的电路层、金属层或者金属线,馈电线的一端与NFC匹配电路80连接,另一端与辐射体41上的馈电点414连接。接地线也可以采用移动终端内的电路层、金属层或者金属线,接地线一端与辐射体41的接地点415连接,另一端与移动终端内的地连接,接地线可以采用弹片或导电软辅料(导电硅胶或导电泡棉等);移动终端的地可以为移动终端的主板20的地、移动终端的中框10或者后壳作为地。
一并参考图3,图3中示例出了图2中NFC天线的辐射体41的结构,图3中所示的辐射体41包括第一辐射部411、第二辐射部412以及第三辐射部413,第二辐射部412分别与第一辐射部411及第三辐射部413连接,且第一辐射部411、第二辐射部412及第三辐射部413形成U形的辐射体41。第一辐射部411远离第二辐射部412的一端、第三辐射部413远离第二辐射部412的一端作为整个辐射体41的端部。为方便描述将辐射体41的端部分别命名为第一端部及第二端部。上述的馈电点414设置在第一端部,接地点415设 置在了第二端部。如图3中所示的馈电点414及接地点415均为矩形形状,但是在本申请实施例中并不具体限定馈电点414的具体形状,接地点415及馈电点414还可以选择圆形、椭圆形、菱形等不同的形状。接地点415与馈电点414也可以为不同的形状,如接地点415为圆形、馈电点414为矩形。
继续参考图3,第一辐射部411、第二辐射部412及第三辐射部413均为直线型的结构,且第一辐射部411与第三辐射部413平行,或者近似平行。其中,第一辐射部411的长度为L1、宽度为W1;第二辐射部412的长度为L2、宽度为W2;第三辐射部413的长度为L3、宽度为W3。在具体设置第一辐射部411、第二辐射部412及第三辐射部413的长度及宽度时,第一辐射部411、第二辐射部412及第三辐射部413的宽度满足:W1=W2=W3,或者W1、W2及W3近似相等或不相等。本申请实施例中不具体限定第一辐射部411、第二辐射部412及第三辐射部413的长度,如:L1≥L2≥L3、L1≥L3≥L2、L1≤L2≤L3等不同的情况。但是无论采用上述哪种情况,需要满足馈电点414与接地点415的间距满足设定值,如图3中所示,馈电点414与接地点415之间的间距为D,则D至少不小于设定值。如设定值为9mm,则D≥9mm,具体的可以采用10mm、11mm、15mm、20mm等距离,以使得NFC天线的信号能够激励出更大的涡流。
应当理解的是上述第一辐射部411、第二辐射部412及第三辐射部413采用直线形仅仅为一个具体的示例,还可以三个辐射部均采用弧形,且三个辐射部组成一个带有开口的环形结构。
继续参考图3,图3中还示例出了NFC天线激励出的电流流向。在NFC芯片50将信号发送到NFC天线的辐射体41后,信号在辐射体41上传输,并且在辐射体41围成的空间内激励出涡流,如图3中所示,位于第一辐射部411、第二辐射部412及第三辐射部413围成的空间区域内,电流由馈电点414流向接地点415方向,并且再由接地点415方向流向馈电点414,从而形成一个封闭的涡流,并形成一个电磁场。该电磁场的性能直接影响NFC天线的性能。由图3所示的结构可以看出,NFC天线的辐射体41采用单独设置,与其他非NFC天线可以进行解耦。并且NFC天线采用一端馈电一端接地的结构,使得整个NFC天线结构简单,方便设置。
如图4所示,图4示出了本申请实施例提供的第二种NFC天线的辐射体41。图4所示的辐射体41包括第一辐射部411及与第一辐射部411连接的第二辐射部412;其中,第一辐射部411及第二辐射部412形成L形的辐射体41。第一辐射部411远离第二辐射部412的一端、第二辐射部412远离第一辐射部411的一端分别作为辐射体41的两端,为方面描述,将其分别命名为第一端及第二端,上述的馈电点414设置在第一端,接地点415设置在第二端。继续参考图4,在图4中第一辐射部411与第二辐射部412采用长度方向垂直的方式设置,但是在本申请实施例提供的NFC天线并不限定第一辐射部411与第二辐射部412必须长度方向垂直,还可以第一辐射部411与第二辐射部412的长度方向夹角近似平行,示例的,第一辐射部411与第二辐射部412的长度方向的夹角可以为80°、90°、120°等不同的角度。继续参考图4,第一辐射部411的长度为L1、宽度为W1;第二辐射部412的长度为L2、宽度为W2。其中第一辐射部411的宽度可以与第二辐射部412的宽度相同或者近似相等或不相等,如W1=W2。对于第一辐射部411的长度与第二辐射部412的长度,在此不做具体限定,既可以L1≥L2,也可以L1≤L2。但是无论选择哪种长度设置方式,需要满足:馈电点414与接地点415的间距满足设定值,如图4中所示,馈电点 414与接地点415之间的间距为D,则D至少不小于设定值。如设定值为9mm,则D≥9mm,具体的可以采用10mm、11mm、15mm、20mm等距离,以使得NFC天线的信号能够激励出更大的涡流。
继续参考图4,图4中还示例出了NFC天线激励出的电流流向。在NFC芯片50将信号发送到NFC天线的辐射体41后,信号在辐射体41上流动,并且在辐射体41围成的空间内激励出涡流,如图4中所示,位于第一辐射部411与第二辐射部412围成的空间区域内,电流由馈电点414流向接地点415方向,并且再由接地点415方向流向馈电点414,从而形成一个封闭的涡流,并形成一个电磁场,该电磁场的性能直接影响NFC天线的性能。
如图5所示,图5示例出了NFC天线的第三种辐射体41结构。图5可以看成为图3所示的辐射体41的一种变形。图5中所示的辐射体41也包含第一辐射部411、第二辐射部412及第三辐射部413,第一辐射部411、第二辐射部412及第三辐射部413形成U形的辐射体41。但是在设置第一辐射部411及第三辐射部413时,第一辐射部411远离第二辐射部412的一端具有第一折弯结构416;第三辐射部413远离第二辐射部412的一端具有第二折弯结构417。如图5中所示,第一折弯结构416及第二折弯结构417均朝向辐射体41围成的空间内折弯。其中第一折弯结构416朝向第三辐射部413,第二折弯结构417朝向第一辐射部411。对于第一辐射部411的长度L1及宽度W1、第二辐射部412的长度L2及宽度W2、第三辐射部413的长度L3及宽度W3可以参考图3中的相关描述,其中,第一辐射部411的长度L1指代的是第一辐射部411的竖直部分,不包含第一折弯结构416的尺寸;第三辐射部413的长度L3指代的是第三辐射部413的竖直部分的长度,不包含第二折弯结构417的尺寸。
继续参考图3所示,接地点415及馈电点414一一对应设置在第一折弯结构416及第二折弯结构417。其中馈电点414设置在第一折弯结构416远离第一辐射部411的一端,接地点415设置在第二折弯结构417远离第三辐射部413的一端。并且接地点415与馈电点414之间的间距D也满足:D至少不小于设定值。如设定值为9mm,则D≥9mm,具体的可以采用10mm、11mm、15mm、20mm等距离,以使得NFC天线的信号能够激励出更大的涡流。
继续参考图5,图5中还示例出了NFC天线激励出的电流流向。在NFC芯片50将信号发送到NFC天线的辐射体41后,信号在辐射体41上流动,并且在辐射体41围成的空间内激励出涡流,如图5中所示,位于第一辐射部411与第二辐射部412围成的空间区域内,电流由馈电点414流向接地点415方向,并且再由接地点415方向流向馈电点414,从而形成一个封闭的涡流,并形成一个电磁场,该电磁场的性能直接影响NFC天线的性能。
如图6所示,图6示例出了NFC天线的第四种辐射体41结构。图6可以看成为图3所示的辐射体41的一种变形。图6中所示的辐射体41也包含第一辐射部411、第二辐射部412及第三辐射部413,第一辐射部411、第二辐射部412及第三辐射部413形成U形的辐射体41。如图6中所示,在设置第一辐射部411,第一辐射部411上设置了用于避让移动终端内的结构体或器件的第三折弯结构418,如第三折弯结构418为U形的第三折弯结构418,或者V形的第三折弯结构418。在图6中示例出了第三折弯结构418朝向辐射体41围成的空间内部折弯,但是在本申请实施例中也可以采用朝向辐射体41围成的空间外折弯,在此不做具体限定。在辐射体41设置在移动终端内时,会存在需要避让移动终端内的器件、螺钉或空间等情况,通过设置的第三折弯结构418,辐射体41可以避让开上 述器件后继续设置,从而使得移动终端围成的空间面积比较大,而NFC天线围起的空间越大其可以覆盖的频率就会越宽,使得NFC天线可以覆盖更大的频段。在图6中示例出了第一辐射部411上设置第三折弯结构418,但是在本申请实施例中,第三折弯结构418可以根据需要设置在第二辐射部412、第三辐射部413上。只需要满足在设置辐射体41时,辐射体41可以根据设置位置的需要设置第三折弯结构418即可,第三折弯结构418的具体设置位置在此不做具体限定。
继续参考图6,对于第一辐射部411的长度L1及宽度W1、第二辐射部412的长度L2及宽度W2、第三辐射部413的长度L3及宽度W3可以参考图3中的相关描述,其中,第一辐射部411的长度L1指代的是第一辐射部411的竖直部分,不包含第三折弯结构418的尺寸;第三辐射部413的长度L3指代的是第三辐射部413的竖直部分的长度。
继续参考图6所示,接地点415及馈电点414一一对应设置在第一辐射体411的端部与第二辐射体413的端部,接地点415与馈电点414之间的间距D也满足:D至少不小于设定值。如设定值为9mm,则D≥9mm,具体的可以采用10mm、11mm、15mm、20mm等距离,以使得NFC天线的信号能够激励出更大的涡流。图6所示的NFC天线激励出的电流与图3中所示的电流近似,在此不再详细赘述。
如图7所示,图7示例出了本申请实施例提供的第五种NFC天线的辐射体41结构。图7可以看成为图3所示的辐射体41的一种变形。图7中所示的辐射体41也包含第一辐射部411、第二辐射部412及第三辐射部413,第一辐射部411、第二辐射部412及第三辐射部413形成U形的辐射体41。如图7中所示,在第一辐射部411上设置了调试枝节419,该调试枝节419为第一辐射部411上延伸出的一个凸起。当然,调试枝节419还可以设置在第二辐射部412、第三辐射部413等不同的位置,对于调试枝节419具体的设置位置在此不做具体的限定。
继续参考图7,对于第一辐射部411的长度L1及宽度W1、第二辐射部412的长度L2及宽度W2、第三辐射部413的长度L3及宽度W3可以参考图3中的相关描述,其中,第一辐射部411的长度L1指代的是第一辐射部411的竖直部分,不包含第三折弯结构418的尺寸;第三辐射部413的长度L3指代的是第三辐射部413的竖直部分的长度。
继续参考图7所示,接地点415及馈电点414一一对应设置在第一折弯结构416及第二折弯结构417。其中馈电点414设置在第一折弯结构416远离第一辐射部411的一端,接地点415设置在第二折弯结构417远离第三辐射部413的一端。并且接地点415与馈电点414之间的间距D也满足:D至少不小于设定值。如设定值为9mm,则D≥9mm,具体的可以采用10mm、11mm、15mm、20mm等距离,以使得NFC天线的信号能够激励出更大的涡流。图7所示的NFC天线激励出的电流与图3中所示的电流近似,在此不再详细赘述。
由上述图3~图7可以看出,在本申请实施例中的NFC天线的辐射体41设置时的几个具体示例,在本申请实施例中,辐射体41只需要满足是一个带有开口的环形辐射体41,且辐射体41位于开口两侧的端部分别为馈电点414及接地点415,辐射体41的具体设置方式可以根据需要进行一些改变,在此做具体的限定。
继续参考图3~图7,辐射体41无论采用哪种结构,辐射体41均包含有多层结构。如图8所示,图8示出了辐射体41的横截面示意图。由图8可以看出,辐射体41主要包含有三层,分别为导电层44、粘接层43以及铁氧体层42。其中,导电层44与铁氧体层42 层叠设置,且导电层44通过粘接层43与铁氧体层42固定连接。粘接层43具体可以采用固化胶、双面胶等常见的粘接胶。应当理解的是,图8仅仅为一个具体的示例,辐射体41还可以包括除图8所示的层结构外的其他层。
在NFC天线设置在移动终端内时,辐射体41可以为移动终端内的不同结构。参考图9,NFC天线的辐射体41设置在移动终端的主板20上方区域时,辐射体41可以为电路层或者覆铜层。铁氧体层42制备在主板20区域上方的结构,铁氧体42和辐射体41组成NFC天线。由图9可以看出,在辐射体41设置在主板20区域上方,辐射体41可以利用主板20上方的空间环绕比较大的空间面积。为方便理解本申请实施例提供的NFC天线,对NFC天线进行了打样实测,如下表1及表2所示。其中,表1为W1=W2=W3=3mm铁氧体不同长度和电压下的验证效果,其中,表1中L=L1+L2+L3。表2为L1+L2+L3=110mm FPC不同宽度下的验证效果,其中表2中的W=W1=W2=W3。
表1
CARD TYPE | L=110mm,5V | L=90mm,5V | L=110mm,3.3V |
TAG 1 | 38mm | 41mm | 43mm |
TAG 2 | 42mm | 43mm | 42mm |
TAG 4 | 32mm | 23mm | 26mm |
TAG 5 | 58mm | 53mm | 55mm |
4800 | 95mm | 85mm | 75mm |
S90 | 75mm | 64mm | 53mm |
5200 | 92mm | 85mm | 86mm |
表2
由上述表1及表2可以看出,本申请实施例提供的NFC天线可以具有良好的性能。
当然,NFC天线不仅限于图9中所示的设置位置,NFC天线的辐射体41也可以设置移动终端的后盖上,如NFC天线的辐射体41设置在后盖对应主板20的区域。后盖上设置有增强后盖强度的钢板或者后盖直接为金属材料制备而成,此时辐射体41的导电层44即为后盖上设置的钢板或者后盖,铁氧体层42设置在钢板或者后盖上。但是无论辐射体41设置在主板20或者主板20对应的后盖的区域,辐射体41的地仍设置在主板20上。
此外,在辐射体41设置在后盖时,NFC天线可以与移动终端的充电线圈设置在一个区域。
如图10所示,图10示例了辐射体41设置的另外一种具体结构。辐射体41设置在后盖上电池30区域对应的区域,具体的设置方式与图9中所示的设置方式相同。在图10中, 辐射体41的接地仍与主板20上的地连接。
如图11所示,图11示出了另一种辐射体41设置在移动终端内的情况,在图11中,辐射体41设置在主板20或主板20对应的后盖区域,具体可以参考图9中的设置方式,图11所示的辐射体41的设置位置与图9所示的设置方式相似,仅仅在于辐射体41形状的区别。
如图12所示,图12示出了另一种辐射体41设置在移动终端内的情况,在图12中,辐射体41设置在主板20或主板20对应的后盖区域,具体可以参考图10中的设置方式,图12所示的辐射体41的设置位置与图10所示的设置方式相似,仅仅在于辐射体41形状的区别。在辐射体41采用图12所示的方式设置时,辐射体41连接的地为中框10,辐射体41的接地点415通过弹片或导电软辅料(导电硅胶或导电泡棉等)与中框10电连接。
如图13所示,图13示例了辐射体41的另一种设置方式。在移动终端内,若整机架构或在主板20的区域有一个钢板,则可将钢板部分进行挖孔设计,挖空开槽后,等同于路径加长,增加天线回流路径,如图13所示,最后性能较之单纯顶部方案性能提升85%以上。或者也可以采用如图14中所示,将钢板复用的NFC天线的辐射体41与移动终端的中框10通过导线或者弹片420相连接,进一步的增大了辐射体41的天线的回流路径。
本申请实施例还提供了一种移动终端,该移动终端包括中框10以及设置在中框10内的上述任一项的天线。在上述技术方案中,采用在移动终端内单独设置NFC天线,实现了与其他非NFC天线解耦;另外,在采用单端馈电,另一端接地的方式设置NFC天线,在极小净空环境下实现单端NFC性能,相比现有技术中的双端NFC天线成本低,面积小。
在具体设置天线时,可以采用不同的形式,即可采用如图9中所示,在中框10内设置有主板20;而天线设置在主板20区域,或者如图10、图11及图12所示的类似变形,具体可以参考上述的描述,在此不再赘述。或者还可以采用如图13所示,中框10内设置有钢板,而天线设置在钢板;且在辐射体41包含层叠的导电层及铁氧体层时,钢板为与导电层。还可以采用如图14中所示,中框10为金属中框10,且金属中框10作为移动终端的地;钢板与金属中框10导电连接;天线设置在钢板上,且天线的接地点设置在金属中框10。提高了天线的占用面积,进而提高了天线的性能。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (13)
- 一种天线,应用于移动终端,其特征在于,所述天线包括:馈电线、辐射体以及接地线;其中,所述辐射体为带有开口的环形辐射体,且所述辐射体位于所述开口两侧的端部分别为馈电点及接地点;所述接地点与所述馈电点的间距至少不小于设定值;所述馈电点与所述馈电线连接,所述接地点与所述接地线连接。
- 根据权利要求1所述的天线,其特征在于,所述辐射体包括第一辐射部、第二辐射部以及第三辐射部,其中,所述第二辐射部分别与所述第一辐射部及所述第三辐射部连接,且所述第一辐射部、第二辐射部及所述第三辐射部形成U形的辐射体。
- 根据权利要求1所述的天线,其特征在于,所述辐射体包括第一辐射部及与所述第一辐射部连接的第二辐射部;其中,所述第一辐射部及所述第二辐射部形成L形的辐射体。
- 根据权利要求1所述的天线,其特征在于,所述辐射体包括第一辐射部、第二辐射部及第三辐射部;其中,其中,所述第二辐射部分别与所述第一辐射部及所述第三辐射部连接,且所述第一辐射部、第二辐射部及所述第三辐射部形成U形的辐射体;所述第一辐射部远离所述第二辐射部的一端具有第一第三折弯结构;所述第三辐射部远离所述第二辐射部的一端具有第二第三折弯结构;所述接地点及所述馈电点一一对应设置在所述第一第三折弯结构及所述第二第三折弯结构。
- 根据权利要求1~4任一项所述的天线,其特征在于,所述辐射体上设置有用于避让所述移动终端内的结构体或器件的第三折弯结构。
- 根据权利要求1~5任一项所述的天线,其特征在于,所述辐射体上连接有调试枝节。
- 根据权利要求1~6任一项所述的天线,其特征在于,所述辐射体包括层叠的铁氧体层及导电层。
- 根据权利要求7所述的天线,其特征在于,所述导电层为所述移动终端的电路层或钢板。
- 根据权利要求1~8任一项所述的天线,其特征在于,所述设定值为9mm。
- 一种移动终端,其特征在于,包括中框以及设置在所述中框内的如权利要求1~9任一项所述的天线。
- 根据权利要求10所述的移动终端,其特征在于,所述中框内设置有主板;所述天线的馈电点和接地点设置在所述主板。
- 根据权利要求11所述的移动终端,其特征在于,所述中框内设置有钢板,所述天线设置在所述钢板;且在所述辐射体包含层叠的导电层及铁氧体层时,所述钢板为与所述导电层。
- 根据权利要求12所述的移动终端,其特征在于,所述中框为金属中框,且所述金属中框作为所述移动终端的地;所述钢板与所述金属中框导电连接;所述天线设置在所述钢板上,且所述天线的接地点设置在所述金属中框。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20887748.0A EP4047740A4 (en) | 2019-11-14 | 2020-10-22 | ANTENNA AND MOBILE DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911114555.8A CN112803147B (zh) | 2019-11-14 | 2019-11-14 | 一种天线及移动终端 |
CN201911114555.8 | 2019-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021093545A1 true WO2021093545A1 (zh) | 2021-05-20 |
Family
ID=75803853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/123011 WO2021093545A1 (zh) | 2019-11-14 | 2020-10-22 | 一种天线及移动终端 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4047740A4 (zh) |
CN (1) | CN112803147B (zh) |
WO (1) | WO2021093545A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1881554A1 (en) * | 2006-07-07 | 2008-01-23 | LG Electronics Inc. | Antenna and mobile terminal using the same |
US20110128187A1 (en) * | 2009-11-30 | 2011-06-02 | Electronics And Telecommunications Research Institute | Small antenna using srr structure in wireless communication system and method for manufacturing the same |
CN104425881A (zh) * | 2013-08-22 | 2015-03-18 | 深圳富泰宏精密工业有限公司 | 天线结构及具有该天线结构的无线通信装置 |
TW201618373A (zh) * | 2014-10-16 | 2016-05-16 | 微軟技術授權有限責任公司 | 裡面具有寄生構件的環形天線 |
CN105680152A (zh) * | 2016-03-11 | 2016-06-15 | 北京小米移动软件有限公司 | 终端背盖及其移动终端 |
CN107112622A (zh) * | 2015-01-05 | 2017-08-29 | 阿莫技术有限公司 | Nfc天线模块 |
CN107275770A (zh) * | 2017-06-13 | 2017-10-20 | 捷开通讯(深圳)有限公司 | 一种双频wifi环形天线及移动终端 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2441061B (en) * | 2004-06-30 | 2009-02-11 | Nokia Corp | An antenna |
US7307591B2 (en) * | 2004-07-20 | 2007-12-11 | Nokia Corporation | Multi-band antenna |
TW201027844A (en) * | 2009-01-06 | 2010-07-16 | Ralink Technology Corp | Loop antenna for wireless network |
EP2495811A1 (en) * | 2011-03-01 | 2012-09-05 | Laird Technologies AB | Antenna device and portable radio communication device comprising such antenna device |
WO2015100654A1 (zh) * | 2013-12-31 | 2015-07-09 | 华为终端有限公司 | 环形天线及移动终端 |
CN104396086B (zh) * | 2014-03-28 | 2016-09-28 | 华为终端有限公司 | 一种天线及移动终端 |
CN106463832B (zh) * | 2014-04-30 | 2019-04-26 | 株式会社村田制作所 | 天线装置和电子设备 |
KR20160046187A (ko) * | 2014-10-20 | 2016-04-28 | 삼성전자주식회사 | 안테나 구조 및 그 안테나 구조를 갖는 전자 장치 |
US10224602B2 (en) * | 2015-04-22 | 2019-03-05 | Apple Inc. | Electronic device with housing slots for antennas |
CN107851893B (zh) * | 2016-05-28 | 2020-06-16 | 华为技术有限公司 | 一种用作近场通信天线的导电板及终端 |
CN107546461A (zh) * | 2016-06-23 | 2018-01-05 | 华为终端(东莞)有限公司 | 一种智能可穿戴产品的近场通信天线及智能可穿戴产品 |
CN206259499U (zh) * | 2016-12-14 | 2017-06-16 | 上海艺时网络科技有限公司 | 共体天线及移动终端 |
WO2018113341A1 (en) * | 2016-12-23 | 2018-06-28 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Housing assembly for terminal, terminal and mobile phone |
CN108496278B (zh) * | 2017-01-16 | 2021-01-12 | 华为技术有限公司 | 一种天线结构及通信终端 |
CN108701890A (zh) * | 2017-02-27 | 2018-10-23 | 华为技术有限公司 | 一种nfc天线及终端设备 |
CN206864624U (zh) * | 2017-06-02 | 2018-01-09 | 惠州Tcl移动通信有限公司 | 单圈形式的近场通信天线及电子设备 |
KR20190002042A (ko) * | 2017-06-29 | 2019-01-08 | 주식회사 알에프텍 | 안테나, 이의 제조방법 및 이를 포함하는 모바일 전자기기 |
CN207021379U (zh) * | 2017-07-28 | 2018-02-16 | 北京小米移动软件有限公司 | 移动终端 |
CN208433521U (zh) * | 2018-05-23 | 2019-01-25 | 深圳市海德门电子有限公司 | 基于支架的nfc移动终端 |
CN209561606U (zh) * | 2019-04-19 | 2019-10-29 | Oppo广东移动通信有限公司 | 天线装置及具有其的电子设备 |
-
2019
- 2019-11-14 CN CN201911114555.8A patent/CN112803147B/zh active Active
-
2020
- 2020-10-22 EP EP20887748.0A patent/EP4047740A4/en active Pending
- 2020-10-22 WO PCT/CN2020/123011 patent/WO2021093545A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1881554A1 (en) * | 2006-07-07 | 2008-01-23 | LG Electronics Inc. | Antenna and mobile terminal using the same |
US20110128187A1 (en) * | 2009-11-30 | 2011-06-02 | Electronics And Telecommunications Research Institute | Small antenna using srr structure in wireless communication system and method for manufacturing the same |
CN104425881A (zh) * | 2013-08-22 | 2015-03-18 | 深圳富泰宏精密工业有限公司 | 天线结构及具有该天线结构的无线通信装置 |
TW201618373A (zh) * | 2014-10-16 | 2016-05-16 | 微軟技術授權有限責任公司 | 裡面具有寄生構件的環形天線 |
CN107112622A (zh) * | 2015-01-05 | 2017-08-29 | 阿莫技术有限公司 | Nfc天线模块 |
CN105680152A (zh) * | 2016-03-11 | 2016-06-15 | 北京小米移动软件有限公司 | 终端背盖及其移动终端 |
CN107275770A (zh) * | 2017-06-13 | 2017-10-20 | 捷开通讯(深圳)有限公司 | 一种双频wifi环形天线及移动终端 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4047740A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4047740A4 (en) | 2022-11-30 |
CN112803147B (zh) | 2023-05-05 |
EP4047740A1 (en) | 2022-08-24 |
CN112803147A (zh) | 2021-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10062956B2 (en) | Antenna device and electronic apparatus | |
US7081853B2 (en) | Mobile communication terminal | |
US8437411B2 (en) | Receiving apparatus | |
TWI523324B (zh) | 通訊裝置 | |
CN101106211A (zh) | 双回路多频天线 | |
WO2017206470A1 (zh) | 一种用作近场通信天线的导电板及终端 | |
US8164524B2 (en) | Built-in straight mobile antenna type dual band antenna assembly with improved HAC performance | |
US9905912B2 (en) | Antenna module | |
US9653782B2 (en) | Antenna structure and wireless communication device using same | |
US9077068B2 (en) | Communication device and antenna system therein | |
US10840592B2 (en) | Electronic device and antenna assembly thereof | |
TW201417390A (zh) | 行動通訊裝置 | |
CN108432358A (zh) | 无线电力传输用磁场屏蔽片以及包括其的无线电力接收模块 | |
WO2020134328A1 (zh) | 天线模组及移动终端 | |
US12095158B2 (en) | Electronic device | |
US7505004B2 (en) | Broadband antenna | |
TW202127735A (zh) | 多天線系統 | |
US7808442B2 (en) | Multi-band antenna | |
US20190190150A1 (en) | Antenna structure and wireless communication device using same | |
CN102683829B (zh) | 移动通信装置及其天线结构 | |
US9178274B2 (en) | Communication device and antenna element therein | |
WO2021093545A1 (zh) | 一种天线及移动终端 | |
US20110227805A1 (en) | Broadband antenna applied to multiple frequency band | |
US20140340277A1 (en) | Communication device and antenna element therein | |
TW202036986A (zh) | 雙頻段天線 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20887748 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020887748 Country of ref document: EP Effective date: 20220520 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |